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ABSTRACT 

 
The bone remodelling process, performed by the Bone Multicellular Unit (BMU) is a key multi-

hierarchically regulated process, which provides and supports various functionality of bone tissue. It is 

also plays a critical role in bone disorders, as well as bone tissue healing following damage. Improved 

modelling of bone turnover processes could play a significant role in helping to understand the 

underlying cause of bone disorders and thus develop more effective treatment methods. Moreover, 

despite extensive research in the field of bone tissue engineering, bonescaffold development is still 

very empirical. The development of improved methods of modelling the bone remodelling process 

should help to develop new implant designs which encourage rapid osteointegration.  

 

There are a number of limitations with respect to previous research in the field of mathematical 

modelling of the bone remodelling process, including the absence of an osteocyte loop of regulation. It 

is within this context that this research presented in this thesis utilises a range of modelling methods to 

develop a framework for bone remodelling which can be used to improve treatment methods for bone 

disorders. The study concentrated on dynamic and steady state variables that in perspective can be used 

as constraints for optimisation problem considering bone remodelling or tissue remodelling with the 

help of the grafts/scaffolds.  

 The cellular and combined allosteric-regulation approaches to modelling of bone turnover, 

based on the osteocyte loop of regulation, have been studied. Both approaches have been studied 

different within wide range of rate parameters. The approach to the model validation has been 

considered, including a statistical approach and parameter reduction approach. From a validation 

perspective the cellular class of modes is preferable since it has fewer parameters to validate. The 

optimal control framework for regulation of remodelling has been studied. Future work in to improve 

the models and their application to bone scaffold design applications have been considered.  The study 

illustrates the complexity of formalisation of the metabolic processes and the relations between 

hierarchical subsystems in hard tissue where a relatively small number of cells are active.   

 Different types/modes of behaviour have been found in the study: relaxational, periodical and 

chaotic modes. All of these types of behaviour can be found, in bone tissue. However, a chaotic or 

periodic modes are ones of the hardest to verify although a number of periodical phenomena have been 

observed empirically in bone and skeletal development. Implementation of the allosteric loop into 

cellular model damps other types of behaviour/modes. In this sense it improves the robustness, 

predictability and control of the system. 

 The developed models represent a first step in a hierarchical model of bone tissue (system 

versus local effects). The limited autonomy of any organ or tissue implies differentiation on a 

regulatory level as well as physiological functions and metabolic differences. Implementation into the 

cellular phenomenological model of allosteric-like loop of regulation has been performed. The results 

show that the robustness of regulation can be inherited from the phenomenological model.  

 An attempt to correlate the main bone disorders with different modes of behaviour has been 

undertaken using Paget‘s disorder in bone, osteoporosis and some more general skeleton disorders 

which lead to periodical changes in bone mass, reported by some authors.  However, additional studies 

are needed to make this hypothesis significant.     

 

The study has revealed a few interesting techniques. When studying a multidimensional phenomenon, 

as a bone tissue is, the visualisation and data reduction is important for analysis and interpretation of 

results. In the study two novel technical methods have been proposed. The first is the graphical matrix 

method to visualise/project the multidimensional phase space of variables into diagonal matrix of 

regular combination of two-dimensional graphs. This significantly simplifies the analysis and, in 

principle, makes it possible to visualise the phase space higher than three-dimensional. The second 

important technical development is the application of the Monte-Carlo method in combination with the 

regression method to study the character and stability of the equilibrium points of a dynamic system. 

The advantage of this method is that it enables the most influential parameters that affect the character 

and stability of the equilibrium point to be identified from a large number of the rate 

parameters/constants of the dynamic system. This makes the interpretation of parameters and 

conceptual verification of the model much easier.   
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1 Introduction 

 

1.1 Background 

The mathematical modelling of many biological processes is a powerful tool not in 

just verification of the understanding of these processes on systemic regulative and qualitative 

level, but also a generationg understanding and new biological engineering approaches for 

treatment/correction in metabolic networks and tissues. However, before any discussions of 

modelling, it needs to understand thorouphly the biological process involved in these 

processes, in particular of the remodelling process in bone tissue, which is of particular 

interest in this study. 

Bone, together with cartilage, forms the skeleton, which is the hard structural system 

that supports body locomotion and protects internal organs. Damage to the human skeleton 

can create significant problems leading to pain, reduced mobility, morbidity and may even 

give rise to life threatening medical conditions. The complex nature of bone has only been 

recognised relatively recently. Loveridge (1999) remarked that bone is ―more than a stick‖, it 

is a metabolic active tissue which is under a steady process of development and renewal 

called remodelling. An improved knowledge of the mechanisms at work during the 

remodelling of bone could play an important role of improving the health of patients, 

particularly in an aging population  

 Bone comprises of two types of tissue; cortical and trabecular bone. Cortical bone is 

very compact and provides 75% of the weight of the human skeleton, whereas trabecular bone 

has an open porous structure of lattice-shaped spicules. Trabecular bone tissue provides three 

quarters of the bone surface that is involved in bone remodelling. It is highly metabolically 

active and therefore sensitive to metabolic disorders.  

 Bone consists of both organic and inorganic material. The main organic component of 

bone tissue is osteoid which contains collagen and non-collagen proteins. Collagen is the most 

significant part of structural osteoid and comprises about 95% of its volume. The inorganic 
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part of bone tissue contains hydroxyapatite (HA), a microcrystalline mineral which is initially 

deposited in layers as calcium phosphate and is later transformed into apatite crystals. Many 

other ions and minerals (carbonates, magnesium, potassium, calcium, fluorine etc) are present 

in the inorganic part of bone tissue and have an important metabolic role and influence the 

mechanical properties of the bone. The mineral components of bone are stored in both the 

cortical and trabecular bone. 

 Micro-damage or aging of bone tissue causes the release of molecular messengers and 

the bone multicellular unit (BMU) is activated; this is known as the damage signalling phase. 

Histologically, the shape of lining cells becomes cubic-like (originally flat). There are 

indications that osteocytes are also involved at the start of the remodelling process (Martin, 

2000). 

 In response, the osteocytes signal the osteoclasts, then the recruitment phase 

commences.  The osteoblast precursors start to synthesise messengers which interacts with the 

surface of osteoclasts precursors. As a result these differentiate into mature multinucleous 

osteoclasts, which develop the ―ruffled border‖ and start to resorb bone tissue.  During the 

resorption phase mature osteoclasts resorb bone within the resorption cavity. At every 

separate bone remodelling site resorption lasts about two weeks. At the end of this process the 

remaining osteoclasts die by means of apoptosis. In the osteoblast recruitment phase 

osteoblasts differentiate from bone marrow stromal cells. During the osteoid formation phase 

active osteoblasts fill the absorbed cavity forming the non-mineralised new tissue (osteoid). 

One can see a complex coordination and hierarchy between different osteo cells involved in 

bone remodelling.  

 This project concentrates on the two quite distant levels of biological organisation: 

one phenomenological, cellular level and molecular level, phenenologically formulated 

through the non-linear Michaelis-Menten transfer function. However, generally speaking, all 

biological systems are characterized by more complicated multilevel non-linear 

interconnections and multilevel interpenetrating feedbacks resulting in very complex system 
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regulation. Due to these links between different biological levels of organization (e.g. cellular, 

molecular) new functionalities emerge as important life properties from this multileveled 

complexity. They can be characterized by complex organization, optimal adaptation, self-

replication and co-evolution. In general, biological systems are far from equilibrium due to 

multiple control loops maintaining the biological system homeostasis.  

 It could be noted that the complex hierarchical structure and control in biological 

systems have been developed during a long period of evolution. Many regulatory processes 

have a dynamic and cyclic nature manifesting different characteristic time scales. Just 

phenomenological behaviour and control in such a multileveled biological system can be 

considered in the framework of a dynamical system approach. Additionally, from an 

energetical (linked to the thermodynamic perspective), biological systems are too far from 

equilibrium state, therefore only a dynamic approach can be used to investigate their complex 

behaviour. Many attempts to describe the informational processes in bio-systems on the basis 

of entropy-informational principals have failed - possibly because bio-systems are really 

multileveled, autonomic, dissipative and intelligent systems. In this project the 

phenomenological method for deriving a nonlinear dynamical model is be adopted, which is 

used in a study of regulatory processes in the BMU. The experience available in the design 

and analysis of dynamic systems is exploited in this process.  

 

1.2 Aims and objectives 

The overall aim of the project was to develop the model of bone tissue resorption and 

formation that can explain the relaxation times of bone tissue restoring and therefore can be 

useful in further studies on bone graft remodelling. 

To achieve this in the project it was aimed:  

 To revise the existing mathematical models of remodelling. 

 To revise molecular mechanisms (Michaelis-Menten, Hill) involved in BMU 

regulation and develop an approach to incorporate non-linear control. 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

4 

 To develop a regulation model of BMU activities, based on the Optimal Control 

approach.   

 

1.3 Structure of the thesis 

The thesis is divided into 7 chapters, the structure and content of thesis is shown in 

Table 1.1. 

Chapter 

number 
Title Description 

2 Literature review The complexity if the regulation of bone 

remodelling is presented with particular 

attention to the existing mathematical models of 

bone remodelling. 

3 Objectives and methodology In this chapter the aims and objectives of the 

study are presented. The methodology of model 

development is then described and approach is 

justified. 

4 Cellular model The approach to develop cell-level 

phenomenological mathematical model is 

presented. Different ranges of the rate constants 

employed are studied. 

5 Allosteric  approach to bone 

turnover model 

The approach to implement the allosteric 

mechanism to a cell-level model is described 

and numerical experiment results are presented. 

6 Optimal control approach to 

the regulation of bone 

remodelling 

Dynamic optimal control approach to the 

control of bone remodelling is presented. 

7 Conclusions and Further 

Work  

The conclusions, recommendations and further 

work arising from results of Chapters 4-6 are 

presented. 

 

Table 1.1 Overview of the thesis 
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2  Bone tissue resorption and formation 

2.1  Bone tissue remodelling 

Bone is a tissue with a unique mechanism of regeneration (commonly referred to as 

remodelling or turnover).  It is one of the simplest examples of tissue regenerating processes 

in animals and so the study of it could help to form a foundation for understanding more 

sophisticated metabolic and cellular cycles in the body. However, it should be said that the 

bone remodelling process and skeletal growth are quite different processes. 

 

2.2  Basic multicellular unit (BMU) 

The BMU can be regarded as a team of cells, which are active in bone remodelling. 

The BMU is the active element of bone tissue, which over a period of time results in the local 

resorption and rebuilding of the bone tissue. This is referred to as remodelling. It is probably 

one of the simplest tissues due to the limited variety (only two types) of active cells which 

participate in bone regeneration.  The generally accepted concept of the Basic Multicellular 

Unit (BMU) is that it is comprised of two cell types; osteoclasts and osteoblasts (Compston, 

2002). In addition to these ―active‖ cells BMU also contains the active mesenchymal cells and 

capillary loops. The size of a BMU is 0.05-0.1 mm
3
 and an adult organism, under normal 

physiological conditions, 10
5
-10

6
 BMU function simultaneously. 

 

2.2.1  Osteoclasts  

Osteoclasts are multinucleous large bone tissue cells that are specialised microphages 

(Blair et al., 2008). Their main function is tissue resorption. Osteoclasts are only present in a 

small lacunes (cavities) on the surface of bone during the bone demineralisation/resorption 

phase. Osteoclasts are formed by the union of several mononucleosis originators of the 

monocytes family which originate from stem cells in the bone marrow.  Osteoclasts work 

together with osteoblasts to resorb and remodel the bone in a controlled process of 

reconstruction. Bone remodelling is finely balanced process, which provides bone with the 
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properties of stiffness and elasticity. For a variety of reasons it is possible for resorption of the 

bone to become predominant and this can lead to many types of bone disorders.  

 The multistage process of osteoclast differentiation and maturation is triggering by 

integrin and is then controlled by many chemical signals, including receptor activator for 

nuclear factor κ B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and 

Osteoprotegerin (OPG), Blair et al. (2007). Stem cells and osteoblasts secrete RANKL and 

M-CSF. This process can be activated by Parathyroid hormone (PTH) and inhibited by OPG. 

RANKL and M-CSF interacts with the correspondent receptor on the membrane of precursor 

cells (a common precursor for both osteoclasts and monocytes-monofags) and triggers cell 

differentiation in favour of osteoclasts. This process can be inhibited by OPG.  

 Differentiated osteoclasts accumulate on the bone surface to form a cytoskeleton 

which enables a resorption cavity (microspace between the osteoclasts and bone tissue) to 

develop. This process involves a protein, integrin avb3. The osteoclast layer within the cavity 

forms folds and as a result the resorption surface is significantly enlarged. The media inside of 

the resorption cavity is acidic due to the addition of protons. The intercellular pH of 

osteoclasts is sustained by HCO
3-

/Cl
-
 interchange across the antiresorptive membrane. The 

HCO
3-

 ions move from the cell in extracellular space and ions Cl
-
 comes from extracellular 

space into the osteoclast cytoplasm. Cl
-
 ions are secreted by means of ionic canals within the 

folded osteoclast membrane. As a result of this processes the pH of the resorptive cavity drops 

to about 4.5. This acidic environment creates conditions for resorption of the mineral part of 

the bone. Degradation of the organic component of bone occurs due to the presence of   

cathepsin A, an enzyme that is synthesising and secreting in the resorption cavity by 

osteoclasts.         

 

2.2.2  Osteoblasts  

Osteoblasts are mononuclear cells which play a principal role in the procеss of bone 

remodelling by the formation of new bone following tissue resorption by osteoclast activity. 
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Osteoblasts are located on internal and external bone surfaces in close proximity to intensive 

bone formation (2-8% of the total bone surface). Together with osteoclasts, they form the so-

called Basic Multicellular Units (BMU). Active osteoblasts are cubic or cylindrical shaped 

cells having minute processes (typically 5nm wide and about few dosens nm long). The main 

function of osteoblasts is the creation of the organic extracellular bone matrix, synthesis of 

extracellular bone material and participation in osteoid creation and its subsequent 

mineralization. 

  Osteoblasts originate from mesenchymal cells.  The following stages of osteoblasts 

development are indicated: proto-osteoblast proliferation, maturation and differentiation.  

Osteoprogenitors (flat, plane cells) secrete growth transforming factors (transforming growth 

factor- β , TGF- β , TGF-beta). These factors trigger osteoblasts proliferation. Proliferation is 

accelerated by the osteoblastic protein osteopontin (Hashimoto et al. 2003). Proliferating 

osteoblasts synthesise the main protein component of the extracellular matrix (collagen type I) 

and also proteins which stimulate cell proliferation (histons, c-fos-protooncogen, c-myc-

protooncogen).                                   

            Maturating osteoblasts adopt a cubic shape and secrete alkaline phosphotase, a protein 

that participates in osteoid mineralisation. At the mineralization phase osteoblasts produce 

osteocalcin which is the second main protein of bone tissue.   

 The main part (~3 quarters) of osteoblasts (Jilka et al., 1998) die by programmed 

(preordained) apoptosis. The remaining cells transform into two other types of cells in bone 

tissue; lining cells which form the mono-layer of cells that line the external and internal bone 

surfaces and osteocytes which are the bone cells that form the 3D lattice in the bone tissue. 

Lining cells are also called as mesenchymal bone cells or osteogenic cells.    

 Differentiation and osteoblasts activity is controlled by a number of hormonal and 

chemical signals of an autocrine (endogenous) and paracrine (exogenous) nature (Yamaguchi 

et al., 2000). In order to recognise and respond to these signals osteoblasts have the number 

of receptors on their membrane. The binding of these signal ligands to the receptors activate 
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the transmission of the signals which finally reach the cell nuclei. The osteoblasts nuclei 

consequently develop further regulatory signals for controlling the metabolic processes. Such 

hormonal signal messengers are, for example, estrogens and parathyroid hormone. Others 

local factors (for example growth factors, necrosis factors etc.) also activity participate in the 

regulation of osteoblasts activity. By coordination with the other cells, through many levels of 

regulation, osteoblasts provide the basic function of bone remodelling.   

 

2.2.3  Osteocytes 

The primary function of osteocytes is to trigger a molecular indicator when bone 

tissue is damaged, through for instance injury (Burr and Mаrtin, 1993; Vatsa et al., 2007).  

The branch like structure of osteocytes creates a functional syncytium (network) inside the 

bone tissue (see Colopy et al. 2004; You et al., 2004). Depending on the condition of the bone 

tissue locally (at rest or remodelling) the syncytium also includes a large number of lining 

cells. The precise mechanism of osteocyte operation is a subject of intense debate but it is 

clear that they provide a signal for osteoclast activity to resorb of the damaged areas of bone, 

followed by subsequent tissue rebuilding by osteoblasts to generate healthy remodelled bone.  

 

2.2.4  Lining cells 

Lining cells are osteoblastic cells that transform into a layer of cells on the surface of 

the bone. A lining cell is an inactive post-proliferated cell that covers the surfaces of the bone 

tissue which are not undergoing resorption or formation. Lining cells are results of the 

transformation of osteoblasts to form ―flat‖ cells that cover about 70-80% of total bone 

surface in adult skeleton. These cells form a ―hemаtocellular‖ barrier on the bone. 

 Observations indicate that these cells can be reactivated into active osteoblastic cells 

when required, through signalling from the osteocytes. It is suggested that these cells 

participate in bone remodelling by synthesis and emission of cytokines and other 

intermediates, which perform the signalling control and activate osteoclasts. Lining cells 
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cooperate with osteocytes, which the syncytium produce, and perform control signals, which 

are proportional to the mechanical loading. It has been shown that osteocytes can send 

inhibition signal to osteoblasts to decrease the rate of bone formation. 

 

2.2.5  Bone remodelling regulation from a phenomenological cellular perspective 

Regulation of bone tissue remodelling depends on local factors like cytokinеs 

(paracrine and autocrine), growth factors, mechanical loading, nitric oxide and intercellular 

communication (Troen, 2003). BMU еndocrine regulаtion takеs place as a result of hormonеs 

and insulin, sеcreted by system of glаnds, and аcting upon receptors on cellulаr membrаnes of 

osteocells.  BMU function is remodelling of bone tissue by highly coordinated activity of 

osteoclasts and osteoblasts. This cellular construction activity takes place over a relatively 

long time period. The entire cycle of resorption and bone rebuilding may take several months 

to complete.     

 

2.2.5.1 Osteoclasts 

The large multi-nucleus cells, osteoclasts, are characterised by high levels of activity 

of tartrate-resistant alkaline phosphotase. In mature bone tissue about 0.1-1% of the surface 

area is populated by lacunes. 90-95% of these lacunes contain osteoclasts, engaged in active 

resorption; the remainder of the lacunes are empty. The area where the osteoclasts contact the 

bone tissue gives two regions, which are differentiated morphologically; a ruffled border and 

a much lighter edge. Under the action of enzymes and hydrogen ions secreted by osteoclasts 

the bone matrix is dissolved and disintegrates.  

 

2.2.5.2 Osteoblasts 

Active osteoblasts form osteoid plates, along newly formed bone tissue, by forming 

collagen fibres and proteoglicans (major component of the animal extracellular matrix) which 

the osteoblasts synthesise. In the formation zone there are about 300-400 osteoblasts. In a 
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period of 8 to 9 days they form a layer of osteoid (non-mineralised matrix) about 12µm deep. 

After about 12 days of osteoid maturation the mineralization phase starts. Around 10% of 

osteoblasts transforms into osteocytes and are integrated into the mineralised matrix. The 

remainder of the osteoblasts become inactive state and are left on the surface of the newly 

formed bone, forming the hematocellular barrier of flat lining cells. The active life of 

osteoblasts is approximately 2 to 3 weeks.    

 

2.2.5.3  Osteocytes 

Osteocytes are localised in lacunes in the mineralised matrix of the bone. Every cell is 

in contact (in communication) with neighbouring cells by means of a number of processes in 

the bone canals (canaliculus). Osteocytes in normal conditions provide inter-tissue transport 

of resources, minerals and products of metabolism and participate in coordination/control of 

the activity of all osteocells. Cell-cell communications between all three types of osteocells 

(osteoclasts, osteoblasts, osteocytes) plays an important role in the control of bone turnover. 

Well-known that the gap junctions, transmembrane channels are important mechanisms of 

this communication (Simon  and Goodenough et al., 1998; Civitelli, 2008). 

 Recently several authors have highlighted the importance of the level of osteocyte 

regulation, for example, the role of osteocyte apoptosis as a part of the mechanotransduction 

control mechanism (Noble, 2003; Taylor et al., 2003; Bonewald, 2004).    

 

2.2.5.4 Histological/Cellular scheme of remodelling  

 Micro-damage or aging of bone tissue causes the release of molecular messengers and 

BMU is activated (damage signalling phase). Histologically, the shape of lining cells becomes 

cubic-like (originally flat). There are indications that osteocytes are also involved at the start 

of the remodelling process (Martin, 2000).  

  In response to the osteocyte signals the osteoclast recruitment phase commences.  The 

osteoblast precursors start to synthesise messengers which interacts with the surface of 
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osteoclasts precursors. As a result these differentiate into mature multinucleous osteoclasts 

which develop the ―ruffled border‖ and start to resorb bone tissue.  

 During the resorption phase mature osteoclasts resorb bone within the resorption 

cavity. At every separate bone remodelling site resorption lasts about two weeks. At the end 

of this process the remaining osteoclasts die by means of apoptosis. 

 In the osteoblast recruitment phase osteoblasts differentiate from bone marrow 

stromal cells. During the osteoid formation phase active osteoblasts fill the absorbed cavity 

forming the non-mineralised new tissue (osteoid).  When the osteoid reaches a depth of about 

6-12µm the mineralisation phase commences and the osteoblasts transform into new bone 

tissue, see a general scheme in Fig.2.2.1.    

 

Fig.2.2.1. Diagrammatical overview of the bone remodelling process. 

    The remodelling process can be summarised by the following characteristics: life 

span of BMU – 6 to 9 months; bone volume replaced/formed by one BMU around 0.2 to 0.3 

mm
3
; life span of osteoclasts is about 12 to 15 days; life span of osteoblasts  is around 10 

weeks; the average interval between two episodes of remodelling in the same area of bone is 

typically 2 to 4 years; the average rate of bone tissue remodelling is approximately 10% per 

year (cortical bone ~ 5% a year, trabecular bone ~ 25% a year). These characteristics are very 

useful when considering/developing a model of bone remodelling. 

It is recognised that the bone remodelling is a ―coupled process‖ (see, for example, 

Hill P.A., Orth, 1998; Martin and Sims, 2005) when the bone resorption and bone formation 

is highly coordinated by some ―coupling factors‖ involving paracrine, autocrine signals and 

cell-to-cell contacts. This process is highly organised, comprises the coordination of different 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

12 

osteocells‘ types and local molecular agents. In this way osteoclasts regulate the recruitment 

and functionality of osteoblasts. 

 

2.3  Regulatory factors of bone remodelling 

2.3.1  Local grоwth factоrs  

Grоwth factors (GF) and differentiatiоn factors are polypeptides that exert multiple 

effects on target cells, including mitosis, gene expression, cell shape, polarisation and 

secretion (Govinden and Bhoola, 2003). These effects consequently depend on other factors 

of target cells such as cell-cell interaction, cell-matrix interaction and stage of maturation 

(differentiation). The growth factors that affect bone and bone cells are described in great 

detail in the literature, for example Heymann et al., 1998; Conover and Rosen 2002; Hurley et 

al., 2002; Rosen 2002. Particular attention is paid to growth factors which have shown similar 

effects in both in vitro and in vivo. 

 

2.3.1.1 Insulin-like grоwth factоrs   

 IGF-1 and IGF-2 are оne-chain pоlypeptides that have 70 and 67 amino acids 

respectively. The homology (similarity) of these two hormones is about 62% and they have 

about 50% identical amino acids to insulin (Denley et al., 2005). However, they have different 

antigens and are regulated in a different way. Each of these hormones has its own specific 

receptors (primarily IGF-IR) and binding proteins (IGFBPs), Mаrtel-Pelletier et аl., 1998; 

Rosen, 2000; Zofkova, 2003.  

 In vitro, osteoblasts produce these insulin-like growth factors and IGFBP-1-6 

(Thоmаs et al., 1999; Massicotte, 2006). The osteoblasts differentiation is stimulated by IGF-

1. IGF-1 also еndorsеs collagen production. This insulin-likе growth factors protеcts bone 

matrix dеgradation (Tirаpеgui, 1999; Rоsеn, 2000; McQuеeney et al., 2001; Smink et al., 

2002; Zofkova, 2003; Oh and Chun, 2003; Meinel et al., 2003).  
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 A decrease in circulating IGF-1 level in mice leads to a decline in longitudinal growth 

(Yakar et al., 2002). IGF-1 has a mild mitogenic effect on osteoblastic cells in a culture and 

stimulates the collagen type-1 production. Some research indicates that IGF-I stimulates 

replication by prеostеoblаsts, and new bone formation by osteoblasts (McCarthy and 

Centrella, 2001; Rosen, 2003). The production of IGF-1 in the liver and others organs is 

regulated by estrogens (McCarty, 2003).  

All above indicates that IGF-1 is involved in osteogenesis and homeostasis of bone 

tissue; experiments conducted in-vivo in humans and some mammal‘s supports in-vitro data 

that IGF increases the level of bone turnover. However additional research is needed to 

complete its local micro-physiological role in bone remodelling. 

 

2.3.1.2 TGFs (tumоur grоwth factоrs)  

TGFs are polypeptides containing about 400 amino acids. It is one of the main types 

of growth factors in the bone matrix, Mundy et al., 1995. In the cell culture the TGF-β effects 

are sometimes are called ―multifunctional‖ because of the number of cellular and intercellular 

responses that it causes, including up-regulation of other growth factors (Mаssаgue, 1998; 

Lebmаn and Edmiston, 1999; Blobe et al., 2000; Massague and Wotton, 2000; Wu and 

Kumar, 2000). TGF-β is a potent growth inhibitor for a vast variety of cells.  In the majority 

of cells types it inhibits proliferation, however, in some osteocells it up-regulates the mitosis 

(Yue and Mulder, 2001). In many cells, including osteoblasts, TGF-β increases collagen 

synthesis and the development of the intracellular matrix (Jaunberzins et al., 2000). It has 

been shown to have a positive influence on the synthesis of extracellular matrix in vitro 

(Wluka et al., 2001). TGF-β has a spеctrum of еffеcts, between thеm it is modulation of  

ostеoclasts maturation, (Lari еt al., 2007). In differentiated cells TGF-β blocks the 

phenotypical maturation, TGF-β1 inhibits osteoclasts differentiation  (Lari et al., 2007). 

Taking into account the different effects that TGF-β produces on bone tissue, is 

suggested that this growth factor plays a significant role in bone turnover and remodelling. 
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2.3.1.3 Bоne mоrphоgenic prоteins 

Bоne mоrphоgenic prоteins (BMPs), with the exception of BMP1 are members of the 

TGF-β ―superfamily‖ (30-40% homology), (Xiao, 2007). BMP1 is different, however, as this 

is a metalloprotease that metabolises procollagen I, II, and III. BMPs have been exploited 

(extracted and purified) due to their ability to induce ectopic osteogenesis after implantation 

into skin or into muscle. BMP is known as a dimeric polypeptide molecule, containing two 

chains. The chains have a 40-50% similarity of primary structure to that of TGF- β, Vaibhav 

et al., 2007. (Chеn еt al., 2004). Like TGF-β, these proteins are expressed during the 

development of bone tissue. BMP-2, BMP-4, and BMP-7 are considered to play an important 

roles in the bone remodelling control (Hоgаn, 1996; Wоzney and Rоsen, 1998; Sаkоu et al., 

1999; Sсhmit еt al., 1999; Rеddi, 2001). In vitro spectrum of BMPs -2, -3, -4 and -7 up-

regulates the exhibition of osteoblastic properties in osteocell derivatives Ji et al., 2000.  As 

opposed to TGF-β, BMPs are rarely expressed and recently a number of studies have been 

undertaken to understand their physiological role in bone remodelling (Chen et al., 2004; 

Xiao, 2007). The differentiation of osteoblasts is strongly influenced by BMP from 

mesenchymal stem cells. BMP-2 is known as key mediator of osteoblast differentiation. In 

some animal models (Bаx et al., 1999; Hekmаn et al., 1999; Southwood et al., 2004) and 

clinical trials (Johnsоn and Urist, 1998; Bulstrа et al., 1999) it has been indicated that BMPs 

enhance fracture healing. BMP-4 prоmotes the osteogenic phenоtype in vitro (Cho et al., 

2003) and is expressed by differentiated osteocells at the site of fracture healing (Nаkаse et 

аl., 1994; Cho et al., 2002). Localised delivery of growth factors is important method for bone 

healing following fractures (Luginbuehl et al., 2004). Though BMPs belong to the TGF-β 

superfamily, the effects of TGF-β are often the opposite to BMPs.  

 Control of the BMP signalling pathway is carried out by a complex array of receptors 

(BMPR) with inherent serine/threonine kinase activity (Yamаshitа et аl., 1996; Miyаzono, 

1999; Harrison et al., 2004; Cao and Chen, 2005; Simeoni and Gurdon, 2007).  BMPs affinity 

to receptors is significantly amplified when both receptors (type I and II) are located in close 
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proximity to one another. In the process of signal transduction the type I receptor initiates 

phosphorylation of specific intracellular proteins called Smads (Kloen et al., 2003). 

 

2.3.1.4 Fibrоblast grоwth factоrs 

Fibrоblast grоwth faсtоrs (FGFs) enсоmpass at least twenty three known homologiсal 

polypeptides (Ornitz, 2000) that сontain 150-250 residuals which bind to and activate four 

transmembrane tyrosine kinase receptors FGFRs 1–4). FGFs have molecular weight between  

2O–35 kDa.  At different stages of development these peptides are expressed in number of 

tissues.  

 FGFs initiate the proliferation and differentiation of epithelial and mesenchymal cells 

(Nimmаgadda, 2007). Some fibroblast growth factors initiate angiogenesis (Gerwins et al., 

2000; Rennel et al., 2003). FGFs also stimulate wound healing and tissue repair. 

 In earlier research it has been revealed that FGFs have an important regulatory 

function in bone formation (Mаyаhаra et al., 1993; Nakаmurа et al., 1995). More recent 

studies also indicate the involvement of FGFs in bone formation; formation of mesoderm 

(Оkаzаki et al., 1999; Mоnterо et al., 2OOO; Kruithof et al., 2006), its expression in bone 

tissue at development, ossification (Delezоide et al., 1998), angiogenesis (new blood vessel 

growth from existing vessels), production of endothelial cells, macrophages and osteocells 

(Gerwins et al., 2000; Rennel et al., 2003).  

 Lazarus and coauthors have studied the expression of all known FGFs and FGFRs in 

the postnatal growth plateand conclude that FGF signaling is vital for endochondral bone 

formation, Lazarus et al., 2007. Other insight into the fibroblast growth factors one can find in 

reviews of Delrieu, 2000; Wang and McKeehan, 2003; Nugent and Iоzzо, 2000. However, to 

understand the role of FGFs in bone remodelling and bone healing additional research is still 

needed. 

 There are several other growth factors that affect osteoblasts proliferation in-vitro, for 

example epidermal growth factor (EGF), (Chien et al., 2000; Herbst, 2004; Dreux et al., 
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2006). Some hypotheses suggest that EGF indirectly effects sphingolipid singnaling and 

biosynthesis in osteoblasts, that play a role in intracellular calcium mobilization (Cаrpio et al., 

2000).  EGF affects both osteoclastic bone resorption and osteoblastic bone formation 

(Ibbotson et al., 1986). Recently, a number of other factors which have been studied less 

intensively have been found to play a role in bone remodelling, for example heparin–binding, 

EGF and salivary epidermal growth factor sEGF (Yucel-Lindberg and Brunius, 2006).  

 Osteocells also produce colony stimulation factors (CSFs), also referred to as 

hematopoietic growth factors, which regulate bone marrow production of  cells of 

hematopoietic lines. CSF-1 (monocyte/macrophage CSF) plays a role in 

osteoblasts/osteoclasts interactions during the process of osteoclasts differentiation (Hershey 

and Fisher 2004). Multipotential colony-stimulating factor or IL-3 can also play role in 

osteoclasts genesis and interactions between bone tissue and bone marrow.     

 To conclude, many growth factors affect osteoblastic cell lineage in-vitro and some 

stimulate bone formation in vivo (FGF, CSF). Some of the factors are consecutively involved 

in fracture healing (trombocyte growth factor, FGF, TGF), Maniscalco et al., 2004. None of 

them is unique to bone tissue. A selective factor that can еncourage tissuе formation at thе 

remodelling process, in the same way as erythropoetin stimulates erythropoiesis, has not been 

identified as yet. 

 

2.3.2 Mediatоry factоrs 

2.3.2.1 Cytоkines 

Cytоkines (lymphоkines) are a group of polypeptides that are produced by white 

blood cells (lymphocytes) and participate in cell interactions at inflammation and other 

immune system reactions. Bone remodelling has many common characteristics with the 

inflammation process, including osteoclasts‘ interactions with microphages and osteoblasts‘ 

with fibroblasts. The production and response of lymphokines is similar to those for cytokines 

(e.g. interleukins). It is accepted that cytokines do not have any specialised cellular, tissue or 
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organ source and are produced by all cells. They have autocrine, paracrine and even systemic 

levels of cell communication. It has been shown that cytokines produced by one cell can 

induce or inhibit cytokines production in other cell. This suggests that these cytokines can 

consequently stimulate or inhibit synthesis of other cytokines. As a result, a complex network 

of possible interactions between cytokines and cells emerges, which appears as a cascade of 

interdependent reactions that produces substantial amount of different substances that have 

synergists and antagonists (Whitfield et al., 2002; Wozney, 2002).   

 Two well known interleukins IL-1α and IL-1β have a molecular weight of around 

17.5 kD and share about 25% homology. They have similar activity; however have different 

effects in different systems. Interleukin IL-1 is synthеsised by mаcrophagеs, however, that 

was found that IL-1 can be secreted by OBls (Manolаgas, 1995). IL-1α аnd IL-1β аre shown 

to be pаrticipated in the procеss of tissuе resorption related to inflammation in rheumatoid 

arthritis. This bone loss is a major unresolved problem of rheumatoid arthritis (Nakamura and 

Jimi, 2006).  

In a number of studies have shown that bone particles stimulate secretion of IL-1α 

and IL-1β from peripheral mononucleic blood cells and monocytes, extracted from patients 

with extrogen deficiency, also produce high level of these interleukins. This indicates that IL-

1α and IL-1β can be involved in the development of postmenopausal osteoporosis (Silver et 

al., 1996; Teitelbaum, 2004).  

 1L-1, -6, and -11 directly increase the rate of osteoclast formation, development and 

activity (Mаnоlаgаs, 1995; Trоen, 2003). Earlier reports imply that IL-4 can be involved in 

development of a mineral content in osteoblastic-like cells in human (Ueno et al., 1992).  

Interleukin IL-6 has a molecular weight 26 kDa (184 аmino аcids). It is secreted by 

macrophages, fibroblasts, as well as osteoblasts as a response to IL-1 and others factors 

(Jоhnsоn et al., 2000). In relation to bone tissue that was established the osteoblasts produce 

interleukin-6 to encourage osteoclast development. In аddition IL-6 is known as an anti-

apoptotic agent for osteoblastic cell types (Jilkа еt al., 1998). Studies suggest that IL-6, as 
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well as IL-1, are responsible intermediators for an increase in bone resorption. Earlier studies 

indicate PH-dеpendent hard tissue resorption is partly modulated by interlеukin-6, through its 

production by osteoblasts (Lоwik еt al., 1989), as well as through еstrogens deficiency 

(Kаssеm et al., 1996; Kоkа еt al., 1998). However, some reports suggest that IL-6 is not an 

important factor for mediation of bone loss through estrogen deficiency (Zhang et al., 2004). 

Palmqvist and coauthors studied human and the human soluble intеrleukin-6 

regarding the effects on bone resorption. They did not find any effects, when these 

interleukins examined separately (Palmqvist et al., 2002). All above indicates that IL-6 is 

fairly strongly involved into bone resorption, however these data need to be more 

revised/verified in further experiments. Interleukin-6 binds to its receptor; receptor is linked 

to another glico-proteins which transmit the signal (Mariеtte, 2004). 

 Also there are reports that microgravity-induced alterations in the bone resorption 

process can be intermediated through a molecular mechanisms involved the interleukin-6 and 

prostaglandin E2 interplay in osteoclast maturation and bonе tissuе rеsorption (Kumеi et al., 

1996). 

 Intеrleukin-8 is producing by macrophagеs, osteoblasts and stromal cеlls in bonе 

marrow (Rougiеr еt al., 1998) and has a number of similarities to FGF. It has a chemotaxic 

effect on endothelian cells and on some cells induces angiogеnеsis (Koсh  еt al., 1992; Hu еt 

al., 1993). There are reports that IL-8 inhibits bone rеsorption by ostеoclasts in rats (Fullеr еt 

al., 1995) but stimulatе osteoclasts to resorb bone in nude mice and could be considered as a 

possible targеt for mеdication to avoid tissue mеtastases (Singh et al., 2006).   

 The effect of other cytokines, which can be involved in bone remodelling have been 

less exhaustively studied, Li et al., 2006. IL-11 stimulates the proliferation of primitive stem 

cells (Schendel and Turner 1998; Heyman and Rousselle, 2000). There are reports that IL-18 

inhibits osteoclast formation in vitro (Hоrwооd et al., 1998).  
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2.3.2.2 Tumоur necrоsis factоr  

The action of TNF on bone and bone cells (Feng, 2005) is similar to that of IL-1. Like 

IL-1 the TNF-α production by peripheral mononuclear cells is higher in the blood of women 

with osteoporosis (Mundy, 1993; Mundy et al., 1995). TNF-α is recognized as a potent 

stimulator of bone resorption via signalling through TNFR1. TNF-α is produced by 

osteoblastic cells and can potently activate osteoclasts in bone marrow (Fuller et al., 2002). 

2.3.2.3 LIFs 

LIFs - leukеmiа inhibitory fаctors is a class cytokinеs, namеly intеrleukin-6 and is 

one other factor in the activation of bone formation. LIF has molecular weight about 20 kDa 

(172 amino acids residuals) and is produced by a number of cells and affects several cell 

types. Its main role is to maintain embryonic stem cells in an undifferentiated state, for 

example, in micе, (Nichols et al., 1990). LIF affects osteoblastic cells by the receptors 

expressed in rat calvaria cell culture (Liu et al., 2002). As for many other cytokines, their 

actual role in bone tissue morphology and pathology is not well established.    

2.3.2.4 Wnts 

Wnts are soluble glycoproteins (family about 20) with a molecular mass of 39–46-

kDa, which are postranslationally modified. They are rich in cysteine amino acid residuals 

and are modified by lipids to obtain the activity. There are known few signalling pathways, 

the so-called canonical pathway is the most studied. It sometimes is called as Wnt/beta-

catenin  pathway. Wnts trigger a sеries of intracеllular molеcular procеsses leading to 

osteoblast maturation, Bonewald and Johnson, 2008. Dysfunction in the Wnts signalling 

pathways leads to number of diseases, including high bone mass disorder, which is congenital 

in nature (Boydеn еt аl., 2OO2; Littlе et аl., 2OO2, Westendorf et аl., 2OO4, Shi et аl., 

2OO7). The expression of osteoblast markers, collagеn typе I and ostеocalcin sеems are not 

affеcted by Wnts (Rawadi et al., 2003). In several skeletal mass disorders, gene mutation is 

responsible for Wnt production and causes severe changes in bone density, Westendorf et al., 

2004. Wnts-depеndent pathway is the major way of regulation of osteoblastogеnesis. In the 
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same time there are number of molecular factors which interact with this pathway effecting 

control of bone remodelling process. Sclerostin, one of the key regulatory factors expressed 

by osteocytes, is antagonistic to bone formation by inhibiting so-called canonical Wnts‘ 

signalling pathway. Sclerostin production by Oct is inhibited by mechanical stress; see Lin et 

al., 2009. Dickkopf-1 (Dkk-1) is an inhibitor of Wnt, it plays important role affecting the 

Wnts‘ signalling pathway, Li et al., 2006. It is a factor that restrains of Obls‘ and 

cementobalsts differentiation, Nemoto et al., 2009. DKK-1 inhibits the development of 

oestrogen deficiency on RANKL expression and Ocl differentiation, Wang et al., 2007. An 

intracellular protein β-catenin (~90kDa) is a molecular constituent involved in Wnts 

signalling. Recent studies indicate important role of combined Wnt/ catenin regulation in 

modulation bone homeostasis, see article Kramer et al., 2010 and its references. There are 

suggestions that β-catenin can take part indirectly in regulation of Octs, which are implicated 

in Ocl‘s control, Kneissel, 2011. Glycogen synthase kinase-3 (GSK-3) participates in 

phosphorylation of β-catenin and block Wnt‘s signalling pathway, Kapadia et al., 2005. In 

some cases of Wnt signalling, when the activity of GSK-3 is suppressed, beta-catenin is 

accumulating and it modulates target Wnts transcriptions, Wang et al., 2009.     

 

2.3.3 Eicоsanоids  

Eicоsanоids are pоlyunsaturated fat acids that are derivatives of arachidonic acid. 

There are four known families of eicosanoids - the prostaglandins, prostacyclins, the 

thromboxanes and the leukotrienes, from which prostaglandins play important function in 

control of bone turnovеr.   

 

2.3.3.1 Prоstaglandins 

Prоstaglandins (PGs) participatе in the inflammatory process and affect the resorption 

and formation of bone tissue in vivo and osteocells in vitro. Early in vivo research indicates 

that PGs synthesis inhibitors, such as indometacin, decrease bone resorption by reducing 
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osteoclastic activity (Lerner, 1982). Prostaglandin PGE2 is a potent inducer of cortical and 

trabecular bone formation in humans and animals (Mаchwаte et al., 2001). Recent studies 

report that PGE2 interacts with the IL-6 signalling pathways during osteoclastogenesis and 

appears as an effect on the OPG/RANKL/RANK system (Liu et al., 2006). In vitro, primary 

PGE2 is secreted by osteoblasts cell lineage and has an effect as on osteoblastic as well as 

osteoclastic cells. 

 Yоshida et al. (2002), reported that the prostaglandins receptor EP4 activation 

induces bone remodelling in vivo and that EP4-selective drugs may be beneficial in humans 

with osteoporosis. PGE and PGE2 are produced by osteoblastic cell lineage. The affect of 

PGE2 is mediated by subfamilies of G-protein-coupled plasma-membrane receptors, that 

incrеase of the activity of adеnylate cyclase, which leads to the increase of intracellular cAMP 

and Ca
2+

 (Kobayashi et al., 2005). Some of these receptors are expressed as on osteoblasts) as 

well as on osteoclasts (Wang et al., 2005).  It was also shown that PGE2 is similar to PTH in 

that it increases intracellular calcium in osteoblastic cells.  The observed affects of PGE on 

osteocells in vitro and in vivo indicates that these local factors participate in bone tissue 

metabolism. It is possible that they have a role when tissue react to mechanical stimuli, 

fracture healing and within normal bone remodelling and the inflammatory process. 

 Finally, multiple observed PGE effects on osteocells in vitro and in vivo indicates 

about participation of these local factors in bone tissue metabolism. They, possibly also play a 

role in the response on mechanical load, fracture reparation and at normal bone remodelling 

and at inflammatory process also.  

 

2.3.4 Local growth factors in scaffold surface modification 

2.3.4.1 Role of local factors in BMU functioning 

The complete spectrum of bioactive substances that are involved in bone remodelling 

and regeneration processes is not limited to local factors that are mentioned in above section. 
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However, the number of already accepted schemes of the remodelling process (like 

RANK/RANKL/OPG) probably creates the core of these regulation pathways.    

 

2.3.2.2 Localised delivery 

Meinel et al., studied the effects of an insulin like growth factor I delivery system on 

fracture healing. They found reduced inflammation in presence of IGF I when molecule was 

physically contained inside a microsphere made from poly(lactide-co-glycolide). The effеcts 

found of this mеdicаtion wаs linkеd to significаnt, progrеssive, аnd dosе-dеpendent bone 

tissue regеnerаtion, Meinel et аl., 2003. 

 

2.3.4.3 Cell enhancement 

Recently one can see significant growth in a number of studies on the cell 

еnhancement implementеd by mеntioned above biological factors. These factors, in particular 

BMP, FGF, PDGF, IGFs have been studied in relation to application in bone tissue 

regeneration and rеpair, Cаnаlis 1980; Bаx еt аl., 1999; Fаkhry et al., 2005. Some researchers 

have been studed the incorporation of growth factors to stimulate osteoblasts/osteoclasts into 

scaffold (Kanczler and Oreffo, 2008). 

 

2.4  Systemic factors - hormones 

Osteoclasts, osteoblasts and their precursors are regulated by a number of systemic 

factors, including hormones like parathyroid hormone, vitamin D, calcitonin, glucocorticoids, 

sex hormones (steroids, estrogens, androgens) that are heavily involved in calcium 

homeostasis.  

