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Abstract 

Benchmarking is a powerful and thriving tool to enhance the performance and profitabilities of 

organizations in business engineering. Though performance benchmarking has practically and 

theoretically developed in distinct fields such as banking, education, health and so on, supply chain 

benchmarking across multiple echelons that includes certain characteristics such as intermediate 

measure differs from other fields. In spite of incremental benchmarking activities in practice, there 

is the dearth of a unified and effective guideline for benchmarking in organizations. Amongst the 

benchmarking tools, data envelopment analysis (DEA) as a non-parametric technique has been 

widely used to measure the relative efficiency of firms. However, the conventional DEA models 

that are bearing out precise input and output data turn out to be incapable of dealing with 

uncertainty, particularly when the gathered data encompasses natural language expressions and 

human judgements. In this paper, we present an imprecise network benchmarking for the purpose 

of reflecting the human judgments with the fuzzy values rather than precise numbers. In doing so, 

we propose the fuzzy network DEA models to compute the overall system scale and technical 

efficiency of those organizations whose internal structure is known. A classification scheme is 

presented based upon their fuzzy efficiencies with the aim of classifying the organizations. We 

finally provide a case study of the airport and travel sector to elucidate the details of the proposed 

method in this study. 
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1. Introduction 

The literature on supply chain management (SCM) showcases the fact that many supply chains 

fail thanks to poor and inappropriate tools for benchmarking their performance. The supply chain 

failures can be prevented by the use of integrated and adequate benchmarking approaches in which 

the performance of several supply chain networks are assessed simultaneously to determine the 

best practices. 

   A large volume of research over the past three decades has substantiated that data envelopment 

analysis (DEA) is a very powerful benchmarking methodology for identifying the relative 

efficiency of homogeneous decision making units (DMUs). DEA models such as CCR and BCC 

models exploits the set of efficient observations in input-output space to construct an empirical 

production frontier (i.e., efficient frontier) and, in turn, obtain efficiencies relative to this frontier 

(Charnes et al., 1978; Banker et al., 1984). In fact, a production possibility set (PPS) is estimated 

as the set of all feasible input–output combinations along with satisfying certain axioms. A DMU 

is said to be relative efficient if one cannot find a point in the PPS that produces more output 

without a consequent relative increase in inputs, or that consumes less inputs while keeping the 

outputs unchanged. Contrarily, the DMU is said to be relative inefficient if the amounts of the 

current inputs can be reduced with the same amounts of outputs or the amounts of the current 

outputs can be augmented without changing the amounts of inputs. 

   An evaluated DMU is traditionally examined as a black box that transforms initial inputs 

consumed into final outputs produced without focusing on the internal structure and mathematical 

transformation function. However, a production system usually includes the internal operations in 

which the inputs go through several processes to produce a number of intermediate measures and 

outputs. The negligence of the network structure in benchmarking for both manufacturing and 

service sectors often results in a truly misleading analysis.  

 As reported in the literature throughout, the theoretical development and applications aspect of 

DEA are fully grown, particularly for precise situations (Cook and Seiford, 2009; Emrouznejad et 

al., 2008). 

   There is a certain stream of research in the DEA literature that takes account of the operations of 

processes and it has been called network DEA (Färe and Grosskopf, 2000). The fundamental idea 

is to think of the production technology of individual processes into the production technology 
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when estimating system efficiency. Many network DEA models have been developed for treating 

internal network structures (e.g., Agrell and Hatami-Marbini, 2013; Chen et al., 2013; Kao, 2014). 

The aim of our literature review underneath is not to review all the existing network DEA models 

but it is need here to point out that many of the developed models require substantial modifications 

and only suit for a certain network structure.  

   According to Chen et al. (2 013), the existing network DEA approaches include two groups based 

on the conventional DEA models. One group entails the multiplier-based network DEA models 

which measure the overall network efficiency by combining the ratio efficiency of each division 

in the network using geometric or arithmetic averages. The other group embraces the DEA 

envelopment models by defining the PPS for each division through the network structure. 

Castelli et al. (2010) and Castelli and Pesenti (2014) reviewed the DEA models that have been 

developed for evaluating the DMUs with known internal structures in which three main categories 

of models involving (i) shared flow models, (ii) multilevel models, and (iii) network models are 

introduced with the aim of stating the commonalities and discrepancies between these models.  

The shared flow models require to be deployed in situations where DMUs have the network 

processes with shared input resources either allocated to various processes of operations or 

considered as a decision variable to maximize the DMU efficiencies as a whole (see e.g., Beasley, 

1995; Golany et al. 2006; Wu et al. 2015; Ding et al. 2015). The multilevel models embrace DMUs 

with independent divisions when additional inputs/outputs are not connected to any of its divisions 

(see e.g., Cook et al. 1998; Azadeh et al. 2008). The network models are composed of intermediate 

measures among the divisions. Put differently, the divisions in the network models are 

interdependent and intermediate measures produced by the preceded division may be consumed 

as an input by other divisions (see e.g., Prieto and Zofio, 2007; Kao and Hwang, 2008; Chen et al., 

2010; Fukuyama and Weber, 2010; Herrera-Restrepo et al., 2016; Despotis et al., 2016). The 

network DEA models have been initially proposed by Färe and Whittaker (1995) and Färe and 

Grosskopf (1996) based on the two-stage process and later generalized to multiple processes by 

Färe and Grosskopf (2000).  

   Cook et al. (2010) and Agrell and Hatami-Marbini (2013) provided an overview of DEA models 

for fielding two-stage network structures. Agrell and Hatami-Marbini (2013) zeroed in on 

performance analysis in SCM, particularly the methodological studies made by way of two-stage 

models and the related state-of-the-art was categorized into three groups; (i) two-stage process 



 4 

DEA models, (ii) game theory DEA models, and (iii) bi-level programming. The two-stage models 

are the special case of multi-stage framework where each DMU is composed of two divisions (see 

e.g., Chen et al., 2009; Wang and Chin, 2010; Kao and Hwang, 2008; Despotis et al., 2016). The 

game theory DEA models use the concept of non-cooperative and cooperative games in game 

theory to treat the network structure of operations (see e.g., Liang et al. 2006; Zha et al. 2010, Du 

et al. 2011). The final group defined by Agrell and Hatami-Marbini (2013) includes those methods 

which have been developed based on bi-level programming aiming to evaluate the performance of 

a two-stage process in decentralized decisions (Wu, 2010). 

   Recently, Kao (2014) presented a review on network DEA models and introduced two different 

classifications. One classification has nine categories of models based on efficiency measurement, 

distance measure and output-input ratio as follows: independent, system distance measure, process 

distance measure, factor distance measure, slacks-based measure, ratio-form system efficiency, 

ratio-form process efficiency, game theoretic, and value-based, and the other classification bears 

on network structures as follows: two-stage, general two-stage, series, parallel, mixed, 

hierarchical, and dynamic. 

   Setting aside the internal structure of DMUs, uncertain data in DEA can be classified into 

incomplete precise data and imprecise data. The former utilizes probability methods, and the latter 

utilizes fuzzy set theory to give verbal statements without missing their imprecise characteristics. 

The majority of management decisions in real-world practice are made in terms of expert's intuitive 

judgement and are expressed linguistically (e.g., “low delay” and “big delay”). Therefore, it is 

essential to consider the expert's judgement in the decision-making process by means of linguistic 

expressions. The values of linguistic variables are not numbers but are words, phrases, or sentences 

and the theory of fuzzy sets has been developed in the area of decision sciences to qutitatively deal 

with the linguistic variables in a rational manner (c.f. Bellman and Zadeh, 1970; Zadeh, 1978).  

   While real-world problems contain qualitative, incomplete, subjective and judgment 

information, conventional black-box and network DEA models only require crisp data. For 

instance, separate and incompatible information systems gathering production data in distinct 

segments of production process may lead to “noise” or measurement errors in the dataset. Given 

that the DEA approach is sensitive to data fluctuations, the correct consideration of such uncertain 

information is vital for evaluating accurately the performance of DMUs and, in turn, making 

appropriate decisions.  
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   To tackle incomplete precise and imprecise data in DEA, three major approaches including 

“fuzzy DEA” (see e.g., Sengupta 1992; Hatami-Marbini et al. 2017a, 2017b, 2017c), “interval 

DEA” (see e.g., Cooper et al., 1999; Toloo et al., 2008, Toloo, 2014; Hatami-Marbini et al. 2014) 

and “stochastic DEA” (see e.g., Land et al. 1993, Olesen and Petersen 1995, 2016) have dominated 

the literature. This paper places emphasis on fuzzy DEA approach to conquer the uncertainty in 

the performance evaluation process.   

   As per two recent surveys conducted by Hatami-Marbini et al. (2011a) and Emrouznejad et al. 

