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Abstract 
This paper presents a numerical study to address wake control of a circular cylinder subjected 
to two-dimensional laminar flow regime using single and multiple flexible splitter plates 
attached to the cylinder. Three different cases are presented in the study, covering cylinders 
with one, two and three horizontally attached splitter plates while the locations of the plates 
around the cylinders are varied. The length of the splitter plates was equal to the cylinder 
diameter and Reynolds number was 100. Due to the flexibility of the plates, the problem was 
modeled as a Fluid-Structure Interaction (FSI) problem and the commercial finite element 
software, Comsol Multiphysics, was utilized to solve this problem using Arbitrary 
Lagrangian–Eulerian (ALE) method. Vortex shedding frequency and fluid forces acting on 
the cylinder are investigated, along with a comprehensive parametric study to identify the 
optimum arrangement of the plates for maximum drag reduction and maximum vortex 
shedding frequency reduction. The numerical results associated to the flexible splitter plates 
are also compared with the corresponding rigid splitter plate cases investigated in a previous 
study. Moreover, the tip amplitude of the plates and the maximum strains were measured in 
order to find an optimum position for placing a piezoelectric polymer to harvest energy from 
the flow.  
 
Keywords: fluid-structure interaction, Arbitrary Lagrangian-Eulerian, flexible splitter plate, 
vortex shedding, drag, Strouhal number. 
   
 
1. Introduction 
Many engineering applications require control of fluid forces for certain needs such as 
vibration suppression, drag reduction and lift enhancement (Wu et al, 2014). Examples 
include heat exchangers, marine structures, bridges and power transmission lines (Sudhakar 
and Vengadesan, 2012). Flow past a circular cylinder has been extensively studied as a 
representative example of flow over a bluff body (Wu et al, 2014).  
Previous works have shown that the formation of vortex shedding behind a cylinder can be 
effectively reduced and suppressed by the use of splitter plates (Kwon and Choi, 1996). 
Roshko (1954) initiated the research on the application of splitter plates in wake control by 
investigating the effect of the length of a rigid splitter plate (L) on cylinder wake. In another 
study, a detached rigid splitter plate of length L=D (where D is the cylinder diameter) was 
used to control the cylinder wake (Roshko, 1955). Gerrard (1966) studied the effect of the 
length of a rigid splitter plate on cylinder wake at 𝑅𝑅𝑅𝑅 = 2 × 104. It was observed that by 
increasing the length of the splitter plate within 0 ≤ 𝐿𝐿/𝐷𝐷 ≤ 1, the Strouhal number (St) (a 
dimensionless number describing oscillating flow mechanisms) decreased. However, further 
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increase in the plate length (𝐿𝐿/𝐷𝐷 > 1) resulted in a gradual increase in St, suggesting that the 
minimum St was achievable when 𝐿𝐿/𝐷𝐷 = 1. Moreover, the frequency of vortex shedding was 
inversely proportional to the vortex formation length immediately downstream of the bluff 
body. 
Other studies investigated the effect of Reynolds number, length of the rigid plates, shape of 
the bluff body and distance between plate and bluff body on flow quantities of the cylinder 
(Bearman, 1965; Apelt et al., 1973; Apelt and West, 1975; Unal and Rockwell (1988); 
Nakamura, 1996; Ozono, 2003; Akilli et al, 2005). Abdi et al (2017) investigated the wake 
control of a circular cylinder using multiple rigid splitter plates at Re=100. It was observed 
that the use of dual-splitters and tri-splitters led to further decrease in drag and vortex 
shedding frequency compared to single rigid plate case. Moreover, the attachment angle had 
a crucial effect on the control efficiency. 
The utilization of a rigid splitter plate behind a cylinder prevents any communication between 
the two shear layers downstream of the cylinder (Shukla, 2009). Recent studies investigated 
alternative cases where the communication between the two shear layers is not totally 
inhibited. Cardell (1993) studied the effect of permeability of the control plate on flow 
quantities of a cylinder. The same base pressure as the cylinder with an attached rigid splitter 
plate was observed when a rigid control plate with low permeability was utilized whereas by 
increasing the permeability, the base pressure smoothly reached that of the plain cylinder. 
More recently, Shukla et al. (2009) investigated the influence of attaching hinged-rigid 
splitter plate to a cylinder on the cylinder wake. It was observed that the splitter plate 
oscillated due to the pressure difference across the plate and the amplitude of oscillations 
reached a maximum value of 0.45D at the free end. Hinged splitter plates are also studied by 
Assi et al. (2009) and Gu et al. (2012). 
Unlike the rigid splitter plates which have been extensively studied, there are only a few 
studies applying flexible splitter plates for wake control. In the case of flexible splitter plates, 
the local difference in pressure and viscous shear stresses on the plates’ surfaces can cause 
periodic deformation of the plates along their length. The flow field will also be affected by 
the plate displacements, resulting in a coupling process between the fluid and the structure 
which is known as fluid-structure interaction (FSI). Consideration of elastic deformation of 
the splitter plates can provide great practical importance. For instance, this system can be 
used to harvest energy from the flow by means of piezoelectric membranes. Extensive studies 
have been done in this area, e.g. Allen and Smits (2001), Taylor et al (2001) and Akaydin et 
al (2010).  Moreover, some studies investigated the effect of flexibility on propulsive 
velocity. Lee and Lee (2013) studied a flapping flexible plate (without the cylinder) moved 
with propulsive velocity in quiescent fluid and found that the use of a flexible plate improves 
the propulsive velocity (when compared with rigid plate) to create optimal propulsion. 
With the development of computational power in recent decades, numerical simulation 
techniques have become a powerful tool for solving the FSI problems. FSI problems are 
mathematically represented by coupling fluid dynamics and structural mechanics equations to 
get solved simultaneously. A number of different approaches can be used for solving FSI 
problems, such as Immersed Boundary Method (IBM), Lattice Boltzmann Methods (LBM) 
and Arbitrary Lagrangian–Eulerian (ALE) method. Sudhakar and Vengadesan (2012) studied 
the vortex shedding characteristics and the drag forces acting on a circular cylinder attached 
to an oscillating rigid splitter plate at 𝑅𝑅𝑅𝑅 =  100 using the concept of Immersed Boundary 
Method (IBM). The rigid plate was forced to oscillate by varying the frequency and 
amplitude of plate oscillations. Three different patterns of vortex shedding were observed in 
the wake of the circular cylinder: normal shedding, chain of vortices and shedding from 