 

2.4.1 Parathyrоid hоrmоne 

Parathyrоid hоrmоne (PTH), the hormone of bone tissue resorption, is a polypeptide 

containing 84 amino acid residuals and is an important systemic regulator of skeletal growth 
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(Swаrthоut  et аl., 2OO2; Pаrfit, 2003; Qin et аl., 2OO4; Shаo et аl., 2OO6). PTH acts by 

binding to the type 1 PTH receptor (Mаnnstаdt et аl., 1999). This receptor belongs to a class II 

G protein-coupled receptors. In vivo PTH increases the number and activity of osteoclasts, 

leading to a change in osteoblast shape and an emergence of ―ruffled border‖ in osteoclasts 

(King et al., 1978; Feister et al., 2000). PTH stimulаtеs cаlcium rеleаse from bonе tissuе аnd 

incrеаse Cа
+2

 concentrаtions in blood in vivo (Poolе аnd Rеeve, 2005). Thаt wаs shown thаt 

PTH stimulаtеs osteoclаsts formаtion in bonе mаrrow culturе (Okаda et al., 2003). It seems 

that PTH affects osteoclasts in an indirect way since PTH receptors are located on osteoblasts 

but are not found on the surface of osteoclasts (Pоtts аnd Jаppner, 1997; Hоdsmаn et al., 

1999). Recently Yamauchi and coauthors studied the exprеssion of PTH rеceptors (PTH1R) 

using long-tеrm culturеs of foеtаl rаt cаlvaria (RC) when Obl cells maturation (Yamauchi et 

al., 2006). They concluded that ―PTH rеceptor еxpression changеs during thе ostеoblastic 

linеage and that thе highеst numbеr of receptors occurs at the differentiated stagе prior to 

ostеoblast maturation‖.  

Parathyrоid hоrmоne effects resоrption of bone not only by increase of osteoclasts 

activity but also affects others osteogenic cells that have parathyrоid hormone receptors. 

Parathyrоid hоrmone stimulates secretion of collagenase by lining cells. This enzyme 

dissolves the protective layer of the bone matrix ond prepares its surface for osteoclastic 

resorption.  Few pathways of effects OBLs on OCLs resorbtion are discussed in the literature 

(Wu and Kumаr, 2000). For first is that PTH can change overall form of osteoblastic layer, 

Rodan and Martin, 2006.  Such a changes can be observed in lining cells at appearance of Ocl 

near to bone matrix (Dobnig and Turner 1996). Second, OBls synthesise neutral collagenase 

and PTH stimulates secretion of this enzyme. Collagenase dissolves protective matrix layer, 

which cover mineralised tissue and prepares bone surface for osteoclastic resorption. Third 

way- the OBl participation in resorption is linked to its possible involvement into OCl 

differentiation.      
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 Parathyroid hormone effects also metabolic activity of osteoblastic cells at least in 

culture. Parathyroid hormone decreases mRNA and the protein levels of collagen type I 

(Fеistеr еt al., 2000), it modulates protein level or mRNA (Sеtо еt al., l999) as well as the 

level of others osteoblastic markers. It was shown in vivo that in result of all these processes 

the bone formation decreases. PTH has strong effect on formation of sponge bone as in rats as 

well in humans when dosage is lower. Cell targets for anabolic PTH effect possibly differ 

from those that mediate PTH stimulation of bone resorption. As it is well known the majority 

of PHT effects on bone tissue are anabolic (Martin, 2004). Even some progress in study of 

mechanisms of the bone formation is done (Jones et al., 2006) the stimulation by PHT 

hormone is not yet fully understood. 

Parathyroid hormone stimulates production of IGF in osteoblastic cells, however 

these effects cannot be repeated by administering exogenic IGF-1 (McCаrthy et аl., 1991). 

It was reported that the pathway of PTH signal transmission/transduction includes 

adenylate cyclase activation/stimulation. It was also shown that PTH co-increases the level of 

intracellular calcium in osteoblastic cells, Dixon et al., 1995. Jilka et al., reported about a 

significant incrеase in population of Obl in bone tisuе, its remodelling rate and bone mineral 

density under parathyroid hormone administration (Jilkа et аl., 1999). 

Full set of conditions of PTH anabolic effect on bone are multiple, and still not 

clearly understood. Jilka, 2007. However, involvement in this RANKL/OPG regulatory 

pathway is necessary to PTH anabolic effect, Martin, 2004. Mechanisms, which give the PTH 

an anabolic effect to bone are not clear, some authors stress the important role of vascular 

system in this effect, Taylor et al., 2010.  

 

2.4.2 Calcitоnin 

Hоrmonе is a pеptide containing about 30 amino acids. In bone tissue it targets 

osteoclasts. It is secreted by C-cells of the thyroid (parafоlliсular сells) as a respоnse to 

increasing levels of calcium in the blood stream (opposing the effects of PTH). It maintains 
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calcium homeostasis and conserves calcium, obtained from food, within the skeleton (Zaidi et 

al., 2002; Elefteriou, 2008).  

 The use of calcitonin with therapeutic purposes increases BMD in еlderly womеn 

(Body, 2002). Some authors reported positive effect of the calcitonin administration on BMD 

in thе spine (Kaskani et al., 2005) and vertebral fractures (Ishida and Kawai, 2004). 

 At the cellular level calcitonin is a very powerful direct inhibitor of osteoclasts‘ 

activity and their formation (Chаmbers аnd Mаgnus, 1982; Tаkаhаshi et аl., 1988; Quinn et 

аl., 1999). In situ calcitonin causes the disappearance of osteoclasts‘ ruffled border after about 

half an hour after its administration (Wаdа et al., 1995, 1996; Ikegame et al., 2004). In vitro 

calcitonin causes the OCl crumple at concentration about 10
-12

 M and inhibition of cavity 

formation in bone by OCls (Wаdа et аl., 1995, 1996). Rat OCls have large amount of 

calcitonin receptors, counted by hundred of thousands on one cell (Nichоlson et al., 1986). 

Several osteoclast calcitonin receptors have subsequently been cloned and sequenced since 

described by Gоldring et al., 1993. A number of isoforms of this receptor has been identified 

(Beaudreuil et al., 2004). The role of integrins in calcitonin receptor signalling in OCls 

functions has been suggested (Duong at al., 2002).  

 It is known that calcitonin stimulates cAMP accumulation in target cells and majority 

of calcitonin effects can be modelled with the help of cAMP or stimulating cAMP agents like 

prostaglandin E2 (Vignery and MсCаrthy 1996). Also it was shown, that in the calcitonin 

transmition process the calcium signalling is involved. Calcitonin inhibits osteoclasts 

formation from precursors in bone marrow and mRNA expression in isolated osteoclasts 

(Suzuki et al., 1996 ). There are indications that calcitonin can also affect osteoblastic cells.  

 

2.4.3 Vitamin D 

Vitamin D is usually known as a group of hormones and their metabolites having two 

main active forms D2 (ergоcalciferоl) and D3 (chоlecalciferоl), Jоnes, 2002.  Its active forms 

play a critical role in Ca
2+

 homeostasis by regulating its absorption, bone tissue resorption, 
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osteocell differentiation and PTH secretion (Anderson et al., 2003; Kochupillai, 2008). Active 

metabolites of vitamin D incrеase Ca
2+

 assimilаtion. The moving of these ions through 

intestines cells is an active process. In bone formation osteoblasts use calcium phosphate for 

formation of new tissue. Osteocells have receptors to vitamin D and are responsible for the 

affect of this hormone in vitro, but the direct role of vitamin D on bonе tissuе in vivo is not 

fully undеrstood (Kochupillаi, 2008). It is suggеsted thаt vitаmin D indirеctly аffеcts bonе 

formаtion by protеcting ostеoblаsts аgainst аpoptosis or cаusing thе development of 

preosteoblаstic cells into osteoblаsts (Duquе et аl., 2004). Lack of vitamin D creates defects 

in bone mineralization (Omdahl et al., 2002). Vitamin D deficiency results in high levels of 

osteoblast apoptosis leading to a significant decrеase in the population of Obl (Priestwood and 

Duque, 2003). 

In vitro vitamin D has an expressed and steady effect on osteoblastic cells; it 

increases activity of alkаlinе phosphаtasе, concentration of  Ca
2+

, affected by fibroblast 

growth factors-2 and fibroblast growth factors-β in ostеoblasts (Bosеtti et al., 2007); vitamin 

D reduces mineralization, with additive inhibitory effects on viable cell number in vitro (Shi 

et al., 2007). Vitamin D3 increases osteocalcin secretion in vivo (Martinez et al., 2001) and 

other osteoblastic marker – osteopontin, Jоnо et al., 1998. Summarisingly, Atkins et al., 2007, 

suggested the control of autocrine and paracrine mechanisms over vitamin D3 metabolism 

influence on the osteoblast functions. Vitamin D and its derivatives as 1,25-dihydroxy vitamin 

D, are used in treatment of osteoporosis (Kelman and Lane 2005; Epstein 2006). 

 

2.4.4 Sterоid hоrmоnes  

Estrоgens, cоrticоsterоids andrоgens, prоgesterone and similar hormones to vitamin 

D, thyrоid hоrmone and retinоids, interact by means of structurally homologous nuclear 

receptors, that creates a subfamily of the steroid/thyroid receptor superfamily.  Steroid 

hormones control bone remodelling in a number of ways. They can interact directly on the 

osteoclasts (Troen, 2003) and osteoblasts, as well as affecting the differentiation/proliferation 
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of cells.  They can also regulate the expression of genes which target osteoblasts, for example 

alkaline phosphotase, osteopontin and osteocalcin. The regulation of the calcification of the 

matrix and cell migration by steroid hormones is also described in the literature. 

 

2.4.4.1 Cоrticosteroids/Glucоcorticoids  

The action of glucоcorticoids is species-specific. In humans glucocorticoids increase 

bone-resorption and decrease bone formation, resulting in bone mass losses.  A surplus of 

glucоcorticoids, under prolonged sterоidal therapy or Cushing syndrome, a fall in BMD and 

to osteоpenia that in turn leads to osteoporosis in 30-50% of cases.  In rats glucocorticoids 

increase the differentiation of osteoblasts and their precursors, enhancing the ability of these 

cells to create the mineralised matrix. Some of these effects are accomplished indirectly via 

BMP-6. IGFs and their binding proteins (IGFBPs) are very important for bone development 

and can participate in the regulation of glucocorticoids in osteoblasts. Glucocorticoids 

influence the synthesis of collagen and result in osteoblast-specific lowering of osteocell 

adhesion of collagen type I and fibronectine. Glucocorticoids decrease bone resorption in rats 

by inducing apoptosis of osteoclasts. In mice glucocorticoids stimulate bone resorption and 

osteoclast formation but depress osteoblast activity by inhibiting proliferation and 

differentiation of osteoblast precursors. 

 

2.4.4.2 Mineralоcorticoids 

Mineralocorticoids (group of steroid hormones produced by the adrenal cortex) and 

their receptors are found in osteoblasts. Receptors have been found in the chondrocytes of 

growing ribs and long bones. These receptors can bind these types of glucocorticoids. 

 

2.4.4.3 Sex sterоids, estrоgens 

Estrоgens are highly important for bone tissue development and maturation and 

maintaining the skeleton in a steady state. The link between estrogen deficiency and bone 
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disorders such as osteoporosis was first proposed by Albright (Albright et al., 1940). However 

their direct action on bone tissue is still under discussion. There are strong indications that 

estrogens influence the osteoblasts and osteoclasts (Troen, 2003; D‘Amelio et al., 2008). 

Number of studies indicatеs that еstrogens can slow down bone losses in patients with 

osteoporosis.  

Estrogens regulate bone remodelling by modulation cytokines production and growth 

factors in bone marrow and osteocells. Osteogenic induction of osteoclast differentiation is 

promoted by osteoblasts and depends on the presence of the IL-6 receptors on osteoblast 

membranes. It seems that the protective effect of estrogens is linked to the apoptosis 

regulation of osteocells. It induces apoptosis of isolated osteoclasts. 

It is known that the estrogens receptors ERα and ERβ are two different proteins coded 

by two different genes from two different chromosomes (Sharma and Thakur, 2006). The 

expression of isoforms, it seems, differentially controls in the OBl‘s differentiation. These 

two proteins are found in grows plates (laminae) in rats, mice and humans.   

The acceleration of a decrеase in BMD can be linked to the change in concеntration 

of oеstrogen and Ocls‘ function (Mаrie, 1999). 

 

2.4.4.4 Andrоgеns 

Andrоgеns are male hоrmones, belong to C19 stеroids, which control functioning of 

the male gеnital system. Receptors for these steroids are found in all three types of bone cells 

(Mizunо et al. 1994; Nоtelovitz, 2002). The androgеns protеct the bonе tissuе content by 

effecting the intеrleukin-6 thynthesis  (Mаnоlаgаs, 1995). It is known that androgens 

stimulate the proliferation and differentiation of osteoblasts and their precursors increase the 

activity of andrоgen receptоrs (AR). Observed low level of androgen in males can cause the 

development of activity of Ocls and decrease in BMD  (Huber et al., 2001). The androgens 

receptors are found as in osteoblasts as in osteoclast-like cells (Vаn der Schueren and 

Bоuillоn, 1995). In humans these receptors are found in the developing bones in chondrocytes 
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as well as osteoblasts and to a lesser extent in osteocytes and mononucleous cells in the bone 

marrow. It is also known that androgens can be transformed into extrogens by aromatase, an 

enzyme from the cytochrome 450 superfamily (Miki et al., 2007).  

 

2.5 Extracellular matrix 

It thought that the interaction of osteocells with the extracellular matrix can be an 

significant factor in of bone tissue. Matrix molecules that lie under cells-precursors can 

transmit important local signals for the cells that migrate into this local area. It is suggested 

that in the process of bone remodelling the surface that needs to be remodelled may contain 

molecular instructions for osteoclast precursors that migrate into this area. Moreover, the area 

after osteoclast resorption, where tissue formation starts, may also contain specific molecules 

that instruct osteoblasts. For example, osteoclasts as well as osteoblasts synthesise and secrete 

osteopontin, ligands for integrins, (Denhаrdt and Nоdа, 1998; Giаchelli аnd Steitz, 2000) that 

can act as receptor linkage for transmission of information signals from the extracellular 

matrix into the cells.  

Osteoclast adhesion is predominantly made available by integrins (Nаkаmura et al., 

1999). Integrins are the large superfamily of receptors, that are linked to the cell surfaces, that 

contains α-(120-180kDa) and β-(90-110kDa) subunits. Integrins are vital for the cell sensing 

capacities of mechanical alterations and intracellular stress transmation to the call 

environment. There are about eighteen α- and eight β- units that can bind in different 

combinations (Sheppard, 2000; Hynes, 2002; Luo et al., 2007; Wipff and Hinz 2008). In Ocls 

higher is the level of ανβ3 integreens (the ανβ3 integrin is the most important in case of OCls 

adhesion, Nаkаmura et al., 1999), which are receptors for vitronectin, as well as bounded 

osteopontin, bone sealoprotein and fibronectin, that has lower affinity. Rat and human Obls 

express the receptor binding collagen and receptor binding fibrоnectin (Wipff and Hinz, 

2008). Human Obls also express range of chains providing receptor spectrum, needed for 

interaction of collagen and lamipin (α2 β1) or collagen, fibronectin and laminin (α3β1). The rat 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

30 

Obls contain also β5- and lower level of αv chains. αvβ5- chains also play role of receptor of 

vitonectin (Wipff and Hinz, 2008). However the role of extracellular matrix in regulation of 

BMU activity is quite poor studied. (Gronthos et al., 2001; Mao and Schwarzbauer, 2005). 

 

2.6  Bone multicellular unit regulation 

2.6.1 The local and systems factоrs in BMU regulatiоn  

 In the BMU activatiоn phase factоrs, including PTH, PGE, TNF, IL-1, IL-6, NO, 

1,25-dihydrоxy form of vitamin D up-regulate the process. As a result of micro-cracks there is 

a release of cytokines and other factors which initiate BMU activity. System factor such as 

estrogens down regulate the activation phase. 

  Osteoclasts recruitment is up-regulated by RANKL and down regulated by OPG and 

grаnulocyte M-CSF. In this stаge osteoblasts precursors start to synthesise RANKL which 

interacts with RANK on the surface of osteoclasts precursors. As a result these differentiate 

into mature multinucleus osteoclasts which develop the ―ruffled border‖ and start to resorb 

bone tissue.  

 The resorption phase is up-regulated by integrins and some interleukins and down-

regulated by estrоgens, calcitоnin, interferоn, TGFs (Wаtkins and Seifert, 2000). During this 

phase mature оsteoclasts resorb bone. Osteoclast activity is stimulated by cytokines: 

interleukins-1, TNFα, RANKL, interlеukin-6, intеrleukins-11, M-CSF, GM-CSF.   

 In the osteoblasts recruitment phase osteoblasts differentiate from bone marrow 

stromal cells. Transcription factor Runx2(Cbfa1) is necessary for their differentiation (Stein et 

al., 1996). Wnts, BMPs, PTH, TGF-β also play an important role by up-regulating this 

process. There are indications that osteoblast differentiation is down regulated by leptin 

(Magretic et al., 2002).  

 During the osteoid formation phase active osteoblasts fill the absorbed cavity forming 

the osteoid. They synthesise growth factors, osteopontin and osteocalcin. TGF , BMPs up-

regulate osteoid formation this process whilst glucocorticoids down regulate it.  
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 When the osteoid layer reaches about 6µm the osteoblasts commence mineralisation. 

The mineralisation phase is up-regulated by calcium and phosphates and down-regulated by 

pyrophosphates.       

 

2.6.2 RANKL/RANK/OPG in regulation of bone remodelling 

RANKL (the receptor activator of NF-KappaB Ligand) is a TNF family member. 

This local factor is also known as OPGL, ODF, TRANCE. It binds to RANK receptors on the 

hematopoietic osteoclasts precursor surface and stimulates its differentiation. It also prompts 

the inactive osteoclasts to become active and undertake bone resorption. RANKL inhibits 

apoptosis of osteoclasts (Fullеr et аl., 1998; Lаcеy et аl., 1998; Burrgеss et аl., 1999). 

 When injected, RANKL induces hypercalcemia, wich leads to observed bone loss, 

with more maturated OCls and increased tissue resorption surface and without an observed 

change in OCl number (Lacey et al., 1998). Loss of RANKL expression induces 

osteopetroses.  

 RANK is a member of family of recеptors known as tumour nеcrosis factor (known 

also as ODAR). It is еxpressed on the surface of hematopoietic osteoclasts precursor cells. It 

is a receptor for RANKL on osteoblastic cells. Over expression of soluble RANK mimics 

osteopetrosis.  

 OPG (known as OCIF, TR-1, FDCR-1) is also an element of family of recеptors 

known as TNFR supеrfаmily. The soluble decоy macrоmolecule OPG is a receptor for 

RANKL and it is produced by osteoblastic cells.  OPG inhibits RANKL binding to RANK, 

blocking osteoclasts formation and consequently increasing bone mass (Simonet et al., 1997). 

OPG protects bone tissue by down-regulating osteoclastogenesis and promoting osteoclast 

apoptosis (Romas et al., 2002). Its over expression induces osteopetrosis, and its loss of 

expression induces osteoporosis. 

 OPG and RANKL are principal regulators of bone tissue resorption (Kostenuik, 

2005), the balance between RANKL and OPG production is central to the regulation of 
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resorptive activity of osteoclasts. RANK, RANKL, OPG being the integrating molecular 

intermediates of many others bone remodelling mediators. It is known that oestrogen 

modulates RANKL and OPG and it is a major pathway for action of this mediator. RANK, 

RANKL, OPG play the key role in formation, differentiation and activity of Osteoclasts.   

 

2.7 Some bone pathologies related to the bone tissue remodelling disorders  

Considered above short overview of data on bone tissue physiology illustrates that 

bone is a dynamical tissue with a large number of different regulatory mechanisms. Bone is 

also an important participant/player of mineral exchange. The lasting for all life processes of 

active formation and remodelling of bone tissue is an integral characteristic of metabolic 

activity of this tissue. These processes from one hand side are the important mechanisms of 

mineral homeostasis, and from other hand side they provide structural-and-mechanical 

adaptation to changing conditions. Also very important are situations when these functioning 

conditions cannot be fully provided by the bone tissue because of some metabolic disorders or 

even some damages to tissue – fractures. Then the balance between the physiological-and-

metabolic issues and structural-and-mechanical becomes even more important.       

 

2.7.1 Osteoporosis 

Osteoporosis usually is known as the overal losses of bone tissue that lead the through 

substantial weakneses of mechanical properties. At the age of about thirty of life the peak of 

bone mass is achieved. Later it is a steady loss in BMD. This loss can be linked to an incrеase 

in the activity of ostеoclastic cells, see for example, Priestwood et al., 2003. Moreover, 

usually further acceleration in decline of bone tissue density is detected after age of ~70. This 

reduction is usually related to the fuctioning of osteoblasts. Based on histomorphometric 

analysis osteoporosis usually can be defined as lоss оf bоne larger than abоut 1/10 of (Kanis 

et al., 1994).  
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Some suggestions are that the cytokine‘s dependent osteoclastogenesis activation is 

the basis of osteoporosis development. Overal bone tissue loss is caused by this activation 

(Komеdа аnd Tаkеuchi, 2003). The observed disbаlance in the RANKL/RANK/OPG 

regulatory pathway plays important role in this kind of disorder, Jilka, 2003. T-lymphocytes 

activation leads to hyperexpression of RANKL in different cells, including Ocls and to 

decrease of OPG production. It is known that RANKL belongs to the superfamily of tumоur 

necrоsis factоrs (TNF) and is a pоwerful mediatоr of bone resorption. At the RANKL 

interaction with its receptor RANK, it stimulates differentiation and activity of osteoclasts as 

well as production of cytokines IL-6 and IL-11 and T-lymphocytes proliferation. OPG is 

known as decoy soluble receptor of RANKL, inhibits osteoclastogenesis, competitively 

inhibiting RANKL-RANK binding. In this way, the increase of the RANKL-OPG binding 

ratio leads to osteoclasts‘ activation and increase of bone tissue resorption, (Brosch et al., 

2003; Kostenuik, 2005).        

The coupling of the processes of bone resorption and remodelling and morphological 

disturbances of bone tissue indicate that under osteoporosis it has a role of systemic disorder 

when the slowdown of one mechanism (remodelling) leads to reduction/slowdown of another 

mechanism (resorption), Marie, 2006. That leads to transition of all bone remodelling system 

onto another lower level, when remodelling potential (in terms of our model) is considerably 

reduced.  

The majority of the medical treatments for bone (biphospahnates, harmones) are 

directed at decreasing the tissue resorption; however recent developments in hormone 

replacement therapy, which is in clinical use for few dеcades, are based on anabolic 

approaches (e.g. PHP). These two approaches reflect the two different stages of bone 

homeostasis – resorption and remodelling. Nevertheless, to find a real increase in the mineral 

density may take several years. PTH administration significantly reduces the number of 

skeletal fractures in patients with postmenopausal osteoporosis; it significantly increases the 
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BMD in patients (Neеr et al., 2001). However, there is no data indicating complete cure for 

osteoporosis, just treatments that arrest or slow its progress.  

 

2.7.2 Paget’s disease 

Another disorder, which is directly related to the disturbance and the lack of 

sinchronisation in the bone remodelling, is the Paget‘s disease of bone, Paget, 1877; Tiegs, 

1997; Bender, 2003. Paget‘s disease is usually known as a chronic bone disorder that 

develops in elderly people. In review of 889 patients from 27 to 100 years Davie and 

coworkers found that the median was 63 years for males and 67 years for females, Davie et 

al., 1999.  It is well-known that Pagеt‘s disease is linked to the skull, spine (vertebral 

column), pelvis and long bones. Affected bones become thinner, their structure is disordered; 

on a tissue roentgenogram sclerotic changes (plaques) can be found. The disease has no 

symptoms, though it is sometimes accompanied by pain and bone deformation and higher 

susceptibility/tendency to fracture. From 889 patients 107 fractures were linked to Paget‘s 

disease, however the most common problem was worsening pain, the diagnosis of 

osteosarcoma was only made in two patients (Dаvie et al., 1999). The bone deformation 

accompanied is in a line with another medical term ―osteitis deformans‖. In summary, the 

cause of Paget‘s disease is still not fully understood.  

  It is known that Juvenile Paget's disease can be trated as quite uncommon disorder 

characterising by both increased bone resorption and formation (Bakwin and Eiger, 1956). 

This state characterised by grataer tissue remodelling rate that weekens the bone and leads to 

fractures and development of skeletal abnormality. It can be linked  to some mutations in the 

gene which encodes OPG leading to the increased hard tissue remodelling in patients 

(Janssens et al., 2005). Because of this some researchers suggested that this disease could be 

named as OPG deficiency.  
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2.7.3 Remodelling in damaged bone tissue 

 When bone is damaged, resorbable bone implants and bio-scaffolds offer many 

distinct advantages over conventional metallic devices: artefact free postoperative 

radiographic evaluation, closer matching of mechanical properties to bone, rapid 

osteointegration and elimination of the long-term problems associated with metallic implants 

(stress shielding, loosening, potentially harmful by-product and rejection). New methods of 

scaffold production, including the use of layer manufacturing (Braddock еt al., 2001; Yan еt 

al., 2003; Vozzi еt al., 2002, 2003) provide the opportunity to precisely control the 

architecture of scaffolds and this opens up the possibility to produce optimised scaffolds. 

However, despite some promising results (Taboas et al., 2003; Yan et al., 2003; Koegler et al., 

2004; Jansen et al., 2004), the full potential of this approach is limited by a number of factors. 

Biological parameters (like bone resorption and formation constants) are important 

optimisation variables in the design of scaffolds. 

The complex bone remodelling process occur in native bone. The same mechanisms 

also come into play when a scaffold is implanted and is subsequently resorbed and replaced 

by bone. The bone remodelling parameters are important variables to be considered in the 

scaffold design alongside factors such as mechanical performance, for example. From the 

point of view of computer-aided tissue engineering (CATE) it would be ideal if the individual 

biochemical, physiological and pharmaco-kinetical parameters could be incorporated directly 

into the design system and the final output would be the scaffold macro-parameters (for 

example, porosity and topology).  An intermediate stage in such an approach could be 

application of bone remodelling parameters within the finite element algorithm, which is 

already used in scaffold design (Ruimerman et al., 2005). The bone remodelling parameters 

have a dynamic origin and it should be possible for them to be derived directly from a 

mathematical model of the bone remodelling cycle. In normal healthy bone resorption and 

formation rates are in a dynamic balance with new bone being formed as old damaged bone is 

resorbed – this entire process is controlled by loops of regulation based on chemical and 
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mechanical stimuli. A misbalance in the scaffold resorption and bone formation rates can 

result in the over-formation of new bone (osteopetrosis) or when resorption exceeds the 

formation of new bone this can lead to bone loss (for example, osteoporosis). In the case of 

bioresorbable scaffolds a similar balance between resorption and formation must be reached 

to ensure that the mechanical integrity of the implant is maintained without undermining 

biological efficacy. The development of a mathematical model which represents the 

remodelling process (including the loops of regulation) would provide an important tool for 

understanding how this balance is maintained and moreover provide the critical parameters 

for modelling/designing optimised bone scaffolds.  

However, at present a rather fragmented understanding of the bone remodelling 

process exists and limited research has been undertaken to investigate the behaviour modes of 

BMU dynamic models. Analysis of these modes could provide the key to determining how 

certain the loops of regulation maintain the balanсе bеtween rеsorption and formation of a 

tissuе, and bonе tissue partiсularly.  

The current biochemical and histo-chemical understanding of bone remodeling 

processes is based on certain assumptions. These include the Basic Multicellular Unit 

(Compston, 2002), in which the emerging activity is controlled by a number of feedback 

loops. These include genetic, physiological and immune, which function at the tissue, cellular 

and molecular levels. On the last level, the participation of many molecular messengers is 

very difficult to investigate in vivo. Even the general animal semantic model of such 

processes is not yet completed and is still in the state of re-verification and continual 

refinement. An explanation for this could be the experimental difficulties in the measurement 

of very tiny molecular messengers, with short life-spans. Moreover, the messengers are 

difficult to separate from the receptors (even dead) due to considerable binding constants.  In 

addition, the difficulties of conducting biochemical experiments in vivo are magnified when 

working within the hard tissue environment. This obstacle forces researchers to develop 
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cellular level models that incorporate some participation of molecular messengers involved in 

the regulation loop.  

The mathematical modelling of bone turnover could help researchers to verify the 

general vision of bone remodelling regulation and provide an important insight into problems 

related to the kinetics of the processes. The rates of competitive processes that occur during 

bone remodeling are of particular interest because anomalies in these rates can result in 

certain bone disorders, for example Paget‘s disease.  

The dynamic systems approach, based on modelling with ordinary differential 

equations (ODE‘s) is still the most commonly used technique for modelling bio-medical 

phenomena. Technically these methods are highly developed, as is their use in modelling of 

biomedical processes. The advantage of applications of these methods is the possibility of 

deriving a clear interpretation based on a conceptually verified history. For example, some 

publications (Komarova et al., 2003; Lamaire et al., 2004) on the application of ODE‘s to 

bone modelling describe a model based on the analysis of the autocrine and paracrine 

properties of osteoclast-osteoblast interactions (which are involved directly in bone 

remodeling as the basic cell of the BMU).  

 

2.8 Mathematical models of bone remodelling 

2.8.1 Early models of bone remodelling 

About 120 years ago the anatomist Julius Wolff (1892, 1986) from Gеrmany dеrived 

a formal link between bone tissue structure and applied to bone loads. This was represented 

later by Roux (1895) as a concept of functional adaptation. However, the first mathematical 

approach applied to bone tissue function was undertaken by Pauwels (Pauwels, 1965). He 

developed a mathematical framework for the Roux theory. Pauwels suggested that there is an 

optimal level of mechanical signal that results in a balance of bone tissue resorption and 

creation.  Finally, a mathematical model was developed by Kummer (1972) based on ordinary 

differential equations (ODE‘s), where the rate change in bone mass is proportional to cubic 
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function of strain σ. The value of empirical proportionality constant can define different 

modes of behaviour from damped/undamped oscillations to an asymptotic convergence node.   

 The use of Finite Element (FE) methods to describe bone properties started in the 

early 1980‘s. The FE method was applied to bone remodelling in early work by Huiskes et al. 

(1985; 1987; 1989) when the strain adaptive remodelling theory was formulated and 

implemented. This was based on experimental studies of the mechanical parameters of 

trabecular hard tissue employing the combined remodelling theory and the FE method. 

Authors applied this approach to the development of prostheses and the shape optimisation of 

hip prosthesis design. Further investigations were also undertaken by Weinans and co-

workers in 1992 and 1994 and van Rietbergen et al., 1993. 

 In subsequent years many other authors studied how the density, morphology of bone 

tissue, overall bone structure are related to the local mechanical loading (Cаrtеr, 1987 аnd 

Cаrtеr еt аl., 1987; 1996; Hаrt and Dаvy, 1989; Bаеuprе еt аl., 1990, Chow еt аl., 1998). 

Fеmoral cancеllous bonе architеcture has been studied by Cartеr and coworkеrs (1989) with 

respect to associations to the loading history. They found explanations for morphology 

changes in the femur taking into account the multiple directions of the joint loading. Jacobs 

and co-workers (Jаcobs et al., 1995) studied the stability of numerical algorithm describing 

bone tissue turnover at modelling and discuss the preferences a node-based finite element 

approach. Carter et al. (1996) studied the role of mechanical factors in bone growth. This 

work demonstrated that geometry and density alterations in adult bone can be related to 

physical activity. These alterations can be simulated by bringing into play the same rule used 

during development. Fischer et al. (1996) have studied the influence of implants on the 

sensitivity of bone adaptation simulations to the alterations in loads. The authors found that 

different mechanical loads can produce similar BMD (bone mineral density) distributions. In 

the following decade (1990‘s) the activity in mathematical modelling in the field of bone 

remodelling, bone physiology and bone tissue mechanical property analysis significantly 

increased. 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

39 

 

2.8.2 Last decades 

In recent decades numerous mathematical approaches and models of bone 

remodelling have been developed. However, much of this work focuses on only part of 

remodelling process (Davidson et al., 2004; Ruimerman et al., 2005). Other researchers have 

employed the so-called ―BMU density‖ or ―Activation frequency‖ but do not attempt to probe 

into the internal mechanisms at play within the BMU (Langton et al., 1998 or Tayyar et al., 

1999, recently).  

This simplified ―black box‖ approach has enabled important progress to be made in 

the modelling of the overall mechanism of the remodelling process, without a need to fully 

understand the internal processes occurring within the BMU. 

 In developing their strain-adaptation remodelling concept, Mullender and Huiskes 

(1997) further examined whether the sеnsors of the mеchanical propеrty of cancеllous bonе 

tissue can be modelled by the Oct‘s network or the population of cells that cover the bone. 

Response to the mechanical strеss has been studied by these authors with respect to this 

postulation about sensorical properties of the osteocytes and lining cells network as the 

controlling  cancellous bone remodelling in response for mechanical stress.  However, they 

summarised about inssufficency of experimental data in support for their suggestions. 

 A 3-dimensional simulation model of trabecular bone turnover was developed by 

Tayyar et al. (1999) to mimic changesin actual structure and cellular remodelling events that 

occur in trabecular bone. The authors highlighted the important role of perforation, which 

accounts for around 40% of overall bone loss. 

 An interesting stochastic approach to bone remodelling simulation was developed by 

Langton and co-workers (Langton et al., 1998, 2000). This was based on a finite element 

simulation to predict the connection of the relative stiffness with density of the tissue. The 

authors showed the link of mechanical integrity to the damage level. In their later work the 

authors, (Langton et al., 2000) investigated the effects of anabolic treatments of cancellous 
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bone disorder after menopause. They studied the  increase in tissue  in tissue as a result  of 

treatment applied at different levels. A stochastic approach has been applied to a simplified 

case. They found indications which allows them to put forward an idea of an intervention on 

early stages to stop the weakening of structure of hard tissue. 

 

2.8.3 Research in the last decade (finite element based models) 

The last decade has been characterised by quite intensive research into several diverse 

approaches. 2-dimensional simulation of trabecular surface remodelling was performed by 

Tsubota et al. (2001) for  proximal femur in humans. The adaptation of trabecular tissue at 

local level in connection to the functional changes at the cancellous tissue has been studied by 

Tsubota and coworkers in this investigation. The results of this work clearly shows the link 

between these two levels of tissue organisation. Trabecular level seems to be linked to the  

function cancellous tissue  as a result of applied mechanical load.  

 In work by Doblare and Garcia (2001) an interesting FE framework for bone 

remodelling was developed. The authors have studied the total hip replacement. The research 

has been focused on the remodelling processin bone tissue before and after surgery and led to 

the development of a mathematical model for anisotropic bone remodelling (Doblare and 

Garcia, 2001). The developed model was also employed to study the remodelling process in 

the undamaged tissue of femur. The results of the simulation obtained from the model showed 

close correlation with the experimental data. The authors found the indications of corrеlation 

of the bone tissuе structural propеrties, including local mеchanical propеrties and mеchanical 

loads main dirеctions.  Some obsеrvations, including the mechanical strеss, were 

mathematically explained in the framework of this model.  A concept of remodelling tensor, 

analogous to the standard damage tensor was proposed by Doblare and Garcıa (2002). This 

tensor provides the total characteristics of the bone microstructure and its stiffness. The model 

can predict the anisotropy distribution in the proximal femur with reasonable accuracy. In 

later work Doblare et al. (2005) discussed the use of a previously developed frameworks, the 
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natural element method, in biomechanics. The authors provide some examples demonstrating 

the performance of the method. In addition the authors studied the influence of inter 

fragmentary movement on callus growth using a computational simulation of fracture healing 

(Garsia-Aznar et al., 2007). They investigated whether it is possible to forecast some 

geometrical properties of  callus  on the basis of invеstigation the mеchanical еffects ot stеm 

cеlls. The authors concluded that the local pattern of mechanical imputs is able to predict 

properties of fracture of the cаllus tissue.   

 Fernandes et al. (2002) studied the bone remodelling around cementless stems using 

computational modelling. They found that bone in-growth does not occur over the full coated 

surfaces.  They found that regions where separation or high relative displacement occurs 

prevent attachment by bone in-growth. This prediction by the model is in good agreement 

with clinical bone in-growth observations. 

 The special behaviour of adaptive bone remodelling has also been investigated by 

Garcıa et al. (2002). These mathematical approaches have been implemented in FE code to 

determine the bone behaviour after implantation of an artificial fixation or prosthesis. The 

results demonstrate the benefits of computational simulation to predict the effectiveness (short 

and long-term) of possible orthopaedics treatments. 

 The experimental and theoretical evidence of whether residual stress can initiate 

damage in porous bone cements has been studied by Lennon et al. (2002). A physical model 

was built which allowed the damage in the cement layer on the femoral side of total hip 

replacement to be visualised. On this basis a mathematical framework for prediction of 

residual stress due to shrinkage was developed. The framework uses the thermal history of the 

material for predicted when stress-locking occurs and estimates the resulting thermal stress. 

Using FE analysis the authors, have calculated the residual stress distribution in cement layers 

and compared this prediction to the measured stress in a physical model.   

 Pothuaud and coworkers (Pothuaud et al., 2005) have investigated mathematical 

modelling employing the autologous osteogenic cells in new tissue formation. In this study a 
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new tissue remodelling and repartition with new material process has been studied 

numerically using numerical model. The model was based on population with autologous 

osteogenic cells.  Samples were subsequently implanted into rabbits and made functional by 

enhancing with some a cyclopeptides, for 2 and 4 weeks after implantation. The authors 

conclude that the proposed approach can be useful when study the tissue formation inside 

bone scaffolds with macroporosity. 

 Nowlan and Prendergast (2005) investigated the appearance of an optimal 

mechanoregulation reaction in a population of individuals through a genetic approach. The 

population of individuals were created using several genetic assumptions. The results of 

simulations implied the existence of convergence in considered tissue growth numerical 

models.  Nevertheless, authors suggested about a set of individual control schemes for 

spectrum of mechano regulatory processes that survive after number of generations. The 

computational model developed by Nowlan and Prendergast argues with some literature 

schemes of natural selection role in evolution of the skeletal constitution in direction to 

functional optimality. The authors proposed that the evolutionary development of skeletal 

regulation might be directed to non-optimal skeletal phenotypes, Nowlan and Prendergast, 

2005.  

 The simulations of the ligament reconstraction in the in anterior cruciate have been 

performed by Pena and coworkers, Pena et al. (2005). They have been employing 3D FE 

medelling of the effect of graft stiffness and graft tensioning. Authors found important 

function of graft initial stiffness and tensioning in anterior cruciate ligament reconstruction as 

an interesting mechano-physiological effect related to the post reconstruction period.  

 A computer simulation of surface remodelling of trabecular bone has been carried out 

by Tsubota and Adachi (2005). They investigated the spatial and temporal regulation of the 

cancellous bone organisation. This type of regulation occurs in bone cellular activities as a 

reaction on mechanical input. Authors found that the simulation results indicate the temporal 

and spatial changes that the trabecular tissue goes through.  These changes depend on the 
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mechanical load applied. The results obtained clearly imply a control of the spatial and 

temporal organisation of the trabecular tissue could be linked to the sensitivity of the 

osteocells to mechanical load. 

 The existing bone turnover theory based on strain-adaptive approach has been 

analysed in work of  Turner et al. (2005). The authors revised approach and developed a 

model which was combined with the anatomic 3D FE models. On the framework of approach 

authors forecast the changes in periprosthetic apparent density. The numerical experiment was 

conducted for several femoral parts with altered structures. Developed model predicted the 

changes in tissue and showed close correlation with clinical densitometry measurements. The 

authrs concluded that the developed approach employing mechanical imputs can successfully 

explain the majority of adaptive tissue remodelling  results suggest that a large proportion of 

adaptive bone remodelling transformations.  It is suggested that developed methods might be 

applied to the implant design modifications, and custom-fit implant selection, to the pre-

clinical tests of customised implants. 

 A formal approach has been developed by Ruimerman and coauthors in  a 3-

dimensional finite element model (Ruimerman et al., 2005). The core idea of the approach is 

that the osteoclastic cells can initiate activity of osteoblastic cells.  Then tissue formation can 

be considered as bone formation as an outcome of the increase of the strain in hard tissue. The 

role of microcracks and disuse (paucity of loading) was in promoting osteoclast resorption 

was also studied.  Simulations using the model provide a reasonably adequate explanation of 

the development of the morphological detail of trabecular bone during growth and the results 

compare favourably to experimental measurements in (porcine) trabecular bone in 

development.  

 Bitsakos and co-workers employed a strain adaptive remodelling approach for 

simulation of bone densitometry measurements (Bitsakos et al., 2005). The authors developed 

the framework of this model in respect of changes to the periprosthetic compensative reaction 

of hard tissue to various loads of musclular loading arrangements. The authors created two FE 
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models of the same bone to allow simulation of changes in BMD (bone mineral density) 

around prosthesis over time to be performed. It was summarised that the general character of 

the changes in the considered hard tissue is in a good concent with experimental data. The 

overall outcome of investigation support suggestions that loading pattern in the simulated 

agorithm employing finite element technique could provide the broader understanding of the 

bone turnover process. 

 It is also possible to use the FE method for numerical simulation of the process of 

bone spur (osteophytes) formation when used in combination with quantitative bone 

remodelling theory. He and Xinghua (2006) extended their previous research which focused 

on prediction of the external bone shape after remodelling (Xinghua et al., 2002; 2005) to the 

simulation of pathological change of bone, for example osteophytes on the edge of a bone 

structure. These results can be useful for better understanding of the connection between 

morphological abnormities of bone tissue and the mechanical environment. 

 Grover et al. (2007) described a biomechanical mathematical model of rabbit ankle. 

This model predicts a criticality in biomechanical investigation of skeleton in vivo. Their 

conclusions are in a good agreement with the experimentally measured parameters in vivo. 

This work extends beyond previous models by providing quantitative forecasting of the value 

of mechanical loads in studied animals.  

 

2.8.4 Modelling of BMU activity from a biochemical perspective 

The after surgeric tissue changes in bone tissue at total hip arthroplasty (THA) 

operation have been studied in relation to preoperative tissue mass properties in the 

framework of the strain-adaptive remodelling approach by Kеrnеr, Huiskеs and сollеaguеs 

(Kеrnеr еt al., 1999). The combination of FE аnаlysis and bonе turnovеr thеory  wаs 

еmployеd in the model to simulаtе the adaptive bonе rеmodelling after THA. In this study 

authors found the invеrsе corrеlation of the valuе of prеdictеd bonе lossеs with thе primаry 

BMD. 
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 A number of researchers have explored the use of an adaptive bone remodelling 

approach to understand the mechanisms occurring within the BMU. Mathematical 

formulations using the adaptive bone remodelling approach have been implemented in FE 

code to predict the bone behaviour when an artificial fixation is used or prosthesis implanted 

(Garcia et al., 2002). This work also included a brief review of the main bone remodelling 

models. 

 An interesting formal framework was suggested by Lemaire and colleagues proposed 

for explanation of coupling between osteoclasts and osteoblasts (Lemaire et al., 2004). The 

authors proposed that this model could also be used for explanation few hard tissue disorders 

such as vitamin D deficiency, oеstrogеn deficiency, glucocorticoid surplus in tissue. The 

framework disscuss possible advantages of multi-therapies when at the same time anabolic 

therapies are used in combination with therapies preventing the resorption of the tissue.   

 A novel formal model has been proposed by Mаrtin and Buckland-Wright (2004). 

Their work offers identification of main reasons which influence the tissue resorption.  Also 

the detailed and comprehensive robustness study of model has been undertaken. The 

Michealis-Menten kinetics has been used to explain the activity levels at different stages of 

tissue remodelling. The important factors for lovering the tissue resorption has been 

categorised using developed model. Based on this work the authors also propose some 

effective ―bottle neck‖ places to develop the therapies to decrease the velocity of hard tissue 

remodelling. 

 Matsuura et al. (2003) formulated a formal approach that models the bone 

remodelling phenomena. The model involves an interface equation which determines the 

surface of the bone. The associated discrete model is formulated and its stable solvability is 

verified. The results of numerical simulations were compared with bone data from around a 

dental implant, supported by newly formed spongy bone, show qualitative agreement. 
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2.8.5 Recent years 2007-2009 in FE 

Ruffoni and coworkers developed a mathematical model of the remodelling and 

mineralization process. This has been used to show that the BMD distribution can be 

considered as a criterion of the mineralization process. They demonstrated that the histogram 

shape of the BMD distribution for trabecular bone can directly reflect the mineralization 

kinetics (Ruffoni et al., 2007). The authors found indications that the turnover rate of the bone 

remodelling process influences the peak position and the shape of the BMD distribution. 

 The study of quantative evaluation of BMD and the distribution of mechnical 

parameters of elasticity in a human mandible has been conducted by Reina et al. (2007) using 

their FE model of bone remodelling with the purpose to predict mechanical properties of the 

tissue  behaviour. The tissue density distribution was numerically estimated together with the 

anisotropical directions in varios locations of mandible. The calculated data was in good 

agreement while validated in the set of clinical trials with at a good significance level. 

 Recently a number of very interesting models of bonе rеmodеlling were developed. 

The mechanical load effect on the hard tissue turnover was the main objective of work of  Li 

and co-workers (Li et al., 2007). Their results suggest that bone resorption at the neck of a 

dental implant takes place due to overload of the grinding surface of the bicuspid and molar 

teeth but that eventually resorption stopped before reaching the coarse threads. 

 The local factors in bone and synchronized effects of mechanical forсe during tissue 

remodelling have been considered in a mathematical model described by Maldonado et al. 

