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Dynamics of Public Opinions in an Online and Offline 

Social Network 
Yucheng Dong, Zhaogang Ding, Francisco Chiclana, Enrique Herrera-Viedma 

Abstract—with the development of the information and Internet technology, the public opinions with big data will rapidly emerge 

in an online-offline social network, and an inefficient management of public opinions often will lead to the security crisis for either 

firms or governments. To unveil the interaction mechanism among a large number of agents between the online and offline 

social networks, in this paper we propose the public opinion dynamics model in an online-offline social network context. Next, in 

the theory aspect we investigate the analytical conditions to form a consensus in the public opinion dynamics model. 

Furthermore, we conduct the extensive simulations to investigate how the online agents impact the dynamics of public opinion 

formation, and unfold that the online agents shorten the steady-state time, decrease the number of opinion clusters, and 

smoothen the opinion changes in the opinion dynamics. The increase in the size of the online agents often enhances these 

effects. The results in this paper can provide a basis for the management of the public opinions in the Internet age. 

Index Terms— opinion dynamics, social network, consensus, security, online and offline context, big data. 

——————————      —————————— 

1 INTRODUCTION

he Internet has been increasingly important for social 
networking. In the last decade, lots of online social 

networks have emerged, such as WeChat, Facebook, 
Twitter, and LinkedIn. People build their own friendship 
networks, and share their opinions, insights, information, 
experiences, and perspectives with each other in these 
networks [1], [37]. When these online social networks fa-
cilitate that the public can express their opinions regard-
ing different issues such as politics, products and events, 
an important challenge is to deal with the management of 
public opinions. An inefficient management of public 
opinions often will lead to security crisis for either firms 
or governments. 

Opinion dynamics is closely related to management 
of public opinions and a research tool widely used to in-
vestigate the opinion evolution in many collective phe-
nomena. Some opinion dynamics models based on differ-
ent communication regimes had been proposed. French [2] 
formulated a model on how persons’ opinions are affect-
ed by the opinions of other persons with whom they are 
in direct communication. The subsequent work by 
DeGroot [3], [4] revaled that French’s model of opinion 
change is special case of a more general model, and in 
DeGroot model, there is an interesting connection to the 
Delphi technique for pooling opinions of experts. Further, 
there is an interesting variation of DeGroot model devel-
oped by Friedkin and Johnsen [5], [6], and thus DeGroot 

model is a special case of Friedkin and Johnsen model. 
While the bounded confidence model is a pervasive non-
linear model, and this model introduced by Deffuant and 
Weisbuch [7] as well as the one by Hegselmann and 
Krause are rather similar [8]. Following the DW and HK 
models, some interesting extended studies had been con-
ducted [9], [10], [11], [12], [13]. In recent years, some opin-
ion dynamics models have been built based on social 
networks[14],[15],[16],[17], complex networks[18],[19],[20], 
dynamic networks[21],[22],[23],[24] and super-network 
[25]. 

However, many online social networks have emerged; 
a lot of people still only obtain information and exchange 
their opinions in offline social networks (e.g. face to face). 
For example, in China, the number of people who can 
access the Internet is close to 700 million, which implies 
that about half of the population in China can obtain in-
formation and express their opinions only via the tradi-
tional approach. Paying attention to previous studies they 
mainly focus on the online social network (e.g., [26], [27]). 
The interactions of people in the online social network 
and offline social network are different. Specially, an 
agent in the online social network makes friends with 
others who has similar interests (opinions, insights, expe-
riences, or perspectives), and she/he also has friends in 
the offline social network. However, an agent in the of-
fline social network gets to know others and makes 
friends mainly by his friends’ friends. Meanwhile, there is 
the interaction between the online social network and 
offline social network. The public opinion in the online 
social network can trigger the collective action in the of-
fline social network, and the collective action in the of-
fline social network may become more severe because of 
the public opinion evolution in the online social network. 
Therefore, an important challenge for analysts is how to 
manage the dynamics of public opinions in the online and 
offline social network. 

The aim of this study is not only to build the theoreti-
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cal foundations for the management of the public opin-
ions, and but also unveil the interaction mechanism 
among a large number of agents between the online and 
offline social networks through extensive agent-based 
simulations and analyses. The remainder of this paper is 
arranged as follows. Section 2 introduces a basic descrip-
tion of graphs and opinion dynamics. Section 3 then pro-
poses the public opinion dynamics model in an online 
and offline social network. Next, Section 4 provides the 
conditions to form a consensus in the proposed model via 
the theoretical analysis. Subsequently, Section 5 reveals 
some properties of the proposed model by simulation 
experiments. Finally, Section 6 presents the concluding 
remarks. 

