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An Extended Multiple Criteria Data Envelopment Analysis Model 

 
Abstract 

Several researchers have adapted the data envelopment analysis (DEA) models to deal with two 

inter-related problems: weak discriminating power and unrealistic weight distribution. The 

former problem arises as an application of DEA in the situations where decision-makers seek to 

reach a complete ranking of units, and the latter problem refers to the situations in which basic 

DEA model simply rates units 100% efficient on account of irrational input and/or output 

weights and insufficient number of degrees of freedom. Improving discrimination power and 

yielding more reasonable dispersion of input and output weights simultaneously remain a 

challenge for DEA and multiple criteria DEA (MCDEA) models. This paper puts emphasis on 

weight restrictions to boost discriminating power as well as to generate true weight dispersion of 

MCDEA when a priori information about the weights is not available. To this end, we modify a 

very recent MCDEA models in the literature by determining an optimum lower bound for input 

and output weights. The contribution of this paper is sevenfold: first, we show that a larger 

amount for the lower bound on weights often leads to improving discriminating power and 

reaching realistic weights in MCDEA models due to imposing more weight restrictions; second, 

the procedure for sensitivity analysis is designed to define stability for the weights of each 

evaluation criterion; third, we extend a weighted MCDEA model to three evaluation criteria 

based on the maximum lower bound for input and output weights; fourth, we develop a super-

efficiency model for efficient units under the proposed MCDEA model in this paper; fifth, we 

extend an epsilon-based minsum BCC-DEA model to proceed our research objectives under 

variable returns to scale (VRS); sixth, we present a simulation study to statistically analyze 

weight dispersion and rankings between five different methods in terms of non-parametric tests; 

and seventh, we demonstrate the applicability of the proposed models with an application to 

European Union member countries. 

Keywords: Data envelopment analysis (DEA); Multiple criteria DEA (MCDEA); Discriminating 

power; Simulation. 

 

1. Introduction 

Data envelopment analysis (DEA) is a non-parametric frontier methodology, based on linear 

programming, aiming at measuring the relative efficiency of peer decision-making units (DMUs) 
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with multiple inputs and multiple outputs. Farrell (1957) made a start on DEA in the economics 

literature by defining a simple measure for efficiency that could account for multiple inputs 

through the context of technical, allocative and productive efficiency. Charnes et al. (1978) and 

Banker et al. (1984) extended Farrell’s idea to propose the CCR (Charnes, Cooper, Rhodes) and 

BCC (Banker, Charnes, Cooper) models under constant returns to scale (CRS) and variable 

returns to scale (VRS) assumptions, respectively. Since 1978, DEA has received a great deal of 

attention in the literature of Operations Research and Management Science (Cook & Seiford, 

2009; Emrouznejad et al., 2008; Hatami-Marbini et al., 2011). 

The relative efficiency of each DMU is defined as a quotient of the weighted sum of outputs to 

the weighted sum of inputs. The key idea behind DEA is to allow flexibility in the choice of 

weights on inputs and outputs endogenously per DMU, presenting the (in-)efficiency measure in 

its best light. The flexibility on weights in DEA allows each DMU to freely consider a set of 

weights, which may be economically or preferentially unrealistic. On the one hand, such freedom 

leads to omitting some inputs/outputs by assigning zero weights in the evaluation process. On the 

other hand, the unfair or undesirable weight distribution among variables gives the opportunity to 

some units to become efficient by assigning extremely large weights in a single output and/or 

extremely small weights in a single input.  

The DEA models enable to partition all the DMUs into two sets: efficient and inefficient, where 

an efficient and inefficient DMU achieve a score of 1 and less than 1, respectively. However, it is 

not too far-fetched to observe certain cases that decision-makers (DMs) seek a complete ranking 

beyond the dichotomized grouping of units. The lack of discrimination as a limitation of DEA 

has been theoretically and practically discussed in the literature, in particular, this issue most 

likely occurs when the number of DMUs is not sufficient enough compared to the total number 

of inputs and outputs, this is known as a rule of thumb in DEA (Toloo & Tichy 2015). An 

effective way for improving the discrimination power and providing more realistic dispersed 

weights is to reduce the flexibility of input and output weights by incorporating value judgments 

into the DEA models (Dyson et al., 2001). 

There has been a series of research studies adapting the distinct DEA models to 

circumvent the two aforesaid inter-related problems; weak discriminating power and unrealistic 

weight distribution. All research work can be categorized into three categories. The first category 

deals with the problem of discrimination that occurs in practice particularly if there are a 
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relatively large number of variables with respect to DMUs. The majority of this category is made 

up of approaches that are the combination of DEA and multiple-criteria decision making 

(MCDM) models or DEA and statistical methods particularly the bootstrapping methodology in 

Simar and Wilson (2000). The main purpose of MCDM is to identify the most preferred 

alternative in the presence of conflicting criteria that need to be evaluated in making decisions. 

An MCDM problem can be reformulated in terms of DEA when replacing DMU with 

alternatives, outputs with criteria to be maximized, inputs with criteria to be minimized. The 

existing similarity between DEA and MCDM techniques has led the researchers to develop 

several interactive methods (e.g. see Doyle & Green, 1993; Stewart, 1994, 1996). To avoid the 

discrimination problem, Kneip et al. (1998) and Simar and Wilson (2000) developed an 

alternative method with more discriminating power based on the statistical properties of the 

nonparametric estimators, in which the number of DMUs must be augmented exponentially 

compared to the number of input and output variables. However, it is not possible to obtain a 

given amount of mean-square error in terms of the number of DMUs because the convergence of 

the nonparametric estimators is dependent on unknown smoothing constants. Nevertheless, a 

single input and single output system requires at least 25 DMUs, and ideally more than 100 for 

the confidence intervals of the efficiency estimator to be almost reliable. In reality, large samples 

are not available at large, hence, there may be a need to think of other discrimination improving 

methodologies. 

The second category makes an attempt to control input and output weights with or 

without the prior judgments with the aim of reaching more reasonable weight distribution. The 

most widely used approaches that require a prior information about the weights include absolute 

multiplier restrictions (Roll et al. 1991), assurance regions (Thompson et al., 1990; Cook and 

Zhu, 2008) and non-homogeneous weight restrictions (Podinovski, 2004a), and the most widely 

published approaches without a prior information about the weights include cross-efficiency 

(Sexton et al. 1986; Doyle and Green, 1994; Hatami-Marbini et al. 2016), super-efficiency 

(Andersen & Petersen, 1993)  and common set of weights (Hosseinzadeh Lotfi et al. 2013, and 

Hatami-Marbini et al. 2015). There is a significant body of literature that investigates how to 

incorporate value judgments in DEA by means of weight restrictions (Podinovski and 

Thanassoulis, 2007; Cook and Seiford, 2009). However, though the use of weights restriction 
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and value judgments in DEA such as assurance region (AR) method leads to more realistic 

weight distribution, the prior information is not often available and easily applied in practice.  

The third category is composed of a few research studies that aim at addressing 

discrimination problem and unrealistic weight distribution simultaneously. This category 

considers multiple evaluation criteria to determine the inefficiency measures based on a 

deviation variable. Sexton et al. (1986) first introduced a deviation variable as an inefficiency 

measure for each DMU and then minimized the weighted sum of all deviations to provide a final 

ranking. In line with Sexton et al. (1986), Stewart (1996) utilized the concept of deviation 

variable to present a minimax DEA model where its objective function was the minimax of all 

deviation variables. Although Sexton et al. (1986) and Stewart (1996) designed the baseline of 

research in this category, the study of Li & Reeves (1999) in the literature is known as a 

pioneering line of research at presenting a general model frequently called multiple criteria DEA 

(MCDEA). Li & Reeves (1999) introduced a MCDEA model with an aim at improving 

discrimination power compared to the classical DEA models as well as reaching more reasonable 

weights. The MCDEA model involves three criteria (or objective functions) so as to minimize 

the inefficiency measure of the DMUs. These criteria have been adapted from the models 

presented by Charnes et al. (1978), Belton & Vickers (1993) and Stewart (1996). Li & Reeves 

(1999) took into account one of three efficiency criteria based on the purpose of a study to 

evaluate the DMUs.  

Bal et al. (2010) tried to solve the three-objective linear programming model of Li & 

Reeves (1999) using a goal programming DEA (GPDEA) approach under CRS and VRS 

assumptions in order to improve discriminatory power of DEA as well as to generate more 

realistic input and output weights. However, Ghasemi et al. (2014) showed that the GPDEA 

models suffer from some mathematical and conceptual flaws. In addition, although Ghasemi et 

al. (2014) proposed a bi-objective MCDEA (BiO-MCDEA) model involving only two criteria of 

the model of Li & Reeves (1999) to improve discriminating power and achieve better weight 

dispersion, their method contains three flaws. The first flaw is that Ghasemi et al. (2014) 

assumed a non-Archimedean epsilon as a lower bound for inputs and output weights in their 

model and mistakenly claimed that the results of the BiO-MCDEA model will not suffer if the 

lower bound of weights is substituted with zero. The second flaw concerns the weighted sum 

method used by Ghasemi et al. (2014) to solve the bi-objective programming model where there 
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is no clear argument for defining the weights assigned to each objective function. Relying on a 

decision-maker’s opinion for defining these weights can be the basis of conflict since Ghasemi et 

al. (2014)’s model as a special model proposed by Li & Reeves (1999) does not allows value 

judgments in a process of DEA analysis. As the last flaw, Ghasemi et al. (2014) claimed that the 

minsum BCC-DEA model was incorrectly formulated by Bal et al. (2010) but they did not 

propose any alternative to deal with the problem.  

In this study, we address the gap in previous research by dealing with both weak 

discriminating power and unrealistic weight distribution simultaneously as inter-connected 

problems, especially in the circumstances where decision-makers are interested in a complete 

ranking and more realistic weight distribution rather than the relative efficiency measures of 

DMUs using basic DEA models. To this end, we first highlight the role of non-Archimedean 

epsilon in the BiO-MCDEA model of Ghasemi et al. (2014) when additional preferential 

information about the weights is not available (c.f. aforesaid first flaw). In this respect, we 

propose a method to determine the optimum epsilon value that can be considered in BiO-

MCDEA model as a lower bound of weights with the aim of improving discriminating power 

and reaching more reasonable or desirable input and output weights dispersion simultaneously. 

Second, the impact of the importance of each objective function in the linearized bi-objective 

linear programming model is studied with sensitivity analysis (c.f. aforesaid second flaw). Third, 

we generalize our method to treat those problems that require the three evaluation criteria at once 

as proposed by Li & Reeves (1999). Fourth, we propose a super-efficiency model based on the 

optimum epsilon to rank the efficient units due to the fact that the main goal of our paper is to 

provide a complete ranking. Fifth, we argue that Ghasemi et al. (2014)’s claim on the minsum 

BCC-DEA model is basically flawed. Accordingly, some constructive remarks are provided to 

remedy their shortcomings as well as to propose an epsilon-based minsum BCC-DEA model. 

Sixth, we place great emphasis on a comprehensive statistical analysis according to a simulation 

study with the aim of demonstrating the importance of defining a proper lower bound for weights 

in the distinct DEA models. We finally present an application to 23 European Union member 

countries to draw the applicability of the proposed models. 