(2008). The results obtained in numerical study of external inputs (nitric oxide or 

prostaglandin) and simultaneous mechanical load were in good qualitative agreement with the 

tissue adaptative reaction. 

 Garcıa-Aznar et al., (2007) recently presented a mathematical model for forecasting 

bone development and its specialisation with respect to mechanical inputs. They investigated 

the way the characteristic features of calluses (size and shape) are dependent on mechanical 

stimuli. Among these predictions they found that callus size correlates with interfragmentary 
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increase. The authors conclude that the geometry of fractures in the tissue can be described 

and predicted by the model. The known experimental findings support the results of model 

simulations. Finally, it is suggested in the article that geometry of mechanical stimuli 

determines the geometry and volume of fracture calluses. 

 Using nonlinear partial differential equations a model that describes the spatial and 

temporal development of the population densities of osteocell types, the extracellular matrix 

types and growth factors was developed by Geris et al., 2000. The study in particular 

highlights the role of  angiogenic growth factors in spatial   restructuring of the  vascular 

network in the process of bone healing. The authors stressed in addition that the realistic 

description of cells migration is an important factor, as well as proper understanding and 

formalisation of the local and temporal distributions of the cells in tissue.   Findings of the 

authors described in their work could be one of important tools in consideration the role of  

the healing system in hard tissue. The results of the paper might find their application in 

development bone tissue healing trials. (Geris et al., 2008). 

 

2.8.6 Models related to the physiology of remodelling 

In one of the first physiological models developed, Fyhrie and Kimura (1999) 

analysed the role of the transport mechanisms (metabolite diffusion and асtivе trаnsport) in 

the funсtionin and homeostаsis of trabeсular tissue. Authors proposed the suggested thаt the 

trаnsport mесhаnisms for trаbесulаr survivаl аre due to the сolleсtion of meсhаnisms. In the 

framework of the model, the connection between  tissue volume and its surface has been 

illustrated employing the diffusion kind of  the transport of mеtabolites in blood flow.  

Another important finding was that during periods of mechanical disuse, the bone volume 

fraction declines exponentially. A correspondent mathematical model shows that the 

mechanical stress can change the trabecular tissue volume by the change of the transport of 

substances between the tissue parts. Technically, the study at microscopic level of blood flow 

has been unalysed using modification Dаrcy–Nаvier–Stokes equаtion. 
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 Interesting study on the level of relationship between bone tissue damage and the 

remodelling process has been conducted by Martin (2002). The controversial concept on the 

hard tissue remodelling initiation in the nearness of microdamage has been proposed.  The 

author considered the indications that remodelling BMUs can migrate about few millimetres 

from the place of the BMU recruitment.  A systеm of corrеsponding phenomenological 

equations has been derived. The author conclude that the simulations support the BMU 

migration concept by indication proper density of resorbed tissue in nearness of a 

microdamage. The author stressed the lack of the expеrimental basis that can be rеlevant to 

the simulation rеsults.  

 An interesting biological adaptive control model treating adaptation as multi levelled 

phenomenon which includes mechanical and biological levels has been proposed by Davidson 

et al. (2004). The model tekes into account the external mechanical factors with relation to the 

mechanobiological role of the hard tissue. The rules of Newtonian mechanics are believed to 

be applied to the resulting system. In the result, the linear adaptation characteristics equation 

is obtained for the the main response in the derived model. The exponential and oscillatory 

trajectories are found as the main modes of behaviour in the model. These concrete type of 

solution depends on the environmental input.   

 An interesting mathematical model of bone remodelling mediated by parathyroid 

hormone was proposed by Rattanakul et al. (2003), where the authors simulated the response 

of tissue remodelling to estrogen and PTH therapy. The authors particularly concentrated their 

interest on the temporal effect of PTH hormone and any effect of oestrogen substitution 

therapy on bone tissue turnover. The proposed model has shown a limit cycle that transfers 

into chaotic behaviour.  

 The miсrodamage and trabeсular bone volume was the sсope of Nyman et al. (2004) 

study with respeсt to the results of the bisphosphonаtе lеvel. The authors have been 

performеd a thеoretiсаl study еmploying the Frost ideа of a mесhаnostat (Frost, 1964; 2001). 

The postmеnopаusаl trаbесulаr bonе tаken as a сontinuum spaсе has been used to apply 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

49 

strain-adaptive сonсept of the bone tissue remodelling (Frost, 1964; 2001). Several important 

practical implications of the results of this work were proposed. The authors conclude in 

practical terms that certain bisphosphonates have to be deliberately created to make available 

the proper level of  minimal restraint in bone formation aсcompanied by  and a highest 

deсrease in the bone multiсellular unit resorption.  

 The bone marrow is an important media of cells, substrates and oxygen that entirely 

supports bone remodelling. An interesting transport model for oxygen/oxygen-carbon dioxide 

in human bone marrow was developed by Kumar et al. (2004, 2008). From the numerical 

simulation of these relatively complex models the authors came to the conclusion obout 

criticality of effects in oxigen transport in human bone marrow tissue. Particularly interesting 

was the conclusion about importance of  Haldane effect than the Bohr effect. The form of pH 

regulation curve and the extravascular oxygen concentration were at the nececary levels for 

cellular proliferation and growth.  

 

2.8.7  Statistical models 

A few notable statistical models have been developed over the last decade. A number 

of authors applied powerful statistical techniques to the available data regarding different 

disorders, particularly for bone disorders in aged women. Vestergaard et al. (2001) compared 

methods of predicted BMD from clinical and biochemical variables. Three statistical 

methods: multiple regression, logistic regression, and discriminant analysis have been applied 

to the data for 2000 women of perimenopausal age. The authors found that concentrations of 

serum osteocalcin, serum bone specific alkaline phosphatase to be reproducible risk factors 

for low BMD. 

 The BMU performance in the tissue in menopausal bone has been studied in the 

framework of a theoretical approach by Hernandez et al., (2003).  They conducted a 

numerical experiment describing the BMU performance using the clinical histomorphometric 

data. One of the objective of their study was to find the relationship in alteration of BMU 
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performance with mineral density of menopausal bone. The authors found that the alteration 

in tissue remodelling in postmenopausal bone can be related to an observed in clinical 

situations decrease in BMD. Two main factors; ovearal alteration in tissue remodelling the 

transitory alteration  in time of menopause can be linked to bone mineral density loss found in 

clinical practice. Finally, in the work it is concluded that the consideration of alteration the 

basic multicellular unit performance can be used to improve the strategies in postmenopausal 

osteoporosis treatment. 

 Taylor and co-workers described a model that predict the stress fractures  distribution 

in the bones of athletes, soldiers and other individuals during periods of intensive exercise 

(Taylor et al., 2004). As with previous work conducted by the authors in 2001 (Taylor and 

Kuiper, 2001) they used the Weibull probabilistic distribution, to calculate the probability of 

failure as a function of time under cyclic loading. The model correctly predicted that 17% of 

the individuals studied would succumb to stress fractures. 

 An interesting statistical model for skeletal recovery of the loss of bone BMD in 

NASA astronauts during spaceflight has been developed using the dataset throughout the 

more than 40 years of space travel (Sibonga et al., 2007). The authors described the skeletal 

recover of astronauts after their return to Earth – they found that BMD recover exhibited an 

exponential character. 

 With respect to the possible clinical application of MRI, Helgason et al. (2008) 

reviewed the formal linkage of mechanical properties of bone tissue and it‘s the tissue 

density. The study was performed used the data available from public sources. The correctly 

normalised data from the trials conducted in comparable way has been used to develop the 

elasticity–density functional dependence.  The authors have proposed the method relevant to 

the verification of the accuracy of the elasticity–density relationships in various experimental 

situations.  
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2.8.8  Extended remodelling models - fracture healing 

Normal and abnormal healing is also an important issue that requires an 

understanding of bone remodelling process. A rising amount of works is devoted to 

developing mathematical modelling approaches to fracture healing.  

 A mathematical framework for model fracture healing was developed by Bаilon-

Plаzа аnd Vаn Dеr Mеulеn in а sеries of works. In the one of their first studies the authors 

have investigated the affects of some factors of growth on fracture healing. They developed a 

2D mathematical model of the tissue healing for relatively small sizes/stability of a fracture 

gap. Modelling of mesenchymal cell migration has been used to simulate the inflammatory 

and tissue regeneration stages of healing. The authors found evidence that the velocity of the 

osteoblasts production of osteogenic GF and the duration of the initial release of GFs at the 

time of injury are the most important parameters for entire ossification and successful healing. 

The influence of various levels and timing has been investigated in their second study 

(Bailon-Plaza and Van Der Meulen, 2003) where coauthors examined the action of 

mechanical stimulus on the healing of fractures. The authors successfully explained the 

advantages and disadvantages (positive and negative effects) of different loading intensity. 

The delay of mechanical doad indicated some negative effects according to their results.  

 An attempt to develop a model of diaphyseal healing has been undertaken by 

Shefelbine et al. (2005). Authors used FEA and the fuzzy logic in combination. The 

consequent tissue turnover stages in the fracture gap has been simulated by created algorithm. 

The authors concluded about trabecular tissue structure as dependent on mechanical load 

applied.  Finally they suggest the usfullness of a particular model, which describes the hard 

tissue differentiation.  

 

2.8.9  Optimal control methods in the modelling of bone tissue remodelling  

Recently dynamic optimal control (DOC) methods have been applied to a number of 

biochemical (Rico-Ramirez et al., 2003), bioteсhnology (Smets et al., 2004) and  biomediсal 
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problems, including the optimisation of cancer radiotherapy (Ledzewicz and Schattler, 2007). 

DOC methods can create the basis for optimal regulation of many biochemical processes, 

including the regulation of bone remodelling/scaffold remodelling. Optimal control methods 

may be useful when seeking to optimise (minimise energetical losses, etc) a bone remodelling 

process.   

 Recent examples of OC models dealing with bone remodelling described in the 

literature include, Harrigan and coworkers in their early work from 1996 (Harrigan et al., 

1996).  They described an optimal structures approach to the remodelling of bone adjacent to 

intramedullary stems. Using FE models and structural optimization they have extended the 

work of Huiskes (Huiskes et al., 1987) to cover internal tissue remodelling around 

intramedullary implants.  Employing numerically stable remodelling algorithms based on 

optimization, the authors developed an analytical relationship that predicts when bone will 

remain around an intramedullary implant demonstrating a direct application of the 

optimisation methods to the remodelling theory. 

 Further, Ledzewicz and Schättler (2007), develop a mathematical model, considering 

the treatment of bone marrow for cancer using chemotherapy as an optimal control problem.  

Using the Pontryagin maximum principle they have shown that optimal controls show a 

classical bang–bang like form. 

 

2.8.10  Review of selected BMU models 

Many BMU models are interesting from both the technical and biological 

perspectives. However,  some are of particular interest as they achieve a combination of both 

the mathematical and biological perspectives of the problem.  Presented below are some of 

these key models. 
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2.8.10.1 Paracrine/Autocrine control model 

In a series of works Komarova and co-workers developed a phenomenological 

cellular model of bone remodelling based on the ODE technique (Komarova et al., 2003; 

Komarova, 2005). In this model the authors proposed that the BMU plays a crucial role in 

remodelling and proposed a simplified scheme of OBl-OCl interactions, Fig.2.8.1. 

 

Fig.2.8.1  Scheme of osteoclast-osteoblast interactions adapted from the Komarova model 

(Komarova et al., 2003). According to Komarova et al., 2003, vertical arrows designate the 

cellular pathway of reqruitment and death/apoptosis of Obls and Ocls. Fine arrows 

schematically illustrate the autocrine and paracrine controls. For detailed description see the 

original paper.  

 

Finally, on the base of this scheme the Komarova and coauthors formulated a mathematical 

model 
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where ―x1 and x2 are the number of osteoclasts and osteoblasts correspondingly; αi and βi are 

activities of cell production and removal; gij is the net effectiveness of osteoblast- or 
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osteoclast-derived autocrine or paracrine factors; z is total bone mass, ki is normalized activity 

of bone resorption and formation, yi are the numbers of cells actively resorbing or forming 

bone, and ix  are the numbers of cells at steady state‖, Komarova et al., 2003. 

 The authors explore the parametric space gij and investigate the stability of the system 

analytically. They studied the effect of altering parameters on dynamical behaviour and 

establish an influence of the parameter values leading to stable oscillations in state variables. 

The oscillation period depends on the rate parameters that can be linked to autocrine/paracrine 

regulation.  

 This model allowed the authors to analyse the OBl-OCl dynamic behaviour. Within 

the model framework, unstable behaviour may account for the pathological bone remodelling 

found in Paget‘s disease. The authors conclude about the type of behaviour which in their 

opinion is linked to the parameter that represents the autocrine regulation of osteoclasts.  

 However, the authors admitted that the model has several limitations, one of which is 

that the only types of cell included are osteoblasts and osteoclasts. From a number of studies 

it follows that OCts also play an important role in tissue remodelling, producing the molecular 

signals to initiate the process.  

 

2.8.10.2 The Osteoblasts/Oosteoclasts differentiation model 

Rattanakul et al. (2003) developed a model for the differentiation of osteoblasts and 

osteoclasts in bone, based on the effect of PTH control.  The model behaviour has a limit 

cycle and a chaotic pattern for a range of parameter values in accordance with some clinical 

observations. Core model:  
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where P(t) denotes the level of PTH above the basal level,  C(t) - the number of active 

osteoclast cells,  B(t) -  the number of active osteoblast cells;  c1 and k1 being positive 

constants,  d1 the removal rate constant; c4 is the specific rate at which PTH stimulates 

reproduction of active osteoblasts; c2, c3, and k2 are positive constants; d1, d2, and d3 are 

rate constants. The authors demonstrated that several types of nonlinear dynamic behaviours 

can be deduced from the model, which closely simulates available clinical data. The model is 

exhibits limit cycle behaviour, which can evolve into chaotic dynamics.   

 

2.8.10.3 Model incorporating RANK-RANKL-OPG pathway 

Compared to the Komarova model, the scheme mechanism (Fig.2.8.2) proposed by 

Lemaire et al. (2004) is considered more detailed in the sense of the role of PTH in bone 

remodelling control. This model is the first which incorporates the RANK-RANKL-OPG 

pathway which, as mentioned previously, is widely accepted as being essential for the 

regulation of osteoclast formation.  

 

Fig. 2.8.2  Schematic diagram of osteoclast-osteoblast interactions from Lemaire et al., model 

(Figure adapted from Lemaire et al., 2004).  The ovals represent osteobast cells. The solid 

arrows represent streams of material., eg. TGFβ. For detailed description see the original 

paper.   
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The system equations are  
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where R is the concentration of responding osteoblasts, B is the concentration of active 

osteoblasts, C is the concentration of the active osteoclasts and  
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and πL is the complex function of the number of parameters (Lemaire et al., 2004). 

 Lemaire et al. (2004) formulated a model of the interactions between osteoblast and 

osteoclast functions within the limits of the known bone remodelling molecular-and-cellular 

framework.  The ODE model formulates the assumption that the relative proportions of 

immature and mature osteoblasts can control the degree of osteoclast activity. The main 

suggestion is that the regulation of the osteoblasts by the osteoclasts depends on their stage of 

differentiation.  Within the framework of this model, the authors found number of therapies. 

The model also predicts that increasing in the preosteoblast pool size can be an important 

factor for bone formation therapies. The authors proposed a scheme for the cellular control of 

bone remodelling based upon the RANK/RANKL/OPG core cytokine system to examine 

osteoclast functions. Based on their model the authors have considered some different 

therapeutic interventions against major bone diseases - oestrogen deficiency, 1,25(OH)2D3 

deficiency, senescence, glucocorticoid excess and their recommended therapies. They 

suggested that the absence of any therapy is particularly efficient against oestrogen deficiency 

or 1,25(OH)2D3 deficiency. The authors suggest that almost all effective therapies are 

correlated to ―an increase in a given parameter which is related to an essential ingredient of 

therapeutic bone regrowth‖.  
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2.8.10.4 Biological adaptive control model 

A mechanical analogue of multi-factorial bone density adaptation has been developed 

by Davidson et al. (2004).   

The model equation is  

n

i

EiDiAi tFxFxFxm
1

))()()((   

where, x = current value of bone density (response of the system);  x = desired value of bone 

density of cellular trait number ―i"  (positions arbitrarily chosen); ki = stiffness of cellular trait 

number i ; c = damping of the system;  m = inertia of the system; FE(t) = external forces 

dependent on time 

A        

B 

Fig.2.8.3 A, the components of the linear harmonic oscillator model, adapted from Davidson 

et al. (2004). B, model solutions. For detailed description see the original paper.   

 

 

 The solutions indicate over-(solid line)  and under-damped (dashed line) kinetics in 

the process of bone density changes, Davidson et al. (2004).   
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2.8.10.5 A bioregulatory model  

An interesting bioregulatory model, implementing major characteristical features of 

bone regeneration  angiogenesis and cell migration, has been developed by Geris et al., 

(2008). Schematically the model is presented in Fig.2.8.4. 

 

Fig.2.8.4 A schematic overview of the mathematical model. Model variables (detailed 

explanation of model development can be found in Geris et al., 2008): cm - mesenchymal 

stem cells, cc- chondrocytes, cb - osteoblasts, mb - bone extracellular matrix and a gb - 

generic osteogenic growth factor, gc - chondrogenic growth factor, cv - the density of 

endothelial cells, mv - vascular matrix and gv- generic angiogenic growth; cf - concentration 

of fibroblasts variable, mf - fibrous tissue,  mc - cartilage density. For detailed description see 

the original paper. 
 

The taxis–diffusion–reaction type (Geris et al., 2008) model is a partial differential 

equation system which deals with parameters designated in Fig.2.8.4. It describes complex 

processes in bone during the fracture healing as well as the response to biochemical imputs.   
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For detailed description see the original paper, Geris et al., 2008. The model predicts results 

similar to experimental observations in a number of compromised fracture healing cases. 

 

2.8.11 Conclusions 

 As one can see there is a number of mathematical and statistical methods and 

approaches for the modelling of mechanical and biological properties of bone tissue have 

been developed. However, even though there has been considerable success in bone tissue 

modelling many limitations still remain. One of the most important is that there is no one, 

global, consistent single framework that can create a micro-physiological phenomenological 

model of bone remodelling and of BMU functioning. 
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 This probably follows from the fact that any tissue, including bone tissue, has a 

number of levels of regulation that are made up of a system level of control (body level of 

organisation, physiological level) and a local tissue level. The balances of these levels are 

highly important for proper tissue functioning and supporting other organs in their 

physiological function. The study of the hierarchical co-interaction of the integrative 

phenomenological cellular level of bone remodelling organisation versus molecular loops of 

local control and the implementation of this into a formal framework is an important issue in 

finding a balanced mathematical model. 

 The models described above go some way to illustrate the complexity of the bone 

remodelling mechanism.  However, the simplifications intrinsic in the modelling process may 

allow us to clarify the process further by ranking the levels of regulation (according to the 

hierarchy of regulation) and in addition allow insights into the basic modes of the 

microphysiological behaviour of the bone turnover process (at the tissue level).  Such models 

also give us an overview of the remodelling process and its part in the overall physiologically 

balanced homeostasis and even highlight a specific topic or mechanism.  

 Alongside the difficulties of modelling the bone remodelling process many FE 

models treat the BMU as a ‗black-box‘ having some phenomenological properties. 

Biochemico-physiological models of BMU are over simplified and are therefore limited in 

scope, dealing with only selected regulation loops.  

In particular all models to date have failed to contain osteocite activity. We can see 

that the implementation of new regulation loops (e.g. osteocytes) creates a more complete 

picture of regulation but increases the number of qualitative modes increasing the descriptive 

complexity.  

 The sheer number of local and systemic control factors found at a local level, as 

discussed in section three, mean that although it may be possible to model local conditions 

fairly precisely, the global regulative pattern is still too complex to fully comprehend.   
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3 Methodology 

 

3.1  Aims and objectives 

The literature review was undertaken with respect to the mechanisms of bone resorption and 

formation, its control and existing mathematical models of bone remodelling. The results of the 

literature review were presented in Chapter 2 and some of the key findings are listed below: 

 Previously developed models demonstrate a limited and unclear interpretation of 

autocrine and paracrine regulation. Moreover, there is also an unclear interpretation of 

information from the population biokinetics approaches.  

 The role of osteocytes in terms of regulative feedback has largely been overlooked and 

there has only been a limited approach to consider the allosteric regulation. 

 Previous work has demonstrated the difficulties in analysing the effects of the rate 

parameters on the stability of the equilibrium points. 

 The dynamic systems and population biokinetics approach are not well enough 

understood in modelling of bone remodelling.  

 The approach employed for the control/optimal regulation of BMU and bone 

remodelling is insufficiently clear.  

The relaxational modes are quite well studied and understood in bone remodelling. 

However, other types of behavioural modes, like cyclic or chaotic, are less well understood but 

could be as important in explanation of disorders in  bone remodelling, like Paget‘s disease or 

osteoporosis. Therefore one of the main objectives of this study was the investigation of the role 

of modes of behaviour in bone remodelling, using mathematical modelling.  

 Regeneration of tissue is one of the most important issues when tissue is damaged. 

There are different approaches to support this regeneration, for example structural support by 

providing a tissue scaffold is an important method which is directly linked to tissue engineering. 

Optimisation of scaffold properties, so called scaffold variables, is a task that can be derived 

from studying bone tissue remodelling properties.  The model can be developed to provide a 

dynamic constraint for optimisation of remodelling and a useful tool in developing resorbable 

implants/scaffolds. 
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 Any tissue, including bone tissue has a number of levels of regulations that can be 

divided as system level of control (body level of organisation, physiological level) and local 

tissue level. The balance of this level is highly important for proper tissue functioning and 

supporting other organs by its physiological function.  Studying of hierarchical co-interaction of 

integrative phenomenological cellular level of bone remodelling organisation versus molecular 

loops of local control and implementation of this into formal model was one of the tasks of the 

present study. 

 Because of multivariable character of data that can be obtained from experiments, and 

multivariable character of studying tissue and processes and description, the approach to data 

reduction and visualisation was an important technical issue that was included in this study also. 

The overall aim of this project is to develop a model of bone remodelling (BMU) 

containing the osteoclast‘s level of regulation and study approaches to formulate the control of 

bone remodelling within this model in an optimal way. 

Specific objectives are: 

 To revise the existing mathematical models of bone remodelling to provide a more 

complete picture of cellular interactions of the Basic Multicellular Unit (BMU) with the 

network of osteocytes in bone tissue. Formulate the mathematical model to incorporate 

the osteocyte level of regulation.  

 To revise important allosteric mechanisms involved in BMU regulation and develop 

approaches to incorporate formally these mechanisms within the framework of existing 

models.  

 Study the steady solutions of this model, which have a physiological sense. Analyse the 

behaviour of the models developed across a wide range of biologically relevant 

constants in order to assess the validity of the models. 

 Formulate an optimal control approach to regulate the BMU model behaviour regarding 

certain criteria.  
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3.2  Population kinetic methodology and model formulation 

The population kinetics approach methods are based on few assumptions.  

The first assumption is that there is a positive feedback characteristic for any biological 

species from viruses to humans. This positive feedback reflects the basic, principal property of 

any bio-system – autocatalysis, self-replication, self-multiplication. In the population dynamics 

ODE models, this is formally introduced as a first order term with a positive coefficient. In a 

classical one-dimensional Malthus model (1798) it is formalised as the velocity of self-

reproduction of a biological population (population density) is proportional to the value of 

existing population 

an
dt

dn
     (3.1) 

where n is population size (population density), a is a positive coefficient.  The first order of the 

term is sometimes linked to assumption of an unlimited resource of substrate/energy, which is 

in-line with the chemical kinetics models of autocatalysis. 

The second assumption is that when the substrate and energy resource is limited, it can 

be treated as a tightening of competition for this resource. It can be implemented formally as a 

negative second order-term in the differential equation. In fact it is reflecting a situation when a 

biospecies comes close to total consumption of a substrate-energetical resource of its existance. 

Then, a combination of these two terms in the one dimensional case gives the well known 

Verhulst-Pearl equation (Verhulst, 1838) 

2bnan
dt

dn
     (3.2) 

where a, b are positive coefficients. In this study we applied similar ideology.  

When this approach/ideology is extended to the interaction of two or more biospecies, 

the ODE kinetic systems becomes; 

2
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1 , nbnna

dt

dn
nnbna

dt

dn
   (3.3) 
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 where n1 , n2 are population densities of two different species, a1, a2, b1, b2 are positive 

coefficients. The second term in the first equation and first term in the second equation describe 

the so-called predator-pray, or producer-consumer relations, when the biomass produced at the 

first level, biomass of a producer (n1) is consumed by the species of the second level (n2).  

For three levels of consumption/regulation, the dynamic system can be written as  

2

33323

3

322212
2

21111
1

nbnna
dt

dn

nnbnna
dt

dn

nnbna
dt

dn

   (3.4) 

The methodology, based on these three main assumptions with different variations, is 

implemented into different models within models of biological/population kinetics based on 

ODE.  

Such a relation as discussed in the models above, from the regulatory perspective can be 

treated as a positive or negative feedback in the regulation of population (population density) of 

the species. In a tissue, this feedback, is not represented by a predator-pray mechanisms but by 

the apoptosis or death of the cells expressed by the second terms in the equations with b 

coefficients.  In fact similar ideology was employed in other mathematical models of bone 

remodelling (Komarova et al., 2003, Putra et al., 2010). In this study similar methodology, 

based on combination ODE methods in modelling and population dynamics ideology has also 

been implemented.  

 

3.3 Optimal control methodology employed 

The optimal control methodology was implemented based on the fundamental work of 

Pontryagin et al., 1962, Gelfand and Fomin 1963. 

In a general case the optimal control problem accordingly to Pontryagin maximum 

principle, Pontryagin et al., 1962, can be written as   
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MjNidtuuuxxxlJ
t

MjNi ..1,...1min,),...,...,...,...(

0

11  (3.5a) 

subject to dynamical constrains  

MjNiuuuxxxf
dt

dx
MiNii

i ..1,...1),,...,...,...,...( 11   (3.5b) 

and 00 )( ii xx  and end-point condition xi(τ) is free, 

where Ni xxx ...,...1  are the state variables, Mi uuu ,...,...1  are the control variables, 

),...,...,...,...( 11 MiNii uuuxxxf  is a function, J is objective functional, 

),...,...,...,...( 11 MiNi uuuxxxll  is the ―running cost‖ of the optimal control that is referred as 

instantaneous costs/losses for optimal control. Then accordingly to the Pontryagin maximum 

principle, a Hamiltonian function can be constructed as  
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1
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ii     (3.6) 

where pi are the Lagrange multipliers or costate variables. 

Then  the canonical equations are 

   ),( uxf
p

H

dt

dx
i

i

i   (state variable system)     

i

i

x

H

dt

dp
    (adjoint/costate variable system)           (3.7) 

0
ju

H
    (necessary conditions for optimality),        

and transversality condition: pi(τ)=0  (since time τ is free, so no terminal condition is specified, 

the constant pi(τ) could be assumed equal to zero). Also, since the Hamiltonian function (3.6) is 

not dependent on time explicitly, the first integral of this problem is H=Const.  

The alternative approach to this optimal control problem is directly based on variational 

calculus, see, for example, Gelfand and Fomin, 1963, because the control could be chosen as 

formally unlimited: it could formally vary from 0 to . The objective functional could remain 
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as (3.5a) subject to constraints (3.5b) and boundary conditions 00 )( ii xx  and free end-point 

condition. Then the Lagrange method can be applied 

N
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iii uxfxpuxlL
1

),(),(      (3.8) 

and the Euler-Lagrange equations will be 

0),(

0,

uxfx
p

L

u

L

dt

dp

x

L

ii

i

j

i

i



.  (3.9) 

Although the technique of variational approach looks different from the maximum principle 

formulation, they lead to the same results. The system (3.9) in fact coincides with (3.7) 

reflecting the point that the maximum principle is the non-classical method for solving the 

variational problem in the case of open-loop control. In the case the Lagrange function (3.8) is 

not explicitly dependent on time so an another form of the first integral of the problem could be 

found in (Gelfand and Fomin, 1963):  

ConstL

dt

dx

L

dt

dx
xH

N

i i1

),(    (3.10) 

which could significantly simplify the process of finding analytical solution and play important 

role on the stage of interpretation. On the basis of this general approach two different enzyme 

control models were investigated. In the OC developments of the project, the OC applications to 

biokinetics in works of (Van Impe and  Bastin, 1995; Rahman, and Palanski, 1996; Van Riel  et 

al., 2000; Giuseppin and van Riel, 2000; Cacik et al., 2001; Sengupta and Modak, 2001; 

Keesman and Stigter, 2002; Srinivasan et al., 2003; Smets, et al. 2002, 2004; Visser et al, 2004; 

Gadkar et al., 2006); Mohseni et al., 2009; Yüzgeç et al., 2009; Liang et al., 2008; Itik et al., 

2009; Chávez et al., 2009; Eren-Oruklu et al., 2009; Acikgoz and Diwekar, 2010) have been 

used. 
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3.4  Rubustness, character of equilibrium of the equilibrium points. Numerical 

methods 

The robustness of equilibrium points were studied by calculation of the Jacobian matrix, 

and analysis its eigenvalues. For some models, the points of equilibrium were found 

analytically, the elements of Jacobian matrix were found analytically as well. Then the 

eigenvalues were calculated numerically used standard procedure in Matlab and the scatterplots 

were produced and analysed. For the optimal control models, the numerical calculation of points 

of equilibrium were performed using the FSOLVE procedure in Matlab.  For numerical methods 

to solve the formulated dynamic systems the Matlab and Mathcad software were used. The 

statistical calculations were performed using the SAS software version 9.1. 

Numerical integration of the differential equation systems was done by a fourth-order 

the Dormand-Prince pair Runge-Kutta based ode45 Matlab® algorithm (v7, the MathWorks Inc, 

1998). Recalculations were performed using MathCad® Runge-Kutta subroutine rkfixed, 

MathCad 2000 Professional, MathSoft Inc., 1999. 

 

5.5       Statistical methods. Canonical correlation analysis 

Principal component analysis (PCA) is employed when the reduction of the 

dimensionality of a vector is needed. In this case the principal components are the orthogonal 

system of the linear combinations of measured variables. Application of PCA finds the first 

principal component as a linear combination along which the total dispersion obtains maximum. 

The second principal component is calculating in the way that the total dispersion obtains 

maximum subject to the orthogonality to the first principal component. As the result, the 

principal components are chosen as the linear combinations of original variables to maximise 

the total dispersion.       Canonical correlation analysis (CCA) is an analogical method to PCA 

for analysis the relationship between two linear combinations of variables (Hotelling, 1935; 

1936). Comparably to the multiple regression analysis, when a set of linear combination of 
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variables (independent variables) is analysed in respect to a single variable (dependent variable), 

CCA is a generalisation of multiple correlation/regression. Canonical weights show the unique 

impacts of every variable while the factor loads are the simple summary correlations.  

CCA is a powerful method to study the structure of two sets of variables. For example, 

this method could be used in study of the correlation between two sets of concentrations of 

amino acids in blood. One of the sets can be the neurotransmitter amino acids and another set 

can be the amino acids characteristic to the transport in the blood.    

 

 

3.6       Statement of novelties 

 The literature review conduction let to state the novelties expected in this project: 

 Modification/development of the existing mathematical model (Komarova et al., 2003) 

of bone remodelling in sense of more completed cellular interactions of basic 

multicellular unit with osteocytes, the cells incorporated into bone tissue. 

 Development of an approach to phenomenological formulation of the molecular 

mechanisms regulation the BMU activity and approach to incorporate these 

mechanisms into the expected model. 

 Formulation of the criteria related to the energetical/metabolic optimisation losses for 

the development a regulation model of BMU activities. 

It was expected that the results would increase the understanding of bone remodelling 

from the perspective of the rates of bone tissue formation and resorption. 
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4   Cellular approach to bone remodelling model 

 

4.1  The osteocyte loop control introduction into the BMU model 

This study investigates a possible dynamic systems option based on known modelling 

approaches, but with a reduced number of parameters and employing a rather general 

assumption of the relationship between bone cells and bone material mass. The prototype of 

such an approach is implemented in works Komarova and coauthors (2003, 2004).        

Although the model developed by Komarova et al. (2003) predicts different modes of 

dynamic behaviour of the BMU in bone remodeling control, a number of limitations to this 

model were identified by the authors of this model. Among these limitations is a need for 

improvement to the autocrine regulation loop, whilst at the same time the paracrine regulation 

loops employ quite a wide range of parameters (e.g. power ~ -0.5) rather beyond the 

biologically relevant range.  Additionally, many publications indicate the importance of the 

level of osteocyte regulation, for example, the role of osteocyte apoptosis as a part of the 

mechanotransduction control mechanism (Noble, 2003; Taylor et al., 2003; Bonewald, 2004), 

and role of stress (Nakamura, 2003). 

For this reason the role of osteocyte‘s apoptosis in the bone remodelling regulation loop 

and the requirement to redevelop the model in such a way that the autocrine and paracrine 

control would be more biologically relevant from a generalised point of view were critical 

aspects to the development of the model. The regulation loops that control the activity of the 

BMU were refined and attempted to introduce the cybernetic point of view that the control 

should be minimised from both the (catabolic) energetic point and metabolic point of view. For 

example, a reason for this could be the limitation of the transport into the bone of the energetic 

substrates such as, for example, ATP and oxygen, as well other substrates. The changes from 

basic bone turnover rate could destabilise the metabolic optimality not only on the local (bone) 

level but could also create a supply problem for the body. The whole number of molecular 

messengers of the bone remodelling process should not exceed a particular limiting level to 
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avoid overloading the metabolic process of remodelling, both at the local tissue level and the 

body level. 

  Additionally, it is believed that in order to produce a robust bone remodeling process 

the regulation needs robustness at a number of regulation levels, and indeed cellular levels. The 

molecular biochemical regulation loops at the tissue level are only organised by cell interactions 

via common compartments (body or tissue media) such as marrow-media, lacunocanalicular 

microcirculatory system of periosteocytic fluid in the case of bone. The active interaction units 

are the osteocells. Phenomenological cellular models must reflect the tissue infrastructure of 

regulation and function in the whole body and, from the other side the very robust biochemical 

pathways. To answer what is the primary controlling factor is akin to answering what is the first, 

the chicken or the egg. In the case of a multicellular organism and tissue, an evolutionary 

process is taking place. Probably, from the evolutionary point of view, the cellular level is even 

more important, because the multicellular body evolved from cellular colonies with initially 

poor communication. Taking into account this point, this section attempts to develop and 

analyse the possibility of a cellular model and robustness at this level.      

 
Fig. 4.1  Schematic representation of interaction between the cells in BMU. Arrows represent 

the control loops of regulation in BMU on the cellular level.  

 

The resulting cell-level control scheme based on the introduction of the osteocytes 

control loop could be presented as in Fig.4.1, where osteocytes‘ apoptosis initiates the 

osteoclasts maturation from the osteoclasts‘ precursors. 
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A dynamical model, which generalises the Komarova model (Komarova et al., 2003) and 

Putra model (Putra et al., 2010) and includes osteocyte‘s level of regulation could be written as 
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   (4.1) 

where 1x  is the population density of osteoclasts (Ocls), 2x  is the  population density of 

osteoblasts (Obl), 3x  is the population  density of osteocytes (Octs), 
4x  is the bone mass of a 

volume unit (BM). In Komarova et al., 2003, the changes in bone mass was presented ―as 

relative change from initial value (100%)‖. In this study the parameter x4 follows Komarova et 

al., 2003 definition in the changes in bone mass, however initial value was taken as 1.0. The 

quantity s is the level of mechanical stress. Functions  

)(),,(),,(),,,( 24221321 xfxxfxxfxxxf BOCtOBlOCl   (4.2) 

describe the paracrine and autocrine positive feedback loops of regulation,  

)(),,(),,,(),,( 1343221 xfxsfxxxfxxf BOctOblOcl   (4.3) 

describe negative regulation feedbacks. This model appears as certain generalisation of models 

by Komarova et al. (2003), Lemaire et al. (2004) and Putra et al. (2010). The dependence in 

these feedback functions is undertaken with the purpose of reducing the number of parameters 

based on the following assumptions: ),,( 321 xxxfOCl - osteoclasts regeneration has autocrine 

properties and is initiated by osteocyte‘s apoptosis, following Noble (2003), Taylor et al. (2003), 

Bonewald (2004); osteoclasts degradation function, ),( 21 xxfOCl  - depends on regulation by 

osteoblasts and osteocytes; ),( 21 xxfOBl
- osteoblast activation positive feedback loop related to 

the bone material density, ),,( 432 xxxfOBl
- osteoblast‘s transformation to osteocytes, lining cells 

and their apoptosis; ),( 42 xxfOCt
 - osteocytes differentiation from osteoblasts depends on the 

bone material generated, ),( 3xsfOCt
- osteocytes apoptosis is dependent on the stress attitude and 
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the bone density; and, finally, )( 2xfB - the bone mass formation is dependent on the osteoblasts 

density and the bone resorption function )( 1xfB  depends on osteocytes level.  

In fact, the Komarova model implicitly contains the predator-pray elements. In case 

when the power coefficients are integer (1,2) the model would similar to the second-order 

predator pray model.   

 

4.2  Model simplification: BMU regulation by Ocls-Octs interactions 

4.2.1 Model formulation  

The system (4.1) can be further simplified when the particular functions (4.2-4.3) are 

chosen.  Based on the model developed by Komarova et al. (2003) and Putra et al. (2010), it can 

be suggested particular dependence of if  and if , which gives the following system 

22114

3433

2

22342221012

21013112111

xkxkx

sxxax

xbxxbxxax

xxbxxbxax









   (4.4) 

where 12b , 01a , 21a , 3a  are the autocrine and paracrine constants formalising the positive 

regulation loops, 12b , 01b , 
2b , 

23b  are the removal constants and negative regulation loop 

constants, and 1k , 2k  are constants of direct bone resorption by osteoclasts and formation by 

osteoblasts,  s – the attitude of the mechanical stress.  

In the first equation of the model, which describes the osteoclasts kinetics, the first term 

formalises the positive feedback, e.g. autocrine regulation of osteoclasts, the second term 

describes negative paracrine feedback by osteocytes and the third term describes degradative 

regulation on osteoclasts by osteoblastic cells (when the role of osteoclasts is considered and the 

bone formation starts). An explanation of the negativity of the second term in this equation 

follows. The main suggestion of this model is that the osteoclasts are regulated/initiated by 

Osteocytes. In this case it is logical to suggest that the term describing this regulation is 
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proportional to the population density (amount) of osteoclasts, x1 and the difference )( 33

Stxx , 

where 
Stx3 is stationary concentration of osteocytes. When damage to the bone happens, then  

Stxx 33  and the )( 33

Stxx  is negative and the product of x1 and the bracket )( 331

Stxxx  

should be a positive to create positive feedback, so, since  03x  this term should have a 

negative coefficient –b12, then   )( 33112

Stxxxb will create a positive feedback relatively to an 

decrease of osteocytes from normal state when bone is not damaged. It also can be rewritten as  

3112113112311233112 )( xxbxaxxbxxbxxxb StSt
,where 

Stxba 3121 . This in fact is an 

explanation of first and second terms in the differential equation for osteoclasts. 

 In the second equation, the first term describes positive feedback in osteoclasts-

osteoblasts regulation, the second term formalises the decrease of the osteoblasts due to their 

change into osteocytes and the last quadratic term describes their apoptosis/death.  The third 

equation describes the changes in the population density of osteocytes. The first term in the right 

part suggests that the surplus rate of osteocytes is proportional to the bone mass when the bone 

mass formed. The removal/apoptosis of osteocytes is proportional to the 

microgravitation/mechanical stress or ―metabolic fatigue‖ of the bone tissue with the rate 

constant s. Increased mechanical stress (microgravity) will increase the apoptosis of osteocytes. 

The last equation is adopted from Komarova model (Komarova et al, 2003). Taking into 

account considerations by Komarova et al., 2003, in this study the same range of the rate 

constant was adopted, extended for a decimal order in the widest case. 

The concrete link of molecular factors, (GFs, cytokines, hormones) to the reta 

parameters of the model is difficult to suggest. The cellular models, described in literature 

(Komarova et al. (2003), Lemaire et al. (2004) and Putra et al. (2010) have also problems with 

this. That can be explained by microscopic character of action of factors and macroscopic, 

phenomenological character of rate parameters included in population models. 
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4.2.2 Equilibrium points 

 To find the equilibrium points of the system (4.4) one needs to make the right parts of 

the system  equal to zero, then a system of algebraic equations is obtained: 

0

0

0

0

2211

343

2

2234222101

2101311211

xkxk

sxxa

xbxxbxxa

xxbxxbxa

   (4.5) 

 Then starting from the last equation one can find 1212 / xxkx . Substituting this into the others 

equations of (4.5) one can find the nontrivial solution. Designating  

1231230112123201 bakbbskbbakaZ  one can write 

Z

kbkasa
x

Z

kbkaaa
x

Z

skba
x

Z

skba
x

)(
,

)(
,, 1232011

4

12320131

3

121

2

221

1  (4.6) 

and the trivial solution:  

a
sxxxxxx **,,0,0 4321 ,    (4.7) 

where x* can have any value; ],0[*x . The latter means that all the axes x3 and x4 are the 

solution when x1=x2 =0.  Designating right parts of (4.4) as Fi one can find the Jacobian matrix: 

;0,0,,

;,,0,0

;,0,2

;0,,,
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F
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 (4.8) 

Employing (4.8) it is possible to study the character of equilibrium for the trivial (4.7) and 

nontrivial (4.6) points. Let us note that the quantity z plays very significant role in determination 

the equilibrium.  
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 4.3      The character of stability in a wide range of the rate constants 

As one can see from previous section, the system (4.5) has two solutions the point of 

equilibrium which give two points of equilibrium; one is the trivial point (4.7),  and the second is 

the non-trivial point (4.6), axis x4 which formalises the total bone mass. The nontrivial point is of 

particular interest for this study because it gives the non-zero values for population densities of 

osteocells in bone tissue.  The range of parameters that cover the possible physiological values of 

the system has been studied numerically by the Monte-Carlo method by generating random 

combinations of rate parameters, uniformly and exponentially distributed in certain range. The 

consideration of the rate constants has been made on the basis of the Komarova model 

(Komarova et al., 2003).  The upper and lover estimates were extended to the following range: a1, 

200.0- 30000. day
-1

 ; b12, 0.002-0.05 cell
-1

day
-1

; b01, 1.0-40.0 cell
-1

day
-1

; a01, 1.50-300.0 cell
-1

day
-

1
; b2, 50.0-1000.0 cell

-1
day

-1
; b23, 0.001-0.09 cell

-1
day

-1
; a3, 1000-66000 day

-1
; s, 0.001-2.0 cell

-

1
day

-1
; k1, 0.01-1.0 day

-1
; k2, 0.00003-0.003 day

-1
.  The range of the rate parameters has been 

chosen to satisfy the population densities of osteocells in one cubic millimetre. According to 

some authors the population concentration of osteoclasts in one cubic millimetre is about 20; of 

osteoblasts in one cubic millimetre is about 10
3
; osteoclasts in one cubic millimetre is about 20; 

the population concentration of osteocytes in one cubic millimetre is about 10
4
. As in was 

mentioned above, the parameter x4characterising the bone mass (which in figures is designated as 

BM)  was chosen following the Komarova et al works, 2003; 2005 as relative bone mass of one 

cubic millimetre, which was chosen as equal to unit in the steady state. 

The values of the nontrivial steady state are shown graphically in Fig.4.2.  One can see 

the scatter plot of non-trivial equilibrium points in the projection from 4-dimensional space of 

Ocl, Obl, Oct and BM (total bone mass of a volume unit). A more detailed scatter-plot of the 

population densities (variables Ocl, Obl, Oct  and total bone mass of a unit) against each other  is 

shown in Fig.4.3. One can see the scatter of Ocl density in the range of 5 to 50, Obl from several 

hundreds to several thousands, Osteocytes from hundreds to thousands. The bone mass variable 

was employed as the relative, which in steady state equals to 1.  
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 Since the relationship between the location of the main stability point and the rate 

constants, indicated in (4.6) is quite complicated, in order to study the influence of these constants 

on the position and the character of equilibrium, the Monte Carlo method (Metropolis and  Ulam, 

1949) and further regression analysis (Pearson, 1901) was applied to establish the link.  The 

application of Monte Carlo method in combination with regression analysis is shown in Tables 

4.1-4.7 and the results are summarized in Tables 4.8-4.11.  
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Fig. 4.2 Scatterplot of calculated positions of equilibrium of osteocells (OCl, osteoclasts; OB, 

osteoblasts; OCt, osteocytes) against the total bone mass (BM) for the system (4.4). 

Calculations were performed using the following set of parameters: a1, 200.0- 30000. day
-1

 ; b12, 

0.002-0.05 cell
-1

day
-1

; b01, 1.0-40.0 cell
-1

day
-1

; a01, 1.50-300.0 cell
-1

day
-1

; b2, 50.0 -1000.0 cell
-

1
day

-1
; b23, 0.001-0.09 cell

-1
day

-1
; a3, 1000-66000 day

-1
; s, 0.001-2.0 cell

-1
day

-1
; k1, 0.01-1.0 day

-

1
; k2, 0.00003-0.003 day

-1
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Fig.4.3 Detailed graphical matrix showing a scatter plot of population densities of 

Ocl,Obl,Oct,bone in 4D space of these quantities. Exponential distribution of the rate 

parameters for the system (4.4). Calculations were performed using the set of parameters, 

Fig.4.2. 
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Fig. 4.4 Scatter plot of the eigenvalues (4.8) for the system (4.4). Calculations were performed 

using the set of parameters, Fig.4.2. 