2 PRELIMINARIES 

This section introduces the basic knowledge regarding 

graphs, DeGroot model and bounded confidence model 

in opinion dynamics to develop our proposal. 

2.1 Graphs 

The basic definitions and notations regarding graphs can 

be found in [28], [29], [30] as Definitions 1-6.  

Definition 1. A unidirectional graph is defined by 

( , )G V E , where  1 2, ,..., nV v v v  is a set of nodes, and 

E  is a set of pairs of elements of  V called edges. In this 

paper the sets E  and V  are assumed to be finite and V  

is assumed to be nonempty.  

Definition 2. The adjacency matrix ( )ij n nA a   of 

the unidirectional graph ( , )G V E  is the zero-one matrix 

with 1 as its ( , )i j th entry when there is an edge be-

tween iv  and jv ; Otherwise its ( , )i j th entry is 0, i.e., 

  1,  ( , )

0, ( , )

i j

ij

i j

v v E
a

v v E


 



.                     (1) 

Clearly, the adjacency matrix ( )ij n nA a   of the uni-

directional graph ( , )G V E  is symmetrical. 

Definition 3. The degree of a node in a graph is the 

number of edges connected to that node.  

Definition 4. A sequence of edges 1 2
( , )i iv v  ,

2 3
( , )i iv v ,…, 1

( , )
n ni iv v
 in a unidirectional graph ( , )G V E  is 

called a path.  

Definition 5. A unidirectional graph ( , )G V E  is called 

connected if there is path between any two nodes. Oth-

erwise, it is called disconnected. 

Definition 6. The maximal connected subgraph of 

( , )G V E  is called its component.  If there is only one com-

ponent in a graph, the graph is connected; if there is more 

than one component, the graph is disconnected. 

2.2 Opinion dynamics 

Opinion dynamics describes the process of forming opin-

ions among a large group of agents who continuously 

update their opinions based on the established rules, 

leading to a consensus or dissent in the final stage.  

 Let {1,2,..., }n  be a set of the agents. Let 
t

ix R   be the 

opinion of agent i at time t  ( 0,1,2,...t  ), and thus   

1 2( , ,..., )t t t t T n

nX x x x R   be the opinion profile at time 

t  . We introduce the DeGroot model and the bounded 

confidence model in details as follows.  

 (1) DeGroot model 

The DeGroot mode has been proposed in [3], and is 

called the classical model in the opinion dynamics. Let   

ijb  be the weight that agent i  gives to the agent j  , 

where 0ijb    and  1ijj
b  . 

Then, the evolution of opinions of agent i  can be de-

scribed by  

 
1

1 1 2 2 ...t t t t

i i i in nx b x b x b x      .        (2) 
 Equation (2) can be compactly written as  

1t tX B X    ,                                (3) 

where ( )ij n nB b  , and  B  doesn't change with time 

or with opinions. Clearly, the DeGroot mode is a linear 

model in the opinion dynamics. 

 (2) The Hegselmann and Krause Model 

The bounded confidence model assumes that each 

agent solely communicates with the agents who hold sim-

ilar opinions and ignores the agents that have sufficiently 

different opinions. The earliest bounded confidence mod-

els have been introduced independently by Deffuant and 

Weisbuch [7] and by Hegselmann and Krause [8]. The 

two bounded confidence models are called the DW model 

and the HK model, respectively. In the HK model, agents 

synchronously update their opinions by averaging all 

opinions in their confidence sets; in the DW model, agents 

follow a pairwise-sequential updating mechanism. In this 

section, we briefly introduce the HK bounded confidence 

model. Note that if we adopt the DW model as the basis 

of our study, similar results will be obtained. 

 Let   be the homogeneous bounded confidence level 

of the agents. The process of the HK model consists of 

three steps as follows: 

 The first step is to determine of the confidence set. The 

confidence set ( , )tI i X  of the agent i  at time t  is deter-

mined as: 

 ( , ) |t t t

i jI i X j x x     .                   (4) 

Then, the second step is to calculate of the weights 
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that one agent assigns to other agents. Let 
t

ijw  be the 

weight of agent  i  assigns to agent j  at time t  , i.e.,   

 

1/ # ( , ), ( , )

0,                  ( , )

t t

t

ij t

I i X j I i X
w

j I i X

 
 



  ,                 (5) 

where # ( , )tI i X   is the cardinality of the set ( , )tI i X  . 