The rest of this paper is organized as follows: In Section 2, we review the conventional 

DEA and MCDEA models. A motivating example is given in Section 3 to illustrate the role of 

the non-Archimedean epsilon in the weighted BiO-MCDEA model. In Section 4, we first 
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propose a new method to refine the BiO-MCDEA model based on the optimal lower bound for 

input and output weights. We then propose a model composed of three evaluation criteria along 

with proposing a model for ranking the efficient DMUs. In Section 5, we first highlight the 

shortcoming of BiO-MCDEA model and then present a minsum DEA model under VRS 

assumption. Section 6 presents a simulation study to implement some statistical tests for 

verifying the applicability of the proposed method. Section 7 presents a real world dataset of the 

23 European Union member countries for evaluating the carbon efficiency using the proposed 

models in this study and existing models in the literature. Finally, we conclude this study with 

some directions for future research in Section 8. 

 

2. Background 

This section is divided into two sub-sections to present some preliminaries about the 

conventional DEA and MCDEA models.  

 

    2.1. Basic DEA models 

The aim of DEA is to estimate the technology or the production possibility set (PPS) according 

to the minimal extrapolation principle (Charnes et al., 1978). DEA uses a set of producing units, 

referred to as decision-making units (DMUs), to construct a production or efficiency frontier 

involving all possible linear combinations of efficient producing units (so-called isoquant). 

Assume that there exist   DMUs where every                consumes   controllable 

inputs             to produce   outputs            . The efficiency score of a DMU under 

CRS assumption is defined as the ratio of weighted sum of outputs to the weighted sum of inputs 

subject to the condition that the same ratio for all DMUs must be equal to or less than 1. In terms 

of mathematics, the input-oriented CCR model (also called multiplier model) can be formulated 

as follows (Charnes et al., 1978): 

       ∑      
 
   

    
∑      

 
      

∑      
 
    ∑      

 
                   

                               
                              

  (1) 

where   
  is the efficiency score of the DUM under evaluation,             , and    and    are 

the multipliers (weights) assigned to the i
th

 input and to the r
th

 output, respectively.  
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Definition 1:      is efficient if      and there exists at least one optimal         of model 

(1) with    
       and   

       ; otherwise it is inefficient. 

To obtain a set of strictly positive weights, Charnes et al. (1979) proposed to impose a positive 

lower bound on weights for improving the CCR model (1) as follows:  

       ∑      
 
   

    
∑      

 
      

∑      
 
    ∑      

 
                   

                                
                                

  (2) 

where the parameter       is a non-Archimedean infinitesimal, which prevents weights from 

being zero. Note that model (2) may be infeasible for an unsuitable value of epsilon. That is 

because Charnes et al. (1993) stated “… if one uses a small number in place of the infinitesimal 

epsilon, one is caught between Scylla and Charybdis, i.e. for decent convergence to an optimum, 

the numerical zero tolerance should be as large as possible, whereas the numerical value 

approximating the infinitesimal should be as small as possible!”. In addition, we draw the 

attention to the fact that different epsilons in model (2) may lead to different efficiency scores or 

rankings. The strictly positive weights obtained from model (2) makes the definition of an 

efficient unit easier:      is efficient if and only if     . However, the identification of a 

suitable value for epsilon plays an important role in this definition (See Amin & Toloo, 2004). 

In general, weight restrictions may lead to the infeasibility of DEA models (Dyson et al. 

2001; Sarrico and Dyson, 2004; Podinovski; 2004a, 2004b; Saati et al. 2012; Toloo 2014a). To 

deal with the problem, Podinovski (2004b) proposed two ways to incorporate the information 

about production trade-offs between the inputs and outputs into the DEA models. In addition, 

Estellita Lins et al. (2007) suggested an approach to establish feasibility conditions for DEA 

multiplier programs. Recently, Podinovski and Bouzdine-Chameeva (2013) showed that the 

problem of infeasibility is only one of several possible problems that may occur in the presence 

of weight restrictions. The authors illustrated that the use of weight restrictions may lead to zero 

or negative efficiency scores of some operating units in which the production set with trade-offs 

involves free and/or unlimited production.  

In this study, we deploy the absolute weight bounds as a special case of the unlinked non-

homogeneous weight restrictions that have been used in several applications such as highway 
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maintenance patrols (Cook et al. 1991), implementations of robotics in 31 companies (Cook et 

al. 1992) and tax collecting departments (Dyson and Thanassoulis, 1988). The basic challenge in 

this case is the procedures for determining the bounds. For instance, the lower bounds for the 

output weights for evaluating the efficiency of tax collecting departments (Dyson and 

Thanassoulis, 1988) were computed based on the average costs of generating a unit of output. It 

should be also emphasized that the use of non-homogeneous weight restrictions includes some 

limitations such as vague managerial meaning of the resulting efficiencies that makes it less 

attractive in real-world problems (see Podinovski (2015) for a detailed discussion). One also 

faces an awkward situation regarding unlinked weight restrictions when the inconsistency 

observes between the defined restrictions (Podinovski and Bouzdine-Chameeva, 2013). Our 

special contribution in this paper is to present a model to compute an optimum value for the 

lower bounds of weights that does not result in free and unlimited production. 

   

    2.2. MCDEA 

The multiplier DEA model has been developed based on a single criterion, which is the 

maximization of the ratio of the weighted sum of outputs to the weighted sum of inputs. In this 

regard, DEA provides extreme flexibility in the identification of the weights on inputs and 

outputs. In other words, each DMU can take the advantage of “weight flexibility” to improve its 

efficiency score per se as much as possible. In spite of the advantage of allowing such flexibility, 

the weight flexibility allows zero or very small multipliers to a number of inputs and/or outputs 

to be used in calculating the relative efficiency of distinct DMUs. Therefore, unreasonable or 

undesirable weight distribution such as ignoring some inputs and/or outputs of a DMU may not 

be acceptable in situations where decision-makers are interested in scrutinizing the input and 

output weights. 

Besides, the model with weight flexibility does not often succeed to discriminate and many 

DMUs are categorized as efficient. Many different methods can be found in the literature with 

the aim of how weight flexibility can be intentionally controlled in DEA models to deal 

effectively with the above-mentions obstacles. Li & Reeves (1999) improved discriminating 

power by the extension of a single criterion-based DEA to three criteria as expressed below:  
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        (       ∑      
 
   )

       

   ∑   
 
   

    
∑      

 
      

∑      
 
    ∑      

 
                    

                                                        

                 

                
                 

   (3) 

where   , which varies within [0,1), is the deviation variable of DMUo, and can be considered as 

an inefficiency measure to be used in computing the efficiency score of DMUo as     . The 

first objective function is minimizing the deviation of DMUo which is identical to the objective 

function of the CCR model (1). The other objective functions in model (3) are minimizing the 

maximum deviation, and minimizing the sum of deviations, respectively. The third set of 

constraints (                  ), which causes the maximum deviation, is redundant 

for the first and the last criteria. It should be noted that the minimax criterion in comparison with 

the minsum criterion is more restrictive. Li & Reeves (1999) argued that the purpose of each 

study can be independently considered to determine an appropriate efficiency criterion in 

measuring the efficiency of units. On the other hand, as far as we know, the advance of the 

MCDEA model (3) has been only carried out based on either minmax or minsum criteria (see Lu 

& Lo, 2007).  

Bal et al. (2010) recently considered all the three criteria (objective functions) at the same 

time to provide better-dispersed weights as well as to improve discriminatory power of the 

MCDEA model (3) under the constant and variable returns to scale technologies. The authors 

exploited the goal programming to transform the MOLP problems to linear programming 

problems. However, Ghasemi et al. (2014) showed that the technical flaws in Bal et al. (2010) 

models fundamentally invalidate their claims, particularly “...improvement of the dispersion of 

input–output weights and the improvement of discrimination power...”.  

Contrary to Bal et al. (2010), Ghasemi et al. (2014) developed a weighted BiO-MCDEA 

model by using the weighted sum (WS) method as                      ∑   
 
    where 

           in order to simultaneously render better-dispersed weights and better 

discriminating power. However, Ghasemi et al. (2014) considered only the two latter 
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components and removed      from their proposed model since they believed that the first 

objective function establishes lower discrimination power in comparison with the other two 

objective functions. The model of Ghasemi et al. (2014) is expressed as follows: 

 

 

                 ∑   
 
   

    
∑      

 
      

∑      
 
    ∑      

 
                    

                                                        

                 

                
                 

  (4) 

     is said to be efficient if   
    where   

  is the optimal solution obtained from (4). 

Otherwise, it is said to be inefficient and the inefficiency score of      is calculated as     
 . 

It should be noted that if we use the weighted goal programming method, the corresponding 

objective function is identical to the WS method.  

The set of constraints of model (4) is identical to model (3). However, the non-negativity 

of multipliers are changed to                 and                  where   is the non-

Archimedean epsilon. These constraints can be considered as weight restrictions. Ghasemi et al. 

(2014) did not provide any approach to find a suitable value for the epsilon. Moreover, by the 

use of a dataset, it was showed that in the case of setting     the weighted BiO-MCDEA 

model is still robust (Ghasemi et al., 2014, p. 645).  Podinovski, and Bouzdine-Chameeva (2013) 

showed that linked weight restrictions (those that include both input and output weights in one 

inequality) may be problematic for some sets of DMUs and unproblematic for other sets. 

Although the weight restrictions      and      in model (4) are unlinked (there include 

input weights and output weights in different m+s inequalities), in Section 4 we will prove that 

the weight restrictions are consistent and the free and unlimited productions do not occur in the 

model.  In the next section, we present a numerical example to highlight the crucial role of the 

amount of   in the weighted BiO-MCDEA model. 

 

3. Motivating example 

To illustrate the role of the non-Archimedean epsilon in the weighted BiO-MCDEA model, we 

utilize a hypothetical data set, which is used in both Bal et al. (2010) and Ghasemi et al. (2014). 

There are 10 DMUs with four inputs and four outputs represented in Table 1. The results of DEA 
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model (1) are given in the last column of Table 1. Due to the fact that the discriminatory power is 

extremely weak (i.e., 9 efficient DMUs out of 10 DMUs), BiO-MCDEA has been applied to 

enhance the discriminatory power. To make a fair comparison, analogous to Ghasemi et al. 

(2014) we assume that       in this section.  

 

###(Insert Table 1 around here)### 

 

Let us first start with     for weighted BiO-MCDEA as reported in Table 2. In this 

case, the weight of the fourth output is always zero for all the DMUs and with the exception of 

DMU4 the weight of the third input is always zero, meaning that these variables,    and   , are 

omitted from the efficiency analysis. However, the existence of all the factors such as    is 

indispensable to provide a fair assessment across all the units. One of the flaws of the model of 

Bal et al. (2010) stated by Ghasemi et al. (2014, p. 642) is “…we examined the weights and 

noticed contrary to what had been claimed in Bal et al. (2010), the input–output weights and 

efficiency values for some DMUs could attain zero values for all variables…” while the 

aforementioned result demonstrates that the proposed weighted BiO-MCDEA model by Ghasemi 

et al. (2014) also suffers from this flaw. This is controversial since Ghasemi et al. (2014, p. 645) 

claimed that “In the case of setting    , the GPDEA model cannot even generate a value to be 

above zero; that is, all the efficiency values, input and output weights are zeroes (see Table 15). 

However, the BiO-MCDEA model did not suffer a similar fate and appeared to be robust.”  