splitter plate. In a similar study, Wu et al (2014) investigated effects of detached flexible 
splitter plate located on both upstream and downstream of the cylinder using a coupled 
Immersed Boundary-Lattice Boltzmann Method (IB-LBM). A simulation of the interaction 
between multiple elastic structures and a viscous incompressible fluid was performed by Tian 
et al (2011). They introduced a modified penalty approach into the IB-LBM to simulate the 
moving boundaries. However, this approach introduced artificial spring parameters to 
calculate the distributed force and caused many uncertainties in the results (Yuan et al, 2014). 
Among various numerical methods to solve the Navier–Stokes equation in a fluid domain 
with moving boundaries, ALE method has been found as a successful approach (Souli et al, 
2000). ALE method employs a moving mesh strategy which allows adaptive mesh refinement 
with the movement of a structure. This method is found to benefit from high accuracy due to 
its boundary adaptability (Lee and Lee, 2013). The ALE method was used by Sawada and 
Hisada (2007) to study the two-dimensional flag-in-wind problem. They investigated the 
effects of a number of representative parameters on the amplitude and frequency of 
oscillations to reveal the underlying mechanism of flag flapping. 
As discussed above, the majority of previous works related to control and stabilization of 
wake flow have focused on the use of rigid splitter plates mainly in a fixed angular position 
for wake control. The aim of this paper is to investigate the effect of flexible splitter plates on 
wake control of a circular cylinder by performing a two-dimensional (2D) numerical study. 
The plates exhibit periodic deformation which results in a complicated FSI problem. The 
novelty of the study is that it investigates the effect of multiple flexible plates attached to a 
cylinder on the cylinder wake, by comparing three different cases: single-splitter, dual-
splitters, and tri-splitters. Moreover, the effect of the location of horizontal plates (attachment 
angle) on the cylinder wake is studied in the paper. The variations of drag coefficient, St, 
root-mean-square (r.m.s) value of the fluctuating lift coefficient, tip displacement and strain 
along the plates’ length are also investigated. In all cases, it is considered that 𝐿𝐿/𝐷𝐷 =  1, 
since the St reaches its minimum value at the splitter plate ratio of one (Gerrard, 1966; Apelt 
et al, 1973). Based on the cylinder diameter, the Reynolds number was fixed at 100. Since the 
three-dimensionality of the flow evolves at 𝑅𝑅𝑅𝑅 >  160 for a flow over a circular cylinder 
(Mansy et al 1994), the utilization of two-dimensional Navier–Stokes equations can provide a 
physically appropriate solution for the presented problem (Sudhakar and Vengadesan, 2012). 
The FSI module provided by the commercial finite element software, Comsol Multiphysics 
(COMSOL Inc., Stockholm, Sweden) is utilized to solve the problem using the ALE method. 
The next sections of the paper present the problem statement followed by the numerical 
methodology used to solve the governing equations, detailed results and discussion. 
 
 
2. Problem statement 
 
Free oscillations of flexible splitter plates attached to the rear surface of a circular cylinder is 
considered. Three different cases are presented, including the cylinder with one flexible 
splitter plate (single splitter), two flexible splitter plates (dual-splitters) and three flexible 
splitter plates (tri-splitters) as illustrated in figure 1. The thickness (h) of all plates was equal 
to 0.03D in all cases and the location of the horizontal plates behind the cylinder was defined 
by attachment angle (𝜃𝜃𝑝𝑝). This is the angle between the wake centerline and a straight line 
crossing the centre of the cylinder and the attachment point. 𝜃𝜃𝑝𝑝 was varied between 𝜃𝜃𝑝𝑝 = 0° 
and 𝜃𝜃𝑝𝑝 = 90°. It was assumed that the attachment points of dual-splitters and tri-splitters are 
symmetric with respect to x axis.  



 

 
Figure 1: Schematic diagram of a cylinder with attached flexible splitter plates. (a) single splitter (b) 
dual-splitters (c) tri-splitters. 
 
A 2D rectangular computational domain defined by −30𝐷𝐷 ≤  𝑥𝑥 ≤  50𝐷𝐷 and −30𝐷𝐷 ≤  𝑦𝑦 ≤
 30𝐷𝐷 was used (figure 2) and the centre of the cylinder was placed at the origin (x = 0,  y = 
0). The effect of the outlet boundary and the blockage effect were negligible in this problem 
as the size of the domain was large enough in both flow and cross-flow directions. Figure 2 
demonstrates the time dependent boundary conditions which are given as: 

1) The cylinder surface and the plates’ surfaces all have no-slip boundary conditions for 
the velocity components. These are specified as 𝑢𝑢𝑓𝑓= 0 on the cylinder wall and 𝑢𝑢𝑓𝑓= 𝑣𝑣𝑠𝑠 
on the splitter plate wall where 𝑢𝑢𝑓𝑓 is the fluid velocity and 𝑣𝑣𝑠𝑠 is the plate wall 
velocity. 

2) A uniform flow from the left side to the right side of the domain was considered such 
that 𝑅𝑅𝑅𝑅 = 𝜌𝜌𝜌𝜌∞ 𝐷𝐷/𝜇𝜇 = 100, where 𝜌𝜌 and 𝜇𝜇 are the density and dynamic viscosity of 
the fluid respectively, 𝑈𝑈∞ is the free-stream velocity and D is the diameter of the 
cylinder. 

3) At lateral surfaces, the open boundary condition with no viscous stress was imposed 
which enables the description of boundaries that are open to large volumes of fluid; 
therefore, the fluid can both enter and leave the domain. This boundary condition 
prescribes vanishing viscous stresses and can be useful in modeling problems similar 
to the presented study with high aspect ratio since it does not impose any constraint 
on the pressure.  

4) At downstream outlet, the boundary condition defined through Comsol was called 
“pressure, no viscous stress” which specifies vanishing viscous stress along with a 
Dirichlet condition on the pressure. In the presented modeling, the pressure p was set 
to zero. 