 Finally, the third step is to determine the updated 

opinions for each agent. The updated opinion 
1t

ix 
 is mod-

eled as a weighted arithmetic mean of opinions in the 

confidence set, i.e.,  

1

1

N
t t t

i ij j

j

x w x



 .                                 (6) 

Compared with the linear DeGroot model, the HK 

model is a pervasive nonlinear model, in which the 

weights depend on the evolution of opinions. 

3 MODELING PUBLIC OPINION DYNAMICS IN AN 

ONLINE-OFFLINE NETWORK 

In the proposed model, all agents and their relationships 

in the social network S  which are modeled by a unidirec-

tional graph ( , )G V E , where V  is the set of the agents in 

the social network, E  is the set of edges which indicate 

their relationships in the social network. All the agents in 

the social network S  are divided into two types: the 

online agents and the offline agents. For notational sim-

plicity, let onV  be the set of online agents, and let offV  be 

the set of offline agents, where on offV V V  and 
on offV V . 

An offline agent can only communicates with her/his 

neighbour(s) in the social network. Therefore, we argue 

that the DeGroot model provides the potential to model 

the opinion communication mechanism, and thus we 

propose Hypothesis 1: 

   Hypothesis 1: In the public opinion dynamics the 

communication mechanism among the offline agents can 

be modelled by the DeGroot model. 

   On the other hand, the information and communica-

tion technologies facilitate that the online agents express 

their opinions, and an online agent will be influenced by 

the other online agents whose opinions are similar. There-

fore, we argue that the HK bounded confidence model is 

a suitable tool to model the opinion communication 

mechanism among online agents, and thus we propose 

Hypothesis 2:  

Hypothesis 2: In the public opinion dynamics the 

communication mechanism among the online agents can 

be modelled by the HK bounded confidence model. 

In additional, there are communications between 

online agents and offline agents via the neighbour rela-

tionships in the social network S . And based on Hypoth-

esizes 1 and 2, we propose the following public opinion 

dynamics model.  

        For any offline agent offi V , agent i  only com-

municates with her/his neighbour(s) in the social net-

work S , thus the confidence set ( , )I i t  of the offline agent 

i  at time t  is determined as: 

 ( , ) | 1,ijI i t j a j V   .                       (7) 

For any online agent oni V , agent i  not only com-

municates with her/his neighbour(s) in the social net-

work S , but also communicates with the agents whose 

opinions differ from her/his own no more than certain 

confidence level  . Thus the confidence set ( , )I i t  of the 

online agent i  at time t  is determined by two parts: 

    1( , ) | 1,ijI i t j a j V    ,                    (8) 

 2( , ) ( , ) | ,t t t on

i i jI i t I i x j x x j V      ,       (9) 

and 1 2( , ) ( , ) ( , )I i t I i t I i t . In some case, 1 2( , ) ( , )I i t I i t  . 

The agent i  gives the trust (0,1)i   to own opinion, 

and distributes (1 )i  across the other agents in her/his 

confidence set ( , )I i t . Then, the updated opinion 
1t

ix 
 is 

calculated as  

1

( , )

1

# ( , )

t t ti
i i i j

j I i t

x x x
I i t







    ,               (10) 

where # ( , )I i t  denotes the cardinality of the confidence 

set ( , )I i t . If ( , )I i t  is an empty set, then 1t t

i ix x  . 

Equation (10) can be compactly written as 

1 ( )t tX F t X  ,                          (11) 

where F  varies with the time and opinions. 

4 THEORETICAL FOUNDATIONS: CONSENSUS 

CONDITIONS 

In opinion dynamics, the consensus is a core research 

problem. In this section, we investigate the conditions to 

form a consensus in public opinion dynamics model de-

scribed by Equations (7)-(11). First, the concept of the 

consensus is defined as Definition 7. 

  Definition 7 [8]. All agents form a consensus if for 

and 0 nX R there exists c R  such that 
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lim  ( 1,2,..., )t

i
t

x c i n


  . Then, c  is called the consensus 

opinion.  