 

 

One can see from Fig.4.2-4.3, that the values of the state variables are scattered in 

several decimal orders, so the logarithm of these values has been used in calculations.  

ln(Ocl) BETA St. Err. of BETA B St. Err. of  B t(2951) p-level 

Intercept 
  

0.2670 0.0562 4.7493 0.0000 

a1 1.0478 0.0165 0.0005 0.0000 63.6954 0.0000 

b12 -0.0548 0.0068 -17.5487 2.1738 -8.0730 0.0000 

b01 -0.6599 0.0174 -0.2688 0.0071 -37.9813 0.0000 

a01 -0.2248 0.0181 -0.0105 0.0008 -12.4430 0.0000 

b2 0.1352 0.0195 0.0022 0.0003 6.9531 0.0000 

a3 -0.0636 0.0068 0.0000 0.0000 -9.3522 0.0000 

s 0.2028 0.0157 1.5680 0.1218 12.8788 0.0000 

k1 -0.7857 0.0166 -13.9157 0.2935 -47.4150 0.0000 

k2 0.8896 0.0174 4416.50 86.4404 51.0930 0.0000 

a1^2 -0.5598 0.0164 0.0000 0.0000 -34.1445 0.0000 

b01^2 0.3364 0.0173 0.0073 0.0004 19.4088 0.0000 

a01^2 0.1243 0.0179 0.0000 0.0000 6.9357 0.0000 

b2^2 -0.0713 0.0195 0.0000 0.0000 -3.6662 0.0003 

s^2 -0.1322 0.0157 -1.2238 0.1456 -8.4053 0.0000 

k1^2 0.4147 0.0164 18.2681 0.7243 25.2227 0.0000 

k2^2 -0.5117 0.0173 -1841851.4 62441.18 -29.4974 0.0000 

Table 4.1 Quadratic regression analysis: the logarithm of the population density of the 

osteoclast as a function of the rate constants. The range of the constants as in Fig.4.2.  
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Ln(Obl) BETA St. Err. of BETA B St. Err. of  B t(2950) p-level 

Intercept 
  

5.996 0.051 118.494 0.000 

a1 1.304 0.018 0.000 0.000 72.333 0.000 

b12 -0.070 0.007 -17.914 1.899 -9.435 0.000 

b01 -0.838 0.019 -0.272 0.006 -43.988 0.000 

a01 -0.255 0.020 -0.010 0.001 -12.853 0.000 

b2 0.157 0.021 0.002 0.000 7.352 0.000 

a3 -0.134 0.017 0.000 0.000 -7.956 0.000 

s 0.253 0.017 1.557 0.106 14.641 0.000 

k1 0.254 0.018 3.590 0.256 14.003 0.000 

k2 -0.180 0.019 -713.331 75.514 -9.446 0.000 

a1^2 -0.699 0.018 0.000 0.000 -38.900 0.000 

b01^2 0.436 0.019 0.008 0.000 22.942 0.000 

a01^2 0.134 0.020 0.000 0.000 6.801 0.000 

b2^2 -0.078 0.021 0.000 0.000 -3.680 0.000 

a3^2 0.064 0.017 0.000 0.000 3.796 0.000 

s^2 -0.166 0.017 -1.222 0.127 -9.612 0.000 

k1^2 -0.154 0.018 -5.403 0.633 -8.541 0.000 

k2^2 0.071 0.019 203957.451 54545.224 3.739 0.000 

Table  4.2 Quadratic regression analysis: the logarithm of population densities of osteoblast as a 

function of the rate constants. The range of the constants as in Fig.4.2. 

 

ln(Oct) BETA St. Err. of BETA B St. Err. of  B t(2949) p-level 

Intercept 
  

9.185 0.092 100.365 0.000 

a1 0.753 0.019 0.000 0.000 40.650 0.000 

b12 -0.047 0.008 -20.992 3.387 -6.197 0.000 

b01 -0.446 0.020 -0.252 0.011 -22.873 0.000 

a01 0.744 0.020 0.048 0.001 36.671 0.000 

b2 -0.329 0.022 -0.007 0.000 -15.049 0.000 

b23 -0.067 0.008 -16.549 1.909 -8.667 0.000 

a3 0.492 0.017 0.000 0.000 28.608 0.000 

s -0.785 0.018 -8.422 0.190 -44.382 0.000 

k1 -0.625 0.019 -15.372 0.457 -33.602 0.000 

k2 0.765 0.020 5271.252 135.282 38.965 0.000 

a1^2 -0.395 0.018 0.000 0.000 -21.460 0.000 

b01^2 0.233 0.019 0.007 0.001 11.986 0.000 

a01^2 -0.422 0.020 0.000 0.000 -20.996 0.000 

b2^2 0.147 0.022 0.000 0.000 6.738 0.000 

a3^2 -0.244 0.017 0.000 0.000 -14.192 0.000 

s^2 0.422 0.018 5.415 0.227 23.868 0.000 

k1^2 0.287 0.018 17.522 1.129 15.523 0.000 

k2^2 -0.444 0.020 -2218402.2 97533.478 -22.745 0.000 

Table 4.3 Quadratic regression analysis: the logarithm of the osteocytes populational density as 

a function of the rate constants. The range of the constants as in Fig.4.2. 
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ln(BM) BETA St. Err. of BETA B St. Err. of B t(2950) p-level 

Intercept 
  

-1.9178 0.0794 -24.1524 0.0000 

a1 0.8962 0.0199 0.0005 0.0000 44.9695 0.0000 

b12 -0.0441 0.0082 -16.2801 3.0266 -5.3791 0.0000 

b01 -0.5430 0.0210 -0.2549 0.0099 -25.8516 0.0000 

a01 0.8800 0.0218 0.0475 0.0012 40.3077 0.0000 

b2 -0.4125 0.0235 -0.0078 0.0004 -17.5491 0.0000 

b23 -0.0839 0.0083 -17.2415 1.7061 -10.1060 0.0000 

a3 -0.0544 0.0082 0.0000 0.0000 -6.6255 0.0000 

s 0.1772 0.0190 1.5798 0.1695 9.3180 0.0000 

k1 -0.7715 0.0200 -15.7488 0.4087 -38.5310 0.0000 

k2 0.9305 0.0211 5324.9 120.8 44.0609 0.0000 

a1^2 -0.4738 0.0198 0.0000 0.0000 -23.8979 0.0000 

01^2 0.2715 0.0209 0.0068 0.0005 12.9660 0.0000 

a01^2 -0.5024 0.0216 -0.0002 0.0000 -23.2073 0.0000 

2^2 0.1926 0.0235 0.0000 0.0000 8.1938 0.0000 

s^2 -0.1141 0.0190 -1.2169 0.2027 -6.0030 0.0000 

k1^2 0.3683 0.0199 18.7006 1.0086 18.5419 0.0000 

k2^2 -0.5406 0.0210 -2242797 87136.6 -25.7389 0.0000 

 

Table. 4.4 Quadratic regression analysis: the logarithm of the BM as a function of the rate 

constants. The range of the rate constants as in Fig.4.2. 

 

ln(Re1) BETA St. Err. of BETA B St. Err. of B t(2952) p-level 

Intercept 
  

-1.364 0.068 -19.948 0.000 

a1 1.130 0.022 0.001 0.000 52.385 0.000 

b12 -0.052 0.009 -18.313 3.109 -5.889 0.000 

b01 -0.694 0.023 -0.309 0.010 -30.468 0.000 

a01 -0.035 0.009 -0.002 0.000 -3.879 0.000 

b23 0.950 0.019 185.101 3.755 49.290 0.000 

a3 -0.054 0.009 0.000 0.000 -6.111 0.000 

s 0.254 0.021 2.145 0.174 12.326 0.000 

k1 0.077 0.022 1.489 0.416 3.575 0.000 

k2 -0.160 0.023 -869.602 123.732 -7.028 0.000 

a1^2 -0.616 0.021 0.000 0.000 -28.674 0.000 

b01^2 0.337 0.023 0.008 0.001 14.834 0.000 

b23^2 -0.482 0.019 -2199.329 87.449 -25.150 0.000 

s^2 -0.186 0.021 -1.883 0.208 -9.047 0.000 

k1^2 -0.074 0.021 -3.576 1.031 -3.470 0.001 

k2^2 0.074 0.023 289096.048 89296.697 3.237 0.001 
 

Table   4.5 Quadratic regression analysis: the logarithm of the real part of Re1 eigenvalue of 

matrix the non-trivial equilibrium point as a function of the rate constants. The range of the rate 

constants as in Fig.4.2. 
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Re4 BETA St.Err. of BETA B St.Err. of B t(2961) p-level 

Intercept 
  

-0.0015 0.0020 -0.7216 0.4706 

a01 0.0224 0.0035 0.0001 0.0000 6.4558 0.0000 

b2 -0.0166 0.0035 0.0000 0.0000 -4.8031 0.0000 

s -0.9808 0.0034 -0.9465 0.0033 -284.2997 0.0000 

k1 -0.0461 0.0084 -0.1020 0.0185 -5.5170 0.0000 

k2 -0.0238 0.0035 -14.7722 2.1474 -6.8791 0.0000 

k1^2 0.0317 0.0083 0.1745 0.0457 3.8150 0.0001 

 
Table 4.6 Quadratic regression analysis: the real part of Re4 eigenvalue as a function of the rate 

constants. The range of the rate constants as in Fig.4.2.  
 

 

ln(Im1) BETA St.Err. of BETA B St.Err. of B t(2950) p-level 

Intercept 
  

4.135 0.051 81.825 0.000 

a1 1.441 0.020 0.000 0.000 72.019 0.000 

b12 -0.077 0.008 -17.702 1.896 -9.335 0.000 

b01 -0.355 0.021 -0.104 0.006 -16.810 0.000 

a01 0.411 0.022 0.014 0.001 18.702 0.000 

b2 0.198 0.024 0.002 0.000 8.371 0.000 

a3 -0.148 0.019 0.000 0.000 -7.951 0.000 

Ss 0.286 0.019 1.584 0.106 14.910 0.000 

k1 -0.375 0.020 -4.767 0.256 -18.619 0.000 

k2 0.496 0.021 1764.8 75.415 23.402 0.000 

a1^2 -0.769 0.020 0.000 0.000 -38.551 0.000 

b01^2 0.180 0.021 0.003 0.000 8.531 0.000 

a01^2 -0.227 0.022 0.000 0.000 -10.432 0.000 

b2^2 -0.107 0.024 0.000 0.000 -4.520 0.000 

a3^2 0.070 0.019 0.000 0.000 3.739 0.000 

s^2 -0.187 0.019 -1.241 0.127 -9.769 0.000 

k1^2 0.183 0.020 5.765 0.632 9.125 0.000 

k2^2 -0.298 0.021 -769127 54473.237 -14.119 0.000 

 

Table 4.7 Quadratic regression analysis: the logarithm of the imaginary part of Im1 eigenvalue 

of matrix the non-trivial equilibrium point as a function of the rate constants. The range of the 

rate constants as in Fig.4.2. 

 
Using the MC/regression method, the dependence of the relaxation constants to the 

equilibrium state can also be characterized. The results of the regression analysis are shown in 

Tables 4.2-4.7. The determination coefficient R-square for the osteocells‘ regression R
2 

is in the 

range 0.77-0.87, which gives the confidence level between 0.13-0.23. The effect of the rate 

parameters can be characterized just as a tendency.  
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ln(Ocl) ln(Obl) ln(Oct) ln(BM) ln(Re1) ln(Re3) Re4 ln(Im1) 

R-square 0.870 0.84 0.830 0.800 0.770 
 

0.960 0.800 

a1 1.0478 1.304 0.753 0.8962 1.130 
  

1.441 

b12 -0.0548 -0.070 -0.047 -0.0441 -0.052 
  

-0.077 

b01 -0.6599 -0.838 -0.446 -0.5430 -0.694 
  

-0.355 

a01 -0.2248 -0.255 0.744 0.8800 -0.035 -1.285 0.022 0.411 

b2 0.1352 0.157 -0.329 -0.4125 
 

0.738 -0.016 0.198 

b23 
  

-0.067 -0.0839 0.950 
   a3 -0.0636 -0.134 0.492 -0.0544 -0.054 
  

-0.148 

s 0.2028 0.253 -0.785 0.1772 0.254 0.106 -0.980 0.286 

k1 -0.7857 0.254 -0.625 -0.7715 0.077 1.144 -0.046 -0.375 

k2 0.8896 -0.180 0.765 0.9305 -0.160 
 

-0.023 0.496 

a1^2 -0.5598 -0.699 -0.395 -0.4738 -0.616 
  

-0.769 

b12^2 
        b01^2 0.3364 0.436 0.233 0.2715 0.337 

  
0.180 

a01^2 0.1243 0.134 -0.422 -0.5024 
 

0.738 
 

-0.227 

b2^2 -0.0713 -0.078 0.147 0.1926 
 

-0.346 
 

-0.107 

b23^2 
    

-0.482 
   a3^2 

 
0.064 -0.244 

    
0.070 

s^2 -0.1322 -0.166 0.422 -0.1141 -0.186 -0.074 
 

-0.187 

k1^2 0.4147 -0.154 0.287 0.3683 -0.074 -0.591 0.031 0.183 

k2^2 -0.5117 0.071 -0.444 -0.5406 0.074 
  

-0.298 

Table 4.8 Summary table on the Monte-Carlo application. 

 

 
Mean Minimum Maximum Range Variance Std.Dev. St.Error 

OCL 6.102881 0.01788 291.5624 291.5445 215.0817 14.66566 0.269197 

OBL 986.3794 3.78394 18773.52 18769.74 1680265 1296.25 23.79342 

OCT 96076.13 5.64747 2676867 2676861 4.85E+10 220306.7 4043.857 

BM 1.09865 0.00101 56.45885 56.45784 12.19788 3.492546 0.064108 

Table 4.9 The average population concentrations, maximum and minimum values and statistical 

deviations  for the osteocells (cell/mm
3
) for the model (4.5) and the relative bone mass, BM.  

 

 

 
Mean Minimum Maximum Range Std.Dev. Error 

RE1 -4.119 -125.912 -0.001 125.911 7.759 0.142 

RE2 -4.119 -125.912 -0.001 125.911 7.759 0.142 

RE3 -0.545 -14.365 -0.007 14.357 0.804 0.015 

RE4 -0.203 -1.575 -0.001 1.574 0.187 0.003 

IM1 566.545 3.358 8787.537 8784.179 757.616 13.906 

IM2 -566.545 -8787.537 -3.358 8784.179 757.616 13.906 

IM3 0.018 0.000 0.408 0.408 0.042 0.001 

IM4 -0.018 -0.408 0.000 0.408 0.042 0.001 

Table 4.10 Resulting statistics on the real and imaginary parts of the eigenvalues for the range 

of the rate constants as in Fig.4.2. 
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Mean Minimum Maximum Range 

a1 3557.5 201.0 26532.3 26331.3 

b12 0.007 0.002 0.044 0.042 

b01 4.675 1.050 29.257 28.207 

a01 38.364 1.542 234.659 233.117 

b2 138.091 50.005 830.721 780.716 

b23 0.010 0.001 0.093 0.092 

a3 7676.2 1302.1 65052.6 63750.5 

s 0.200 0.001 1.576 1.575 

k1 0.093 0.010 0.646 0.636 

k2 0.00035 0.00003 0.00231 0.00228 

Table 4.11  The mean values of the rate constants, used in the study the wide range of the rate 

parameters. 

 

Nevertheless, in the linear segment, Table 4.1 indicates that the a1, s and k2 rate constants 

have a significant positive effect of on the osteoclastic population density, whereas b01, a01 and k1 

have a negative effect. In the quadratic region, the same coefficients have an opposite effect. 

Similar results are observed for the regression analysis of the population concentration of the all 

osteocells, Tables 4.2-4.7. Regression for the logarithm of Obl, Table 4.2, indicates that a1, b2, k1 

and s have a positive influence on the Obl population density, while the b01, k2 have a negative 

impact. These constants have an opposite effect of in the quadratic sector. Table 4.3 indicates the 

positive effect of a1, a01, a3 and k1 on the Oct population density and their negative effect in 

quadratic sector. Table 4.4 shows that a1, a01, k2 have positive effect on the logarithm of total bone 

mass and a negative effect in quadratic sector. The rate parameters a1, b01, b23 and s have a strong 

impact on the real part of the first eigenvalue Re1, Table 4.5, which is linked to the relaxation 

constant. The rate parameter s indicates a strong negative effect on the real part of fourths 

eigenvalues, Table 4.6. Table 4.7 indicates that the a1, b01, a01, s and k1 and k2 have effects on the 

imaginary part of first eigenvalues.  

The results of the Monte Carlo method application are summarised in Tables 4.8-4.11. 

One can see the different effects of the rate parameters on the rate constants and the real and 

imaginary part of the eigenvalues. The rate constant a1 has a positive effect on the level of all state 

variables, osteocells and BM. Parameter b01 has a negative impact on the osteocells and BM. The 

effect of other rate constants varies. Table 4.9 shows the average population densities, maximum 
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and minimum values and statistical deviations for the osteocells (cell/mm
3
) for the model (4.5) 

and the relative bone mass, BM. It indicates reasonable agreement with the experimental 

estimation of the osteocells concentration in the bone tissue, which can be considered as the 

validation of the model. Also some disagreement is seen in the relaxation time (Table 4.10, 

Re4=0.2, which gives the characteristic time about 10 days), and quite poor statistical significance 

(R-square less than 0.9, Table 4.8), can be related to the very wide range of the rate parameters 

employed (Table 4.11), so it was a need to short this range.    

 

4.4  Middle range of the rate constants 

As was mentioned in Section 4.2, the application of a wide range of rate constants, (even 

though this is quite a good in description of overall population densities and total bone mass, see  

Table 4.9), leads to poor statistical significance and gives a characteristic time lower than the 

relaxation time to the equilibrium/steady state. Taking this into account the range of rate constants 

was reduced to a1, 1200-4300 day
-1

 ; b12, 0.002-0.02 cell
-1

day
-1

; b01, 1.5-3.5 cell
-1

day
-1

; a01, 3.0-

24.0 cell
-1

day
-1

; b2, 50- 420 cell
-1

day
-1

; b23, 0.005-0.007 cell
-1

day
-1

; a3, 1300-20000 day
-1

; s, 0.02-

0.4 cell
-1

day
-1

; k1, 0.01-0.04 day
-1

; k2, 0.0002-0.0006 day
-1 

and the uniform distribution of the rate 

constants within these intervals was applied.  

Using the Monte Carlo method and regression analysis described in the Section 4.3, the 

dependence of the position of the equilibrium point (Fig. 4.5-4.7, and Tables 4.12-4.22) and the 

relaxation to this equilibrium point has been numerically characterized. However, even for a 

reduced range of the rate parameters, the linear regression of Ocl on the rate constants gives just 

R
2
=0.75 in the evaluation of the rate constants effect on bone mass. After the logarithmisation of 

osteocells population densities and total bone mass, the linear regression significantly improves 

the statistical significance (R-squared for Ocl is 0.90, for Obl R
2
=0.870, for Oct R

2
=0.960 and 

BM, R
2
=0.95), as well as it was seen for wide range of parameters. In Tables 4.12-4.18 the results 

of MC/quadratic regression methods are shown. One can see that a reduction of the range of 
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parameters improves the significance of the model. The different impact of the rate constants on 

the equilibrium of the osteocells can also be seen. 
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Fig. 4.5 Scatteplot of calculated positions of equilibrium of osteocells (Ocl, osteoclasts; Obl, 

osteoblasts; Oct, osteocytes) against the total bone mass (BM) for the system (4.4). 

Calculations were performed using the following set of parameters: a1, 1200-4300 day
-1

 ; b12, 

0.002-0.02 cell
-1

day
-1

; b01, 1.5-3.5 cell
-1

day
-1

; a01, 3.0-24.0 cell
-1

day
-1

; b2, 50- 420 cell
-1

day
-1

; b23, 

0.005-0.007 cell
-1

day
-1

; a3, 1300-20000 day
-1

; s, 0.02-0.4 cell
-1

day
-1

; k1, 0.01-0.04 day
-1

; k2, 

0.0002-0.0006 day
-1
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Fig. 4.6 Detailed graphical matrix illustrating scatterplot of populational densities of Ocl, Obl, 

Oct, total bone mass(Bone)  in 4D space of these quantities.  Calculations were performed using 

the set of parameters, Fig.4.5. 
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Fig. 4.7 Scattreplot of the eigenvalues (4.8) for the system (4.4). Calculations were performed 

using the set of parameters, Fig.4.2. 

 

ln(BM) BETA St.Err. of BETA B St.Err. of B t(9981) p-level 

Intercept 
  

-1.248 0.062 -19.986 0.000 

a1 0.818 0.017 0.001 0.000 49.303 0.000 

b12 -0.175 0.012 -30.588 2.026 -15.100 0.000 

b01 -0.426 0.024 -0.659 0.036 -18.101 0.000 

a01 1.181 0.012 0.175 0.002 96.088 0.000 

b2 -0.878 0.012 -0.007 0.000 -72.463 0.000 

a3 -0.206 0.011 0.000 0.000 -18.776 0.000 

s 0.601 0.011 4.926 0.086 57.000 0.000 

k1 -0.621 0.016 -64.424 1.640 -39.293 0.000 

k2 0.645 0.019 5004 145.917 34.298 0.000 

a1^2 -0.436 0.017 0.000 0.000 -26.254 0.000 

b12^2 0.044 0.012 346.411 90.417 3.831 0.000 

b01^2 0.219 0.024 0.068 0.007 9.315 0.000 

a01^2 -0.707 0.012 -0.004 0.000 -57.532 0.000 

b2^2 0.440 0.012 0.000 0.000 36.328 0.000 

b23^2 0.070 0.011 0.000 0.000 6.353 0.000 

a3^2 -0.422 0.011 -8.021 0.200 -40.075 0.000 

k1^2 0.287 0.016 589.297 32.426 18.174 0.000 

K2^2 -0.371 0.019 -3573669 181331 -19.708 0.000 

 

Table 4.12 Quadratic regression analysis: the logarithm of the BM as a function of the rate 

constants. The range of constants as in Fig.4.5. R
2
=0.95. 
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ln(Ocl) BETA St.Err. of BETA B St.Err. of B t(9981) p-level 

Intercept 
  

1.804 0.060 30.191 0.000 

a1 1.117 0.021 0.001 0.000 52.221 0.000 

b12 -0.239 0.015 -30.938 1.938 -15.965 0.000 

b01 -0.575 0.030 -0.660 0.035 -18.964 0.000 

a01 -0.269 0.016 -0.030 0.002 -16.982 0.000 

b2 0.572 0.016 0.004 0.000 36.588 0.000 

a3 -0.273 0.014 0.000 0.000 -19.232 0.000 

s 0.808 0.014 4.917 0.083 59.483 0.000 

k1 -0.826 0.020 -63.580 1.568 -40.536 0.000 

k2 0.803 0.024 4620.920 139.591 33.103 0.000 

a1^2 -0.601 0.021 0.000 0.000 -28.117 0.000 

b12^2 0.063 0.015 365.633 86.497 4.227 0.000 

b01^2 0.297 0.030 0.068 0.007 9.796 0.000 

a01^2 0.101 0.016 0.000 0.000 6.374 0.000 

b2^2 -0.386 0.016 0.000 0.000 -24.697 0.000 

b23^2 0.088 0.014 0.000 0.000 6.189 0.000 

a3^2 -0.567 0.014 -7.990 0.191 -41.727 0.000 

k1^2 0.397 0.020 604.454 31.020 19.486 0.000 

k2^2 -0.453 0.024 -3237376 173470 -18.662 0.000 

Table 4.13 Quadratic regression analysis: the logarithm of the population density of the 

osteoclast as a function of the rate constants. The range of the constants as in Fig.4.5. R
2
=0.90. 

 

 

Obl BETA St.Err. of BETA B St.Err. of B t(9983) p-level 

Intercept 
  

1350.985 38.976 34.662 0.000 

a1 0.650 0.004 0.323 0.002 181.973 0.000 

b12 -0.316 0.017 -27308.006 1486.295 -18.373 0.000 

b01 -1.153 0.035 -883.135 26.701 -33.075 0.000 

a01 -0.332 0.018 -24.297 1.335 -18.200 0.000 

b2 0.538 0.018 2.241 0.075 29.955 0.000 

a3 -0.332 0.016 -0.027 0.001 -20.344 0.000 

s 0.709 0.016 2877.731 63.396 45.393 0.000 

k1 0.323 0.023 16585.051 1202.949 13.787 0.000 

k2 -0.114 0.004 -438798.973 13707.687 -32.011 0.000 

b12^2 0.126 0.017 484661.875 66339.057 7.306 0.000 

b01^2 0.755 0.035 115.255 5.319 21.669 0.000 

a01^2 0.143 0.018 0.382 0.049 7.861 0.000 

b2^2 -0.348 0.018 -0.003 0.000 -19.344 0.000 

a3^2 0.131 0.016 0.000 0.000 8.051 0.000 

s^2 -0.461 0.016 -4333.782 146.847 -29.512 0.000 

k1^2 -0.187 0.023 -190104.046 23790.710 -7.991 0.000 

 

Table 4.14 Quadratic regression analysis: the osteoblasts‘ population densities as a function of 

the rate constants. The range of constants as in Fig.4.5. R
2
=0.87. 
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ln(Oct) BETA St.Err. of BETA B St.Err. of B t(9981) p-level 

Intercept 
  

9.628 0.065 147.082 0.000 

a1 0.648 0.014 0.001 0.000 47.767 0.000 

b12 -0.133 0.009 -29.775 2.123 -14.024 0.000 

b01 -0.332 0.019 -0.659 0.038 -17.288 0.000 

a01 0.928 0.010 0.176 0.002 92.364 0.000 

b2 -0.681 0.010 -0.007 0.000 -68.773 0.000 

a3 1.108 0.009 0.000 0.000 123.265 0.000 

s -0.892 0.009 -9.375 0.091 -103.508 0.000 

k1 -0.475 0.013 -63.096 1.718 -36.717 0.000 

k2 0.494 0.015 4915.7 152.9 32.142 0.000 

a1^2 -0.347 0.014 0.000 0.000 -25.579 0.000 

b12^2 0.031 0.009 310.310 94.768 3.274 0.001 

b01^2 0.170 0.019 0.067 0.008 8.831 0.000 

a01^2 -0.558 0.010 -0.004 0.000 -55.562 0.000 

b2^2 0.339 0.010 0.000 0.000 34.265 0.000 

a3^2 -0.680 0.009 0.000 0.000 -75.679 0.000 

S^2 0.472 0.009 11.499 0.210 54.812 0.000 

k1^2 0.214 0.013 563.192 33.986 16.571 0.000 

k2^2 -0.280 0.015 -3456342 190056 -18.186 0.000 

Table 4.15 Quadratic regression analysis: the logarithm of the osteocytes population densities 

as a function of the rate constants. The range of constants as in Fig.4.5. R
2
=0.96. 

 

Re1 BETA St.Err. of BETA B St.Err. of B t(9982) p-level 

Intercept 
  

-0.882 0.142 -6.211 0.000 

A1 -0.651 0.004 -0.001 0.000 -163.665 0.000 

B12 0.322 0.019 83.659 4.980 16.798 0.000 

B01 1.142 0.039 2.632 0.089 29.420 0.000 

A01 -0.084 0.020 -0.019 0.004 -4.142 0.000 

B2 -0.442 0.020 -0.006 0.000 -22.093 0.000 

B23 -0.198 0.004 -460.22 9.229 -49.871 0.000 

A3 0.348 0.018 0.000 0.000 19.172 0.000 

S -0.710 0.017 -8.673 0.212 -40.826 0.000 

K1 -0.242 0.026 -37.283 4.031 -9.250 0.000 

K2 0.114 0.004 1312.3 45.99 28.586 0.000 

B12^2 -0.129 0.019 -1497.3 222.5 -6.736 0.000 

B01^2 -0.743 0.039 -0.341 0.018 -19.131 0.000 

A01^2 0.158 0.020 0.001 0.000 7.762 0.000 

B2^2 0.350 0.020 0.000 0.000 17.489 0.000 

A3^2 -0.147 0.018 0.000 0.000 -8.121 0.000 

S^2 0.462 0.017 13.072 0.492 26.567 0.000 

K1^2 0.180 0.026 550.93 79.73 6.912 0.000 

Table 4.16 Quadratic regression analysis: the value of the real part of the first eigenvalue 

(Re1=Re2) of the of equilibrium point as a function of the rate constants. R
2
=0.84.  The range 

of the constants as in Fig.4.5.  
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Using the regression method, the dependence of the relaxation constants to the 

equilibrium state can also be numerically/quantitatively characterized. In Tables 4.12-4.18 the 

results of the regression analysis are shown. The determination coefficient R-square for this 

regression is in the range 0.86-0.96, which gives a confidence level of between 0.14-0.04. The 

effect of the rate parameters can be still characterized as a ―tendency‖.  

In the linear segment, Table 4.12 indicates that the a1, a01, s and k1 rate constants have a 

significant positive effect on the total bone mass, whereas b01, b2 and k1 have a negative effect. 

In the quadratic region, the same coefficients have an opposite effect. That was one of the 

reasons for the further reduction of the rate constant range to obtain a good linear regression that 

simplifies the interpretation. Similar results are observed for the regression results of the 

population concentration of the osteocells, Tables 4.13-4.15. Regression of the logarithm of Ocl, 

Table 4.13, indicates that of a1, b2, s and k2 have a positive character of influence on Ocl 

population density, while the k1 has an negative effect. These constants have an opposite effect 

in the quadratic sector. Table 4.14 indicates the positive effects of a1, b2, s and k1 on Obl 

population density and their negative effect in quadratic sector. Table 4.15 shows that a1, a01, a3, 

k2 have a positive effect on the logarithm of population density of osteocytes and a negative 

effect in the quadratic sector.  

The real (Re1-Re4) and imaginary (Im1-Im4) parts of the four eigenvalues of the 

Jacobian matrix (4.8) determine the character of stability of system (4.4) in the equilibrium 

(4.6). The regression analysis of the effect of the rate parameters on the logarithm of the real 

part Re1 of the first eigenvalue is shown in Table 4.16. The rate parameter a1 has a negative 

impact on the real part of the first eigenvalue, Table 4.16, which is linked to the relaxation 

constant, as well as the rate parameters b2 and s. Parameters b12, b01 and a3 indicate a positive 

effect. It is important to note that the parameter b12 plays a role describing the Ocl-Oct paracrine 

effect, while the rate constant b01 plays a role of decaying paracrine parameter for osteoclasts 

(the rate of their apoptosis invoked by the osteoblasts). The rate parameter k1 gives a negative 
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impact on the Re1. The rate parameter k2 produces a positive impact on the real part of the first 

eigenvalues, Re1.   

There is little point in describing the dependence of state variables as a linear 

dependence on the rate parameters, as the dependence is essentially nonlinear, which in fact is 

also proved by the description in the framework of the quadratic regression (Tables 4.12-4.16).  

Ln(Re3) BETA St.Err. of BETA B St.Err. of B t(9987) p-level 

Intercept 
  

-1.990 0.027 -72.827 0.000 

b12 -0.021 0.003 -3.363 0.401 -8.381 0.000 

b01 0.012 0.003 0.016 0.004 4.571 0.000 

a01 -1.497 0.013 -0.200 0.002 -115.502 0.000 

b2 1.027 0.013 0.008 0.000 80.352 0.000 

s 0.188 0.011 1.391 0.082 16.889 0.000 

k1 0.713 0.017 66.813 1.562 42.761 0.000 

k2 -0.011 0.003 -78.697 17.803 -4.421 0.000 

a01^2 0.904 0.013 0.004 0.000 69.752 0.000 

b2^2 -0.466 0.013 0.000 0.000 -36.510 0.000 

a3^2 -0.023 0.003 0.000 0.000 -9.184 0.000 

s^2 -0.068 0.011 -1.170 0.191 -6.136 0.000 

k1^2 -0.302 0.017 -560.668 30.901 -18.144 0.000 

 

Table   4.17 Quadratic regression analysis: the logarithm of the real part of Re3 eigenvalue of 

the Jacobian matrix for the non-trivial equilibrium point as a function of the rate constants. 

R
2
=0.95. The range of the constants as in Fig.4.5.  

ln(Re4) BETA St.Err. of BETA B St.Err. of B t(9986) p-level 

Intercept 
  

-3.794 0.032 -117.695 0.000 

b12 0.188 0.020 20.182 2.167 9.313 0.000 

b01 -0.043 0.004 -0.041 0.004 -10.227 0.000 

a01 0.204 0.021 0.018 0.002 9.502 0.000 

b2 0.535 0.021 0.003 0.000 25.328 0.000 

a3 0.110 0.004 0.000 0.000 26.295 0.000 

s 1.764 0.018 8.880 0.092 96.076 0.000 

k1 0.310 0.028 19.718 1.754 11.241 0.000 

k2 0.054 0.004 256.434 19.985 12.831 0.000 

b12^2 -0.097 0.020 -462.960 96.727 -4.786 0.000 

a01^2 -0.235 0.021 -0.001 0.000 -10.962 0.000 

b2^2 -0.435 0.021 0.000 0.000 -20.613 0.000 

s^2 -0.936 0.018 -10.919 0.214 -50.998 0.000 

k1^2 -0.256 0.028 -322.482 34.691 -9.296 0.000 

 

Table  4.18 Quadratic regression analysis: the logarithm of the real part of Re4 eigenvalue of 

matrix the non-trivial equilibrium point as a function of the rate constants. R
2
=0.85. The range 

of the constants as in Fig.4.5.  
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The regression analysis results for the real part of the third eigenvalue Re3 are shown in 

Table 4.17. It can be seen, that the parameters b2, and k1 have a positive effect, while the rate 

parameters a01 and k1
2
 have the negative effect. A similar pattern of rate constant effects can be 

seen for the logarithm of the real part of the fourth eigenvalue, Re4. The rate parameters b2, s 

and k2 have a positive effect, while a01
2
, b2

2
, s

2
 and k2

2
 show a negative one.  

As it was already mentioned, the rate parameter b12 describes the negative feedback of 

the osteocytes on osteoclasts, and from the regression analysis, it follows that it will only have a 

moderate effect on the relaxation constants Re3 and Re4. It can be concluded that the increase 

of this parameter (strengthening of this feedback) decreases the time of system relaxation to 

steady state. It should be noted that the parameter s has the largest effect on Re4, which has the 

lowest level between all real parts of the eigenvalues, and because of this can be treated as the 

relaxation of the system to the steady state. The effect of this parameter on the steady state 

variables is also moderate.      

 Thus, for the relaxation parameter Re4, the rate parameters b2, s and k1 have the most 

significant effect (Table 4.18). As in the case for Re1-Re2, b12 plays a role describing the Ocl-

Obl paracrine effect, while the rate constant b23 plays a role of decaying autocrine parameter for 

osteoblasts. The rate parameters k1 and k2 have a significant positive effect on the relaxational 

time. 

Since the first two imaginary parts of the eigenvalues are equal and have an opposite 

sign, Im1=-Im2, and Im3=Im4=0, this equlibrium point can be classified as a stable focus. The 

analysis of the eigenvectors indicates that the fourth eigenvector is loaded by the osteocytes‘ 

population concentration and BM, which indicate that the slowest relaxation occurs in the linear 

combination of Oct and BM, which can be treated as the bone tissue.      

It is easy to see from Table 4.11 that the slowest relaxation constant, Re4, related to the 

relaxation time of whole system, is about a month with a quite large standard deviation.   

However, the regression of the imaginary part gives R-square<0.9, which means that the results 

are not statistically significant.  
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Mean Minimum Maximum Range Std.Dev. Error 

OCL 16 0 111 111 11 0 

OBL 897 15 2690 2675 445 4 

OCT 23361 306 1130000 1129694 71221 712 

BM 1 0 15 15 1 0 

 

Table 4.19 The average population concentrations, maximum and minimum values and 

statistical deviations for the osteocells‘ (cell/mm
3
) for the model (4.5) and the relative bone 

mass, BM for the middle range of the rate parameters.  

 

 

 
Mean Minimum Maximum Range Std.Dev. 

RE1 -2.40 -8.46 1.01 9.47 1.34 

RE2 -2.40 -8.46 1.01 9.47 1.34 

RE3 -0.56 -5.37 -0.03 5.34 0.55 

RE4 -0.23 -0.61 -0.02 0.59 0.11 

IM1 613.84 13.50 2830.00 2816.50 312.06 

IM2 -613.84 -2830.00 -13.50 2816.50 312.06 

IM3 0.06 0.00 0.35 0.35 0.07 

IM4 -0.06 -0.35 0.00 0.35 0.07 

 

Table 4.20 Resulting statistics on the real and imaginary parts of the eigenvalues for the 

middle range of the rate constants.  

 

 

 
Mean Minimum Maximum Range 

a1 2759.5 1200.0 4300.0 3100.0 

b12 0.011 0.002 0.020 0.018 

b01 2.494 1.500 3.500 2.000 

a01 13.4 3.0 24.0 21.0 

b2 235.8 50.0 420.0 370.0 

b23 0.006 0.005 0.007 0.002 

a3 10675.9 1300.0 20000.0 18700.0 

s 0.210 0.020 0.400 0.380 

k1 0.025 0.010 0.040 0.030 

k2 0.000 0.000 0.001 0.000 

 
Table 4.21 The statistics of the rate constants, employed for the middle range used. 
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ln(Ocl) Obl ln(Oct) ln(BM) Re1 ln(Re3) Ln(Re4) ln(Im1) 

R-square 0.900 0.870 0.960 0.950 0.840 0.950 0.820 0.850 

a1 1.117 0.650 0.648 0.818 -0.651 
  

1.359 

b12 -0.239 -0.316 -0.133 -0.175 0.322 -0.021 0.188 -0.289 

b01 -0.575 -1.153 -0.332 -0.426 1.142 0.012 -0.043 -0.256 

a01 -0.269 -0.332 0.928 1.181 -0.084 -1.497 0.204 0.731 

b2 0.572 0.538 -0.681 -0.878 -0.442 1.027 0.535 0.704 

b23 
    

-0.198 
   a3 -0.273 -0.332 1.108 -0.206 0.348 
 

0.110 -0.337 

s 0.808 0.709 -0.892 0.601 -0.710 0.188 1.764 0.988 

k1 -0.826 0.323 -0.475 -0.621 -0.242 0.713 0.310 -0.285 

k2 0.803 -0.114 0.494 0.645 0.114 -0.011 0.054 0.400 

a1^2 -0.601 
 

-0.347 -0.436 
   

-0.729 

b12^2 0.063 0.126 0.031 0.044 -0.129 
 

-0.097 0.075 

b01^2 0.297 0.755 0.170 0.219 -0.743 
  

0.136 

a01^2 0.101 0.143 -0.558 -0.707 0.158 0.904 -0.235 -0.466 

b2^2 -0.386 -0.348 0.339 0.440 0.350 -0.466 -0.435 -0.476 

b23^2 
        a3^2 0.088 0.131 -0.680 0.070 -0.147 -0.023 

 
0.110 

s^2 -0.567 -0.461 0.472 -0.422 0.462 -0.068 -0.936 -0.694 

k1^2 0.397 -0.187 0.214 0.287 0.180 -0.302 -0.256 0.101 

k2^2 -0.453 
 

-0.280 -0.371 
   

-0.251 

Table.4.22 Summary table for meddle range set of the rate parameters.  

 

 

Summarisingly, the effect of the rate constants in medium range, Table 4.22 shows the same 

pattern as in the wide range with an improved confidence. However, this is still in quadratic 

regression, and to study a linear effect of the rate constants needs a further reduction in the 

range of the rate constants. It also needs to note that the ranges of some rate parameters have 

been phenomologically chosen to reproduce the expected behaviour in the vicinity of the non-

trivial steady-state. 
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4.5 The reduced (short) range of the rate constants 

The wide and middle ranges of the rate parameters applied to the simulation, lead to 

quite a low confidence of the regression model. The R-square value for wide range parameters 

was about 0.75, R-square for middle range of the rate parameters was about 0.90. Therefore, the 

shorted range of the rate constants has been applied to illustrate ability of the method to obtain a 

good statistical significance. The range of constants in this case was: a1, 3000-5000. day
-1

; b12, 

0.002-0.004 cell
-1

day
-1

; b01, 1.3-3.2 cell
-1 

day
-1

; a01, 2.0-5.0 cell
-1

day
-1

; b2, 40.0-65.0 cell
-1

day
-1

; 

b23, 0.005-0.007 cell
-1

day
-1

; a3, 1100-1700.0 day
-1

; s, 0.02-0.04 cell
-1

day
-1

; k1, 0.20-0.30 day
-1

; 

k2, 0.002-0.004 day
-1

.
   

The scatterplot of the population concentrations of osteocells against the total bone 

mass is shown in Fig.4.8. The scatterplot of the osteocells againt each other and the total bone 

mass is illustrated in Fig.4.9. Finally, in Fig.4.10, the stability characteristics for the points 

calculated are presented. One can see that these scatterplots are quite a good much the 

scatterplots for the wide and medium case. Expected good statistical significance was found for 

the linear regression approach, that can be seen from Tables 4.23-4.30. 
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Fig. 4.8. Scatterplot for the system (4.4). Calculations were performed using the following set 

of parameters: a1, 3000-5000. day
-1

; b12, 0.002-0.004 cell
-1

day
-1

; b01, 1.3-3.2 cell
-1 

day
-1

; a01, 2.0-

5.0 cell
-1

day
-1

; b2, 40.0-65.0 cell
-1

day
-1

; b23, 0.005-0.007 cell
-1

day
-1

; a3, 1100-1700.0 day
-1

; s, 

0.02-0.04 cell
-1

day
-1

; k1, 0.20-0.30 day
-1

; k2, 0.002-0.004 day
-1

.
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Fig.4.9 The graphical matrix illustrating a scatterplot of population densities of Ocl, Obl, Oct, 

BM (Bone) in 4D space of these quantities. The uniform distribution for the rate parameters of 

system (4.4). Calculations were performed using the set of parameters, Fig.4.8.  
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Fig. 4.10 Scattreplot of the eigenvalues (4.8) for the system (4.4). Calculations were performed 

using the set of parameters as in Fig.4.8.  
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Fig. 4.11 Relaxation of the system to the steady state at following rate constants: a1, 

4590 day
-1

; b12, 0.00363 cell
-1

day
-1

; b01, 2.79 cell
-1 

day
-1

; a01, 3.1 cell
-1

day
-1

; b2, 57.9 cell
-1

day
-1

; 

b23, 0.00647 cell
-1

day
-1

; a3, 1100 day
-1

; s, 0.021 cell
-1

day
-1

; k1, 0.257 day
-1

; k2, 0.00353 day
-1

. 

Re4=0.002, τ~50 days 
 

 

 

ln(Ocl) BETA 
St.Err. of 
BETA ln(Ocl) BETA 

St.Err. of 
BETA 

a1 0.807 0.005 a1 0.403 0.001 

b12 -0.024 0.000 b12 -0.024 0.001 

b01 -1.329 0.003 b01 -0.668 0.001 

a01 -0.037 0.000 a01 -0.036 0.001 

b2 0.048 0.005 b2 0.018 0.001 

b23 
  

b23 -0.016 0.001 

a3 0.080 0.004 a3 0.024 0.001 

s -0.572 0.006 s -0.306 0.001 

k1 1.055 0.004 k1 0.511 0.001 

a1^2 -0.404 0.005 
   b01^2 0.666 0.003 
   b2^2 -0.031 0.005 
   b23^2 0.002 0.000 
   a3^2 -0.016 0.000 
   s^2 -0.056 0.004 
   k1^2 0.268 0.006 
   k2^2 -0.545 0.004 
   Table 4.23 The comparison of quadratic and linear regression for the osteoclasts population 

densities for the short range of the rate parameters as in Fig.4.8. 
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ln(Obl) BETA 
St.Err. of 
BETA ln(Obl) BETA 

St.Err. of 
BETA 

a1 1.022 0.006 a1 0.509409 0.00104 

b12 -0.031 0.000 b12 -0.03155 0.00104 

b01 -1.679 0.003 b01 -0.84344 0.001041 

a01 -0.046 0.000 a01 -0.04582 0.00104 

b2 0.060 0.006 b2 0.022908 0.00104 

b23 
  

b23 0.003715 0.001041 

a3 -0.020 0.000 a3 -0.02034 0.00104 

s 0.099 0.004 s 0.030956 0.00104 

k1 0.060 0.007 k1 0.019374 0.00104 

k2 -0.035 0.000 k2 -0.03528 0.001041 

a1^2 -0.512 0.006 
   b01^2 0.841 0.003 
   b2^2 -0.038 0.006 
   b23^2 0.002 0.000 
   s^2 -0.068 0.004 
   k1^2 -0.038 0.007 
   Table 4.24 The comparison of quadratic and linear regression for the osteoblast population 

densities for the short range of the rate parameters as in Fig.4.8. 

