Fuzzy Decision Support Applied to Machine Maintenance

(The Appendixes in CD-ROM Disk)

Youdthachai Lertworaprachaya

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at De Montfort University Leicester, United Kingdom

Contents

A	The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Minimum Cushion Position Factor for Forecasting the Second and the Third Weeks (1) - in CD-ROM Disk.	
В	The Diagrams of Daily Forecasting: Using Day Average Data of a Couple Weeks of Minimum Cushion Position Factor for Forecasting - in CD-ROM Disk.	13
C	The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Filling Time Factor for Forecasting the Second and the Third Weeks (1) - in CD-ROM Disk.	
D	The Diagrams of Daily Forecasting: Using Day Average Data of a Couple Weeks of Filling Time Factor for Forecasting - in CD-ROM Disk.	33
E	The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Filling Peak Factor for Forecasting the Second and the Third Weeks (1) - in CD-ROM Disk.	
F	The Diagrams of Daily Forecasting: Using Day Average Data of a Couple Weeks of Filling Peak Factor for Forecasting - in CD-ROM Disk.	53
G	The Diagrams of Daily Forecasting: Using Day Average Data of a Week of V-P pressure Factor for Forecasting the Second and the Third Weeks (1) - in CD-ROM Disk.	61
Н	The Diagrams of Daily Forecasting: Using Day Average Data of a Couple Weeks of V-P Pressure Factor for Forecasting - in CD-ROM Disk.	73
I	The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Minimum Cushion Position Factor for Forecasting the Second and the Third Weeks (2) - in CD-ROM Disk.	
J	The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Filling	

	Time Factor for Forecasting the Second and the Third Weeks (2) - in CD-ROM Disk	. 93
K	The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Filling	
_	Peak Factor for Forecasting the Second and the Third Weeks (2) - in CD-ROM Disk.	
L	The Diagrams of Daily Forecasting: Using Day Average Data of a Week of V-P Pressure Factor for Forecasting the Second and the Third Weeks (2) - in CD-ROM Disk.	
M	Comparing Forecasting Values and Prediction of Machine Status: Week 8 to Week 22.	129
N	CMIMS Coding (1) - in Accompanying CD-ROM Disk.	140
o	CMIMS Coding (1) and (2) - in Accompanying CD-ROM Disk.	160
P	CMIMS Coding (2) - in Accompanying CD-ROM Disk.	180

Q CMIMS Coding (2), (3), (4) and (5) - in Accompanying CD-ROM Disk.

List of Figures

A.1	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the first to seventh days of the first week data forecast on 2008/05/31.	2
A.2	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the second to seventh days of the first week data and the first day	
	forecasting value of the second week forecast on 2008/06/01	2
A.3	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the third to seventh days of the first week data and the first to	
	second days forecasting values of the second week forecast on 2008/06/02	3
A.4	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fourth to seventh days of the first week data and the first to	
	third days forecasting values of the second week forecast on 2008/06/03	3
A.5	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fifth to seventh days of the first week data and the first to	
	fourth days forecasting values of the second week forecast on 2008/06/04	4
A.6	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the sixth to seventh days of the first week data and the first to fifth	
	days forecasting values of the second week forecast on 2008/06/05	4
A.7	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the seventh day of the first week data and the first to sixth days	
	forecasting values of the second week forecast on 2008/06/06	5
A.8	Daily forecasting of minimum cushion position for HO-T2FTS method as date	
	is varies and using the first to seventh days of the second week data forecast on	
	2008/06/07	5
A.9	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the second to seventh days of the second week data and the first	
	day forecasting values of the third week forecast on 2008/06/08	6

A.10	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the third to seventh days of the second week data and the first to	
	second days forecasting values of the third week forecast on 2008/06/09	6
A. 11	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fourth to seventh days of the second week data and the first to	
	third days forecasting values of the third week forecast on 2008/06/10	7
A.12	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fifth to seventh days of the second week data and the first to	
	fourth days forecasting values of the third week forecast on 2008/06/11	7
A.13	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the sixth to seventh days of the second week data and the first to	
	fifth days forecasting values of the third week forecast on 2008/06/12	8
A.14	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the seventh day of the second week data and the first to sixth days	
	forecasting values of the third week forecast on 2008/06/13	8
A.15	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the first to seventh days forecasting values of the second week	
	forecast on 2008/06/07	9
A.16	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the second to seventh days forecasting values of the second week	
	and the first day forecasting value of the third week forecast on 2008/06/08	9
A.17	Daily forecasting of minimum cushion position for HO-T2FTS method as date	
	is varies and using the third to seventh days forecasting values of the second	
	week and the first to second days forecasting values of the third week forecast	
	on 2008/06/09	10
A.18	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fourth to seventh days forecasting values of the second week	
	and the first to third days forecasting values of the third week forecast on 2008/06/10.	10
A.19	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fifth to seventh days forecasting values of the second week and	
	the first to fourth days forecasting values of the third week forecast on 2008/06/11.	11
A.20	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the sixth to seventh days forecasting values of the second week	
	and the first to fifth days forecasting values of the third week forecast on 2008/06/12.	11
A.21	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the seventh day forecasting value of the second week and the first	
	to sixth days forecasting values of the third week forecast on 2008/06/13	12

B.1	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/06	13
B.2	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/07	14
B.3	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/08	14
B.4	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/09	15
B.5	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/10	15
B.6	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/11	16
B.7	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/12	16
B.8	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/13	17
B.9	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/15	17
B.10	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/16	18
B.11	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/17	18
B.12	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/18	19
B.13	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/19	19
B.14	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/20	20
B.15	Forecasting position of minimum cushion position factor (in millimetre) as date is	
	varies and a couple weeks data are used to forecast on 2008/06/21	20
C.1	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the first to seventh days of the first week data forecast on 2008/05/31	22
C.2	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the second to seventh days of the first week data and the first day forecasting value	
	of the second week forecast on 2008/06/01.	22

C.3	Daily forecasting of filling time for HO-T2FTS method as date is varies and us-	
	ing the third to seventh days of the first week data and the first to second days	
	forecasting values of the second week forecast on 2008/06/02	23
C.4	Daily forecasting of filling time for HO-T2FTS method as date is varies and us-	
	ing the fourth to seventh days of the first week data and the first to third days	
	forecasting values of the second week forecast on 2008/06/03	23
C.5	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fifth to seventh days of the first week data and the first to fourth days forecast-	
	ing values of the second week forecast on 2008/06/04	24
C.6	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the sixth to seventh days of the first week data and the first to fifth days forecasting	
	values of the second week forecast on 2008/06/05	24
C.7	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the seventh day of the first week data and the first to sixth days forecasting values	
	of the second week forecast on 2008/06/06	25
C.8	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the first to seventh days of the second week data forecast on 2008/06/07	25
C.9	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the second to seventh days of the second week data and the first day forecasting	
	values of the third week forecast on 2008/06/08	26
C.10	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the third to seventh days of the second week data and the first to second days	
	forecasting values of the third week forecast on 2008/06/09	26
C.11	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fourth to seventh days of the second week data and the first to third days	
	forecasting values of the third week forecast on 2008/06/10	27
C.12	Daily forecasting of filling time for HO-T2FTS method as date is varies and us-	
	ing the fifth to seventh days of the second week data and the first to fourth days	
	forecasting values of the third week forecast on 2008/06/11	27
C.13	Daily forecasting of filling time for HO-T2FTS method as date is varies and us-	
	ing the sixth to seventh days of the second week data and the first to fifth days	
	forecasting values of the third week forecast on 2008/06/12	28
C.14	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the seventh day of the second week data and the first to sixth days forecasting	
	values of the third week forecast on 2008/06/13	28

C.15	Daily forecasting of filling time for HO-T2FTS method as date is varies and us-	
	ing the first to seventh days forecasting values of the second week forecast on	
	2008/06/07	29
C.16	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the second to seventh days forecasting values of the second week and the first day	
	forecasting value of the third week forecast on 2008/06/08	29
C.17	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the third to seventh days forecasting values of the second week and the first to	
	second days forecasting values of the third week forecast on 2008/06/09	30
C.18	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fourth to seventh days forecasting values of the second week and the first to	
	third days forecasting values of the third week forecast on 2008/06/10	30
C.19	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fifth to seventh days forecasting values of the second week and the first to	
	fourth days forecasting values of the third week forecast on 2008/06/11	31
C.20	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the sixth to seventh days forecasting values of the second week and the first to fifth	
	days forecasting values of the third week forecast on 2008/06/12	31
C.21	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the seventh day forecasting value of the second week and the first to sixth days	
	forecasting values of the third week forecast on 2008/06/13	32
D.1	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/06	33
D.2	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/07	34
D.3	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/08	34
D.4	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/09	35
D.5	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/10	35
D.6	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/11	36
D.7	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/12	36

D.8	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/13	37
D.9	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/15	37
D.10	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/16	38
D.11	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/17	38
D.12	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/18	39
D.13	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/19	39
D.14	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/20	40
D.15	Forecasting position of filling time factor (in second) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/21	40
E 1	Doily forecasting of filing most for HO TOFTS mothed as data is votice and using	
E.1	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	42
Εĵ	the first to seventh days of the first week data forecast on 2008/05/31	42
E.2	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the second to seventh days of the first week data and the first day forecasting value of the second week forecast on 2008/06/01	42
Е 2		42
E.3	Daily forecasting of filling peak for HO-T2FTS method as date is varies and us-	
	ing the third to seventh days of the first week data and the first to second days	12
F 4	forecasting values of the second week forecast on 2008/06/02	43
E.4	Daily forecasting of filling peak for HO-T2FTS method as date is varies and us-	
	ing the fourth to seventh days of the first week data and the first to third days	12
D 5	forecasting values of the second week forecast on 2008/06/03	43
E.5	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fifth to seventh days of the first week data and the first to fourth days forecast-	4.4
Г	ing values of the second week forecast on 2008/06/04.	44
E.6	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the sixth to seventh days of the first week data and the first to fifth days forecasting	4.4
E 7	values of the second week forecast on 2008/06/05	44
E.7	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the seventh day of the first week data and the first to sixth days forecasting values	4.~
	of the second week forecast on 2008/06/06.	45

E.8	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the first to seventh days of the second week data forecast on 2008/06/07	45
E.9	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the second to seventh days of the second week data and the first day forecasting	
	values of the third week forecast on 2008/06/08	46
E.10	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the third to seventh days of the second week data and the first to second days	
	forecasting values of the third week forecast on 2008/06/09	46
E.11	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fourth to seventh days of the second week data and the first to third days	
	forecasting values of the third week forecast on 2008/06/10	47
E.12	Daily forecasting of filling peak for HO-T2FTS method as date is varies and us-	
	ing the fifth to seventh days of the second week data and the first to fourth days	
	forecasting values of the third week forecast on 2008/06/11	47
E.13	Daily forecasting of filling peak for HO-T2FTS method as date is varies and us-	
	ing the sixth to seventh days of the second week data and the first to fifth days	
	forecasting values of the third week forecast on 2008/06/12	48
E.14	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the seventh day of the second week data and the first to sixth days forecasting	
	values of the third week forecast on 2008/06/13	48
E.15	Daily forecasting of filling peak for HO-T2FTS method as date is varies and us-	
	ing the first to seventh days forecasting values of the second week forecast on	
	2008/06/07	49
E.16	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the second to seventh days forecasting values of the second week and the first day	
	forecasting value of the third week forecast on 2008/06/08	49
E.17	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the third to seventh days forecasting values of the second week and the first to	
	second days forecasting values of the third week forecast on 2008/06/09	50
E.18	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fourth to seventh days forecasting values of the second week and the first to	
	third days forecasting values of the third week forecast on 2008/06/10	50
E.19	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fifth to seventh days forecasting values of the second week and the first to	
	fourth days forecasting values of the third week forecast on 2008/06/11	51

E.20	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the sixth to seventh days forecasting values of the second week and the first to fifth	
	days forecasting values of the third week forecast on 2008/06/12	51
E.21	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the seventh day forecasting value of the second week and the first to sixth days	
	forecasting values of the third week forecast on 2008/06/13	52
F.1	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/06 in	
	next week	53
F.2	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/07 in	
	next week	54
F.3	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/08 in	
	next week	54
F.4	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/09 in	
	next week	55
F.5	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/10 in	
	next week	55
F.6	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/11 in	
	next week	56
F.7	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/12 in	
	next week	56
F.8	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/13 in	
	next week	57
F.9	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/15 in	
	next week	57
F.10	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/16 in	
	next week	58

F.11	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/17 in	
	next week	58
F.12	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/18 in	
	next week	59
F.13	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/19 in	
	next week	59
F.14	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/20 in	
	next week	60
F.15	Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date	
	is varies and a couple weeks data are used to forecast on the date: 2008/06/21 in	
	next week	60
G.1	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the first to seventh days of the first week data forecast on $2008/05/31$	62
G.2	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the second to seventh days of the first week data and the first day forecasting	
	value of the second week forecast on 2008/06/01	62
G.3	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the third to seventh days of the first week data and the first to second days	
	forecasting values of the second week forecast on 2008/06/02	63
G.4	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fourth to seventh days of the first week data and the first to third days	
	forecasting values of the second week forecast on 2008/06/03	63
G.5	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fifth to seventh days of the first week data and the first to fourth days	
	forecasting values of the second week forecast on 2008/06/04	64
G.6	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the sixth to seventh days of the first week data and the first to fifth days	
	forecasting values of the second week forecast on 2008/06/05	64
G.7	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the seventh day of the first week data and the first to sixth days forecasting	
	values of the second week forecast on 2008/06/06	65

G.8	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the first to seventh days of the second week data forecast on 2008/06/07	65
G.9	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and us-	
	ing the second to seventh days of the second week data and the first day forecasting	
	values of the third week forecast on 2008/06/08	66
G.10	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the third to seventh days of the second week data and the first to second	
	days forecasting values of the third week forecast on 2008/06/09	66
G.11	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fourth to seventh days of the second week data and the first to third days	
	forecasting values of the third week forecast on 2008/06/10	67
G.12	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fifth to seventh days of the second week data and the first to fourth days	
	forecasting values of the third week forecast on 2008/06/11	67
G.13	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the sixth to seventh days of the second week data and the first to fifth days	
	forecasting values of the third week forecast on 2008/06/12	68
G.14	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the seventh day of the second week data and the first to sixth days forecasting	
	values of the third week forecast on 2008/06/13	68
G.15	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the first to seventh days forecasting values of the second week forecast on	
	2008/06/07	69
G.16	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the second to seventh days forecasting values of the second week and the	
	first day forecasting value of the third week forecast on 2008/06/08	69
G.17	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the third to seventh days forecasting values of the second week and the first	
	to second days forecasting values of the third week forecast on 2008/06/09	70
G.18	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fourth to seventh days forecasting values of the second week and the	
	first to third days forecasting values of the third week forecast on $2008/06/10$	70
G.19	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fifth to seventh days forecasting values of the second week and the first	
	to fourth days forecasting values of the third week forecast on 2008/06/11	71

G.20	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first	
	to fifth days forecasting values of the third week forecast on 2008/06/12	71
G.21	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the seventh day forecasting value of the second week and the first to sixth	
	days forecasting values of the third week forecast on 2008/06/13. 5 The seventh	
	day forecasting value of the second week and the first to sixth days forecasting	
	values of the third week are employed to forecast on the date: 2008/06/13 in the	
	third week.	72
H.1	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/06	73
H.2	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/07	74
H.3	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/08	74
H.4	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/09	75
H.5	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/10	75
H.6	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/11	76
H.7	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/12	76
H.8	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/13	77
H.9	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/15	77
H.10	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/16	78
H.11	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/17	78
H.12	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/18	79
H.13	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	
	weeks data are used to forecast on 2008/06/19	79

H.14	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/20	80
H 15	Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple	00
11.13	weeks data are used to forecast on 2008/06/21	80
I.1	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using only the first week data forecast on 2008/05/31	82
I.2	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the second to seventh days of the first week data and the first day	
	of the second week data forecast on 2008/06/01	82
I.3	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the third to seventh days of the first week data and the first to	
	second days of the second week data forecast on 2008/06/02	83
I.4	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fourth to seventh days of the first week data and the first to	
	third days of the second week data forecast on 2008/06/03	83
I.5	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fifth to seventh days of the first week data and the first to	
	fourth days of the second week data forecast on 2008/06/04	84
I.6	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the sixth to seventh days of the first week data and the first to fifth	
	days of the second week data forecast on 2008/06/05.	84
I.7	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the seventh day of the first week data and the first to sixth days of	
	the second week data forecast on 2008/06/06	85
I.8	Daily forecasting of minimum cushion position for HO-T2FTS method as date	
	is varies and using the first to seventh days of the second week data forecast on	
	2008/06/07	85
I.9	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the second to seventh days forecasting values of the second week	
	and the first day the third week data forecast on 2008/06/08	86
I.10	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the third to seventh days forecasting values of the second week	
	and the first to second days of the third week data forecast on 2008/06/09. \dots	86
I.11	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fourth to seventh days forecasting values of the second week	
	and the first to third days of the third week data forecast on 2008/06/10	87

I.12	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fifth to seventh days forecasting values of the second week	
	and the first to fourth days of the third week data forecast on 2008/06/11	87
I.13	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the sixth to seventh days forecasting values of the second week	
	and the first to fifth days of the third week data forecast on 2008/06/12	88
I.14	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the seventh day forecasting value of the second week and the first	
	to sixth days of the third week data forecast on 2008/06/13	88
I.15	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using only the second week data forecast on 2008/06/07	89
I.16	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the second to seventh days of the second week data and the first	
	day of the third week data forecast on 2008/06/08	89
I.17	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the third to seventh days of the second week data and the first to	
	second days of the third week data forecast on 2008/06/09	90
I.18	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fourth to seventh days of the second week data and the first to	
	third days of the third week data forecast on 2008/06/10	90
I.19	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the fifth to seventh days of the second week data and the first to	
	fourth days of the third week data forecast on 2008/06/11	91
I.20	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the sixth to seventh days of the second week data and the first to	
	fifth days of the third week data forecast on 2008/06/12	91
I.21	Daily forecasting of minimum cushion position for HO-T2FTS method as date is	
	varies and using the seventh day of the second week data and the first to sixth days	
	of the third week data forecast on 2008/06/13	92
J.1	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	only the first week data forecast on 2008/05/31	94
J.2	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the second to seventh days of the first week data and the first day of the second	
	week data forecast on 2008/06/01	Q/

J.3	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the third to seventh days of the first week data and the first to second days of the	
	second week data forecast on 2008/06/02	95
J.4	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fourth to seventh days of the first week data and the first to third days of the	
	second week data forecast on 2008/06/03	95
J.5	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fifth to seventh days of the first week data and the first to fourth days of the	
	second week data forecast on 2008/06/04	96
J.6	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the sixth to seventh days of the first week data and the first to fifth days of the	
	second week data forecast on 2008/06/05	96
J.7	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the seventh day of the first week data and the first to sixth days of the second week	
	data forecast on 2008/06/06	97
J.8	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the first to seventh days of the second week data forecast on 2008/06/07	97
J.9	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the second to seventh days forecasting values of the second week and the first day	
	the third week data forecast on 2008/06/08	98
J.10	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the third to seventh days forecasting values of the second week and the first to	
	second days of the third week data forecast on 2008/06/09	98
J.11	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fourth to seventh days forecasting values of the second week and the first to	
	third days of the third week data forecast on 2008/06/10	99
J.12	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fifth to seventh days forecasting values of the second week and the first to	
	fourth days of the third week data forecast on 2008/06/11	99
J.13	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the sixth to seventh days forecasting values of the second week and the first to fifth	
	days of the third week data forecast on 2008/06/12	100
J.14	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the seventh day forecasting value of the second week and the first to sixth days of	
	the third week data forecast on 2008/06/13	100
J.15	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	only the second week data forecast on 2008/06/07.	101