(2014), the DEA literature includes multiple approaches for solving fuzzy DEA models, which can 

be categorised into six groups: the tolerance approach (see e.g., Sengupta 1992), the α-level based 

approach (see e.g., Saati et al. 2002; Hatami-Marbini et al., 2010; 2011c; 2013; Saati et al. 2013), 

the fuzzy ranking approach (see e.g., Emrouznejad et al., 2011; Hatami-Marbini et al., 2011b), the 

possibility approach (see e.g., Lertworasirikul et al., 2003), the fuzzy arithmetic (see e.g., Wang et 

al., 2009; Hatami-Marbini et al., 2015), and the fuzzy random/type-2 fuzzy sets (see e.g., Tavana 

et al., 2012, 2014). 

   Although the above-mentioned discussions show the recent increased interest in the network 

DEA approach, there exist only few studies examining notion of fuzziness to handle the subjective 

data. Kao and Liu (2011) and Kao and Lin (2012) developed the fuzzy version of relational two-

stage model of Kao and Hwang (2008) and parallel processes of Kao (2009, 2012) to obtain the 

fuzzy efficiency using a pair of two-level mathematical programs introduced by Kao and Liu 

(2000). Based upon Kao and Liu (2011) and Kao and Lin (2012), Lozano (2014a, 2014b) proposed 

the alternative methods for estimating the fuzzy efficiencies of the different processes. 

   In this paper, we propose a fuzzy network benchmarking model that enables us to treat a general 

network structure such as supply chain network with multiple stages and multiple levels where the 

observations are represented by fuzzy numbers. The intermediate measures render the proposed 

model relational and interdependent. The proposed fuzzy network DEA models in this research 

are concentrated on fuzzy arithmetic to evaluate the overall system scale and technical efficiency 

of the firms whose internal structure is known. Besides, we introduce a classification scheme based 

on overall system scale and technical efficiency to classify the firms. We also present a case study 

of the airport and travel sector to interpret the application and detailed results of the proposed 

method. 
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   The rest of this paper is organized as follows. The next section presents the deterministic network 

relational DEA model developed by Lozano (2011). Section 3 extends the deterministic case to a 

fuzzy environment using the standard fuzzy arithmetic to conquer fuzziness in observations. 

Section 4 presents a case study on airport operations to illustrate the way of modelling and 

benchmarking airport operations as a network system under a fuzzy environment. The paper is 

concluded in Section 5. 

 

2. Relational network DEA model 

Suppose that there is a set of n DMUs (supply chains) to be evaluated, each of which encompasses 

p processes denoted by P=1,…,p where 
  I( p)  and O( p)  stand for the set of inputs and outputs of 

the pth process, respectively. Let us the pth process consumes 𝑥𝑖𝑗
𝑝

, i ÎI( p) , j=1,…,n to produce  𝑦𝑘𝑗
𝑝

, 

  k ÎO( p), j=1,…,n along with assuming that the total amount of the ith input and kth output of all 

processes associated with DMUj (j=1,…,n) are 𝑥𝑖𝑗 = ∑ 𝑥𝑖𝑗
𝑝

𝑝∈𝑃𝐼(𝑖)   and 𝑦𝑘𝑗 = ∑ 𝑦𝑘𝑗
𝑝

𝑝∈𝑃𝑂(𝑘)  where 

PI (i)  and 
  
PO(k)  are the sets of processes that correspond to input i and output k. Consider L links 

or intermediate measures between the processes denoted by 𝑧𝑙𝑗
𝑝

, l=1,…,L, j=1,…,n that are divided 

into two different inward and outward sets including 𝐼𝑛𝑡𝑖𝑛(𝑝) and 𝐼𝑛𝑡𝑜𝑢𝑡(𝑝) within the network 

structure, in which the total amount of the intermediate measures of the pth process associated with 

DMUj is ∑ 𝑧𝑙𝑗
𝑝

𝑝∈𝐼𝑛𝑡𝑖𝑛(𝑙)  , l=1,…,L, j=1,…,n and ∑ 𝑧𝑙𝑗
𝑝

𝑝∈𝐼𝑛𝑡𝑜𝑢𝑡(𝑙) , l=1,…,L, j=1,…,n. We also 

suppose that ∑ 𝑧𝑙𝑗
𝑝

𝑝∈𝐼𝑛𝑡𝑖𝑛(𝑙)  =∑ 𝑧𝑙𝑗
𝑝

𝑝∈𝐼𝑛𝑡𝑜𝑢𝑡(𝑙) , l=1,…,L, j=1,…,n (Lozano, 2011). 

   The idea of benchmarking used in network production systems (e.g., supply chain) is to estimate 

a universal underlying technology for comparing the production systems. In what follows, the 

technology or production possibility set (PPS) is first defined based on the observed data, and then 

the observed production of a network production system is evaluated relative to the estimated PPS.  

𝑇𝑠 = {(𝑥
𝑝, 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ ℝ+

𝐼(𝑝)
× ℝ+

𝑂(𝑝)
× ℝ+

𝐿 | 𝑦𝑝 can be produced by 𝑥𝑝, 𝑧𝑝 and 𝑧𝑝}   

The PPS of the network production system, denoted by 𝑇𝑠, is the combination of the PPS of all 

processes, denoted by 𝑇𝑝. Let us initially represent 𝑇𝑝 as follows: 

𝑇𝑝 = {(𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ ℝ+
𝐼(𝑝) ×ℝ+

𝑂(𝑝) ×ℝ+
𝐿 | ∃𝜆𝑗

𝑝 ∈ 𝜙𝑝(𝜁): ∑ 𝜆𝑗
𝑝𝑥𝑖𝑗

𝑝 ≤ 𝑥𝑖
𝑝

𝑗 , ∀𝑖 ∈

𝐼(𝑝),∑ 𝜆𝑗
𝑝𝑦𝑘𝑗

𝑝 ≥ 𝑦𝑘
𝑝, ∀𝑘 ∈ 𝑂(𝑝),𝑗   ∑ 𝜆𝑗

𝑝𝑧𝑙𝑗
𝑝 ≤𝑗 𝑧𝑙

𝑝, ∀𝑙 ∈ 𝐼𝑛𝑡𝑖𝑛(𝑝), ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝 ≥𝑗 𝑧𝑙
𝑝, ∀𝑙 ∈ 𝐼𝑛𝑡𝑜𝑢𝑡(𝑝), }  
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where the  𝑇𝑝 set satisfies the minimal extrapolation technologies and the following axioms: 

A1.Envelopment: (𝑥𝑖𝑗
𝑝 , 𝑦𝑘𝑗

𝑝 , 𝑧𝑙𝑗
𝑝 , 𝑧𝑙𝑗

𝑝) ∈ 𝑇𝑝, ∀𝑗 

A2. Free disposability: 

 Free disposability of inputs: (𝑥𝑝 , 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ 𝑇𝑝,   𝑥̿
𝑝 ≥ 𝑥𝑝 ⟹ (𝑥̿𝑝, 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ 𝑇𝑝  

 Free disposability of outputs: (𝑥𝑝 , 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ 𝑇𝑝,   𝑦̿
𝑝 ≤ 𝑦𝑝  ⟹ (𝑥𝑝, 𝑦̿𝑝, 𝑧𝑝, 𝑧𝑝) ∈ 𝑇𝑝 

 Free disposability of intermediate measures: (𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ 𝑇𝑝,   𝑧̿
𝑝 ≥

𝑧𝑝   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧̿𝑝 ∈ 𝑝𝑖𝑛(𝑟), 𝑧̿𝑝 ≤ 𝑧𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧̿𝑝 ∈ 𝑝𝑜𝑢𝑡(𝑟) ⟹ (𝑥𝑝, 𝑦𝑝, 𝑧̿𝑝, 𝑧̿𝑝) ∈ 𝑇𝑝. 

A3. Convexity: the set 𝑇𝑝  is convex if for any two points  (𝑥𝑝 , 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ 𝑇𝑝, 

(𝑥̿𝑝, 𝑦̿𝑝, 𝑧̿𝑝, 𝑧̿𝑝) ∈ 𝑇𝑝  and any arbitrary weight 0 ≤ 𝜆 ≤ 1, (1 − 𝜆)(𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) +

𝜆(𝑥̿𝑝, 𝑦̿𝑝, 𝑧̿𝑝, 𝑧̿𝑝) also belongs to 𝑇𝑝. 

A4. 𝜁-returns to scale: (𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ 𝑇𝑝 ⟹ 𝜅(𝑥, 𝑦) ∈ 𝑇𝑝, ∀𝜅 ∈ 𝜙
𝑝(𝜁) where the 𝜙𝑝(𝜁) 

set identifies the shape of the frontier under the condition of the returns to scale (RTS). In 

particular,  𝜙𝑝(𝑐𝑟𝑠) = {𝜆𝑗
𝑝 ∈ ℝ+|𝜆𝑗

𝑝 𝑓𝑟𝑒𝑒} and 𝜙𝑝(𝑣𝑟𝑠) = {𝜆𝑗
𝑝 ∈ ℝ+| ∑ 𝜆𝑗

𝑝
𝑗 = 1}. 