 

 

 
BETA 

St.Err. of 
BETA ln(Oct) BETA 

St.Err. of 
BETA 

a1 0.521 0.007 a1 0.263 0.001 

b12 -0.016 0.000 b12 -0.016 0.001 

b01 -0.872 0.004 b01 -0.438 0.001 

a01 1.229 0.004 a01 0.531 0.001 

b2 -0.469 0.008 b2 -0.238 0.001 

b23 -0.032 0.000 b23 -0.033 0.001 

a3 0.423 0.008 a3 0.216 0.001 

s -0.648 0.005 s -0.337 0.001 

k1 -0.398 0.009 k1 -0.241 0.001 

k2 0.912 0.005 k2 0.404 0.001 

a1^2 -0.257 0.007 
   b01^2 0.438 0.004 
   a01^2 -0.703 0.004 
   b2^2 0.232 0.008 
   a3^2 -0.206 0.008 
   s^2 0.313 0.005 
   k1^2 0.159 0.009 
   k2^2 -0.509 0.005 
   Table 4.25 The comparison of quadratic and linear regression for the osteocytes population 

densities for the short range of the rate parameters as in Fig.4.8. 
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n(BM) BETA St.Err. of BETA ln(BM) BETA St.Err. of BETA 

a1 0.570 0.008 a1 0.287 0.001 

b12 -0.018 0.000 b12 -0.018 0.001 

b01 -0.952 0.005 b01 -0.478 0.001 

a01 1.342 0.005 a01 0.580 0.001 

b2 -0.511 0.008 b2 -0.259 0.001 

b23 -0.035 0.000 b23 -0.036 0.001 

a3 
  

a3 -0.012 0.001 

s 0.069 0.006 s 0.017 0.001 

k1 -0.434 0.010 k1 -0.263 0.001 

k2 0.996 0.006 k2 0.442 0.001 

a1^2 -0.282 0.008 
   b01^2 0.478 0.005 
   a01^2 -0.767 0.005 
   b2^2 0.252 0.008 
   a3^2 -0.012 0.000 
   s^2 -0.052 0.006 
   k1^2 0.173 0.010 
   k2^2 -0.557 0.006 
   Table 4.26 The comparison of quadratic and linear regression for total bone mass (BM) for the 

short range of the rate parameters as in Fig.4.8. 

 
BETA St.Err. of BETA Re1 BETA St.Err. of BETA 

a1 -0.437 0.002 a1 -0.434 0.002 

b12 0.026 0.002 b12 0.027 0.002 

b01 2.249 0.015 b01 0.744 0.002 

a01 -0.863 0.015 a01 -0.250 0.002 

b2 0.136 0.002 b2 0.136 0.002 

b23 -0.297 0.002 b23 -0.298 0.002 

a3 0.018 0.002 a3 0.020 0.002 

s -0.094 0.019 s -0.027 0.002 

k1 0.109 0.002 k1 0.113 0.002 

k2 0.032 0.002 k2 0.032 0.002 

b01^2 -1.514 0.015 
   a01^2 0.617 0.015 
   s^2 0.066 0.019 
   Table 4.27 The comparison of quadratic and linear regression for real part of the first 

eigenvalues for the short range of the rate parameters as in Fig.4.8. 

 

Re3 BETA St.Err. of BETA Re3 BETA St.Err. of BETA 

a01 2.481518 0.014681 a01 0.797 0.002 

b2 -0.41725 0.001618 b2 -0.418 0.002 

k1 -0.35266 0.001618 k1 -0.352 0.002 

a01^2 -1.69487 0.014681 
   Table 4.28 The comparison of quadratic and linear regression for real part of the third 

eigenvalues for the short range of the rate parameters as in Fig.4.8. 
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Re4 BETA St.Err. of BETA Re4 BETA St.Err. of BETA 

b12 -0.048 0.000 b12 -0.048 0.000 

b01 0.200 0.004 b01 0.064 0.000 

a01 -0.071 0.000 a01 -0.071 0.000 

b2 0.093 0.008 b2 0.034 0.000 

b23 
  

b23 0.004 0.000 

a3 -0.031 0.000 a3 -0.031 0.000 

s -0.991 0.000 s -0.991 0.000 

k1 0.099 0.009 k1 0.034 0.000 

k2 -0.054 0.000 k2 -0.054 0.000 

b01^2 -0.137 0.004 
   b2^2 -0.059 0.008 
   b23^2 0.004 0.000 
   k1^2 -0.065 0.009 
   Table 4.29 The comparison of quadratic and linear regression for real part of the fourth 

eigenvalues for the short range of the rate parameters as in Fig.4.8. 

 
BETA St.Err. of BETA ln(Im1) BETA St.Err. of BETA 

a1 1.192 0.006 a1 0.597 0.001 

b12 -0.036 0.000 b12 -0.037 0.001 

b01 -0.912 0.004 b01 -0.471 0.001 

a01 1.008 0.004 a01 0.470 0.001 

b2 0.073 0.007 b2 0.026 0.001 

b23 
  

b23 -0.024 0.001 

a3 0.117 0.005 a3 0.036 0.001 

s -0.386 0.008 s -0.214 0.001 

k1 0.759 0.005 k1 0.359 0.001 

A1^2 -0.595 0.006 
   B01^2 0.445 0.004 
   A01^2 -0.542 0.004 
   B2^2 -0.047 0.007 
   B23^2 0.003 0.000 
   A3^2 -0.024 0.000 
   S^2 -0.080 0.005 
   K1^2 0.174 0.008 
   K2^2 -0.402 0.005 
   Table 4.30 The comparison of quadratic and linear regression for the imaginary part of the first 

eigenvalues for the short range of the rate parameters as in Fig.4.8. 

 
Mean Minimum Maximum Range Std.Dev. 

OCL 21.88258 6.38 64 57.62 8 

OBL 1804.408 894 3600 2706 530 

OCT 25431.74 5520 313000 307480 34489 

BM 1.074085 0.156 5.28 5.124 0.65 

Table 4.31 The average population densities, maximum and minimum values and statistical 

deviations for the osteocells (cell/mm
3
) for the model (4.5) and the relative bone mass, BM, for 

the short range of the rate parameters as in Fig.4.8.  
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Mean Minimum Maximum Range Std.Dev. Ch.Time 

RE1 -3.4 -10.7 1.74 12.44 1.77991 0.27 

RE2 -3.4 -10.7 1.74 12.44 1.77991 0.27 

RE3 -3.99 -9.23 -1.68 7.55 1.307088 0.25 

RE4 -0.031 -0.0459 -0.0203 0.0256 0.005788 33.33 

IM1 528.9 223 1060 837 128.8082 1.288082 

IM2 -528.9 -1060 -223 837 128.8082 1.288082 

IM3 0 0 0 0 0 0 

IM4 0 0 0 0 0 0 
Table 4.32 Resulting statistics on the real and imaginary parts of the eigenvalues for the short range of 

the rate parameters as in Fig.4.8. 

 

 

 
ln(Ocl) ln(Obl) ln(Oct) ln(BM) Re1 Re3 Re4 ln(Im1) 

R-square 0.99 0.99 0.99 0.99 0.95 0.94 0.998 0.99 

a1 0.403 0.509 0.263 0.287 -0.434 
  

0.597 

b12 -0.024 -0.032 -0.016 -0.018 0.027 
 

-0.048 -0.037 

b01 -0.668 -0.843 -0.438 -0.478 0.744 
 

0.064 -0.471 

a01 -0.036 -0.046 0.531 0.580 -0.250 0.797 -0.071 0.470 

b2 0.018 0.023 -0.238 -0.259 0.136 -0.418 0.034 0.026 

b23 
 

0.004 -0.033 -0.036 -0.298 
 

0.004 
 a3 -0.016 -0.020 0.216 -0.012 0.020 

 
-0.031 -0.024 

s 0.024 0.031 -0.337 0.017 -0.027 
 

-0.991 0.036 

k1 -0.306 0.019 -0.241 -0.263 0.113 -0.352 0.034 -0.214 

k2 0.511 -0.035 0.404 0.442 0.032 
 

-0.054 0.359 

Table 4.34 The summary table for linear regression for short range of the rate parameters as in 

Fig.4.8. 

 

 

4.6  Discussion and possible extension of the model 

In the introduction, it is stressed that the mathematical model developed by Komarova 

et al., (2003) predicts different modes of dynamic behaviour of the BMU, while demonstrating 

the critical role for osteoclast regulation in the control of bone remodelling. In their work, this 

role has been investigated in the framework of a dynamic system, where the osteocyte 

regulation at the cellular level was not formally considered. In fact, the osteocytes play a vital 

role in signalling mechanical damage (Compston, 2002, Taboas at al., 2003; Yan et al., 2003; 

Koegler et al., 2004; Jansen et al., 2004).  

The introduction to the model of the osteocytes regulation loop obviously increases the 

dimensions of the dynamical system. However, one can see that the system, proposed in this 
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section, is still controlled with a minimal collection of cellular regulation loops and has just one 

non-trivial equilibrium point. The total number of regulation loops in the system that can be 

phenomenologically called paracrine is four. They can be classify as the term 1)modelling effect 

the Oct on Ocl, 2)formal modelling mutual regulative paracrine interaction of Ocl and Obl, and 

3)the term effecting transformation of Obl into Oct when the new bone forms. In this sense, the 

number of terms (links) can be considered a minimal one.  

From the technical perspective, the model presents quite good stability characteristics of 

the nontrivial point, which is also an advantage of this model. The stability point can be 

classified as a stable focus. This can be seen throughout, from Fig.4.4 and Fig.4.7 for the middle 

range of the rate parameters to the short range of parameters, Fig.4.10. For the short range of 

parameters from the 10,000 generated combination of the rate constants, the number of 

equilibrium points, different from stable focus, was less that 70. This illustrates the robustness 

of the system in sense of the stability of the solutions.  

Finally, it can be seen that this minimal model gives a quite reasonable population 

densities of osteocells, Table 4.31, for a volume unit of 1 mm
3
. The characteristic time of the 

relaxation is about 33 days, Table 4.32, which as well is can be considered physiologically as 

reasonable. 

Again, since the relations between the state variables and the rate constants are quite 

complicated, the regression analysis in combination with the Monte-Carlo method is shown as 

being usable in studying the relations between osteocells, BM and characteristics of relaxation. 

The results show good statistical significance when applying this method, particularly for the 

short range of the rate constants, Table 4.34. However, the results from the short range constants 

and the wide range of constants show a very good consistency.  

Indeed, over a range of the rate constants that have realistic biological cellular time 

scales for the bone model, regression method in combination with the Monte-Carlo method, can 

be used to predict the position of the system state variables in the multi dimensional phase 
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space, see Fig.4.2-4.3, Fig.4.5, Fig.4.7-4.9 and Tables 4.1-4.34 at different ranges of the rate 

parameters. 

However, different state variables, population concentrations of Ocl, Obl, Oct and total 

bone mass (BM) indicate different R-square (R
2
), which determines the quality of the statistical 

model. The linear regression of the relative bone mass BM in case of wide range of the rate 

parameters gives a poor R
2
 value about 0.75, which in fact, only allows one to speak about a 

tendency. The logarithmisation of the state variables and reduction of the range of the rate 

constants gives R
2
 about 0.90, see Table 4.34, which indicates a good significance level. The 

regression of logarithm of concentration of osteoclasts on the set of the rate parameters gives 

R
2
=0.99 with a confidence level of 0.01. The linear regression of osteosites‘ population density 

and BM indicates R-square values: Obl, R
2
=0.99 and Oct, R

2
=0.99. For BM, the most 

influential parameters are a1, b01, a01 b2 and k1, k2. The last parameters, k1 and k2 influence in an 

opposite way: k2 has very strong positive effect, while k1 has negative effect. Parameters a01 and 

b01 have the strongest effect on the population density of Ocl, Table 4.34. Parameters a1 and b01 

have similar but opposite effect on the Obl population density. The osteoclast‘s population is 

affected by the a1, b01 and k1, k2 rate constants. Finally, performing linear regression that only 

includes the first order of the parameters, gives the R-square mainly as R
2
=0.99, which gives the 

significant level about 0.01, Table 4.34. 

About 15% of all points generated by the Monte-Carlo method in the wide rate 

parameters range shown in Fig.4.4, give a different stability type than the stable focus, which 

have a periodical character or are even chaotic. This type of processes also can be considered as 

likely taking place in the bone resorption-formation. Simplification of the model, as it was done 

in Moroz and Wimpenny, 2006, 2007 can describe periodical and chaotic character of 

behaviour. 

Within the framework of this rather phenomenological level of modelling, the role of the 

diverse molecular factors in bone regulation, such as receptors and mediators, the state of the 

membrane, and hormonal or genetic system, are difficult to discuss exactly. The  roles of these 
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or any other molecular messenger or substrate remain the subject of discussion in the 

biochemical literature, even for the generalised animal model, and so the development of a 

mathematical model, based on the molecular level of regulation in the bone, awaits more precise 

biochemical and biophysical data. 

An interesting result obtained from the model described, is that by adjusting the rate 

control of particular model parameters, for example, by the mechanical stress/microgravity 

parameter s (Table. 4.34, Re4 column), it is possible to reduce the relaxation time to the steady 

state. This indicates that by increasing the mechanical stress (in a certain interval) in the 

framework of this model the recovering time rises. 

The model described in this section has mainly the relaxational character of behaviour. 

The periodic modes of behaviour that take place in some region of the rate parameters, could be 

seem less real in such a dense tissue as bone is. On the other hand, they might be interesting 

from an energetical perspective. However, there is a lack of experimental evidence for such a 

sort of behaviour in hard tissue, apart from in the case of Paget‘s disease. The above result leads 

to the conclusion that a cyclic process, which is an optimal from the regulation point of view 

and should be taken into consideration.  

Another crucial assumption is that the models have no spatial dimensions; they consider 

tissue as a homogeneous material with a quite fast diffusion of cells, substances and signals. 

Taking this into account methodologically, these models are rather more useful in describing the 

relaxation effects that are much easier to validate than in bone tissue.     

One of disadvantages of this model is that the model describes the ―multiplicative‖ 

osteoclasts‘-osteoblasts‘ relations, that means it is rather limited to the ideology similar to 

―predator-pray‖ in population biomodelling. Because of this, it is interesting to introduce the 

nonlinear, non-multiplicative, Oct-Ocl relations into the model, which can be interpreted as the 

allosteric regulation modelling. The next section is devoted to studying such a simplest non-

multiplicative Oct-Ocl relations in the framework of the Michaelis-Menten/Monod function.  
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5 Allosteric approach to bone remodelling model 

 

5.1       On an allosteric model of bone remodelling 

Paracrine and autocrine relations are very important parts of the cellular model of the 

bone remodelling cycle (Komarova et al, 2003). In order to study the possibility to change the 

focus by giving cell relationships based on the formal allosteric form, starting from classic 

Michaelis-Menten one-site molecular control and extending to the well known Hill pattern. 

All these forms of regulation have the potential to represent allosteric regulation and this 

could be very interesting when studying the RANKL/OPG balance regulation, for example, 

Lemaire et al., 2004. 

Classical Michaelis-Menten kinetics (Michaelis and Menten, 1913) is one the most 

important working approximation of nonlinear regulation in many models in different fields 

of biochemistry, microbiology and biotechnology, for example, in pharmacological models 

(Kakuji and Akapi, 1994), chemostat models (Lenas and Pavlou, 1995), or batch-kinetics 

models (Tohyama et al., 2002; Srinivasan et al., 2003; Smets et al., 2004). A number of 

research publications discuss the Michaelis-Menten control approach applied to the enzyme 

network (Heinrich et al., 1985; Hofmeyr et al., 1993; Fell and Thomas, 1995; Elsner and 

Giersch, 1998; Ortega and Agenda, 1998; Yildirim, 2003). Recently, Michaelis-Menten 

kinetics has been used to describe the changing rates of cellular activity during bone 

resorption, Martin and Buckland-Wright, 2004. At the same time, there are models discussed 

with respect to modelling of the molecular feedback control in ligand-receptor regulation and 

in ligand transport regulation (Maalmi et al., 2001; Komarova et al., 2003; Rattanakul et al., 

2003). In this study the Michaels-Menten control have been chosen, as a first-stage of the 

allosteric control extension of cellular model, section 2.2. Based on this result the model can 

be adapted to employ other well known molecular control mechanisms, like the Hill  (Hill, 

1962) mechanism or probably less relevant to the BMU control, the Adair (Adair, 1925), 
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Koshland-Nemethy-Filmer (Koshland et al., 1966), Monod-Wyman-Changeux (MWC), 

Monod et al., 1965) ones.  

 Effectively a study was undertaken to find prospective paracrine and autocrine 

parameters, following in some sense Komarova et al., 2003, but in the form of allosteric 

regulation terms. Such approach could probably produce the intermediate model from cellular 

to biochemical one. 

 

5.2  Allosteric model development 

It is well known that steoclastic and osteoblastic formation activities are well 

coordinated in framework of BMU and this coordination effectively balances calcium 

homeostasis with skeletal modeling and repair. Recently few BMU-related models are 

developed (Komarova et al., 2003; Lemaire et al., 2004), including based on predator-pray 

elements  ideology (Putra et al, 2010). Models described by these authors predict many 

different modes of dynamic behaviour of the BMU in bone remodeling control. However 

there are some limitations.   

 

5.2.1 Model development  

These limitations have driven modification of the initial model, section 4. Firstly, 

osteocyte‘s apoptosis in the bone remodeling regulation loop has been considered, and 

secondly the autocrine and paracrine control has been enhanced to make it more biologically 

relevant. At third stage the autocrine and paracrine feedback function were chosen not in pure 

cellular form but more akin to the ligand-receptor response/binding function (Michaelis-

Menten/Monod). Such function can be linked to the allosteric, competitive inhibition and 

other control degrees of freedom with a clear biochemical sense (rather than fractal values 

which are purely theoretical, Komarova et al., 2003). The regulation loops that control the 

activity of the BMU can be refined and attempted to introduce the cybernetic-like  point of 

view, such that the control should be minimised from both the (catabolic) energetic point and 
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metabolic point of view. For example, a reason for this could be the limitation of the transport 

into the bone of the energetic substrates such as ATP and oxygen, as well others substrates. 

Changes from the physiologically normal bone resorption and formation rates could 

destabilise the metabolic optimality not only on the local (bone) level but could also create a 

supply problem for the body as a whole.  

 

 

Fig. 5.1  Schematic representation of the cell interaction pattern in the extended BMU. 

Arrows represent the control loops of regulation in BMU on the cellular level. Dashed arrows 

represent molecular control pattern. PG, prostaglandin;  TGFβ,  TGFβ1, tumor growth factor; 

RANKL, receptor activator of nuclear factor κB ligand; OPG, osteoprotegerin; IGF, insulin-

like growth factor; PTH, parathyroid hormone; 1,25(OH)2 D3, vitamin D; M-CSF, 

macrophage-colony stimulating factor. 

 

 

Additionally, the robustness is important at all levels of regulation.  Therefore in 

order to produce a robust remodelling process the control should be tough at molecular level, 

indeed. Phenomenological cellular models can affect the tissue infrastructure of regulation 

and function in the whole body, as well as the very robust biochemical pathways. In the case 

of a multicellular organism and tissue, an evolutionary process is taking place. Probably, from 

the evolutionary point of view, the cellular level is even more important, because the 
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multicellular body evolved from cellular colonies with initially poor communication. Taking 

into account this point it has attempted to develop and analyse the possibility of a cellular 

model and robustness at this level.  

The resulting cell-level control scheme based on the introduction of the osteocytes  

control loop could be presented as in Figure 5.1, where Oct apoptosis initiates the osteoclasts 

maturation from osteoclasts precursors (continues arrows). On the other hand, the terms 

paracrine and autocrine are just macroscopic formalisation of the action of microscopic local 

factors, resulting in a form of feedback control of the dynamic system model. The number of 

reported local factors is quite wide and shows the complexity of regulation at the micro-level.  

It is widely accepted that OPG-RANK-RANKL pathway is the major pathway 

involved in bone remodelling, see for example, Hofbauer et al., 2000; Kong and Penninger, 

2000; Theoleyre et al., 2004. The autocrine effect occurs due to pre-Ocl expression of RANK 

which is targeted by RANKL. It is interesting that RANKL can exist as a soluble protein 

about 31kDa so that Obl/stromal cells can induce Ocl formation in the absence of direct cell-

to-cell contact, Horowitz, 2001. This forms another paracrine/autoctine degree of freedom in 

BMU regulation. Effectively, the RANK-RANKL balance is regulated by osteoprotegerin. 

The first incorporation of this pathway in a mathematical model was described by Lemair et 

al., 2004. However, as it follows from number of studies many others hormones, like PTH, 

growth factors, cytokines, vitamins and ions are involved in autocrine/paracrine regulation of 

BMU, e.g. in of bone resorption and formation. There are many indications that the number of 

factors (BMP-3, BMP-7, IGF I, IGF II, TGF-β3, FGF-2, VEGF) expressed by osteocytes are 

involved in outocrine/paracrine regulation of OBL and OCL, Table 1, Heino et al., 2004, 

reported on Oct factor that suits of the growth factor with stimulatory effect on Obl. There is a 

suggestion that Oct plays a fine-tuning role in bone remodelling. Bakker et al., 2001, who 

studied the possible role of nitric oxide in bone remodelling, suggests that Oct apoptosis 

attracts Ocl thereby activating remodelling. Westendorf et al., 2004, stressed the role of 

secreted 39-46 kDa cystein rich glycoproteins, Wnts and its role in signalling in Obl. Moseley 
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et al., 2003, discussed role of Interleukin-17 family (IL-17) cytokines, secreted by T-cells and 

their role cancer metastasis to bone and regulatory effects in Ocl precursor maturation. 

Additionally, bone cells also express a wide range of the neurotransmitter receptors as 

glutamate, γ-aminobutyric acid, purines and pyrimidines. The overall complexity of the 

regulation pattern of these local and homeostatic factors participating in differentiation, 

maturation and osteocells activity is illustrated in Table 5.1 and Fig.5.1, (dashed arrows).   

Despite the fact that the effect of the majority of these factors is not direct and is 

mediated sometimes by a long sequence of other molecular intermediates/stages, the effective 

action could follow basic regulative forms, such as Michaelis-Menten one. For example, in 

the model incorporation of OPG-RANK-RANKL pathway, described by Lemaire et al., 2004, 

PTH involvement is essentially nonlinear and rather Michaelis-Menten in nature. 

Furthermore, Martin and Buckland-Wright, 2004, described an effective model based on the 

premise that the inhibitory effect on TGFb1 (TGFb1 – induced production of OPG by marrow 

osteoblasts stromal cells) reducing effectively RANKL accordingly to Michaelis-Menten 

kinetics, when the effective Michaelis-Menten constant for osteoclast‘s activity was 

introduced.  

During development of the model an attempt was made to compromise between the 

level of microscopic interacting molecular factors and the macroscopic form of feedback 

function in the phenomenological model of regulation. Taking into account that in order to 

produce a robust bone remodelling process, the regulation needs robustness at all levels of 

control, and indeed at cellular and molecular levels. The final loop of regulation links together 

(in some way) the participating cells and their precursors, as well as the bone material and 

even integrates body homeostatic systems like ion balance or the immune system. 
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Local Factor/Receptor Reference 

Hormones: 

Parathyroid hormone (PTH)/PTHrP 

1,25(OH)2 vitamin D3 

Glucocorticoid 

Calcitonin 

Growth Factors: 

Transforming GF β superfamily: 

   BMP-3, BMP-7 

   TGF-β3 

Insulin-like GF 

    IGF I, IGF II 

PDGF 

Vascular endothelial GF (VEGF) 

FGF (FGF-2) 

Cytokines: 

IL-1, IL-6 IL-11,1317 

TNF α and β  

Cyclosporine A 

RANKL 

Activin, Inhibin 

WNTs 

Osteopontin 

Low molecular weight factors 

Cystatin B 

Calcium 

Nitric Oxide (NO) 

 

Goltzman, 1999  

Hofbauer et al., 1998  

Gao et al., 1998  

Komarova et al., 2003b 

 

 

Linkhart et al., 1996 

Thomadakis et al., 1999  

 

Linkhart et al., 1996  

Zhang et al, 2002 

Wang et al., 1996; 1997  

Kawaguchi et al., 1994  

 

Moseley et al., 2003  

Hofbauer et al., 1998, 1999; Nanes, 2003 

Chen et al., 2003  

Suda et al., 1999  

Farnworth et al., 2001  

Westerndorf et al., 2004  

Denhardt and Noda, 1998  

 

Laitala-Leinonen et al., 2006  

Sanjay et al., 2001  

Bakker et al., 2001;  Fan et al., 2004 

Vatsa, 2007 

 

Table 5.1 Some important local factors in Ocl, Obl and Oct activity regulation that could play 

paracrine and/or autocrine role. Adopted from Moroz and Wimpenny, 2007. 

 

A dynamical model, that includes Michaelis-Menten type of feedback mechanisms 

into the cellular model can be rewritten as 
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where 1x  is the populational concentration of osteoclasts, 2x  is the populational 

concentration of osteoblasts, 3x  is the populational concentration of osteocytes, 4x  is the 

total bone mass, s is the level of mechanical stress. 

 

Fig. 5.2  The Hill (logit) plot of some important in bone regulation molecular ligands: data 

adopted from Hoare et al., 1999 for hPHT, from Beaudreuil  et al., 2004 for calcitonin and 

for RANKL from Regmi et al., 2005. 

 

Functions  

ii

iFB

MM
xKm

x
Kmxf ),( 11 , 

22

2

),(
ii

i
ii

FB

Hill
xK

x
Kxf ,    (5.2) 

describe different types of non-linear feedback loops of regulation, Michaelis-Menten one-site 

molecular control (Michaelis and Menten, 1913) and other well known: Hill, Adair, Monod-

Wyman-Changeux and Koshland-Nemethy-Filmer, and functions )( 4xfOBl , ),( 3xsfOCt , 

)( 1xfB  describe negative regulation feedbacks due to apoptosis, death or transformation the 

cells. This study has been operating with population densities of cells. All constants were 

normalised (Michaelis-Menten, p50 concentration) to unity. All initial rate constants were 

chosen following Komarova et al., 2003. The feedback functions parameters were chosen that 

p50 for all functions remained the same at   concentration parameter equal to one, Fig. 5.2C. 
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Using a range of feedback control functions it is possible to model diverse molecular 

mechanisms of regulation. It is known that the molecular local factors act by a number of very 

specific molecular mechanisms, finally expressed in certain non-linearities in kinetic equations. 

Different allosteric (―other site‖) forms of factor-receptor regulation is a important molecular 

mechanism control of cell functions, and, particularly, cooperativity is the interesting degree of 

freedom in such a regulation, because it characterises the degree (sharp or gentle) with which 

the regulation reaches a threshold. 

  The highest cooperativity gives more robust regulation with a distinct threshold 

behaviour which is typical of many physiological parameters. For example this behaviour is 

seen in oxygen regulation when cooperativity of haemoglobin that posses 4 interacting binding 

sites, with cooperativity about 2.73 calculated accordingly to Hill, 1962. It can be suggested that 

it is more likely that the ideal cooperativity in the case of receptors exposed on osteocells, is 

limited to 2. This means that the number of binding centres on a receptor is also equal to 2. For 

example, TGF-b has two subunits, which bind to type II and type I receptors. Binding to the 

binding site on type II receptor causes the receptor to recruit by binding to second binding site 

on type I receptor, (Wingsfield et al., 1987; Thompson et al., 2004). After phosphorylation type 

I receptor it recruits and phosphorylates Smad2 or Smad3 in the long chain in targeting the 

TGF-B response element on DNA. In that way the entire process is cooperatively regulated. So 

Type I and type II TGF-β receptors are likely dimmers that could be associated with inhibitory 

factors and follow allosteric models of regulation having a cooperative character. TNF-α factor 

is a trimer (Wingsfield et al., 1987) and NF-kB regulatory receptor-activator protein it is likely 

that it has three binding sites exposed into extracellular medium. The existence of RANKL in a 

soluble form about 31kDa is interesting explanation that OBl/Stromal cells could induce OCl 

formation in the absence of direct cell-to-cell contact, Horowitz et al., 2001. This is another 

argument for considering molecular models of binding in BMU regulation. 

Thus, it is very reasonable to choose the feedback functions that are capable of 

introducing the allosteric regulation. Additionally, the allosteric models have additional very 
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good interpretable control degrees of freedom, in contrast to fractal models, which are 

sometimes very difficult to interpret from the point of view of the molecular control. 

Taking into account the importance of osteoclasts-osteocytes interaction, the 

dependence of if  and if can be proposed which yields the following system 

22114

3433

2

22342221012

2101

3

3
112111

xkxkx

sxxx

xxxxxx

xx
xK

x
xxx

Oct









  (5.3) 

where the designations are as for (2.1.4). In this model the Michaelis-Menten kinetics is only 

present in one term, due to insufficient experimental evidence to suggest that it should be 

present elsewhere. 

 

5.2.2  Equilibrium state 

To find the equilibrium points of system (2.2.1) one must set the right parts of the 

system  to zero, then the system of algebraic equation is obtained: 
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  (5.4) 

 Then starting from the last equation it can be seen that 1212 / xxkx . Substituting this into 

the equations of (2.1.5) one can find the nontrivial solution and can finally obtain the second 

order algebraic equation 
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3 CBxAx     (5.5) 
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121 bAKaB Oct , 

 OctKaC 1 . 

Then one can obtain the roots of (5.2) 

ACBB
A

x ba 4
2

1 2

),(3     (5.6) 

when 0)4( 2 ACB  the roots are real. Calculations of the equilibrium point when the 

sign ―-―  is in equation (5.6) yields the negative values for x3 and other state variables. 

Having calculated x3 (5. 6) it is possible to find x1, x2 and x4 
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and the trivial solution:  

asxxxxxx **,,0,0 4321 , where  ],0[*x ,  (5.8) 

which indicates that the plane x3, x4 is the solution when x1=x2=0. Designating right parts of 

(2.2.1) as Fi one can find the Jacobi matrix:  
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Employing (2.2.5) it is possible to study the character of equilibrium in trivial (2.2.4) and 

nontrivial (2.2.3) points. Both these equilibrium points are interesting, however, to study the 

character of the trivial point, which in fact is the axis, further investigation is necessary. 

 

5.3 Results of calculations in a wide range of constants 

The behaviour of the mathematical model was evaluated using the Michaelis-Menten 

function in order to examine whether the model repeats the modes of the system, described in 

Section 2. In the majority of cases it produces the character of behaviour as in model (2.4) 

within a wide range of constants. The timescale for the model is linked to the unit of time in 

days, as in the model of Section 4. As mentioned in that section, the choice of initial constants 

was based on experimental histomorphometric data (Parfitt, 1994; Kato et al., 2001; 

Vashishth et al., 2002), which has also been estimated also by Komarova et al., 2003. One 

should note that even for the linear systems similar to above Eq.(5.2), the value of the rate 

constants is not directly related to the value of the formation or resorption rates that could be 

measured in experimental conditions. In this case it is expectedly difficult to validate the 

model constants, although, some general results like the character of local steady state remain 

topologically the same. The change of the rate parameters in Eq.(5.3) in wide range does not 

change the character of equilibrium, Figure 5.4 shows that it is quite robust.  

Over the employed range of rate parameters, the trajectories have demonstrated a 

tendency to behave as a stable focus  – in line with the findings for pure cellular model (4.4). 

One can possibly say that the stable focus prevails after the introduction of the Michaelis-

Menten kinetics. The range of the rate parameters was slightly changed compared to the pure 

cellular model (4.4) and in addition they were also modified by introduction of the Michaelis-

Menten control and other constants like KOct. Range of parameters used: KOct, 100-100000.0; 

a1, 200.0- 30000. day
-1

 ; b12, 0.002-0.05 cell
-1

day
-1

; b01, 1.0-40.0 cell
-1

day
-1

; a01, 1.50-300.0 

cell
-1

day
-1

; b2, 50.0 -1000.0 cell
-1

day
-1

; b23, 0.001-0.09 cell
-1

day
-1

; a3, 1000-66000 day
-1

; s, 

0.001-2.0 cell
-1

day
-1

; k1, 0.01-1.0 day
-1

; k2, 0.00003-0.003 day
-1

. 
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Direct application of the similar range of rate parameters as in Section 4 gives the 

results, illustrated in Fig. 5.3-5.5. 
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Fig.5.3 The scatterplot of numeric calculations for system (5.3) Calculations were performed 

using the range of parameters: KOct, 100-100000.0 cell mm
-3

; a1, 200.0- 30000. day
-1

; b12, 

0.002-0.05 cell
-1

day
-1

; b01, 1.0-40.0 cell
-1

day
-1

; a01, 1.50-300.0 cell
-1

day
-1

; b2, 50.0 -1000.0 cell
-

1
day

-1
; b23, 0.001-0.09 cell

-1
day

-1
; a3, 1000-66000 day

-1
; s, 0.001-2.0 cell

-1
day

-1
; k1, 0.01-1.0 

day
-1

; k2, 0.00003-0.0030 day
-1

. 
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Fig. 5.4 Scatterplot of eigenvalues (5.9) at (5.6a) for system (5.3). A, large scale; B, small 

scale. Calculations were performed using the range of parameters as in Fig.5.3. 
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Fig.5.5 Detailed graphical matrix illustrating scatterplot of population densities of Ocl, Obl, 

Oct, bone in 4D space of these variables. The range of parameters as in Fig.5.3. 

 

 As seen in Figure 5.3, the population density of Ocl and Obl change in the range 

0.01-100 and 10-10000 cells*mm
-3

 respectively. The Oct‘s population density varies from 10 

to 10
7
 and total bone mass varies from 0.001 to 100 cells*mm

-3
. The graphical matrix 

diagram, Fig.5.5, indicates the individual scatterplots of all pairwise combinations of the state 

variables and illustrates wide range of rate constants. From Fig.5.4 can be seen that the main 

equilibrium point can be characterised as a stable focus. Indeed, from 3681 generated by 

Monte Carlo method combinations about 11%  (410) were unstable having two conjugate 

eigenvalues with positive real part. Thus, from the point of view of stability the dynamical 

model is reliable, even when a wide range of rate constants was employed.  

Application of regression methods to this dataset, where a wide range of rate 

constants was applied, returns poor determination coefficients for individual regressions. This 

can be explained by the fact that the relations in such a wide range can be significantly 

nonlinear so the reduction of the range of the rate constants was applied.  
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5.4 Model fitting in the middle range of the rate parameters 

Reducing the range of rate constants to two decimal orders, KOct, 5000-500000 cell 

mm
-3

; a1,1200.0-4300.0 day
-1

; b12,0.002-0.02 cell
-1

day
-1

; b01, 1.5-3.5 cell
-1

day
-1

; a01,3.0-24.0 

cell
-1

day
-1

; b2, 50.0-420.0 cell
-1

day
-1

; b23, 0.005-0.007 cell
-1

day
-1

; a3, 1300-20000 day
-1

; s, 

0.02-0.4 day
-1

; k1, 0.01-0.040 day
-1

; k2, 0.0002-0.0006 day
-1

, Fig.5.6, does not change the 

character of the stability of the equilibrium point, see Fig. 5.7, preserving the imaginary part 

for the first eigenvalue. The existence of an imaginary part indicates that for the points of 

equilibrium, the trajectories comprise the periodical character of movement with decaying 

amplitude. It also compacts the position of these points around the same region, Fig.5.8. 

However, the ranges of state variables‘ values of the generated data set can be considered as 

having an enhanced physiological regulatory meaning, Fig.5.7-5.8. 
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Fig.5.6  The scatterplot of osteocells against BM for system (5.3) with an extended range of 

rate parameters: KOct, 5000-500000 cell mm
-3

; a1, 1200.0-4300.0 day
-1

; b12,0.002-0.02 cell
-

1
day

-1
; b01, 1.50-3.5 cell

-1
day

-1
; a01,3.0-24.0 cell

-1
day

-1
; b2, 50.0-420.0 cell

-1
day

-1
; b23, 0.005-

0.007 cell
-1

day
-1

; a3, 1300-20000 day
-1

; s, 0.02-0.4 day
-1

; k1, 0.01- 0.04 day
-1

; k2, 0.0002- 

0.0006 day
-1

.  
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Fig. 5.7 The stability characteristics of the equilibrium point after extending the range of the 

rate constants. The range of parameters as in Fig.5.6.  

 

Bone

OCt

0.1 1 10
1 10

3

1 10
4

1 10
5

1 10
6

OCt
Bone

OBl
OBl

0.1 1 10
100

1 10
3

1 10
4

1 10
3

1 10
4

1 10
5

1 10
6

100

1 10
3

1 10
4

BoneOCtOBl

OClOClOCl

0.1 1 10
1

10

100

1 10
3

1 10
4

1 10
5

1 10
6

1

10

100

100 1 10
3

1 10
4

1

10

100

 

Fig.5.8 Detailed graphical matrix illustrating scatterplot of population densities of Ocl, Obl, 

Oct, BM in 4D space of these variables. The range of parameters as in Fig.5.6.  
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ln(Ocl) ln(Obl) ln(Oct) ln(BM) Re1 Re3 ln(Re4) Im1 

R-square 0.98 0.98 0.92 0.95 0.93 0.70 0.90 0.90 

a1 0.526 0.814 0.245 0.332 -0.745 0.018 
 

0.624 

b12 
        b01 -0.366 -0.566 -0.165 -0.227 0.553 

  
-0.229 

a01 
  

0.396 0.529 -0.107 0.585 
 

0.472 

b2 
  

-0.377 -0.509 0.087 -0.467 
  b23 

   
-0.007 -0.220 

   a3 
  

0.448 
     s 

 
0.005 -0.481 

   
0.944 

 k1 -0.580 
 

-0.280 -0.382 0.067 -0.366 
 

-0.376 

k2 0.462 
 

0.221 0.302 
   

0.290 

Table 5.2 Summary table for MC/regression results for a set of the rate parameters from 

Fig.5.6. 

 

From summary Table 5.2 one can see a good statistical significance for just the 

osteocells and total bone mass, however, the R-square for the relaxation parameters, in fact 

eigenvalues, is quite poor. Therefore the numerical experiment was again repeated for a 

shorter range of the rate parameters. 

 

 

5.5  Short range of the rate parameters 

The behaviour of the model has been studied in the short range of parameters aiming 

to improve the output of the regression analysis. Calculations were performed using the range 

of parameters: KOct, 100-100000; a1, 3000.0-5000.0 day
-1

; b12, 0.002-0.004 cell
-1

day
-1

; b01, 1.3-

3.2 cell
-1

day
-1

; a01, 2.0-5.0 cell
-1

day
-1

; b2, 40.0-65.0 cell
-1

day
-1

; b23, 0.005-0.007 cell
-1

day
-1

; a3, 

1100.0-1700.0 day
-1

; s, 0.02 0.04 cell
-1

day
-1

; k1, 0.2 0.30 day
-1

; k, 0.002  0.004 day
-1

. The 

results are shown in figures 5.9-5.11 and tables 5.2-5.11.   
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Fig. 5.9 The scatterplot of numeric calculations for system (5.3) Calculations performed 

using the range of parameters: KOct, 100.0-100000.0; a1, 3000.0-5000.0 day
-1

; b12, 0.002-0.004 

cell
-1

day
-1

; b01, 1.3-3.2 cell
-1

day
-1

; a01, 2.0-5.0 cell
-1

day
-1

; b2, 40.0-65.0 cell
-1

day
-1

; b23, 0.005-

0.007 cell
-1

day
-1

; a3, 1100.0-1700.0 day
-1

; s, 0.02 0.04 cell
-1

day
-1

; k1, 0.2 0.30 day
-1

; k2, 0.002  

0.004 day
-1

. 
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Fig.5.10 Detailed graphical matrix illustrating scatterplot of population densities of Ocl, Obl, 

Oct, BM in 4D space of these variables. The range of parameters as in Fig.5.9.  
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Fig.5.11 The scatterplot of real and imaginary parts of the four eigenvalues of system (5.4) 

in the range of parapeters indicated in Fig.5.9.  
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Fig.5.12 Relaxation of the system to the steady state at following rate constants: a1, 4590 day

-

1
; b12, 0.00363 cell

-1
day

-1
; b01, 2.79 cell

-1 
day

-1
; a01, 3.1 cell

-1
day

-1
; b2, 57.9 cell

-1
day

-1
; b23, 

0.00647 cell
-1

day
-1

; a3, 1100 day
-1

; s, 0.021 cell
-1

day
-1

; k1, 0.257 day
-1

; k2, 0.00353 day
-1

, 

KOct=8.4*10
4
. Re4=0.002, τ~50days 

ln(Ocl) BETA St.Err.of BETA B St.Err.of  B t(9988) p-level 

Intercept 
  

3.0649 0.0079 387.18 0.0000 

KOct -0.0007 0.0010 0.0000 0.0000 -0.74 0.0456 

a1 0.3881 0.0010 0.0003 0.0000 401.58 0.0000 

b12 0.0004 0.0010 0.2640 0.6320 0.41 0.6761 

b01 -0.6740 0.0010 -0.4617 0.0007 -697.75 0.0000 

a01 -0.0001 0.0010 0.0000 0.0004 -0.06 0.9466 

b2 -0.0006 0.0010 0.0000 0.0001 -0.57 0.5674 

b23 0.0010 0.0010 0.6423 0.6288 1.02 0.3070 

a3 0.0007 0.0010 0.0000 0.0000 0.73 0.4609 

s 0.0002 0.0010 0.0102 0.0622 0.16 0.8695 

k1 -0.3045 0.0010 -4.0017 0.0127 -315.1 0.0000 

k2 0.5221 0.0010 341.0841 0.6312 540.3 0.0000 

Table.5.2 Linear regression analysis: the logarithm of population density of osteoclasts as a 

function of the rate constants. The range of the constants as in Fig.5.9. R
2
=0.99. 
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ln(Obl) BETA St.Err. of BETA B St.Err. of B t(9988) p-level 

Intercept 
  

7.524 0.007 1117.821 0.000 

KOct -0.0012 0.0010 0.0000 0.0000 -1.1069 0.2684 

a1 0.4955 0.0010 0.0003 0.0000 472.0264 0.0000 

b12 0.0007 0.0010 0.3594 0.5374 0.6688 0.5036 

b01 -0.8614 0.0010 -0.4618 0.0006 -820.8940 0.0000 

a01 -0.0004 0.0010 -0.0001 0.0004 -0.3748 0.7078 

b2 -0.0012 0.0010 0.0000 0.0000 -1.1346 0.2566 

b23 0.0003 0.0010 0.1391 0.5346 0.2603 0.7947 

a3 0.0006 0.0010 0.0000 0.0000 0.5670 0.5707 

s -0.0004 0.0010 -0.0192 0.0529 -0.3630 0.7166 

k1 0.0018 0.0010 0.0188 0.0108 1.7394 0.0820 

k2 0.0011 0.0010 0.5485 0.5367 1.0220 0.3068 

Table.5.3 Linear regression: the logarithm of  population density of  osteoblasts as a function 

of the rate constants. The range of the constants as in Fig.5.9. R
2
=0.99. 

ln(Oct) BETA St.Err. of BETA B St.Err. of B t(9988) p-level 

Intercept 
  

10.9040 0.0143 763.9473 0.0000 

Oct 0.0024 0.0011 0.0000 0.0000 2.1542 0.0312 

a1 0.2536 0.0011 0.0003 0.0000 223.9967 0.0000 

b12 -0.0017 0.0011 -1.6823 1.1396 -1.4762 0.0399 

b01 -0.4388 0.0011 -0.4626 0.0012 -387.7189 0.0000 

a01 0.5283 0.0011 0.3550 0.0008 466.4802 0.0000 

b2 -0.2407 0.0011 -0.0192 0.0001 -212.6448 0.0000 

b23 -0.0319 0.0011 -31.9348 1.1338 -28.1666 0.0000 

a3 0.2179 0.0011 0.0007 0.0000 192.4627 0.0000 

s -0.3451 0.0011 -34.1780 0.1122 -304.6964 0.0000 

k1 -0.2386 0.0011 -4.8238 0.0229 -210.7183 0.0000 

k2 0.4054 0.0011 407.5504 1.1382 358.0760 0.0000 

Table.5.4 Linear regression analysis: the logarithm of the osteocytes‘ population density as a 

function of the rate constants. The range of the constants as in Fig.5.9. R
2
=0.99. 

 

 

ln(BM) BETA St.Err. of BETA B St.Err. of B t(9988) p-level 

Intercept 
  

0.123 0.014 9.011 0.000 

Oct 0.003 0.001 0.000 0.000 2.374 0.018 

a1 0.276 0.001 0.000 0.000 234.248 0.000 

b12 -0.001 0.001 -1.353 1.089 -1.243 0.214 

b01 -0.478 0.001 -0.463 0.001 -405.716 0.000 

a01 0.575 0.001 0.355 0.001 488.228 0.000 

b2 -0.262 0.001 -0.019 0.000 -222.187 0.000 

b23 -0.035 0.001 -31.912 1.083 -29.457 0.000 

k1 -0.259 0.001 -4.818 0.022 -220.247 0.000 

k2 0.442 0.001 407.6 1.088 374.871 0.000 

Table.5.5 Linear regression analysis: the logarithm of the total bone mass (BM) as a function 

of the rate constants. The range of the constants as in Fig.5.9. R
2
=0.99. 
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Re1 BETA St.Err. of BETA B St.Err. of B t(9988) p-level 

Intercept 
  

-0.1442 0.1017 -1.4173 0.1564 

KOct 0.0001 0.0024 0.0000 0.0000 0.0314 0.9749 

a1 -0.4235 0.0024 -0.0014 0.0000 -175.84 0.0000 

b12 -0.0030 0.0024 -10.267 8.1215 -1.2642 0.2062 

b01 0.7558 0.0024 2.6695 0.0085 313.95 0.0000 

a01 -0.2675 0.0024 -0.6024 0.0054 -111.06 0.0000 

b2 0.1442 0.0024 0.0386 0.0006 59.886 0.0000 

b23 -0.2834 0.0024 -951.09 8.0799 -117.78 0.0000 

k1 0.1182 0.0024 8.0057 0.1631 49.073 0.0000 

 
Table.5.6 Linear regression analysis: the real part of the first eigenvalues as a function of the 

rate constants. The range of the constants as in Fig.5.9. R
2
=0.95. 