The material considered in fluid domain was glycerin with dynamic viscosity of 1.42 𝑘𝑘𝑘𝑘
𝑚𝑚.𝑠𝑠

 and 

density of 1260 𝑘𝑘𝑘𝑘
𝑚𝑚3. The material properties of the solid domain included the Young modulus 

of  32 MPa, Poisson ratio of 0.25 and density of 180 𝑘𝑘𝑘𝑘
𝑚𝑚3.  



 
 

Figure 2: The computational domain and boundary conditions. 
 

The non-dimensional parameters employed in this numerical study including drag coefficient 
(𝐶𝐶𝐷𝐷), the lift coefficient (𝐶𝐶𝐿𝐿), the Strouhal number (𝑆𝑆𝑆𝑆) and the pressure coefficient (𝐶𝐶𝑃𝑃) are 
given by: 

𝑆𝑆𝑆𝑆 =  
𝑓𝑓𝑠𝑠 𝐷𝐷
𝑈𝑈∞

 
(1) 

where 𝑓𝑓𝑠𝑠 is the vortex shedding frequency and 𝑈𝑈∞ denotes the flow velocity. 

𝐶𝐶𝐷𝐷 =
𝐹𝐹𝐷𝐷

0.5𝜌𝜌 𝑈𝑈∞ 
2 𝐷𝐷

 (2) 

𝐶𝐶𝐿𝐿 =
𝐹𝐹𝐿𝐿

0.5𝜌𝜌 𝑈𝑈∞ 
2 𝐷𝐷

 (3) 

where 𝜌𝜌 is the fluid density and 𝐹𝐹𝐷𝐷 and 𝐹𝐹𝐿𝐿 are the fluid forces (i.e., the pressure and viscosity 
forces) applied on the cylinder, in the streamwise and transverse direction, respectively. 

𝐶𝐶𝑃𝑃 =
𝑃𝑃 − 𝑃𝑃∞

0.5𝜌𝜌 𝑈𝑈∞ 
2  (4) 

where P is the static pressure on the cylinder surface and 𝑃𝑃∞ is the free-stream static pressure.  
 

 
 

3. The numerical methodology and validation 
3.1. Governing equations and numerical formulation in Comsol Multiphysics 
The commercial software Comsol has a FSI module which utilizes the ALE method to couple 
the equations of fluid flow formulated based on Eulerian description at a spatial frame, with 
the equations representing the deformation of the solid material, formulated based on 
Lagrangian description at a material (reference) frame. The boundaries between the fluid and 
the solid are subjected to the fluid-structure interaction couplings. Assuming an initial 
configuration of 𝛺𝛺�  consisting from the fluid domain 𝛺𝛺�𝑓𝑓, the structural domain 𝛺𝛺�𝑠𝑠, and an 
interface where the elastic solid interacts with the fluid represented by 𝛤𝛤�𝑓𝑓𝑓𝑓𝑓𝑓(=  𝛺𝛺�𝑓𝑓 ∩  𝛺𝛺�𝑠𝑠). 
Neglecting the volume forces, the flow field is modeled by means of incompressible and 
unsteady Navier-Stokes equations in the spatial coordinate system:  



𝛻𝛻.𝑢𝑢𝑓𝑓 = 0                                                                                               in 𝛺𝛺𝑡𝑡
𝑓𝑓 (5) 

𝜌𝜌 �𝜕𝜕𝑢𝑢𝑓𝑓
𝜕𝜕𝜕𝜕

+ �𝑢𝑢𝑓𝑓 −  𝑢𝑢𝑚𝑚�.𝛻𝛻𝑢𝑢𝑓𝑓� = 𝛻𝛻. [−𝑝𝑝𝑝𝑝 + 𝜇𝜇(𝛻𝛻𝑢𝑢𝑓𝑓 + (𝛻𝛻𝑢𝑢𝑓𝑓)𝑇𝑇)]               in 𝛺𝛺𝑡𝑡
𝑓𝑓 (6) 

where ρ is the fluid density, p is the pressure, 𝑢𝑢𝑓𝑓 is the velocity vector of the fluid in a fixed 
coordinate system, 𝑢𝑢𝑚𝑚 is the velocity vector of the fluid in a moving coordinate system and I 
is the unit diagonal matrix.  The boundary conditions for solving the Navier-Stokes equation 
are given in section 2. The initial conditions are: 𝑢𝑢𝑓𝑓 = 0 and 𝑝𝑝 = 0 in 𝛺𝛺�𝑓𝑓 at 𝑡𝑡 = 0. Because 
the Navier-Stokes equations are solved in the spatial (deformed) frame while the solid 
equations are defined in the material (undeformed) frame, a transformation of the force is 
necessary. This is done according to: 

𝐹𝐹 = 𝑓𝑓. (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) (7) 

where dv and dV are the mesh element scale factors for the spatial frame and the material 
(reference) frame, respectively and f and F denote the force in spatial space and the material, 
respectively.  
Formulation of the structural equations is based on a constitutive law given as: 

(𝑆𝑆 − 𝑆𝑆0) = 𝐶𝐶: (𝜀𝜀 − 𝜀𝜀0)  (8) 

where S denotes the second Piola-Kirchhoff stress tensor and C denotes is the fourth order 
elasticity tensor, “:” stands for the double-dot tensor product (or double contraction), 𝑆𝑆0 and 
𝜀𝜀0 are initial stresses and strains, 𝜀𝜀 is the Green-Lagrange strain which is defined by: 

𝜀𝜀 = 0.5 [(𝛻𝛻𝛻𝛻𝑠𝑠)𝑇𝑇 + 𝛻𝛻𝛻𝛻𝑠𝑠 + (𝛻𝛻𝛻𝛻𝑠𝑠)𝑇𝑇𝛻𝛻𝛻𝛻𝑠𝑠] (9) 

where 𝑢𝑢𝑠𝑠 is the displacement vector, (•)𝑇𝑇 represents a transpose. The displacement of surface 
points on the plate, 𝑢𝑢𝑠𝑠 can be calculated from the linear elastic material equation given by: 

𝜌𝜌𝑠𝑠  𝜕𝜕
2𝑢𝑢𝑠𝑠
𝜕𝜕𝑡𝑡2

−  ∇.𝜎𝜎 =  𝐹𝐹𝑉𝑉       in 𝛺𝛺𝑡𝑡𝑠𝑠 (10) 

where 𝐹𝐹𝑉𝑉 represents the force per unit volume acting at the fluid-solid interface, 𝜎𝜎 is the 
Cauchy stress which is relate to second Piola-Kirchhoff stress as: 𝜎𝜎 = 𝐽𝐽−1 𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 where F(= I 
+ 𝛻𝛻𝛻𝛻𝑠𝑠) is the deformation gradient tensor and J = det(F). 