 

###(Insert Table 2 around here)### 

 

When assuming a positive value for  , it is clear that the input and output weights do not 

take zero-value anymore but different values assigned to   may lead to fluctuating efficiency 

score and ranking of each DMU. To describe the problem, we make use of BiO-MCDEA’s 

results for three different epsilons                         in the example as reported in 

Table 3. We can easily observe the differences between the amount of efficiencies and their 

rankings for different epsilons. Note that the numbers in the parentheses indicate the ranking of 

each DMU for a given  . The exploration of similarity across the set of units shows that DMU3 

and DMU10 have identical efficiency score and DMU6, DMU7 and DMU9 are alike in terms of 
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their ranking order in the three cases. However, we can observe many dissimilarities between 

three cases by reference to Table 3. For example, DMU1 in terms of                         

captures the 4
th

, 6
th

 and 7
th

 places, respectively. In other words, DMU1 outperforms DMU2 based 

on          while the performance of DMU1 is worse than DMU2 according to ε       and 

ε      . It is also clarified that the efficiency score of a DMU might be decreased when the 

value of epsilon is increased. More importantly, in the case of          and ε      , DMU4 

is efficient whereas this unit is downgraded to the 5
th

 rank when ε      . 

 

###(Insert Table 3 around here)### 

 

The aim of BiO-MCDEA model proposed by Ghasemi et al. (2014) was to propose 

better-dispersed weights and better discrimination power as well as dealing with the flaws in Bal 

et al. (2010). However, the above descriptions highlight the important role of ε for providing 

more meaningful and rational results in the performance evaluation. 

 

4. Methodology 

In this section, we first introduce a model to calculate the maximum value of   such that the 

weighted BiO-MCDEA model always has a feasible solution. Then, we propose an alternative 

weighted MCDEA method, which is a function of  , with an aim of improving dispersed weights 

and discrimination power along with empathizing the role of   in MCDEA. 

The previous section illustrated that increasing the value of epsilon in model (4) might 

decrease the efficiency score of a DMU and subsequently increase the discriminating power of 

the model. In general, let      be the feasible region of model (4) for a given  , i.e.      

{                                                        } where 

             . Obviously, if      , then             which implies            . In 

addition,      is a superset of      and           for all    . An easy computation clarifies 

that there exists      such that 

    {
       

        

As a result, the maximum discriminating power of model (4) arises when       

The maximum value of epsilon can be computed using the following integrated linear 

model (Amin & Toloo, 2007):  
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∑      

 
                                           

∑      
 
    ∑      

 
                 

                  
                   

  (5) 

where   is a decision variable. The following theorems are brought out to validate model (5). 

Theorem 1: Model (5) is always feasible. 

Proof. 

It is sufficient to introduce a feasible solution for the model. Without loss of generality, suppose 

∑    
 
       {∑    

 
           }. Let     

∑    
 
   

 for         , 

      {
∑    

 
   

 ∑      ∑    
 
     

   
        } for        , and                          . It 

is easy to verify that         is a feasible solution for model (5).□ 

Theorem 2:       
 

     ∑             
    

. 

Proof. 

By reference to the given feasible solution in the proof of Theorem 1,     . Then, multiplying 

the constraint         by     for          and summing up the results over   from     

to     gives a finite upper bound for the non-Archimedean epsilon:   
∑      

 
   

∑    
 
   

 
 

∑    
 
   

 for 

        or equivalently    
 

     ∑             
    

. □ 

Theorem 3: Model (4) is (i) feasible for      and (ii) infeasible for      . 

Proof.  

(i) Let   ̅  ̅     be an optimal solution of model (5). Furthermore, let  ̅  ∑  ̅    
 
    

∑  ̅    
 
    for         and  ̅       {∑  ̅    

 
    ∑  ̅    

 
            }. It is clear 

that ( ̅     ̅  ̅  ̅) is a feasible solution for model (4) for all      .  

(ii) Suppose, on contrary to our claim,              is a feasible solution for      . Hence, 

        is a feasible solution for model (5) with a larger objective function value than   ̅  ̅     

which contradicts the optimality condition. As a result, model (4) is infeasible for      . □ 

Podinovski (2004b) extended the links between weight restrictions in multiplier forms to 

the dual envelopment forms. He interpreted the constraints of the envelopment model as 
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production trade-offs, which signify concurrent changes to inputs and/or outputs in the 

technology. Taking into account the trade-offs may extend the production technology. In this 

case, over and above the feasibility of DEA models, two important issues as regards production 

technology may arise; free and unlimited production. Technology T allows free production of the 

semi-positive vector of outputs    if          1, and technology T allows unlimited 

production of the vector of outputs    if there exists a vector of inputs    such that          

  for all     (For more details see Podinovski and Bouzdine-Chameeva (2013)).  

If there is a free production, the obtained efficiency scores cannot be trusted. Podinovski 

and Bouzdine-Chameeva (2013) stated some approaches to test whether free or unlimited 

production occurs. In this respect, Theorem 4 shows that model (4) does not suffer from the free 

and unlimited production issues. 

Theorem 4. The free and unlimited productions do not occur in model (4). 

Proof. 

Let               
   be an optimal solution for model (4). It is sufficient to verify that the 

efficiency score of DMU under evaluation is a positive number or equivalently   
   . From the 

constrains of model (4) we have   
         where       . On the other hand, we have 

  
      ,       and       and subsequently        which completes the proof. Note 

that we can acquire a strictly positive optimal weight       such that        which are two 

necessary conditions to avoid free and unlimited production issues (see Theorem 8 in Podinovski 

and Bouzdine-Chameeva (2013)).  □   

We point out that the lower bound for weights imposed by   in model (5) forestalls 

weights from being zero. The optimal solution of model (5) for the data set shown in Table 1 is 

          , which is a maximum value according to Theorem 3. Ghasemi et al. (2014) 

considered this example with          in terms of their alleged claim on improving 

discriminatory power without thinking of the role of epsilon. However, Table 4 shows an 

increase in discrimination between ten DMUs when            in comparison with   

      . In other words, according to Table 3 for         , 30% of DMUs are efficient 

whereas we can improve it by 10% when   is assumed to be 0.00238. More interestingly, the 

efficient DMU4 in the case of          declines to the 5
th

 place in the ranking order when 

                                                 
1    is the origin in   .  
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          . Model (4) might still result in more than one efficient DMU in the presence of 

the best epsilon (see the last column of Table 4). 

 

###(Insert Table 4 around here)### 

 

Let us now study the dispersion of input and output weights using the coefficient of 

variation (CV) (Ghasemi et al., 2014; Bal et al., 2010). The CV can be defined as the ratio of the 

standard deviation to the absolute value of the mean, i.e.,      | |, and showed the extent of 

variability in relation to the mean of the obtained optimal weights. It should be noted that | | as a 

denominator of the CV is always positive in the context of efficiency measure. It is a useful and 

informative statistic for comparing the degree of variation from one data series to another, even 

if the means are drastically different from each other. The higher the CV leads to the greater the 

dispersion in the variable. The CV has a unit invariant property and this allows us to be 

compared to each other rather than other measures such as standard deviations and mean 

(Koopmans et al. 1964). It is possible to obtain the CV by using two different ways;       | | 

where  

(i) 
   

∑    
 
    ∑    

 
   

   
   

   
(∑    

 
     )

 
 (∑    

 
     )

 

   
    

  

 

(ii) 
   

∑    
 
   

 
   

   
(∑    

 
     )

 

 
   

 &   

   
∑    

 
   

 
   

   
(∑    

 
     )

 

 
   

  

Bal et al. (2010) used the former method to compute the CVs for their analysis but, 

unfortunately, it is not clear whether Ghasemi et al.  (2014, p.649) deployed the former or latter 

method in their statistical analysis. In this paper, we apply the former method as well to ensure 

consistency of results. In this example, the average of the CVs with    ,          and 

          are 1.08734, 1.07425, 0.72236, respectively. In terms of the CV, the DEA model 

with     has the greatest weight dispersion that seems bizarre since according to Bal et al. 

(2010, p. 99) the weight dispersion problem pops up when some DMUs are evaluated as efficient 

with extreme or zero values for the input and output weights (see the columns related to    and 
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   in Table 2). As a result, it is tough to infer that the CV is a reliable proxy to show the weight 

dispersion. In spite of the fact that the CV may not be intact, it will be used for our simulation 

study to assess robustness.  

Bal et al. (2010) applied the goal programming to three criteria of Li & Reeves (1999) 

aiming at presenting the improvement of the dispersion of input and output weights and Ghasemi 

et al. (2014) underlined the flaws of the models of Bal et al. (2010). However, Ghasemi et al. 

(2014) disregarded the goal programming method and used the simple WS method to aggregate 

the three objective functions without explaining their whys and wherefores. In addition, Ghasemi 

et al. (2014) omitted the first objective function,        (or     ∑      
 
   ), because (i) Li & 

Reeves (1999) showed that this criterion provides lower discrimination power when compared 

with two other criteria (ii) one element of minsum criterion is the    criterion.  

By reference to Tables 2 and 3 in the 1
st
 numerical example of Li & Reeves (1999), it has 

been demonstrated that the weights assigned to inputs and outputs in       are more dispersed 

as compared with the classical DEA. What’s more, Li & Reeves (1999) investigated the effect of 

each criterion independently while the purpose of the weighted BiO-MCDEA model proposed by 

Ghasemi et al. (2014) is to aggregate all criteria.  We also believe that when    (i.e., the 

deviation of the DMU under evaluation) exists twice in the aggregated weighted objective 

functions, it leads us to the conclusion that    twice as important as the other deviations. All in 

all, it motivates us to propose the following epsilon-based weighted MCDEA model: 

 

 

                         ∑   
 
   
   

    
∑      

 
      

∑      
 
    ∑      

 
                    

                                                        

                 

                
                 

  (6) 

where   is the optimal solution of model (5).      is said to be efficient if   
    where   

  is 

the optimal solution obtained from (6). Otherwise, it is said to be inefficient and the efficiency 

score of inefficient      is calculated as     
 . Compellingly, to the extent that the weighted 

goal programming and WS methods to solving model (3) are identical, model (6) can be also 

recognized as a corrected model of Bal et al. (2010). Let us return to the numerical example (see 
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Table 1). The result of model (6) with           is reported in Table 5. Contrary to the 

weighted BiO-MCDEA model, the difference in rankings of a number of DMUs can be 

recognized in Table 5. For instance, DMU1 is improved by two places from 7
th

 in weighted BiO-

MCDEA to 5
th

 in weighted MCDEA in the ranking of DMUs (see Tables 4 and 5). To solve the 

proposed models, we use GAMS software (See Appendix). 

 

###(Insert Table 5 around here)### 

 

Theorem 5. The objective function value of model (6) is bounded. 

Proof. 

We first prove that model (6) is always feasible. Let         be the optimal solution of 

multiplier form of CCR model with   . Note that Cooper et al. (2007) proved that such solution 

exists. In this respect, a vector               
   is a feasible solution of model (6) where 

  
    

    
    

    
  {

∑   
    

 
    ∑   

    
 
       

  ∑   
    

 
                           

     
     {  

 |       }. 

The objective function is non-negative on account of a non-negative linear combination 

of the two positive terms. Due to the fact that model (6) is a min-type problem the proof 

completes. □ 

 

Models (4) and (6) can be classified as an a posteriori method since distinct weights for 

the objectives make up a set of Pareto optimal solutions and it is supposed to be identified the 

most preferred ones by the DM(s). To provide informative and insightful results for the DM, we 

can solve the models repeatedly for the different weights,             . For model (4) 

involving    and          , it can be solved for      and      as a start point, then, 

   is increasing and    is decreasing by 0.01 in each step. That is to say, we require 101 times 

of solving the model for each unit. Ghasemi et al. (2014) paid no attention to the weights of the 

objective functions              and only set equal objectives in their assessment. Note that 

we can employ the similar procedure for model (6) to perform weights analysis on the three 

objective functions, meaning that one of three weights is first fixed by a given value and the 

above-mentioned method will be implemented for the two outstanding weights.  