At present, we can define the following PPS for the network production system, 𝑇𝑠, which satisfies 

the above-mentioned axioms: 

𝑇𝑠 = {(𝑥𝑖, 𝑦𝑘)| ∃(𝑥
𝑝, 𝑦𝑝, 𝑧𝑝, 𝑧𝑝) ∈ 𝑇𝑝 : ∑ 𝑥𝑖𝑗

𝑝 ≤ 𝑥𝑖𝑝∈𝑃𝐼(𝑖) , ∀𝑖, ∑ 𝑦𝑘𝑗
𝑝 ≥𝑝∈𝑃𝑂(𝑘)

𝑦𝑘, ∀𝑘,   ∑ 𝑧𝑙𝑗
𝑝 − ∑ 𝑧𝑙𝑗

𝑝 ≥ 0𝑝∈𝐼𝑛𝑡𝑖𝑛(𝑙)𝑝∈𝐼𝑛𝑡𝑜𝑢𝑡(𝑙) , ∀𝑙}. 

The Farrell (1957) input efficiency measure is applied to determine the [input-oriented] technical 

efficiency of DMU0 as defined below: 

𝜃0 = min {𝜃0 > 0|(𝜃0𝑥, 𝑦) ∈ 𝑇𝑠} 

According to the input efficiency measure, a network production system is classified as efficient if 

𝜃0 = 1 and as inefficient if 𝜃0 < 1. Given 𝑇𝑠, the efficiency measure can be calculated for a DMU0 

under evaluation by solving the following linear programming (LP) problem: 

min 𝜃0 − 𝜀( ∑ 𝑠𝑖
− + ∑ 𝑠𝑘

+
𝑘 +∑ 𝑠𝑙

#
𝑙 )𝑖   

𝑠𝑡.  ∑ ∑ 𝜆𝑗
𝑝𝑥𝑖𝑗

𝑝 + 𝑠𝑖
− =𝑗𝑝∈𝑃𝐼(𝑖) 𝜃0𝑥𝑖0,   ∀𝑖,  

       ∑ ∑ 𝜆𝑗
𝑝𝑦𝑘𝑗

𝑝 − 𝑠𝑘
+ =𝑗𝑝∈𝑃𝑂(𝑘) 𝑦𝑘0,   ∀𝑘,  

      ∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝 − ∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝 − 𝑠𝑙
# =𝑗𝑝∈𝐼𝑛𝑡𝑜𝑢𝑡(𝑙)𝑗𝑝∈𝐼𝑛𝑡𝑖𝑛(𝑙) 0,   ∀𝑙, 

      ∑ 𝜆𝑗
𝑝 ∈𝑗 𝜙(𝜁), ∀𝑝, 

(1) 
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            𝜆𝑗
𝑝 ≥ 0,    ∀𝑗, 𝑝, 

           𝑠𝑖
−, 𝑠𝑘

+, 𝑠𝑙
# ≥ 0, ∀𝑖, 𝑘, 𝑙.   

 

where 𝜀 is a very small positive number and 𝑠𝑖
−, 𝑠𝑘

+ and 𝑠𝑙
# are the slack variables indicating 

input excesses, output shortfalls and intermediate shortfalls, respectively. We note that 𝜙(𝜁) 

identifies the shape of the frontier under the condition of RTS. In this study, we concentrate on 

constant and variable RTS models by utilizing 𝜆𝑗
𝑝 ∈ ℝ+ and ∑ 𝜆𝑗

𝑝
𝑗 = 1 constraints in lieu of 

∑ 𝜆𝑗
𝑝 ∈𝑗 𝜙(𝜁) for each p, which these two distinct models are respectively called the CRS and VRS 

network DEA models, respectively. If an optimal solution 𝜃0
∗ of the above LP model satisfies 𝜃0

∗ =

1, then DMU0 is called efficient. It is also referred to as "radial efficiency". If a value of 𝜃0
∗ is less 

than 1 DMU0 is called inefficient and (1 − 𝜃0
∗) bespeaks the maximal proportionate reduction of 

inputs allowed by the PPS, and any more reductions are also associated with nonzero slacks. 

The notion of scale efficiency (SE) can be also taken into account in the network structure to 

measure the depletion from not operating at the optimal scale size. Given the input efficiency of 

DMU0 in the CRS and VRS models, we calculate its network SE using the following ratio; 

SE0=𝜃0
∗(𝐶𝑅𝑆)/𝜃0

∗(𝑉𝑅𝑆). The SE0 measure varies within [0, 1] and it is equal to 1 when DMU0 is 

operating at optimal scale size, i.e., the VRS and CRS technologies coincide. When a value of SE0 

is smaller than one, it deduces that the system is not scale efficient. 

 

3. Fuzzy network DEA model 

Suppose that we look into the performance evaluation of a network production system where some 

observations are imprecisely measured, and these imprecise data can be characterized by fuzzy 

numbers. We note that a fuzzy number is a normal and convex fuzzy subset characterized by a 

given membership with a grade of between 0 and 1. The functional form of the membership 

function hinges on a priori information that interprets how each fuzzy variable conceptualizes 

during a production period. Generally, a trapezoidal fuzzy number, denoted as 𝑎̃ =

(𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)), is the most widely used fuzzy numbers in practical and theoretical studies 

with the following membership function (Zimmermann, 1996): 
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 𝜇𝑎̃ =

{
  
 

  
 
𝑥 − 𝑎(1)

 𝑎(2) − 𝑎(1)
, 𝑎(1) ≤ 𝑥 ≤ 𝑎(2) 

1,                          𝑎(2) ≤ 𝑥 ≤ 𝑎(3)

𝑎(4) − 𝑥

𝑎(4) − 𝑎(3)
,         𝑎(3) ≤ 𝑥 ≤ 𝑎(4)  

0,                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

 

If 𝑎(3) = 𝑎(4), then 𝑎̃ is called a triangular fuzzy number. We note that a non-fuzzy number a is a 

special case of the fuzzy number in which 𝑎(1) = 𝑎(2) = 𝑎(3) = 𝑎(4).  

Let us consider n network production systems (DMUs) to be evaluated with the identical 

notations as those presented in the preceding section. We assume that for a given process of DMUj 

the corresponding observation (𝑥𝑖𝑗
𝑝 , 𝑦𝑘𝑗

𝑝 , 𝑧𝑙𝑗
𝑝 , 𝑧𝑙𝑗

𝑝) ∀𝑖, 𝑘, 𝑙 is uncertain and characterized by the 

trapezoidal fuzzy number 𝑥̃𝑖𝑗
𝑝 = (𝑥𝑖𝑗

𝑝(1), 𝑥𝑖𝑗
𝑝(2), 𝑥𝑖𝑗

𝑝(3), 𝑥𝑖𝑗
𝑝(4)) ∀𝑖, 𝑦̃𝑘𝑗

𝑝 =

(𝑦𝑘𝑗
𝑝(1), 𝑦𝑘𝑗

𝑝(2), 𝑦𝑘𝑗
𝑝(3), 𝑦𝑘𝑗

𝑝(4)) ∀𝑘, 𝑧̃𝑙𝑗
𝑝 = (𝑧𝑙𝑗

𝑝(1), 𝑧𝑙𝑗
𝑝(2), 𝑧𝑙𝑗

𝑝(3), 𝑧𝑙𝑗
𝑝(4)) ∀𝑙 and  𝑧̃𝑙𝑗

𝑝 =

(𝑧𝑙𝑗
𝑝(1), 𝑧𝑙𝑗

𝑝(2), 𝑧𝑙𝑗
𝑝(3), 𝑧𝑙𝑗

𝑝(4)) ∀𝑙 where the values of 𝑥𝑖𝑗
𝑝(1)

, 𝑦𝑘𝑗
𝑝(1)

, 𝑧𝑙𝑗
𝑝(1)

 and 𝑧𝑙𝑗
𝑝(1)

are positive. In the 

presence of the fuzzy data, the network DEA model (1) can be re-formulated by the following 

fuzzy LP model to obtain the fuzzy efficiency measure of DMU0: 

min 𝜃̃0  – 𝜀( ∑ 𝑠𝑖
− + ∑ 𝑠𝑘

+
𝑘 + ∑ 𝑠𝑙

#
𝑙 )𝑖   

𝑠𝑡.  ∑ ∑ 𝜆𝑗
𝑝𝑥̃𝑖𝑗

𝑝 + 𝑠𝑖
− =𝑗𝑝∈𝑃𝐼(𝑖) 𝜃0𝑥̃𝑖0,   ∀𝑖,  

       ∑ ∑ 𝜆𝑗
𝑝𝑦̃𝑘𝑗

𝑝 − 𝑠𝑘
+ =𝑗𝑝∈𝑃𝑂(𝑘) 𝑦̃𝑘0,   ∀𝑘,  

      ∑ ∑ 𝜆𝑗
𝑝𝑧̃𝑙𝑗

𝑝 − ∑ ∑ 𝜆𝑗
𝑝𝑧̃𝑙𝑗

𝑝 − 𝑠𝑙
# =𝑗𝑝∈𝑃𝑜𝑢𝑡(𝑙)𝑗𝑝∈𝑃𝑖𝑛(𝑙) 0,   ∀𝑙, 

      ∑ 𝜆𝑗
𝑝 ∈𝑗 𝜙(𝜁), ∀𝑝, 

            𝜆𝑗
𝑝 ≥ 0, ∀𝑗, 𝑝,    

           𝑠𝑖
−, 𝑠𝑟

+, 𝑠𝑙
# ≥ 0, ∀𝑖, 𝑘, 𝑙.   