A nonnegative matrix M with the property that 

1 1M  ,  where 1 (1,1,...,1)T , i.e., all its row sums are 1, 

is defined to be a (row) stochastic matrix.  

Let 
tM  be the matrix power of M . If  lim

t

t
M


 is a ma-

trix of rank 1, i.e. , 

lim 1t

t
M m


 , 

where 1 (1,1,...,1)T  and 1 2( , ,..., )nm m m m , then 

we call M an ergodic matrix [29] . 

Before analysis the condition to form a consensus in 

public opinion dynamics model, we introduce Lemmas 1 

and 2.  

Lemma 1 (Wolfowitz) [30, 31]. Let 1 2, ,..., lM M M  be a 

finite set of ergodic n n  matrices with the property that 

for each sequence 
1 2
, ,...,

ji i iM M M of positive length, the 

matrix product 
1 1j ji i iM M M

  is ergodic. Then for each 

infinite sequence there exists a row vector 

1 2( , ,..., )n     such that  
 

1 1
lim ,..., 1

j ji i i
j

M M M 


 , 

where 1 (1,1,...,1)T , 1 2( , ,..., )n    . 
      Lemma 2 [32]. Let 1 2, ,...,  ( 2)kM M M k   be nonnegative 

n n  matrices, and the diagonal elements of all of the iM  

are positive and let ,   denote the smallest and largest 

of these, respectively. Then  
 

1
2

1 2 1 2( )
2

k

k kM M M M M M






 
     

 
. 

      Based on Lemmas 1 and 2, we propose the consensus 

condition in public opinion dynamics model, as Theo-

rems 1 and 2.  

Theorem 1. If the social network S  is connected, all 

agents can reach a consensus finally in public opinion 

dynamics model.  

       Proof: Since the social network S  is connected, the 

adjacency matrix A  of the social network S  must be ir-

reducible matrix. According to Eqs.(7) and (8), for any 

finite time 0t , we have 0( )F t  is an irreducible and 

nonnegative matrix. In additional, for any agent 

(0,1)i  , and thus the diagonal elements of all of the 

0( )F t  are positive. Hence 0( )F t  is a primitive matrix. 

According to Equation 10, we have 0( )F t  is a stochastic 

matrix, and thus 0( )F t  is an ergodic matrix. 

     As we know, the product of two nonnegative matrices 

with positive diagonals is a matrix with the same proper-

ties and because the product of two stochastic matrices is 

stochastic. And thus for each matrix product 

0 0( ) ( 1) (2) (1)F t F t F F   is a matrix with positive diago-

nals. Based on Lemma 2, for each matrix product 

0 0( ) ( 1) (2) (1)F t F t F F   is an irreducible matrix, and thus 

each matrix product 
0 0( ) ( 1) (2) (1)F t F t F F   is primitive, 

as a result, ergodic. Based on Lemma 1, we have 

lim ( ) ( 1) (2) (1)
t

F t F t F F


   

is a matrix of rank 1. Hence all agents in the social net-

work S  can reach a consensus finally for any 0 nX R .  

      Furthermore, if the disconnected social network S  

only has two components 1S  and 2S , and there are online 

agents in 1S  and 2S , respectively. 1

onV  and 2

onV  are the sets 

of the online agents in the social network 1S  and 2S . In 

this case, we propose the consensus condition as Theorem 

2. 

Theorem 2. Let 0t  be the finite time, for any 
0t t , if 

there exists  

1

2( , )
on

on

i V

I i t V


 
  

 

 

or                                      

2

1( , )
on

on

i V

I i t V


 
  

 
, 

then all agents in the social network S  can reach a con-

sensus finally in public opinion dynamics model. 

Proof: We need the fact concerning the confidence set, 

considering the homogeneous bounded confidence level 

of the online agents, when the online agent ( , )tj I i X , 

we must have the online agent ( , )ti I j X .  

There exists the finite time 
0t , for any 

1 0t t , if  

1

2( , )
on

on

i V

I i t V


 
  

 
, 

We must have 

  

2

1( , )
on

on

i V

I i t V


 
  

 

 

and vice versa.  

        Since 1S  and 2S  is two components of S , and thus 1S  

and 2S  are connected, respectively. For the finite time



 5 

 

1 0t t , there exists 

1

2( , )
on

on

i V

I i t V


 
  

 
, 

we must have 

2

1( , )
on

on

i V

I i t V


 
  

 
. 

i.e., the agents i  and j  connect 1S  and 2S , and thus 1( )F t  

is an irreducible nonnegative matrix. In additional, the 

diagonal elements of all of the 1( )F t  are positive, and 

thus 1( )F t  is primitive, as a result, ergodic.  