The initial conditions for solving equation (10) are: 𝑢𝑢𝑆𝑆 = 0 and 𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕

=  0 in 𝛺𝛺�𝑠𝑠 at time 𝑡𝑡 =  0. 
The fixed boundary condition is assumed for the cylinder surface. Moreover, the plate is 
fixed at it’s intersection with the cylinder.   
The spatial frame also deforms with a mesh deformation that is consistent with the 
displacements 𝑢𝑢𝑠𝑠 of the solid material within the solid domains. Comsol computes the new 
mesh for the fluid domain based on the movement of the structure’s boundaries. The 
Winslow smoothing equations (Knupp, 1999) are used for the moving mesh interface in the 
simulation which are described as: 

𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2𝜕𝜕𝜕𝜕

+
𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦2𝜕𝜕𝜕𝜕

= 0 
(11) 

𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2𝜕𝜕𝜕𝜕

+
𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦2𝜕𝜕𝜕𝜕

= 0 
(12) 

where x and y are the spatial coordinates of the spatial frame, and X and Y are the reference 
coordinates of the material frame.  



On the fluid-structure interfaces, 𝛤𝛤�𝑓𝑓𝑓𝑓𝑓𝑓, the following geometrical and mechanical conditions 
must hold:  
Firstly, the fluid velocity is calculated from the surface velocity of the structure, i.e.  

𝑣𝑣𝑓𝑓 =  𝑣𝑣𝑠𝑠 (13) 

where 𝑣𝑣𝑠𝑠 = 𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕

 is the plate’s surface velocity which acts as a moving wall for the fluid 
domain. Secondly, the load which was exerted by the fluid on the plate surface as a boundary 
condition at the fluid-structure interface boundary is calculated from: 

𝛤𝛤.𝑛𝑛𝑓𝑓 + 𝜎𝜎.𝑛𝑛𝑠𝑠 = 0  (14) 

where 𝛤𝛤(= −𝑝𝑝𝑝𝑝 + 𝜇𝜇(𝛻𝛻𝑢𝑢𝑓𝑓 + (𝛻𝛻𝑢𝑢𝑓𝑓)𝑇𝑇)) is the addition of the pressure with the viscous stress,  
σ is the Cauchy stress tensor in the plate surface and 𝑛𝑛𝑓𝑓and 𝑛𝑛𝑠𝑠 are the outward normals 
corresponding to the fluid and structure, respectively. 
After discretization of the above equations, the fluid structure interaction equation can be 
solved using monolithic method. This method solves the whole FSI problem at every time 
step through a costly nonlinear system of equations. The steps shown through equations 5-14 
are iteratively repeated until a converged solution is obtained at each time step (Comsol, 
2012; Ong et al, 2013). 
A description of Comsol FEA solvers and finite element scheme used to solve partial 
differential equations of the problem can be found in our previous work (Abdi et al, 2017). 
Further information regarding the solution method and efficiency of the solver can also be 
found from Cheema and Park (2013) and Ong et al (2013) studies. 
 

3.2. Validation of the finite element model 
Below tables present the results of two comparison studies performed to validate the 
presented numerical model. Firstly, a plain cylinder and a cylinder with an attached rigid 
splitter plate modeled with the same computational domain and boundary conditions 
presented in section 2 were considered. The flow quantities [Strouhal number (St) & mean 
drag coefficient (𝐶𝐶𝐷𝐷����) computed from integration of stresses over the cylinder surfaces only] 
for these two cases were compared with the numerical and experimental results from the 
literature associated with the two cases. As shown in Table 1, the simulation results are in 
good agreement with those reported in the literature.  
 

 

 

 

 

 

 

 

 



Table 1: Comparison of characteristic quantities for flow past a circular cylinder with and without 
rigid splitter plates. 

 
Test cases Flow 

quantities 

Sudhakar & 
Vengadesan 

(2012) 

Park et 
al 

(1998) 

 
Willia-
mson 

(1989) 

Bao 
& 

Tao 
(2013) 

Hwang 
et al. 

(2003) 

 
Present 

 
Plain circular cylinder 

Mean drag 
coefficient

(𝐶𝐶𝐷𝐷����) 
1.37 1.33 - 1.335 1.34 1.33 

Re = 100 
Strouhal 
number 

(St) 
0.165 0.164 0.164 0.164 0.167 0.164 

 
Circular cylinder with one 

rigid plate at  𝜃𝜃𝑝𝑝 = 0°  

Mean drag 
coefficient

(𝐶𝐶𝐷𝐷����) 
1.174 - - - 1.17 1.161 

Re = 100, L/D=1 
Strouhal 
number 

(St) 
0.139 - - - 0.137 0.136 

Secondly, the presented numerical methodology was employed to model a cylinder with an 
attached flexible splitter plate previously studied by Turek & Hron (2006). The circular 
cylinder had radius of 0.05 and the length and the thickness of the flexible splitter plate 
attached to the cylinder at 𝜃𝜃𝑝𝑝 = 0° were 𝐿𝐿 =  0.35 and ℎ = 0.02, respectively. The cylinder 
with the attached plate was immersed in a channel of size 𝐿𝐿𝐿𝐿 × 𝐿𝐿𝐿𝐿 = 2.5 × 0.41 with a 
parabolic velocity profile at the inlet. A fully developed flow with a mean velocity of 2 𝑚𝑚/𝑠𝑠 
entered the channel and the Reynolds number was 200. The drag and lift forces applied on 
the both cylinder and the plate surfaces and the tip displacement of the flexible plate are 
presented in Table 2. Again, the comparison shows a good agreement between the results 
from the presented modeling scheme and those from the literature. 

Table 2: Comparison of characteristic quantities for flow past a circular cylinder with an attached 
flexible splitter plate. 