(3) 

 

where 𝑥̃𝑖0 = ∑ 𝑥̃𝑖0
𝑝

𝑝∈𝑃𝐼(𝑖) = (∑ 𝑥𝑖0
𝑝(1)

𝑝∈𝑃𝐼(𝑖) , ∑ 𝑥𝑖0
𝑝(2)

𝑝∈𝑃𝐼(𝑖) , ∑ 𝑥𝑖0
𝑝(3)

𝑝∈𝑃𝐼(𝑖) , ∑ 𝑥𝑖0
𝑝(4)

𝑝∈𝑃𝐼(𝑖) ) =

(𝑥𝑖0
𝑝(1), 𝑥𝑖0

𝑝(2), 𝑥𝑖0
𝑝(3), 𝑥𝑖0

𝑝(4)) and 𝑦̃𝑘0 = ∑ 𝑦̃𝑘0
𝑝

𝑝∈𝑃𝑂(𝑘) =

(∑ 𝑦𝑘0
𝑝(1)

𝑝∈𝑃𝑂(𝑘) , ∑ 𝑦𝑘0
𝑝(2)

𝑝∈𝑃𝑂(𝑘) , ∑ 𝑦𝑘0
𝑝(3)

𝑝∈𝑃𝑂(𝑘) , ∑ 𝑦𝑘0
𝑝(4)

𝑝∈𝑃𝑂(𝑘) ) = (𝑦𝑘0
𝑝(1), 𝑦𝑘0

𝑝(2), 𝑦𝑘0
𝑝(3), 𝑦𝑘0

𝑝(4)). 

The substitution of the trapezoidal fuzzy numbers into model (3) leads to the following model: 
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min  (𝜃0
(1)
, 𝜃0
(2)
, 𝜃0
(3)
, 𝜃0
(4)
)– 𝜀( ∑ 𝑠𝑖

− + ∑ 𝑠𝑘
+

𝑘 + ∑ 𝑠𝑙
#

𝑙 )𝑖   

𝑠𝑡.  ∑ ∑ 𝜆𝑗
𝑝
(𝑥𝑖𝑗

𝑝(1)
, 𝑥𝑖𝑗
𝑝(2)

, 𝑥𝑖𝑗
𝑝(3)

, 𝑥𝑖𝑗
𝑝(4)

) + 𝑠𝑖
− =𝑗𝑝∈𝑃𝐼(𝑖) 𝜃0 (𝑥𝑖0

𝑝(1)
, 𝑥𝑖0
𝑝(2)

, 𝑥𝑖0
𝑝(3)

, 𝑥𝑖0
𝑝(4)

) ,   ∀𝑖,  

       ∑ ∑ 𝜆𝑗
𝑝
(𝑦𝑘𝑗

𝑝(1)
, 𝑦𝑘𝑗
𝑝(2)

, 𝑦𝑘𝑗
𝑝(3)

, 𝑦𝑘𝑗
𝑝(4)

) − 𝑠𝑘
+ =𝑗𝑝∈𝑃𝑂(𝑘) (𝑦𝑘0

𝑝(1)
, 𝑦𝑘0
𝑝(2)

, 𝑦𝑘0
𝑝(3)

, 𝑦𝑘0
𝑝(4)

),    ∀𝑘,  

       ∑ ∑ 𝜆𝑗
𝑝
(𝑧𝑙𝑗
𝑝(1)

, 𝑧𝑙𝑗
𝑝(2)

, 𝑧𝑙𝑗
𝑝(3)

, 𝑧𝑙𝑗
𝑝(4)

) − ∑ ∑ 𝜆𝑗
𝑝
(𝑧𝑙𝑗

𝑝(1)
, 𝑧𝑙𝑗
𝑝(2)

, 𝑧𝑙𝑗
𝑝(3)

, 𝑧𝑙𝑗
𝑝(4)

) −𝑗𝑝∈𝑃𝑜𝑢𝑡(𝑙)𝑗𝑝∈𝑃𝑖𝑛(𝑙)

             −𝑠𝑙
# =0,   ∀𝑙,  

      ∑ 𝜆𝑗
𝑝
∈𝑗 𝜙(𝜁), ∀𝑝, 

            𝜆𝑗
𝑝
≥ 0,∀𝑗, 𝑝, 

           𝑠𝑖
−, 𝑠𝑘

+, 𝑠𝑙
# ≥ 0,∀𝑖, 𝑘, 𝑙.      

(4) 

                    

   To compute the efficiency measure of the network production system under evaluation denoted 

by subscript “0” (DMU0), we require to solve the fuzzy network DEA model (4) subject to the 

complexity stemming from the notion of fuzziness. As stated earlier, the existing fuzzy DEA 

literature includes several distinct categories. For the purpose of preserving the specifications of 

conventional DEA models along with treating the computational burden of existing fuzzy DEA 

models, the fuzzy arithmetic group might be the most suitable approach to measure the relative 

efficiency of the DMUs with consideration of the internal complexity of the production process.  

According to the standard fuzzy arithmetic operations, model (4) can be rewritten by the four DEA 

models to determine the optimal value of 𝜃0
(1)

 , 𝜃0
(2)
, 𝜃0

(3)
 and 𝜃0

(4)
 individually which is allowed 

to establish the best fuzzy relative efficiency of DMU0. We take account of a fixed and unified 

production frontier for all the DMUs to attain an unbiased and consistent evaluation when 

calculating 𝜃0
(1)

 , 𝜃0
(2)
, 𝜃0

(3)
 and 𝜃0

(4)
. In this respect, the best production activities of the n DMUs 

came from the uppermost bound of outputs and lowest bound of inputs are equipped with a unified 

production frontier, which is used in the following four DEA models: 

Network DEA model for calculating 𝜃0
(1)

 

min  𝜃0
(1)
– 𝜀( ∑ 𝑠𝑖

− + ∑ 𝑠𝑟
+

𝑟 + ∑ 𝑠𝑙
#

𝑙 )𝑖   

𝑠𝑡.  ∑ ∑ 𝜆𝑗
𝑝𝑥𝑖𝑗

𝑝(1) + 𝑠𝑖
− =𝑗𝑝∈𝑃𝐼(𝑖) 𝜃0

(1)
𝑥𝑖0
𝑝(4) ,   ∀𝑖,  

       ∑ ∑ 𝜆𝑗
𝑝𝑦𝑘𝑗

𝑝(4) − 𝑠𝑟
+ =𝑗𝑝∈𝑃𝑂(𝑘) 𝑦𝑘0

𝑝(1),    ∀𝑘,  

∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝(1) − ∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝(4) − 𝑠𝑙
# =𝑗𝑝∈𝑃𝑜𝑢𝑡(𝑙)𝑗𝑝∈𝑃𝑖𝑛(𝑙) 0,   ∀𝑙,  

(5) 
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      ∑ 𝜆𝑗
𝑝 ∈𝑗 𝜙(𝜁), ∀𝑝, 

            𝜆𝑗
𝑝 ≥ 0, ∀𝑗, 𝑝,   

           𝑠𝑖
−, 𝑠𝑟

+, 𝑠𝑙
# ≥ 0, ∀𝑖, 𝑟, 𝑙.    

 

Network DEA model for calculating 𝜃0
(2)
  

min  𝜃0
(2)
– 𝜀( ∑ 𝑠𝑖

− + ∑ 𝑠𝑟
+

𝑟 + ∑ 𝑠𝑙
#

𝑙 )𝑖   

𝑠𝑡.  ∑ ∑ 𝜆𝑗
𝑝𝑥𝑖𝑗

𝑝(1) + 𝑠𝑖
− =𝑗𝑝∈𝑃𝐼(𝑖) 𝜃0

(2)
𝑥𝑖0
𝑝(2) ,   ∀𝑖,  

       ∑ ∑ 𝜆𝑗
𝑝𝑦𝑘𝑗

𝑝(4) − 𝑠𝑟
+ =𝑗𝑝∈𝑃𝑂(𝑘) 𝑦𝑘0

𝑝(2),    ∀𝑘,  

∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝(1) − ∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝(4) − 𝑠𝑙
# =𝑗𝑝∈𝑃𝑜𝑢𝑡(𝑙)𝑗𝑝∈𝑃𝑖𝑛(𝑙) 0,   ∀𝑙,  

      ∑ 𝜆𝑗
𝑝 ∈𝑗 𝜙(𝜁), ∀𝑝, 

            𝜆𝑗
𝑝 ≥ 0, ∀𝑗, 𝑝, 

           𝑠𝑖
−, 𝑠𝑟

+, 𝑠𝑙
# ≥ 0, ∀𝑖, 𝑟, 𝑙.   