J.16	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the second to seventh days of the second week data and the first day of the third	
	week data forecast on 2008/06/08	101
J.17	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the third to seventh days of the second week data and the first to second days of	
	the third week data forecast on 2008/06/09	102
J.18	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fourth to seventh days of the second week data and the first to third days of the	
	third week data forecast on 2008/06/10	102
J.19	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the fifth to seventh days of the second week data and the first to fourth days of the	
	third week data forecast on 2008/06/11	103
J.20	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the sixth to seventh days of the second week data and the first to fifth days of the	
	third week data forecast on 2008/06/12	103
J.21	Daily forecasting of filling time for HO-T2FTS method as date is varies and using	
	the seventh day of the second week data and the first to sixth days of the third	
	week data forecast on 2008/06/13	104
K.1	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	only the first week data forecast on 2008/05/31	106
K.2	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the second to seventh days of the first week data and the first day of the second	
	week data forecast on 2008/06/01	106
K.3	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the third to seventh days of the first week data and the first to second days of the	
	second week data forecast on 2008/06/02	107
K.4	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fourth to seventh days of the first week data and the first to third days of the	
	second week data forecast on 2008/06/03	107
K.5	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fifth to seventh days of the first week data and the first to fourth days of the	
	second week data forecast on 2008/06/04	108
K.6	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the sixth to seventh days of the first week data and the first to fifth days of the	
	second week data forecast on 2008/06/05	108

K.7	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the seventh day of the first week data and the first to sixth days of the second week	
	data forecast on 2008/06/06	109
K.8	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the first to seventh days of the second week data forecast on 2008/06/07	109
K.9	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the second to seventh days forecasting values of the second week and the first day	
	the third week data forecast on 2008/06/08	110
K.10	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the third to seventh days forecasting values of the second week and the first to	
	second days of the third week data forecast on 2008/06/09	110
K.11	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fourth to seventh days forecasting values of the second week and the first to	
	third days of the third week data forecast on 2008/06/10	111
K.12	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fifth to seventh days forecasting values of the second week and the first to	
	fourth days of the third week data forecast on 2008/06/11	111
K.13	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the sixth to seventh days forecasting values of the second week and the first to fifth	
	days of the third week data forecast on 2008/06/12	112
K.14	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the seventh day forecasting value of the second week and the first to sixth days of	
	the third week data forecast on 2008/06/13	112
K.15	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	only the second week data forecast on 2008/06/07	113
K.16	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the second to seventh days of the second week data and the first day of the third	
	week data forecast on 2008/06/08	113
K.17	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the third to seventh days of the second week data and the first to second days of	
	the third week data forecast on 2008/06/09	114
K.18	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fourth to seventh days of the second week data and the first to third days of the	
	third week data forecast on 2008/06/10	114
K.19	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the fifth to seventh days of the second week data and the first to fourth days of the	
	third week data forecast on 2008/06/11	115

K.20	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the sixth to seventh days of the second week data and the first to fifth days of the	
	third week data forecast on 2008/06/12	115
K.21	Daily forecasting of filling peak for HO-T2FTS method as date is varies and using	
	the seventh day of the second week data and the first to sixth days of the third	
	week data forecast on 2008/06/13	116
L.1	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using only the first week data forecast on 2008/05/31	118
L.2	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the second to seventh days of the first week data and the first day of the	
	second week data forecast on 2008/06/01	118
L.3	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the third to seventh days of the first week data and the first to second days	
	of the second week data forecast on 2008/06/02	119
L.4	Forecasting position of V-P pressure factor for HO-T2FTS method as date is varies	
	and using one week data for day-by-day forecasting. The fourth to seventh days of	
	the first week data and the first to third days of the second week data are employed	
	to forecast on the date: 2008/06/03 in the second week	119
L.5	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fifth to seventh days of the first week data and the first to fourth days of	
	the second week data forecast on 2008/06/04	120
L.6	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the sixth to seventh days of the first week data and the first to fifth days of	
	the second week data forecast on 2008/06/05	120
L.7	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the seventh day of the first week data and the first to sixth days of the second	
	week data forecast on 2008/06/06	121
L.8	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the first to seventh days of the second week data forecast on 2008/06/07	121
L.9	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the second to seventh days forecasting values of the second week and the	
	first day the third week data forecast on 2008/06/08	122
L.10	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the third to seventh days forecasting values of the second week and the first	
	to second days of the third week data forecast on 2008/06/09	122

L.11	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fourth to seventh days forecasting values of the second week and the	
	first to third days of the third week data forecast on 2008/06/10	123
L.12	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fifth to seventh days forecasting values of the second week and the first	
	to fourth days of the third week data forecast on 2008/06/11	123
L.13	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the sixth to seventh days forecasting values of the second week and the first	
	to fifth days of the third week data forecast on 2008/06/12	124
L.14	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the seventh day forecasting value of the second week and the first to sixth	
	days of the third week data forecast on 2008/06/13	124
L.15	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using only the second week data forecast on 2008/06/07	125
L.16	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the second to seventh days of the second week data and the first day of the	
	third week data forecast on 2008/06/08	125
L.17	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the third to seventh days of the second week data and the first to second	
	days of the third week data forecast on 2008/06/09	126
L.18	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fourth to seventh days of the second week data and the first to third days	
	of the third week data forecast on 2008/06/10	126
L.19	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the fifth to seventh days of the second week data and the first to fourth days	
	of the third week data forecast on 2008/06/11	127
L.20	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the sixth to seventh days of the second week data and the first to fifth days	
	of the third week data forecast on 2008/06/12	127
L.21	Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and	
	using the seventh day of the second week data and the first to sixth days of the	
	third week data forecast on 2008/06/13	128
M.1	Comparing forecasting values and prediction of machine status: week 8 to week 14	130
	Comparing forecasting values and prediction of machine status: week 5 to week 14 Comparing forecasting values and prediction of machine status: week 15 to week	150
171.2	22	131
		101

N.1	CMIMS coding-1 (1)	142
N.2	CMIMS coding-1 (2)	143
N.3	CMIMS coding-1 (3)	144
N.4	CMIMS coding-1 (4)	145
N.5	CMIMS coding-1 (5)	146
N.6	CMIMS coding-1 (6)	147
N.7	CMIMS coding-1 (7)	148
N.8	CMIMS coding-1 (8)	149
N.9	CMIMS coding-1 (9)	150
N.10	CMIMS coding-1 (10)	151
N.11	CMIMS coding-1 (11)	152
N.12	CMIMS coding-1 (12)	153
N.13	CMIMS coding-1 (13)	154
N.14	CMIMS coding-1 (14)	155
N.15	CMIMS coding-1 (15)	156
N.16	CMIMS coding-1 (16)	157
N.17	CMIMS coding-1 (17)	158
N.18	CMIMS coding-1 (18)	159
O.1	CMIMS coding-1 (19)	162
O.2	CMIMS coding-1 (21)	163
O.3	CMIMS coding-1 (22)	164
O.4	CMIMS coding-1 (23)	165
O.5	CMIMS coding-2 (1)	166
0.6	CMIMS coding-2 (2)	167
O.7	CMIMS coding-2 (3)	168
0.8	CMIMS coding-2 (4)	169
O.9	CMIMS coding-2 (5)	170
O.10	CMIMS coding-2 (6)	171
O.11	CMIMS coding-2 (7)	172
O.12	CMIMS coding-2 (8)	173
	CMIMS coding-2 (9)	174
O.14	CMIMS coding-2 (10)	175
O.15	CMIMS coding-2 (11)	176
	CMIMS coding-2 (12)	177
	CMIMS coding-2 (13)	178
O.18	CMIMS coding-2 (14)	179

P.1	CMIMS coding-2 (15)	 		 	 	 							 182
P.2	CMIMS coding-2 (16)	 		 	 	 							 183
P.3	CMIMS coding-2 (17)	 		 	 	 							 184
P.4	CMIMS coding-2 (18)	 		 	 	 							 185
P.5	CMIMS coding-2 (19)	 		 	 	 							 186
P.6	CMIMS coding-2 (20)	 		 	 	 							 187
P.7	CMIMS coding-2 (21)	 		 	 	 							 188
P.8	CMIMS coding-2 (22)	 		 	 	 							 189
P.9	CMIMS coding-2 (23)	 		 	 	 							 190
P.10	CMIMS coding-2 (24)	 		 	 	 							 191
P.11	CMIMS coding-2 (25)	 		 	 	 							 192
P.12	CMIMS coding-2 (26)	 		 	 	 							 193
P.13	CMIMS coding-2 (27)	 		 	 	 							 194
P.14	CMIMS coding-2 (28)	 		 	 	 							 195
P.15	CMIMS coding-2 (29)	 		 	 	 							 196
P.16	CMIMS coding-2 (30)	 		 	 	 							 197
P.17	CMIMS coding-2 (31)	 		 	 	 							 198
P.18	CMIMS coding-2 (32)	 		 	 	 							 199
0.1	CMD46 1: 2 (22)												202
Q.1	CMIMS coding-2 (33)												202
Q.2	CMIMS coding-2 (34)												203
Q.3	CMIMS coding-2 (35)												204
Q.4	CMIMS coding-2 (36)												205
Q.5	CMIMS coding-2 (37)												206
Q.6	CMIMS coding-2 (38)												207
Q.7	CMIMS coding-2 (39)												208
Q.8	CMIMS coding-2 (40)	 	• •	 	 	 	•	 •	•	 •	•	•	 209
Q.9	U ()												210
	CMIMS coding-2 (42)												211
-	CMIMS coding-2 (43)												212
Q.12	CMIMS coding-2 (44)	 		 	 	 	٠			 •			 213
0.10													011
-	CMIMS coding-2 (45)												214
Q.14	CMIMS coding-2 (45) CMIMS coding-3	 		 	 	 							 215
Q.14 Q.15	CMIMS coding-2 (45)	 		 	 	 							

Appendix A

The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Minimum Cushion Position Factor for Forecasting the Second and the Third Weeks (1) - in CD-ROM Disk.

The type-A and type-B forecasting methods in Figure 5.7 are employed to forecast minimum cushion position factor as following.

Figure A.1 to A.21 of Appendix A in the accompanying CD-ROM disk illustrate the diagrams of daily forecasting using day average data (factory data) of a week of minimum cushion position factor between 2008/05/23 and 2008/06/13, which are split into three groups as listed.

- Figure A.1 to A.7 in the accompanying CD-ROM disk illustrate diagrams of forecasting for the second week between 2008/05/23 and 2008/06/06 using the first week data and some forecasting values of the second week (type-A forecasting method).
- Figure A.8 to A.14 in the accompanying CD-ROM disk show diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using the second week data and some forecasting values of the third week (type-B forecasting method).
- Figure A.15 to A.21 in the accompanying CD-ROM disk depict diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using forecasting values of the second week and some forecasting values of the third week (type-A forecasting method).

Fig. A.1. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the first to seventh days of the first week data forecast on 2008/05/31.

Fig. A.2. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the second to seventh days of the first week data and the first day forecasting value of the second week forecast on 2008/06/01.

Fig. A.3. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the third to seventh days of the first week data and the first to second days forecasting values of the second week forecast on 2008/06/02.

Fig. A.4. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fourth to seventh days of the first week data and the first to third days forecasting values of the second week forecast on 2008/06/03.

Fig. A.5. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fifth to seventh days of the first week data and the first to fourth days forecasting values of the second week forecast on 2008/06/04.

Fig. A.6. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the sixth to seventh days of the first week data and the first to fifth days forecasting values of the second week forecast on 2008/06/05.

Fig. A.7. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the seventh day of the first week data and the first to sixth days forecasting values of the second week forecast on 2008/06/06.

Fig. A.8. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the first to seventh days of the second week data forecast on 2008/06/07.

Fig. A.9. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the second to seventh days of the second week data and the first day forecasting values of the third week forecast on 2008/06/08.

Fig. A.10. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the third to seventh days of the second week data and the first to second days forecasting values of the third week forecast on 2008/06/09.

Fig. A.11. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fourth to seventh days of the second week data and the first to third days forecasting values of the third week forecast on 2008/06/10.

Fig. A.12. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fifth to seventh days of the second week data and the first to fourth days forecasting values of the third week forecast on 2008/06/11.

Fig. A.13. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the sixth to seventh days of the second week data and the first to fifth days forecasting values of the third week forecast on 2008/06/12.

Fig. A.14. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the seventh day of the second week data and the first to sixth days forecasting values of the third week forecast on 2008/06/13.

Fig. A.15. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the first to seventh days forecasting values of the second week forecast on 2008/06/07.

Fig. A.16. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the second to seventh days forecasting values of the second week and the first day forecasting value of the third week forecast on 2008/06/08.

Fig. A.17. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the third to seventh days forecasting values of the second week and the first to second days forecasting values of the third week forecast on 2008/06/09.

Fig. A.18. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fourth to seventh days forecasting values of the second week and the first to third days forecasting values of the third week forecast on 2008/06/10.

Fig. A.19. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fifth to seventh days forecasting values of the second week and the first to fourth days forecasting values of the third week forecast on 2008/06/11.

Fig. A.20. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first to fifth days forecasting values of the third week forecast on 2008/06/12.

Fig. A.21. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the seventh day forecasting value of the second week and the first to sixth days forecasting values of the third week forecast on 2008/06/13.

Appendix B

The Diagrams of Daily Forecasting: Using Day Average Data of a Couple Weeks of Minimum Cushion Position Factor for Forecasting - in CD-ROM Disk.

In Appendix D, Table D.1 presents the results of daily forecasting using day average data of a couple weeks of minimum cushion position factor between 2008/05/23 and 2008/05/21. The diagram of forecasting values of a couple weeks of minimum cushion position factor are illustrated in Appendix B in the accompanying CD-ROM disk in Figure B.1 to B.15 in the accompanying CD-ROM disk are as follows.

Fig. B.1. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/06.

Fig. B.2. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/07.

Fig. B.3. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/08.

Fig. B.4. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/09.

Fig. B.5. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/10.

Fig. B.6. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/11.

Fig. B.7. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/12.

Fig. B.8. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/13.

Fig. B.9. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/15.

Fig. B.10. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/16.

Fig. B.11. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/17.

Fig. B.12. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/18.

Fig. B.13. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/19.

Fig. B.14. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/20.

Fig. B.15. Forecasting position of minimum cushion position factor (in millimetre) as date is varies and a couple weeks data are used to forecast on 2008/06/21.

Appendix C

The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Filling Time Factor for Forecasting the Second and the Third Weeks (1) - in CD-ROM Disk.

The type-A and type-B forecasting methods in Figure 5.7 are employed to forecast filling time factor as following.

Figure C.1 to C.21 of Appendix C in the accompanying CD-ROM disk illustrate the diagrams of daily forecasting using day average data (factory data) of a week of filling time factor between 2008/05/23 and 2008/06/13, which are split into three groups as listed.

- Figure C.1 to C.7 in the accompanying CD-ROM disk illustrate diagrams of forecasting for the second week between 2008/05/23 and 2008/06/06 using the first week data and some forecasting values of the second week (type-A forecasting method).
- Figure C.8 to C.14 in the accompanying CD-ROM disk show diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using the second week data and some forecasting values of the third week (type-B forecasting method).
- Figure C.15 to C.21 in the accompanying CD-ROM disk depict diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using forecasting values of the second week and some forecasting values of the third week (type-A forecasting method).

In Appendix C in the accompanying CD-ROM disk, the second week forecasting of minimum cushion position factor using type-A forecasting method for forecasting can be found in Figure C.1 to C.7 in the accompanying CD-ROM disk as following.

Fig. C.1. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the first to seventh days of the first week data forecast on 2008/05/31.

Fig. C.2. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the second to seventh days of the first week data and the first day forecasting value of the second week forecast on 2008/06/01.

Fig. C.3. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the third to seventh days of the first week data and the first to second days forecasting values of the second week forecast on 2008/06/02.

Fig. C.4. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fourth to seventh days of the first week data and the first to third days forecasting values of the second week forecast on 2008/06/03.

Fig. C.5. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fifth to seventh days of the first week data and the first to fourth days forecasting values of the second week forecast on 2008/06/04.

Fig. C.6. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the sixth to seventh days of the first week data and the first to fifth days forecasting values of the second week forecast on 2008/06/05.

Fig. C.7. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the seventh day of the first week data and the first to sixth days forecasting values of the second week forecast on 2008/06/06.

Fig. C.8. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the first to seventh days of the second week data forecast on 2008/06/07.

Fig. C.9. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the second to seventh days of the second week data and the first day forecasting values of the third week forecast on 2008/06/08.

Fig. C.10. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the third to seventh days of the second week data and the first to second days forecasting values of the third week forecast on 2008/06/09.

Fig. C.11. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fourth to seventh days of the second week data and the first to third days forecasting values of the third week forecast on 2008/06/10.

Fig. C.12. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fifth to seventh days of the second week data and the first to fourth days forecasting values of the third week forecast on 2008/06/11.

Fig. C.13. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the sixth to seventh days of the second week data and the first to fifth days forecasting values of the third week forecast on 2008/06/12.

Fig. C.14. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the seventh day of the second week data and the first to sixth days forecasting values of the third week forecast on 2008/06/13.

Fig. C.15. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the first to seventh days forecasting values of the second week forecast on 2008/06/07.

Fig. C.16. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the second to seventh days forecasting values of the second week and the first day forecasting value of the third week forecast on 2008/06/08.

Fig. C.17. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the third to seventh days forecasting values of the second week and the first to second days forecasting values of the third week forecast on 2008/06/09.

Fig. C.18. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fourth to seventh days forecasting values of the second week and the first to third days forecasting values of the third week forecast on 2008/06/10.

Fig. C.19. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fifth to seventh days forecasting values of the second week and the first to fourth days forecasting values of the third week forecast on 2008/06/11.

Fig. C.20. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first to fifth days forecasting values of the third week forecast on 2008/06/12.

Fig. C.21. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the seventh day forecasting value of the second week and the first to sixth days forecasting values of the third week forecast on 2008/06/13.

Appendix D

The Diagrams of Daily Forecasting: Using Day Average Data of a Couple Weeks of Filling Time Factor for Forecasting - in CD-ROM Disk.

Figure D.1 to D.15 in the accompanying CD-ROM disk depict the diagrams of forecasting using day average data of a couple weeks of minimum cushion position factor for daily forecasting between 2008/05/23 and 2008/06/21 as following.

Fig. D.1. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/06.

Fig. D.2. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/07.

Fig. D.3. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/08.

Fig. D.4. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/09.

Fig. D.5. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/10.

Fig. D.6. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/11.

Fig. D.7. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/12.

Fig. D.8. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/13.

Fig. D.9. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/15.

Fig. D.10. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/16.

Fig. D.11. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/17.

Fig. D.12. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/18.

Fig. D.13. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/19.

Fig. D.14. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/20.

Fig. D.15. Forecasting position of filling time factor (in second) as date is varies and a couple weeks data are used to forecast on 2008/06/21.

Appendix E

The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Filling Peak Factor for Forecasting the Second and the Third Weeks (1) - in CD-ROM Disk.

The type-A and type-B forecasting methods in Figure 5.7 are employed to forecast filling peak factor as following.

Figure E.1 to E.21 of Appendix E in the accompanying CD-ROM disk illustrate the diagrams of daily forecasting using day average data (factory data) of a week of filling peak factor between 2008/05/23 and 2008/06/13, which are split into three groups as listed.