 

 

Re3 BETA St.Err. of BETA B St.Err. of B t(9988) p-level 

Intercept 
  

-0.1806 0.0686 -2.6343 0.0084 

KOct 0.0084 0.0024 0.0000 0.0000 3.4512 0.0006 

a1 -0.0016 0.0024 0.0000 0.0000 -0.6622 0.5079 

b12 -0.0012 0.0024 -2.5942 5.4740 -0.4739 0.6356 

b01 -0.0020 0.0024 -0.0047 0.0057 -0.8270 0.4082 

a01 0.8011 0.0024 1.2058 0.0037 329.8478 0.0000 

b2 -0.4244 0.0024 -0.0759 0.0004 -174.8040 0.0000 

b23 0.0017 0.0024 3.7660 5.4460 0.6915 0.4893 

k1 -0.3584 0.0024 -16.2324 0.1100 -147.6230 0.0000 

Table 5.7 Linear regression analysis: the real part of the third  eigenvalues as a function of the 

rate constants. The range of the rate constants as in Fig.5.9. R
2
=0.95. 

 

ln(Re4) BETA St.Err. of BETA B St.Err. of B t(9988) p-level 

Intercept 
  

-4.5545 0.0039 -1178.1 0.0000 

KOct 0.0001 0.0009 0.0000 0.0000 0.0754 0.9399 

a1 -0.0004 0.0009 0.0000 0.0000 -0.4943 0.6211 

b12 0.0006 0.0009 0.2044 0.3086 0.6623 0.5078 

b01 0.0002 0.0009 0.0001 0.0003 0.2556 0.7982 

a01 -0.0004 0.0009 -0.0001 0.0002 -0.4446 0.6566 

b2 0.0013 0.0009 0.0000 0.0000 1.5102 0.1310 

b23 0.0003 0.0009 0.1174 0.3071 0.3822 0.7023 

a3 -0.0001 0.0009 0.0000 0.0000 -0.0799 0.9363 

s 0.9961 0.0009 34.1427 0.0304 1123.8 0.0000 

k1 0.0010 0.0009 0.0068 0.0062 1.0953 0.2734 

k2 -0.0002 0.0009 -0.0730 0.3083 -0.2369 0.8128 

Table 5.8 Linear regression analysis: the real part of the logarithm of fourth eigenvalue as the 

function of the rate constants. The range of the constants as in Fig.5.9. R
2
=0.99. 
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Im1 BETA St.Err. of BETA B St.Err. of B t(9988) p-level 

Intercept 
  

0.8543 5.8152 0.1469 0.8832 

KOct -0.0003 0.0018 0.0000 0.0000 -0.1655 0.8686 

a1 0.5467 0.0018 0.1394 0.0005 300.3238 0.0000 

b12 -0.0010 0.0018 -265.6 464.3005 -0.5721 0.5673 

b01 -0.4864 0.0018 -129.9 0.4861 -267.3223 0.0000 

a01 0.4737 0.0018 80.67 0.3101 260.1905 0.0000 

b2 -0.0010 0.0018 -0.0198 0.0368 -0.5375 0.5909 

b23 0.0018 0.0018 452.2 461.9222 0.9791 0.3275 

a3 0.0023 0.0018 0.0019 0.0015 1.2573 0.2087 

s 0.0017 0.0018 41.48 45.7003 0.9078 0.3640 

k1 -0.2174 0.0018 -1113.89 9.3266 -119.4317 0.0000 

k2 0.3684 0.0018 93865. 463.7086 202.4233 0.0000 

Table 5.9 Linear regression analysis: the imaginary part of the first eigenvalues as a function 

of the rate constants. The range of the constants as in Fig.5.9. R
2
=0.99. 

 

 
Mean Minimum Maximum Range Std.Dev. St.Error 

OCL 23.2 6.78 68.1 61.32 8.98 0.090 

OBL 1904. 958 3820 2862 578.0 5.781 

OCT 25791 7860 311000 303140 39611 396.1 

BM 1.15 0.184 5.77 5.586 0.728 0.007 

Table 5.10 The average population concentrations, maximum and minimum values and 

statistical deviations for the osteocells for the model (5.3) and the total bone mass, BM.  

 
Mean Minimum Maximum Range Variance Std.Dev. Std.Error R.Time 

RE1 -3.7 -11.8 1.45 13.25 3.77 1.94 0.019 0.27 

RE2 -3.7 -11.8 1.45 13.25 3.772 1.94 0.019 0.27 

RE3 -4.0 -9.6 -1.70 7.90 1.685 1.298 0.013 0.25 

RE4 -0.03 -0.04 -0.02 0.020 0.00003 0.00585 0.00006 33.3 

Table 5.11. Resulting statistics of the real parts of the eigenvalues for the short range of rate 

parameters from Fig.5.9. 

 

 
ln(Ocl) ln(Obl) ln(Oct) ln(BM) Re1 Re3 ln(Re4) Im1 

R-square 0.99 0.99 0.99 0.99 0.95 0.95 0.99 0.99 

KOct -0.0007 -0.0012 0.0024 0.003 0.0001 0.0084 0.0001 0.001 

a1 0.3881 0.4955 0.2536 0.276 -0.4235 -0.0016 -0.0004 0.555 

b12 
    

-0.0030 -0.0012 0.0006 -0.001 

b01 -0.6740 -0.8614 -0.4388 -0.478 0.7558 -0.0020 0.0002 -0.483 

a01 
  

0.5283 0.575 -0.2675 0.8011 -0.0004 0.486 

b2 
  

-0.2407 -0.262 0.1442 -0.4244 0.0013 0.000 

b23 
  

-0.0319 -0.035 -0.2834 0.0017 0.0003 0.001 

a3 
  

0.2179 
  

-0.0008 -0.0001 0.001 

s 
  

-0.3451 
  

0.0004 0.9961 0.000 

k1 -0.3045 0.0018 -0.2386 -0.259 0.1182 -0.3584 0.0010 -0.219 

k2 0.5221 
 

0.4054 0.442 
 

0.0003 -0.0002 0.374 

Table 5.12 Summary results of linear regression for the set of rate parameters from Fig.5.9. 
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Tables 5.2-5.11 indicate a significant improvement in the R-square of the linear 

regression.  The final table shows that only Re1 and Re3 have the R-square values less than 

0.99.  

 The results of numerical calculations for different feedback, shown above, indicate that 

the stable focus prevails irrespective of the Michaelis-Menten feedback function, Figure 5.11.  

Thus the s-shaped Michaelis-Menten function, well-known in many regulatory 

networks, for example, in neural networks as the neuro-somatic threshold function (Demongeot 

et al., 2000) can be interesting for a cellular cooperative formation such as the BMU. Moreover, 

the employment of this nonlinear function in the BMU model can lead to stabilisation of 

equilibrium states which could explain some periodic relaxative modes. In comparison to fractal 

spaces, allosteric models have additional degree of freedom and very clear, interpretable values 

from the point of view of molecular control. 

 

5.6  Discussion 

In the introduction it was stressed that recently developed mathematical models of bone 

turnover (Komarova et al., 2003; Lemaire et al., 2004; Moroz et al., 2006) predict various 

modes of dynamic behaviour of the BMU. In this section the allosteric-like feedback control 

function has been investigated with respect to an extended dynamic system from Komarova et 

al, 2003, where 1) the osteocyte regulation at the cellular level is formally involved and 2) 

autocrine and paracrine regulations are chosen in an allosteric-like form. In fact, as mentioned, 

regarding the first development, osteocytes play a vital role in signalling mechanical damage 

(Compston, 2002; Skerry et al., 1989; Lanyon, 1996; Tomkinson et al., 1997; Noble et al., 1997; 

Burger and Klein-Nulend, 1999).  Introduction this cellular regulation loop to the model has 

increased the dimension of the dynamic system. However, the designed system is still controlled 

with a small collection of cellular regulation loops. Such a form of model is also potentially 
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applicable to other types of allosteric regulation controls, for example to the Hill-like feedback 

function. 

One of the major developments of this section is that the formulation and interpretation 

of paracrine and autocrine control is attempted in terms of allosteric regulation rather than a 

fractal form, when it is formulated as a regulator of the degree parameters. Concerning the Oct 

regulation loop, one can see from Eq. (5.2) and Figure 5.2 that it could be suggested that the 

feedback function which regulates Ocl response to OCt apoptosis is S-shaped (akin to many 

control feedback functions) and could have the Michelis-Menten or generally the Hill form. 

Such formulated models have an additional advantage - allosteric control degrees of freedom, 

clearly interpretable from the point of view of molecular control. In such a case the system 

could be described in terms of losses (metabolic losses), like in the problem of optimal control, 

when the bone remodelling is at the demand of minimising the substrate-energy losses for bone 

remodelling by balancing the metabolic cost of regulation against shortening the response time 

to mechanical/aging damage and physiological function of the skeleton. From the results of the 

numerical calculations (Section 5.3-5.5) it is possible to see the survival of a stable focus type of 

equilibrium (Fig. 5.4, 5.7, 5.11.) in the four dimensional phase space over different ranges of 

constants. 

Obviously, within the framework of this quite phenomenological model, the role of the 

diverse molecular factors in bone regulation, such as receptors and mediators, the state of the 

membrane, and hormonal or genetic system, are difficult to include and discuss. The roles of 

these or any other molecular messenger or substrate remain the subject of broad discussion in 

biochemical literature (Section 1, literature review), even for a generalised animal model, and so 

the development of a mathematical model, based on the molecular level of regulation in the 

bone, awaits more precise biochemical and biophysical data.  

The models above are just one subset of BMU models, within one combination of 

parameters, that could have other types of equilibrium (for example, the attracting limit cycle) in 

the range of parameters with biological meaning. Within the employed combination of 
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parameters, which result in a local minimum for the system, a stable focus steady state was 

found. This set is relevant to the combination for the pure cellular model, Section 2. This 

set/combination model has one decaying cyclic mode with large differences in frequencies.  

The next stage of the development of this model is the derivation of an equation for 

scaffold material, which employs specific constants for sorption and resorption. It could be 

possible to model the integration of resorbable implant into the bone in such a way. The an 

equation could include the material parameters, scaffold design (porosity) parameters via 

fractality of the bone scaffold, surface modification parameters and cell enhancement 

parameters. Based on the above, one can suggest that in the framework of the generalised model 

(Eq.5.1) it is possible to find other steady states with a sound biological/biochemical 

interpretation. Moreover, the transformation bifurcation between these states could model the 

major mechanisms of the control of BMU and bone remodelling. The existence of such 

decaying periodical oscillations could be linked to a Paget‘s-disease-like physiological situation, 

when the overfeeding of the remodelling cycle occurs.    

 

5.7   On the validation of the model  

Validation of the bone remodelling models is a critical issue. The most important factor, 

preventing practical verification/validation of any model of bone tissue remodelling is that bone 

is a hard tissue and thus very difficult to experiment upon. The measurement of molecular 

parameters (concentrations, activities, binding constants etc.) is a timely process, so measured 

values can be significantly distorted from the in vivo values.  

The models considered in this study account for the number of tiny regulatory 

processes, mentioned in the literature review section and are therefore predictably complicated. 

However, from the kinetic measurement perspective, the kinetic parameters usually measured 

are rather first-order kinetic constants while many constants in the model are second-order 

constants. 
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The models described in the Section 4 and 5.1-5.6, are the relaxation types of models, 

so they can be preferable from the validational perspective. These models have been studied 

numerically within the range of the rate constants having the same order as the Komarova et al. 

(2003) model. The mean relaxational time has the order of month.      

Validation of allosteric constants incorporated into the model is even more difficult than 

in the case of the rate constants of the cellular model. The models considered (cellular, Section 

4, and combined molecular-and-cellular models, Section 5) are very simplified, rather 

phenomenological models. In these circumstances the verification can be considered to be 

related to the main conclusions of the modes, like for example the character of behavioural 

modes. Considering the spectrum of behavioural modes some indications in recent literature can 

be found.  

Some statistical studies, which have been performed on pre- and postmenopausal 

women, show the cyclic (periodical) behaviour of bone remodelling, Mazuoli et al., 2002; 2006. 

Authors even titled their paper from 2002 as ―Cyclical behaviour of bone remodeling and bone 

loss in healthy women after menopause: results of a prospective study‖ which stressed that there 

is a periodical effect as it is possible to see from Fig.5.12-5.12. In this prospective study, the 

annual changes in lumbar bone mineral density (LBMD) and bone remodeling markers were 

measured in 238 healthy pre- and postmenopausal women, aged 45–74 years. The results 

obtained indicate that bone loss is not a constant process over time but rather exhibits cyclical 

damping oscillations. The harmonic regression model indicates the presence of a cyclical 

component of 7 years.  

In their second work, Mazzuoli and coauthors (2006) studied a sample of 200 healthy 

women, aged 45–74 years, recruited by written invitation from a community-based listing of all 

residents, living locally, which made the trial quite homogeneous, 136 were enrolled in the 

follow-up study and 120 completed a year of the study. The experimental work was based on 

measurement of biochemical parameters and annual anterior vertebral body heights changes 

(AVHs). They were also have found to have periodical changes, Fig.5.14. 
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Fig.5.12 Mean annual percent changes in LBMD. YSM, years since menopause; YSM 0, 

premenopausal group. Number of observations given in parentheses. Adopted from Mazzuoli et 

al., 2002. 

 

In the study of Tayyar and coauthors (Tayyar et al., 1999), a 3D simulation was 

employed for the modelling of trabecular bone remodelling. The modelling bone volume was 

about 50 mm
3
 containing about 200 basic multicellular units. The authors proposed the 

periodical modes in basic multicellular units activation responses, see Fig.5.15. 

 
Fig.5.13 Mean annual percent changes in LBMD, in OHPr/Cr and ALP observed (dashed 

line/open circles) and predicted (solid lines). YSM, years since menopause; YSM 0, 

premenopausal group. Adopted from Mazzuoli et al., 2002. 
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Fig.5.14  Mean annual percent changes in AVHs. Observed values (solid line/open circles) and 

predicted values (solid line). YSM, years since menopause; YSM 0, pre-menopausal group. 

Adopted from Mazzuoli et al., 2006. 

 

 

 
 

 
Fig. 5.15 The three BMU activation responses to the abrupt step change in estrogen at 

menopause. Adopted from Tayyar et al., 1999.  

 

 
One of the mechanisms which can be employed to explain of periodic type modes was 

proposed by Martin, 2007, suggests the spatial character of microdamage removal /remodelling. 

This mechanism to some extent indirectly supports the results observed in this project, that 

BMU arranged for the repairing of one area of microdamage can be employed/used to remove 

nearby microdamaged area. 
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The results in the work of Martin 2007 considers the possibility that microdamage is not 

only able to activate new BMUs, but may also attract or ―steer‖ existing BMUs as they continue 

to tunnel through the bone matrix, Fig.5.16. This suggestion is in line with the results of Vatsa 

et al, 2007. In their it study has been demonstrated that a single osteocyte can transfer 

information of a local mechanical signal to its surrounding cells at a distance ranging from 33 to 

175 μm. This in fact supports the consideration of a cyclic mode in bone remodelling presented 

in this project. 

 

Fig.5.16 Schematic diagram of BMU being diverted to a microcrack (μck) surrounded by 

apoptotic osteocytes (filled circles). Filled squares are apoptotic osteocytes in the low stress area 

in front of BMU, and empty circles are healthy, intact osteocytes. Adopted from Martin, 2007.  

 

 

In summary, verification of models is quite limited (perharps the most limited of the 

tissue types). The applicability of periodical modes of behaviour to the real situation in vivo in 

living hard tissue or to engineered prototypes is linked to the verification and is also limited. 

The relaxational mode could be applicable when taking into account the hierarchy of relaxation 

modes through the evaluation of the resorptional biological rates of hard tissue, implant 

resorption and natural bone tissue reformation/development.  However, even the models having 

the problems with validation, they are important stage in developing an approach to 

understanding and controlling the remodelling process in tissue engineering. 
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6 On Optimal Control applications to BMU models 
 

 

The models in the Sections 6.1-6.3 are to demonstrate the introduction of the optimal 

control via some parameters manipulation. In these sections (6.1-6.3) the optimal control 

problems are formulated following Moroz, 2011.One of the most known kinetic process is the 

binding a low molecular ligand to a macromolecule, generally having several binding sites.  

 

6.1 Optimal control model of binding cooperativity  

6.1.1 Importance of low molecular binding and its cooperativity  

Cooperativity phenomenon (in its wide sense, auto-modulation) has been documented 

and studied for more than a century (Verhulst, 1838; Bohr et al., 1904; Hill, 1910; Pearl & 

Reed, 1920 ). It is believed to be one of the most intriguing properties of biological regulation, 

particularly in molecular binding. 

Molecular binding is the simplest sort of chemical reactions/kinetics that demonstrate 

cooperativity, however it is very important in the overall regulation of cellular, tissue and body 

functioning. Cooperativity in the binding of low molecular weight ligands to a macromolecule 

(e.g. a transport molecule, like albumin, haemoglobin; numbers of receptors) is still of growing 

interest because of the non-linear cooperative molecular effects. It is very important for 

molecular gain and can trigger many effects at the level of cell and the body response. Different 

allosteric mechanisms (Perutz, 1990; Klotz 1997) are also involved in molecular binding and 

signal generations. Allosteric effects in binding, which can be defined as a coupling, synergism 

of conformational changes between spatially separated binding sites of a macromolecule.  

 The most advanced models of binding are developed for oxygen binding to 

heamoglobin (Hb), so we will concentrate on oxygen binding to this macromolecule. A 

classical example of cooperativity in binding, is in the binding of a low molecular weight ligand 

to a macromolecule, for example, O2 binding to Hb, when cooperativity can be defined as a 

maximum slope, n=2.8. However, Hb has 4 subunits and therefore 4 binding sites. The binding 
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curve characterises as a ―sigmoid‖ or ―S‖-shaped. Physiologically cooperativity allows control 

over the concentrations of a ligand, in this case oxygen in tissues. 

 There are three well-known models of cooperativity in binding oxygen to Hb. They are 

the Adair model (Adair, 1925), the Monod-Wyman-Changeux (MWC) model (Monod, Wyman 

& Changeux, 1965), sometimes referred as concerted model, and Koshland-Nemethy-Filmer 

(KNF) model (Koshland, Nemethy & Filmer, 1966), referred also as ―induced-fit model. The 

MWC model is based on assumption that a binding macromolecul can be in two states: a low-

affinity state T and a high-affinity state R. The KNF model assumes that ligand binding leads to 

the conformational change, which consequently changes the affinity to the next binding site. A 

lot experimental data through number of decades (e.g. extracellular Hb has coperativity n~6 and 

higher, Fushitani et al., 1986; 1992; Marques & Meirelles (Erythrocruorin), 1995; Mozarelli et 

al., 1996; Weber et al., 2003; Hellmann et al., 2003) and  number of theotetical efforts 

(Acerenza and Mizraji, 1997; Eaton  et al., 1999; Tsuneshige et al., 2002; Qian, 2003, 2008; 

Onufriev and Ullmann, 2004; Agnati et al., 2005; Olivier et al., 2006) indicate inexhaustible 

interest to the cooperativity and O2 binding as a good model to study cooperativity. 

 In summary, the cooperativity phenomena are represented at all levels of biologival 

regulation, molecular, cellular, tissue and body. It is no surprise that, if the transitional 

processes of species replacement, change in a trophic niche also have the cooperative character. 

Therefore, it is very inportant to understand the cooperativity, and cooperativity of molecular 

binding, in particular from the optimal control perspective. In this section, we illustrate the 

nonlinearity effects when macromolecular ligands bind to a large macromolecule in terms of 

optimal control.  

 

6.1.2 Binding kinetics, cooperativity and its representation  

The standard representation of binding of any low-molecular-weight ligands, molecular 

factors mentioned above, is widely interpreted in terms so-called Hill‘s model (Hill, 1910; 

Weiss, 1997; Hofmeyr & Cornish-Bowden, 1997).  This model is based on applying so-called 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

134 

logit transformation to the experimental saturation data in order to linearise and produce a 

graphical representation (Hill plot), Fig.6.1.1. The coefficient of slope in the Hill plot 

establishes the so-called cooperativity. In a certain sense cooperativity characterizes the degree 

of rigidity of regulation for the local maintenance of concentration at some optimum in the case 

of binding. Let us therefore proceed to relate this parameter to a control parameter in the 

molecular concentration regulation. That means that one needs to investigate whether the 

problem of optimal control can be formulated for the molecular binding, where the Hill 

coefficient would play the role of a control parameter. 

 As was mentioned above, the allosteric model for the oxygen binding to haemoglobin 

is the most successfully studied from many perspectives. An obvious explanation for this comes 

from the exclusive role of oxygen in any biological process. As we mentioned, there is a 

various number of formal models for oxygen binding: Hill, 1962; Adair (Adair, 1925); Monod-

Wyman-Changeux (Monod et al., 1965) and Koshland -Nemethy-Filmer (Koshland et al.,1966) 

and even recently global allostery of Hb has been reviewed (Yonetani at al, 2002; 2003).  

 If one considers a generalized scheme of the low molecular weight ligand L (NO, 

Oxygen, etc.) binding at N centers of macromolecule A (receptor, transport protein, enzyme, 

etc.), 

 

so, according, for example, to (Voet and Voet, 1995) 

 
][L][AL

]AL[
K

1-j

j

i                (6.1.1) 

is the value, referred to as the equilibrium constant of binding at the j-s stage, which for 

simplicity we can consider as equal for all binding centers, so Kj=K. 

 Then the relative binding (saturation) is described by the expression 
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nn

nn

[L]K1

[L]K
 ,     (6.1.2) 

where 
total

bind

A

A
 is the relative binding, [A]bind, [A]total are the bounded and total 

concentrations of a macromolecule, [L] - the ligand concentration, n is the number of binding 

centers, Kj =K is  the constant of binding to the j-s center. Fig.6.1.1 illustrates the dependences 

of relative binding on the concentration for some theoretical scheme expressed in (6.1.2) at n 

=0.5, 1.0, 2.0, 4.0, 8.0.  

 

Fig.6.1.1 Graphical illustration of the relative binding; n=2.0-8.0 – positive cooperativity, n=1.0 

– no cooperativity, and n=0.5 – negative cooperativity.  - fraction of maximum value 

(saturation). Insert - the scheme of the optimal regulation at a ligand concentration shown by 

vertical line ―2‖. Curve 3 – the saturation curve  from figure A for n=2, curve ―1‖ is 1-  . 

Designations:  ―a‖ (under the curve ―1‖)- the area of relative free ligand; ―b‖ – area under the 

curve ―2‖ relative binding of the ligand ν; ―c‖ – the area indicating the relative binding of the 

ligand, when the ligand is bonded, however, does not needed relatively to ideal binding 

indicated by line ―2‖. ―d‖ the area where the ligand is still free, comparably to ideal binding 

indicated by line ―2‖. Figure adopted from Moroz, 2011.  

 

One can show that the expression for relative binding is related to the logistic curve, 

where the logarithm of ligand concentration is used as an independent coordinate. For 
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simplicity, let us apply the natural logarithm. By substitution of 
]ln[][ Xnn eL  into (6.1.2) one 

can get  

]ln[-

]ln[

+ Lnn

Ln

ek

e
,            (6.1.3) 

and, accordingly, this expression is the partial solution of the following differential equation 

2=
]ln[

nn
Ld

d
 .   (6.1.4) 

This can be easily checked up as follows. Assuming for simplification ln[L] =z , then 

nzn

nz

ek

e

+-
         (6.1.5) 

and  

22 )()()(
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dz

d
, 

and since (6.1.5), finally 

2= nn
dz

d
,     (6.1.6) 

that, in fact, should be shown. Thus, from the formal structure of the last equation the n may be 

treated as an ―autocatalytical‖ coefficient in the well-known differential equation of Verhulst-

Pearl. The result acquired can be interpreted in the following way: in the presence of n 

binding sites, the increase in relative binding dzd /  is proportional to the relative binding . 

This means that the process of binding complex formation is autocatalytical-like, one which is 

very important in binding regulation of low ligand concentrations. Thus, the Hill constant n can 

be interpreted as an autocatalytic parameter of the ligand binding to a macromolecule control, 

in respect to the relative binding . 

 

6.1.3     Dynamical optimal control outline 

 As was discussed in (Moroz, 2009), similar equation as (6.1.6) can be obtained as a 

result of the following OC problem: 
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min
2

)G(=J
0

2Z

dz
u

    (6.1.7) 

subject to  

)1(= u
dz

d
     (6.1.8) 

Applying the Pontryagin maximum principle [69,70], one can write the Hamiltonian: 

)1(
2

)(-=
2

pu
u

GH    (6.1.9) 

Then the system will be 

           

)1(

)1(

/

pu

puG
dz

dp

u
dz

d

    (6.1.10) 

together with the additional Pontryagin maximum principle demand H( *,p*,u*)=0 for the 

extreme trajectory (*). Substituting u from the last equation, we can get the system  

)1(

)1(

2/

2

pG
dz

dp

p
dz

d

    (6.1.11) 

and H( *,p*,u*)=0.  Using the last equation from (6.1.10), the Hamiltonian can be written as  

2

)1(
)(-=),(

22p
GpH    (6.1.12) 

The surface plot and contour plot of the Lagrangian (6.1.7) and Hamiltonian (6.1.12) for 

quadratic approximation of the potential G(ν)  

2
)(

22n
G     (6.1.13) 

is shown in Fig.6.1.2 for n=2.0. The Hamiltonian (6.1.12) can also be written as a dependent on 

dz
d, , which for optimal trajectory (*) is equal to zero, when the final state is not specified. 

In case of relaxational kinetics, the final state (ν=0). However, in our model of binding we 
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haven‘t a time variable, instead we have the logarithm of ligand concentration, z=ln[X]. The 

open-end problem in this model is when the concentration reaches infinity, which has no real 

meaning. This consequently means that we need a different optimal control problem, rather 

than the open-end problem. However, assuming that the concentration is, in an ideal case, very 

high, we can follow our method to formulate the optimal control problem. This means that we 

can accept all states, not just the optimal and we can therefore choose from these states the real, 

optimal state, when H*=0. Following this approach let us write the Hamiltonian which is 

dependent on relative binding ,  and its derivative 
dz

d  , then 

0
)1(2

)(-=),(
2

2

Const
dz

d

G
dz

d
H   (6.1.14) 

which at the quadratic potential  (6.1.13) for the optimal trajectory (*) this equation gives 

222

2

)1(n
dz

d
    (6.1.15) 

or  

*)1(*
*

n
dz

d
 .   (6.1.16) 

This equation at certain values of constants coincides with the form given by (6.1.6). The 

analytical solution of this equation is  

*1

*
lnCnz      (6.1.17) 

which is known as the Hill equation which is widely used for calculation the cooperativity n. It 

indicates a straightforward linear relation between variable z and the so-called logit: 

1
ln)(logit   .  

The numerical solutions of the system of equations (6.1.11) at quadratic potential are 

shown in Fig.6.1.3. Fig.6.1.3A shows the relative binding for different values of n. Fig.6.1.3B 

illustrates the trajectories of the control variable. Let us note that Fig.6.1.3C shows the positive 
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values of costate variable p, interpreted as the thermodynamic (kinetic) momentum of the 

binding process. This indicates that the solution (6.1.16) provides the maximum of the 

functional from the equation (6.1.7). The relative binding effectively strives to unity with the 

unlimited increase of the ligand concentration. However, one can take into account that the 

search for the maximum of a functional is equivalent to the search of its minimum with the 

negative sign. Additionally, the problem is symmetrical, which can be easily seen from 

Fig.6.1.2. It can also be illustrated by Fig.6.1.1 that the maximization of area ―a‖ is the 

minimization of area ―b‖. Minimization of area ―c‖ is, in fact, the tightening the regulation 

around the regulatory point (vertical line ―2‖, the concentration of the ligand at ν=0.5), which 

leads to increase of cooperativity and consequently can be considered as the rigidity of 

regulation of the concentration of the ligand in the surrounding medium. Thus, the 

maximization the area under curve ―3‖, Fig.6.1.1, is equivalent to the minimization of area ―c‖. 

This can be interpreted from the optimal control perspective as characterizing the regulatory 

losses between logistic curve ―3‖ and the vertical line of desired concentration, z0, that should 

be minimized. 

  

Fig.6.1.2 The contour plot of the Hamiltonian (6.1.12) for quadratic approximation of the 

potential G, (6.1.13). 0=1.0, n=2. Figure adopted from Moroz, 2011. 

 

One can see from Fig.6.1.2, that the Hamiltonian of the problem (6.1.12) is 

symmetrical relative to p=0. In our case, the physical sense has just area 0<ν<1. In this case 
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the kinetic (thermodynamic) momentum becomes infinite, approaching ν=1. Then the optimal 

control problem looks rather incorrect as a problem of minimization, however, as one can see 

from Fig.6.1.2, the minimization and maximization problems are symmetrical.   

A     B 

Fig. 6.1.3 Kinetics by solving system (6.1.11). A, plots of  against z; insert - phase plane of 

costate variable p versus . B, phase plot of decimal logarithm of –p versus state variable ; 

insert -  plot of logit( ) versus z/2.30, which, in fact, is transformed to a decimal logarithm in 

this way. Figure adopted from Moroz, 2011. 

 

One can compare Fig.6.1.3A to Fig.6.1.1A and Fig.6.1.3D to Fig.6.1.1C. The form of 

the curves for n=1,2,4 from Fig.6.1.3d is identical to curves 1,2,4 in Fig.6.1.1C. In fact, this 

result validates the approach based on the optimal control methodology. 

 

6.1.4 Optimal control Lagrange method  

It is obvious that the same equations can be obtained by using the optimal control 

Lagrange method: 

)1(
2

)(=
2

u
dz

d
p

u
GLOC .  (6.1.18) 

then  
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)1(
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u
dz
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puG
dz

dp

    (6.1.19) 

which is, in fact, the system (6.1.10) that gives (6.1.11). Since this is an open-end problem, the 

transversality condition is applied. 

 

6.1.5    Conclusions 

 It has been illustrated above, how the equation (6.1.16) can be obtained by employing 

the optimal control/variational technique. It is coinciding in a form with the logistical 

differential equation (6.1.6). Initially, the variable u was the proportionality coefficient in the 

control equation (6.1.8). Finally, in the transformed equation (6.1.16), the control u linearly 

depends on ν and the coefficient n, which characterizes cooperativity. So, in this way, the 

artificially introduced control u in the kinetic equation (6.1.8) later ―materialises‖ into a 

function of state variable (saturation) ν with a characteristic constant n that can be considered as 

cooperativity.  

 One shall note that with an increase of cooperativity n, the rigidity of the regulation 

also increases, which results in an increase in the slope coefficient in the equation (6.1.16). 

Fig.6.1.1B and Fig.6.1.3A illustrate this graphically. It indicates that the binding and the 

binding control, expressed as its cooperativity, can be considered in terms of optimal control in 

an un-contradictory manner. It also means that the binding description can be formulated as an 

optimal control problem and also a variational problem.  This consequently suggests the 

methodology of the least action principle. The coefficient of inclination which describes 

cooperativity is related to the control amplitude - this also being the specific cost of control. 

 However, one can note that the consideration presented here was based on assumptions 

of an ideal cooperativity. A disadvantage with this consideration is the phenomenological 

appearance of the energetic cost/penalty function, which is dependent on the state variable – 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

142 

saturation.  For other well known cooperativity models, like Adair (Adair, 1925); Monod-

Wyman-Changeux (Monod et al., 1965) and Koshland -Nemethy-Filmer (Koshland et al., 

1966)  the optimal control formulations certainly will be much more sophisticated.  

The methodology shown above demonstrates that the cooperative macroscopic binding 

behaviour can be explained from the OC perspective by considering the elementary binding as 

an optimal energetical process.  In some sense, it extends the understanding of the control 

process, its evolution in adaptive systems, particularly. In mechanics, as we have seen, the 

formal introduction of the control by the rate allowed the OC formulation (Moroz, 2009), when 

the control appears as a dummy-like variable. Here, in biological and biochemical kinetics, 

when considering the OC formulation of binding, the control variable u does not look like an 

absolute dummy, see Fig.6.1.3B. The optimal control is involved in an optimal control 

regulation loop, when the Hill cooperativity constant can be interpreted from the OC 

perspective, as the rigidity of control and kinetic momentum (costate variable). It is an 

energetical-like partial penalty/price/cost of deviation from the optimal state. 

 

 

6.2 Michaelis-Menten kinetics and optimal control 

 

In this section the optimal control problem for Michaelis-Menten-like kinetics is 

formulated following Moroz, 2011. 

 

6.2.1 The Michaelis-Menten model 

 Enzyme kinetics is one of the lowest regulatory levels in the complex hierarchy of 

metabolic regulation. The fundamental kinetic model of the enzyme kinetics, the Michaelis-

Menten model, is based on the assumption of the intermediate complex (Michaelis and Menten, 

1913). It is the basic approximations for many complex models in different fields of 

biochemistry, microbiology and biotechnology, for example, in metabolic (Acerenza, 2000; 
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Heinrich et al., 1991; Giersch, 1998; Schuster and Heinrich, 1987, 1991) or pharmacological 

models (Kakuji and Akapi, 1994). A number of research publications discuss the Michaelis-

Menten control approach applied to the enzyme network (Heinrich and Holzhutter, 1985; 

Hofmeyr et al., 1993; Fell and Thomas, 1995; Fell, 1997; Elsner and Giersch, 1998; Ortega and 

Agenda, 1998; Yildirim at al., 2003). Recently, Michaelis-Menten kinetics has been used to 

describe the changing rates of cellular activity during bone resorption, Martin and Buckland-

Wright (2004).  

At the same time, there is the number of the Michaelis-Menten based models on 

optimization that are discussed with respect to modelling the feedback control - chemostat 

models or batch-kinetics models (Lenas and Pavlou, 1995; Rahman and Palanski, 1996; 

Sengupta and Modak, 2001; Keesman and Stigter, 2002; Srinivasan et al., 2003; Smets et al., 

2002), with the perspective of overall output control in the biotechnological production. 

However, even from this perspective, it is very essential to investigate the optimal aspects of 

the regulation within the metabolic networks as an optimal control problem. Later it could be 

extended as a metabolic engineering approach to the optimization of the metabolic regulation in 

vivo from point of view of minimization of metabolic expenses for regulation and energetic 

optimisation in sense of processing at the minimum of thermodynamic potentials. In this sense 

the Michaelis-Menten kinetics is one of the basic model and studies are needed to revise and 

extend the understanding in the sense of optimal control and compare the results within others 

regulation approaches. 

 It is well known that enzymes are those structures indeed that affect the rate of 

chemical reactions without any shifting of the thermodynamic equilibrium (see, for example, 

Cannon, 2002). Therefore, it is even more reasonable to consider the enzyme kinetics in terms 

of optimal control technique, by the rates of chemical transformations. One of the simplest 

cases is the optimal control introduction into enzyme kinetics within the elementary Michaelis-

Menten pattern when the possible results could be easy to interpret and expand on the number 

of applied biochemical and biotechnological cases. 
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 The Michaelis-Menten model also is the basic model in this section. The goal of the 

present investigation is to revise the spectrum of dynamical behaviour after the introduction of 

optimal control into classic enzyme kinetic based on this equation. The optimal control 

interpretation in terms of metabolic costs/losses is another spotlight of our consideration. In this 

section we review the Michaelis-Menten kinetics regarding to the introduction of the optimal 

control methods in the way appropriate to this class of biochemical systems. 

 Standard Michaelis-Menten formal scheme of the reaction where the substance S 

transforms to substance P, is based on suggestion of so-called intermediate complex ES 

(Michaelis and Menten, 1913; see also Cornish-Bowden, 1995). If suppose that the first stage 

of this reaction is reversible, and the second one irreversible, then one can write classical design 

(see, for example, Cornish-Bowden, 2004) 

 

 

       . 

In the case, when the stoichiometric factor of the substrate S transformation to the product P is 

equal to unity, the kinetics of substrate S transformation described by the well known 

Michaelis-Menten equation, (Yildirim et al, 2003) be transformed to: 

SK

SV

dt

dS

dt

dP

M

max ,     (6.2.1) 

where S  is the concentration of the substrate, P  is the concentration of the product, 

1
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k
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KM  is the Michaelis constant, 02max EkV   is the maximal reaction 

velocity. 
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Fig.6.2.1 Double reciprocal plot of kinetics for Michaelis-Menten model (6.2.1), Lineweaver 

and Burk, 1934.  dtdSV / , s0=1.0, Vmax=1.0. Insert, the kinetic curves. Figure adopted from 

Moroz, 2011. 

 

 It can be seen from (6.2.1) that the velocity of enzymatic transformation can be 

formally controlled by means of the values for the KM and Vmax constants in the Michaelis-

Menten equation (6.2.1).  The kinetic properties of an enzyme reaction could be considered also 

in the so-called double reciprocal plot (Lineweaver and Burk, 1934). The latter 

representation has the convenience, which permits to determine directly the Michaelis constant 

KM and the maximal reaction velocity Vmax (Cornish-Bowden, 2004). 

 Let us formulate OC problem for enzyme kinetics represented by the above Michaelis-

Menten equation. From the form of the kinetic equation (6.2.1) one can alter the Michaelis 

constant KM or the maximal reaction velocity Vmax. We are suggesting that such a control can 

take place in vivo in the cell, and that it is carried out in an optimal manner, and it follows, for 

example, Smets et al, 2004. 
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6.2.2    General optimal control approach to Michaelis-Menten kinetics 

In a general one-dimensional case the optimal control problem accordingly to 

Pontryagin principle maximum principle, Pontryagin et al., 1962, can be written following 

(3.5-3.10) as   

00

min)()(),(
tt

dtuTsGdtuslJ    (6.2.2a) 

subject to dynamical constrains  

),( usf
dt

ds
      (6.2.2b) 

and 00 )( sts  and end-point condition s(τ)=seq, 

where s is state variable (substrate concentration), u is control variable (Michaelis constant KM, 

maximal reaction velocity Vmax), ),( usf  is Michaelis-Menten function (as we mentioned, 

sometimes referred as Monod function) from equation (6.2.1), J is objective functional, l(s,u) is 

the ―running cost‖ of the optimal control that can have a metabolic sense and also sometimes is 

referred as instantaneous costs/losses for optimal control. Then accordingly to the Pontryagin 

maximum principle, the Hamiltonian function is  

),(),( usluspfH      (6.2.3) 

and the canonical equations are 

),( usf
p

H

dt

ds
  (state variable system)       

s

G

s

f
p

s

l

s

f
p

s

H

dt

dp
  (adjoint/costate variable system)           

(6.2.4) 

0
u

f
p

u

T

u

f
p

u

l

u

H
  (necessary conditions for optimality),       

and transversality condition: H=0  (since time τ is free, and terminal condition is specified 

s(τ)=seq.  
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The alternative approach to this optimal control problem is directly based on variational 

calculus, see, for example, Gelfand and Fomin, 1963, because the control could be chosen as 

formally unlimited: the Michaelis constant KM or the maximal reaction velocity Vmax could 

formally vary from 0 to . The objective functional could remain as (6.2.2a) subject to 

constrains (6.2.2b) and boundary conditions 00 )( ss  and free end-point condition. Then the 

Lagrange method can be applied 

),(),( usfspuslL      (6.2.5) 

and the Euler-Lagrange equations will be 

0),(

0

usfs
p

L

u

f
p

u

T

u

f
p

u

l

u

L

dt

dp

s

G

s

f
p

s

l

s

f
p

s

L



.  (6.2.6) 

The system (6.2.6) in fact coincides with (6.2.4). Once again one can note that the maximum 

principle is the non-classical method for solving the variational problem in the case of open-

loop control. In the case the Lagrange function (6.2.5) is not explicitly depend on time so the 

first integral of the problem could be found in (Gelfand and Fomin, 1963]:  

ConstL

dt

ds

L

dt

ds
sE ),(     (6.2.7) 

which could significantly simplify the process of finding analytical solution and play important 

role on the stage of interpretation. On the basis of this general approach two different enzyme 

control models were investigated. 

 In order to get some insight into the mechanisms driving the optimal control dynamics 

pattern of the Michaelis-Menten system, the effect of the optimal control introduction into 

Michaelis-Mention equation has been considered in this part, which is divided into the two 

contributions: control by Michaelis-Mention constant KM and maximal reaction velocity 

constant Vmax. Thus, the control sources have been split in two categories. On the one hand, the 
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terms denoted by KM in system (6.2.1), which constitute the binding contribution, are 

considered and, on the other hand, the maximal reaction velocity term Vmax was formally used 

as opposite way of activity regulation. 

 

6.2.3  Control by means of maximal reaction velocity Vmax 

 In this section the optimal control problem is formulated following Moroz, 2011 by 

means of the maximal reaction velocity in equation (6.2.1), where the study of the influence of 

control introduction is made by Vmax on usual kinetic pattern of Michaelis-Menten system. 

Formally it is the simplest way of the OC introduction into the Michaelis-Menten kinetic 

equation. It can be formally carried out by alteration of the maximal reaction velocity Vmax . 

Then the problem of optimal control will be 

sK

us

dt

ds

M

,    (6.2.8a) 

where u is the control, KM is the Michaelis constant; s is the concentration of substrate. The 

objective functional could be defined as  

0

min
2

)(
)(

2

max

t

dt
Vu

sGJ .   (6.2.8b) 

The G(s) is the cost function describing the instantaneous metabolic, free energy 

related losses, for the deviation of the substrate concentration s from the metabolic optimum. 

The second term describes the metabolic cost for the regulation by alteration of the maximal 

reaction velocity from an optimal maxV . Applying the Pontryagin maximum principle 

(Pontryagin et al., 1962) to solve the OC problem (6.2.8) we can construct the Hamiltonian   

)(
2

)(
)(

2

max

sK

us
p

Vu
sGH

M

.   (6.2.9) 

So optimal solution must satisfy following conditions: 
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0))((
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max

2

pssKVu
u

H

s
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sK

puK

dt

dp

sK
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dt
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M

M

M

M

   .   (6.2.10) 

 By excluding u, the above system can be reduced to the system of two equations  

0)(;
)(

))((

)(;
)(

3

max

00
max

p
sK

pssKVpK

s

G

dt

dp

sts
sK

s

sK

pssKV

dt

ds

M

Mm

MM

M

         ,  (6.2.11) 

which allows us to write dynamical system for state variable s and co-variable p . 

 

General application to Michaelis-Menten kinetics 

Let us employ general approach to Michaelis-Menten kinetics. In the case, when the 

optimal control can be set by Vmax in the Michaelis-Menten equation (6.2.1), we can rewrite it 

as  

sK

sVu

dt

ds

M

)( max      (6.2.12) 

where u is a control additively to Vmax. Then OC formulation can be written as  

00

min)()(),(
tt

OC dtuTsGdtusL    (6.2.13) 

subject to     00
max )(;

)(
sts

sK

sVu

dt

ds

M

 

where LOC is the optimal control Lagrangian, which we can choose in form more specific for 

the Michaelis-Menten kinetics: 

2
)()()(),(

2u
sGuTsGusLOC     (6.2.14) 

Then we can find from (6.2.12) that  
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s

ssK
Vu M

)(
max      (6.2.15) 

and substitute it into the optimal control Lagrangian (6.2.14)  and find the variational 

Lagrangian 

2

max

)(

2

1
)(),(

s

ssK
VsGssL M

VA


    (6.2.16) 

Finally, the Euler-Lagrange equation becomes 

232 )()( ssKKs
s

G
ssKs MMM

    (6.2.17) 

The transversality condition gives  

0
2

)(
)(),(

),(

** ,

2

22
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M
VA

VA

s

sVsKs
sGssL

s

ss
s







  (6.2.18) 

which gives for optimal (*) trajectory: 

0
*2

**)(*
*)(

2

22

max

22

s

sVsKs
sG M


   (6.2.19) 

or 

*

*)(2*
*

2

max

sK

VsGs
s

M

     (6.2.20) 

Integrating this equation we can get 

22

max)(2
Cdtds

VsGs

sKM    (6.2.21) 

where C2 can be found from initial condition 00 )( ss . 

Using Legandre transform we can write variational Hamiltonian 

2

max

22

)(2

)(2
)(),(

sK

sKpsVsp
sGpsH

M

M
VA    (6.2.22) 

then the canonical equations are 
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  .   (6.2.23) 

This equation coincides with Eq.(6.2.11).  

 The variational Lagrangian for quadratic penalty can be written as  

2

max

2
)(

2

1

2

)(
),(

s

ssK
V

ssl
ssL Meq

VA


  (6.2.24) 

The contour plot of the first integral of this example is shown in Fig.6.2.2. The contour plot of 

the Lagrangian is shown in Fig.6.2.2, upper insert and the Hamiltonian is shown in the lower 

insert of Fig.6.2.2. In this figure the first integral as the function of state coordinate and its 

derivative is illustrated. 