The results reported in Table 4 are based on the equal weights (     ). Under the 

maximum epsilon, we think of the above algorithm using a trade-off between    and    in 



 

18 

 

model (4) to highlight the importance of the pre-determined weight associated with each 

objective function in computing the efficiency measures as shown in Figure 1.  

 

###(Insert Figure 1 around here)### 

 

Figure 1 provides additional insight for making a decision about the objective weights 

and the ranking of the DMUs. As shown in Figure 1, DMU3 and DMU10 are always efficient (i.e. 

  
     

   ) for all the combinations of weights. The amount of    and    has no effect on 

DMU9 and this DMU is located in the most inferior rank all the time as depicted in Figure 1. 

More interestingly, the left side of the vertical solid red line in Figure 1 indicates a robust region, 

meaning that the ranking of the DMUs prior to step 6 (        and        ) preserves 

unchanged. However, the ranking instability can be showed in the right side of the vertical red 

line in Figure 1. By moving from step 1 to step 10 (i.e., increasing    and decreasing   ) 

provides two situations for each DMU: increasing or declining its rank. For instance, the rank of 

DMU5 is declined from the 3
rd

 to the 7
th

 by increasing    (see Figure 1). 

To provide a complete ranking across the efficient DMUs (i.e.,   
   ) such as DMU3 

and DMU10 in the example, we exploit the super-efficiency concept in DEA to propose the 

following model:  

 
                  (∑   

 
   
   

 ∑      
 
   )

    
∑      

 
      

∑      
 
    ∑      

 
                        

                                                            

                     

                
                 

  (7) 

where   is the optimal solution of model (5). Note that the objective function of model (7) can be 

changed to                   ∑   
 
   
   

    ∑      
 
    regarding model (6) where 

   
  

 
. 

Theorem 6.  Model (7) is feasible. 

Proof. 
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Let         be a feasible solution of super-efficiency model with    under CRS assumption. It is 

clear on inspection that               
   is a feasible solution of model (7) where   

  

∑   
    

 
    ∑   

    
 
        

     {∑   
    

 
    ∑   

    
 
   |       }. □ 

Although during the past years a major effort has been made to treat infeasibility in the 

super-efficiency DEA models under the assumption of VRS (Seiford & Zhu, 1999; Lovell & 

Rouse 2003; Lee et al. 2011), Thrall (1996) and Zhu (1996) also showed that infeasibility of the 

super-efficiency model under the CRS assumption may occur in a very rare situation (viz. 

infeasibility occurs when a certain pattern of zero data exists in the inputs and outputs). 

Therefore, the main body of the DEA literature practically assumes that the super-efficiency 

models under CRS does not suffer the problem of infeasibility (see e.g., Lee et al. 2011; 

Pourmahmoud et al. 2016; Aldamak et al. 2016). 

 

Theorem 7.  For efficient     , the optimal value of ∑      
 
     in model (7) is always equal 

to or greater than unity (i.e.,       ).  

Proof. 

Let               
            be the optimal solution of model (4). Given that the feasible 

region of model (4) is more restricted than model (7), the optimal objective function value of (4) 

is equal to or greater than (7). Let us think of the two following cases: 

   (i) If the constraint  ∑      
 
    ∑      

 
         is redundant in model (4), then 

         
      

          is an optimal solution for model (7) where 

  
     

        
      

      
   and hence ∑   

    
 
     .  

   (ii) If the constraint  ∑      
 
    ∑      

 
         is tight in model (4), then 

  ̅   ̅   ̅   ̅   
           is an optimal solution of model (7). On contrary to our claim, 

suppose ∑  ̅ 
    

 
      and accordingly   

    ∑  ̅ 
    

 
        . It is clear that 

  ̅   ̅   ̃   ̅   
   is a feasible solution for model (4) where 

 ̃ 
  {

 ̅ 
     

  
     

 

Under these assumptions, the objective value of model (4) for         ̃      
   is less than the 

optimal objective value which is not possible. □ 
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As previously noted, based on the epsilon-based model (4) the efficiency of DMU3 and 

DMU10 remains unchanged for all the combinations of    and   . We use model (7) to 

differentiate between these efficient units and DMU3 is superior to DMU10 because their       

are 1.22998 and 1.18218, respectively.  

In short, Figure 2 displays a graphical representation of the proposed methodology with 

the aim of improving the discriminatory power and weight dispersion simultaneously.  

 

###(Insert Figure 2 around here)### 

 

5. Minsum BCC-DEA model 

Ghasemi et al. (2014, p. 643) also argued the validity of the VRS formulation of Bal et al. 

(2010). By reference to Appendix C in Ghasemi et al. (2014, p. 648), the authors claimed that the 

minsum BCC-DEA model (8) are incorrectly formulated due to the absence of    in its objective 

function.  

 

 

   ∑   
 
   

    
∑      

 
      

∑      
 
       ∑      

 
                    

                 

                
                 
                  

  (8) 

In addition, though Ghasemi et al. (2014) mentioned the necessity of considering the free 

variable    in the objective function of BCC version of models they did not attempt to formulate 

a corrected GPDEA and minsum BCC-DEA models. However, we believe that the presence of 

   in the objective function of model (8) is intuitively incorrect. To show this fact, let us recall 

the definition of    in 
∑      

 
      

∑      
 
   

      according to Li & Reeves (1999). Variable    as a 

proxy is defined to represent a measure of inefficiency and the smaller value of    represents the 

less inefficiency for DMUo. In other words, the model allows the flexibility in the identification 

of the input and output weights to minimize the inefficiency of DMUo subject to 
∑      

 
      

∑      
 
   

 

    . Note that model (8) is unbounded if its objective function is replaced by ∑      
 
    

(see the following Theorem 8).  
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Theorem 8. Model (8) is unbounded if its objective function is replaced with ∑   
 
      . 

Proof. Due to Theorem 3, model (8) has a feasible solution where ∑      
 
    is its objective 

function. Considering the Karush-Kuhn-Tucker optimality conditions for lingering programming 

problems (Bazaraa et al. 2010), it is sufficient to show that the following dual is infeasible: 

 

 

      
    
     ∑      

 
                         

∑      
 
                                       

∑   
 
      

                    

  (9) 

The convexity constraint ∑   
 
      leads to  ∑      

 
            and hence from the 

constraints  ∑      
 
         , we obtain      ,    which is not possible in DEA. □ 

Ghasemi et al. (2014) asserted that model (8) is wrongly modeled while the only 

reasoning behind their claim was to make a use of the result of the numerical examples. They 

applied model (8) to the data set presented in Table 1 and, accordingly the 4
th

 output is wholly 

overlooked due to the fact that its weight for all DMUs is zero (see Table 6). Likewise, 

regardless of DMU4, the 3
rd

 and 4
th

 inputs are also removed from the analysis as presented in 

Table 6. 

 

###(Insert Table 6 around here)### 

 

As we earlier showed under CRS assumption, we need to define the maximum value of   

as a lower bound of the input and output weights to deal with the problem reported by Ghasemi 

et al. (2014). In doing so, we propose the following  -form of the minsum BCC-DEA model:  

 

 

   ∑   
 
   

    
∑      

 
      

∑      
 
       ∑      

 
                    

                 

                
                 
                  

  (10) 

where the maximum value of epsilon can be calculated by the following proposed model: 
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∑      

 
                         

∑      
 
       ∑      

 
                 

                  
                   

  (11) 

The optimal value of model (11) is equal to solving the following equation (Toloo, 2012): 

   
 

     ∑             
    

. 

When solving model (11) for the data set in Table 1,           . Table 7 reports the 

efficiency score of DMUs by using model (10) with     . Compared to Table 6, the results in 

Table 7 show that we can improve discrimination power as well as avoiding assigning zero 

weights to some inputs/outputs in the presence of the maximum non-Archimedean epsilon. 

 

###(Insert Table 7 around here)### 

 

The BCC-DEA results obtained from Ghasemi et al. (2014) reported in Table 6 show that 

three variables almost drop from the evaluation while the proposed method keeps the necessary 

influence of all the variables in the evaluation process as shown in Table 7. Some variables take 

the same weights (       ) that are common when assuming the epsilon in the DEA model and 

it does not convey that a factor with same weights plays a neutral role in the evaluation (Cooper 

et al. 2007).  

In a more general setting, the above model under VRS lends itself both to weighted BiO-

MCDEA model (4) and weighted MCDEA model (6). It should be noted that, analogous to 

Theorem 4, it is possible to prove that in the other proposed models (6), (7) and (10) in this 

study there is no free or unlimited production.  

 

6. A simulation study 

Simulation is a powerful and experimental tool used by analysts to describe system behavior or 

real-world process, predict the performance of an existing system by generating random 

variables as well as to compare alternative solutions for a particular design problem. 

In the literature, the use of simulation in DEA can be divided into two streams with the 

aim of reaching different research objectives. The first line of research presented in (Banker et 

al., 1993; Smith, 1997; Bardhan et al. 1998; Read and Thanassoulis, 2000; Adler and 
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Yazhemsky, 2010) aims to compare the accuracy of the different models according to the “true 

efficiency” using a Monte Carlo simulation in which one generates a large number of DMUs, 

based on various production functions, inefficiency distributions, correlation between variables 

and sample sizes. The consequences on a simulated database are analyzed under various forms of 

misspecification of the DEA models in order to draw general conclusions with regard to the 

advantages and disadvantages of the methods being evaluated. The second line of research takes 

advantage of a Monte Carlo simulation (Bal et al., 2008, 2010) to test the applicability and 

performance of a DEA model in comparison with other models in a way that a random variate 

for a random variable is generated by the inverse method. In this regard, the hypotheses for 

ranking similarity and weight distribution of two certain models are tested based on the resulting 

rankings and weights from the simulated data. Over and above the studies of Bal et al. (2008, 

2010), Shokouhi et al. (2010, 2014) can be also classified into the latter simulation category 

where the authors used the simulation to analyse the conformity of the rankings of the DMUs 

resulting from the robust DEA model. 

It should be emphasized that our simulation is in line with a recent study studied in Bal et 

al. (2010) to ensure comparability.  In this section, we underline statistically importance of 

defining a proper lower bound on input and output weights among five models using a 

simulation analysis.  

 

   6.1. Simulation structure 

The discrimination problem heavily relies on the number of inputs and outputs relative to the 

number of observations. As such, a relatively large number of input and output variables as 

compared to DMUs may lead to the majority of observations to be defined as efficient. We hence 

consider a sample size of 10 DMUs with four inputs and four outputs to ensure comparability 

with our earlier numerical example taken from Bal et al. (2010) and Ghasemi et al. (2014).  To 

statistically test the hypotheses regarding to the rankings and weight distribution of different 

models, we randomly generate the unbiased samples as inputs of procedure by the inverse 

method. In this respect, we take into account five various models including (i) CCR with 

maximum   (CCR
ɛ*

), (ii) BiO-MCDEA with maximum   (BiO-MCDEA
ɛ*

), (iii) TRI-MCDEA
2
 

                                                 
2 TRI-MCDEA corresponds to model (7). 
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with maximum   (TRI-MCDEA
ɛ*

), (iv) BiO-MCDEA with          (BiO-MCDEA
ɛ=0.0001

), 

and (v) CCR with zero ɛ (CCR
ɛ=0

).  