      For each matrix product 
1 1 0( ) ( 1) ( )F t F t F t   is a 

stochastic matrix with positive diagonals, based on 

Lemma 2, for each matrix product 
1 1 0( ) ( 1) ( )F t F t F t   

is an irreducible nonnegative matrix. And thus 

1 1 0( ) ( 1) ( )F t F t F t   is an ergodic matrix. Based on 

Lemma 1, we have  

0 0lim ( ) ( 1) ( 1) ( ) 1
t

F t F t F t F t 


    , 

where 1 (1,1,...,1)T ,
1 2( , ,..., )n    . 

In additional, we have 

0 0 0 0

0 0 0

lim ( ) ( 1) ( 1) ( ) ( 1) (1) 1 ( 1) (1)

(lim ( ) ( 1) ( 1) ( ) 1 ) ( 1) (1)

t

t

F t F t F t F t F t F F t F

F t F t F t F t F t F









       

      

. 

For the finite time 
0t , and thus 

0( 1) (1)F t F   is a 

bounded function. Hence we have 

0 0 0 0lim ( ) ( 1) ( 1) ( ) ( 1) (1) 1 ( 1) (1)
t

F t F t F t F t F t F F t F


        , 

where 1 (1,1,...,1)T ,
1 2( , ,..., )n    . 

Hence all agents in the social network S  , for any
0 nX R , can reach a consensus finally.

From Theorem 2, we directly have Corollary 1. 

Corollary 1: When there are several components in the 

disconnected social network S , and there are online 

agents in every component. If some online agents in dif-

ferent components can keep in touch with other online 

agents as time goes on, i.e., they are in each other’s confi-

dence sets as time goes on, then all agents in the discon-

nected social network S  can reach a consensus finally. 

     Theorem 1 shows that all agents can reach a consensus 

finally in a connected social network. Theorem 2 and 

Corollary 1 shows that online agents will avail the con-

sensus formation in a disconnected social network. 

5 SIMULATION EXPERIMENTS 

In this section, we focus on how the online agents impact 

the dynamics of public opinion formation by simulation 

experiments from the two aspects: The influences of 

online agents in the disconnected social network (see Sec-

tion 5.1), and the influences of online agents in the con-

nected social network (see Section 5.2). 

Many real-lift social networks have been investigated 

by using social big data which is a collection of very huge 

data sets of social networks with great diversity (e.g., Pa-

per database, Twitter, Facebook, LinkedIn and mobile 

social networks) [1], [33], [38]. These real social networks 

often have the following features: 

 (1) The small-world effect：Most pairs of nodes in 

most social network seem to be connected by a short path 

through the network.  

 (2) The degree distribution in some real social net-

works follows a power law.  

Thus, we will construct the social networks with these 

properties in simulation experiments. 

In the simulation experiments, there are N  agents and 

let (# ) / (# )onr V V  be the percentage of the online 

agents in all agents, where #  is the cardinality of the fi-

nite set. We randomly set N r  agents to be the online 

agents and the rest of the agents are offline agents. The 

initial opinions of all agents are uniformly random distri-

bution in [0,1] , and the confidence level of the agents are 

no more than 0.3 in general. Otherwise, all agents can 

reach a consensus in HK model. The self-confidence level 

of the agents are homogeneous, and set 0.5i   for all 

agents i  in this paper. In the simulation experiments, 

when 
1

1

t tX X    , we consider that the opinions of all 

agents reach the stable state, where 1 1

N

ii
X x


 . In this 

paper, we set 410  . Meanwhile, let ,i jx x  be the opin-

ions of agents  i  and j  when the opinions reach the sta-

ble state. We assign the agents  i  and j  to a same cluster 

when 
i jx x d  , and we set 

210d  . 

5.1 The influences of online agents in the 
disconnected social network 

We investigate the influences of online agents in the dis-

connected social network based on five criteria, the 

steady-state time, the number of opinion clusters, the 

maximum opinion cluster size, and the number of pure 

online/offline opinion cluster. 

        (1) The steady-state time T  is defined as the mini-
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mum time it takes all agents' opinions to reach a stable 

state.  