- Figure E.1 to E.7 in the accompanying CD-ROM disk illustrate diagrams of forecasting for the second week between 2008/05/23 and 2008/06/06 using the first week data and some forecasting values of the second week (type-A forecasting method).
- Figure E.8 to E.14 in the accompanying CD-ROM disk show diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using the second week data and some forecasting values of the third week (type-B forecasting method).
- Figure E.15 to E.21 in the accompanying CD-ROM disk depict diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using forecasting values of the second week and some forecasting values of the third week (type-A forecasting method).

Fig. E.1. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the first to seventh days of the first week data forecast on 2008/05/31.

Fig. E.2. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the second to seventh days of the first week data and the first day forecasting value of the second week forecast on 2008/06/01.

Fig. E.3. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the third to seventh days of the first week data and the first to second days forecasting values of the second week forecast on 2008/06/02.

Fig. E.4. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fourth to seventh days of the first week data and the first to third days forecasting values of the second week forecast on 2008/06/03.

Fig. E.5. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fifth to seventh days of the first week data and the first to fourth days forecasting values of the second week forecast on 2008/06/04.

Fig. E.6. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the sixth to seventh days of the first week data and the first to fifth days forecasting values of the second week forecast on 2008/06/05.

Fig. E.7. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the seventh day of the first week data and the first to sixth days forecasting values of the second week forecast on 2008/06/06.

Fig. E.8. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the first to seventh days of the second week data forecast on 2008/06/07.

Fig. E.9. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the second to seventh days of the second week data and the first day forecasting values of the third week forecast on 2008/06/08.

Fig. E.10. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the third to seventh days of the second week data and the first to second days forecasting values of the third week forecast on 2008/06/09.

Fig. E.11. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fourth to seventh days of the second week data and the first to third days forecasting values of the third week forecast on 2008/06/10.

Fig. E.12. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fifth to seventh days of the second week data and the first to fourth days forecasting values of the third week forecast on 2008/06/11.

Fig. E.13. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the sixth to seventh days of the second week data and the first to fifth days forecasting values of the third week forecast on 2008/06/12.

Fig. E.14. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the seventh day of the second week data and the first to sixth days forecasting values of the third week forecast on 2008/06/13.

Fig. E.15. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the first to seventh days forecasting values of the second week forecast on 2008/06/07.

Fig. E.16. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the second to seventh days forecasting values of the second week and the first day forecasting value of the third week forecast on 2008/06/08.

Fig. E.17. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the third to seventh days forecasting values of the second week and the first to second days forecasting values of the third week forecast on 2008/06/09.

Fig. E.18. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fourth to seventh days forecasting values of the second week and the first to third days forecasting values of the third week forecast on 2008/06/10.

Fig. E.19. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fifth to seventh days forecasting values of the second week and the first to fourth days forecasting values of the third week forecast on 2008/06/11.

Fig. E.20. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first to fifth days forecasting values of the third week forecast on 2008/06/12.

Fig. E.21. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the seventh day forecasting value of the second week and the first to sixth days forecasting values of the third week forecast on 2008/06/13.

Appendix F

The Diagrams of Daily Forecasting: Using Day Average Data of a Couple Weeks of Filling Peak Factor for Forecasting - in CD-ROM Disk.

Figure F.1 to F.15 in the accompanying CD-ROM disk illustrate the diagrams of forecasting using day average data of a couple weeks of Filling Peak factor for daily forecasting between 2008/05/23 and 2008/06/21 as following.

Fig. F.1. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/06 in next week.

Fig. F.2. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/07 in next week.

Fig. F.3. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/08 in next week.

Fig. F.4. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/09 in next week.

Fig. F.5. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/10 in next week.

Fig. F.6. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/11 in next week.

Fig. F.7. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/12 in next week.

Fig. F.8. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/13 in next week.

Fig. F.9. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/15 in next week.

Fig. F.10. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/16 in next week.

Fig. F.11. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/17 in next week.

Fig. F.12. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/18 in next week.

Fig. F.13. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/19 in next week.

Fig. F.14. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/20 in next week.

Fig. F.15. Forecasting position of filling peak factor (in MPa) for HO-T2FTS method as date is varies and a couple weeks data are used to forecast on the date: 2008/06/21 in next week.

Appendix G

The Diagrams of Daily Forecasting: Using Day Average Data of a Week of V-P pressure Factor for Forecasting the Second and the Third Weeks (1) - in CD-ROM Disk.

The type-A and type-B forecasting methods in Figure 5.7 are employed to forecast V-P pressure factor as following.

Figure G.1 to G.21 of Appendix G in the the accompanying CD-ROM disk illustrate the diagrams of daily forecasting using day average data (factory data) of a week of V-P pressure factor between 2008/05/23 and 2008/06/13, which are split into three groups as listed.

- Figure G.1 to G.7 in the accompanying CD-ROM disk illustrate diagrams of forecasting for the second week between 2008/05/23 and 2008/06/06 using the first week data and some forecasting values of the second week (type-A forecasting method).
- Figure G.8 to G.14 in the accompanying CD-ROM disk show diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using the second week data and some forecasting values of the third week (type-B forecasting method).
- Figure G.15 to G.21 in the accompanying CD-ROM disk depict diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using forecasting values of the second week and some forecasting values of the third week (type-A forecasting method).

Fig. G.1. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the first to seventh days of the first week data forecast on 2008/05/31.

Fig. G.2. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the second to seventh days of the first week data and the first day forecasting value of the second week forecast on 2008/06/01.

Fig. G.3. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the third to seventh days of the first week data and the first to second days forecasting values of the second week forecast on 2008/06/02.

Fig. G.4. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fourth to seventh days of the first week data and the first to third days forecasting values of the second week forecast on 2008/06/03.

Fig. G.5. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fifth to seventh days of the first week data and the first to fourth days forecasting values of the second week forecast on 2008/06/04.

Fig. G.6. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the sixth to seventh days of the first week data and the first to fifth days forecasting values of the second week forecast on 2008/06/05.

Fig. G.7. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the seventh day of the first week data and the first to sixth days forecasting values of the second week forecast on 2008/06/06.

Fig. G.8. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the first to seventh days of the second week data forecast on 2008/06/07.

Fig. G.9. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the second to seventh days of the second week data and the first day forecasting values of the third week forecast on 2008/06/08.

Fig. G.10. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the third to seventh days of the second week data and the first to second days forecasting values of the third week forecast on 2008/06/09.

Fig. G.11. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fourth to seventh days of the second week data and the first to third days forecasting values of the third week forecast on 2008/06/10.

Fig. G.12. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fifth to seventh days of the second week data and the first to fourth days forecasting values of the third week forecast on 2008/06/11.

Fig. G.13. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the sixth to seventh days of the second week data and the first to fifth days forecasting values of the third week forecast on 2008/06/12.

Fig. G.14. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the seventh day of the second week data and the first to sixth days forecasting values of the third week forecast on 2008/06/13.

Fig. G.15. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the first to seventh days forecasting values of the second week forecast on 2008/06/07.

Fig. G.16. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the second to seventh days forecasting values of the second week and the first day forecasting value of the third week forecast on 2008/06/08.

Fig. G.17. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the third to seventh days forecasting values of the second week and the first to second days forecasting values of the third week forecast on 2008/06/09.

Fig. G.18. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fourth to seventh days forecasting values of the second week and the first to third days forecasting values of the third week forecast on 2008/06/10.

Fig. G.19. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fifth to seventh days forecasting values of the second week and the first to fourth days forecasting values of the third week forecast on 2008/06/11.

Fig. G.20. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first to fifth days forecasting values of the third week forecast on 2008/06/12.

Fig. G.21. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the seventh day forecasting value of the second week and the first to sixth days forecasting values of the third week forecast on 2008/06/13. 5 The seventh day forecasting value of the second week and the first to sixth days forecasting values of the third week are employed to forecast on the date: 2008/06/13 in the third week.

Appendix H

The Diagrams of Daily Forecasting: Using Day Average Data of a Couple Weeks of V-P Pressure Factor for Forecasting - in CD-ROM Disk.

Figure H.1 to H.15 in the accompanying CD-ROM disk depict the diagrams of forecasting using day average data of a couple weeks of V-P pressure factor for daily forecasting between 2008/05/23 and 2008/06/21 as following.

Fig. H.1. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/06.

Fig. H.2. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/07.

Fig. H.3. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/08.

Fig. H.4. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/09.

Fig. H.5. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/10.

Fig. H.6. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/11.

Fig. H.7. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/12.

Fig. H.8. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/13.

Fig. H.9. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/15.

Fig. H.10. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/16.

Fig. H.11. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/17.

Fig. H.12. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/18.

Fig. H.13. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/19.

Fig. H.14. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/20.

Fig. H.15. Forecasting position of V-P pressure factor (in MPa) as date is varies and a couple weeks data are used to forecast on 2008/06/21.

Appendix I

The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Minimum Cushion Position Factor for Forecasting the Second and the Third Weeks (2) - in CD-ROM Disk.

The type-A forecasting method in Figure 5.7 and type-C and type-D forecasting methods in Figure 5.8 are employed to forecast minimum cushion position factor as following.

Figure I.1 to I.21 of Appendix I in the accompanying CD-ROM disk illustrate the diagrams of daily forecasting using day average data (factory data) of a week of minimum cushion position factor between 2008/05/23 and 2008/06/13, which are split into three groups as listed.

- Figure I.1 to I.7 in the accompanying CD-ROM disk illustrate diagrams of forecasting for the second week between 2008/05/23 and 2008/06/06 using the first week data and some forecasting values of the second week (type-C forecasting method).
- Figure I.8 to I.14 in the accompanying CD-ROM disk show diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using the second week data and some forecasting values of the third week (type-D forecasting method).
- Figure I.15 to I.21 in the accompanying CD-ROM disk depict diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using forecasting values of the second week and some forecasting values of the third week (type-A forecasting method).

Fig. I.1. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using only the first week data forecast on 2008/05/31.

Fig. I.2. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the second to seventh days of the first week data and the first day of the second week data forecast on 2008/06/01.

Fig. I.3. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the third to seventh days of the first week data and the first to second days of the second week data forecast on 2008/06/02.

Fig. I.4. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fourth to seventh days of the first week data and the first to third days of the second week data forecast on 2008/06/03.

Fig. I.5. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fifth to seventh days of the first week data and the first to fourth days of the second week data forecast on 2008/06/04.

Fig. I.6. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the sixth to seventh days of the first week data and the first to fifth days of the second week data forecast on 2008/06/05.

Fig. I.7. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the seventh day of the first week data and the first to sixth days of the second week data forecast on 2008/06/06.

Fig. I.8. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the first to seventh days of the second week data forecast on 2008/06/07.

Fig. I.9. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the second to seventh days forecasting values of the second week and the first day the third week data forecast on 2008/06/08.

Fig. I.10. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the third to seventh days forecasting values of the second week and the first to second days of the third week data forecast on 2008/06/09.

Fig. I.11. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fourth to seventh days forecasting values of the second week and the first to third days of the third week data forecast on 2008/06/10.

Fig. I.12. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fifth to seventh days forecasting values of the second week and the first to fourth days of the third week data forecast on 2008/06/11.

Fig. I.13. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first to fifth days of the third week data forecast on 2008/06/12.

Fig. I.14. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the seventh day forecasting value of the second week and the first to sixth days of the third week data forecast on 2008/06/13.

Fig. I.15. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using only the second week data forecast on 2008/06/07.

Fig. I.16. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the second to seventh days of the second week data and the first day of the third week data forecast on 2008/06/08.

Fig. I.17. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the third to seventh days of the second week data and the first to second days of the third week data forecast on 2008/06/09.

Fig. I.18. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fourth to seventh days of the second week data and the first to third days of the third week data forecast on 2008/06/10.

Fig. I.19. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the fifth to seventh days of the second week data and the first to fourth days of the third week data forecast on 2008/06/11.

Fig. I.20. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the sixth to seventh days of the second week data and the first to fifth days of the third week data forecast on 2008/06/12.

Fig. I.21. Daily forecasting of minimum cushion position for HO-T2FTS method as date is varies and using the seventh day of the second week data and the first to sixth days of the third week data forecast on 2008/06/13.

Appendix J

The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Filling Time Factor for Forecasting the Second and the Third Weeks (2) - in CD-ROM Disk.

The type-A forecasting method in Figure 5.7 and type-C and type-D forecasting methods in Figure 5.8 are employed to forecast filling time factor as following.

Figure J.1 to J.21 of Appendix J in the accompanying CD-ROM disk illustrate the diagrams of daily forecasting using day average data (factory data) of a week of filling time factor between 2008/05/23 and 2008/06/13, which are split into three groups as listed.

- Figure J.1 to J.7 in the accompanying CD-ROM disk illustrate diagrams of forecasting for the second week between 2008/05/23 and 2008/06/06 using the first week data and some forecasting values of the second week (type-C forecasting method).
- Figure J.8 to J.14 in the accompanying CD-ROM disk show diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using the second week data and some forecasting values of the third week (type-D forecasting method).
- Figure J.15 to J.21 in the accompanying CD-ROM disk depict diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using forecasting values of the second week and some forecasting values of the third week (type-A forecasting method).

Fig. J.1. Daily forecasting of filling time for HO-T2FTS method as date is varies and using only the first week data forecast on 2008/05/31.

Fig. J.2. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the second to seventh days of the first week data and the first day of the second week data forecast on 2008/06/01.

Fig. J.3. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the third to seventh days of the first week data and the first to second days of the second week data forecast on 2008/06/02.

Fig. J.4. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fourth to seventh days of the first week data and the first to third days of the second week data forecast on 2008/06/03.

Fig. J.5. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fifth to seventh days of the first week data and the first to fourth days of the second week data forecast on 2008/06/04.

Fig. J.6. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the sixth to seventh days of the first week data and the first to fifth days of the second week data forecast on 2008/06/05.

Fig. J.7. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the seventh day of the first week data and the first to sixth days of the second week data forecast on 2008/06/06.

Fig. J.8. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the first to seventh days of the second week data forecast on 2008/06/07.

Fig. J.9. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the second to seventh days forecasting values of the second week and the first day the third week data forecast on 2008/06/08.

Fig. J.10. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the third to seventh days forecasting values of the second week and the first to second days of the third week data forecast on 2008/06/09.

Fig. J.11. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fourth to seventh days forecasting values of the second week and the first to third days of the third week data forecast on 2008/06/10.

Fig. J.12. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fifth to seventh days forecasting values of the second week and the first to fourth days of the third week data forecast on 2008/06/11.

Fig. J.13. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first to fifth days of the third week data forecast on 2008/06/12.

Fig. J.14. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the seventh day forecasting value of the second week and the first to sixth days of the third week data forecast on 2008/06/13.

Fig. J.15. Daily forecasting of filling time for HO-T2FTS method as date is varies and using only the second week data forecast on 2008/06/07.

Fig. J.16. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the second to seventh days of the second week data and the first day of the third week data forecast on 2008/06/08.

Fig. J.17. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the third to seventh days of the second week data and the first to second days of the third week data forecast on 2008/06/09.

Fig. J.18. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fourth to seventh days of the second week data and the first to third days of the third week data forecast on 2008/06/10.

Fig. J.19. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the fifth to seventh days of the second week data and the first to fourth days of the third week data forecast on 2008/06/11.

Fig. J.20. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the sixth to seventh days of the second week data and the first to fifth days of the third week data forecast on 2008/06/12.

Fig. J.21. Daily forecasting of filling time for HO-T2FTS method as date is varies and using the seventh day of the second week data and the first to sixth days of the third week data forecast on 2008/06/13.

Appendix K

The Diagrams of Daily Forecasting: Using Day Average Data of a Week of Filling Peak Factor for Forecasting the Second and the Third Weeks (2) - in CD-ROM Disk.

The type-A forecasting method in Figure 5.7 and type-C and type-D forecasting methods in Figure 5.8 are employed to forecast filling peak factor as following.

Figure K.1 to K.21 of Appendix K in the accompanying CD-ROM disk illustrate the diagrams of daily forecasting using day average data (factory data) of a week of filling peak factor between 2008/05/23 and 2008/06/13, which are split into three groups as listed.

- Figure K.1 to K.7 in the accompanying CD-ROM disk illustrate diagrams of forecasting for the second week between 2008/05/23 and 2008/06/06 using the first week data and some forecasting values of the second week (type-C forecasting method).
- Figure K.8 to K.14 in the accompanying CD-ROM disk show diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using the second week data and some forecasting values of the third week (type-D forecasting method).
- Figure K.15 to K.21 in the accompanying CD-ROM disk depict diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using forecasting values of the second week and some forecasting values of the third week (type-A forecasting method).

The forecasting results by graphs are illustrated as following.

Fig. K.1. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using only the first week data forecast on 2008/05/31.

Fig. K.2. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the second to seventh days of the first week data and the first day of the second week data forecast on 2008/06/01.

Fig. K.3. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the third to seventh days of the first week data and the first to second days of the second week data forecast on 2008/06/02.

Fig. K.4. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fourth to seventh days of the first week data and the first to third days of the second week data forecast on 2008/06/03.

Fig. K.5. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fifth to seventh days of the first week data and the first to fourth days of the second week data forecast on 2008/06/04.

Fig. K.6. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the sixth to seventh days of the first week data and the first to fifth days of the second week data forecast on 2008/06/05.

Fig. K.7. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the seventh day of the first week data and the first to sixth days of the second week data forecast on 2008/06/06.

Fig. K.8. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the first to seventh days of the second week data forecast on 2008/06/07.

Fig. K.9. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the second to seventh days forecasting values of the second week and the first day the third week data forecast on 2008/06/08.

Fig. K.10. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the third to seventh days forecasting values of the second week and the first to second days of the third week data forecast on 2008/06/09.

Fig. K.11. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fourth to seventh days forecasting values of the second week and the first to third days of the third week data forecast on 2008/06/10.

Fig. K.12. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fifth to seventh days forecasting values of the second week and the first to fourth days of the third week data forecast on 2008/06/11.

Fig. K.13. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first to fifth days of the third week data forecast on 2008/06/12.

Fig. K.14. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the seventh day forecasting value of the second week and the first to sixth days of the third week data forecast on 2008/06/13.

Fig. K.15. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using only the second week data forecast on 2008/06/07.

Fig. K.16. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the second to seventh days of the second week data and the first day of the third week data forecast on 2008/06/08.

Fig. K.17. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the third to seventh days of the second week data and the first to second days of the third week data forecast on 2008/06/09.

Fig. K.18. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fourth to seventh days of the second week data and the first to third days of the third week data forecast on 2008/06/10.

Fig. K.19. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the fifth to seventh days of the second week data and the first to fourth days of the third week data forecast on 2008/06/11.

Fig. K.20. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the sixth to seventh days of the second week data and the first to fifth days of the third week data forecast on 2008/06/12.

Fig. K.21. Daily forecasting of filling peak for HO-T2FTS method as date is varies and using the seventh day of the second week data and the first to sixth days of the third week data forecast on 2008/06/13.

Appendix L

The Diagrams of Daily Forecasting: Using Day Average Data of a Week of V-P Pressure Factor for Forecasting the Second and the Third Weeks (2) - in CD-ROM Disk.

The type-A forecasting method in Figure 5.7 and type-C and type-D forecasting methods in Figure 5.8 are employed to forecast V-P pressure factor as following.

Figure L.1 to L.21 of Appendix L in the accompanying CD-ROM disk illustrate the diagrams of daily forecasting using day average data (factory data) of a week of V-P pressure factor between 2008/05/23 and 2008/06/13, which are split into three groups as listed.

- Figure L.1 to L.7 in the accompanying CD-ROM disk illustrate diagrams of forecasting for the second week between 2008/05/23 and 2008/06/06 using the first week data and some forecasting values of the second week (type-C forecasting method).
- Figure L.8 to L.14 in the accompanying CD-ROM disk show diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using the second week data and some forecasting values of the third week (type-D forecasting method).
- Figure L.15 to L.21 in the accompanying CD-ROM disk depict diagrams of forecasting for the third week between 2008/06/07 and 2008/06/13 using forecasting values of the second week and some forecasting values of the third week (type-A forecasting method).