Let inputs (                       ) and outputs (                       ) be 

independent random variables with the identical uniform distribution on the interval        . 

The inverse method as a data generation process is implemented by the RAND function in 

Microsoft Excel to generate       random numbers. Given that the production process entails 

four inputs and four outputs, the entire simulated population is      observations and a sample 

size of 10 DMUs leads to     samples. The descriptive statistics of the simulated inputs and 

outputs for all     samples are given in the above part of Tables 8. 

###(Insert Table 8 around here)### 

 

   6.2. Statistical analysis 

We calculate the efficiency measures and weights of the five models, CCR
ɛ*

, BiO-MCDEA
ɛ*

, 

TRI-MCDEA
ɛ*

, BiO-MCDEA
ɛ=0.0001

, and CCR
ɛ=0

 for every sample by means of solving 5000 

LPs for each model. The bottom part of Table 8 and Table 9 present the descriptive statistics for 

the efficiencies and input and output weights of five models, respectively.   

  

###(Insert Table 9 around here)### 

 

6.2.1. Ranking analysis (discriminating power)  

We first obtain the ranking order of the ten DMUs for five models based on their super-

efficiency scores for a given run. Then, the Spearman's rank correlation and Pearson correlation 

are applied to assess the strength of the relationship between the rankings of a pair of five 

models. The Pearson correlation measures the degree of the linear relationship between two 

variables while the Spearman's rank correlation deals with two ordinal variables. The average 

value for the Spearman and Pearson correlations based on ranks is identical for each pair of 

models as reported in Table 8. For this set of observations, given that we take account of the 

super-efficiency measures for every model in order to provide the complete ranking, we have no 

tied ranks to differentiate the Spearman and Pearson correlations. It should be noted that the 

presence of ties in the rankings causes slightly different between the Spearman and Pearson 

correlations. As can be seen, the average value for the Spearman and Pearson correlation 

coefficient for the CCR
ɛ* 

and CCR
ɛ=0 

models is         , that shows a very strong positive 
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relationship between the rankings of these models. In other words, if DMU1 achieves a higher-

ranking position in comparison with DMU2 in a given model, then we are almost sure that DMU1 

is highly ranked in another model. As a result, considering the maximum positive value of the 

lower bound for weights in the CCR model does not lead to a significant improvement in ranking 

DMUs. Nevertheless, since the efficiency score of CCR
ɛ=0 

is equal to or larger than CCR
ɛ*

, the 

discriminating power of CCR
ɛ*

 is equal to or greater than CCR
ɛ=0

, that is, the number of efficient 

units in CCR
ɛ* 

is equal to or lower than CCR
ɛ=0

. Presumably, a significant relationship exists 

between the BiO-MCDEA
ɛ*

 and TRI-MCDEA
ɛ*

 models, i.e.         . The lowest correlation 

coefficient (        ) between BiO-MCDEA
ɛ=0.0001 

and CCR
ɛ=0 

indicates a very weak 

relationship between the ranking of Ghasemi et al. (2014) and CCR models. 

 

###(Insert Table 10 around here)### 

 

In addition, we consider the following null hypothesis to determine the statistical 

significance of the Spearman and Pearson correlations:  

      : There is no association between the rankings of two models 

 

Table 11 shows the percentages of failing to reject the null hypothesis    or achieving a 

statistically significant Spearman’s and Pearson correlation between each pair of the models for 

     and      in which the values above the diagonal correspond to      and below 

the diagonal correspond to     . Overall, in Spearman test the percentages related to      

is greater than      while in Pearson test the percentages related to      is greater than 

    . According to Table 7,     and     of cases at the    and    levels of significance 

have a perfect association between the rankings of CCR
ɛ*

 and CCR
ɛ=0 

models. Furthermore, we 

cannot find a significant association between the rankings of CCR
ɛ*

 and BiO-MCDEA
ɛ*

. 

Comparing the findings of these two ranking tests in Table 11 clarifies a perfect relationship 

between them when the efficiency scores are considered instead of their rankings.   

 

###(Insert Table 11 around here)### 

 

   6.2.2. Weight analysis 

Each DEA model generates the weights of inputs and outputs endogenously per DMU. We draw 

a comparison between weight dispersion over the five models {CCR
ɛ*

, BiO-MCDEA
ɛ*

, TRI-
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MCDEA
ɛ*

, BiO-MCDEA
ɛ=0.0001

, and CCR
ɛ=0

} using a test for homogeneity of variances and 

means on the CV of weights.  

We now take the weight dispersion issue in these models into consideration and compare 

weights dispersion between each pair of five models. In other words, we consider how dispersed 

all the input and output weights for each DMU are in a given DEA model where less weight 

dispersion presumably shows more similarity between the generated endogenous weights for 

each DMU. In this case, the CV enables us to appreciate weight dispersion for each DMU in 

each model. Compared to the cognate studies, the similar study can be also found in Ghasemi et 

al. (2014) and Bal et al. (2010).  

We apply two different non-parametric tests involving Levene and Fligner-Killeen tests 

on the CV of weights for 500 simulated samples in order to test the following null hypothesis, 

respectively: 

    : There is no association between weight dispersion of two models 

 

    : There is no association between weight means of two models 

 

Levene's test for homogeneity—an analysis of variance (ANOVA) based on deviations 

from group means or group median—was postulated to be quite robust to departures from 

normality (Levene, 1960; Brown and Forsythe, 1974; Fox, 2008). We perform Levene's test in R 

based on car package (Fox, 2008) for each pair of models for each simulated data set in which 

the average of p-value is given in Table 12. 

 

###(Insert Table 12 around here)### 

 

We consider both one- and two-sided Levene’s tests to identify better-dispersed weights 

model. Table 13 reports the percentages of failing to reject    or achieving a statistically 

significant one- and two-sided Levene between models with the 5% and 1% significance levels, 

in which the values above the diagonal correspond to      and below the diagonal 

correspond to     .  

 

###(Insert Table 13 around here)### 
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The null hypothesis is almost accepted for each pair of models in terms of the two-sided 

Levene’s tests (see Table 13). We should mention here that the two-sided Levene’s test is 

designed for testing the equality of variances and to compare the variances we require applying 

the one-sided Levene’s tests. In doing so, we define the following alternative hypothesis: 

 

  : The weight variance of the first model is less than or equal to the weight variance of the 

second one (  
    

 ). 

 

Let us make a comparison between CCR
ɛ*

 and CCR
ɛ=0 

models, and BiO-MCDEA
ɛ*

 and 

BiO-MCDEA
ɛ=0.0001 

models to verify the effect of considering a suitable value for the non-

Archimedean epsilon. As can be seen in Table 14, the null hypothesis is accepted for both one- 

and two-sided Levene’s tests with 5% and 1% levels of confidence for each two pair of models. 

This therefore statistically shows that defining the maximum value for the non-Archimedean 

epsilon decreases the variance of weights in the CCR and BiO-MCDEA models.    

As it is shown in Table 14, increasing the level of significance leads to decreasing the 

percentage of failing to reject    and subsequently the numbers in the above of diagonal is less 

than the corresponding number in the below of diagonal. Moreover, in each cell of Table 14, the 

obtained percentage by two-sided test is greater than one-sided test. 

Fligner-Killeen test is another tool to verify the homogeneity of variances that is robust 

against departures from Normality (Conover et al. 1981). In this regard, we perform a version of 

Fligner-Killeen test in R based on stats package in which median centering is used in each pair of 

data as the average of the p-value for each pair of the five models are reported in Table 14. Table 

15 shows the percentages of failing to reject    or achieving a statistically significant between 

each pair of models with the 5% and 1% significance levels for one- and two-sided Fligner-

Killeen test.  

 

###(Insert Tables 14 and 15 around here)### 

 

Based on the result, the cognate null hypothesis for CCR
ɛ*

 and CCR
ɛ=0 

models and BiO-

MCDEA
ɛ*

 and BiO-MCDEA
ɛ=0.0001 

models is accepted for both one- and two-sided Fligner-

Killeen test. Consequently, analogous to Levene’s test, imposing the maximum value of the non-

Archimedean epsilon on the models produces a positive and significant effect on the variance of 

weights in the CCR and BiO-MCDEA models.  
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The summary of what we have carried out in this section is depicted in Figure 3. 

 

###(Insert Figure 3 around here)### 

  

7. An application 

Since 2005, the European Union (EU) has determined climate change as one of the most 

important challenges in the world in the light of imposing major negative consequences for the 

environment, economy and society at large. The EU therefore commenced the most ambitious 

emissions trading program, so-called the EU Emissions Trading Scheme (EU ETS) to cut 

worldwide emissions of carbon dioxide (CO2) within the Kyoto Protocol. According to this 

program, the individual member states undertake the responsibility for setting targets, allocating 

permits, determining verification and enforcement in order to decrease greenhouse gas emissions 

by eight percent (relative to 1990 levels) by 2020. The EU ETS implementation includes three 

phases based on “cap and trade”: a pilot phase (2005–2007), a 5-year commitment period (2008–

2012), and an 8-year commitment period (2013–2020). 

In this case study, we evaluate the efficiency of carbon emissions for 25 EU countries in 

the light of three inputs, installation number (  ), CO2 allowances (  ) and gross inland energy 

consumption (  ), and two outputs, renewable energy production (  ) and renewable energy 

share in transport (  ) as defined below: 

    is a number of stationary technical units where one or more activities are executed 

which can have an influence on pollution, 

    represents the total amount of certain CO2 
3
 that can be annually emitted by 

installations,  

    describes the quantity of energy necessary to satisfy inland consumption of a country 

under consideration, 

    represents the percentage of electricity produced from renewable energy sources, 

    is the degree to which conventional fuels have been substituted by biofuels in the 

transport sector. 

The input and output data for the 25 countries are documented in Table 16 in which the 

raw data replicated from Ghasemi et al. (2014). 

                                                 
3
 It is measured in tons. 
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###(Insert Table 16 around here)### 

 

We consider the equal weights for the objective functions when applying different 

models together with scaling all inputs of the 25 countries by the use of their population size to 

provide a consistent comparison with the method proposed by Ghasemi et al. (2014). The scaling 

leads to a fair assessment despite the population of countries as well as becoming a remedy for 

the lack of discriminatory power which may derive from synchronizing volume and percentage-

based measures (Dyson et al., 2001).  

In what follows, we first implement model (5) to obtain the maximum value for the non-

Archimedean epsilon as a lower bound for input and output weights in CCR, BiO- and TRI-

MCDEA models. The optimal solution to model (5) is           . The 2
nd

, 3
rd

 and 4
th

 

columns of Table 17 present the carbon efficiency of the 25 countries for the CCR, BiO- and 

TRI-MCDEA models, respectively. Note that the ranking of each country is reported in 

parentheses. According to the CCR model with the maximum epsilon, {Austria, France, Latvia, 

Romania, Spain, Sweden} are all CCR efficient and cannot differentiate between them any 

further while {France, Latvia, Spain} and {Latvia, Spain} are efficiently preforming on the basis 

of BiO- and TRI-MCDEA models, respectively. Comparing the CCR model with BiO- and TRI-

MCDEA models, the difference is easily observable where the CCR efficiency is always equal to 

or greater than BiO- and TRI-MCDEA efficiency since BiO- and TRI-MCDEA respectively 

entail one and two extra evaluation measures that enhance the discriminatory power (see the 2
nd

, 

3
rd

 and 4
th

 columns of Table 17).  