(6) 

 

Network DEA model for calculating 𝜃0
(3)

 

min  𝜃0
(3)
– 𝜀( ∑ 𝑠𝑖

− + ∑ 𝑠𝑟
+

𝑟 + ∑ 𝑠𝑙
#

𝑙 )𝑖   

𝑠𝑡.  ∑ ∑ 𝜆𝑗
𝑝
𝑥𝑖𝑗
𝑝(1)

+ 𝑠𝑖
− =𝑗𝑝∈𝑃𝐼(𝑖) 𝜃0

(3)
𝑥𝑖0
𝑝(3)

 ,   ∀𝑖,  

       ∑ ∑ 𝜆𝑗
𝑝𝑦𝑘𝑗

𝑝(4) − 𝑠𝑟
+ =𝑗𝑝∈𝑃𝑂(𝑘) 𝑦𝑘0

𝑝(3),    ∀𝑘,  

∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝(1) − ∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝(4) − 𝑠𝑙
# =𝑗𝑝∈𝑃𝑜𝑢𝑡(𝑙)𝑗𝑝∈𝑃𝑖𝑛(𝑙) 0,   ∀𝑙,  

      ∑ 𝜆𝑗
𝑝 ∈𝑗 𝜙(𝜁), ∀𝑝, 

            𝜆𝑗
𝑝 ≥ 0, ∀𝑗, 𝑝, 

(7) 

 

Network DEA model for calculating 𝜃0
(4)

 

min  𝜃0
(4)
– 𝜀( ∑ 𝑠𝑖

− + ∑ 𝑠𝑟
+

𝑟 + ∑ 𝑠𝑙
#

𝑙 )𝑖   

𝑠𝑡.  ∑ ∑ 𝜆𝑗
𝑝𝑥𝑖𝑗

𝑝(1) + 𝑠𝑖
− =𝑗𝑝∈𝑃𝐼(𝑖) 𝜃0

(4)
𝑥𝑖0
𝑝(1) ,   ∀𝑖,  

       ∑ ∑ 𝜆𝑗
𝑝𝑦𝑘𝑗

𝑝(4) − 𝑠𝑟
+ =𝑗𝑝∈𝑃𝑂(𝑘) 𝑦𝑘0

𝑝(4),    ∀𝑘,  

∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝(1) − ∑ ∑ 𝜆𝑗
𝑝𝑧𝑙𝑗

𝑝(4) − 𝑠𝑙
# =𝑗𝑝∈𝑃𝑜𝑢𝑡(𝑙)𝑗𝑝∈𝑃𝑖𝑛(𝑙) 0,   ∀𝑙,  

      ∑ 𝜆𝑗
𝑝 ∈𝑗 𝜙(𝜁), ∀𝑝, 

            𝜆𝑗
𝑝 ≥ 0, ∀𝑗, 𝑝,     

(8) 
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           𝑠𝑖
−, 𝑠𝑟

+, 𝑠𝑙
# ≥ 0, ∀𝑖, 𝑟, 𝑙.    

 

Solving models (5)-(8) enables us to acquire the best possible relative fuzzy [overall] efficiency 

 (𝜃0
(1)∗ , 𝜃0

(2)∗
, 𝜃0

(3)∗
, 𝜃0

(4)∗
) of DMU0. The optimal solutions of the above models enable us to 

present the following definitions to define subjectively the efficient and inefficient DMUj:  

Definition 1. A DMUj is called fully efficient if 𝜃(1)∗ = 1 using model (5), implies that 𝜃(1)∗ =

𝜃(2)∗ = 𝜃(3)∗ = 𝜃(3)∗ = 1, a DMUj is called very highly efficient if 𝜃(2)∗ = 1 using model (6), 

implies that 𝜃(2)∗ = 𝜃(3)∗ = 𝜃(3)∗ = 1, a DMUj is called highly efficient if 𝜃(3)∗ = 1 using model 

(7), implies that 𝜃(3)∗ = 𝜃(3)∗ = 1, and finally a DMUj is called efficient if 𝜃(4)∗ = 1 using model 

(8). 

Definition 2. A DMUj is called inefficient if the optimal value of 𝜃(4)∗ derived from model (8). 

is less than unity.  

Given that the decision-makers normally wish to rank the inefficient DMUs resulted from 

Definition 2, we determine the nearest point associated to each fuzzy efficiency as per the 

following definition: 

Definition 3 (Asady and Zendehnam, 2007). Let  𝜃̃ = ( 𝜃(1), 𝜃(2), 𝜃(3), 𝜃(4)) be a trapezoidal 

fuzzy number, the nearest point of 𝜃̃ can be first calculated as follows: 

𝑀𝜃̃ =
 𝜃(2) + 𝜃(3)

2
+
𝜃(4) − 𝜃(2) − 𝜃(3) + 𝜃(1)

4
 (9) 

 

Then, a larger value of the nearest point (M) shows that DMUj is preferred. This simple and 

efficient defuzzification method generates very realistic results against other complicated methods 

without losing the basic properties1. 

The fuzzy measure of efficiency provided by CRS and VRS network models are known as total 

technical efficiency (TTE) and pure technical efficiency (PTE). The ratio “TTE /PTE” stands for 

a fuzzy measure of scale efficiency (SE). Assume that 𝜃̃0(𝑐𝑟𝑠) =  (𝜃𝑐𝑟𝑠
(1)∗ , 𝜃𝑐𝑟𝑠

(2)∗
, 𝜃𝑐𝑟𝑠

(3)∗
, 𝜃𝑐𝑟𝑠

(4)∗
) and 

𝜃̃0(𝑣𝑟𝑠) =  (𝜃𝑣𝑟𝑠
(1)∗ , 𝜃𝑣𝑟𝑠

(2)∗
, 𝜃𝑣𝑟𝑠

(3)∗
, 𝜃𝑣𝑟𝑠

(4)∗
) are the fuzzy efficiencies for the TTE and PTE, respectively, 

the fuzzy measure of SE0 for DMU0 is expressed as follows:  

                                                 
1 See Asady and Zendehnam (2007) for going through certain mathematical advantages of the 

above ranking fuzzy number. 
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𝜃̃(𝑆𝐸0) =
𝜃̃0(𝑐𝑟𝑠)

𝜃̃0(𝑣𝑟𝑠)
=
 (𝜃𝑐𝑟𝑠

(1)∗
, 𝜃𝑐𝑟𝑠

(2)∗
, 𝜃𝑐𝑟𝑠

(3)∗
, 𝜃𝑐𝑟𝑠

(4)∗
)

 (𝜃𝑣𝑟𝑠
(1)∗ , 𝜃𝑣𝑟𝑠

(2)∗
, 𝜃𝑣𝑟𝑠

(3)∗
, 𝜃𝑣𝑟𝑠

(4)∗
)
 (10) 

 

Given that 1  (𝜃𝑣𝑟𝑠
(1)∗ , 𝜃𝑣𝑟𝑠

(2)∗
, 𝜃𝑣𝑟𝑠

(3)∗
, 𝜃𝑣𝑟𝑠

(4)∗
)⁄ =  (𝜃𝑣𝑟𝑠

(4)∗ , 𝜃𝑣𝑟𝑠
(3)∗

, 𝜃𝑣𝑟𝑠
(2)∗

, 𝜃𝑣𝑟𝑠
(1)∗

) , equation (10) can be 

transformed into a multiplication operation as follows: 

𝜃̃(𝑆𝐸0) =  (𝜃𝑐𝑟𝑠
(1)∗ , 𝜃𝑐𝑟𝑠

(2)∗
, 𝜃𝑐𝑟𝑠

(3)∗
, 𝜃𝑐𝑟𝑠

(4)∗
) ⊗  (𝜃𝑣𝑟𝑠

(4)∗ , 𝜃𝑣𝑟𝑠
(3)∗

, 𝜃𝑣𝑟𝑠
(2)∗

, 𝜃𝑣𝑟𝑠
(1)∗

) (11) 

 

Dubois and Prade (1978) suggested the following standard approximation to calculate the above 

multiplication, which is definitely easy and computationally efficient.  

𝜃̃(𝑆𝐸0) ≅  (𝜃𝑐𝑟𝑠
(1)∗

. 𝜃𝑣𝑟𝑠
(4)∗

, 𝜃𝑐𝑟𝑠
(2)∗

. 𝜃𝑣𝑟𝑠
(3)∗

, 𝜃𝑐𝑟𝑠
(3)∗

. 𝜃𝑣𝑟𝑠
(2)∗

, 𝜃𝑐𝑟𝑠
(4)∗

. 𝜃𝑣𝑟𝑠
(1)∗

) (12) 

 

Even though the standard approximation associated with the multiplication operation is widely 

used in the literature, Dubois and Prade (1978) noted that erroneous results are considerably 

appeared when the spread of the fuzzy number is not small and the membership value is near 1. 