Quantities  Turek & Horn Present 
Drag forces Magnitude (N) 2.22±149.78 4.5±150 

 Frequency (𝐻𝐻𝐻𝐻) 10.9 10.4 
Lift forces Magnitude (N) 457.3±22.66 454±25 

 Frequency (𝐻𝐻𝐻𝐻) 5.3 5.36 
Plate’s tip 

displacement (x) Magnitude (𝑚𝑚𝑚𝑚) -2.69±2.53 -2.7± 2.5 

 Frequency (𝐻𝐻𝐻𝐻) 10.9 11 
Plate’s tip 

displacement (y) Magnitude (𝑚𝑚𝑚𝑚) 1.48±34.38 0.5±33.5 

 Frequency (𝐻𝐻𝐻𝐻) 5.3 5 
 

3.3. Grid independence test   
This section aims to test the grid independence of the numerical model implemented in the 
study by investigating the effect of different mesh resolutions on the numerically computed 
flow quantities of a cylinder with a single flexible splitter plate attached at 𝜃𝜃𝑝𝑝 = 0°. The 
finite element model of the fluid domain presented in figure 3 was considered as two sub-
regions:  



1) The inner region: the region near the cylinder and the plate surface in which the velocity 
gradient is high; hence, a fine mesh with quadrilateral elements was chosen for this region 
to improve the accuracy of the numerical solution. 

2) Outer region in which a coarser triangular mesh was used.  
The solid domain was meshed using triangular elements connected to the neighboring 
elements of the fluid domain. 
Table 3 compares the computed flow quantities for four different mesh resolutions. It can be 
seen that despite the high difference in the number of elements implemented in the four mesh 
resolutions, the corresponding flow quantities are very close in magnitude. The mesh 
resolution implemented in case (3) was chosen for the rest of the study since both St and 𝐶𝐶𝐷𝐷���� 
are converged at this mesh resolution.  
 
 

 
Figure 3: Mesh detail at the interface boundary between the plate wall and fluid domains 

 
 
Table 3: Grid independence test for the flow past a circular cylinder with one flexible plate attached at 
 𝜃𝜃𝑝𝑝 = 0°. 𝐶𝐶𝐷𝐷���� is computed from integration of stresses over the cylinder surfaces only. 

 
                                                 Case             Grid elements               St                   𝐶𝐶𝐷𝐷 
 
                                                  (1)                     2017                     0.179            1.293 
                                                  (2)                     6446                     0.177            1.292 
                                                  (3)                    12745                    0.177            1.291 
                                                  (4)                    30830                    0.177            1.291 

 

 

4. Results and discussion 
The three different cases of cylinder with single/multiple attached flexible splitter plates 
introduced in section 2 of the study (cylinder with single splitter, cylinder with dual-splitters 
and cylinder with tri-splitters) were simulated using the modeling strategy presented in 
section 3 and characteristic flow quantities including Strouhal number (St), mean drag 
coefficient (𝐶𝐶𝐷𝐷����) and fluctuating lift coefficient (𝐶𝐶𝐿𝐿) were investigated. The results are 



presented in this section against the location of the plates behind the cylinder identified by 
attachment angle (𝜃𝜃𝑝𝑝).  

4.1.Vortex shedding frequency and tip amplitude of the flexible splitter plates  
Figure 4(a) shows the instantaneous streamlines of the flow past a cylinder with a single 
attached flexible splitter at 𝜃𝜃𝑝𝑝 = 0°, when the plate moves downward completing a half cycle 
of oscillation. It can be seen that during this downward motion, the cylinder vortices have 
grown in a region close to the cylinder. This is in contrast to the corresponding rigid splitter 
plate case where the growth of the vortices was observed in a region close to the free end of 
the plate (Abdi et al, 2017). Hence, the vortices of the cylinder with a single flexible splitter 
resemble the vortices of the plain cylinder (figure 4(b)). At 𝜃𝜃𝑝𝑝 = 0°, 7.9% enhancement in St 
was achieved compared to the plain cylinder. Three mechanisms are responsible for this 
enhancement; the first mechanism is the application of a propulsive force from the plate to 
the lower vortex of the cylinder as the flexible plate moves from highest position to the 
lowest position (figure 4(a)). Hence, the separation of the lower vortex happens faster than 
the corresponding vortex of the plain cylinder. The second mechanism is related to the other 
side of the plate where the upper vortex grows. The downward movement of the plate 
provides the upper vortex with a larger area to grow; hence, it grows faster than the 
corresponding vortex of the plain cylinder. The third mechanism which has the most 
influence on flow quantities is the generation of a small vortex near the tip of the flexible 
splitter plate (called “tip vortex” in this paper). Figure 5(a) shows the instantaneous vorticity 
contour of the flow over a cylinder with one flexible splitter plate (𝜃𝜃𝑝𝑝 = 0°), at corresponding 
times shown in figure 4(a). Two shear layers with opposite senses of rotation are generated 
downstream of the cylinder. The upper layer has clockwise vorticity and the lower one has 
counterclockwise vorticity. When the plate moves from the highest position to the middle 
position, the acceleration is positive and the maximum velocity at the plate is at the middle 
position. Moving further down, the plate takes a negative acceleration and it reaches a 
stationary state at the lowest position. When the plate is at its highest position (0T in figure 
5a), a shear layer is generated under the plate with a clockwise vorticity as that of the upper 
vortex of the cylinder. During the downward movement of the plate, the shear layer slips 
gradually and moves towards the tip of the plate. Consequently, a small vortex is generated 
on tip of the plate. With further downward movement of the plate, the tip vortex touches the 
lower cylinder vortex which has an opposite vorticity (0.4T and 0.5T in figure 5a). The tip 
vortex cuts the lower cylinder vortex which has opposite vorticity; hence, the tip vortex 
contributes in the separation and shedding mechanism of the lower cylinder vortex. 
Furthermore, in the subsequent upward movement of the plate, the tip vortex touches the 
upper cylinder vortex. As both these vortices have the same sense of rotation, the tip vortex 
gets combined with the upper cylinder vortex and enlarges it. A counter clockwise vorticity 
also gets generated on the other side of the plate when it reaches to the lowest position and 
similar process occurs in the reverse sense. 
It is interesting to know that in the case of the cylinder with a single flexible splitter plate 
attached at 𝜃𝜃𝑝𝑝 = 0°, if a rigid plate is used instead of the flexible plate, two tip vortices will 
be generated as shown figure 5(b); however, these vortices don’t touch the shear layers of the 
cylinder. Hence, they have no significant effect on the separation mechanism of cylinder 
vortices at the Re number used in this study. 