The forecasting results by graphs are illustrated as following.

Fig. L.1. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using only the first week data forecast on 2008/05/31.

Fig. L.2. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the second to seventh days of the first week data and the first day of the second week data forecast on 2008/06/01.

Fig. L.3. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the third to seventh days of the first week data and the first to second days of the second week data forecast on 2008/06/02.

Fig. L.4. Forecasting position of V-P pressure factor for HO-T2FTS method as date is varies and using one week data for day-by-day forecasting. The fourth to seventh days of the first week data and the first to third days of the second week data are employed to forecast on the date: 2008/06/03 in the second week.

Fig. L.5. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fifth to seventh days of the first week data and the first to fourth days of the second week data forecast on 2008/06/04.

Fig. L.6. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the sixth to seventh days of the first week data and the first to fifth days of the second week data forecast on 2008/06/05.

Fig. L.7. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the seventh day of the first week data and the first to sixth days of the second week data forecast on 2008/06/06.

Fig. L.8. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the first to seventh days of the second week data forecast on 2008/06/07.

Fig. L.9. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the second to seventh days forecasting values of the second week and the first day the third week data forecast on 2008/06/08.

Fig. L.10. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the third to seventh days forecasting values of the second week and the first to second days of the third week data forecast on 2008/06/09.

Fig. L.11. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fourth to seventh days forecasting values of the second week and the first to third days of the third week data forecast on 2008/06/10.

Fig. L.12. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fifth to seventh days forecasting values of the second week and the first to fourth days of the third week data forecast on 2008/06/11.

Fig. L.13. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the sixth to seventh days forecasting values of the second week and the first to fifth days of the third week data forecast on 2008/06/12.

Fig. L.14. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the seventh day forecasting value of the second week and the first to sixth days of the third week data forecast on 2008/06/13.

Fig. L.15. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using only the second week data forecast on 2008/06/07.

Fig. L.16. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the second to seventh days of the second week data and the first day of the third week data forecast on 2008/06/08.

Fig. L.17. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the third to seventh days of the second week data and the first to second days of the third week data forecast on 2008/06/09.

Fig. L.18. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fourth to seventh days of the second week data and the first to third days of the third week data forecast on 2008/06/10.

Fig. L.19. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the fifth to seventh days of the second week data and the first to fourth days of the third week data forecast on 2008/06/11.

Fig. L.20. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the sixth to seventh days of the second week data and the first to fifth days of the third week data forecast on 2008/06/12.

Fig. L.21. Daily forecasting of V-P pressure for HO-T2FTS method as date is varies and using the seventh day of the second week data and the first to sixth days of the third week data forecast on 2008/06/13.

Appendix M

Comparing Forecasting Values and Prediction of Machine Status: Week 8 to Week 22.

The remaining factors such as filling time, filling peak and V-P pressure are forecasted between the eight to the twenty-second week. The results of forecasting for the remaining factors in figure M.1 and M.2 in the accompanying CD-ROM disk are described as follows.

In Chapter 5, figure 5.15 depicts the third week of forecasting on (Monday) 2008/06/02, the forecasting values of minimum cushion position and filling time factors are at about 5.194 mm and 0.602 second, respectively. The forecasting values of minimum cushion position factor are in the standard criteria interval between 2.5 and 5.5 mm and the filling time factor is also in the standard criteria interval between 0.4 and 0.8 second. The forecasting values of filling peak and V-P pressure factors are at about 120.820 MPa and 119.908 MPa, respectively. The forecasting value of filling peak factor exceeds the standard criterion interval between 80 and 110 MPa (see figure 5.18) and V-P pressure forecasting value also exceeds the standard criteria interval between 85 and 100 MPa (see figure 5.19). The occurrence of the problem of filling peak and V-P pressure factors need to maintain the machine within 1-2 working days due to a little bit high pressure. When considering the status of machine equipment, its status is unacceptable ("UAC") status. The "D4" position has partial failure status and it is still awaiting for preparing on 2008/06/03. The partial failure of "D6" position of machine equipment was still waiting for maintenance on 2008/06/04 due to waiting for new seal ring. This case demonstrates also do smooth match between the two algorithms.

In figure 5.15, The forecasting values of the fourth week on Tuesday 2008/06/03 of minimum cushion position and filling time factors are at about 5.518 mm (see figure 5.17) and 0.594 second (see figure 5.17), respectively. In figure 5.16 illustrates the forecasting value of minimum cushion

			sting val			Pred	dicting	gstatu	ıs of	each ps	osion	of ma	chine	equipme	ent	_
Date	Minimum cushion position	time	ng Filling peak	pressure	D 1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	Overa Statu
Week8: Saturday 2008/05/31 Sunday 2008/06/01 Monday 2008/06/02 Tuesday 2008/06/03 Wednesday 2008/06/04 Thursday 2008/06/05 Friday 2008/06/06	4.414 5.186 5.194 5.518 4.594 3.362 3.434	0.890 0.602 0.602 0.594 0.586 0.594	110.836 120.788 120.820 128.532 121.580 102.788 101.332	98.812 119.996 119.908 127.228 120.660 101.412 99.684	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP PAF PAF NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF PAF PAF NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP PAF NOP NOP NOP	NOP NOP NOP NOP NOP PAF NOP	NOP NOP NOP NOP NOP NOP	PAF NOP NOP NOP NOP NOP NOP	UAC UAC UAC UAC ACT ACT ACT
Saturday 2008/06/07	4.554	0.490	102.292	101.532	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	ACT
Week9: Sunday 2008/06/01 Monday 2008/06/02 Tuesday 2008/06/03 Wednesday 2008/06/04 Thursday 2008/06/05 Friday 2008/06/06 Saturday 2008/06/07	5.186 5.194 5.518 4.594 3.362 3.434 4.554	0.602 0.602 0.594 0.586 0.594 0.594	120.788 120.820 128.532 121.580 102.788 101.332 102.292	119.996 119.908 127.228 120.660 101.412 99.684 101.532	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF PAF NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF PAF NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP PAF NOP NOP NOP NOP	NOP NOP NOP NOP PAF NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	UAC UAC UAC ACT ACT ACT ACT
Sunday 2008/06/08	5.898	0.490	101.868	99.780	PAF	NOP	NOP	NOP	NOP	PAF	NOP	NOP	NOP	NOP	NOP	UAC
Week10: Monday 2008/06/02 Tuesday 2008/06/03 Wednesday 2008/06/04 Thursday 2008/06/05 Friday 2008/06/06 Saturday 2008/06/07 Sunday 2008/06/08	5.194 5.518 4.594 3.362 3.434 4.554 5.898	0.602 0.594 0.586 0.594 0.594 0.490	120.820 128.532 121.580 102.788 101.332 102.292 101.868	119.908 127.228 120.660 101.412 99.684 101.532 99.780	NOP NOP NOP NOP NOP NOP PAF	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF NOP NOP NOP NOP NOP	NOP NOP NOP PAF NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NO NOP	UAC UAC ACT ACT ACT ACT UAC
Monday 2008/06/09	5.930	0.490	101.748	99.764	NOP	NOP	NOP	PAF	NOP	COF	NOP	NOP	NOP	NOP	NOP	UAC
Week11: Tuesday 2008/06/03 Wednesday 2008/06/04 Thursday 2008/06/05 Friday 2008/06/06 Saturday 2008/06/07 Sunday 2008/06/08 Monday 2008/06/09	5.518 4.594 3.362 3.434 4.554 5.898 5.930	0.594 0.586 0.594 0.594 0.490 0.490	128.532 121.580 102.788 101.332 102.292 101.868 101.748	127.228 120.660 101.412 99.684 101.532 99.780 99.764	NOP NOP NOP NOP NOP PAF NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP PAF COF	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP PAF NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	UAC ACT ACT ACT ACT UAC UAC
Tuesday 2008/06/10	6.418	0.490	99.652	89.716	NOP	NOP	NOP	NOP	PAF	COF	NOP	NOP	NOP	NOP	NOP	UAC
Week12: Wednesday 2008/06/04 Thursday 2008/06/05 Friday 2008/06/06 Saturday 2008/06/07 Sunday 2008/06/09 Monday 2008/06/09 Tuesday 2008/06/10	4.594 3.362 3.434 4.554 5.898 5.930 6.418	0.586 0.594 0.594 0.490 0.490 0.490	121.580 102.788 101.332 102.292 101.868 101.748 99.652	120.660 101.412 99.684 101.532 99.780 99.764 89.716	NOP NOP NOP PAF NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP PAF NOP	NOP NOP NOP NOP NOP NOP PAF	NOP NOP NOP NOP PAF COF COF	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP PAF NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	ACT ACT ACT ACT UAC UAC UAC
Wednesday 2008/06/11	5.794	0.490	100.484	99.140	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	ACT
Week13: Thursday 2008/06/05 Friday 2008/06/06 Saturday 2008/06/07 Sunday 2008/06/08 Monday 2008/06/10 Tuesday 2008/06/10 Wednesday 2008/06/11	3.362 3.434 4.554 5.898 5.930 6.418 5.794	0.594 0.594 0.490 0.490 0.490 0.490	102.788 101.332 102.292 101.868 101.748 99.652 100.484	101.412 99.684 101.532 99.780 99.764 89.716 99.140	NOP NOP NOP PAF NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP PAF NOP NOP	NOP NOP NOP NOP NOP PAF NOP	NOP NOP NOP PAF COF COF NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	ACT ACT ACT UAC UAC UAC ACT
Thursday 2008/06/12	5.534	0.490	99.788	98.516	NOP	NOP	PAF	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	ACT
Week14: Friday 2008/06/06 Saturday 2008/06/07 Sunday 2008/06/08 Monday 2008/06/09 Tuesday 2008/06/10 Wednesday 2008/06/11 Thursday 2008/06/12	3.434 4.554 5.898 5.930 6.418 5.794 5.534	0.594 0.490 0.490 0.490 0.490 0.490	101.332 102.292 101.868 101.748 99.652 100.484 99.788	99.684 101.532 99.780 99.764 89.716 99.140 98.516	NOP NOP PAF NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP PAF NOP NOP	NOP NOP NOP NOP PAF NOP	NOP NOP PAF COF COF NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	ACT ACT UAC UAC UAC ACT ACT
Friday 2008/06/13	5.834	0.490	100.540	99.122	NOP	NOP	NOP	NOP	PAF	NOP	NOP	NOP	NOP	PAF	NOP	UAC

Fig. M.1. Comparing forecasting values and prediction of machine status: week 8 to week 14.

position factor on 2008/06/03 is higher than the accepted standard criterion interval is between 2.5 and 5.5 mm. The maintenance of minimum cushion position factor needs to maintain or repair by urgent maintenance (or emergency maintenance). In figure 5.17, filling time factor is in the

		Enneca	sting val	ues		Pre	dictino	n stati	is of	each n	sosion	of ma	chine	equipm	ent	
Date	Minimum cushion position	Fillin time	g Filling peak	V-P pressure	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	Overal Status
Week15: Saturday 2008/06/07 Sunday 2008/06/08 Monday 2008/06/08 Tuesday 2008/06/10 Wednesday 2008/06/11 Triday 2008/06/12 Friday 2008/06/13	4.554 5.898 5.930 6.418 5.794 5.534 5.834	0.490 0.490 0.490 0.490 0.490 0.490 0.490	102.292 101.868 101.748 99.652 100.484 99.788 100.540	101.532 99.780 99.764 89.716 99.140 98.516 99.122	NOP PAF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP PAF NOP	NOP NOP PAF NOP NOP NOP	NOP NOP PAF NOP NOP PAF	NOP PAF COF COF NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP PAF	NOP NOP NOP NOP NOP NOP	ACT UAC UAC UAC ACT ACT UAC
Sunday 2008/06/15	5.874	0.474	100.452	99.084	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	ACT
Week16: Sunday 2008/06/08 Monday 2008/06/09 Tuesday 2008/06/10 Wednesday 2008/06/11 Thursday 2008/06/12 Friday 2008/06/13 Sunday 2008/06/15	5.898 5.930 6.418 5.794 5.534 5.834 5.874	0.490 0.490 0.490 0.490 0.490 0.490 0.474	101.868 101.748 99.652 100.484 99.788 100.540 100.452	99.780 99.764 89.716 99.140 98.516 99.122 99.084	PAF NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP PAF NOP NOP	NOP PAF NOP NOP NOP NOP	NOP NOP PAF NOP NOP PAF NOP	PAF COF COF NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP PAF NOP	NOP NOP NOP NOP NOP NOP	UAC UAC UAC ACT ACT UAC ACT
Monday 2008/06/16	4.342	0.450	96.512	94.444	NOP	NOP	NOP	PAF	NOP	NOP	PAF	NOP	NOP	NOP	NOP	UAC
Week17: Monday 2008/06/09 Tuesday 2008/06/10 Wednesday 2008/06/11 Thursday 2008/06/12 Friday 2008/06/13 Sunday 2008/06/15 Monday 2008/06/16	5.930 6.418 5.794 5.534 5.834 5.874 4.342	0.490 0.490 0.490 0.490 0.490 0.474 0.450	101.748 99.652 100.484 99.788 100.540 100.452 96.512	99.764 89.716 99.140 98.516 99.122 99.084 94.444	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP PAF NOP NOP	PAF NOP NOP NOP NOP NOP PAF	NOP PAF NOP NOP PAF NOP	COF COF NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP PAF NOP	NOP NOP NOP NOP NOP NOP	UAC UAC ACT ACT ACT ACT UAC
Sunday 2008/06/17	4.438	0.466	99.004	97.132	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	ACT
Week18: Tuesday 2008/06/10 Wednesday 2008/06/11 Thursday 2008/06/12 Friday 2008/06/13 Sunday 2008/06/15 Monday 2008/06/16 Tuesday 2008/06/17	6.418 5.794 5.534 5.834 5.874 4.342 4.438	0.490 0.490 0.490 0.490 0.474 0.450 0.466	99.652 100.484 99.788 100.540 100.452 96.512 99.004	89.716 99.140 98.516 99.122 99.084 94.444 97.132	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP PAF NOP NOP NOP	NOP NOP NOP NOP NOP PAF NOP	PAF NOP NOP PAF NOP NOP	COF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP PAF NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP PAF NOP NOP	NOP NOP NOP NOP NOP NOP	UAC ACT ACT UAC ACT UAC ACT
Wednesday 2008/06/18	4.414	0.466	98.844	96.964	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	ACT
Week19: Wednesday 2008/06/12 Thursday 2008/06/12 Friday 2008/06/15 Sunday 2008/06/15 Monday 2008/06/16 Tuesday 2008/06/17 Wednesday 2008/06/18	5.794 5.534 5.834 5.874 4.342 4.438 4.414	0.490 0.490 0.490 0.474 0.450 0.466 0.466	100.484 99.788 100.540 100.452 96.512 99.004 98.844	99.140 98.516 99.122 99.084 94.444 97.132 96.964	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP PAF NOP NOP NOP NOP	NOP NOP NOP NOP PAF NOP NOP	NOP NOP PAF NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP PAF NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP PAF NOP NOP NOP	NOP NOP NOP NOP NOP NOP	ACT ACT UAC ACT UAC ACT ACT
Thursday 2008/06/19	4.470	0.466	99.748	98.412	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	ACT
Week20: Thursday 2008/06/12 Friday 2008/06/13 Sunday 2008/06/15 Monday 2008/06/16 Tuesday 2008/06/17 Wednesday 2008/06/18 Thursday 2008/06/19	5.534 5.834 5.874 4.342 4.438 4.414 4.470	0.490 0.490 0.474 0.450 0.466 0.466	99.788 100.540 100.452 96.512 99.004 98.844 99.748	98.516 99.122 99.084 94.444 97.132 96.964 98.412	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF NOP NOP NOP NOP NOP	NOP NOP NOP PAF NOP NOP	NOP PAF NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP PAF NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP PAF NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	ACT UAC ACT UAC ACT ACT ACT
Friday 2008/06/20	4.390	0.466	97.220	95.932	NOP	NOP	NOP	NOP	NOP	NOP	NOP	PAF	NOP	NOP	PAF	ACT
Week21: Friday 2008/06/13 Sunday 2008/06/15 Monday 2008/06/15 Tuesday 2008/06/17 Wednesday 2008/06/19 Thursday 2008/06/19 Friday 2008/06/20	5.834 5.874 4.342 4.438 4.414 4.470 4.390	0.490 0.474 0.450 0.466 0.466 0.466	100.540 100.452 96.512 99.004 98.844 99.748 97.220	99.122 99.084 94.444 97.132 96.964 98.412 95.932	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP PAF NOP NOP NOP	PAF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP PAF NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	PAF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	UAC ACT UAC ACT ACT ACT
Saturday 2008/06/21	4.382	0.466	97.276	95.972	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	NOP	ACT
Week22: Sunday 2008/06/15 Monday 2008/06/16 Tuesday 2008/06/17 Wednesday 2008/06/18 Thursday 2008/06/19 Friday 2008/06/20 Saturday 2008/06/20	5.874 4.342 4.438 4.414 4.470 4.390 4.382	0.474 0.450 0.466 0.466 0.466 0.466	100.452 96.512 99.004 98.844 99.748 97.220 97.276	99.084 94.444 97.132 96.964 98.412 95.932 95.972	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP PAF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP PAF NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP PAF NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP NOP	NOP NOP NOP NOP NOP PAF NOP	ACT UAC ACT ACT ACT ACT ACT
Sunday 2008/06/22	4.406	0.466	97.420	96.124	-	-	_	-	-	-	-	-	-	-	-	-

Fig. M.2. Comparing forecasting values and prediction of machine status: week 15 to week 22.

accepted standard criterion interval between 0.4 and 0.8 second and there is no any problem of it. However, filling peak factor (see figure 5.18) and V-P pressure factor (see figure 5.19) have a very high forecasting values at about 128.532 MPa and 127.228 MPa on 2008/06/03, respectively.

Thus both filling peak and V-P pressure factors have very high pressure at a nozzle head, in the meantime, the problem is also caused by some cracked surface of a seal ring is need to maintain immediately or emergency maintenance. And there is a serious problem of a seal ring surface needs to fix immediately. When considering the status of a machine, we found most positions of machine equipment are in normal operation status. Only "D6" position has partial failure status and the overall status of machine is also unaccepted. The "D4" position of machine equipment was repaired on 2008/06/03 that the lead wires for the heater and thermocouples are tightened and some part of the thermocouples holes of the heating cylinder are fixed. The "D6" position has to awaiting for replacement of new seal ring on 2008/06/04. This case provides another evidence for the matching between the two algorithms.

In figure 5.15, the forecasting values of the fifth week on Wednesday 2008/06/04 of minimum cushion position factor is at about 4.594 mm and its forecasting value is in the accepted standard interval between 2.5 and 5.5 mm (see figure 5.16). Filling time factor has forecasting values at about 0.586 and the forecasting values is also in the accepted standard criteria (the interval between 0.4 and 0.8 second) (see figure 5.17). Both minimum cushion position and filling time factors have not any problem. Filling peak factor has a higher forecasting value on 2008/06/04 at about 121.580 MPa (see figure 5.18) and V-P pressure factor has forecasting value at approximately 120.660 MPa (see figure 5.19). Both filling peak and V-P pressure factors forecasting values exceeded the accepted standard criterion interval between 80 and 110 MPa and between 85 and 110 MPa, respectively. The high pressure of filling peak and V-P pressure factors is caused by the surface of a seal ring is wore. Then a technician has to check all positions of machine equipment after the "D6" position had been fixed (i.e. replacing a new seal ring and purging a barrel) and the overall status of machine is turn to normal operation status again. Hence, the overall status of machine is acceptable status on 2008/06/04.