        (2) The opinion clusters appear when the stable state 

is finally reached in opinion dynamics. The number of 

opinion clusters NCS  is defined as the number of different 

opinion clusters among the agents in the stable state. 

Larger NCS  values indicate more different opinions 

among the agents in the stable state. In particular, 1NCS   

indicates all agents reach a consensus finally. 

         (3) 
MNCS  is defind as the maximum size of opinion 

cluster when the stable state is finally reached in opinion 

dynamics, and 
MNCS   is a measure of the power of the 

majority. In this paper, let * = /MNC MNCS S N .  

         (4) The pure online opinion cluster is defined as an 

opinion cluster in which all agents are online agents and 

the pure offline opinion cluster is defined as an opinion 

cluster in which all agents are offline agents. on

NPCS  and 
off

NPCS  denote the number of pure online opinion cluster 

and pure offline opinion cluster in the stable state, respec-

tively.  

In the simulation experiments, we choose Erdős 

&Rényi (ER) random graph [34] ,N pG  to construct the 

social network. Specifically, take N  agents and connect 

each pair agents with probability p . As p  increases, the 

disconnected social network will change gradually to a 

connected one, where ln( ) /cp N N  is a sharp threshold 

for the connectedness of ,N pG ,  i.e. , if (1 ) cp p   ,then 

a graph in ,N pG  will almost surely contain isolated agents, 

and thus be disconnected; If (1 ) cp p  , then a graph 

in ,N pG  will almost surely be connected, where   is pos-

itive real number and near to 0. In additional, the degree 

distribution of ,N pG  is a Poisson distribution. 

     Then, using models (i.e., Equations (7)-(11)) proceeds 

with the evolution of opinions, obtaining the average T , 

NCS ,  
*

MNCS ,  
on

NPCS  and 
off

NPCS  values from 1000 independ-

ent realizations. In the simulation experiments, we set 

that 200N   and 0.15  .  

Fig. 1. The average T  values under different p  and r  

values. 

Fig. 1 reveals the impact of p  and r  on the steady-

state time. As r  increases, the steady-state time T  de-

creases, which means that the more size of online agents 

is, the less time the stable state needs. Thus, the commu-

nication regime of online agents avails the stabilization of 

the opinion dynamics.  

     As p  increases, the steady-state time T  starts increas-

ing, and then decreases. When p  is a small value (e.g. 

0.001), the edges in the ER random network is fewer, and 

then the opinion dynamics stabilizes quickly because 

many agents do not communicate with others. When p  

is large (e.g. 0.03), the social network is almost surely 

connected and the opinion dynamics stabilizes quickly 

because of numerous communications among the agents. 

However, when the p  value is between 0.005 and 0.01, 

the social network changes its topology abruptly from a 

loose collection of small clusters to being dominated by a 

single giant cluster, and there are some cycles in the social 

network, leading that the steady-state time T  is longer 

than the above two situations. 

Fig. 2. The average 
NCS  values under different p  and r  

values. 

Fig. 2 reveals the impact of p and r  on opinion 

clusters. When 0.02p  , as r  increases, NCS  decreases, 
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which means that the larger size of online agents yields 

the fewer number of opinion clusters because the com-

munication regime of online agents facilitates that many 

disconnected agents can communicate with each other. 

As p  further increases (e.g. 0.02p  ), the social network 

is almost surely connected, and thus the impact of r  on 

NCS  is not evident. 

  For a fixed r , as p  increases, NCS  starts decreasing, 

and then stabilizes. When p  is small, there are many 

disconnected agents in the social network, and thus the 

value of NCS  is large. As p  increases, more agents are 

connected, so NCS  decreases. When p  is large (e.g. 0.03), 

the social network is almost surely connected, NCS  stabi-

lizes due to all agents can reach a consensus easily. i.e.

1NCS  . 

Fig. 3. The average *

MNCS  values under different p  and 

r  values. 

Fig. 3 reveals the impact of p  and r  on  
*

MNCS . 

When 0.02p  , as r  increases, 
*

MNCS  increases, i.e., the 

more size of online agents is, the larger the maximum 

opinion cluster size is. The communication regime of 

online agents facilitates that many disconnected agents in 

social network can cluster together. As p ( 0.02p  ) fur-

ther increases, the social network is almost surely con-

nected, and thus all agents reach a consensus easily, 

Hence the impact of r  on 
*

MNCS  is not evident in this sit-

uation. 