###(Insert Table 17 around here)### 

 

By implementing the CCR model in the case of setting     in lieu of         

    , we yield the carbon efficiency and ranking results for the countries as shown in the 5
th

 

column of Table 16. Given that the computed CCR efficiency with zero epsilon is greater than 

the CCR efficiency with the maximum epsilon, this reflects that the discriminating power of the 

former case is weaker than the latter case. In other words, Slovakia is also efficient in CCR with 

    in addition to {Austria, France, Latvia, Romania, Spain, Sweden}. The 6
th

 and 7
th

 columns 

of Table 17 also yield the efficiency and ranking order of the countries by solving the BiO-

MCDEA model when   is set to      and  , respectively. Comparing the result of three BiO-
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MCDEA models with different values of the epsilon (i.e.,           ,      and  ) 

demonstrates the fact that by increasing the amount of the epsilon value, the corresponding 

efficiency score for the countries is not decreased in any case.  

To analyze the weight differences in inputs and outputs of distinct models, we show the 

result of the input and output weights for the 25 countries in Table 18 that are derived from 

different models. 

###(Insert Table 18 around here)### 

 

Our proposed method enables us to improve the discrimination power by sensibly and 

partially reducing the flexibility of input and output weights. We have to note that this study 

proceeds with a different avenue for improving the discrimination power in which the weights 

play a crucial role in measuring the efficiency scores.  

 

8. Conclusions and managerial implications  

In conventional DEA, there is no constraint on the weights of the inputs or outputs and many 

inefficient units may be misclassified as efficient while in some situations degrees of freedom are 

scarce. In some cases, decision-makers may be interested in increasing the differentiability 

among all DMUs and reaching more reasonable weight distribution while conventional DEA 

may not be sufficiently capable to achieve them, particularly, in the case of a relatively large 

number of variables in comparison with DMUs. In this paper, we first made an attempt to 

improve discriminating power as well as to provide more realistic weight dispersion within the 

MCDEA models. We second revisited the MCDEA model of Li & Reeves (1999) involving 

three different objective functions and the weighted BiO-MCDEA model of Ghasemi et al. 

(2014). We showed that the importance of the non-Archimedean epsilon was neglected in the 

weighted BiO-MCDEA model. To deal with this shortage, we took into consideration the 

maximum value for non-Archimedean epsilon in both MCDEA and BiO-MCDEA models in line 

for improving dispersed weights and discrimination power. Third, sensitivity analysis was 

implemented to verify the stability for the importance weights of per objective function in our 

proposed approaches. Fourth, a super-efficiency MCDEA model for efficient units under the 

optimum epsilon was developed to provide a complete ranking. Fifth, we dealt with the flaws of 

the minsum BCC-DEA model developed by Ghasemi et al. (2014), by extending a new epsilon-
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based minsum BCC-DEA model. Sixth, a simulation study was presented to statistically analyze 

weight dispersion and rankings between five different methods in terms of non-parametric tests. 

Finally, the applicability of the proposed models with an application to European Union member 

countries was discussed in our research. 

The extended approach can be basically applied to various selection and evaluation 

problems including technology selection (Toloo, 2014b), supplier evaluation (Toloo, 2014c) or 

the NATO enlargement application (Hatami-Marbini et al., 2013). Often in such applications the 

concern of the policy-maker or the manager as a decision-maker is to determine the most 

preferred alternatives. Although DEA models have the capability to make a dichotomized 

classification, another approach or modification is required to improve the lack of discrimination 

in DEA applications, in order to provide a complete ranking. Besides, in some situation, the 

removal of the assessment factors by assigning zero weights may be unacceptable from the 

management viewpoint. Whilst the modified MCDEA model developed in this paper may not 

give rise to a complete ranking, we optimally considered the lower bound for input and output 

weights to further refine the discriminatory power of the DEA models as well as to avoid zero 

weights in efficiency assessment. We also used the simulation study and the non-parametric tests 

to show that that imposing the maximum value of the non-Archimedean epsilon on the models 

provides a positive and significant impact on the variance of weights in the CCR and BiO-

MCDEA models. 

There are a number of challenges involved in the proposed research that provide rich 

opportunities for future research. A stream of future research can extend our algorithms 

theoretically to other variations of the DEA methods such as BCC and SBM models. 

Specifically, the modified MCDEA model can provide a fruitful basis for developing the 

integrated MCDEA models with common weights. In addition, the principles could be applied to 

multi-stage evaluation in techno-economic systems such as supply chains studied in Färe and 

Grosskopf (2000). The developed framework in this study can potentially lend itself to many 

practical applications. We plan to implement the proposed framework in the real-world and 

discuss in a follow-up paper demonstrating the practical implications of our model in real-life 

problems.  
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APPENDIX  

GAMS CODE 
$title "An Extension of the Multi-Objective DEA Model" 

 

$ontext 

This program is written by 

Toloo and Hatami-Marbini 

as a part of a paper entitle 

"An Extension of the Multi-Objective DEA Model" 

$offtext 

 

SETS 

   j   "number of DMUs"    /DMU1*DMU10/ 

   i   "number of inputs"  /i1*i4/ 

   r   "number of outputs" /o1*o4/ 

  k(j) 

 

TABLE x(j,i)  "Input Matrix" 

        i1    i2    i3    i4 

DMU1    32    50    82    46 

DMU2    61    56    68    37 

DMU3    42    58    45    34 

DMU4    73    39    88    81 

DMU5    45    38    68    41 

DMU6    86    62    44    32 

DMU7    38    74    71    74 

DMU8    61    54    70    62 

DMU9    84    52    38    47 

DMU10   87    47    31    52; 

 

TABLE y(j,r)  "Output Matrix" 

        o1    o2    o3    o4 

DMU1    47    93    54    65 

DMU2    88    56    92    80 

DMU3    94    65    80    80 

DMU4    50    53    93    97 

DMU5    47    42    70    52 

DMU6    86    45    100   47 

DMU7    83    91    62    74 

DMU8    79    60    72    98 

DMU9    85    68    51    41 

DMU10   78    95    70    92; 

 

 

FREE VARIABLE 

             z 

             z1 

             z2; 

 

POSITIVE VARIABLES 

             u(r) 

             v (i) 

             d(j) 

             dmax 
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             eps1; 

 

PARAMETERS 

xo 

yo 

; 

 

 

EQUATION 

    obj 

    obj2 

    obj3 

    con 

    con1 

    con2 

    con3 

    con2b 

    con3b 

    con4 

    con5 

    con6 

    con7; 

 

obj..                    z =E= eps1; 

obj2..                  z1 =E= dmax+sum(j,d(j)); 

obj3..                  z2 =E= dmax+sum(j$(k(j)),d(j))-2*sum(r,u(r)*yo(r)); 

con(j)..                sum(i,v(i)*x(j,i)) =L= 1; 

con1..                  sum(i,v(i)*xo(i)) =E= 1; 

con2(j)..              sum(r,u(r)*y(j,r))- SUM(i,v(i)*x(j,i)) +d(j)=E= 0; 

con3(j)..               dmax-d(j) =g=0; 

con2b(j)$(k(j))..  sum(r,u(r)*y(j,r))-sum(i,v(i)*x(j,i)) +d(j)=E= 0; 

con3b(j)$(k(j))..  dmax-d(j)=g=0; 

con4(r)..              u(r)=G=eps1; 

con5(i)..              v(i)=G=eps1; 

con6(r)..              u(r)=G=eps1.l; 

con7(i)..              v(i)=G=eps1.l; 

 

 

MODEL model_5  /obj, con, con2, con4, con5/; 

MODEL model_4  /obj2,con1, con2, con3, con6, con7/; 

MODEL model_7  /obj3,con1, con2b, con3b, con6, con7/; 

 

FILE Result/TRIPLE.txt/; 

PUT result; 

 

SOLVE model_6 USING LP maximizing z; 

PUT 'EPSILON='z.l:10:6 /; 

 

PUT 

'==================================================================================

============='/; 

PUT 'DMU     eff.        v1        v2        v3        v4        u1        u2        u3       u4 '/; 

PUT 

'==================================================================================

============='/; 

ALIAS(j,l); 
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LOOP(l, 

     LOOP(i,xo(I)=x(l,i)); 

     LOOP(r,yo(r)=y(l,r)); 

     SOLVE model_5 USING LP minimizing z1; 

     PUT l.tl:5 (sum(r,yo(r)*u.l(r))/sum(i,xo(i)*v.l(i))):10:6; 

     LOOP(i, PUT v.l(i):10:6); 

     LOOP(r, PUT u.l(r):10:6); 

     PUT/; 

    ); 

 

 

PUT 

'==================================================================================

============='/; 

PUT 'DMU     Sup-Eff    v1        v2        v3        v4         u1        u2        u3       u4   '/;  

PUT 

'==================================================================================

============='/; 

LOOP(l, 

     LOOP(i,xo(I)=x(l,i)); 

     LOOP(r,yo(r)=y(l,r)); 

     LOOP(j, k(j)=Yes); 

     k(l)=NO; 

 

    SOLVE model_7 USING LP minimizing z2; 

    PUT l.tl:5 (sum(r,yo(r)*u.l(r))/sum(i,xo(i)*v.l(i))):10:6; 

    LOOP(i, PUT v.l(i):10:6); 

    LOOP(r, PUT u.l(r):10:6); 

    PUT/; 

    ); 
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Figure 1. Sensitivity analysis of    and    weights in model (4) for 10 DMUs  
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Figure 2. A graphical representation of the proposed methodology 
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Figure 3. Simulation Steps 
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1. Obtain the input and output 

weights of each model for 

each sample 

2. Compute the CV of weights 

for 500 simulated samples 

3. Implement Levene and 

Fligner-Killeen test for 

homogeneity of variances and 

means on the CV of weights 
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Table 1. Data set and efficiency scores of DEA model (1) for 10 DMUs  

DMU 
Inputs Outputs 

Efficiency 
                        

1 32 50 82 46 47 93 54 65 1 

2 61 56 68 37 88 56 92 80 1 

3 42 58 45 34 94 65 80 80 1 

4 73 39 88 81 50 53 93 97 1 

5 45 38 68 41 47 42 70 52 1 

6 86 62 44 32 86 45 100 47 1 

7 38 74 71 74 83 91 62 74 1 

8 61 54 70 62 79 60 72 98 1 

9 84 52 38 47 85 68 51 41 0.994 

10 87 47 31 52 78 95 70 92 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Input and output weights, CV measures and efficiency scores for the BiO-MCDEA 

model with     

DMU 

Input weights Output weights 

CV Efficiency 

                        

1 0.00454 0.01687 0.00000 0.00024 0.00419 0.00494 0.00579 0.00000 1.13032 0.96831 

2 0.00396 0.01340 0.00000 0.00022 0.00300 0.00436 0.00482 0.00000 1.10765 0.95147 

3 0.00386 0.01433 0.00000 0.00021 0.00356 0.00419 0.00491 0.00000 1.13021 1 

4 0.00344 0.01180 0.00066 0.00285 0.00000 0.00489 0.00797 0.00000 0.98900 1 

5 0.00569 0.01925 0.00000 0.00031 0.00431 0.00626 0.00692 0.00000 1.10805 0.94990 

6 0.00336 0.01137 0.00000 0.00018 0.00255 0.00370 0.00409 0.00000 1.10792 0.79438 

7 0.00291 0.01070 0.00000 0.00132 0.00160 0.00373 0.00493 0.00000 1.04225 0.77852 

8 0.00348 0.01278 0.00000 0.00157 0.00191 0.00446 0.00589 0.00000 1.04233 0.84290 

9 0.00381 0.01289 0.00000 0.00021 0.00289 0.00419 0.00463 0.00000 1.10787 0.76694 