For the sixth and seventh weeks in figure 5.15 and the eighth week in figure M.1 in the accompanying CD-ROM disk, all factors of each week in the standard criteria. For example, the minimum cushion position factor has the forecasting values on (Thursday) 2008/06/05, (Friday) 2008/06/06 and (Saturday) 2008/06/07 at about 3.362, 3.434 and 4.554 mm, respectively. The forecasting values of the sixth to the eighth weeks are in the standard criteria interval between 2.5 and 5.5 mm (see figure 5.16). Thus there is not any problem of minimum cushion position factor in this four weeks. Filling time factor has forecasting values at about 0.594, 0.594 and 0.490 second, respectively, and these forecasting values are also in the standard criteria (the accepted interval between 0.4 and 0.8 second) (see figure 5.17) and it also has not any problem for the sixth through the eighth weeks. Similarly, the forecasting values of filling peak and V-P pressure factors are also in the standard criteria as minimum cushion position and filling time factors. For example, the forecasting values of filling peak factor are at about 102.788, 101.332 and 102.292 MPa for 2008/06/04, 2008/06/05, 2008/06/06 and 2008/06/07, respectively. The accepted standard criteria-

ria for filling peak factor is between 80 and 110 MPa (see figure 5.18). The forecasting values of V-P pressure are at about 101.412, 99.684 and 101.532 MPa for 2008/06/05, 2008/06/06 and 2008/06/07, respectively. In the sixth and eight weeks, the forecasting values of V-P pressure factor exceeded the standard. However, the machine operation can be accepted as normal situation by engineers even through the forecasting values have a little bit higher than the standard criteria. The accepted standard criteria for V-P pressure factor is between 85 and 100 MPa (see figure 4.25). Considering the status of machine in the sixth and seventh weeks, we found the "D9" and "D10" positions of machine have partial failure in 2008/06/05 and 2008/06/06, respectively. Other positions in the sixth, seventh and eighth weeks are in normal operation status. Hence, there is not any problems of all four factors on 2008/06/05 and the maintenance of machine is upon machine maintenance plan. Thus the "D9" and "D10" positions of machine are awaiting for maintenance by machine maintenance plan. "D9" is a position mold mounting bolts and bolts/nuts at fixed platen has a little bit loose. And "D10" is a position mold mounting bolts and bolts/nuts at moved platen has tiny loose and screw holes have a tiny wear. These two positions in this situation allow a machine in operation until the end of the order of productions finished. Thus the overall status of machine equipment is acceptable during the sixth, seventh and eighth weeks.

The forecasting values of the ninth, tenth and eleventh weeks (see figure M.1 in the accompanying CD-ROM disk) of minimum cushion position factor have a very high values at abort 5.898, 5.930 and 6.418 mm on (Sunday) 2008/06/08, (Monday) 2008/06/09 and (Tuesday) 2008/06/10 (see figure 5.16), respectively. The forecasting of minimum cushion position factor for these three weeks have some problem due to the exceeding forecasting value of the standard criteria interval between 2.5 and 5.5 mm. The maintenance of machine for minimum cushion position factor is upon emergency maintenance because the forecasting value is higher than 5.5 mm of the accepted standard criterion. Considering the other three factors are described as follows. Filling time factor has forecasting values for 2008/06/08, 2008/06/09 and 2008/06/10 (see figure 5.17) are 0.490, 0.490 and 0.490 second, respectively. There is not any problem of filling time factor due to the forecasting values of them are in the accepted standard criteria (the interval between 0.4 and 0.8 second). Following by filling peak factor forecasting values are at about 101.868, 101.748 and 99.652 MPa for 2008/06/08, 2008/06/09 and 2008/06/10 (see figure 5.18), respectively. Similarly, the forecasting values of V-P pressure are at about 99.780, 99.764 and 89.716 MPa (see figure 5.19), respectively. The forecasting values of both filling peak and V-P pressure factors of these three weeks are in the accepted standard criteria in the interval between 80 and 110 and between 85 and 100 MPa, respectively. And these two factors have not any problem. The status of machine equipment positions was considered by following. On 2008/06/08 of the ninth week in figure M.1 in the accompanying CD-ROM disk, there is partial failure in the position of "D1" and "D6". The "D1" position of machine equipment is a safety door in non-operation side of injection machine. The partial failure symptom of "D1" position is the mold closing/opening when the safety door in non-operation side is opened. In this machine, when the mold is closing/opening the safety door in non-operation side is not immediately closed/opened. And the "D6" position of machine equipment has some melt leakage at a nozzle head again. The overall status of machine is unacceptable status. However, the machine is still running until the end of the products order is finished due to company policy. The reason is a different size of mold die depends on a different product order. A new mold die has been changed when a new order of products starts to produce. For an example, 20,000 products of an order is produced by a first mold die. The nozzle head has melt leakage when the machine has produced at the 6,000 products of using the first mold die. Because it still has 14,000 products remaining to produce. If the machine is stopped for maintenance and the first mold die has to clean up. By the same mold die when the nozzle head are cleaned and the remaining products are continued to produce for the same type of products again. And when this 20,000 products of the first order were finished to produce. The machine has to be stopped again and the first mold die will be replaced with a second mold die (a new mold die) and the nozzle head has been cleaned up at the same time. With this reason, the factory does not immediately stop the machine, if the machine has a tiny symptom of machine equipment and the machine can running for producing the products. Frequency of stopping machine running and changing mold die leads to waste the time for machine maintenance and to delay for producing the products. This is company policy for saving time and machine maintenance cost. Even though the melt leakage has been occurred at a nozzle head. If the remaining amount of products of an order can be finished in a few hours. The machine still has to be in operation to produce the products until producing the end of products of an order are finished. In the ninth week, the minimum cushion position factor problem is caused by the partial failure of "D1" and "D6" positions of machine equipment need to maintain within 1-2 working days.

Note:

The machine is stopped running at approximately 3:30 am when the all products of an order is finished and then the machine is waiting for emergency maintenance on 2008/06/10.

In the previous day (2008/06/08) of forecasting, the occurrence of melt leakage at about 23:46 pm and the machine is still running over night through the next day on 2008/06/09 and for maintenance the machine. In the tenth week on (Monday) 2008/06/09 in figure M.1 in the accompanying CD-ROM disk, the minimum cushion position factor has forecasting value exceeds the standard criteria interval. Because the forecasting value of minimum cushion position factor has a high value at about 5.930 mm (see figure 5.16) that it is higher than 5.5 mm (the accepted criterion interval between 2.5 and 5.5 mm). Thus it has to maintain immediately. The problem of minimum cushion position factor is caused by the position of minimum cushion has a big different distance between a nozzle head and the injection position to the mold die. For other factors such as filling time, filling peak and V-P pressure, the forecasting values of them are in the standard criteria interval and their forecasting values are at about 0.490 second (see figure 5.17), 101.748 MPa

(see figure 5.18) and 99.764 MPa (see figure 5.19), respectively. The forecasting values of these three factors are in the standard criteria in the interval between 0.4 and 0.8 second, between 80 and 110 MPa and between 85 and 100 MPa for filling time, filling peak and V-P pressure factors, respectively. Machine maintenance plan is required for a machine. The overall status of machine equipment on 2008/06/09 is unacceptable status. Because three positions of machine equipment have partial failure such as "D1", "D4" and "D6". The "D1" has a problem about a safety door in non-operation side of injection machine is not immediately closed/opened when the mold is closing/opening and "D4" positions of machine status has some problem occur as the lead wires for the heater bands and thermocouple are loosed. The lead wires and thermocouple has a tiny in contact with the fixed platen. The contact of the lead wires can leads to the damage of the coating in a short time. And "D6" positions of machine status has a problem about some melt leakage at a nozzle head since 2008/06/08. On 2008/06/09, the status of "D1" and "D4" position have partial failure. Only "D6" position is awaiting for maintenance since 2008/06/08 until 2008/06/09 and they still are not maintained on this day due to await for replacement with a nozzle head. The "D6" positions of machine equipment needs to maintain immediately due to complete failure of "D6" position and the unacceptable overall status of machine. Then the "D6" position of machine was fixed on 2008/06/10 that "D1" and "D4" positions were also maintained at the same time. Only the "D1" position of machine equipment had been repaired and "D4" position had also been repaired by making the lead wires for heater bands and thermocouple tightened. However, on 2008/06/09 afternoon, a maintenance service team checked the "D6" positions and found some part of a nozzle ring surface had a tiny cracked and the machine has to waiting for replacement of a new nozzle ring for a couple days. Thus the "D6" positions of machine equipment had not been repaired on 2008/06/9.

The forecasting of the eleventh week is on (Tuesday) 2008/06/10 in figure M.1 in the accompanying CD-ROM disk. The minimum cushion position factor has a very high forecasting value at about 6.418 mm (see figure 5.16) and its forecasting value exceeds the standard criteria interval and the forecasting value is higher than 5.5 mm (the accepted criterion interval between 2.5 and 5.5 mm). Thus the machine has to maintain immediately due to more cracked at nozzle head. While filling time, filling peak and V-P pressure factors have forecasting values at about 0.490 second (see figure 5.17), 99.652 MPa (see figure 5.18) and 89.716 MPa (see figure 5.19), respectively, are in the standard criteria interval of each factor and the maintenance of machine by maintenance plan required. The overall status of machine equipment on 2008/06/10 is still unacceptable status. Because the emergency maintenance of "D6" position of machine equipment was not replaced with new equipment on 2008/06/09 due to waiting for the order of new equipment of company. The "D4" position of machine equipment also has partial failure. There is some problem on the surface thermocouple and it was cleaned by bushing the thermocouple mounting face of the heating cylinder and the temperature sensor of the thermocouple using a sand paper or wire bush. The

"D6" position of machine still has complete failure on 2008/06/10. It was awaiting for replacing new equipment on 2008/06/11. The overall status of machine equipment is unacceptable.

The next forecasting is the forecast of the twelve th week on (Wednesday) 2008/06/11 in M.1 figure in the accompanying CD-ROM disk. The forecasting value of minimum cushion position is at about 5.794 mm (see figure 5.16) and the forecasting value is higher than 5.5 mm (the accepted interval between 2.5 and 5.5 mm). The maintenance of machine has to immediately maintain. Filling time, filling peak and V-P pressure factors have forecasting values at about 0.490 second (see figure 5.1), 100.484 MPa (see figure 5.18) and 99.140 MPa (see figure 5.19), respectively. They are in the standard criteria interval of each factor and the maintenance of machine by maintenance plan required. The overall status of machine is acceptable status. The "D6" position of machine equipment had been replaced by a new nozzle ring. Then all positions of machine equipment were checked by a technician on the same day. Hence, all positions of machine equipment are in normal operation.

In the thirteenth week on (Thursday) 2008/06/12 in figure M.1 in the accompanying CD-ROM disk, the forecasting value of minimum cushion position factor is at approximately 5.534 mm (see figure 5.16) and the machine needs to immediately maintain due to the forecasting value of minimum cushion position factor is a little bit higher than 5.5 mm (the accepted interval between 2.5 and 5.5 mm). However, an engineer of factory still accepts the status of minimum cushion position and the machine is allowed in operation. Filling time, filling peak and V-P pressure factors have forecasting values at about 0.490 second (see figure 5.17), 99.788 MPa (see figure 5.18) and 98.516 MPa (see figure 5.19), respectively. They are in the standard criteria interval of each factor. The maintenance of machine by maintenance plan is required. The overall status of machine is acceptable status and all machine equipment positions have normal operation status. However, there is the "D3" position of machine equipment has partial failure status and the cause of problem of "D3" position is the water jacket temperature has a little bit low and has water leakage in the surrounding area. Thus, the forecasting of maintenance is immediately maintain due to the forecasting value of minimum cushion position factor is higher than 5.5 mm. However, the problem of machine was occurred at night. The machine has to wait for maintenance for tomorrow morning.

In figure M.1 in the accompanying CD-ROM disk, the forecasting value of the fourteenth week on (Friday) 2008/06/13 of minimum cushion position factor is at roughly 5.834 mm (see figure 5.16) and the machine needs immediately maintain due to the fact that the forecasting value of minimum cushion position factor is higher than 5.5 mm (the accepted interval between 2.5 and 5.5 mm). The forecasting values of filling time, filling peak and V-P pressure factors are at about 0.490 second (see figure 5.17), 100.540 MPa (see figure 5.18) and 99.122 MPa (see figure 5.19), respectively. They are in the standard criteria interval of each factor and the maintenance of machine by maintenance plan is required. The overall status of machine is unacceptable status.

However, the status of the "D5" position of machine equipment is still partial failure status as the previous day (2008/06/12) forecasting. After the "D5" position of machine maintenance has been checked including purge cover interlock, exhaust pipe and shutter valve, this position effects to the injection and plasticizing for minimum cushion position factor. The cover interlock and exhaust pipe have been fixed and the shutter valve needs to be double checked and more tests on it on 2008/06/16. If there is more wearing on the shutter valve, it would be changed to a new shutter valve. Hence, the injection machine has been stopped running at approximately 18:15 pm on 2008/06/13. "D10" position, a position of mold mounting bolts and bolts/nuts at moved platen of the mold mounting unit is loose. It needs to tighten. On (Saturday) 2008/06/14, the injection machine was not in operation due to company holiday.

In the fifteenth week (see figure M.2 in the accompanying CD-ROM disk), the forecasting value of minimum cushion position factor on (Sunday) 2008/06/15 is about 5.874 mm (see figure 5.16). The forecasting value of minimum cushion position factor is higher than 5.5 mm (the accepted interval between 2.5 and 5.5 mm), and the emergency maintenance is required. The three factors remaining such as filling time, filling peak and V-P pressure factors have the forecasting values of them at about 0.474 second (see figure 5.17), 100.452 MPa (see figure 5.18) and 99.084 MPa (see figure 5.19), respectively. The forecasting values of these three factors are in the standard criteria interval of each factor and the maintenance of machine by maintenance plan required. The shutter valve of the "D5" position has been replaced with a new shutter valve on 2008/06/15. Then the status of machine was checked by a technician as following results. The overall status of machine equipment is acceptable status. Because the overall status of machine equipment is recorded by a technician after a new shutter valve is replaced, while the forecasting values of minimum cushion position factor is forecasted before the new equipment is replaced. Hence, all positions of machine equipment has normal operation status at the current.

In the sixteenth week (on Monday 2008/06/16 in figure M.1 in the accompanying CD-ROM disk), the forecasting values of the four factors as 4.342 mm (see figure 5.16), 0.450 second (see figure 5.17), 96.512 MPa (see figure 5.18) and 94.444 MPa (see figure 5.19) for minimum cushion position, filling time, filling peak and V-P pressure factors, respectively. All forecasting values of these four factors are in the standard criteria interval of each factor and machine maintenance plan is required. Considering the status of machine, there are two factors have partial failure such as "D4" position of machine and the remaining factors are in normal operation status. The problem of "D4" position of machine equipment is the soldered part of the thermocouple holes of the heating cylinders are damaged. Thus, the overall status of machine is unacceptable status. Because the problems of "D4" of machine equipment have occurred, Even though the machine can still operate to produce for products. In addition, a problem of "D7" position of machine equipment is the emergency stop button operation (front) on the molding machine is not properly working. Hence, the maintenance of machine of minimum cushion position, filling time, filling

peak and V-P pressure factors is to fallow machine maintenance plan and the overall status of machine is accepted.

In figure M.2 in the accompanying CD-ROM disk the seventeenth, eighteenth and nineteenth weeks have the forecasting values of each week as following. The forecasting values of the seventeenth week of (Tuesday) 2008/06/17 are 4.438 mm (see figure 5.16), 0.466 second (see figure 5.17), 99.004 MPa (see figure 5.18) and 97.132 MPa (see figure 5.19) for minimum cushion position, filling time, filling peak and V-P pressure factors, respectively. The forecasting values of the eighteenth week of (Wednesday) 2008/06/18 are 4.414 mm, 0.466 second, 98.844 MPa and 96.964 MPa for minimum cushion position, filling time, filling peak and V-P pressure factors, respectively. And the forecasting values of the nineteenth week of (Thursday) 2008/06/19 are 4.470 mm, 0.466 second, 99.748 MPa and 98.412 MPa for minimum cushion position, filling time, filling peak and V-P pressure factors, respectively. The overall status of machine equipment on 2008/06/17, 2008/06/18 and 2008/06/19 are acceptable status. Hence, there is no any problem of the minimum cushion position, filling time, filling peak and V-P pressure factors on 2008/06/17, 2008/06/18 and 2008/06/19, respectively. The machine maintenance is upon machine maintenance plan and all positions of machine equipment are in normal operation.

In the twentieth week in figure M.1 in the accompanying CD-ROM disk, the forecasting values on (Friday) 2008/06/20 of minimum cushion position, filling time, filling peak and V-P pressure factors are 4.390 mm (see figure 5.16), 0.466 second (see figure 5.17), 97.220 MPa (see figure 5.18) and 95.932 MPa (see figure 5.19), respectively. There is no any problem of these four factors and the maintenance of machine is upon machine maintenance plan. The overall status of machine is acceptable status. There is "D7" position of machine has partial failure status. The D8 position of machine equipment is a safety door in operation side of injection machine. The prediction status of the D8 position is partial failure status (PAF status). The safety door in operation side of a machine has ajar when the door is closing, but the machine can be running until the end of the production order. Thus the D8 positions of machine equipment has to fix for tomorrow morning (on 2008/06/21) due to non-service team to maintaining machine over night. And the status of "D11" position of machine is partial failure status and the problem of "D11" is caused by there are some dirty on the tie bar, machine frame and the platen of machine. Thus both the "D8" and "D11" positions of machine equipment have to fix by maintenance plan.

In the twenty-first week (on Saturday 2008/06/21 in figure M.1 in the accompanying CD-ROM disk), the forecasting values of the four factors are 4.382 mm (see figure 5.16), 0.466 second (see figure 5.17), 97.276 MPa (see figure 5.18) and 95.972 MPa (see figure 5.19) for minimum cushion position, filling time, filling peak and V-P pressure factors, respectively. There is not any problems with these four factors and the machine maintenance is upon machine maintenance plan. The overall status of machine equipment is acceptable status. The "D8" position of machine equipment had been fixed by a machine maintenance service team.

The twenty-second week forecasting (on Sunday 2008/06/22 in figure 4.M.1 in the accompanying CD-ROM disk), the forecasting values of the four factors are 4.406 mm (see figure 5.16), 0.466 second (see figure 5.17), 97.420 MPa (see figure 5.18) and 96.124 MPa (see figure 5.19) for minimum cushion position, filling time, filling peak and V-P pressure factors, respectively. There are not any problems with these four factors and the machine maintenance also is upon machine maintenance plan as the previous day forecasting. The status of machine equipment was not recorded on this day due to the last inspection was on the day before this day (2008/06/21).

Appendix N

CMIMS Coding (1) - in Accompanying CD-ROM Disk.