To acquire the actual product, the multiplication operation can be carried out at each 𝛼 level. Let 

us initially define the interval confidence method of 𝜃̃0𝛼(𝑐𝑟𝑠) and  𝜃̃0𝛼
−1(𝑣𝑟𝑠) which is ((𝜃𝑐𝑟𝑠

(2)∗
−

𝜃𝑐𝑟𝑠
(1)∗)𝛼 + 𝜃𝑐𝑟𝑠

(1)∗, −(𝜃𝑐𝑟𝑠
(4)∗ − 𝜃𝑐𝑟𝑠

(3)∗)𝛼 + 𝜃𝑐𝑟𝑠
(4)∗) and ((𝜃𝑣𝑟𝑠

(2)∗
− 𝜃𝑣𝑟𝑠

(1)∗)𝛼 + 𝜃𝑣𝑟𝑠
(1)∗, −(𝜃𝑣𝑟𝑠

(4)∗ − 𝜃𝑣𝑟𝑠
(3)∗)𝛼 +

𝜃𝑣𝑟𝑠
(4)∗) for every 𝛼 ∈ [0,1] (Kaufmann and Gupta, 1988). Next, the product 𝜃̃(𝑆𝐸0) of two 

trapezoidal fuzzy numbers 𝜃̃0(𝑐𝑟𝑠)  and 𝜃̃0
−1(𝑣𝑟𝑠) is computed by multiplying the 𝛼-levels defined 

by the interval confidence method.  

𝜃̃(𝑆𝐸0) = 𝜃̃0(𝑐𝑟𝑠)  ⨂𝜃̃0
−1(𝑣𝑟𝑠)

= ((𝜃𝑐𝑟𝑠
(2)∗ − 𝜃𝑐𝑟𝑠

(1)∗)𝛼 + 𝜃𝑐𝑟𝑠
(1)∗, −(𝜃𝑐𝑟𝑠

(4)∗ − 𝜃𝑐𝑟𝑠
(3)∗)𝛼 + 𝜃𝑐𝑟𝑠

(4)∗) × ((𝜃𝑣𝑟𝑠
(2)∗

− 𝜃𝑣𝑟𝑠
(1)∗)𝛼 + 𝜃𝑣𝑟𝑠

(1)∗, −(𝜃𝑣𝑟𝑠
(4)∗ − 𝜃𝑣𝑟𝑠

(3)∗)𝛼 + 𝜃𝑣𝑟𝑠
(4)∗) 

(13) 

 

The lines connecting the endpoints for every 𝛼 ∈ [0,1] results in the actual product which is the 

fuzzy measure of SE0. Note that if 𝜃̃0𝛼(𝑐𝑟𝑠) turns out to be precise as (𝜃𝑐𝑟𝑠
(1)∗, 𝜃𝑐𝑟𝑠

(1)∗, 𝜃𝑐𝑟𝑠
(1)∗, 𝜃𝑐𝑟𝑠

(1)∗), 

then 𝜃̃(𝑆𝐸0) can be expressed as follows:  

𝜃̃(𝑆𝐸0) = ((𝜃𝑣𝑟𝑠
(2)∗ − 𝜃𝑣𝑟𝑠

(1)∗)𝜃𝑐𝑟𝑠
(1)∗𝛼 + 𝜃𝑣𝑟𝑠

(1)∗𝜃𝑐𝑟𝑠
(1)∗, −(𝜃𝑣𝑟𝑠

(4)∗ − 𝜃𝑣𝑟𝑠
(3)∗)𝜃𝑐𝑟𝑠

(1)∗𝛼 + 𝜃𝑣𝑟𝑠
(4)∗𝜃𝑐𝑟𝑠

(1)∗) (14) 
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The upper and lower limits of interval SE0 measure varies within [0, 1] in which the lower limit 

is always smaller than or equal to the upper limit. Therefore, we think of the following definition 

to provide a classification in terms of the scale efficiency measure of the DMU under evaluation.  

Definition 4. Consider the interval SE of DMU0 derived from (13) for a given . If the lower 

limit of 𝜃̃(𝑆𝐸0) is equal to 1, i.e., 𝜃̃(𝑆𝐸0) = (1, 1), then it is called full scale efficient, if the upper 

limit of 𝜃̃(𝑆𝐸0) is equal to 1 and the lower limit of 𝜃̃(𝑆𝐸0) is less than one, then we call it scale 

efficient, and if the upper limit of 𝜃̃(𝑆𝐸0) is less than one, then we call it scale inefficient. In fact, 

a DMU is full scale efficient when the network system is completely operating at optimal scale 

size, and the system is scale efficient when the system is partially functioning at optimal scale size.  

 

4. Application  

 

In this section, we exemplify our proposed method by analyzing and benchmarking the airport 

operations which can be observed as a two-process structure including “Aircraft Movement” and 

“Aircraft Loading” as the first and second processes, respectively (Gillen and Lall, 1997, 2001; 

Lozano et al., 2013). The first process uses three inputs; total runway area (I1S1), apron capacity 

(I2S1), number of boarding gates (I3S1) to generate the accumulated flight delays (O1S1) as an 

undesirable output as well as the airplane traffic movements (Inter) as an intermediate measure. 

The second process consumes two inputs; number of check-in counters (I1S2) and number of 

baggage belts (I2S2) and the intermediate measure (airplane traffic movements) to produce two 

outputs; annual passenger movements (O1S2) and cargo handled (O2S2). The aircraft traffic 

movements as an intermediate measure signifies the number of airplane movements including 

landings and take-offs of airplanes, which plays a part in providing the service of moving 

passengers and cargos.  

In comparison with the structure proposed by Lozano et al. (2013), we discard the number of 

delayed flights as an undesirable output of the first process since it is highly correlated with the 

accumulated flight delays. The structural pattern is depicted in Figure 1.  

------- Insert Figure 1 here------- 

 

We draw special attention to the accumulated flight delays which is an unpleasant output derived 

from the first process. To deal with undesirable outputs, several approaches have been developed 

in the literature. Dyckhoff and Allen (2001) classified the respective approaches for handling 
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undesirable outputs into three categories: (i) taking into account the reciprocal of the undesirable 

output in which the undesirable output is changed to the desirable one (Scheel, 2001), (ii) taking 

into account a multi-criteria approach in which the undesirable output is modelled as an input 

(Rheinhard et al, 1999), and (iii) employing the translation property in BCC and additive DEA 

models which implies that a positive scalar is added to the reciprocal additive transformation of 

the undesirable output (Ali and Seiford, 1990). Simplistically, the approach to treat undesirable 

outputs is to consider an undesirable output as an input or utilizes the reciprocal (Gomes and Lins, 

2008). In this research, we model the undesirable output of the first process (i.e., accumulated 

flight delays) as an input of this process. The dataset for 39 Spanish airports taken from Lozano et 

al. (2013) is presented in Table 1. To highlight the importance of inescapable uncertainty in the 

performance analysis, particularly in airport operations, in this section, we extend the dataset 

reported in Table 1 into an uncertain data setting. We assume that I1S1, I2S1 and O1S1 are not 

precisely measured due to the uncertainty and subjectiveness. To deal with such uncertainty, we 

take account of a trapezoidal fuzzy number whose vertex is identical to the deterministic amount 

with assigning a degree of membership of 1. The precise values of I1S1, I2S1 and O1S1 are 

therefore substituted with the trapezoidal fuzzy numbers as (0.85*I1S1, I1S1, I1S1, 1.25*I1S1), 

(0.85*I2S1, I2S1, I2S1, 1.25*I2S1) and (0.85*O1S1, O1S1, O1S1, 1.25*O1S1). These fuzzy numbers 

in fact are triangular fuzzy numbers due to the equality between the two points at the top of each 

trapezoidal fuzzy numbers. 

------- Insert Table 1 here------- 

 

We calculate the fuzzy efficiencies for every airport using models (5)-(8) under the VRS 

assumption, as shown in “VRS” column of Table 2. Note that we take the two convexity constraints 

for the first and second processes into consideration, i.e., ∑ 𝜆𝑗
𝑝 = 1𝑗 , 𝑝 = 1,2, to satisfy the VRS 

assumption. Since the results of models (7) and (8) are equal, 𝜃(2) = 𝜃(3) and the approximated 

efficiency of each airport is a triangular fuzzy number. According to Definition 1, the Vitoria, 

Saragossa, Madrid Barajas, Girona-Costa Brava, Cordoba and Barcelona airports are classified 

as fully efficient because 𝜃(1)∗ is equal to 1, and Albacete, Badajoz, El Hierro and La Gomera 

airports are classified as efficient since 𝜃(3)∗ = 1. It is also shown in the 5th column of Table 2 in 

which “F. Eff.” and “Eff.” stand for fully efficient and efficient categories, respectively. The airport 

whose efficiency derived from model (8) is less one is classified as inefficient. To provide a ranking 
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for the inefficient airports, we exploit the nearest point whose formula is introduced in Definition 

3. The nearest points of inefficient airports are reported in the 5th column of Table 2 and the 

numbers in parentheses indicate their rankings. Accordingly, Melilla is superior among the 

inefficient airports, followed by Alicante, Leon, and Palma de Mallorca airports, respectively. 