  
(a)                                                                (b) 

Figure 4: (a) Instantaneous streamlines for a half cycle of plate oscillation (single flexible plate at 
θp=0°); (b) Instantaneous streamlines for plain cylinder. 



 
(a)  

           
(b)  

 
Figure 5: (a) Instantaneous vorticity contours for a half cycle of plate oscillation (single flexible plate 
at 𝜃𝜃𝑝𝑝 = 0°); (b) Instantaneous vorticity contour for cylinder with single rigid splitter plate attached at 
𝜃𝜃𝑝𝑝 = 0°  



Figure 6 shows St against attachment angle 𝜃𝜃𝑝𝑝 for the cylinder with single/multiple flexible 
splitter plates. The corresponding plots of plain cylinder and rigid splitter plates (Abdi et al, 
2017) are also included for comparison. St was calculated from the period of the lift 
coefficient. In comparison with rigid splitter plates investigated in a previous study (Abdi et 
al, 2017), the values of St of the cylinder with flexible splitters was found to be greater than 
those of the corresponding rigid splitters. It can also be seen from figure 6 that based on the 
position of the flexible splitter plates (for instance 𝜃𝜃𝑝𝑝 >  45°  for dual splitters, 𝜃𝜃𝑝𝑝 > 55°  for 
tri-splitters and all range of 𝜃𝜃𝑝𝑝 for single splitter) St can be greater than the corresponding 
values of the plain cylinder. 

In the case of cylinder with single flexible splitter, by increasing 𝜃𝜃𝑝𝑝, the St number decreased 
until it reached the corresponding value of the plain cylinder at 𝜃𝜃𝑝𝑝 = 90°. In this case, the 
maximum value of St was achieved at  𝜃𝜃𝑝𝑝 < 15° which resulted in 7.9% enhancement 
compared to the plain cylinder. At small attachment angles of the dual splitters (𝜃𝜃𝑝𝑝 < 15°), St 
had small values. However, by further increasing 𝜃𝜃𝑝𝑝, a sudden rise was observed in the St 
curve of dual-splitters and St reached the corresponding value of the plain cylinder at 𝜃𝜃𝑝𝑝 =
30°. Further increasing the 𝜃𝜃𝑝𝑝 didn’t have significant effect on St apart from a slight 
reduction within  75° < 𝜃𝜃𝑝𝑝 < 90°. In the case of flexible tri-splitters, St slightly increased by 
increasing the attachment angle (0° < 𝜃𝜃𝑝𝑝 < 30°) and then a sudden rise was observed by 
further increasing the attachment angle. In this case, St reached a higher value than the 
corresponding value of the plain cylinder. 
  
 

 
Figure 6: Variation of St number against attachment angle (𝜃𝜃𝑝𝑝) of splitter plates. The plots 
corresponding to rigid splitter plates are extracted from (Abdi at al, 2017). 



Figure 7(a) shows the non-dimensional tip amplitude (A/D) of the splitter plates against the 
attachment angle for all three studied cases of flexible splitters. In the cases of dual-splitters 
and tri-splitters, the tip amplitudes of the top plates were measured. It can be noticed from the 
St plot of single flexible splitter that there is a direct relation between the tip amplitude of the 
plate and the St number. Maximum value of the tip amplitude of the single splitter was 
observed at 𝜃𝜃𝑝𝑝 < 15° which was equal to 0.33D. Consequently, a strong vortex was 
generated near the tip of the plate, resulting the maximum value of St in this range. By 
increasing 𝜃𝜃𝑝𝑝, the tip amplitude gradually decreased, and subsequently, due to the reduction 
of strength of tip vortex, St decreased. In the case of flexible dual-splitters at 0° < 𝜃𝜃𝑝𝑝 < 15°, 
a curved configuration resembling curved rigid plates with weak oscillations was observed 
(figure 8). By increasing the 𝜃𝜃𝑝𝑝 up to 30°, the plates gradually returned back to the former 
flexible shape with normal oscillations. As a result, a sudden rise was observed within this St 
range. Similarly, in case of flexible tri-splitters, a curved configuration resembling curved 
rigid plates was observed at 15° < 𝜃𝜃𝑝𝑝 < 30° and the plates returned to their normal flexible 
configuration with oscillations when 𝜃𝜃𝑝𝑝 was increased above this range. Moreover, the 
middle plate started oscillating with an amplitude higher than those of the lateral plates when 
𝜃𝜃𝑝𝑝 > 45° (figure 7b) which caused a sudden rise in St number. This effect can explain the 
direct relationship between the tip amplitude of the middle plate and the St number in the tri-
splitters observed in figures 6 and 7.  
In order to demonstrate the vortex shedding mechanism of flexible splitters at a large 
attachment angle e.g. 𝜃𝜃𝑝𝑝 = 60°, instantaneous vorticity contours of all three cases are 
presented in figure 9 for a half cycle of oscillation showing the movement of the plates from 
highest position to the lowest position.  As can be seen from figures 9a and 9b, due to the 
lower amplitude of the plate at a large attachment angle compared to the single splitter at 
𝜃𝜃𝑝𝑝 = 0°(figure 4b), weaker vortices were generated at the tip of the plates. Moreover, as the 
attachment angle increases in single splitter, the influence of tip vortex on the lower cylinder 
vortex decreased which led to reduction of St, unlike dual-splitters in which both cylinder 
vortices are affected by the tip vortices. 

It can be seen in figure 9c for tri-splitters attached at a large angle (𝜃𝜃𝑝𝑝 = 60°) that the strong 
tip vortex of the middle plate interacts with the cylinder vortices. As a result, St has become 
greater than the St of dual-splitters.  

 

 
(a) 



 
(b) 

Figure 7: The non-dimensional plate's tip amplitude, (A/D), against the attachment angle (𝜃𝜃𝑝𝑝): (a) top 
plate (b) middle plate of tri-splitters. 