CMIMS coding consists of CMIMS coding-(1), (2), (3), (4) and (5). In appendix N in accompanying CD-ROM disk, figure N.1 to N.18 illustrate CMIMS coding-(1) for HO-T2FTS method coding as following.

```
*****************************
                                 H O - T 2 F T S
                                                           METHOD
*******************
Imports System.Data
Imports System.Data.OleDb
Partial Class HO_T2FTSModel
     Inherits System.Web.UI.Page
Dim Low As New ArrayList
    Dim How As New ArrayList
Dim Upe As New ArrayList
Dim Mi As New ArrayList
Dim SizeOfGroup As Integer = 0
Dim idate As Date
Dim fdate As Date
     Dim forecast As Double
     Dim fullforecast As New ArrayList
    Dim fullforecast2 As New ArrayList
Dim fullforecast3 As New ArrayList
Dim fullforecast4 As New ArrayList
Dim stops filter date As Integer
Dim mf, mf1, mf2, mf3, mf4 As String
     Dim outpredic1, outpredic2, outpredic3, outpredic4 As String
     Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
     Handles Button1.Click
          Session.Timeout = 60
          Session("mf1") = " "
          Session("mf2") = " "
Session("mf3") = " "
          Session("mf4") = " "
          Session("machine") = DropDownList1.SelectedValue.ToString
If CheckBox1.Checked = True Then
    Session("chkb1") = "1"
          Else
               Session("chkb1") = "0"
           End If
          If CheckBox2.Checked = True Then
    Session("chkb2") = "1"
          Else
               Session("chkb2") = "0"
          End If
          If CheckBox3.Checked = True Then
    Session("chkb3") = "1"
               Session("chkb3") = "0"
           End If
          If CheckBox4.Checked = True Then
Session("chkb4") = "1"
               Session("chkb4") = "0"
          End If
          Dim result As Double
          Dim nstart, nstop As Integer
          nstart = iwtxt.Text
          nstop = swtxt.Text
           idate = DateTime.Parse(initdate.Text)
          fdate = DateTime.Parse(finaldate.Text)
          Session("idate") = idate
Session("fdate") = fdate
          If nstart > nstop Then
          nstart = nstop
End If
          Label3.Text = ""
          Dim f As String
f = "HO2TFTS.xls"
          Dim output As New ArrayList
```

Fig. N.1. CMIMS coding-1 (1)

```
Dim min As Double = 100
                     Dim rowmin As Integer
                    Dim j As Integer = 0
                      ' Finding the minimum position
                      If CheckBox1.Checked = True Then
                                         result = find_lenght(2, f, 5)
For i As Integer = nstart To nstop
    result = rmse cal2(i, f, 5)
    output.Add(result)
                                          For i As Integer = nstart To nstop
                                                               If output(j) < min Then
                                                                            min = output(j)
                                                                                   rowmin = j
                                                                End If
                                                               j = j + 1
                                          Next
                    End If
                     j = 0
                     mf1 = ""
                    If CheckBox1.Checked = True Then
   Label3.Text = Label3.Text + "<br/>result = find_lenght(2, f, 5)
                                          For i As Integer = nstart To nstop
  result = rmse cal2(i, f, 5)
  check_min_cus(forecast)
                                                               'check_mf_min(forecast)
If (j = rowmin) Then
Label3.Text = Label3.Text + "
" + i.ToString + "order " + Math.Round(result, 6).ToString + " </b> *\text{clostring} + " </b> *\text{clostring} + " \text{v} \text{v} \text{v} \text{clostring} + " \text{v} \text{v} \text{v} \text{v} \text{clostring} + " \text{v} \text{v} \text{v} \text{v} \text{v} \text{clostring} + " \text{v} \t
    Dim str As String = Left(mf1, 3)
Session("pred1") = str
If (str = "MF2" Or str = "MF3") Then
Label3.Text = Label3.Text + " There is some problems of this factor 
<a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT </a><a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT </a>
                                                                                    Else
Label3.Text = Label3.Text + " There is not a problem of this factor  
<a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT</a> or <a k
href='javascript:history.go(-1)'>Goto next factor</a> </a></br>
                                                                                   End If
                                                                Else
Label3.Text = Label3.Text + "RMSE of " + i.ToString + "order " + Math.Round (result, 5).ToString + "  Forecasting Value= " + Math.Round (forecast, 5).ToString + " " + "" + mf1.ToString + " <br/> " + "<br/> " + mf1.ToString + " <br/> " <br/> " <br/> " <br/> " <br/> " + mf1.ToString + " <br/> " <br/> " <br/> " <br/> " <br/> " + mf1.ToString + " <br/> " + mf1.ToString + " <br/> " <b
                                                               End If
                                                               j = j + 1
                                          Next
                                           Label3.Text = Label3.Text + ""
                     output = New ArrayList
                    min = 100
                     ' Finding the minimum position
                    j = 0
mf2 = ""
                      If CheckBox2. Checked = True Then
                                         result = find_lenght(2, f, 7)
For i As Integer = nstart To nstop
    result = rmse_cal2(i, f, 7)
                                                                output.Add(result)
                                          For i As Integer = nstart To nstop
```

Fig. N.2. CMIMS coding-1 (2)

```
If output(j) < min Then
                                           min = output(j)
                                           rowmin = j
                                 End If
                                 j = j + 1
                     Next
          End If
           j = 0
          If CheckBox2.Checked = True Then
   Label3.Text = Label3.Text + "<br/>result = find_lenght(2, f, 7)
   For i As Integer = nstart To nstop
    result = rmse_cal2(i, f, 7)
                                 check_fil_tim(forecast)
'check mf fil(forecast)
                                If (j = rowmin) Then
  Label3.Text = Label3.Text + "
" + i.ToString + "order " + Math.Round(result, 6).ToString + " </b> *\style='color:red'> Kath.Round(forecast, 6).ToString + " \left \footnote{\style='color:red'} \right \footnote{\style='colo
style='color:red'>
                                           Dim str As String = Left(mf2, 3)
  Session("pred2") = str

If (str = "MF2" Or str = "MF3") Then

Label3.Text = Label3.Text + " There is some problems of this factor 
<a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT </a><a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT </a>
                                           Else
   End If
                                          Label3.Text = Label3.Text + "RMSE of " + i.ToString + "order "
Forecasting Value= " + Math.Round &
                                 End If
                                j = j + 1
                     Next
                     Label3.Text = Label3.Text + ""
          End If
          output = New ArrayList
          min = 100
           ' Finding the minimum position
           i = 0
           If CheckBox3.Checked = True Then
                     result = find lenght(2, f, 9)
For i As Integer = nstart To nstop
                                result = rmse_cal2(i, f, 9)
                                output.Add(result)
                     Next
                     For i As Integer = nstart To nstop
    If output(j) < min Then
                                        min = output(j)
                                           rowmin = j
                    j = j + 1
Next
                                End If
          End If
           if CheckBox3.Checked = True Then
   Label3.Text = Label3.Text + "<br>Filling Peak <br>"
                     result = find_lenght(2, f, 9)

For i As Integer = nstart To nstop

result = rmse_cal2(i, f, 9)
                                 check_fil_pea(forecast)
'check mf fil(forecast)
                                 If (j = rowmin) Then
  style='color:red'>
                                           Dim str As String = Left(mf3, 3)
Session("pred3") = str
If (str = "MF2" Or str = "MF3") Then
```

Fig. N.3. CMIMS coding-1 (3)

```
Label3.Text = Label3.Text + " There is some problems of this factor ✔ <a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT </a>
                                                                  Else
    End If
                                                  Else
                                                                 Label3.Text = Label3.Text + "RMSE of " + i.ToString + "order " &
  + Math.Round(result, 5).ToString + "  Forecast (forecast, 5).ToString + " " + "" + mf3.ToString + " <br/> " + mf3.ToStrin
                                                                                                                                                                                                                 Forecasting Value= " + Math.Round &
                                Label3.Text = Label3.Text + ""
                 End If
                 output = New ArrayList
                 min = 100
                      Finding the minimum position
                          = 0
                 If CheckBox4. Checked = True Then
                                 result = find_lenght(2, f, 11)
For i As Integer = nstart To nstop
                                                  result = rmse cal2(i, f, 11)
                                                 output.Add(result)
                                 Next.
                                 For i As Integer = nstart To nstop
                                                  If output(j) < min Then
                                                               min = output(j)
                                                                  rowmin = j
                                                 End If
                                                 j = j + 1
                                 Next
                 End If
                 If CheckBox4.Checked = True Then
   Label3.Text = Label3.Text + "<br/>result = find_lenght(2, f, 11)
   For i As Integer = nstart To nstop
    result = rmse_cal2(i, f, 11)
                                                 check_VP_pre(forecast)
'check_mf fil(forecast)
                                                  If (j = rowmin) Then
Label3.Text = Label3.Text + "
" + i.ToString + "order " + Math.Round(result, 6).ToString + " </b> *\style='color:red'> span style='color:red'> "+ mf4.ToString + " </b>"

*\style='color:red'> Forecasting Value= " + Math.Round(forecast, 6).ToString + " *\style='color:red'>" + mf4.ToString + " </b>"
   Dim str As String = Left(mf4, 3)
Session("predd") = str

If (str = "MF2" Or str = "MF3") Then
Label3.Text = Label3.Text + " There is some problems of this factor

<a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT </a><a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT </a>
                                                                  Else
    Label3.Text = Label3.Text + " There is not a problem of this factor \( \mathbf{V} \) <a href='laivfdt.aspx?idate=" + idate + "&fdate=" + fdate + "'> LAIVFDT </a>
                                                                 End If
                                                  Else
  Label3.Text = Label3.Text + "RMSE of " + i.ToString + "order " + Math.Round(result, 5).ToString + " Forecasting Value= " + Math.Round (forecast, 5).ToString + " " + "" + mf4.ToString + " <br/> " + mf4.ToString + " <br/> " + mf4.ToString + " <br/> " <br/> " + mf4.ToString + " <br/> " <b
                                                 End If
                                                j = j + 1
                                 Next
                                 Label3.Text = Label3.Text + ""
                 End If
Function rmse cal2(ByVal movavg As Integer, ByVal f As String, ByVal row As Integer) As &
    Double
                 'Open Excel file
                 Dim DBConnection = New OleDbConnection( _
                "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & Server.MapPath("~/excel/" & f) & ";" & _
```

Fig. N.4. CMIMS coding-1 (4)

```
"Extended Properties=""Excel 8.0; HDR=No""")
    DBConnection.Open()
     'Query from Excel file
    Dim SQLString As String = "SELECT * FROM [Sheet1$A1:L500]"
    Dim DBCommand = New OleDbCommand(SQLString, DBConnection)
     'Access to data from Excel file via DBReader, each row is moved forward to next row &
 when the DBReader command is called.
     'To refer a position such as DBReader(0), DBReader(0) refers to data in the first 🗸
column.
     Dim DBReader As IDataReader = DBCommand.ExecuteReader()
    Dim temp As Double
    Dim ADate, Fuzzyg, yt, d, x, xx, y, yy, p1, n, p2, m, p3, o, p4, 1, p, md, ft, rmse≰
 As New ArrayList
    Dim stops As Integer = stopstxt.Text - 1
     ' Dim movavg As Integer = DropDownList1.SelectedValue.ToString
    'Transfering data from Excel file to ADate and AD variables.
Dim temp2 As Integer = stops
    For i As Integer = 0 To temp2
         DBReader.Read()
         If ((DBReader(0) >= idate) And (DBReader(0) <= fdate)) Then
    ADate.Add(DBReader(0))</pre>
             yt.Add(DBReader(row))
             stops = stops - 1
         End If
         stops_filter_date = stops
     'Comparing AD variable with data in Excel file for sort-out of fuzzy logical
relationship.
    Dim j As Integer
    'Finding a value of DH
Dim t As New ArrayList
    For i = 0 To stops
         t.Add(yt(i))
    Next
    If (movavg = 1) Then
         For i = 0 To stops
             d.Add(Math.Abs(t(i)))
         Next
    End If
    If (movavg = 2) Then
For i = 1 To stops
             d.Add(Math.Abs(t(i-1)-t(i)))
         Next
    End If
    If (movavg = 3) Then
For i = 2 To stops
             d.Add(Math.Abs(t(i-2)-t(i-1))-Math.Abs((t(i-1)-t))
(i)))))
         Next
    End If
    If (movavg = 4) Then
For i = 3 To stops
             d.Add(Math.\hat{Abs}(Math.\hat{Abs}(t(i - 3) - t(i - 2)) - Math.\hat{Abs}(t(i - 2) - t(i -
1)) - Math.Abs(t(i - 1) - t(i)))
         Next
    End If
    If (movavg = 5) Then
         For i = 4 To stops
             d.Add(Math.Abs(Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - 3) - t(i -
2)) - Math. Abs(t(i - 2) - t(i - 1)) - Math. Abs(t(i - 1) - t(i))))
        Next
    End If
    If (movavg = 6) Then
   For i = 5 To stops
d.Add(Math.Abs(Math.Abs(t(i - 5) - t(i - 4)) - Math.Abs(t(i - 4) - t(i - \checkmark 3)) - Math.Abs(t(i - 3) - t(i - 2)) - Math.Abs(t(i - 2) - t(i - 1)) - Math.Abs(t(i - 1) \checkmark
  - t(i))))
         Next
```

Fig. N.5. CMIMS coding-1 (5)

```
If (movavg = 7) Then
                                   For i = 6 To stops
                                                     d.Add(Math.\hat{Abs}(Math.\hat{Abs}(t(i - 6) - t(i - 5)) - Math.\hat{Abs}(t(i - 5) - t(i -
  4)) - Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - 3) - t(i - 2)) - Math.Abs(t(i - 2) 

✓ - t(i - 1)) - Math.Abs(t(i - 1) - t(i))))
                                   Next
                  End If
                  If (movavg = 8) Then
                                    For i = 7 To stops
 \begin{array}{c} \text{d.Add}\,(\text{Math.Abs}\,(\text{Math.Abs}\,(\text{t(i-7)}-\text{t(i-6)})-\text{Math.Abs}\,(\text{t(i-6)}-\text{t(i-4)})\\ \text{5))}-\text{Math.Abs}\,(\text{t(i-5)}-\text{t(i-4)})-\text{Math.Abs}\,(\text{t(i-4)}-\text{t(i-3)})-\text{Math.Abs}\,(\text{t(i-3)})\boldsymbol{\checkmark}\\ -\text{t(i-2)})-\text{Math.Abs}\,(\text{t(i-2)}-\text{t(i-1)})-\text{Math.Abs}\,(\text{t(i-1)}-\text{t(i)}))) \end{array}
                                   Next.
                  End If
                    If (movavg = 9) Then
                                    For i = 8 To stops
 \begin{array}{c} \text{d.Add}\,(\text{Math.Abs}\,(\text{Math.Abs}\,(\text{t(i-8)}-\text{t(i-7)})-\text{Math.Abs}\,(\text{t(i-7)}-\text{t(i-}\cancel{\textbf{\textit{k}}}\\6))-\text{Math.Abs}\,(\text{t(i-6)}-\text{t(i-5)})-\text{Math.Abs}\,(\text{t(i-5)}-\text{t(i-4)})-\text{Math.Abs}\,(\text{t(i-4)}\cancel{\textbf{\textit{k}}}\\-\text{t(i-3)})-\text{Math.Abs}\,(\text{t(i-3)}-\text{t(i-2)})-\text{Math.Abs}\,(\text{t(i-2)}-\text{t(i-1)})-\text{Math.Abs}\cancel{\textbf{\textit{k}}}\\\end{array}
  (t(i-1)-t(i)))
                  End If
                   If (movavg = 10) Then
                                   For i = 9 To stops
                                                   d.Add(Math.Abs(Math.Abs(t(i - 9) - t(i - 8)) - Math.Abs(t(i - 8) - t(i -
  7)) - Math. Abs (t(i - 7) - t(i - 6)) - Math. Abs (t(i - 6) - t(i - 5)) - Math. Abs (t(i - 5)) \checkmark - t(i - 4)) - Math. Abs (t(i - 4) - t(i - 3)) - Math. Abs (t(i - 3) - t(i - 2)) - Math. Abs \checkmark (t(i - 2) - t(i - 1)) - Math. Abs (t(i - 1) - t(i))))
                  End If
                  If (movavg = 11) Then
   For i = 10 To stops
                                                    8)) - Math.Abs(t(i - 8) - t(i - 7)) - Math.Abs(t(i - 7) - t(i - 6)) - Math.Abs(t(i - 6)) - t(i - 5)) - Math.Abs(t(i - 5) - t(i - 4)) - Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - 3) - t(i - 2)) - Math.Abs(t(i - 2) - t(i - 1)) - Math.Abs(t(i - 1) - t(i))))
                                   Next
                  End If
                   If (movavq = 12) Then
                                   For i = 11 To stops
Next
                  If (movavg = 13) Then
For i = 12 To stops
\begin{array}{c} \text{d.Add}\left(\text{Math.Abs}\left(\text{Math.Abs}\left(\text{t}\left(\text{i}-12\right)-\text{t}\left(\text{i}-11\right)\right)-\text{Math.Abs}\left(\text{t}\left(\text{i}-11\right)-\text{t}\left(\text{i}-\cancel{\textbf{L}}\right)\right)\right)\\ = \text{d.Add}\left(\text{Math.Abs}\left(\text{Math.Abs}\left(\text{t}\left(\text{i}-12\right)-\text{t}\left(\text{i}-11\right)\right)-\text{Math.Abs}\left(\text{t}\left(\text{i}-11\right)-\text{t}\left(\text{i}-\cancel{\textbf{L}}\right)\right)\right)\\ = \text{d.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)\right)-\text{Math.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)\right)-\text{Math.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)\right)-\text{Math.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)\right)\right)\\ = \text{d.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)-\text{Math.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)\right)\right)\\ = \text{d.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)\right)\\ = \text{d.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)\right)\\ = \text{d.Abs}\left(\text{d.Abs}\left(\text{t}\left(\text{i}-10\right)-\text{t}\left(\text{i}-10\right)\right)\right)\\ = \text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(\text{d.Abs}\left(
                                   Next
                  End If
                  If (movavg = 14) Then
For i = 13 To stops
1) - t(i)))
                                   Next
                  End If
                   If (movavg = 15) Then
                                   For i = 14 To stops
                                                    d.Add(Math.Abs(Math.Abs(t(i - 14) - t(i - 13)) - Math.Abs(t(i - 13) - t(i - ✔
  d.Add Math.Abs(Math.Abs(t(i - 14) - t(i - 13)) - Math.Abs(t(i - 13) - t(i - 14)) - Math.Abs(t(i - 12) - t(i - 11)) - Math.Abs(t(i - 11)) - t(i - 10)) - Math.Abs(t(i - 11)) - t(i - 10)) - Math.Abs(t(i - 9) - t(i - 8)) - Math.Abs(t(i - 8) - t(i - 7)) - \checkmark Math.Abs(t(i - 7) - t(i - 6)) - Math.Abs(t(i - 6) - t(i - 5)) - Math.Abs(t(i - 5) - t(i \checkmark - 4)) - Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - 3) - t(i - 2)) - Math.Abs(t(i - \checkmark
```