       For a fixed  r , as p  increases, 
*

MNCS  starts increasing, 

and then stabilizes. As p  increases from 0.001p   to 

0.02p  , more agents are connected and thus 
*

MNCS  in-

creases. When 0.02p   , the social network is almost 

surely connected, and thus 
*

MNCS  stabilizes due to all 

agents can reach a consensus easily. i.e. 
* 1MNCS  . 

Fig. 4. The average 
off

NPCS  values under different p  and 

r  values. 

Fig. 4 reveals the impact of p  and r  on  
o f f

N P CS . 
off

NPCS  highlights the lower left-hand corner of Fig. 4. 

When the values p  and r  are small, there are many of-

fline opinion clusters. When 0.02p  , as r  increases, 
off

NPCS  decreases, i.e., the more size of online agents is, the 

smaller the number of pure offline opinion cluster is. Be-

cause the online agents always attract some offline agents, 

and thus the number of pure offline opinion cluster de-

creases. As p  ( 0.02p  ) further increases, the social 

network is almost surely connected, and thus the impact 

of r  on 
off

NPCS  is not evident. 

       For a fixed r , as p  increases, 
off

NPCS  starts decreasing, 

and then stabilizes. As p  increases from 0.001p   to 

0.02p  , more agents are connected, and thus 
off

NPCS  

decreases. When 0.02p   , the social network is almost 

surely connected, and thus 
off

NPCS  stabilizes due to all 

agents can reach a consensus easily. In this case, the value 

of 
off

NPCS is very small, and even the value is 0. 

      However, we find that pure online clusters are hardly 

observed in the simulations, and this phenomenon im-

plies that online agents can always attract a certain num-

ber of offline agents. The pure offline clusters are easily 

observed which implies that some of the offline agents 

could be isolated from society because of the develop-

ment of the information and communication technologies. 

 
5.2 The influences of online agents in the 

connected social network 

In this section, we investigate the influences of online 

agents in a connected social network under different to-

pology, such as the ER random network, the Watts & 

Strogatz (WS) small world network [35] and the Barabási 
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& Albert (BA) scale-free network [36]. 

In the WS small world network, start with a ring lat-

tice with N  agents in which every agent is connected to 

her/his first K  neighbors ( / 2K  on either side), and then 

randomly rewire each edge of the lattice with probability 

p  such that self-connections and duplicate edges are 

excluded. When p  is small, the WS small world network 

has a high clustering coeffcient, i.e., there are many circles 

of friends or acquaintances in which every member 

knows every other member. 

 In the BA scale-free network, starting with a small 

number 0m  of agents which are all connected to each 

other, at every time step we add a new agent with 1m  

( 1 0m m  ) edges that link the new agent to 1m  different 

agents already present in the system, such that the proba-

bility to get linked to an agent is proportional to her/his 

degree. After 0N m  time steps, there are N  agents in the 

network. The degree distribution of this BA scale-free 

network is a power-law distribution with the fixed power 

exponent 3. 

In the simulation experiments, the parameters re-

garding to three networks are listed in Table 1. The sizes 

in three networks are same, i.e. 200N  , and the average 

degree in three networks are all about 6, and we choose 

connected network in every time of simulation process to 

guarantee all agents can reach a consensus finally. 

 
TABLE 1 

THE PARAMETERS REGARDING TO THREE NETWORKS 

The Topology of 
network 

Parameters 

ER random  200N  , 0.03p   
WS small world  200N  , 6K  , 0.01p   

BA scale-free  200N  , 0 6m  , 1 3m   

Then, we pay attention to three criteria to investigate 

the influences of online agents in a connected social net-

work, i.e., the consensus time, the maximum opinion 

changes, and the sum of the opinion changes. 

      (1) The consensus time 
cT  is defined as the minimum 

time it takes all agents' opinions to reach a consensus.  

     (2) The ( )Moc t  is a measure of maximum opinion 

changes of all agents from one time instant to next in the 
opinion dynamics. i.e., 

1( ) t tMoc t X X 


  , 

where  1 2max , ,..., NX x x x

 , t  1,2,…. 

    (3) The ( )Soc t  is a measure of the sum of the opinion 

changes of all agents from one time instant to next in 

opinion dynamics. i.e., 

1

1
( ) t tSoc t X X   ,  

where 1
1

N

i

i

X x


 , t  1,2,…. 