 

 
Figure 8: A different mode of oscillation for flexible dual-splitters observed at 0° < 𝜃𝜃𝑝𝑝 ≤ 30°. The 
flexible splitters remained in a constant shape with very weak oscillations resembling curved rigid 
plates. 
 

 



 
                                 (a)                                                (b)                                              (c) 

Figure 9: Instantaneous vorticity contours in a half cycle of plate oscillation at 𝜃𝜃𝑝𝑝 = 60°: (a) single 
splitter, (b) dual-splitters and (c) tri-splitters. 

 
 

4.2. Mean drag force and fluctuating lift coefficient 

Figure 10 shows the mean drag coefficient, 𝐶𝐶𝐷𝐷����, against attachment angle of the flexible 
splitter plate, 𝜃𝜃𝑝𝑝. The corresponding plots of plain cylinder and rigid splitter plates (Abdi et 
al, 2017) are also included for comparison. 𝐶𝐶𝐷𝐷���� in figure 10(a) is computed from integration of 
stresses over the cylinder surfaces only. 𝐶𝐶𝐷𝐷𝐷𝐷����  in figure 10(b) is computed from integration of 
stresses over both the cylinder and plates’ surfaces. It can be seen that the use of flexible 
splitter plates led to a reduction in 𝐶𝐶𝐷𝐷���� in all three cases compared to plain cylinder.  Also in 
all cases, the minimum 𝐶𝐶𝐷𝐷���� was observed at 𝜃𝜃𝑝𝑝 = 45° with 8%, 17% and 20% reduction in 𝐶𝐶𝐷𝐷���� 
corresponding to single, dual and tri splitter plates, respectively. Compared to the rigid 
splitters studied in (Abdi et al, 2017), the presented flexible splitters share a similar profile of 
𝐶𝐶𝐷𝐷����, however, an increase in 𝐶𝐶𝐷𝐷���� was observed in the profile of single splitters (when 0° ≤
𝜃𝜃𝑝𝑝 ≤ 90°), dual-splitters (when 𝜃𝜃𝑝𝑝 > 15°), and tri-splitters (when 𝜃𝜃𝑝𝑝 > 35°). 



It can be seen from figure 10(b) that a similar trend as 𝐶𝐶𝐷𝐷����  was observed for 𝐶𝐶𝐷𝐷𝐷𝐷���� in all three 
cases within 0 < 𝜃𝜃𝑝𝑝 < 45°. However, by further increasing 𝜃𝜃𝑝𝑝, 𝐶𝐶𝐷𝐷𝐷𝐷���� had a higher rate of 
growth compared to 𝐶𝐶𝐷𝐷���� at 𝜃𝜃𝑝𝑝 > 45° in all the simulated cases. This observation can be 
attributed to the viscosity effect of the plates which has an increasing trend when 𝜃𝜃𝑝𝑝 >  45. 

 

 
 (a)  

 

 
(b) 

Figure 10: Mean drag coefficient CD, against the attachment angle (𝜃𝜃𝑝𝑝) of splitter plates: (a) 𝐶𝐶𝐷𝐷���� 
computed for only the cylinder; (b) 𝐶𝐶𝐷𝐷𝐷𝐷����� computed for both the cylinder and plates. The plots 
corresponding to rigid splitter plates are extracted from (Abdi at al, 2017) 



Figure 11 presents the root-mean-square (r.m.s) value of the fluctuating lift coefficient (𝐶𝐶´𝐿𝐿) 
against attachment angle 𝜃𝜃𝑝𝑝of flexible splitter plates. The corresponding plots of plain 
cylinder and rigid splitter plates (Abdi et al, 2017) are also included for comparison. 𝐶𝐶´𝐿𝐿 
represents the influence of the splitter plates on the wake oscillation.  As seen for 𝐶𝐶𝐷𝐷����, the 
graphs of 𝐶𝐶´𝐿𝐿 shared a similar profile to the corresponding rigid ones studied in (Abdi et al 
2017).  

The next section of the paper explains the reason for the variation of 𝐶𝐶𝐷𝐷���� and 𝐶𝐶´𝐿𝐿 based on 
pressure distribution on the cylinder surface. 
 

 
Figure 11: The r.m.s. value of the lift coefficient (𝐶𝐶´𝐿𝐿), against the attachment angle (𝜃𝜃𝑝𝑝) of the splitter 
plates, 𝜃𝜃𝑝𝑝. 𝐶𝐶´𝐿𝐿 is computed from integration of stresses over the cylinder surfaces only. The plots 
corresponding to rigid splitter plates are extracted from (Abdi at al, 2017) 
 

4.3. Pressure distribution on the cylinder surface 
The graphs of mean pressure coefficient, 𝐶𝐶𝑃𝑃���, against the angular position of a point of interest 
around the cylinder, 𝜃𝜃, for single and dual flexible splitters are plotted in figure (12) at 
various 𝜃𝜃𝑝𝑝. 𝜃𝜃 is calculated from the base point of the cylinder. It should be noted that the 
variation in 𝐶𝐶𝐷𝐷���� and 𝐶𝐶′𝐿𝐿 investigated in previous section are directly related to the pressure 
distribution around the cylinder. Since the curves shared the same profile outside −120° ≤
𝜃𝜃 ≤ 120°, the graphs in figure (12a) were only plotted in this range, meanwhile, due to 
symmetric configuration, the graph of figure (12b) were focused in 0° ≤ 𝜃𝜃 ≤ 120°. As can 
be seen from figure (12), the value of -𝐶𝐶𝑃𝑃��� for all plate positions (𝜃𝜃𝑝𝑝) were smaller than the 
associated value of the plain cylinder. Consequently, the value of 𝐶𝐶𝐷𝐷���� (figure 10a) for single 
splitter and dual splitters in all attachment angles were smaller than the corresponding value 
of plain cylinder. 
 



         
                                                                                              (a) 

 
          (b) 

Figure 12: The mean pressure coefficient distribution, 𝐶𝐶𝑃𝑃  ����, against the angular location on the 
cylinder, 𝜃𝜃, in various attachment angle (𝜃𝜃𝜃𝜃) of flexible splitter plates at downstream for (a) cylinder 
with single-splitter (b) cylinder with dual-splitters. 