Fig. N.6. CMIMS coding-1 (6)

```
2) - t(i - 1)) - Math.Abs(t(i - 1) - t(i)))
                          Next
             End If
             If (movavg = 16) Then
                          For i = 15 To stops
 -3) - t(i-2)) - Math.Abs(t(i-2) - t(i-1)) - Math.Abs(t(i-1) - t(i))))
                         Next.
             End If
             If (movavg = 17) Then
                         For i = 16 To stops
                                      d.Add(Math.Abs(Math.Abs(t(i - 16) - t(i - 15)) - Math.Abs(t(i - 15) - t(i - ✔
   14)) - Math.Abs(t(i - 14) - t(i - 13)) - Math.Abs(t(i - 13) - t(i - 12)) - Math.Abs(t \boldsymbol{\ell}
(i - 12) - t(i - 11)) - Math.Abs(t(i - 11) - t(i - 10)) - Math.Abs(t(i - 10) - t(i - 12)) - Math.Abs(t(i - 10) - Math.Abs(t(i - 10) - Math.Abs(t(i - 10) - Math.Abs(t(i - 10) - t(i - 10))) - K Math.Abs(t(i - 10) - t(i - 10)))
                         Next
             End If
             If (movavg = 18) Then
                          For i = 17 To stops
For i=17 To stops d.Add(Math.Abs(Math.Abs(t(i=17) - t(i=16)) - Math.Abs(t(i=16) - t(i=16)) - Math.Abs(t(i=16)) - Math.Abs(t(i=16) - Math.Abs(t
                         Next
             End If
             If (movavg = 19) Then
                          For i = 18 To stops
                                     d.Add(Math.Abs(Math.Abs(t(i - 18) - t(i - 17)) - Math.Abs(t(i - 17) - t(i - ✔
 16)) - Math.Abs(t(i - 16)) - t(i - 15)) - Math.Abs(t(i - 15)) - t(i - 14)) - Math.Abs(t (i - 16)) - t(i - 13)) - Math.Abs(t(i - 12)) - Math.Abs(t(i - 12)) - t(i - 14))
 11)) - Math.Abs(t(i - 11) - t(i - 10)) - Math.Abs(t(i - 10) - t(i - 9)) - Math.Abs(t(i 🗸
 - t(i))))
                         Next
             End If
             If (movavg = 20) Then
                                           = 19 To stops
                          For i
For i = 19 To stops
d.Add(Math.Abs(Math.Abs(t(i - 19) - t(i - 18)) - Math.Abs(t(i - 18) - t(i - \mathsf{L})
17)) - Math.Abs(t(i - 17) - t(i - 16)) - Math.Abs(t(i - 16) - t(i - 15)) - Math.Abs(t
(i - 15) - t(i - 14)) - Math.Abs(t(i - 14) - t(i - 13)) - Math.Abs(t(i - 13) - t(i - \mathsf{L})
12)) - Math.Abs(t(i - 12) - t(i - 11)) - Math.Abs(t(i - 11) - t(i - 10)) - Math.Abs(t(i \mathsf{L})
10) - t(i - 9)) - Math.Abs(t(i - 9) - t(i - 8)) - Math.Abs(t(i - 8) - t(i - 7)) - \mathsf{L}
Math.Abs(t(i - 7) - t(i - 6)) - Math.Abs(t(i - 6) - t(i - 5)) - Math.Abs(t(i - 5) - t(i \mathsf{L})
- 4)) - Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - 3) - t(i - 2)) - Math.Abs(t(i - \mathsf{L})

Next
                         Next
             End If
             If (movavg = 21) Then
                          For i = 20 To stops
For i=20 To stops d.Add(Math.Abs(Math.Abs(t(i - 20) - t(i - 19)) - Math.Abs(t(i - 19) - t(i - \checkmark 18)) - Math.Abs(t(i - 18) - t(i - 17)) - Math.Abs(t(i - 17) - t(i - 16)) - Math.Abs(t \checkmark (i - 16) - t(i - 15)) - Math.Abs(t(i - 15) - t(i - 14)) - Math.Abs(t(i - 14) - t(i - \checkmark 13)) - Math.Abs(t(i - 13) - t(i - 12)) - Math.Abs(t(i - 12) - t(i - 11)) - Math.Abs(t(i \checkmark - 11) - t(i - 10)) - Math.Abs(t(i - 10) - t(i - 9)) - Math.Abs(t(i - 9) - t(i - 8)) - \checkmark Math.Abs(t(i - 8) - t(i - 7)) - Math.Abs(t(i - 7) - t(i - 6)) - Math.Abs(t(i - 6) - t(i \checkmark - 5)) - Math.Abs(t(i - 5) - t(i - 4)) - Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - \checkmark 3) - t(i - 2)) - Math.Abs(t(i - 2) - t(i - 1)) - Math.Abs(t(i - 1) - t(i))))
                         Next
             End If
             If (movavg = 22) Then
For i = 21 To stops
                                      d.Add(Math.Abs(Math.Abs(t(i - 21) - t(i - 20)) - Math.Abs(t(i - 20) - t(i - \boldsymbol{\ell}
```

Fig. N.7. CMIMS coding-1 (7)

```
19) - Math.Abs(t(i - 19) - t(i - 18)) - Math.Abs(t(i - 18) - t(i - 17)) - Math.Abs(t(i - 18) - t(i - 17)) - Math.Abs(t(i - 18)) - Math.Abs(t(i - 15)) - t(i - 17)) - Math.Abs(t(i - 18) - t(i - 18)) - Math.Abs(t(
                      Next
End If
                        If (movavg = 23) Then
                                             For i = 22 To stops
                                                                   d.Add(Math.Abs(Math.Abs(t(i - 22) - t(i - 21)) - Math.Abs(t(i - 21) - t(i - ✔
       20)) - Math.Abs(t(i - 20) - t(i - 19)) - Math.Abs(t(i - 19) - t(i - 18)) - Math.Abs(t \boldsymbol{\ell}
20) - Math. Abs(t(1 - 20) - t(1 - 19)) - Math. Abs(t(1 - 19) - t(1 - 16)) - Math. Abs(t(2 - 16)) - Math. Abs(t(3 - 16)) - Math. Abs(t(3 - 16)) - t(1 - 16)) - Math. Abs(t(1 - 16)) - t(1 - 16)) - Math. Abs(t(1 - 16)) - t(1 - 16)) - Math. Abs(t(1 - 16)) - t(1 - 16)) - Math. Abs(t(1 - 16)) - t(1 - 16)) - Math. Abs(t(1 - 16)
                                            Next
                        End If
                       If (movavg = 24) Then
For i = 23 To stops
                                                                  d.Add (Math.Abs (Math.Abs (t(i - 23) - t(i - 22)) - Math.Abs (t(i - 22) - t(i - \checkmark
d.Add (Math.Abs (Math.Abs (t (1 - 23) - t (1 - 22)) - Math.Abs (t (1 - 22) - t (1 - \mathred{\mathred{V}}
21)) - Math.Abs (t (i - 21) - t (i - 20)) - Math.Abs (t (i - 20) - t (i - 19)) - Math.Abs (t (i - 19) - t (i - 18)) - Math.Abs (t (i - 17) - t (i - \mathred{\mathred{\mathred{V}}
16)) - Math.Abs (t (i - 16) - t (i - 15)) - Math.Abs (t (i - 15) - t (i - 14)) - Math.Abs (t (i \mathred{\mathred{V}}
- 14) - t (i - 13)) - Math.Abs (t (i - 13) - t (i - 12)) - Math.Abs (t (i - 12) - t (i - 11)) \mathred{\mathred{V}}
- Math.Abs (t (i - 11) - t (i - 10)) - Math.Abs (t (i - 10) - t (i - 9)) - Math.Abs (t (i - 9) \mathred{\mathred{V}}
- t (i - 8)) - Math.Abs (t (i - 8) - t (i - 7)) - Math.Abs (t (i - 7) - t (i - 6)) - Math.Abs (t (i - 6) - t (i - 3)) - \mathred{\mathrea}
- Math.Abs (t (i - 3) - t (i - 2)) - Math.Abs (t (i - 2) - t (i - 1)) - Math.Abs (t (i - 1) - t \mathrea{\mathrea}
- (i))))
                       End If
                        If (movavg = 25) Then
For i = 24 To stops
                       End If
                          'Display on screen
                     'Display on Screen:
For i = 0 To stops
For j = 0 To SizeOfGroup - 1
If ((CSng(yt(i)) >= CSng(Low(j))) And (yt(i) < CSng(Upe(j)))) Then
Fuzzyg.Add((j + 1).ToString)
                                                                 End If
                                            Next
                       ''Finding a value of X
For i = 0 To stops - movavg
                                          x.Add(CSng(yt(i + movavg - 1) + d(i) / 2))
                      ''Finding a value of XX
For i = 0 To stops - movavg
xx.Add(CSng(yt(i + movavg - 1) - d(i) / 2))
                      ''Finding a value of Y
For i = 0 To stops - movavg
```

Fig. N.8. CMIMS coding-1 (8)

```
y.Add(CSng(yt(i + movavg - 1) + d(i)))
     Next
     ''Finding a value of YY
For i = 0 To stops - movavg
yy.Add(CSng(yt(i + movavg - 1) - d(i)))
     ''Finding a value of p1
For i = 0 To stops - movavg
    If (x(i) >= CSng(Low(Fuzzyg(i + movavg) - 1))) And x(i) <= CSng(Upe(Fuzzyg(i + *\mathbf{L})))
movavg) - 1)) Then
               p1.Add(x(i))
          Else
          p1.Add(0)
End If
     Next
     ''Finding a value of n
For i = 0 To stops - movavg
If (p1(i) <> 0) Then
               n.Add(1)
          Else
          n.Add(0)
End If
     Next
     'Finding a value of p2
     For i = 0 To stops - movavg
If (xx(i) >= CSng(Low(Fuzzyg(i + movavg) - 1))) And xx(i) <= CSng(Upe(Fuzzyg(i *
+ movavg) - 1)) Then p2.Add(xx(i))
          Else
          p2.Add(0)
End If
     Next
     ''Finding a value of m
For i = 0 To stops - movavg
If (p2(i) <> 0) Then
               m.Add(1)
          Else
               m.Add(0)
          End If
     Next
     ''Finding a value of p3
For i = 0 To stops - movavg
If (y(i) >= CSng(Low(Fuzzyg(i + movavg) - 1))) And y(i) <= CSng(Upe(Fuzzyg(i + \mathbb{L}))
movavg) - 1)) Then
               p3.Add(y(i))
          Else
          p3.Add(0)
End If
     Next
     ''Finding a value of o
For i = 0 To stops - movavg
If (p3(i) <> 0) Then
               o.Add(1)
          Else
               o.Add(0)
          End If
     Next
p4.Add(0)
End If
     Next
```

Fig. N.9. CMIMS coding-1 (9)

```
''Finding a value of o
For i = 0 To stops - movavg
         If (p4(i) <> 0) Then
              1.Add(1)
         Else
l.Add(0)
         End If
    Next
     'Finding a value of P
    For i = 0 To stops - movavg
p.Add(p1(i) + p2(i) + p3(i) + p4(i))
    ''Finding a value of mi (middle value of the length) For i = 0 To stops - movavg
         md.Add(Mi(Fuzzyg(i + movavg - 1) - 1))
    Dim round5 As Double
     'Finding a value of f(t)
    Dim ft size As Integer = 1
    For k As Integer = 1 To movavg fullforecast.Add("n/a")
          fullforecast2.Add("n/a")
          fullforecast3.Add("n/a")
         fullforecast4.Add("n/a")
    Next
    For i = 1 To stops - movavg + 1 ft_size = ft_size + 1 ft.Add((p(i - 1) + m(i - 1)) / (n(i - 1) + m(i - 1) + o(i - 1) + 1(i - 1) + 1)
1))
         round5 = Math.Round((p(i - 1) + md(i - 1)) / (n(i - 1) + m(i - 1) + o(i - 1) + \boldsymbol{\ell}
1(i - 1) + 1), 5)
fullforecast.Add(round5)
          fullforecast2.Add (round5)
          fullforecast3.Add(round5)
         fullforecast4.Add(round5)
    Next.
     forecast = ft(ft size - 2)
     fullforecast. Add (Math. Round (forecast, 5))
     fullforecast2.Add(Math.Round(forecast, 5))
     fullforecast3.Add(Math.Round(forecast, 5))
     fullforecast4.Add(Math.Round(forecast, 5))
    ''Finding a value of RMSE
Dim sum As Double = 0
    For i = 0 To stops - movavg
rmse.Add(Math.Pow(yt(i + movavg - 1) - ft(i), 2))
         sum = sum + Math.Pow(yt(i + movavg - 1) - ft(i), 2)
    Next
    sum = sum / (stops + 2)
sum = Math.Pow(sum, 0.5)
     fullforecast.Add(Math.Round(sum, 5))
     fullforecast2.Add(Math.Round(sum, 5))
     fullforecast3.Add(Math.Round(sum, 5))
     fullforecast4.Add(Math.Round(sum, 5))
    temp = temp + 1
    'Calulation part
Label1.Text = ""
Label1.Text = ""
    For i = 0 To stops
Label1.Text = Label1.Text + ADate(i).ToString + "<br/>br>"
    Label1.Text = Label1.Text + "<br>"
    For i = 0 To stops
```

Fig. N.10. CMIMS coding-1 (10)

```
Label1.Text = Label1.Text + "A" + Fuzzyg(i).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops
   Label1.Text = Label1.Text + yt(i).ToString + "<br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg + 1
   Label1.Text = Label1.Text + System.Math.Round(d(i), 5).ToString + "<br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
Label1.Text = Label1.Text + System.Math.Round(x(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
   Label1.Text = Label1.Text + System.Math.Round(xx(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
   Label1.Text = Label1.Text + System.Math.Round(y(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + " <br>"
For i = 0 To stops - movavg
   Labell.Text = Labell.Text + System.Math.Round(yy(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
Label1.Text = Label1.Text + System.Math.Round(p1(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
   Label1.Text = Label1.Text + System.Math.Round(n(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
   Label1.Text = Label1.Text + System.Math.Round(p2(i), 5).ToString + "<br/>br>"
Next
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
Label1.Text = Label1.Text + System.Math.Round(m(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
   Label1.Text = Label1.Text + System.Math.Round(p3(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
   Label1.Text = Label1.Text + System.Math.Round(o(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
Labell.Text = Labell.Text + System.Math.Round(p4(i), 5).ToString + "<br/>br>"
Label1.Text = Label1.Text + "<br>"
For i = 0 To stops - movavg
   Label1.Text = Label1.Text + System.Math.Round(l(i), 5).ToString + "<br/>br>"
Next
```

Fig. N.11. CMIMS coding-1 (11)

```
Label1.Text = Label1.Text + "<br>"
    For i = 0 To stops - movavg
        Label1.Text = Label1.Text + System.Math.Round(p(i), 5).ToString + "<br>
    Next
    Label1.Text = Label1.Text + "<br>"
    For i = 0 To stops - movavg

Labell.Text = Labell.Text + System.Math.Round(md(i), 5).ToString + "<br/>br>"
    Label1.Text = Label1.Text + "<br><br>'"
    For i = 0 To stops - movavg
Labell.Text = Labell.Text + System.Math.Round(ft(i), 5).ToString + "<br/>br>"
    Next
    Label1.Text = Label1.Text + "<br><br><"
    For i = 0 To stops - movavg
        Label1.Text = Label1.Text + System.Math.Round(rmse(i), 5).ToString + "<br/>br>"
    Label1.Text = Label1.Text + ""
    Label2.Text = sum.ToString
    'Closing connection
    Label2.Text = ""
For i = 0 To SizeOfGroup - 1
Label2.Text = Label2.Text + CSng(Low(i)).ToString + "
                                                                       " + CSng(Mi(i)).
                   " + CSng(Upe(i)).ToString + "<br>"
    Next
    DBReader.Close()
    Return sum
End Function
Function find_lenght(ByVal movavg As Integer, ByVal f As String, ByVal row As Integer) 🗸
As Double
    'Open Excel file
    Dim DBConnection = New OleDbConnection( _
    "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & Server.MapPath("~/excel/" & f) & ";" & _ "Extended Properties=""Excel 8.0;HDR=No""")
    DBConnection.Open()
     Query from Excel
    Dim SQLString As String = "SELECT * FROM [Sheet1$A1:L500]"
    Dim DBCommand = New OleDbCommand(SQLString, DBConnection)
'Access to data from Excel file via DBReader, each row is moved forward to next row \pmb{\ell} when the DBReader command is called.
    'To refer a position such as DBReader(0), DBReader(0) refers to data in the first \boldsymbol{\ell}
column.
    Dim DBReader As IDataReader = DBCommand.ExecuteReader()
    Dim temp As Double
    Dim ADate, Fuzzyg, yt, d, x, xx, y, yy, p1, n, p2, m, p3, o, p4, l, p, md, ft, rmse \mathbf{r}
 As New ArrayList
    Dim stops As Integer = stopstxt.Text - 1
    ' Dim movavg As Integer = DropDownList1.SelectedValue.ToString
    'Transfering data from Excel file to ADate and AD variables.
    Dim temp2 As Integer = stops
For i As Integer = 0 To temp2
        DBReader.Read()
         If ((DBReader(0) >= idate) And (DBReader(0) <= fdate)) Then
             ADate.Add(DBReader(0))
            yt.Add(DBReader(row))
        Else
             stops = stops - 1
        End If
    Next
```

Fig. N.12. CMIMS coding-1 (12)

```
'Comparing AD variable with data in Excel file for sort-out of fuzzy logical
relationship.
                Dim j As Integer
               'Finding a value of DH
Dim t As New ArrayList
For i = 0 To stops
                               t.Add(yt(i))
                Next.
                If (movavg = 1) Then
                              For i = 0 To stops
d.Add(Math.Abs(t(i)))
                End If
               If (movavg = 2) Then
For i = 1 To stops
                                             d.Add(Math.Abs(t(i-1)-t(i)))
                 End If
                If (movavg = 3) Then For i = 2 To stops d.Add(Math.Abs(Math.Abs(t(i - 2) - t(i - 1)) - Math.Abs((t(i - 1) - t
 (i)))))
                End If
               If (movavg = 4) Then
For i = 3 To stops
                                             d.Add(Math.Abs(Math.Abs(t(i - 3) - t(i - 2)) - Math.Abs(t(i - 2) - t(i -
1)) - Math.Abs(t(i - 1) - t(i)))
                              Next
               End If
               If (movavg = 5) Then
For i = 4 To stops
                                               d.Add(Math.\hat{Abs}(Math.\hat{Abs}(t(i - 4) - t(i - 3)) - Math.\hat{Abs}(t(i - 3) - t(i -
2)) - Math. Abs(t(i-2) - t(i-1)) - Math. Abs(t(i-1) - t(i)))
                               Next
                End If
               3))
       - t(i)))
                               Next
                End If
                If (movavg = 7) Then
                               For i = 6 To stops
\begin{array}{c} \text{For } i = 0 \text{ To Stops} \\ \text{d.Add} \text{ (Math. Abs} \text{ (Math. Abs} (t(i-6)-t(i-5))-Math. Abs} (t(i-5)-t(i-4)) \\ \text{d. Math. Abs} (t(i-4)-t(i-3))-\text{Math. Abs} (t(i-3)-t(i-2))-\text{Math. Abs} (t(i-2) \textbf{\textit{K}} \\ \text{d. } t(i-1))-\text{Math. Abs} (t(i-1)-t(i)))) \end{array}
                               Next
                End If
                If (movavg = 8) Then
For i = 7 To stops
\begin{array}{c} \text{d.Add\,(Math.\,Abs\,(Math.\,Abs\,(t(i\,-\,7)\,-\,t(i\,-\,6))\,-\,Math.\,Abs\,(t(i\,-\,6)\,-\,t(i\,-\,2))}\\ \text{d.Add\,(Math.\,\,Abs\,(t(i\,-\,4))\,-\,Math.\,Abs\,(t(i\,-\,4)\,-\,t(i\,-\,3))\,-\,Math.\,Abs\,(t(i\,-\,3)\,\,\textbf{\textit{v}}\\ \text{d.}\\ \text{d.}\\
                              Next
                End If
               If (movavg = 9) Then
For i = 8 To stops
Next
                 End If
                If (movavg = 10) Then
For i = 9 To stops
d.Add(Math.Abs(Math.Abs(t(i - 9) - t(i - 8)) - Math.Abs(t(i - 8) - t(i - \checkmark 7)) - Math.Abs(t(i - 7) - t(i - 6)) - Math.Abs(t(i - 5)) - Math.Abs(t(i - 5)) \checkmark
```