The simulation setup is the same with the former Sec-

tion 5.1, using models (i.e., Equations (7)-(11)) proceeds 

with the evolution of opinions, obtaining the average 
cT , 

( )Moc t  and ( )Soc t  values from 1000 independent realiza-

tions. 

Fig.5 shows that the consensus time in the ER ran-

dom network, the WS small world network and the BA 

scale-free network, respectively. In the ER random net-

work, as r  increases, 
cT  starts increasing gently and 

then decreases. The results in the BA scale-free network 

are similar to the ER random network. However, 
cT  de-

creases with r  increasing in the WS small world network 

because the online agents avail communications among 

agents who have long distance in the WS small world 

network. In addition, the higher confidence level of online 

agents makes consensus time decreasing evidently in the 

three networks, especially for lager r  values because the 

higher confidence level makes online agents’ influence 

capacities to become strengthen. 

Fig. 5. The average 
cT  values under different networks 

topologies and r  values 

Although three networks have the same size and the 

same average degree in the simulation experiments, the 

ER random network and the BA scale-free network have 

less average shortest path length than the WS small world 

network, and the WS small world network has a higher 

clustering coeffcient than the ER random network and the 

BA scale-free network. Generally, the network which has 

a less average shortest path avails that all agents reach a 

consensus quickly, while the network which has a higher 

clustering coeffcient always leads to that all agents reach 
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a consensus slowly. Thus, the consensus time in the WS 

small world network is always longer than the ER ran-

dom network and the BA scale-free network. As r  in-

creases, the differences among three networks decrease. 

 

 

 
Fig. 6.  The average ( )Moc t  values under different network topologies and r  values 

 

 
Fig.7.  The average ( )Soc t  values under different network topologies and r  values 

Fig.6 shows that the maximum opinion change of all 

agents in the ER random network, the WS small world 

network and the BA scale-free network, respectively. All 

agents reach a consensus finally in the connected network, 

and ( )Moc t  decreases gradually with the time going on. 

We only show ( )Moc t  from 1t   and 10t  . In three net-

works, for a fixed value of r , ( )Moc t  decreases from 

1t   and 10t  . In other words, the opinions of all agents 

change rapidly in the first ten time instants. As r  increas-

es, this trend will be alleviated especially for 80%r  . 

The results in the ER random network and the WS small 

world network are very similar because the shape of de-

gree distribution of the WS small world network is simi-

lar to that of the ER random network, and the topologies 

of two networks are relatively homogeneous. While the 

BA scale-free network has a power-law degree distribu-

tion, when all agents are online agents, the average value 

of (1)Moc  in the BA scale-free network is still more than 

in the ER random network and the WS small world net-

work. 

Fig. 7 shows that the sum of the opinion changes of 

all agents in the ER random network, the WS small world 

network and the BA scale-free network, respectively. Sim-

ilar to ( )Moc t , we show ( )Soc t  from 1t   and 10t  . In 

three networks, for a fixed value of r , ( )Soc t  decreases 

from 1t   and 10t  . In other words, ( )Soc t  varies very 

rapidly in the first ten time instants. As r  increases, this 

trend will be alleviated especially for 80%r  . In addi-

tion, the results of ( )Soc t  are very similar in the ER ran-

dom network, the WS small world network and the BA 

scale-free network although the topologies of three net-

works are different. 

6 CONCLUSION 

 In this paper, we propose the public opinion dynamics 

in an online and offline social network. The main con-

tributions are as follows. 

(1) We analyze the communication mechanisms 

among the online and offline agents, and propose the 

public opinion dynamics model in an online and of-

fline social network. 

(2) We present the analytical conditions to form a 



10  

 

consensus in the public opinion dynamics model. 

(3) Through the extensive simulation experiments, 

we unfold how the online agents impact the dynamics 

of public opinion formation. 

In the future, we plan to work on the following two 

issues: 

(1) We plan to make use of our proposed model to 

support the consensus reach process [38, 39, 40, 41, 42] 

which is a dynamic and iterative process guided by a 

moderator and composed by several rounds in which 

the individuals express, discuss and modify their opin-

ions until reaching an agreed decision; 

(2) The asynchronization or time-delayed is a very 

popular phenomenon in the evolution of real-life pub-

lic opinions [43]. In the future, we plan to study the 

asynchronization phenomenon in the public opinion 

dynamics in an online and offline social network con-

text and use real data to verify our proposed models. 
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