 

It can be seen in figure 12(b) that in the case of cylinder with dual-splitters, 𝐶𝐶𝑃𝑃���  had a fixed 
value in the region between the wake centerline and the plate (0 < 𝜃𝜃 < 𝜃𝜃𝑝𝑝). Similarly, in tri-
splitters, 𝐶𝐶𝑃𝑃��� is expected to have a fixed value in the region between two adjacent plates (0 <
𝜃𝜃 < 𝜃𝜃𝑝𝑝). Therefore, the variation of 𝐶𝐶𝐷𝐷���� against attachment angle of tri-splitters case can be 
justified by the behavior of the mean base pressure coefficient, 𝐶𝐶𝑃𝑃𝑃𝑃����� �= 𝑃𝑃𝑏𝑏−𝑃𝑃∞

0.5𝜌𝜌 𝑈𝑈∞ 
2  � where 𝑃𝑃𝑏𝑏  is 

the static pressure on the cylinder surface at 𝜃𝜃 = 0°. The variation of mean base pressure 
coefficient, 𝐶𝐶𝑃𝑃𝑃𝑃�����, against the attachment angle for flexible tri-splitters is illustrated in figure 
13. Moreover, the plots of  𝐶𝐶𝑃𝑃𝑃𝑃����� for the cylinder with dual-splitters as well as the plain 
cylinder are incorporated into the figure for comparison. In the case of dual/tri-splitter plates 
at 𝜃𝜃𝑝𝑝 = 0°, two/three plates on top of each other (in a symmetric position with respect to x 
axis) were used in the simulation and the mean base pressure coefficient Cpb was calculated 
for a point on cylinder immediately above the attachment point of the upper plate. It can be 
seen that the plots of dual-splitters and tri-splitters share almost the same profile except 
within 30° < 𝜃𝜃𝑝𝑝 < 60°, therefore, their 𝐶𝐶𝐷𝐷���� is almost equal out of this range. As investigated 



earlier in section 4.1 for flexible tri-splitters, when 30° < 𝜃𝜃𝑝𝑝 < 60°, the behavior of the 
plates is similar to rigid plates with very weak oscillations; hence, in this range −𝐶𝐶𝑃𝑃𝑃𝑃����� is 
smaller than the corresponding value of dual-splitters. 
 

 
Figure 13: The mean base pressure coefficient, 𝐶𝐶𝑃𝑃𝑃𝑃�����, against attachment angle (𝜃𝜃𝑝𝑝), in flexible tri-
splitters compared with the plain cylinder and cylinder with flexible dual-splitters. 
 
 

4.4.Optimum position for locating a piezoelectric polymer 
Piezoelectric polymers can produce electric current when they are placed under mechanical 
stress. As the electric current produced by the piezoelectric polymer depends on the 
mechanical strain of the material, the aim is to maximize the applied strain. Figure 14 shows 
the maximum strain along the plate length against the attachment angle. As can be seen from 
figure 14, a maximum strain of 0.018 was observed in single splitter at 𝜃𝜃𝑝𝑝 = 15°. Also, in tri-
splitters, a maximum strain of 0.014 was observed in the middle plate at 𝜃𝜃𝑝𝑝 = 75°. However, 
considering the fact that in the tri-splitters, less drag coefficient was observed (figure 10), we 
recommend this as the best position for locating a piezoelectric polymer in terms of 
harvesting power along with reducing drag forces. 
 



 
 (a) 

 

 
(b) 

Figure 14: The maximum strain (𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚) along the plate length, against the attachment angle (𝜃𝜃𝑝𝑝): (a) 
single splitter and the top plate in dual and tri-splitters; (b) middle plate in tri-splitters. 
 

5. Summary and conclusions  
Wake control of a circular cylinder using attached flexible splitter plates was studied in this 
paper. A numerical study of fluid-structure interaction for the cylinder and the splitter plates 
subjected to 2D laminar flow was presented in the paper.  The splitter plates had a fixed 
length equal to the cylinder diameter and the location of horizontal plates (attachment angle) 
was varied. Three different cases implementing flexible splitter plates for wake control were 
studied and compared, including single splitter, dual-splitters and tri-splitters. The numerical 



results were also compared to corresponding results of rigid splitter plates from a previous 
study in which the fluid structure interaction was neglected. The use of piezoelectric 
polymers can offer energy harvesting from the oscillations of the flexible plates. The 
maximum strain along the length of the splitter plates was measured and the best position for 
installing a piezoelectric polymer in terms of energy harvesting was investigated.  
In all three cases studied in this paper, the use of flexible splitter plates attached to the 
cylinder resulted in reducing the drag coefficient, which is a similar to that seen for rigid 
splitter plates in our previous study.  However, compared to the corresponding rigid splitter 
plates, a rise in drag coefficient of the cylinder with flexible splitter plates was observed. A 
similar effect was observed when comparing the fluctuating lift coefficient of the flexible 
splitter plates studied in this paper with rigid splitter plates investigated in our previous study. 
Also, in contrast to the use of rigid splitter plates which led to a reduction in St, the use of 
flexible plates resulted in increasing the St number compared to the plain cylinder.  
Increasing the number and the attachment angle of flexible splitter plates had crucial effects 
on drag coefficient, Strouhal number and r.m.s. value of the lift coefficient. In all three cases, 
the minimum value of 𝐶𝐶𝐷𝐷���� was achieved at the attachment angle of 𝜃𝜃𝑝𝑝 = 45° which resulted in 
8% , 17% and 20% 𝐶𝐶𝐷𝐷 reduction compared to plain cylinder corresponding to single splitter, 
dual splitters and tri-splitters, respectively. Within the three cases studied in this paper while 
considering both energy harvesting and drag reduction, the middle plate of the tri-splitters 
attached to the cylinder at 𝜃𝜃𝑝𝑝 = 75° was found as the best position for locating a piezoelectric 
polymer. 
To sum up, the results of this study suggest that the drag on cylinder, vortex shedding 
frequency and fluctuations of lift coefficient can be effectively reduced by attaching one or 
more flexible splitter plates placed in appropriate position. Further work is required to study 
the effect of other parameters such as the Reynolds number, mass ratio and elastic properties 
of the splitter plates. 
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