10 0.00402 0.01360 0.00000 0.00022 0.00305 0.00442 0.00489 0.00000 1.10782 1 

Average 1.08734 0.905242 
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Table 3. Efficiency scores of the BiO-MCDEA model for three different epsilons 

DMU 
Efficiency scores 

                         

1 0.96054(4) 0.9219(6) 0.7848(7) 

2 0.94822(5) 0.9437(5) 0.9212(3) 

3 1(1) 1(1) 1(1) 

4 1(1) 1(1) 0.8538(5) 

5 0.94738(6) 0.9438(4) 0.9165(4) 

6 0.78894(8) 0.8054(8) 0.7758(8) 

7 0.76745(9) 0.7397(9) 0.7381(9) 

8 0.83737(7) 0.8498(7) 0.8269(6) 

9 0.76142(10) 0.6924(10) 0.6940(10) 

10 1(1) 1(1) 1(1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Input and output weights, CV measures and efficiency scores for the BiO-MCDEA 

model with           

DMU 
Input weights Output weights 

CV Efficiency 
                        

1 0.00289 0.01206 0.00238 0.00238 0.00238 0.00238 0.00550 0.00238 0.78957 0.78484(7) 

2 0.00277 0.01038 0.00238 0.00238 0.00238 0.00238 0.00422 0.00238 0.71309 0.92120(3) 

3 0.00288 0.01191 0.00238 0.00238 0.00238 0.00238 0.00539 0.00238 0.78304 1(1) 

4 0.00275 0.01018 0.00238 0.00238 0.00238 0.00238 0.00406 0.00238 0.70376 0.85376(5) 

5 0.00319 0.01572 0.00238 0.00238 0.00238 0.00241 0.00828 0.00238 0.92314 0.91652(4) 

6 0.00270 0.00947 0.00238 0.00238 0.00238 0.00238 0.00352 0.00238 0.66858 0.77576(8) 

7 0.00477 0.00640 0.00238 0.00238 0.00238 0.00238 0.00238 0.00238 0.45466 0.73810(9) 

8 0.00271 0.00964 0.00238 0.00238 0.00238 0.00238 0.00365 0.00238 0.67716 0.82694(6) 

9 0.00280 0.01082 0.00238 0.00238 0.00238 0.00238 0.00455 0.00238 0.73411 0.69401(10) 

10 0.00287 0.01176 0.00238 0.00238 0.00238 0.00238 0.00527 0.00238 0.77654 1(1) 

Average 0.72236 0.851113 
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Table 5. Input and output weights, CV measures and efficiency scores derived from the weighted MCDEA 

model with           

DMU 
Input weights Output weights 

CV Efficiency 
                        

1 0.00396 0.01137 0.00238 0.00238 0.00238 0.00387 0.00436 0.00238 0.73590 0.86126 (5) 

2 0.00277 0.01038 0.00238 0.00238 0.00238 0.00238 0.00422 0.00238 0.76233 0.92120 (3) 

3 0.00288 0.01191 0.00238 0.00238 0.00238 0.00238 0.00539 0.00238 0.83710 1 (1) 

4 0.00275 0.01018 0.00238 0.00238 0.00238 0.00238 0.00406 0.00238 0.75235 0.85376 (6) 

5 0.00319 0.01572 0.00238 0.00238 0.00238 0.00241 0.00828 0.00238 0.98688 0.91652 (4) 

6 0.00270 0.00947 0.00238 0.00238 0.00238 0.00238 0.00352 0.00238 0.71474 0.77576 (8) 

7 0.00477 0.00640 0.00238 0.00238 0.00238 0.00238 0.00238 0.00238 0.48605 0.73810 (9) 

8 0.00271 0.00964 0.00238 0.00238 0.00238 0.00238 0.00365 0.00238 0.72391 0.82694 (7) 

9 0.00280 0.01082 0.00238 0.00238 0.00238 0.00238 0.00455 0.00238 0.78480 0.69401(10) 

10 0.00287 0.01176 0.00238 0.00238 0.00238 0.00238 0.00527 0.00238 0.83016 1 (1) 

 

 

 
Table 1. Minsum BCC-DEA results of Ghasemi et al. (2014) 

DMU 
Input weights Output weights 

Efficiency 
                        

1 0.00155 0.01901 0 0 0.00762 0 0.00172 0 0.765 

2 0.00368 0.01385 0 0 0.0034 0.00328 0.00307 0 0.945 

3 0.00385 0.01446 0 0 0.00355 0.00343 0.00321 0 1 

4 0.00314 0.0119 0.00032 0.00344 0 0.005 0.00821 0 1 

5 0.00532 0.02001 0 0 0.00491 0.00475 0.00444 0 1 

6 0.00313 0.01178 0 0 0.00289 0.00279 0.00261 0 0.788 

7 0.00106 0.01297 0 0 0.0052 0 0.00118 0 0.718 

8 0.00379 0.01424 0 0 0.00349 0.00338 0.00316 0 0.89 

9 0.00358 0.01345 0 0 0.0033 0.00319 0.00298 0 0.824 

10 0.00379 0.01426 0 0 0.0035 0.00338 0.00316 0 1 

 

 

 

Table 2. Input and output weights and efficiency scores obtained from minsum BCC-DEA 

model Error! Reference source not found. with             

DMU 
Input weights Output weights 

Efficiency 
                        

1 0.00356 0.00861 0.00356 0.00356  0.00356 0.00432 0.00356 0.00356 

2 0.00356 0.00731 0.00356 0.00356  0.00356 0.00479 0.00356 0.00356 

3 0.00356 0.00982 0.00356 0.00356  0.00356 0.00387 0.00356 0.00356 

4 0.00356 0.00356 0.00356 0.00356  0.00356 0.00617 0.00356 0.00356 

5 0.00379 0.01162 0.00356 0.00356  0.00356 0.00356 0.00356 0.00356 

6 0.00356 0.00683 0.00356 0.00356  0.00356 0.00497 0.00356 0.00356 

7 0.00356 0.00471 0.00356 0.00356  0.00356 0.00575 0.00356 0.00356 

8 0.00356 0.00580 0.00356 0.00356  0.00356 0.00535 0.00356 0.00356 

9 0.00356 0.00767 0.00356 0.00356  0.00356 0.00466 0.00356 0.00356 

10 0.00356 0.00841 0.00356 0.00356  0.00356 0.00439 0.00356 0.00356 
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Table 8. Descriptive statistics for the simulated input and output data and the efficiency scores of five models 

for 500 samples  

500 samples Mean Median Min Max STD 

Data set    50.2315 50 0 100 28.5387 

   49.9271 49 0 100 28.6127 

   50.3845 50 0 100 28.8793 

   50.2962 51 0 100 29.3373 

   50.2634 50 0 100 28.6883 

   51.3056 51 0 100 28.6673 

   51.3715 51 0 100 29.0708 

   50.5632 50 0 100 28.7262 

Efficiency  

 

CCRɛ* 0.8467 1 0.0586 1 0.2315 

BiO-MCDEAɛ* 0.6654 0.6467 0.0522 1 0.2640 

TRI-MCDEAɛ* 0.7191 0.7516 0.0522 1 0.2693 

BiO-MCDEAɛ=0.0001 0.6917 0.6980 0.0010 1 0.2718 

CCRɛ=0 0.9427 1 0.1161 1 0.1397 

 

 

Table 9. Descriptive statistics of the simulated weights for five models 

500 

samples 
Model 

Input weights Output weights 

                        

Mean CCRɛ* 0.0122 0.0115 0.0113 0.0135 0.0038 0.0039 0.0041 0.0049 

BiO-MCDEAɛ* 0.0051 0.0050 0.0051 0.0048 0.0034 0.0034 0.0035 0.0035 

TRI-MCDEAɛ* 0.0053 0.0051 0.0053 0.0051 0.0035 0.0035 0.0037 0.0037 

BiO-MCDEAɛ=0.0001 0.0046 0.0047 0.0046 0.0043 0.0033 0.0033 0.0035 0.0034 

CCRɛ=0 0.0183 0.0163 0.0161 0.0193 0.0084 0.0082 0.0088 0.0106 

Median CCRɛ* 0.0029 0.0029 0.0030 0.0031 0.0024 0.0024 0.0024 0.0025 

BiO-MCDEAɛ* 0.0038 0.0038 0.0039 0.0035 0.0024 0.0024 0.0025 0.0025 

TRI-MCDEAɛ* 0.0040 0.0039 0.0041 0.0036 0.0025 0.0025 0.0025 0.0025 

BiO-MCDEAɛ=0.0001 0.0038 0.0039 0.0037 0.0035 0.0023 0.0022 0.0025 0.0023 

CCRɛ=0 0.0079 0.0080 0.0082 0.0082 0.0075 0.0072 0.0078 0.0077 

Min CCRɛ* 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 

BiO-MCDEAɛ* 0.0010 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 

TRI-MCDEAɛ* 0.0010 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 

BiO-MCDEAɛ=0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

CCRɛ=0 0 0 0 0 0 0 0 0 

Max CCRɛ* 4.4717 3.4607 1.8917 4.0470 0.1346 0.0568 0.1592 0.7062 

BiO-MCDEAɛ* 0.0435 0.0331 0.0859 0.0429 0.0588 0.0387 0.0448 0.0421 

TRI-MCDEAɛ* 0.0435 0.0375 0.0772 0.0403 0.0587 0.0316 0.0448 0.0421 

BiO-MCDEAɛ=0.0001 0.0412 0.0362 0.0880 0.0372 0.0570 0.0431 0.0442 0.0409 

CCRɛ=0 6.9440 4.9481 2.2000 4.7888 0.0720 0.1250 0.2000 1 

STD CCRɛ* 0.0857 0.0647 0.0444 0.0775 0.0043 0.0040 0.0048 0.0130 

BiO-MCDEAɛ* 0.0038 0.0037 0.0039 0.0037 0.0027 0.0025 0.0027 0.0028 

TRI-MCDEAɛ* 0.0040 0.0039 0.0041 0.0039 0.0029 0.0027 0.0029 0.0030 

BiO-MCDEAɛ=0.0001 0.0047 0.0046 0.0047 0.0045 0.0039 0.0038 0.0039 0.0040 

CCRɛ=0 0.1474 0.1007 0.0609 0.1175 0.0070 0.0071 0.0084 0.0274 
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Table 10. Average value for the Spearman and Pearson correlations 

 CCRɛ*
 BiO-MCDEAɛ*

 TRI-MCDEAɛ*
 BiO-MCDEAɛ=0.0001

 CCRɛ=0
 

CCRɛ*
 1 0.556218 0.661603 0.350871 0.940098 

BiO-MCDEAɛ*
  1 0.865663 0.77708 0.48683 

TRI-MCDEAɛ*
   1 0.662238 0.593783 

BiO-MCDEAɛ=0.0001
    1 0.299763 

CCRɛ=0
     1 

 

 

Table 11. Result of Spearman's and Pearson tests* 

% of failing to reject         

CCRɛ* BiO-MCDEAɛ* TRI-MCDEAɛ* BiO-MCDEAɛ=0.0001 CCRɛ=0 

 
 

 
 

 

CCRɛ* 1 
0.418838 

(0.440882) 

0.603206 

(0.623246) 

0.150301 

(0.174349) 

0.98998 

(0.98998) 

BiO-MCDEAɛ* 
0.184369 

(0.226453) 
1 

0.915832 

(0.92986) 

0.823647 

(0.843687) 

0.324649 

(0.344689) 

TRI-MCDEAɛ* 
0.332665 

(0.39479) 

0.787575 

(0.813627) 
1 

0.599198 

(0.619239) 

0.492986 

(0.50501) 

BiO-MCDEAɛ=0.0001 
0.034068 

(0.0501) 

0.56513 

(0.635271) 

0.322645 

(0.372746) 
1 

0.118236 

(0.134269) 

CCRɛ=0 
0.965932 

(0.96994) 

0.118237 

(0.166333) 

0.250501 

(0.290581) 

0.02004 

(0.032064) 
1 

    *Note: The values in the parentheses are related to Pearson test. Besides, the values above and below 

the diagonal correspond to       and     , repectively. 