 

Fig.6.2.2. The first integral as the function of state coordinate and its derivative at quadratic 

approximation of the potential G and s0=0.1, l=0.1, Vmax=0.1, KM=0.01. Upper insert - the 

contour plot of the Lagrangian LVA (6.2.24). Lower insert - the Hamiltonian (6.2.22). Figure 

adopted from Moroz, 2011. 
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Fig.6.2.3. The first integral as the function of state coordinate and its derivative at the 

logarithmic approximation of the potential G (6.2.26) and seq=0.1, l=0.1, Vmax=0.1, KM=0.01. 

Insert A – the contour plot of the Lagrangian LVA (6.2.16). Insert B - the Hamiltonian for 

logarithmic approximation of the potential. Figure adopted from Moroz, 2011. 

 
Fig.6.2.4. The phase plot (s,p) of the numerical solutions of Eq(6.2.23) for pure variational 

formulation is shown for seq=0.1, l=0.1, Vmax=0.1, KM=0.01 for different values of numerically 

calculated Hamiltonian, t – dimensionless time. Insert left - phase plot (s,ds/dt); Insert right, the 

trajectories of the state variable s (substrate concentration) scale versus time t.  The curve 

designed as (*) is the closest approximation of real trajectory (H*=0). Figure adopted from 

Moroz, 2011.   

 

 In the plots indicated in Fig.6.2.2 the squared-law penalty (potential) is employed. This 

is a simplest approximation widely accepted in the optimal control studies 
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    2)()( 2

eqsssG    .   (6.2.25) 

However, as we mentioned previously, in natural case of kinetics when only positive 

concentrations only are accepted, and effectively the consideration of system is not limited by 

to be closed to steady state, it is reasonable to introduce the form of cost (here it is the 

instantaneous cost/penalty for the deviation of this concentration from the optimum) in the 

logarithmic approximation (which is related to a form sometime used for the Lyapunov 

function, or free energy approximation) see for example, Kondepudi and Prigogine, 1998: 

k
G

s

s
skG

s

s
kssG

eqeq

0
0 )1(ln)1(ln)(    ,  (6.2.26) 

where 
0

1
G

k , then the first integral (that could be interpretable as energy-like value of this 

process). Comparing (6.2.25) and (6.2.26) at different equilibrium state shows small differences 

near to the equilibrium. Using the logarithmic form of the cost we have calculated and shown 

the Lagrangian (6.2.16) and the Hamiltonian Eq (6.2.9), in Fig.6.2.3 as a contour plot of the 

first integral and Fig.6.2.3 (insert A and B) as a contour plot of the Lagrangian and  

Hamiltonian for the logarithmic form of the cost (6.2.26), where state variable is seq=0.1 and 

control variable is 0.1maxV .  

 For the comparison of the results based on the Lagragian/Hamiltonian calculations 

(6.2.13)/(6.2.22) shown in Fig.6.2.2 with the results of numerical calculation for dynamic 

system (6.2.23/6.2.11) the calculations were performed using Runge-Kutta method. The plots 

of the phase trajectories lines for some initial values for the system (6.2.23) when the square-

low penalty approximation G(x) employed, are indicated in Fig.6.2.4 for the square-low form 

(Vmax = 1.0, seq = 0.0).  

 In the Fig.6.2.4 the phase plot of co-state variable p against the state variable s is 

shown. In the figure Fig. 6.2.4(lest insert), the graphs show also the phase trajectories of the 

concentration derivative and state variable s. The Fig.6.2.4 (right insert) shows the relaxation 

trajectories substrate concentration in dimensionless time. The figures in Fig.6.2.4 indicate the 
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same character of extreme trajectory (designated as *) as in Fig.6.2.2 (lower insert, H=0), 

correspondingly. So, the results shown in Fig.6.2.4 are in good agreement with the results in 

Fig.6.2.2.  

Thus, one can see that all these phase plots coincide with the contour plots for the 

Hamiltonians that obtained by the direct numerical calculations from the dynamic system 

(6.2.22), which indicates correctness of the approach. 

  

6.2.4   Optimal control formulation in terms of state and control variables 

However, let us not that the consideration of a problem in terms of state and co-state 

variables is somewhat difficult in the interpretation, in particular, in interpretation of the costate 

variable. From this perspective, the consideration of problem in terms of control variable is 

more convenient and interesting. Let us then reconsider the optimal control by Vmax when the 

control variable is explicitly covered in the dynamic equations.   

Employing the Lagrange method we can construct the Lagrangian of the optimization 

problem (6.2.8a-8b) is (regarding to control by maximal velocity):  

)(
2

)(
)(

2

sK

us

dt
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p

uu
sGL

M

eq
,          (6.2.27)  

then the Euler-Lagrange equations in fact repeat the system (6.2.10).  
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sK

puK
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Meq

M

M

M

 

 By excluding p from this system one can get the system, describing the process in 

terms of state variable s and control variable u. As it was mentioned above by this method, 

because Lagrangian does not depend explicitly on time, it is possible to find so-called first 

integral (6.2.7) of the system that means that there is a conservative value, which duplicates in 

fact Hamiltonian. Generally speaking it is not obvious, because (as for example in classic 
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mechanics) energy (first integral) and Hamiltonian not always formally match.   Excluding p 

from systems (6.2.10) one can obtain new system for the state variable s and control variable u:  

sK

sGs

dt

du

sK

us

dt

ds

MM

)/(
,  .   (6.2.28)  

Since u> 0, KM > 0 , s + KM > 0 , the denominator does not give any singularity, therefore it is 

possible to subdivide the right parts of equations. Then the system could be transformed to 

u

sG

ds

du /
 .         (6.2.29) 

Having solved this differential equation it is possible to find clear relationships between the 

concentration s and the amplitude of control u and consider some interpretations. On the other 

hand from above equation it is possible to find the first integral: 

22
)(

2

max

2 Vu
sGH .         (6.2.30) 

Let us now come back to the special cases of penalty for deviation from equilibrium. So, if it 

were limited by the squared form of the form of cost (6.2.12) then the first integral (6.2.17) is: 

2

))((

2

)(
maxmax

2
VuVuss

H
eq

.    (6.2.31) 

The surface plot and the contour plots of the lines of an identical level for the first integral are 

indicated in Fig.6.2.5 for Vmax = 1.0, seq = 1.0 and  seq = 0.0. The Fig. 6.2.6 shows the lines of 

identical level E in case of the logarithmic form of cost (6.2.26) when k=seq , G0 =1, seq = 0.10 

and  Vmax = 1.0, when the first integral value E is 

22
1)1(ln

2

max

2 Vu

s

s
sH

eq

.    (6.2.32) 

Let us note that these quantities (6.2.31, 6.2.32) cannot be associated with the energy of the 

process. Finally after elimination of p , both systems are shown below for state variable s and 

control variable u ; under the square-law form of cost (6.2.25) and for Vmax = 1.0 and seq = 1.0  

s

ss

dt

du

s

us

dt

ds

1

)1(
,

1
 ,   (6.2.33) 
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and for the logarithmic form of cost (6.2.26) when G0=k=1: 

s

ss

dt

du

s

us

dt

ds

1

ln
,

1
 ,   (6.2.34) 

and at the Michaelis constant KM=1 , what indicates that the systems are scaled.  

A B 

Fig. 6.2.5 First integral H (6.2.31) contour plots corresponding to the systems (6.2.33). A, 

contour plot of the first integral described by the expression (6.2.31) at value seq=1.0 and Vmax 

=1.0; B, the contour plot of the first integral described by the expression (6.2.31) when seq=0 

and Vmax =1.0. Figure adopted from Moroz, 2011. 

 

The numerical solutions of these systems (6.2.33,34) repeat the solution of system 

(6.2.11) for state variable s and costate variable p, however in terms of state variable and 

control variable u. Performing the numerical calculations using these two representations (s,p) 

and (s,u) to obtain trajectories of these two-dimensional dynamical systems obviously shows no 

difference in the results. Interesting indication comes up when the kinetic data obtained is 

shown in so-called double-reciprocal Lineweaver-Burk (1934) plot (also see for example recent 

linearization development in [96]).  

It is known that double-reciprocal plot is widely used in enzyme kinetics for estimation 

of Vmax and KM, where the slope is KM/Vmax and y-intercept is 1/Vmax , see the dotted line on 

every double-reciprocal plot. We used the system when KM = 1.0 and Vmax = 1.0 so the 
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intercept of this curve is equal to unity and slope in the case when Vmax = 1.0 is equal to unity, 

too.  

The figures Fig.6.2.7 and Fig.6.2.8 show the trajectories of (6.2.31) and (6.2.32) in 

double-reciprocal plot for square-law and logarithmic potential. The inserts A in figures 

Fig.6.2.7, Fig.6.2.8  indicate the phase plots in terms of p and s and inserts B –in terms of s and 

u  in case of the square-law approximation of the potential and for the logarithmic form of cost.  

   

 

A  B 

Fig. 6.2.6 The first integral contour plot corresponding to the Eq.(6.2.32) and the systems 

(6.2.34). A, contour plot of the first integral E(S,p) described by the expression (6.2.32) at value 

Vmax =1.0 and seq=1.0 ; B, contour E(s,u) plot of (6.2.32) described employing expression 

(6.2.26) when G0=k=1 and values seq=0.1, Vmax =1.0.  Figure adopted from Moroz, 2011. 

 

 

One can see from Fig.6.2.7 and Fig.6.2.8 that the trajectories ―a‖ are the closest to the 

curves H=0, in Fig.6.2.5 and Fig.6.2.6 correspondingly. For both forms of cost when seq= 1.0 

the dotted curve is the tangent line to the E=0 kinetic curve designed as ―a‖ in all Fig.6.2.7 and 

Fig.6.2.8. The tangent curve not just touches the kinetic curve ―a‖ corresponding to H=0, but 

coincides with this kinetic curve in long range of values.  

That in fact indicates good reliability of consideration of Michaelis-Menten kinetics in 

the optimal control terms. Moreover, it illustrates that the Michaelis-Menten kinetics is an 

optimal kinetics in sense on energetical criteria, which are set in (6.2.2) and (6.2.13). 
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Fig.6.2.7 Solutions of the system (6.2.33) obtained numerically for the quadratic form of cost at 

values seq=0.0 and Vmax =1.0:  The trajectories in double reciprocate coordinates. Curves ―a‖ in 

corresponds to H*=0 level of Fig.6.2.5B, for the quadratic form of cost, dotted line corresponds 

to the Michaelis-Menten equation scaled to Vmax=1 and KM = 1. Insert A, shows the phase 

trajectories in  (s,p) plane; Insert B, the phase trajectories in (u,s) plane. Figure adopted from 

Moroz, 2011. 

 

Fig.6.2.8 Solutions of the system (6.2.34) obtained by numerical method for the logarithmic 

form of the cost at values seq=0.1 and ueq=1.0. The trajectories in double reciprocate 

coordinates. Curves ―a‖ correspond to H=0 level of Fig.6.2.3 (insert B), for the logarithmic 

form of cost. The dotted line in figure A corresponds to Michaelis-Menten equation scaled to 

Vmax=1 and KM = 1. Insert A, shows the phase trajectories in (S,p) plan; insert B, the phase 

trajectories in (s,u) plan. Figure adopted from Moroz, 2011. 
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6.2.5     Control by the Michaelis constant KM 

Formally there is another, much more important way of the optimal control 

introduction into the Michaelis-Menten kinetic equation because of its link to allosteric 

regulation. Let us now amend the Michaelis-Menten equation, where the Michaelis constant KM 

is replaced by some time-dependent amplitude of control u(t): 

su

sV

dt

ds max  ,        (6.2.35) 

where u(t)  is a control variable formally from unlimited area [0, ], Vmax   is  the maximal 

reaction velocity, state variable s  is the substrate concentration. We can define the objective 

functional as  

0

min
2

)(
)(

2

t

M dt
Ku

sG ,     (6.2.36) 

where G(s) is cost function that formally describes the instantaneous metabolic cost for the 

excessive deviation of the substrate concentration s from the optimum. The second term is the 

cost function describing the metabolic expenses for the regulation.  

When formulating the variational outline for control by the Michaelis-Menten constant 

the situation is more complicated. Let us follow our scheme/outline. From (6.2.35) we can find 

that   

  s
s

sV
u


max               (6.2.37) 

Then variational Lagrangian can be written as  
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    (6.2.38) 

Then we can find the Euler-Eagrange equation using Legandre transform 
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   (6.2.39) 

and  
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   (6.2.40) 

Finally, the Euler-Lagrange equation is  
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  (6.2.41) 

The solution of this equation is very unlikely to obtain in a general case. The transversality 

conditions are 
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s M
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 ,  (6.2.42) 

then one can write for optimal trajectory 
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*
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sV
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     (6.2.43) 

Integrating this equation we can get 

2max

2)()(2
CdtVds

s

sKsG M
   (6.2.44) 

where C2 can be found from initial condition 00 )( ss . To find the Hamiltonian, using the 

Legandre transform it is not easy. From general expression for the Hamiltonian we can write 

that the variational Hamiltonian is  
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    (6.2.45) 

where derivatives have to be changed by expression in terms of momentum p. To find the 

numerical solution of Euler-Lagrange equation it is useful to go to the transformation qs . 

Then the system is  
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 (6.2.46) 

In case of square law potential this system will be 
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(6.2.47) 

In Fig.6.2.10 the numerical solutions of this system are shown.   

A               B 
Fig.6.2.9 The contour plots of Hamiltonian (6.2.45) for pure variational formulation 

corresponding to the optimal control by the Michaelis constant, seq=0.0, l=0.2, Vmax=1.0, 

KM=0.01 . Insert - the contour plot for the Lagrangian LVA (6.2.38) the at square law potential 

G. Figure adopted from Moroz, 2011. 

A   B 
Fig.6.2.10 The numerical data obtained as results of numerical calculation of equation (6.2.45) 

at seq=0.0, l=0.1, Vmax=0.1, KM=0.01 for different values of the first integral. Insert - the 

trajectories in time, t – dimensionless time. Figure adopted from Moroz, 2011. 
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Comparing Fig.6.2.9 and Fig.6.2.10 one can see clear topological similarities. Let us 

note that quantity q in the case of system (6.2.46-47) is not the Lagrange multiplier 

(momentum) because is not obtained using the Legandre transformation. One can also see, that 

the kinetic curves in Fig.6.2.10 (insert) clearly indicate the sigmoid character of relaxation; the 

derivative has the negative sign. Since it was difficult to apply directly the Legandre transform 

and formulate the Hamiltonian approach let us formulate problem in terms of state variable (the 

substrate concentration s and the control variable u). Let us build the Hamiltonian  

)(
2

)(
)( max

2

su

sV
p

Ku
sGH M .    (6.2.48) 

Then applying the Pontryagin maximum principle we can write the necessary conditions; the 

optimal solution must satisfy these necessary conditions: 
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,    (6.2.49) 

By reducing this system to the system of two equations for s and u we obtain the dynamic 

system 
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.      (6.2.50) 

Since u> 0, s> 0, u + s> 0, therefore it is possible to subdivide the right parts of the equations. 

Then the system could be transformed to 

M

M

Ksu

s

G
Ku

ds

du

23
 .             (6.2.51) 

Having solved this differential equation one can find clear relationships between the state 

variable (concentration) s and the amplitude of control u and give some interpretations.  
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Since the Hamiltonian function (6.2.48) is not dependent on time explicitly, the first 

integral of this problem is H=Const. On the other hand the first integral that could be calculated 

from direct variational approach [70] is: 

2

)23)((
)( MM KsuKu

sGH   .          (6.2.52) 

Let us consider some special cases. One specific case arises when objective function describing 

the formal penalty for the deviation of the substrate from the optimal/steady state has squared 

approximation (6.2.25), then the first integral H (in fact, the Hamiltonian of process) could be 

written as  

2

)23)((

2

)( 2

MMeq KsuKuss
H     .     (6.2.53) 

The contour plot of the lines of an identical levels of H (6.2.53) are indicated in Fig.6.2.11A 

and B for values seq =0.1, KM = 1.0.  

C 
Fig.6.2.11 Double-reciprocal plot in the case of the square-law cost for the substrate deviation 

from equilibrium/steady-state at value KM =1.0 and seq=0.1, calculated by Runge-Kutta method.  

phase trajectories in (s,u) plane from system (6.2.55). Insert A, the first integral H (6.2.53) 

contour plot. Insert B, the trajectories (6.2.55) in double reciprocate coordinates. Curves ―a‖ 

correspond to H*=0 level of insert A for the quadratic form of cost, dotted line corresponds to 

Michaelis-Menten equation with Vmax =1 and KM = 1. Figure adopted from Moroz, 2011. 
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 At the logarithmic approximation form (form that qualitatively coincide to form of 

thermodynamic potential in an ideal one-dimensional case, see Fig.2.1.6) then the first integral 

(that is interpretable as energy-like value of this process) is  

2

)23)((
)1)/(ln( 00

MM KsuKu
GsssH .              (6.2.54) 

The surface plot and the contour plot of the lines of its identical level for logarithmic form of 

cost  (6.2.54) are indicated in Fig.6.2.12 for when G0 =k=1 and KM = 1.0 . 

A   B  

 
Fig.6.2.12 The first integral H (6.2.54) contour plot corresponding to the systems (6.2.56) at the 

logarithmic cost for the deviation (6.2.26). A, contour H(s,u) plots of the first integral at values 

KM =1.0 and seq=1.0 ; B, contour plot H(s,u) described by the expression (6.2.52) when values 

are G0=k=1 and seq=0.1, KM =2.0. Figure adopted from Moroz, 2011. 

 

Let us have a more detailed look on the system (6.2.50) at the square-law form of cost 

(6.2.25). At seq=0.1, KM =1.0 and Vmax=1.0,  then the system of differential equations (6.2.50) 

transforms into 

))(23(

)2(

susu

sus

dt

du

su

s

dt

ds

.         (6.2.55) 

Fig.6.2.11 shows double-reciprocal plot of corresponding kinetic curves of system (6.2.55). 

Fig.6.2.11 (insert B) demonstrates some phase trajectories for this dynamical system obtained 

by the numerical method, when control u>0. One can see that topologically the picture poorly 

differs from Fig. 6.2.11 (insert A). It is clear from the comparison of Fig.6.2.11(insert B) and 
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the Fig. 6.2.11(insert A) that the curve ―a‖ in Fig. 6.2.11 corresponds most closely to the zero 

value curve for which the first integral H* =0. 

A B 
Fig.6.2.13 The double reciprocal plot of the numerical calculations of the systems (6.2.50) at 

the logarithmic cost for the deviation (6.2.26) that finally described by (6.2.56). A, double 

reciprocal plot of numerical solutions (S,u) described by the expression (6.2.56) when the 

values in G0 =k=1 and  KM =1.0,  Vmax=1.0; insert in A -phase trajectories of the system 

(6.2.56) with the logarithmic form of cost (6.2.26), u>0 domain. B, double reciprocal plot of 

trajectories of system (6.2.55), when KM=2.0, Vmax=1.0 ; insert in B – corresponding phase 

trajectories of the system (6.2.56) with the logarithmic form of cost (6.2.26), u>0 domain. 

Figure adopted from Moroz, 2011. 

 

 At the logarithmic approximation of the metabolic cost (6.2.26) for the substrate 

deviation from optimum state, the system (6.2.50) takes the form when G0=k=1  

))(23(

)1ln(

susu

sus
u

su

s
s





.           (6.2.56) 

The numerical solution of this system is represented in Fig.6.2.13. The curves designated as ―a‖ 

in Fig. 6.2.13 correspond most closely to the zero value for energy (contour plot is shown in 

Fig.6.2.12A,B correspondingly). One can see, if to extend the curve s designated as ―a‖  to the 

ordinate, it gives the Vmax value equal to KM=1.0 (Fig. 6.2.13A) or to KM =2.0 (Fig. 6.2.13B) as 

it was initially set in the system (6.2.56), accordingly. 

If to consider more general case, then the objective functional can be defined as  
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0

min)()(
t

dtuTsG      (6.2.57) 

subject to the dynamical constrains Eq(6.2.35) and  0)0( ss . 

By reducing the Euler-Lagrange equations to the system of two equations we obtain
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.     (6.2.58) 

The first integral H, will be  

)()()( su
u

T
uTsGH      (6.2.59) 

In the case of logarithmic approximation for the cost for the metabolic control T(u), as well as 

logarithmic approximation for G(s), see Eq.(6.2.26), )1)1(ln()( uukuT u the first 

integral H will be  

constusukuukGsskusH uus ln)()1)1(ln()1(ln),( 0 .  (6.2.60) 

The double-reciprocal plot of (6.2.58) at (6.2.60) is shown in Fig. 6.2.14. The contour plot 

corresponding to this equation that contains the logarithmic cost approximation for the substrate 

deviation and for the control at the values ku=0.5 and ks=1.0 is shown in Fig. 6.2.14(insert A). 

The numerical solution of the system (6.2.56) is shown in Fig. 6.2.14 (phase plot, insert B).  

One can see that curve denoted as ―a‖ in the double-reciprocal plot plane, Fig. 6.2.14 

corresponds to H=0 curve in Fig.6.2.14(insert B). The expansion of this curve ―a‖ in double-

reciprocal plot plane, Fig.6.2.14 from area near to equilibrium gives Vmax =1.0 and average KM 

about the unity, also. 
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Fig. 6.2.14 The plot in double reciprocal coordinates of the system (6.2.58), dotted line 

corresponds to the Michaelis-Menten equation scaled to Vmax=1.0  and KM = 1.0 . Insert A, the 

first integral H (6.2.60) contour plot corresponding to the system (6.2.58) with the logarithmic 

form of cost (6.2.26) for the substrate deviation s and for the control  u, ku=1.0; ks=1.0. Insert B, 

phase trajectories of the system (6.2.58) with the logarithmic form of the cost, obtained by the 

numerical method. Curves ―a‖ in main figure and insert B correspond to H*=0 level of insert B. 

Figure adopted from Moroz, 2011. 

 

Simultaneous optimal control by the Vmax and the Michaelis constant K  

In the general case the control could be implemented by the maximal velocity Vmax and 

by the Michaelis constant KM simultaneously. Then the objective functional could be defined as 

0

min),()(
t

dtvuTsGJ     (6.2.61) 

subject to the dynamical constrains  

su

vs

dt

ds
      (6.2.62) 

and  0)0( ss , where v  is the control variable responsible for regulation by Vmax, and u – is the 

control variable responsible for control by Michaelis constant KM. Then employing the 

Lagrange method we construct 
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su

vs
spvuTsGL ),()(     (6.2.63) 

canonical system similar to (6.2.4) or Euler-Lagrange system (6.2.6).  

0

0

0
)(

)(

2

2

su

vs
s

p

L

su

ps

v

T

v

L

su

pvs

u

T

u

L

dt

dp

su

puv

s

G

s

L



     (6.2.64) 

Employing squared form (6.2.25) for G(s) and squared form for the cost of control: 
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max

2 VvKu
vuT M      (6.2.65) 

we can simplify the Euler-Lagrange system. The results of the numerical calculations for 

simplified system are shown in Fig.6.2.15A as a Lineweaver-Burk plot for seq=0.01, Vmax=1.0, 

KM=1.0 at initial values of the state variable s(t0)=0.9, costate variable p(t0)=-0.285, and 

control variables v(t0)=1.1, u(t0)=0.9 for the optimal trajectories (H*=0). One can see that 

curves remain linear but slope and intercept, characterised kinetics are to some extent changed 

from the standard Michaelis-Menten kinetics without control.  

Fig.6.2.15B shows the plot of the control variables u and v in time  when logarithmic 

form (6.2.26) of function G(s) is employed for seq=0.01, Vmax =1.0, KM =1.0 and different initial 

values of state and control variables for H*=0. All curves have linear character, slope and 

intercept of them are different from the reciprocal curves for ideal systems when Vmax and KM 

are fixed, which obviously is caused by considering the Vmax and KM as the control variables.  
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Fig.6.2.15 Phase trajectories of the problem (6.2.61-64) in double reciprocal coordinates with 

the square form of cost (6.2.25) in the case of logarithmic form of potential, obtained by the 

numerical method. A, curve corresponds to H*=0. Curve corresponds to the equation (6.2.1) 

when v(t0)=1.1, u(t0)=0.9. B, kinetic curves u and v in time. C, decimal logarithm of –p in time. 

Relaxation of the calculated Hamiltonian in time. Figure adopted from Moroz, 2011.  

 

6.2.6 The link to the biochemical mechanisms 

 The method of optimal control implementation we want to bring into focus is, that all 

types of the OC introduction that are suggested in this section can find their analogy in vitro in 

batch kinetics control or in vivo in the enzyme activity regulation in the cell. First important 

note should be indicated, as was already specified according to (6.2.1), the maximal reaction 

velocity is equal to 02max EkV , where Е0  is the  enzyme concentration, 2k  is the rate constant 

of substrate-enzyme complex disintegration, then the control by means of changing Vmax can be 

related both to the regulation by particular enzyme synthesis (the increase or the reduction of 

enzyme concentration) and to change of the rate constant 2k of disintegration of the substrate-
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enzyme complex into the enzyme and the final product. In terms of enzyme kinetics the control 

by maximal reaction velocity is associated to non-competitive inhibition formally introduced by 

the substitution in the equation (6.2.1) of maximal reaction velocity Vmax by the so-called 

effective velocity 
/

maxV  , see, for example, [92, 97]:  

i

max/

max

k

]i[
1

V
V   ,        (6.2.66)      

where  [i]  are the concentrations of the i-s inhibitors, ki    are the binding constants. 

 Secondary, it should also be noted, that the regulation formally expressed through the 

control by means of the Michaelis constant KM, has an enzymologic equivalence to the 

competitive inhibition. In the case of allosteric mechanisms of enzyme activity regulation, such 

inhibition by means of the alteration in the Michaelis constant KM is expressed formally by the 

so-called effective constant Km
/

(Cornish-Bowden, 2004; Hsu et al., 2000): 

i

/

k

]I[
1MM KK  ,             (6.2.67) 

where [I] is the concentration of free inhibitor; ki  is the inhibition constant 

][

]][[

IE

IE
ki

  ,           (6.2.68) 

and [E] is the enzyme concentration. Thus, the optimal control by means of the Michaelis 

constant has a metabolic analogy in the molecular form of competitive inhibition, because 

effectively the inhibition (or activation) changes the affinity (i.e. KM) of the substrate to the 

active site of an enzyme. The simultaneous control by the Vmax and KM could be explained by 

the above mechanisms of non-competative and competitive inhibition that take place at the 

same time in vivo. 

 Interesting are the physical aspects of this way of the optimal control implementation 

into Michaelis-Menten formal scheme. For example, from the comparison of Fig.6.2.5H and 

Fig.6.2.7B it is also seen that curve ―a‖ in Fig.6.2.7B corresponds most closely to the zero value 
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curve of the first integral H*(s,u)=0, u>0, in Fig. 6.2.5H. In double reciprocal coordinates, 

Fig.6.2.7C, the dotted line represents the Lineweaver-Berk plot for scaled (Vmax=1.0 and KM 

=1.0) Michaelis-Menten process. One can see that this line is a tangent to the curve ―a‖ which 

corresponds to an optimal curve when the Hamiltonian equals to zero (so the first integral 

equals to zero as well). The similar comparison for logarithmic form of the cost, Fig. 6.2.6B,D 

and Fig.6.2.8A,B, accordingly, shows the similar result for curve ―a‖, what means that energy-

like first integral (because it concedes with Hamiltonian expression in the case of the 

Pontryagin maximum principle) is, in fact, the Hamiltonian function H. From the mechanical 

point of view, the Hamiltonian and energy cannot be negatively defined. On the other hand, 

from the Pontryagin maximum principle the Hamiltonian function for the optimal trajectory is 

maximal, and in our case it equals to zero.   

 In the case of optimal control by the Michaelis constant, from the comparison of Fig. 

6.2.9E (Fig.6.2.11B in the case of logarithmic cost) and Fig.6.2.10A (Fig.6.2.11C in the 

logarithmic penalty case) correspondingly, it can also be seen that curve ―a‖ in Fig.6.2.10A 

(Fig.6.2.11C in logarithmic case) corresponds to the zero value of the Hamiltonian H(s,u). In 

the double reciprocal plot, Fig.6.2.11D (Fig.6.2.13B,D in logarithmic case), the corresponding 

curve ―a‖ is the closest to the ideal dotted line for pure Michaelis-Menten kinetics (without 

control) scaled by KM =1.0 and Vmax=1.0, also. As well as, the continuation of these curves 

from data points closed to the equilibrium point until crossing with the vertical axes 1/V gives 

the Vmax values equal to 1.0 (Fig.6.2.11D), as was initially set in the system (6.2.55) or system 

(6.2.56) in the case of logarithmic form of the cost. It is topologically clear, that near the 

equilibrium the picture for logarithmic form of cost poorly differs from those for the square-law 

cost. The same picture is observed for the trajectories H*=0 (corresponding to zero-value of the 

first integral) when logarithmic approximation is applied to both for the metabolic control cost 

T(u), as well as for the metabolic/thermodynamic losses (costs for deviation from equilibrium 

seq) expressed by G(s), Fig.6.2.14. It also gives the Michaelis constant close to the value KM 
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=1.0, as well as maximal reaction velocity Vmax , also close to unit, as is initially set in the 

system of equations (6.2.60) for numerical calculations.  

 All the plots discussed above show one, among the family of these curves, truly 

optimal curve matching to the first integral that corresponds to the Pontryagin maximum 

principle H*=0. It is also typical that such curves in the plot of double reciprocal coordinates 

are tangent to the line directly corresponding to standard Michaelis-Menten scaled system. 

Moreover, its continuation until crossing with the vertical axes 1/V, as is known, gives two 

values: the Michaelis constant KM and the maximal reaction velocity Vmax . As it is clear from 

the figures, if to determine these values from the corresponding curve (H*=0) in reciprocal 

coordinates, the KM and Vmax  are close to the values initially set in cost for control, which 

confirms the correctness of the approach in the case of the introduction of control.  

 Thus, the introduction of the optimal control does not also change the topology of 

kinetic variables on standard plots. Furthermore, in the optimal case when the Hamiltonian 

function (the first integral) is equal to zero H*=0, the results of optimal control introduction 

quantitatively agree with the well-known results as one can see from double reciprocal plots. 

The condition H*=0 that follows from the Pontryagin maximum principle (Pontryagin et al., 

1962), is needed for problem of the maximization of the Hamilton functions. In mechanics, and, 

generally in physics, the physical sense of the Hamiltonian is energy. Taking into account that 

the potential G(s) describing the metabolic losses, has direct energetical meaning related to 

thermodynamic form of penalty of being not in the equilibrium state (particularly in logarithmic 

approximation), it is possible to suggest that the first integral has the energetical sense, too, 

which does not contradict to physical logic. The way in what the optimal control can be applied 

to the Michaelis-Menten kinetics creates good background to use it for the study more 

complicated metabolic chains.  

 At the same time, the introduction of optimal control expands formally the conceptual 

opportunities of the consideration and the interpretation of the experimental data. It does not 

simply state that the control is possible by the Michaelis constant or the maximal reaction 
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velocity or both, but that this control is carried out in an optimal way toward minimal metabolic 

expenditures for the regulation. Thus, the introduction of control into enzyme kinetics extends 

(in a sense related to thermodynamic one) the standard kinetics views and the suggestion about 

the enzyme control of activity in the cell.  

 Regarding to the consideration of two optimal control methods (Pontryagin maximum 

principle and direct variational Lagrange multipliers method) used in this section we should 

note the following. The last method seems to be also interesting with respect that the Lagrange 

multipliers (momenta) can be singled out and it is possible to concentrate on the direct relation 

of the substrate concentrations to the control parameters u or v , when the control is introduced 

by the maximal reaction velocity or the Michaelis-Menten constant in equations (6.2.33, 6.2.34, 

6.2.50).  

Similar to the static optimal control problem widely explored in economical 

applications, the dynamic Lagrange multipliers (or costate variables) assign the marginal 

increase (or decrease) in terms of metabolic utility (or metabolic profits) if there is an alteration 

in the state variables. In this sense, the scheme of variational approach or the Pontryagin 

maximum principle is to build a set of costate variables that evaluate the influence on the state 

variables in the manner that maximizes the total value of the Hamiltonian.  

 Thus, the introduction of optimal control into the standard enzyme kinetics scheme 

(Michaelis-Menten) can be considered by employing direct Lagrange variational approach and 

the Pontryagin maximum principle to the optimal control problem formulated. As a conclusion, 

we can state that three considered ways (by maximal reaction velocity Vmax, by the Michaelis 

constant KM and simultaneously by Vmax and KM) of introduction of optimal control into the 

Michaelis-Menten scheme of the enzyme kinetics can be considered without any contradictions 

to the classic enzyme kinetics results. Described optimal control models are biochemically 

acceptable representations of simple enzyme kinetics, moreover, they broaden the interpretation 

of the pattern of regulation. Extended from the Michaelis-Menten equation, the dynamical 

systems can be obtained as a result of the Euler-Lagrange equations or canonical equations. The 
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real trajectories can be chosen under physical demand of non-negativity of first integral 

(energy) and the Pontryagin maximum principle, when Hamiltonian function is equal to zero 

for the optimal trajectory. The results on different ways of enzyme activity regulation can be 

also employed to get a snapshot of the different types of regulation contributions. A good 

agreement between optimal control results and classical enzyme kinetics in Lineweaver-Burk 

plots can be seen.  

 

 

6.3  Optimal control and multi-enzymatic kinetics 

6.3.1    Optimal control method in modelling of multi-enzymatic chains  

Optimal control approach is widely applied to study the regulation of homeostasis 

(Pörtner and Schäfer, 1996; van Riel et al., 2000; Visser et al., 2004). There are a number of the 

optimal control models based on the Michaelis-Menten kinetics that in relation to modelling, 

discuss feedback control - chemostat models or batch-kinetics models (Lenas and Pavlou, 1995; 

Van Impe and Bastin, 1995;  Rahman and Palanski, 1996; Cacik  et al.,2001; Sengupta and 

Modak, 2001; Keesman and Stigter, 2002; Srinivasan et al., 2003; Valentinotti et al., 2003; 

Smets et al., 2004, Gadkar et al., 2006; Mohseni et al., 2009; Yüzgeç et al., 2009), with the 

perspective of overall output control in biotechnological production. Optimal control methods 

have shown to be useful in the control of different treatment optimisation (Liang et al., 2008; 

Itik et al., 2009; Chávez et al., 2009), and blood glucose level regulation (Eren-Oruklu et al., 

2009; Acikgoz and Diwekar, 2010).  

However, even from the perspective of regulation in the short chains/fragments of 

overall cellular metabolic network, it is essential to investigate the optimal aspects of regulation 

within these fragments as an optimal control problem. Following this, the developed experience 

could be extended to a description or to OC metabolic engineering to optimise metabolic 

regulation in vivo; from the perspective of minimising metabolic expenses for an optimal 

substrate/product output regulation, and thermodynamic optimisation by processing at the 
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minimum of thermodynamic potentials. In this sense glycolysis is one of the basic metabolic 

pathways and further studies are required to revise and extend the understanding of optimal 

controllability, comparing results with alternative regulation approaches where appropriate. 

 It is well known that enzymes are structures that affect the rate of chemical reactions 

without shifting the thermodynamic equilibrium, see for example, Cannon, 2002. The models in 

this section employ the glycolysis model as one of the basic models (good working examples) 

in metabolic network kinetics. The goal of the present consideration is to illustrate that the 

spectrum of dynamical behaviour after the introduction of optimal control into this kinetics 

does not change the topology of the main, metabolically sensible and steady state/equilibrium 

taking place within the system without explicit control. Optimal control interpretation of the 

extended model in terms of metabolic/catabolic costs/losses is another area of focus in this 

section.  

 

6.3.2 Optimal control introduction into the Bier and coauthors–Volkenstain (BTKW-V) 

model of glycolysis   

The results in previous sections encourage one to apply the proposed approach to study 

a more complicated system. It would be interesting to consider a well-investigated pathway of 

biochemical reactions, and when the behaviour in this pathway is imposing the requirement of 

optimal control on the pathway regulation. A good example could be the model of glycolysis, 

well-investigated from many aspects including biochemical, evolutionary and mathematical. It 

is also known, that glycolysis contains more than 20 intermediate stages (Neilsen et al., 1997; 

Heinrich et al., 1997) and some of them are shown on the diagram below: 
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Fig.6.3.1 Metabolic glycolytic pathway: FBP – Fructose1,6bis-phosphoglycerate is inhibited by 

a reaction of phosphorfructokinase (PFK); combined with hexokinase (HK), which needs ATP, 

see Higgins, 1967, or Selkov, 1968; or Bier et al., (1996, 2000). This reaction is incorporated in 

x1. 

  

 The system of kinetic equations, first proposed by Higgins, 1967, and Selkov, 1968,  

can be taken as a formal mathematical model of glycolysis. This model was modified by Bier 

and co-authors in Bier et al., (1996, 2000) for the glycolytic dynamics in a yeast cell to the 

following dynamical system. Different modification was also described by Volkenstain in 

(Volkenstain, 1989): 

yK

y
kxyky

xykVx

M

p

in

1

1 ;





          ,                          (6.3.1) 

where  x  is the concentration of glucose  (fructose-6-phosphate), y  is the ATP concentration, 

Vin   represents the constant inflow of glucose, k1  represents the phosphofructokinase activity, 

KM  is the Michaelis constant for pyruvate kinase (PK), ν  is the stoichiometric ratio; ν=1 the 

system described by Volkenstain, (Volkenstain, 1989) and ν=2 for the model described by Bier 

and co-authors (1996), BTKW-model. In Fig.6.3.2 the numerical solutions are illustrated for 

the Volkenstain and the Bier systems (with parameters described in Bier et al., 2000); one can 

see topological identities of these two models, therefore we will designate as the BTKW-V 

model.  
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Fig.6.3.2 The numerical solutions of system (6.3.1) in double logarithmic coordinates. Red 

curves - the system described by Volkenstain, (1989) (stoichiometric ratio ν=1). Blue curves - 

model described by Bier and coauthors (Bier et al., 2000), (stoichiometric ratio ν=2). KM=2, 

k1=0.5, kp=3.5, Vin=0.250. Curve ―1‖, x(t0) =9.0, y(t0) =0.5. Figure adopted from Moroz, 2011. 

 

As it was pointed out in Bier at al., 1996, model (6.3.1) has only limit cycle steady state 

in the range of constants employed by authors, which gives the oscillation trajectories, 

Fig.6.3.2. The spectrum of steady states and conditions of this  system was also studied in detail 

by Volkenstain, 1989. Therefore the interest of our consideration was to study the robustness of 

this limit cycle at the OC by the rate constants. 

 

6.3.3 Direct optimal control outline  

To study the effect of the OC implementation with respect to the control of system 

behaviour, we used the Pontryagin maximum principle in the way as it was used within 

Michaelis-Menten system, Section 6.2. Let us formulate the problem of the introduction of 

optimal control into the BTKW-V model (6.3.1) by k1 and kp. Then the constrain system of 

equations will be 

001
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.    (6.3.2) 

Let us consider the optimal control problem for this system, taking into account the 

metabolic losses for control T(u,v) and the metabolic losses for not being in thermodynamic 

steady state/equilibrium as G(x,y). The minimising functional will be similar to (6.2.57) 
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By using the last two equations it is possible to reduce the canonical system to 4 equations – for 

2 state and 2 costate variables. For the square-law cost for the deviations of the constants k1 and 

kp from optimal k1 and kp and square-law form of G(x,y) and T(u,v)can be used: 
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Numerical solutions of the system show the existence of the torus-like steady near former two-

dimensional limit cycle. Fig.6.3.3 shows the trajectories for state variables x,y; momenta px, py 

(costate variables), and control u,v for system (6.3.5).  

 

Fig.6.3.3 Trajectories for state variables x,y; momenta (costate variables, px, py and control u,v 

for system (6.3.7). x(t0)=1.5, y(t0)=0.5, px(t0)=py(t0)=-0.01, Vin=0.250, 2MK , k1=0.5, 

kp=3.5, Vin=0.250, potential (k=0.01). Figure adopted from Moroz, 2011. 

 

 The limit cycle phase plots, which characterise the 6-dimensional phase space of 2 state 

variables, 2 co-state variables and 2 control variables, together 6 variables, is illustrated in 

Fig.6.3.4 for the system (6.3.7) at square-low potential and at the values of constants, specified 

directly in the figure. The plots are shown as a graphical matrix, where just a half of it, as it is 

shown in figure, can fully characterise the 6 dimensional limit cycle.  The first row contains 2 

dimensional graphs for the vertical x coordinate versus all other coordinates (e.g. y, px, py, u, v) 

spanned horizontally. The second row contains vertical (y) coordinate against px, py, u and v; y 

against x already is plotted in the first row. Effectively, the combination of any pair of 

coordinates can be found using the designations for correspondent row (at first left plot in the 

row) and for the correspondent column (at the bottom at any column). For example, the top row 

and right column illustrates the phase plot in x*v diagram.   
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Fig.6.3.4 The behaviour of the limit cycle (6.3.7) in the phase space by projection of it into x,y 

2-dimensional plane. The red trajectories are for starting values x(t0)=1.5, y(t0)=0.5. Blue 

curve, for x(t0)=4.0, y(t0)=0.1. Constants were chosen following BTKW-V model (Bier et al., 

1996; 2000); Vin =0.250, k1=0.5, kp=3.5; KM =2.0. Figure adopted from Moroz, 2011. 

A      B 

C     D 

Fig.6.3.5 The phase-plot of the limit cycle illustrating the effect of different constants in the 

system (6.3.7) on the limit cycle. A, the effect of Vin (green colour –Vin=0.1; blue – Vin=0.2; red 

– Vin=0.3; other constants (k=0.01, xeq=1.3, yeq=0.2, k1=0.5, veq=3,5, KM=2.0).  B, the effect of 

xeq (green colour –xeq=1.2; blue – xeq=1.5; red – xeq=2.0; other constants (Vin=0.1, k=0.01, 

yeq=0.2, k1=0.5, veq=3,5, KM=2.5). C, the effect of yeq (green colour –yeq=0.01; blue – yeq=0.1; 

red – yeq=1.0; other constants (Vin=0.1, k=0.1, xeq=1.5, k1=0.5, veq=3.5, KM=2.5). D, the effect 

of KM (green colour KM=1.8; blue – KM =2.0; red – KM=2.5; other constants (Vin=0.1, k=0.01, 

xeq=1.5, yeq=0.2, k1=0.5, veq=3.5). Figure adopted from Moroz, 2011. 
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The effect of a number of constants is illustrated in Fig.6.3.5 for system (6.3.7); the 

phase plot for control variables is not included. The plots are shown as matrixes, similar to 

Fig.6.3.4. 

As one can see from Fig.6.3.5A, an increase in Vin in the range which shown in figure 

reduces the limit cycle. A span in the value of xeq through the equilibrium point of the system 

(6.3.7) leads to the collapse of the limit cycle, Fig.6.3.5B. Similarly, the span in yeq through the 

equilibrium point of the system also leads to the collapse of the limit cycle, Fig.6.3.5C. 

Fig.6.3.5D indicates that the increase in KM (inhibition) leads to a reduction in the size of the 

limit cycle. However, a simultaneous change of the parameters of the system (6.3.1/6.3.7) in the 

effect of the robustness (stability of the equilibrium points of the system) will be illustrated 

further in this section.  

A B 

Fig.6.3.6 The comparison of the limit cycle in the phase plane of state variables for different 

systems. The limit cycles in the logarithmic coordinates, incert in normal coordinates for 

comparison. Cyan curve - original system (6.3.1) without OC; magnolia curve – system (6.3.7) 

with the OC introduction, no potential term (k=0), initial momenta (px=py=0.0); green curve - 

system (6.3.7) in the presence of OC, no potential term (k=0), startin momenta px=py=-0.5; 

blue curve – OC, potential (k=0.01), initial momenta (px=py=0.0);  red dashed curve – OC,  

potential term (k=0.01) and initial momenta px=py=-0.5. Constants were chosen following Bier 

et al., 1996; Vin =0.10, k1=0.5, kp=3.5; KM=2.0. The axes are as in Fig.6.3.2. Figure adopted 

from Moroz, 2011. 

 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

182 

It can be useful to illustrate the comparison of the effects on the limit cycle in normal 

and logarithmic coordinates, Fig.6.3.6. While the normal coordinates clearly show what is 

happening at large values of the state variables (Fig.6.3.6A), the logarithmic coordinates 

(Fig.6.3.6B) efficiently illustrate what is happening at the very low values of the state variables. 

Particularly, for the systems (6.3.1) and (6.3.7), one can see that implementation of the optimal 

control and demonstrating that a quadratic form of the penalties does not significantly change 

the character and robustness of the limit cycle. However, by using the standard method we are 

limited in analysing the effects of the parameters on the character of stability in a wide range. 

 

6.3.4      Monte-Carlo method to study the robustness 

To study the character of the equilibrium points in a wider range of parameters, one can 

span these parameters in a range, keeping all others at certain values, as illustrated in Fig.6.3.7. 

One can also see the existence of a limit cycle (designated as ―o‖) in quite a wide range of 

parameters. However, it does not show the complete picture of the parameter‘s role in the 

equilibrium. 