Interestingly, the Ibiza airport is the worst performance in total. The method proposed by Lozano 

et al. (2013) without taking uncertainty into account eight airports including Albacete, Barcelona, 

Cordoba, Girona-Costa Brava, Madrid Barajas, Palma de Mallorca, Saragossa and Vitoria are 

efficient. Contrary to our approach in this paper, apart from the Palma de Mallorca airport which 

is not efficient anymore, the outstanding seven airports not only remain efficient but also the 

Badajoz, El Hierro and La Gomera airports are efficient. 

------- Insert Table 2 here------- 

 

At present, let us analyze the role of convexity constraints for all processes. In what follows, we 

zero in on the convexity of Process 1 without regarding convexity constraint for Process 2, i.e., 

∑ 𝜆𝑗
1 = 1𝑗 . The associated results are summarized in the “VRS (Convexity for Process 1)” column 

of Table 2. Contrary to the VRS case, the fuzzy efficiencies for 59% of inefficient airports are 

slightly declined in the absence of the convexity constraint of Process 2, and the significant 

difference bears on the Madrid Barajas airport as “F. Eff.” which turns out to be inefficient. It is 

need to point out that Ibiza is still the most inferior airport. The convexity of Process 2 is, in turn, 

considered under the VRS assumption, i.e., ∑ 𝜆𝑗
2 = 1𝑗 , to evaluate the fuzzy efficiency of the 

Spanish airports in the presence of a number of fuzzy data embedded in Process 1. This model 

setting leads to the identical solutions for models (5)-(8), i.e. 𝜃(1)∗ = 𝜃(2)∗ = 𝜃(3)∗ = 𝜃(4)∗, as 

shown in “VRS (convexity of Process 2)” column of Table 2. It is remarked that the Madrid 

Barajas airport is efficient which is the same as the VRS case. Besides, the efficiency of two 

Albacete and La Gomera airports are considerably decreased as can be also observed from their 

ranks reported in Table 2. The last column of Table 2 shows the total technical efficiency (TTE) 

of the airports under the CRS assumption. Given that the TTE measures are deterministic, we take 

account of Equation (14) to obtain the interval SE for five different  levels, i.e., 

={0,0.25,0.5,0.75,1} as presented in Table 3. Note that full scale efficient and scale inefficient 

are denoted by FSE and SIN, respectively, in the last column of Table 3. The last column of Table 

3 shows the associated classification in terms of the scale efficiency measure which Barcelona, 
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Cordoba, Girona-Costa Brava, Saragossa and Vitoria are classified as full scale efficient because 

the lower limit of 𝜃̃(𝑆𝐸0) for all -levels is equal to 1, meaning that these airports are completely 

operating at optimal scale size.  

------- Insert Table 3 here------- 

Given some results may be far from the actual performance especially from the practitioner view, 

we have need of underlining that our airport benchmarking analysis in this section is not intended 

to secure an in-depth study and understanding of the performance of Spanish airports, but rather 

to signify the application of the proposed methodology. 

 

5. Conclusions  

Due to the lack of availability of precise input and output data in many real-world applications as 

well as going beyond the black-box structure of firms, this study has proposed a new fuzzy network 

DEA model based upon the fuzzy arithmetic to conquer the uncertainty and fuzziness embedded 

in network structures. We have developed input-oriented fuzzy network DEA models to compute 

the fuzzy technical and scale efficiencies. Although most network systems in DEA literature are 

presumed to be simple, i.e., two processes, we have focused on general network production 

structures which can be the mixtures of series and parallel structures. In addition, a classification 

framework based on the fuzzy scale and efficiency measures has been introduced to provide a 

better understanding of a network production systems against other homogeneous systems. Fuzzy 

efficiency and fuzzy scale measures resulted from the proposed approach are more informative 

than crisp measures.  Put differently, our approach enables us to reflect the real situation and human 

judgments with the fuzzy values rather than precise number. To illustrate the main steps of the 

model, we have applied the fuzzy network DEA models to evaluate the performances and scale 

efficiency measure of 39 airports in which every airport includes the two production processes.  
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Table 1. Input and output data for the 39 Spanish airports 

Airport I1S1 I2S1 I3S1 Inter O1S1 I1S2 I2S2 O1S2 O2S2 

A Coruña 87300 5 4 17.719 23783.4 10 3 1174.97 283.57 

Albacete 162000 2 2 2.113 1376.5 4 1 19.25 8.92 

Alicante 135000 31 16 81.097 142445.8 42 9 9578.3 5982.31 

Almeria 144000 15 5 18.28 20149.1 17 4 1024.3 21.32 

Asturias 99000 7 9 18.371 23893.5 11 3 1530.25 139.47 

Badajoz 171000 1 2 4.033 2365.4 4 1 81.01 0 

Barcelona 475020 121 65 321.693 645924.6 143 19 30272.08 103996.49 

Bilbao 207000 21 12 61.682 80848.2 36 7 4172.9 3178.76 

Cordoba 62100 23 1 9.604 254.4 1 0 22.23 0 

El Hierro 37500 3 2 4.775 641.6 5 1 195.43 171.72 

Fuerteventura 153000 34 10 44.552 72179.7 34 8 4492 2722.66 

Girona-Costa 

Brava 
108000 17 7 49.927 100305.6 18 3 5510.97 184.13 

Gran Canaria 139500 55 38 116.252 136380.7 86 19 10212.12 33695.25 

Granada-Jaen 134550 11 3 19.279 17868.8 12 3 1422.01 66.89 

Ibiza 126000 25 12 57.233 152840.1 48 8 4647.36 3928.39 

Jerez 103500 9 5 50.551 19292.2 13 3 1303.82 90.43 

La Gomera 45000 3 2 3.393 420.7 5 1 41.89 7.86 

La Palma 99000 5 5 20.109 8286 13 2 1151.36 1277.26 

Lanzarote 108000 24 16 53.375 101685.6 49 8 5438.18 5429.59 

Leon 94500 5 2 5.705 7191.5 3 1 123.18 15.98 

Madrid 

Barajas 
927000 263 230 469.746 908360 484 53 50846.49 329186.63 

Malaga 144000 43 30 119.821 277663.8 85 16 12813.47 4800.27 

Melilla 64260 5 2 10.959 2979.6 4 1 314.64 386.34 

Murcia 138000 5 5 19.339 24103.1 18 4 1876.26 2.73 

Palma de 

Mallorca 
295650 86 68 193.379 501486 204 16 22832.86 21395.79 

Pamplona 99315 7 2 12.971 11691.8 4 1 434.48 52.94 

Reus 110475 5 5 26.676 18240.8 8 3 1278.07 119.85 

Salamanca 150000 6 2 12.45 6626.1 4 2 60.1 0 

San Sebastian 78930 6 3 12.282 11184 6 2 403.19 63.79 

Santander 104400 8 5 19.198 17842 8 2 856.61 37.48 

Santiago 144000 16 12 21.945 34322.3 19 5 1917.47 2418.8 

Saragossa 302310 12 3 14.584 19547.6 6 2 594.95 21438.89 

Seville 151200 23 10 65.067 51084.9 42 6 4392.15 6102.26 
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Note: The units of the data are: I1S1 (square meters), I2S1 (no. of stands), I3S1 (no. of gates), Inter (thousand 

operations), O1S1 (minutes), I1S2 (no. of counters), I2S2 (Number of belts), O1S2 (Thousand passengers), and O2S2 

(Tonnes). 

 

 
 

 

Tenerife North 153000 16 16 67.8 32637 37 5 4236.62 20781.67 

Tenerife South 144000 44 22 60.779 110818.9 87 14 8251.99 8567.09 

Valencia 144000 35 18 96.795 102719.2 42 8 5779.34 13325.8 

Valladolid 180000 7 5 13.002 14760.6 8 2 479.69 34.65 

Vigo 108000 8 6 17.934 25593.6 12 3 1278.76 1481.94 

Vitoria 157500 18 3 12.225 11585.8 7 2 67.82 34989727 
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  Table 2. Efficiencies of the Spanish airports 

 

Airport 

VRS VRS (Convexity for Process 1) 

VRS 

(convexity for 

Process 2) 

CRS 

𝜽(𝟏) 
𝜽(𝟐)

= 𝜽(𝟑) 
𝜽(𝟒) 

Nearest point 

Classification 
𝜽(𝟏) 

𝜽(𝟐)

= 𝜽(𝟑) 
𝜽(𝟒) 

Nearest 

point 

Classificatio

n 

𝜽(𝟏) = 𝜽(𝟐)

= 𝜽(𝟑) = 𝜽(𝟒) 
𝜽(𝟏) = 𝜽(𝟐)

= 𝜽(𝟑) = 𝜽(𝟒) 

A Coruña 0.488 0.498 0.565 0.512 (15) 0.488 0.498 0.565 0.512 (12) 0.461 (17) 0.388 (19) 