 

 

Table 12. The average of P-value for Levene's test 
 CCRɛ*

 BiO-MCDEAɛ*
 TRI-MCDEAɛ*

 BiO-MCDEAɛ=0.0001
 CCRɛ=0

 

CCRmax ɛ
 1 0.115738 0.108247 0.163207 0.304061 

BiO-MCDEAmax ɛ
  1 0.673899 0.370797 0.275578 

TRI-MCDEAmax ɛ
   1 0.350569 0.2495 

BiO-MCDEA ɛ=0.0001
    1 0.32084 

CCR ɛ=0
    

 
1 

 

 

Table 13. Result of the two-sided and one-sided (  
    

 ) Levene's test*  

% of failing to reject         

CCRɛ* BiO-MCDEAɛ* TRI-MCDEAɛ* BiO-MCDEAɛ=0.0001 CCRɛ=0 

 
 

 
 

 

CCRmax ɛ 1 
0.509018 

(0.328657) 

0.492986 

(0.276553) 

0.59519 

(0.440882) 

0.829659 

(0.713427) 

BiO-MCDEAmax ɛ 
0.781563 

(0.687375) 
1 

0.993988 

(0.983968) 

0.817635 

(0.733467) 

0.733467 

(0.619239) 

TRI-MCDEAmax ɛ 
0.765531 

(0.675351) 

0.997996 

(0.997996) 
1 

0.813627 

(0.719439) 

0.717435 

(0.589178) 

BiO-MCDEA ɛ=0.0001 
0.801603 

(0.719439) 

0.925852 

(0.885772) 

0.91984 

(0.87976) 
1 

0.747495 

(0.645291) 

CCR ɛ=0 
0.931864 

(0.891784) 

0.86974 

(0.821643) 

0.857715 

(0.807615) 

0.88978 

(0.835671) 
1 

   *Note: The values in the parentheses are related to Pearson test. Besides, the values above and below the 

diagonal correspond to       and     , repectively. 
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Table 14. The average of P-value for Fligner-Killeen test 
 CCRɛ* BiO-MCDEAɛ* TRI-MCDEAɛ* BiO-MCDEAɛ=0.0001 CCRɛ=0 

CCRmax ɛ 1 0.130934 0.115899 0.169777 0.326943 

BiO-MCDEAmax ɛ  1 0.643206 0.376426 0.325282 

TRI-MCDEAmax ɛ   1 0.369938 0.284028 

BiO-MCDEA ɛ=0.0001    1 0.326273 

CCR ɛ=0    
 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15. Result of the two-sided and one-sided Fligner-Killeen test (     )* 

% of failing to reject         

CCRɛ* BiO-MCDEAɛ* TRI-MCDEAɛ* BiO-MCDEAɛ=0.0001 CCRɛ=0 

 
 

 
 

 

CCRmax ɛ 1 
0.432866 

(0.320641) 

0.41483 

(0.296593) 

0.476954 

(0.382766) 

0.797595 

(0.673347) 

BiO-MCDEAmax ɛ 
0.717435 

(0.581162) 
1 

0.995992 

(0.977956) 

0.789579 

(0.699399) 

0.741483 

(0.645291) 

TRI-MCDEAmax ɛ 
0.687375 

(0.577154) 

0.997996 

(0.995992) 
1 

0.785571 

(0.705411) 

0.731463 

(0.631263) 

BiO-MCDEA ɛ=0.0001 
0.701403 

(0.603206) 

0.921844 

(0.865732) 

0.903808 

(0.867736) 
1 

0.723447 

(0.647295) 

CCR ɛ=0 
0.93988 

(0.903808) 

0.881764 

(0.825651) 

0.877756 

(0.813627) 

0.885772 

(0.829659) 
1 

*Note: The values in the parentheses are related to Pearson test. Besides, the values above and below the 

diagonal correspond to       and     , repectively. 
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Table 16. Data for 25 EU countries 
 

 

 

 

DMUs 
Inputs Outputs 

               

Austria 225 8810 31,887,710 66.793 6.5 

Belgium 362 2242 56,797,576 6.083 3.3 

Bulgaria 146 1087 40,591,231 9.808 0.6 

Cyprus 13 98 5,089,082 0.073 2.0 

Czech Republic 425 2425 85,968,002 6.783 3.4 

Denmark 408 3242 23,912,314 27.390 0.4 

Finland 661 7887 37,069,940 25.777 2.3 

France 1125 19,811 128,660,709 13.547 6.0 

Germany 1997 27,693 391,714,624 16.200 5.7 

Greece 162 1861 63,246,705 12.276 1.1 

Hungary 270 1854 23,844,843 6.988 3.1 

Ireland 124 641 19,951,911 13.925 1.9 

Italy 1201 16,026 208,982,856 20.536 3.8 

Latvia 111 1567 3,532,491 49.232 1.2 

Lithuania 114 874 7,573,712 5.505 4.2 

Luxembourg 15 121 2,488,229 3.678 2.1 

Netherlands 443 3148 83,834,170 9.152 4.2 

Poland 943 6265 202,011,597 5.804 4.8 

Portugal 280 4734 30,902,050 33.267 3.6 

Romania 275 5270 73,956,515 27.916 1.6 

Slovakia 201 1214 32,140,581 17.880 8.6 

Slovenia 100 887 8,216,051 36.783 1.9 

Spain 1143 12,091 150,707,494 25.747 3.5 

Sweden 821 15,819 21,103,878 56.378 7.3 

United Kingdom 1140 6214 217,404,830 6.664 2.7 
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Table 17. Efficiency results of 25 countries for different models and their ranks 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMU 

Proposed model (           )               

CCR 
BiO-

MCDEA 

TRI-

MCDEA 
CCR 

BiO-

MCDEA 

BiO-

MCDEA 

Austria 1 (1) 0.9663(4) 0.9663(3) 1(1) 0.7183(8) 0.7183(8) 

Belgium 0.4196(20) 0.3523(16) 0.3523(15) 0.4197(22) 0.3523(15) 0.3523(14) 

Bulgaria 0.3508(22) 0.1157(25) 0.1157(25) 0.5964(20) 0.1157(25) 0.1157(25) 

Cyprus 0.4528(18) 0.1357(23) 0.1357(23) 0.6882(16) 0.1357(24) 0.1357(24) 

Czech Republic 0.1256(25) 0.1256(24) 0.1256(24) 0.3802(23) 0.1646(22) 0.1646(22) 

Denmark 0.4207(19) 0.4067(15) 0.4067(14) 0.5240(21) 0.2311(19) 0.1948(21) 

Finland 0.1814(24) 0.1651(21) 0.1651(21) 0.2455(25) 0.2016(21) 0.2016(20) 

France 1(1) 1(1) 0.8996(5) 1(1) 1(1) 1(1) 

Germany 0.6764(13) 0.6734(11) 0.6734(10) 0.8355(12) 0.6734(9) 0.6734(9) 

Greece 0.4118(21) 0.1595(22) 0.1595(22) 0.6792(17) 0.1595(23) 0.1595(23) 

Hungary 0.6694(15) 0.5804(12) 0.5804(11) 0.6694(18) 0.5804(11) 0.5804(11) 

Ireland 0.6671(16) 0.2705(19) 0.2705(19) 0.9193(9) 0.2705(18) 0.2705(18) 

Italy 0.8945(9) 0.8543(8) 0.8543(7) 0.9152(10) 0.8543(6) 0.8543(6) 

Latvia 1(1) 1(1) 1(1) 1(1) 0.645(10) 0.6016(10) 

Lithuania 0.7546(11) 0.541(13) 0.541(13) 0.7551(15) 0.4568(13) 0.4464(13) 

Luxembourg 0.2680(23) 0.2258(20) 0.2258(20) 0.2823(24) 0.2258(20) 0.2258(19) 

Netherlands 0.5850(17) 0.5159(14) 0.3321(16) 0.6541(19) 0.5159(12) 0.5159(12) 

Poland 0.6758(14) 0.3271(17) 0.3271(17) 0.8153(13) 0.3271(16) 0.3271(15) 

Portugal 0.9836(7) 0.944(5) 0.944(4) 0.9836(8) 0.9172(3) 0.9172(3) 

Romania 1(1) 0.8963(6) 0.8963(6) 1(1) 0.8963(4) 0.8963(4) 

Slovakia 0.9317(8) 0.8824(7) 0.5689(12) 1(1) 0.8778(5) 0.8778(5) 

Slovenia 0.8055(10) 0.8055(10) 0.8055(9) 0.8780(11) 0.7317(7) 0.7317(7) 

Spain 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 

Sweden 1(1) 0.8241(9) 0.8241(8) 1(1) 0.3967(14) 0.3145(17) 

United Kingdom 0.6861(12) 0.3217(18) 0.3217(18) 0.7836(14) 0.3217(17) 0.3217(16) 
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Table 18. Input and output weights of different models for the case study 

Model Measure 
Input weights Output weights 

               

CCR 

(Maximum ) 

Average 2.1349 1.6704 0.0002 0.0171 0.0865 

Median 0.0001 1.6545 0.0001 0.0188 0.0883 

Min 0.0001 0.0001 0.0001 0.0001 0.0001 

Max 20.0042 5.7131 0.0006 0.0590 0.2264 

BiO-MCDEA 

(Maximum ) 

Average 0.8399 1.0019 0.0001 0.0171 0.0679 

Median 0.0001 1.1620 0.0001 0.0188 0.0663 

Min 0.0001 0.0001 0.0001 0.0001 0.0367 

Max 10.5614 2.1651 0.0003 0.0337 0.1113 

TRI-MCDEA 

(Maximum ) 

Average 0.8641 0.9394 0.0002 0.0162 0.0663 

Median 0.0001 0.8117 0.0001 0.0141 0.0620 

Min 0.0001 0.0001 0.0001 0.0001 0.0367 

Max 10.5614 2.3766 0.0003 0.0337 0.1113 

CCR 

(   ) 

Average 12.2265 2.4377 0.0001 0.0205 0.0980 

Median 0.0000 1.4852 0.0000 0.0186 0.0970 

Min 0.0000 0.0000 0.0000 0.0000 0.0000 

Max 67.4615 9.9833 0.0006 0.0828 0.3441 

BiO-MCDEA 

(      ) 

Average 1.9474 1.0196 0.0001 0.0162 0.0622 

Median 0.0000 1.1736 0.0001 0.0154 0.0663 

Min 0.0000 0.1900 0.0000 0.0055 0.0098 

Max 19.4962 2.1651 0.0003 0.0337 0.1113 

BiO-MCDEA 

(   ) 

Average 2.0458 1.0148 0.0001 0.0160 0.0617 

Median 0.0000 1.0972 0.0001 0.0141 0.0663 

Min 0.0000 0.1900 0.0000 0.0049 0.0051 

Max 20.7458 2.1651 0.0003 0.0337 0.1113 

 

 