A     B 

C    D 

Fig.6.3.7 The illustration of parameter scanning in model (6.3.1) at Vin=0.25, k1= 0.5, kp= 1.0, 

KM= 1. A, scanning Vin; B, scanning k1; C, scanning kp; D, scanning KM. Designations: dots – 

stable steady state, circles – limit cycles. Figure adopted from Moroz, 2011. 
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On the other hand, the stability of the system can be studied in the following way: one 

can generate a set of random combinations of all the parameters (Vin, k1, kp and KM) employing 

the Monte-Carlo method for statistical investigation of the equilibrium points of this system 

(6.3.1), with the purpose to compare to the extended by the OC system. The Monte-Carlo 

simulation results are shown in Fig.6.3.8 at range of parameters (Vin, k1, kp and KM) are much 

more informative. From Fig.6.3.8 one can see main characteristic states (the designations are 

shown in Fig.6.3.8F). One can also clearly see borders between main areas, which indicating 

the transitional surfaces between areas of different types of equilibrium. Results, obtained by 

this method, can be considered as being in good agreement with analytical results from Bier 

and coauthors, 1996, 2000.  

 

Fig.6.3.8 The results of equilibrium simulation study of the system (6.3.1), described by Bier 

and coauthors, [117, 118] for the range of parameters (Vin=10
-4

-1.5; k1=0-10; kp=0-10; 

KM=0.001-10.0). 2D scatter plot in the plane first two canonical variables, KM=1.0. Insert - 3D 

scatter plot, KM=1.0; C, KM=1.0-10.0 (inhibition); The equilibrium point designation: ―.‖ –

stable node, ◊-  stable focus, ―x‖ saddle, ―o‖ unstable focus,  - unstable node, ⌂ limit cycle. E, 

dataset in 2D plane of 2 first canonical variables, designations: ―.‖(green) – stable node, 

―d‖(red)-  stable focus, ―x‖ saddle, ―o‖(cyan) unstable focus, ―s‖(blue) - unstable node. Can1, 

Can2 –the first and second canonical variable. Figure adopted from Moroz, 2011. 
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 Well known that different equilibrium scenarios follow from the spectrum of eigenvalues 

of the Jacobian matrix at an equilibrium state, see Fig. 6.3.8F for a 4-dimensional system. The 

transitions between qualitatively different states (bifurcations) are also of immense interest 

because they indicate qualitative changes in the system dynamics, suggesting that a closer look 

on the robustness and equilibrium of the system is needed. 

 

A        

B 

Fig 6.3.9 Results of numerical calculations of (6.3.7) when the OC in implemented by k1 and kp.  

A, the scatterplot in plane of state variables x and y (k=0) and B, 3D plot no potential (k=0). 

The parameter ranges in this simulation are Vin= 10
-7

-1; xeq=0.0-0.2; yeq=0-2; k=0-2; kp=0-5; 

KM=1; k= 0- 1.0. Designation of equilibrium points is from Fig.6.3.8. Figure adopted from 

Moroz, 2011. 

 

 As it is possible to see, the scatter plots, shown in Fig.6.3.9, qualitatively reproduce 

plots for the reduced Bier model, Fig.6.3.8, however the difference is in the character of 

stability. This is not obvious because the model is significantly changed, as can be seen from 
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Eqs.(6.3.1) and (6.3.7). One can see that with different fixed levels of potential Fig.6.3.9 (B, 

k=0; C, k=0.1 and D, k=1.0) the 3D scatter plot of the dataset becomes more not-transparent 

(Fig. 6.3.9B-D) in the sense of the different character of equilibrium areas. Fig. 6.3.10A shows 

that when the Monte-Carlo method is applied to randomly generate the values of the variable k 

(potential weight) and KM, the scatter plot of dataset is not transparent. However, by applying 

the canonical correlation analysis (CCA) , Hotelling, 1936, method to the dataset it is possible 

to distinctly observe the regions of stability in the plane of two first canonical variables, Fig. 

6.3.10B.  

Parameter Can1 Can2 

Vin 1.2 -1.6 

k1 0.1 0.5 

kp -0.3 -0.3 

KM 0.4 0.2 

 

Table 6.3.1 The raw canonical coefficients for first two canonical variables (Can1, Can2) for 

system (6.3.1). 

 
Fig.6.3.10 Results of numerical calculations of (6.3.7) when the OC in implemented by 

k1(changed to u) and kp(changed to v). B, scatterplot of dataset of 10K points in the plane of 

first two canonical variables, Can1, Can2, generated by Monte-Carlo method at the range of 

parameters: Vin=10
-6

 -1.0;  xeq= 0.01-10.0; yeq =0.01 - 10.0;  k1=0.01-10.0; kp=0.01- 10.0; KM= 

0.01-10;  k=0.0-1.0.  The equilibrium point designation as in Fig.6.3.8. Figure adopted from 

Moroz, 2011. 

 

 In Table 6.3.1 the results of applying of the Monte Carlo method (Metropolis and 

Ulam, 1949 ) that we used to study the character of stability of the equilibrium points (x,y) for 

system (6.3.1) shows the impact of the system parameters on stability. About 10 thousands 
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combinations of parameters in the range (see, Fig.6.3.9) were generated, and the frequency ratio 

was calculated: (./d/o/s/x) – 0.58/0.33/0.03/0.06/0.0004. The first three eigenvalues obtained, 

were 0.8345, 0.0766 and 0.003 with F-statistics values 669, 121 and 11 correspondingly, and 

the probabilities levels less than 0.0001 each. As it is shown in Table 6.3.1, the raw canonical 

coefficients for the first canonical variable, Can1, indicate that the classes differ most widely on 

the linear combination of the centered variables 1.20*Vin+0.10*k1-0.26*kp +0.38* KM. Thus the 

results indicate the crucial role of Vin on the character of stability.  

 Results in Fig.6.3.9 relating to the existence of different areas of stability, qualitatively 

agree with the numerical results for system (6.3.1), which is without the OC, Fig.6.3.8. The 

cooperative form indicates the goal of the optimal adaptive regulation that in the metabolic 

network could strengthen the rigidity of the regulation around macroscopically important state. 

 

Parameter Can1 Can2 

Vin 2.2 -1.1 

xeq 0.05 0.01 

yeq -0.005 -0.1 

k1 0.02 0.18 

kp -0.3 0.15 

KM 0.2 0.2 

k 0.5 -0.7 

 

Table 6.3.2 Raw canonical coefficients for first two variables (Can1, Can2) when the OC by k1 

and kp is implemented. 

  

To study the stability character of the points of equilibrium (x, y, px, py) of the system 

(6.3.7), when the control variable u and v are eliminated, the Monte Carlo method was also 

employed. 5 thousand random combinations of parameters were generated, and the relative 

proportions (./+/o/x) were correspondently 0.045/0.564/0.334/0.045. The 4 first eigenvalues 

were 0.86, 0.11, 0.04 and 0.005 with the Fisher statistics F values 242, 67, 35 and 8.9 with the 

corresponding probabilities less than 0.0001 each. As one can see from Table 6.3.2 for the raw 

canonical coefficients, the first canonical variable, Can1, shows that the linear combination of 

the centered variable Can1=2.2*Vin - 0.05*xeq - 0.005*yeq + 0.02*k1 -0.3*kp + 0.3*KM + 0.5*k 

separates the areas with different character of stability most effectively. 
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Finally, one can conclude that the first canonical variable Can1 explains more than 

75% of total variability. It is mainly laded by Vin and k, which means that the rate inflow and 

the coefficient in the term of energetical penalty k for alteration from a steady state play the 

main role in determination of the robustness of the steady state. The Michaelis constant KM and 

the rate constant kp play the minority roles.  

 

6.3.5 Optimal control by KM in the BTKW-V model of glycolysis 

The optimal control implementation into the Bier et al model (1996, 2000) of 

glycolysis by KM can be done in a similar way, by replacing KM  with  u in (6.3.1) and apply 

functional in the form 

min)(),(

0

dtuTyxG
t

        (6.3.8) 

and the dynamical constrains in the form  

yu

y
kxykyxykVx pin 11 2;  .     (6.3.9) 

Then employing the Pontryagin maximum principle we could write the canonical system.  
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  (6.3.10) 

The results of numerical calculations are shown in Fig.6.3.11, when the random combinations 

of parameters Vin, k1, kp, xeq and yeq are generated by the Monte-Carlo method, Fig.6.3.11A-B.  

 We studied stability of the real roots (x, y, px, py, u) of the canonical system for the 

optimal control problem (6.3.10), using the Monte-Carlo method when square form of cost was 
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applied to G(x,y) and T(u), similar to (6.3.6). 5K points were generated, and relative frequency 

ratio for the equilibrium points designated accordingly to Fig.6.3.8 as (./+/o/p) was – 

162/1950/2958/17. The first three eigenvalues were 0.7881, 0.0544 and 0.0075 with the Fisher 

statistics F values 173.83, 25.98 and 7.6 the probabilities less than 0.0001 each. As shown in 

Table 6.3.3, the raw canonical coefficients for the first canonical variable, Can1, show that the 

classes differ most widely on the linear combination of the centered variables 2.5*Vin-

0.1*xeq+0.1*yeq+0.2*k1-0.37*kp +0.37* k1+1.0*k. 

 

Fig.6.3.11 Optimal control by the Michaelis constant, KM; Monte-Carlo numerical experiment. 

The scatterplot of dataset for the range of randomly distributed parameters: Vin=10
-6

 – 1.0, k1= 

0.01-10.0; kp=0.01-10.0, xeq=0.01-10.0; yeq= 0.01-10.0; KM= 0.001-10.0; k=0.00001 - 1.0 from 

equation (6.3.6). Canonical discriminant analysis of dataset (5K points) shown in the plane of 

first two canonical variables, Can1, Can2. The equilibrium point designation as in Fig.6.3.8. 

Figure adopted from Moroz, 2011. 

 
Parameter Can1 Can2 

Vin 2.5 -0.25 

xeq -0.1 0.2 

yeq 0.1 -0.2 

k1 0.2 0.1 

kp -0.37 -0.03 

 KM 0.37 0.2 

k 1.0 -2.0 

 
Table 6.3.3 Raw canonical coefficients for first two canonical variables (Can1, Can2) when the 

optimal control by the Michaelis constant KM is implemented, adopted from Moroz, 2011. 
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 The results in Fig.6.3.11 show that the combination of the Monte-Carlo method 

together with the statistical canonical analysis method can be useful in study of the character of 

equilibrium points of a dynamic system, also significantly reducing the dimensionality of the 

data analysed. However, other alternative methods could be useful to establish the relationship 

between the rate or control parameters and the indexes of equilibrium of characteristic points of 

a dynamic system.  

 

6.3.6      Optimal control and multi-enzyme kinetics 

 The introduction of the optimal control into the basic kinetic BTKW-V (Bier et al., 

1996; 2000; Volkenstain, 1989) model of glycolysis can been considered by employing the 

Pontryagin maximum principle to the formulated the OC problem. As a conclusion, one can 

state that the introduction of optimal control into the basic glycolysis model BTKW-V can be 

performed without contradicting to the classic glycolysis kinetics results. The 6-dimensional 

limit cycle in dimensions (x, y, px, py, u, v), obtained in the OC model, gives the projection to 

(x,y) plane the standard 2D cycle (see diagram for x,y from Fig.6.3.4), characteristic for 

modelling glycolitic oscillations. However, the OC consideration in terms of state, costate and 

control variables extends not only the dimensionality of the system, but also provide the OC 

interpretable regulatory pattern from the energetical perspective, linked to the maximum energy 

dissipation principle. Physically speaking, the control variables (related to the rate constants, 

see Eq.6.3.2) are some variable constants that can be changed by enzymes in a metabolic 

network. The Lagrange multipliers (or thermodynamic momenta from thermodynamic 

perspective, could be called the kinetic momenta) can be interpreted as partial energetical 

costs/penalties for deviation of metabolic mechanism from an optimal one.  The extended 

equations for these variables can been obtained as a result of the Euler-Lagrange equations, or 

canonical equations in the case of Pontryagin maximum principle, Eqs.(6.3.5), (6.3.7). The real 

trajectories can be chosen under the demand of equality of the first integral to zero. This is 
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according to the additional demand of the Pontryagin maximum principle, when the Hamilton 

function is equal to zero for the optimal trajectory. 

The implementation of the optimal control into the BTKW-V model of glycolysis, 

which is performed in the same methodological way as it was done for pure Michaelis-Menten 

system, extends the interpretation of the controlability of this system in a general sense. 

Statistical method canonical analysis has been employed in the study helps to range the 

influence of model parameters on the stability of near steady state. The introduction of the 

metabolic penalty G for being in a non-steady state identifies the character of stability 

(qualitatively illustrated by Fig.6.3.9B,C,D-6.3.10). As one can see from Table 6.3.2 the effect 

of xeq and yeq on the first canonical variable Can1 is the smallest.  The parameter Vin influences 

in the highest way and k (characterising the impact of cost for not being in an optimal/steady 

state) is second. This effectively means that inflow into this metabolic chain is the most 

important factor and the metabolic penalty for being in not-steady/optimal state influences the 

system stability is second, from a physical perspective. Effectively, one can see the similarities 

to the OC model when the control is introduced by KM, Table 6.3.3 (as well as from comparison 

of Fig.6.3.10B  and Fig.6.3.11C). The load on the first canonical variable Can1 is highest for 

Vin and second highest for k, what actually there is in agreement with the control by the rate 

constants k1 and kp. The effect of xeq and yeq is smaller, the rate (k1 and kp) effect has the same 

order as for the control by the rate constants. One can note that the Vin has the highest load also 

for the system without control, Table 6.3.1. However, one should bear in mind that this was 

performed within a specific parameter range, and can change if the range is altered and an 

systemic analysis is needed. This consideration illustrates that the canonical analysis with the 

combination of the Monte-Carlo method can be useful when studying the equilibrium and can 

significantly reduce the dimensionality of the analysis.  

 Additionally, the method that has been applied to study the stability is of particular 

interest because of possible universality. The method is based on statistical canonical analysis 

and can significantly reduce the dimensionality of the parameters‘ space to analyse for a 
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complex nonlinear model when the number of parameters in the system is significantly large 

(>10-20). Such  analysis could link the parameters characterising the equilibrium points (the 

linear combination of the eigenvalues) from one hand and the rate constants parameters 

incorporated into the model (their linear combinations), ranking these linear combinations with 

respect to the effect on the variance. 

 It is well known, that in the long path of substrates and products the metabolic 

regulation is carried out by so-called "key-points‖ (for example, Hsu et al., 2000). In the sense 

of the variability of data when such a path/network is studied it could be statistically interpreted 

as variables that maximally load the canonical variables. Perhaps this circumstance testifies for 

the benefit of optimal control and could simplify the formulation of the optimal control problem 

in case of the more complex chain or a network,  for example, glycolysis. In this case the 

adaptive optimal control by number of mechanisms – competitive, non-competitive, allosteric 

ones, provides vast flexibility of adaptation of whole network from oscillations to other states 

with different stability character in optimal manner. One can see that such a selective control 

could solve a twin problem: making the network or chain flexible and rigid at same time. 

 Finally, the optimal control introduction into more complicated system like the yeast 

glycolysis model comparably to the Michaelis-Menten/Monod system, makes the resulting 

dynamical system more complicated, the stability character of the equilibrium points of the 

system changes. Then the multivariate statistical methods can also be useful to study the altered 

system when the optimal control is explicitly presented. The canonical analysis can be a 

particular useful method to study the character of robustness because of dimension reduction 

possibility that this analysis simplifies. Canonical spaces, manifolds, other linear and nonlinear 

combination of variables could be the key-subspaces, of the optimal regulation of the metabolic 

network or its part. This is when metabolic system needs to be controllably and optimally 

moved from one qualitative mode of behaviour to another, for example in cases of an optimal 

therapy. However, statistical studies need to be considered to complete the global vision of the 

robustness of the models when the optimal control is introduced explicitly. 
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6.4  Approaches to dynamic OC model of bone turnover 

6.4.1   Introduction 

Having undertaken the study of behaviour of the models in sections 4 and 5 in different 

range of rate constants and the optimal control applications to simple models in sections 6.1-

6.3, it was decided to apply the method to formulate the OC approach to investigate the bone 

remodelling models. The interest was dictated by the possibility to alter the BMU behaviour, 

and to control it in accordance with some criteria.  Initially, the model of bone remodelling 

described in Chapter 4 was considered as a good example for investigation.  

 To study the effect of the optimal control implementation, the OC method can be used 

based on the Pontryagin maximum principle. The problem of the introduction of optimal 

control into model (4.1) by parameter s can be formulated in the same way as it was done in 

(6.3.2-6.3.3). Then the constraint system of equations is  
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.    (6.4.1a) 

The OC problem for this system can be formulated by taking into account the 

metabolic losses for control T(uj) and metabolic losses for not being in thermodynamic steady 

state/equilibrium as G(xi) in the same way as it was done for the glycolitic model.  The 

minimising functional at the square-law cost form will be similar to (6.1.7a) or (6.2.2) 

min)()(

0

dtuTxGJ
t

i ,      (6.4.1b) 

The optimal control problem will be formulated as (6.4.1b) subject to (6.4.1a), and the 

Hamiltonian function will be   
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i FpuTxGH
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)()( .       (6.4.2) 

Then the canonical system will be  
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0,,
u

H

x

H
p

p

H
x

i

i

i

i
 .       (6.4.3) 

Solving this system one could optimise the biological properties incorporated into functional 

6.4.1b.   

 

6.4.2 Optimal control in cellular model 

Following developed in Section 4 cellular model, which for the notion simplification we can 

write  

22114

3433

2

22342221012

21013112111

)(

xkxkx

xusxax

xbxxbxxax

xxbxxbxax









   (6.4.4) 

The formulation of the optimisation criterion can be quadratic 

min
22

)1(

0

22

4 dt
ux

J
t

   (6.4.5a) 

Subject to 

22114
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2
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21013112111

)(
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xbxxbxxax

xxbxxbxax









   (6.4.5b) 

Then the Hamiltonian will be 

22114
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2
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21013112111

22

4

)(

22

)1(

xkxkp

xusxap

xbxxbxxap

xxbxxbxap

ux
H

      (6.4.6) 

Then on the basis of Pontryagin Maximum principle the conditions for minimum of the 

functional with constrained system (6.4.5b) are 
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 (6.4.7) 

and H*(T)=0 and 0i .  The last system can be simplified to 

3322244

33311213

2422342101210112

142012201131211

22114

333433

2
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xbxaxxbxxax
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  (6.4.8) 

This system was studied in the same way as system (2.1.3) at the range of parameters: 

a1, 1000-100000 day
-1

; b12, 0.002-0.05 cell
-1

day
-1

; b01, 1.050-9.0 cell
-1

day
-1

; a01, 1.50-300.0 cell
-

1
day

-1
; b2, 50.0-600.0 cell

-1
day

-1
; b23, 0.001-0.09 cell

-1
day

-1
; a3, 2300-66000 day

-1
; s, 0.01-15.0 

cell
-1

day
-1

; k1, 0.01-0.50 day
-1

; k2, 0.0003-0.0030 day
-1

.   
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Fig. 6.4.1 The scatteplot of calculated points of equilibrium of osteocells (Ocl, osteoclasts; OB, 

osteoblasts; Oct, osteocytes) against the total bone mass (BM) for the system (6.4.8). 

Calculations were performed using the following set of parameters: a1, 1000-100000 day
-1

; b12, 

0.002-0.05 cell
-1

day
-1

; b01, 1.050-9.0 cell
-1

day
-1

; a01, 1.50-300.0 cell
-1

day
-1

; b2, 50.0-600.0 cell
-

1
day

-1
; b23, 0.001-0.09 cell

-1
day

-1
; a3, 2300-66000 day

-1
; s, 0.01-15.0 cell

-1
day

-1
; k1, 0.01-0.50 

day
-1

; k2, 0.0003-0.0030 day
-1

.   

Bone

OCt

0.01 0.1 1 10
10

100

1 10
3

1 10
4

1 10
5

OCt
Bone

OBl
OBl

0.01 0.1 1 10
100

1 10
3

1 10
4

100 1 10
3

1 10
4

1 10
5

100

1 10
3

1 10
4

BoneOCtOBl

OClOClOCl

0.01 0.1 1 10
0.1

1

10

100

100 1 10
3

1 10
4

1 10
5

0.1

1

10

100

100 1 10
3

1 10
4

0.1

1

10

100

 

Fig. 6.4.2 The graphical matrix illustrates the scatterplot of populational densities of Ocl, Obl, 

Oct, BM (designated as ―Bone‖) in 4D space of these quantities at the uniform distribution of 

the rate constant for the system (6.4.8). Calculations were performed using the set of 

parameters in Fig.6.4.1. 
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Fig. 6.4.3 Scattreplot of the eigenvalues of the Jacobian matrix for the linearised system (6.4.8). 

Calculations were performed using the set of parameters in Fig.6.4.1. 
 

Fig.6.4.3 illustrates the character of the equilibrium point‘s stability. One can see that 

the first and second eigenvalues are complex-conjugate, as well as the third and fourth 

eigenvalues. The same symmetric picture characterises the 5th-8th eigenvalues. From the 

perspective of OC that means that the introduction of OC as it was done in (6.4.1-6.4.8) 

introduces instability into the system. However, it is still possible to link this to the method, 

proposed in Section 4 and 5, which is based on the Monte Carlo method. This demonstrates the 
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position of equilibrium and its character with the values of the rate constants. However, to 

obtain statistically significant results the range of the rate constant needs to be reduced as it was 

illustrated in Section 4 and 5. 

 

6.4.3 Short range of the rate parameters: Monte Carlo method  

The illustration of the method, applied in Sections 4 and 5, to the system (6.4.8) within 

the shorter range of the rate parameters ( a1, 7100-9850 day
-1

; b12, 0.0015-0.002 cell
-1

day
-1

; b01, 

2.0-3.6 cell
-1

day
-1

; a01, 23.0-30. cell
-1

day
-1

; b, 270.0-290.0 cell
-1

day
-1

; b23, 0.0049 -0.0055 cell
-1

day
-1

; 

a3,   79000-90000 day
-1

; s, 7.0-8.0 cell
-1

day
-1

; k1, 0.3-0.4 day
-1

; k2, 0.0023- 0.0025 day
-1

) is shown in 

Fig.6.4.4-6.4.6 and Table 6.4.1. Fig.6.4.4.indicates the scatterplot of the osteocell‘s population 

concentration against the total bone mass (BM), which shows a significant reduction in the 

scatter. This is seen comparably to Fig.6.4.1. That means that the regression of the equilibrium 

position and the relaxation characteristics can be calculated with some confidence. 

 

Fig. 6.4.4 Scatteplot of calculated points of equilibrium of osteocells (Ocl, red, osteoclasts; Obl, 

green, osteoblasts; Oct, blue, osteocytes) against the total bone mass (BM), for the system 

(6.4.8) and system (4.4) without optimal control (magnolia, brown and cyan colours, 

correspondingly). Calculations were performed using the same set of the rate parameters: a1, 

7100-9850 day
-1

; b12, 0.0015-0.002 cell
-1

day
-1

; b01, 2.0-3.6 cell
-1

day
-1

; a01, 23.0-30.0 cell
-1

day
-1

; b2, 

270.0-290.0 cell
-1

day
-1

; b23, 0.0049 -0.0055 cell
-1

day
-1

; a3, 79000-90000 day
-1

; s, 7.0-8.0 cell
-1

day
-1

; 

k1, 0.3-0.4 day
-1

; k2, 0.0023- 0.0025 day
-1

.  
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Fig. 6.4.5 The graphical matrix illustrates the scatterplot of populational densities of Ocl, Obl, 

Oct, BM(bone ) in 4D space of these quantities at the uniform distribution of the rate constant 

for the system (6.4.8). Calculations were performed using the set parameters, Fig.6.4.4. 
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Fig.6.4.6. The scattreplot of the eigenvalues of the Jacobian matrix for the linearised  system 

(6.4.8). Calculations were performed using the set parameters, Fig.6.4.4. 

 

 
Ocl Obl Oct BM Re1 Re5 Re6 Im1 

R-square 0.990 0.997 0.995 0.996 0.996 0.997 0.999 0.998 

A1 2.352 0.783 0.534 0.633 -0.562 
  

1.302 

B12 
     

-0.008 0.006 -0.006 

b01 -2.762 -0.910 -0.623 -0.745 0.653 
 

-0.005 -0.725 

a01 -0.015 
 

0.648 0.789 -0.235 0.634 -0.008 0.751 

b2 0.020 0.007 -0.608 -0.739 0.224 -0.612 0.008 0.008 

b23 
  

-0.027 -0.026 -0.707 
   a3 -0.012 

 
0.657 

   
0.005 -0.005 

s 
  

-0.693 
  

0.013 -0.999 
 k1 -2.737 

 
-0.638 -0.766 0.253 -0.681 0.010 -0.717 

k2 2.999 
 

0.704 0.840 
  

0.005 0.791 
Table 6.4.1 Summary table of the Monte-Carlo method application to the system (6.4.8) within 

the range of parameters indicated in Fig.6.4.4. 
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Fig. 6.4.7.  Typical trajectories for state variables, time in days. A, short range, no OC; B, OC. 

 

 
Mean Minimum Maximum Range Std.Dev. Error 

OCL 11.646 10.409 12.560 2.151 0.228 0.006 

OBL 2243.9 1879.4 2674.3 794.9 143.6 3.9 

OCT 12222 9272 14706 5434 1029 28 

BM 1.080 0.947 1.405 0.458 0.080 0.002 
Table 6.4.2 The average population concentrations, maximum and minimum values and 

statistical deviations for the osteocells (cell/mm
3
) and the relative bone mass, BM, for the 

model (6.4.8) for the short range of the rate parameters as in Fig.6.4.4.  

 

Indeed, as it is seen from the Monte Carlo results, Table 6.4.1, the position of the 

equilibrium point and the relaxation characteristics can be calculated from the values of the rate 

constants with a good (R-square >0.99) confidence level. The regulatory pattern of the model, 

indicated in Table 6.4.1 by the values of coefficients and their signs matches the regulatory 

pattern of the system (4.3) without the OC, even though the system significantly changed after 

the OC implementation. The scatterplots (Fig.6.4.6) of the real and imaginary parts of the 

eigenvalues of the system (6.4.8) indicate that the equilibrium points in 8-dimensional space of 

4 state variables and 4 costate variables is unstable. This means that solutions of the system are 

unstable and the optimal control problem in form (6.4.1-8) should be revised.   

Thus, the introduction of the dynamic optimal control in such a way as it was done in 

(6.4.1-6.4.8) leads to a loss of stability of the main equilibrium point in new combined phase 

space of the state and costate variables.  



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

200 

6.4.4 Optimal control formulation for allosteric cellular-and-molecular model 

Following the development in Section 5 of the allosteric cellular model (with some 

modifications) which includes the molecular regulation loop, which for notion simplification 

we can write as 

22114

3433

2

22343221012

210111

3

3
1121

xkxkx

sxxax

xbxxbxxax

xxbxa
xuK

x
xbx

Oct









   (6.4.9) 

Let us constructed the optimisation criterion 

min
22

)1(

0

22

4 dt
ux

J
t

   (6.4.10a) 

Subject to  
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   (6.4.10b) 

Then the OC Hamiltonian will be 

22114

34233

2

22342221012

210111

3

3
1121

22

4

22

)1(

xkxkp

sxxxap

xbxxbxxap

xxbxa
xuK

x
xbp
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H

Oct

     (6.4.11) 

Then on the basis of Pontryagin maximum principle the conditions for minimum of the 

functional with constrained system (6.4.10b) are 
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 (6.4.12) 

and H*(τ)=0 and 0ip . However, to study this system is quite difficult and it is planned for 

further work.  

 

6.4.5 Summary 

The first section reviews the molecular binding kinetics from the perspective of optimal 

control and variational description. Based on Pontryagin maximum principles an introduction 

of optimal control within the Hill kinetics model has been illustrated. The dynamical system 

has been obtained as a result of the Euler-Lagrange equations and canonical equations, in the 

case of the Pontryagin maximum principle approach. The numerical solutions have been 

obtained and discussed.  

 The Michaelis-Menten model of enzyme kinetics can be revised employing the optimal 

control and direct variational methods in combination, considering the introduction of control 
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into different ways within this model. The section discusses the problems where regulation is 

introduced by the reaction velocity, by the Michaelis constant and simultaneous optimal control 

by both of them. Corresponding dynamical systems can be found as a result of the Euler-

Lagrange equations and canonical equations. The numerical solutions have a good agreement 

of  the results without the optimal control. The biochemical allosteric regulatory aspects of 

optimal control models have been discussed.  

Based on the Pontryagin maximum principles and the Lagrange method the possibility 

of the optimal control extension of the yeast model of glycolysis kinetics has been illustrated. 

Corresponding dynamical systems have been obtained as a result of canonical equations in the 

case of the Pontryagin maximum principle approach. The biochemical aspects of the optimal 

control explicit implementation have been discussed. Statistical canonical analysis is a 

particularly useful method to study the character stability dependences because of the 

dimension reduction possibility that simplifies analysis. The canonical spaces – the linear 

combinations of real variables (concentrations, rate constants, activities) could be the key-

spaces of optimal regulation of the metabolic network or its part when system needs to be 

controllably moved from one qualitative mode of behaviour to another. 

The OC problem can be formulated for the BMU functioning model. However, the 

instability of the main point can be observed. Further studies are needed to describe the OC 

formulation results for the allosteric model. 
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7 Conclusions and further work  

 

7.1 Cellular model 

The introduction of the osteocytes‘ regulation loop is necessary from biological perspective. 

Many authors (Landry et al., 1997; Martin, 2002; Noble, 2003) discussed possible 

mechanisms of this regulation, including some molecular mechanisms. However, the 

introduction of the osteocyte pathway into remodelling regulation loop in the mathematical 

model increases the dimensionality of the model and makes it more difficulty to validate. The 

number of terms that needed to be taken into account and the dimensionality of parameters to 

be measured both increase. This in turn demands precise measurement in-vivo, which can be 

difficult when conducting experiments with hard tissue.  

 The mathematical model of bone remodelling, that has been discussed in Chapters 4-

6, formally introduces a level of octeocytes‘ regulation which certainly is more realistic from 

a cellular, biochemical and bio-cybernetic perspective (Frost, 2001), since the osteocytes are 

considered to participate actively in regulation of the BMU. This introduction was based on 

the assumption that the osteocytes‘ level of regulation is a primary part of bone remodelling, 

as it allows the completion of the loop of spatial control of BMU initiated from the bone 

marrow. 

The introduction of the osteocytes‘ loop into cellular model increases the spectrum of 

behaviour described from relaxational and periodical to a chaotic mode. The cellular model 

has quite robust behaviour in the wide range of parameters implemented into model. The 

chaotical mode can be also interesting, however further studies need to establish the real 

relevance of this type of behaviour to the remodelling process in bone tissue. 

 Cellular models displays steady relaxational behaviour when employing the range of 

rate constants with certain biological sense. The existence of stable focus type of equilibrium 

in four-dimensional osteoclast–osteoblast–osteocyte-bone space indicates formally that there 

are time-constants for this dynamic system. Biologically, or rather physically, this time 
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constant characterises the recovering property of the bone tissue. This is related to the 

continuously operating, genetically predetermined BMU and provides a measure of the 

recovering potential of the BMU following mechanical and biochemical damage to bone.  

One of the advantages of the cellular model is related to the model validation. Due to 

the simplicity of the model the low-dimensional kinetic constants are expected to be 

estimable. In this case simple measurements based on the population densities of cells can be 

employed.  

 

7.2 Allosteric model 

The model of the bone turnover cycle that has been developed in Chapter 5 introduces 

a non-linear, non-multiplicative cellular control loop, which is more rational from a 

biochemical and osteo-homeostatical perspective, since the osteocytes are considered to 

participate in regulation of BMU by producing the molecular messengers. As well as the 

effect of local factors on osteo-cells production and activity can have nonlinear sigmoid 

character. This development was based on the assumption that the nonlinear allosteric form of 

control is a vital part of bone remodelling, as it allows the modelling of the natural loop of 

control of BMU.   

The allosteric molecular model also shows different modes of behaviour; relaxational 

and quasi-periodical with damping within a wide range of rate constants that can be 

interpreted biologically. In the sense of dynamic systems, the majority of equilibrium points, 

obtained in this range of parameters, using Monte Carlo method, can be characterised as the 

stable focus.  At some constants the main equilibrium point attains the form topologically 

equivalent to a stable cycle.  

 However, in the framework of a very well known mechanism of nonlinear regulation 

(Michaelis-Menten) the stable focus, formerly described for pure cellular model (Chapter 4), 

prevails in a wide range of the rate constants. Moreover, it becomes a more physiological in 

the sense of the population densities of osteocells. This finding supports the idea of a non-
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linear, not just multiplicative, feedback regulation from the osteocytes. That means also that 

the robustness of the system is maintained from the simple cellular level to the allosteric-like 

regulation, related to molecular and biochemical level of regulation. This implementation, 

based on the assumption that the allosteric form of control is a vital part of bone remodelling, 

provides the completion of the natural loop of control of BMU initiated from the osteocytes‘ 

networks. Simulations of the model demonstrate four-dimensional relaxation when employing 

the range of rate constants that can be interpreted biologically.  Moreover, at the same time 

the existence of periodical modes of behaviour could provide the basis for the explanation of 

Paget‘s-disease-like physiological situation of overfeeding of the bone remodelling cycle.  

Cyclic modes might be play greater role in Paget‘s disease or maintaining plasma Ca
2+

 

physiological concentration. Hence, the combined allosteric and cellular hybrid models 

represent some insights into the bone remodelling mechanisms of regulation. However, the 

validation of these kinds of models is a significant problem since, for example, the parameters 

of receptors should be estimated in vivo.    

 

7.3 Optimisation problem formulation for the BMU  

Molecular binding is the first stage of any biological regulation, including bone 

remodelling. Therefore it is important to understand its functioning from an optimal control 

perspective. The Section 6.1 reviews the molecular binding kinetics from the perspective of 

the optimal control and creates the basis to understand regulatory optimality. Based on 

Pontryagin minimum principles and the Lagrange method, an introduction of optimal control 

within the Michaelis-Menten kinetics model has been illustrated in the section 6.2. The 

dynamical systems have been obtained as a result of the Euler-Lagrange equations and 

canonical equations, in the case of the Pontryagin principle approach. The numerical solutions 

have been obtained and discussed. The results indicate that the cooperativity can be 

considered as the rigidity of the control. The cooperativity, implemented in many regulatory 

feedbacks in cell and physiological level, provides necessary robustness of the control over 
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the most vital parameters. In the bone remodelling regulation there are also indications of 

positive cooperativity, which one can see from Fig.5.2. That is why allosteric mechanisms 

were considered at the regulation of bone remodelling. Optimal control outline of 

cooperativity, undertaken in this project, allowed molecular binding and cooperativity of 

molecular binding to understand from energetical optimality perspective.   

 Enzyme kinetics is also an important part of regulation functioning, including the 

regulation of bone remodelling. Therefore, the basic enzyme kinetics model, the Michaelis-

Menten kinetics, has been revised employing the optimal control, considering the introduction 

of control into different ways within this model. The Section 6.2 discusses the problems 

where regulation is introduced by the reaction velocity, by the Michaelis constant and 

simultaneous optimal control by both of them. The dynamical systems have been found as a 

result of the Euler-Lagrange equations and canonical equations. The numerical solutions have 

been obtained. The biochemical allosteric regulatory aspects of optimal control models have 

been discussed. Biochemical parallels to these two ways of OC introduction were also 

considered. In this context two main biochemically-sensible interpretations were discussed: 

the OC by maximal velocity is analogical to the non-competitive inhibition, OC by Michaelis 

constant is analogical to competitive inhibition with respect of enzyme kinetics. The 

Michaelis-Menten regulation was considered also in the variant of allosteric model of BMU. 

As an intermediate OC model on the way to build the optimal control BMU model, 

the basic model of two-level metabolic system, the Bier and coauthors model of glycolysis 

was employed. Based on the Pontryagin maximum principles and the Lagrange method the 

possibility of the optimal control extension of the yeast model of glycolysis kinetics has been 

illustrated. Corresponding dynamical systems have been obtained as a result of canonical 

equations in the case of the Pontryagin maximum principle approach. The biochemical 

aspects of the optimal control explicit implementation have been discussed. Statistical 

analysis is a particularly useful method to study the character stability dependences because 

of the dimension reduction possibility that simplifies the analysis.  
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Finally, the OC formulation for cellular BMU model and hybrid molecular-and-

cellular allosteric model of BMU was performed in Section 6.4. The control by the load rate 

constant and the Michaelis constants was considered. Due to the complexity of the model 

further work is required to study all of the implications of the models developed. 

The results and their analysis also illustrate the complexity of the relationship 

between the system level of regulation and local factor regulation in hard tissue considering 

the steady tissue remodelling. Even after simplification and reduction in the number of the 

model variables, the behaviour of tissue shows multiple modes of behaviour that sometimes 

have limited relevance from a biological perspective.  

In summary, the results from the OC (Section 6) are encouraging and the regulatory 

model of BMU is expected to be the subject of future work. Modelling of BMU, including 

hierarchical modelling that involves system and local regulatory loops, could be particularly 

useful for development optimised tissue engineered bone substitutes.    

 

7.4 Conclusions 

This study shows the complexity of formalisation of the metabolic processes, the relations 

between hierarchical subsystems in hard tissue where there are a relatively small number of 

active cells.   

 The different types/modes of behaviour have been compared in the study: 

relaxational, periodical and chaotic modes. All of these types of behaviour can be found even 

tissue such as bone. However, a periodic mode of behaviour is one the hardest to verify 

although a number of periodical phenomena have been observed for bone and skeletal 

development. Implementation of the molecular loops into the cellular model results in the loss 

of the chaotical behaviour/modes. In this way it improves the robustness and predictability 

and control of the system. 

The following conclusions can be drawn from this study; 
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1. The cellular and combined allosteric-cellular regulation approaches to modelling of 

bone turnover (based on the osteocyte involvement/regulation by apoptosis) can be 

developed using dynamic systems. 

2. Within both approaches, the different modes of behaviour can be found.  

3. Different approaches to model validation can be considered as useful, including 

approaches based on the Monte-Carlo simulation of random combination of model 

parameters (rate constants) and further arrangement of regression analysis to establish 

the relation between parameters and character of equilibrium points.  

4. From the model validation perspective, the cellular class of models is preferable, 

since it has less parameters (the rate constants) to analyse. The rate constants in 

particularly are difficult to estimate for the bone tissue in vivo.   

5. In both types of models the mechanical stress parameter can be included. 

6. On the basis of fundamental OC models (Hill model, Michaelis-Menten model, 2D 

glycolysis model), the optimal control framework for regulation of bone remodelling 

can be proposed. This framework can be essential for development with respect to 

application to hard scaffold adaptation.  

7. Future works in the improvement of the models and their application to modelling 

resorption and formation of scaffold/bone tissue have been considered. 

 Developed models can be a first step in a hierarchical model of bone tissue (system 

effects versus local effects). Limited autonomy of any organ or a tissue implies the 

differentiation of regulatory level as well as physiological functions and metabolic 

differences. An implementation into the cellular phenomenological model of molecular loop 

of regulation has been performed. The results show that the robustness of regulation can be 

inherited form the phenomenological model however the regulatory degrees of freedom 

considerably increases.  

 An attempt to correlate the main bone disorders with different modes of behaviour 

has been undertaken using well known Paget‘s disorder of bone, osteoporosis and some more 
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general skeleton disorders leading to periodical changes in bone mineral density  reported by 

some authors (Mazzuoli et al., 2002,2006).  However additional studies are needed to make 

this hypothesis significant.     

 When studying a multidimensional phenomena as a bone tissue is, the visualisation 

and data reduction is important for analysis and interpretation of results. In the study two 

technical methods have been proposed. First one is the graphical matrix method of 

transforming/visualise/project the multidimensional phase space of variables into diagonal 

matrix of regular combination of two-dimensional graphs. That significantly simplifies the 

analysis and in principle makes possible to visualise the phase space higher than three-

dimensions.  

 The second important technical development is the application of the Monte-Carlo 

method in combination with statistical methods (principal component and regression) to study 

the character of stability of the equilibrium points of a dynamical system. The advantage of 

the method is that it allows the large number of parameters/constants of the dynamical system 

the most influential parameters (or their linear combinations) that effect the character of 

stability of the equilibrium point and in wide range of constant values to be found. This makes 

the interpretation of parameters and conceptual verification of the model much easier.   

 Summarisingly, the novelty of this study was: 

 For first time the OCts feedback of regulation was considered in the BMU model. 

 The 4D model was proposed, which includes allosteric-like control 

 OC approach illustrated for simple kinetics, 2D model of glycolysis and BMU model 

 The method, based on combination of Monte-Carlo generation of model parameters 

simulation and regression analysis, was proposed to study the relationship between 

the character of equilibrium of dynamic system and parameters of the model.  

 Graphical matrix method was proposed for visualisation dynamic systems D>4 

 The method of optimal control of performance of the model with respect to some 

optimisation criteria was proposed. 
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7.5  Overall implications of this research 

This research conducted in this PhD study clearly indicates that while building mathematical 

model of bone remodelling (BMU functioning) the role of osteocytes has to be taken into 

account. The osteocytes play vital role in the producing signal for osteoclasts arrangement: 

differentiation, maturation and bone resorption, (Landry et al., 1997; Martin, 2002; Noble, 

2003), therefore their role should not be ignored. The cellular model, developed in this 

research offered the osteocytes‘ regulatory loop together with the extended spectrum of 

functional behaviour. In this research the combined cellular and allosteric regulation 

approaches to modelling of bone turnover (based on the osteocyte involvement/regulation by 

apoptosis) have been considered. Within both approaches different modes have been 

investigated. 

Important conclusion is that osteoblastic activity has indirect negative feed back 

regulatory loop, which phenomenologically contains the osteocytes and its molecular 

explanation could be based on sclerostin production by osteocytes. So inclusion of osteocytes 

phenomenological loop of regulation can be relevant to sclerostin action. However detailed 

molecular mechanisms are unclear. 

The research creates a platform for the development a general method to introduction 

of the optimal control into a small biochemical or cellular network, like the bone remodelling 

network. The optimal control approach to interpret molecular binding from energetical 

optimality perspective, to consider the Michaelis-Menten basic enzyme model, and 

application to the glycolytic network provides good technical basis to consider a metabolic 

network from energetical and functional optimality.  The models developed and the 

underpinning approach to control bone remodelling has implications for bone graft 

substitute‘s development and optimisation.  

 This study also has some implications on some technical methods used in the 

dynamic systems research. That is first of all the statistical approach and reduction of 

parameters approach based on the Monte-Carlo simulation of random combination of model 



______________________________________________________________________ 

_______________________________________________________________________ 

 

  

 

211 

parameters (rate constants) and further arrangement of regression/canonical correlation 

analysis to establish the relation between parameters and character of equilibrium points.  

Another important development is the visualisation technique of graphical matrixes, 

proposed for analysis of dynamic systems behaviour when dimensionality is higher than 3. 

This visualisation method can be implemented as a graphical analysis instrument for dynamic 

systems software. 

 

7.6 Further work 

The limitations of the study and time factor and resources did not allow to build a full 

formal picture of the processes involved in bone remodelling.  

Significant improvement that can lead to use the osteocyte‘s regulatory 

model/approach and can lead to develop criteria for scaffold design, it will be the spatial 

model of remodelling. It can be based, for example, on the cellular automata technique or the 

partial differential equation technique. 

 Further structural robustness study on the models 

 Incorporation of different allosteric feedbacks into osteocells‘ regulation 

 Implementation of Hill-like feedback function with effective cooperativity 2. 

 Development of approaches to build the spatial models, describing 3D properties of 

bone tissue remodelling  

 Cellular automata. 

On the basis of spatial models, further development of dynamic optimal control approach to 

bone grafts and bone substitutes design can be achieved.  

Based on the results generated from this study, in future research the methodology for 

a common mathematical framework based on the optimal energy regulation needs to be 

considered. This principle leads to formulate the energetical effectiveness at different levels 

of biochemical/physiological organisation in the organism, tissue or ecological system. 

However, it is envisaged that a complex system of interlinking homeostatic sub-systems will 
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manifest adaptive and energetical effectiveness properties through synchronisation processes 

as a product of coupled nonlinear dynamic behaviour. 

Due to the multivariable nature of the data that can be obtained from experiments in 

bone tissue, and the multileveled nature of studying tissue and processes, their descriptions 

and methods of data reduction and visualisation are an important technical issue that should 

be considered for further development.   

Regeneration of damaged bone tissue remains an important problem, the field of 

tissue engineering looks to provide structural support for the regenerating material via bone 

tissue scaffolds.  Optimisation of scaffold properties, known as scaffold variables, is closely 

related to the study of remodelling properties. Developing a mathematical model that can be 

used as a dynamical constraint for optimisation of remodelling, as well as the study of the 

usefulness of dynamic optimisation in developing resorbable implants/scaffolds can also be 

considered as a further research area. 

 The mathematical modelling of bone is an important part of mathematical physiology 

as bone remodelling is a highly organised physiological process that occurs in bone tissue and 

supports many physiological processes in the body. Researchers with a strong 

interdisciplinary and integrative interest in life support systems must have a clear vision of the 

role of bone tissue and its remodelling process as these processes are actively involved at the 

systemic regulation level of all metabolic processes. The modelling of ―artificial bone‖ needs 

to take into account not only the mechanical properties of tissue but also consider that this 

―supporting system‖ might be important in other physiological functions at the systemic level. 
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