Albacete 0.964 0.986 1 Eff. 0.964 0.986 1 Eff. 0.25 (37) 0.016 (39) 

Alicante 0.917 0.917 0.917 0.917 (2) 0.77 0.77 0.77 0.770 (5) 0.917 (7) 0.77 (6) 

Almeria 0.349 0.363 0.372 0.362 (28) 0.349 0.363 0.372 0.362 (27) 0.241 (38) 0.197 (32) 

Asturias 0.517 0.517 0.517 0.517 (14) 0.456 0.456 0.456 0.456 (17) 0.517 (15) 0.456 (14) 

Badajoz 0.99 0.996 1 Eff. 0.99 0.996 1 Eff. 0.296 (35) 0.066 (36) 

Barcelona 1 1 1 F. Eff. 1 1 1 F. Eff. 1 (1) 1 (1) 

Bilbao 0.398 0.398 0.398 0.398 (22) 0.395 0.395 0.395 0.395 (22) 0.398 (24) 0.395 (18) 

Cordoba 1 1 1 F. Eff. 1 1 1 F. Eff. 1 (1) 1 (1) 

El Hierro 0.964 0.986 1 Eff. 0.964 0.986 1 Eff. 0.312 (33) 0.134 (35) 

Fuerteventur

a 
0.448 0.448 0.448 0.448 (17) 0.446 0.446 0.446 0.446 (18) 0.448 (18) 0.446 (15) 

Girona-Costa 

Brava 
1 1 1 F. Eff. 1 1 1 F. Eff. 1 (1) 1 (1) 

Gran Canaria 0.531 0.531 0.531 0.531 (13) 0.461 0.461 0.461 0.461 (16) 0.531 (14) 0.461 (13) 

Granada-

Jaen 
0.552 0.58 0.598 0.578 (11) 0.552 0.58 0.598 0.578 (10) 0.445 (20) 0.387 (20) 

Ibiza 0.339 0.339 0.339 0.339 (29) 0.338 0.338 0.338 0.338 (30) 0.339 (32) 0.338 (27) 

Jerez 0.383 0.388 0.394 0.388 (25) 0.377 0.388 0.394 0.387 (25) 0.383 (26) 0.328 (29) 

La Gomera 0.964 0.986 1 Eff. 0.964 0.986 1 Eff. 0.212 (39) 0.028 (38) 

La Palma 0.398 0.467 0.549 0.470 (16) 0.398 0.467 0.549 0.470 (15) 0.36 (31) 0.329 (28) 

Lanzarote 0.397 0.397 0.397 0.397 (23) 0.396 0.396 0.396 0.396 (21) 0.397 (25) 0.396 (17) 

Leon 0.883 0.917 0.939 0.914 (3) 0.883 0.917 0.939 0.914 (2) 0.438 (21) 0.135 (34) 
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Madrid 

Barajas 
1 1 1 F. Eff. 0.748 0.748 0.748 0.748 (7) 1 (1) 0.748 (8) 

Malaga 0.645 0.645 0.645 0.645 (7) 0.502 0.502 0.502 0.502 (14) 0.645 (9) 0.502 (12) 

Melilla 0.895 0.928 0.949 0.925 (1) 0.895 0.928 0.949 0.925 0.491 (16) 0.275 (30) 

Murcia 0.395 0.428 0.504 0.439 (19) 0.395 0.428 0.504 0.439 (19) 0.375 (28) 0.34 (26) 

Palma de 

Mallorca 
0.887 0.887 0.887 0.887 (4) 0.752 0.752 0.752 0.752 (6) 0.887 (8) 0.752 (7) 

Pamplona 0.832 0.873 0.9 0.870 (6) 0.832 0.873 0.9 0.870 (4) 0.571 (12) 0.357 (22) 

Reus 0.613 0.613 0.613 0.613 (9) 0.524 0.524 0.535 0.527 (11) 0.613 (10) 0.524 (10) 

Salamanca 0.852 0.881 0.904 0.880 (5) 0.852 0.881 0.904 0.880 (3) 0.279 (36) 0.049 (37) 

San 

Sebastian 
0.618 0.637 0.649 0.635 (8) 0.618 0.637 0.649 0.635 (8) 0.365 (30) 0.221 (31) 

Santander 0.448 0.448 0.448 0.448 (17) 0.382 0.392 0.398 0.391 (23) 0.448 (18) 0.35 (24) 

Santiago 0.38 0.38 0.38 0.380 (26) 0.353 0.353 0.353 0.353 (28) 0.38 (27) 0.353 (23) 

Saragossa 1 1 1 F. Eff. 1 1 1 F. Eff. 1 (1) 1 (1) 

Seville 0.422 0.422 0.422 0.422 (21) 0.421 0.421 0.421 0.421 (20) 0.422 (23) 0.421 (16) 

Tenerife 

North 
0.601 0.601 0.601 0.601 (10) 0.6 0.6 0.6 0.600 (9) 0.601 (11) 0.6 (9) 

Tenerife 

South 
0.366 0.366 0.366 0.366 (27) 0.342 0.342 0.342 0.342 (29) 0.366 (29) 0.342 (25) 

Valencia 0.543 0.543 0.543 0.543 (12) 0.509 0.509 0.509 0.509 (13) 0.543 (13) 0.509 (11) 

Valladolid 0.382 0.391 0.397 0.390 (24) 0.382 0.391 0.397 0.390 (24) 0.302 (34) 0.196 (33) 

Vigo 0.426 0.426 0.426 0.426 (2) 0.371 0.371 0.371 0.371 (26) 0.426 (22) 0.371 (21) 

Vitoria 1 1 1 F. Eff. 1 1 1 F. Eff. 1 (1) 1 (1) 
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Table 3. SE of the Spanish airports for different -levels  

Airport 𝜽̃(𝑺𝑬)𝟎 𝜽̃(𝑺𝑬)𝟎.𝟐𝟓 𝜽̃(𝑺𝑬)𝟎.𝟓 𝜽̃(𝑺𝑬)𝟎.𝟕𝟓 𝜽̃(𝑺𝑬)𝟏 Classification 

A Coruña 0.189 0.219 0.190 0.213 0.191 0.206 0.192 0.200 0.193 0.193 SIN 

Albacete 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 SIN 

Alicante 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 SIN 

Almeria 0.069 0.073 0.069 0.073 0.070 0.072 0.071 0.072 0.072 0.072 SIN 

Asturias 0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.236 SIN 

Badajoz 0.065 0.066 0.065 0.066 0.066 0.066 0.066 0.066 0.066 0.066 SIN 

Barcelona 1 1 1 1 1 1 1 1 1 1 FSE 

Bilbao 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 SIN 

Cordoba 1 1 1 1 1 1 1 1 1 1 FSE 

El Hierro 0.129 0.134 0.130 0.134 0.131 0.133 0.131 0.133 0.132 0.132 SIN 

Fuerteventura 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 SIN 

Girona-Costa Brava 1 1 1 1 1 1 1 1 1 1 FSE 

Gran Canaria 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 SIN 

Granada-Jaen 0.214 0.231 0.216 0.230 0.219 0.228 0.222 0.226 0.224 0.224 SIN 

Ibiza 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 SIN 

Jerez 0.126 0.129 0.126 0.129 0.126 0.128 0.127 0.128 0.127 0.127 SIN 

La Gomera 0.027 0.028 0.027 0.028 0.027 0.028 0.027 0.028 0.028 0.028 SIN 

La Palma 0.131 0.181 0.137 0.174 0.142 0.167 0.148 0.160 0.154 0.154 SIN 

Lanzarote 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 SIN 

Leon 0.119 0.127 0.120 0.126 0.122 0.125 0.123 0.125 0.124 0.124 SIN 

Madrid Barajas 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.748 SIN 

Malaga 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 SIN 

Melilla 0.246 0.261 0.248 0.260 0.251 0.258 0.253 0.257 0.255 0.255 SIN 

Murcia 0.134 0.171 0.137 0.165 0.140 0.158 0.143 0.152 0.146 0.146 SIN 

Palma de Mallorca 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 SIN 

Pamplona 0.297 0.321 0.301 0.319 0.304 0.316 0.308 0.314 0.312 0.312 SIN 

Reus 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 SIN 

Salamanca 0.042 0.044 0.042 0.044 0.042 0.044 0.043 0.043 0.043 0.043 SIN 

San Sebastian 0.137 0.143 0.138 0.143 0.139 0.142 0.140 0.141 0.141 0.141 SIN 

Santander 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 SIN 

Santiago 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 SIN 

Saragossa 1 1 1 1 1 1 1 1 1 1 FSE 

Seville 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 SIN 
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Tenerife North 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 SIN 

Tenerife South 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 SIN 

Valencia 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.276 SIN 

Valladolid 0.075 0.078 0.075 0.078 0.076 0.077 0.076 0.077 0.077 0.077 SIN 

Vigo 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 SIN 

Vitoria 1 1 1 1 1 1 1 1 1 1 FSE 
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