Fig. N.13. CMIMS coding-1 (13)

```
t(i-4)) - Math.Abs(t(i-4)-t(i-3)) - Math.Abs(t(i-3)-t(i-2)) - Math.Abs\boldsymbol{\iota}
    (t(i-2)-t(i-1))-Math.Abs(t(i-1)-t(i)))
                                                           Next
                               End If
                               If (movavg = 11) Then
                                                             For i = 10 To stops
  Next
                                End If
                               If (movavg = 12) Then
                                                           For i = 11 To stops
\begin{array}{c} \text{d.Add}\left(\text{Math.Abs}\left(\text{Math.Abs}\left(\text{t}(i-11)-\text{t}(i-10)\right)-\text{Math.Abs}\left(\text{t}(i-10)-\text{t}(i-\cancel{\textbf{k}})\right)\right)\\ \text{d.Add}\left(\text{Math.Abs}\left(\text{Math.Abs}\left(\text{t}(i-11)-\text{t}(i-10)\right)-\text{Math.Abs}\left(\text{t}(i-10)-\text{t}(i-\cancel{\textbf{k}})\right)\right)\\ \text{d.Abs}\left(\text{t}(i-9)-\text{t}(i-8)\right)-\text{Math.Abs}\left(\text{t}(i-8)-\text{t}(i-7)\right)-\text{Math.Abs}\left(\text{t}(i-\cancel{\textbf{k}})-\text{t}(i-7)\right)-\text{Math.Abs}\left(\text{t}(i-\cancel{\textbf{k}})-\text{t}(i-10)\right)\\ \text{d.Abs}\left(\text{t}(i-10)-\text{t}(i-10)\right)-\text{Math.Abs}\left(\text{t}(i-10)-\text{t}(i-10)\right)\\ \text{d.Abs}\left(\text{t}(i-10)-\text{t}(i-10)\right)\\ \text{d.Abs}\left(\text{t}(i-10)-\text{t}(i-10)
                                End If
                               If (movavg = 13) Then
Next
                               End If
                               If (movavg = 14) Then
For i = 13 To stops
                                                                                         d.Add (Math.Abs (Math.Abs (t(i - 13) - t(i - 12)) - Math.Abs (t(i - 12) - t(i - \checkmark
11)) - Math. Abs(t(i-11) - t(i-10)) - Math. Abs(t(i-10) - t(i-9)) - Math. Abs(t(i-9) - t(i-9)) - Math. Abs(t(i-9) - t(i-6)) - \checkmark Math. Abs(t(i-6) - t(i-5)) - Math. Abs(t(i-7) - t(i-6)) - \checkmark Math. Abs(t(i-6) - t(i-5)) - Math. Abs(t(i-4) - t(i-4)) - Math. Abs(t(i-4) - t(i-4))
         1) - t(i)))
                                End If
  End If

If (movavg = 15) Then

For i = 14 To stops

d.Add(Math.Abs(Math.Abs(t(i - 14) - t(i - 13)) - Math.Abs(t(i - 13) - t(i - 

12)) - Math.Abs(t(i - 12) - t(i - 11)) - Math.Abs(t(i - 11) - t(i - 10)) - Math.Abs(t 

(i - 10) - t(i - 9)) - Math.Abs(t(i - 9) - t(i - 8)) - Math.Abs(t(i - 8) - t(i - 7)) - 

Math.Abs(t(i - 7) - t(i - 6)) - Math.Abs(t(i - 6) - t(i - 5)) - Math.Abs(t(i - 5) - t(i 

- 4)) - Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - 3) - t(i - 2)) - Math.Abs(t(i - 

2) - t(i - 1)) - Math.Abs(t(i - 1) - t(i))))

Next
                                                           Next
                                End If
                               If (movavg = 16) Then
For i = 15 To stops
                                                                                     d.Add (Math.Abs (Math.Abs (t(i - 15) - t(i - 14)) - Math.Abs (t(i - 14) - t(i - ✔
  13)) - Math. Abs(t(i - 13) - t(i - 12)) - Math. Abs(t(i - 12) - t(i - 11)) - Math. Abs(t \checkmark (i - 11) - t(i - 10)) - Math. Abs(t(i - 12)) - Math. Abs(t(i - 9)) - t(i - 9)) \checkmark Math. Abs(t(i - 9) - t(i - 8)) \checkmark - Math. Abs(t(i - 8) - t(i - 7)) - Math. Abs(t(i - 7) - t(i - 6)) - Math. Abs(t(i - 6) - t \checkmark (i - 5)) - Math. Abs(t(i - 5) - t(i - 4)) - Math. Abs(t(i - 4) - t(i - 3)) - Math. Abs(t(i \checkmark - 3) - t(i - 2)) - Math. Abs(t(i - 2) - t(i - 1)) - Math. Abs(t(i - 1) - t(i))))
                                                           Next
                                End If
                               If (movavg = 17) Then
   For i = 16 To stops
                                                                                         d.Add (Math.Abs (Math.Abs (t(i - 16) - t(i - 15)) - Math.Abs (t(i - 15) - t(i - 

✓
 \text{d.Add}(\mathsf{Math.Abs}(\mathsf{Math.Abs}(\mathsf{t}(i-16)-\mathsf{t}(i-15))-\mathsf{Math.Abs}(\mathsf{t}(i-15)-\mathsf{t}(i-\mathsf{1}-\mathsf{1}-\mathsf{1})) \\ = \mathsf{Math.Abs}(\mathsf{t}(i-14)-\mathsf{t}(i-13))-\mathsf{Math.Abs}(\mathsf{t}(i-13)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(\mathsf{1}-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)-\mathsf{t}(i-12))-\mathsf{Math.Abs}(\mathsf{t}(i-12)
                                                          Next
                                 End If
                               If (movavg = 18) Then
For i = 17 To stops
                                                                                         d.Add(Math.Abs(Math.Abs(t(i - 17) - t(i - 16)) - Math.Abs(t(i - 16) - t(i - ✔
```

Fig. N.14. CMIMS coding-1 (14)

```
- Math.Abs(t(i - 15) - t(i - 14)) - Math.Abs(t(i - 14) - t(i - 13)) - Math.Abs(t ✔
 End If
              If (movavg = 19) Then
                           For i = 18 To stops
                                       d.Add(Math.Abs(Math.Abs(t(i - 18) - t(i - 17)) - Math.Abs(t(i - 17) - t(i - ✔
    - t(i))))
              End If
              If (movavg = 20) Then
For i = 19 To stops
For 1 = 19 To stops
d.Add(Math.Abs(Math.Abs(t(i - 19) - t(i - 18)) - Math.Abs(t(i - 18) - t(i - \mathbb{K} \)
17)) - Math.Abs(t(i - 17) - t(i - 16)) - Math.Abs(t(i - 16) - t(i - 15)) - Math.Abs(t \mathbb{K} \)
(i - 15) - t(i - 14)) - Math.Abs(t(i - 14) - t(i - 13)) - Math.Abs(t(i - 13) - t(i - \mathbb{K} \)
12)) - Math.Abs(t(i - 12) - t(i - 11)) - Math.Abs(t(i - 11) - t(i - 10)) - Math.Abs(t(i \mathbb{K} \)
- 10) - t(i - 9)) - Math.Abs(t(i - 9) - t(i - 8)) - Math.Abs(t(i - 8) - t(i - 7)) - \mathbb{K} \)
Math.Abs(t(i - 7) - t(i - 6)) - Math.Abs(t(i - 6) - t(i - 5)) - Math.Abs(t(i - 5) - t(i \mathbb{K} \)
- 4)) - Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - 3) - t(i - 2)) - Math.Abs(t(i - \mathbb{K} \)
                          Next
              End If
               If (movavg = 21) Then
                           For i = 20 To stops
For i = 20 To stops
d.Add(Math.Abs(Math.Abs(t(i - 20) - t(i - 19)) - Math.Abs(t(i - 19) - t(i - \mathbb{K}
18)) - Math.Abs(t(i - 18) - t(i - 17)) - Math.Abs(t(i - 17) - t(i - 16)) - Math.Abs(t \mathbb{K}
(i - 16) - t(i - 15)) - Math.Abs(t(i - 15) - t(i - 14)) - Math.Abs(t(i - 14) - t(i - \mathbb{K}
13)) - Math.Abs(t(i - 13) - t(i - 12)) - Math.Abs(t(i - 12) - t(i - 11)) - Math.Abs(t(i \mathbb{K}
- 11) - t(i - 10)) - Math.Abs(t(i - 10) - t(i - 9)) - Math.Abs(t(i - 9) - t(i - 8)) - \mathbb{K}
Math.Abs(t(i - 8) - t(i - 7)) - Math.Abs(t(i - 7) - t(i - 6)) - Math.Abs(t(i - 6) - t(i \mathbb{K}
- 5)) - Math.Abs(t(i - 5) - t(i - 4)) - Math.Abs(t(i - 4) - t(i - 3)) - Math.Abs(t(i - \mathbb{K}
) - t(i - 2)) - Math.Abs(t(i - 2) - t(i - 1)) - Math.Abs(t(i - 1) - t(i))))

Next.
                           Next
              End If
              If (movavg = 22) Then
                           For i
                                              = 21 To stops
 Next
              End If
              If (movavg = 23) Then
For i = 22 To stops
For i = 22 To stops d.Add(Math.Abs(Math.Abs(t(i - 22) - t(i - 21)) - Math.Abs(t(i - 21) - t(i - \checkmark20)) - Math.Abs(t(i - 20) - t(i - 19)) - Math.Abs(t(i - 19) 
                           Next
              End If
              If (movavg = 24) Then
                           For i = 23 To stops
    d.Add(Math.Abs(Math.Abs(t(i - 23) - t(i - 22)) - Math.Abs(t(i - 22) - t(i - \checkmark 21)) - Math.Abs(t(i - 21) - t(i - 20)) - Math.Abs(t(i - 20) - t(i - 19)) - Math.Abs(t \checkmark
```

Fig. N.15. CMIMS coding-1 (15)

```
(i))))
                        Next
             End If
             If (movavg = 25) Then
                       For i = 24 To stops
For i = 24 To stops
d.Add(Math.Abs(Math.Abs(t(i - 24) - t(i - 23)) - Math.Abs(t(i - 23) - t(i - 22)) - Math.Abs(t(i - 22) - t(i - 21)) - Math.Abs(t(i - 21) - t(i - 20)) - Math.Abs(t \ \mathcal{L} \)
(i - 20) - t(i - 19)) - Math.Abs(t(i - 19) - t(i - 18)) - Math.Abs(t(i - 18) - t(i - 20)) - Math.Abs(t(i - 16) - t(i - 15)) - Math.Abs(t(i - 16) - t(i - 15)) - Math.Abs(t(i - 21) - t(i - 16)) - Math.Abs(t(i - 16) - t(i - 15)) - Math.Abs(t(i - 20) - t(i - 11)) - Math.Abs(t(i - 11) - t(i - 10)) - Math.Abs(t(i - 20) - t(i - 11)) - Math.Abs(t(i - 11) - t(i - 10)) - Math.Abs(t(i - 20) - t(i - 20)) - Math.Abs(t(i - 20) - 
                        Next
             End If
             Dim s As Double = 0
             Dim c As Double = 0
             Dim base As Double = 0
             Dim length As Double
             Dim min As Double = 0
             Dim max As Double = 0
             For i = 0 To stops - movavg + 1
                       s = s + d(i)
                        c = c + 1
             Next
             base = s / c
             base = base / 2
             min = yt(0)
            min - yet()

max = yt(0)

For i = 1 To stops - 1

    If (yt(i) >= max) Then
                                    max = yt(i)
                         End If
                         If (yt(i) \le min) Then
                                    min = yt(i)
                         End If
             Next
             If (base \geq= 0.001 And base \leq= 0.01) Then
                         If base > 0.005 Then
                                     length = 0.01
                                    min = Math.Truncate(min * 100) / 100
                         Else
                                     length = 0.001
                                     min = Math.Truncate(min * 1000) / 1000
                         End If
             End If
             If (base >= 0.01 And base <= 0.1) Then
    If base > 0.05 Then
                                     length = 0.1
                                     min = Math. Truncate (min * 10) / 10
                                     length = 0.01
                                    min = Math.Truncate(min * 100) / 100
                         End If
             End If
             If (base > 0.1 And base <= 1) Then
                         If base > 0.5 Then
length = 1
                                    min = Math.Truncate(min * 1) / 1
```

Fig. N.16. CMIMS coding-1 (16)

```
length = 0.1
               min = Math.Truncate(min * 10) / 10
          End If
     End If
     If (base > 1 And base <= 10) Then
    If base > 5 Then
    length = 10
               min = Math.Truncate(min * 0.1) / 0.1
          Else
               length = 1
               min = Math.Truncate(min * 1) / 1
          End If
     End If
     If (base > 10 And base <= 100) Then
          If base > 50 Then
              length = 100
               min = Math.Truncate(min * 0.01) / 0.01
               length = 10
min = Math.Truncate(min * 0.1) / 0.1
          End If
     End If
     If (base > 100 And base <= 1000) Then If base > 500 Then length = 1000
               min = Math.Truncate(min * 0.001) / 0.001
               length = 100
               min = Math.Truncate(min * 0.01) / 0.01
          End If
     End If
     temp = temp + 1
     While min < max
Low.Add(min)
          Upe.Add(min + length)
Mi.Add(min + length / 2)
SizeOfGroup = SizeOfGroup + 1
          min = CSng(min + length)
     End While
End Function
Protected Sub check_mf_min(ByVal forecast As Double)
     If (forecast >= 2.5 And forecast <= 5.5) Then
    mf = "MF1 : Maintainance Plan"</pre>
          If (forecast >= 1.0 And forecast < 2.5) Then mf = "MF2 : Maintainance within 1-2 working day " \,
          Else
               If (forecast >= 5.5) Then
mf = "MF3 : Emergency Maintainance"
                     If (forecast >= 0.0 And forecast < 1.0) Then
    mf = "MF3 : Emergency Maintainance"</pre>
                     End If
               End If
          End If
     End If
End Sub
Protected Sub check_min_cus(ByVal forecast As Double)
     If (forecast >= 2.5 And forecast <= 5.5) Then mf1 = "MF1"
     Else
          If (forecast >= 1.0 And forecast < 2.5) Then mf1 = "MF2"
          Else
               If (forecast >= 5.5) Then mf1 = "MF3"
```

Fig. N.17. CMIMS coding-1 (17)

```
Else
                 If (forecast >= 0.0 And forecast < 1.0) Then mf1 = "MF3"
                 End If
             End If
        End If
    End If
    Session("mf1") = mf1.ToString
End Sub
Protected Sub check_fil_tim(ByVal forecast As Double)
    If (forecast >= 0.4 And forecast <= 8.8) Then mf2 = "MF1"
    Else
If ((forecast >= 0.3 And forecast < 0.4) Or (forecast >= 0.8 And forecast <= 0.
4)) Then
            mf2 = "MF2"
        Else
             If (forecast < 0.3) Or (forecast > 0.9) Then
                 mf2 = "MF3"
            mf2 = "MF3"
End If
        End If
    End If
    Session("mf2") = mf2.ToString
End Sub
Protected Sub check_fil_pea(ByVal forecast As Double)
    If (forecast >= 80 And forecast < 110) Then mf3 = "MF1" \,
    Else
        If (forecast < 80) Or (forecast >= 110 And forecast < 125) Then
    mf3 = "MF2"</pre>
        Else
            If (forecast >= 125) Then
                 mf3 = "MF3"
             Else
            mf3 = "MF3"
End If
        End If
    End If
    Session("mf3") = mf3.ToString
End Sub
Protected Sub check_VP_pre(ByVal forecast As Double)
    If (forecast >= 85 And forecast < 110) Then
        mf4 = "MF1"
        If (forecast > 85) Or (forecast >= 100 And forecast < 120) Then
    mf4 = "MF2"</pre>
        Else
             If (forecast >= 120) Then mf4 = "MF3"
             Else
                 mf4 = "MF3"
             End If
        End If
    End If
    Session("mf4") = mf4.ToString
Protected Sub check_mf_fil(ByVal forecast As Double)
    If (forecast >= 0.4 And forecast <= 0.8) Then
        mf = "MF1 : Maintainance Plan"
        If (forecast >= 0.3 And forecast < 0.4) Or (forecast > 0.8 And forecast <= 0.9) \boldsymbol{\ell}
 Then
            mf = "MF2 : Maintainance within 1-2 working day "
        Else
```

Fig. N.18. CMIMS coding-1 (18)

Appendix O

CMIMS Coding (1) and (2) - in Accompanying CD-ROM Disk.

In appendix O in accompanying CD-ROM disk, figure O.1 to O.4 expose CMIMS coding-(1) for HO-T2FTS method coding and figure O.5 to O.18 illustrate CMIMS coding-(2) for LAIVFDT-OPN method coding as following.

```
If (forecast > 0.9) Or (forecast < 0.3) Then mf = "MF3 : Emergency Maintainance " \,
            Else
                mf = "MF3 : Emergency Maintainance "
            End If
        End If
    End If
End Sub
Protected Sub Button4_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Button4 Click
    Calendar1. Visible = Not Calendar1. Visible
End Sub
Protected Sub Calendar1 SelectionChanged(ByVal sender As Object, ByVal e As System.
EventArgs) Handles Calendar1.SelectionChanged
    initdate.Text = Calendar1.SelectedDate.Date
    Calendar1 Visible = False
End Sub
Protected Sub Calendar2 SelectionChanged(ByVal sender As Object, ByVal e As System.
                                                                                             K
EventArgs) Handles Calendar2. SelectionChanged
    finaldate.Text = Calendar2.SelectedDate.Date
    Calendar2.Visible = False
End Sub
Protected Sub Page Load (ByVal sender As Object, ByVal e As System. EventArgs) Handles Me 🗸
. Load
End Sub
Protected Sub Button5_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Button5.Click
    Calendar2. Visible = Not Calendar2. Visible
End Sub
Protected Sub Button6_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Button6.Click
    Dim result As Double
    Dim nstart, nstop As Integer
nstart = iwtxt.Text
    nstop = swtxt.Text
    idate = DateTime.Parse(initdate.Text)
    fdate = DateTime.Parse(finaldate.Text)
    If nstart > nstop Then
nstart = nstop
    End If
    Label3.Text = ""
    Dim f As String
    f = "HO2TFTS.xls"
    Dim output As New ArrayList
    Dim a As Double
    If CheckBox1.Checked = True Then
         fullforecast = New ArrayList
        fullforecast.Add("Date")
        Dim inde As Integer = 0
        For i As Integer = nstart To nstop
fullforecast.Add(i.ToString + " Order")
            result = rmse_cal2(i, f, 5)
        Next.
        Label3.Text = Label3.Text + ""
        For i As Integer = 0 To stops_filter_date + 3
Label3.Text = Label3.Text + "
            For j As Integer = nstart To nstop + 1
Label3.Text = Label3.Text + "" + fullforecast(i + inde *
(stops filter date + 4)).ToString inde = inde + 1
            Next
```

Fig. O.1. CMIMS coding-1 (19)

```
inde = inde + 1
               Next
               inde = 0
          Next
          Label3.Text = Label3.Text + ""
     End If
End Sub
Function date full forecast (ByVal movavg As Integer, ByVal f As String, ByVal row As
Integer) As Double
       'Open Excel file
     Dim DBConnection = New OleDbConnection( _ "Provider=Microsoft.Jet.OLEDB.4.0;" & _ "Data Source=" & Server.MapPath("~/excel/" & f) & ";" & _
     "Extended Properties=""Excel 8.0; HDR=No""")
     DBConnection.Open()
     'Query ann Excel
Dim SQLString As String = "SELECT * FROM [Sheet1$A1:L500]"
     Dim DBCommand = New OleDbCommand(SQLString, DBConnection)
     'Access to data from Excel file via DBReader, each row is moved forward to next row
 when the DBReader command is called.

'To refer a position such as DBReader(0), DBReader(0) refers to data in the first 

✓
column.
     Dim DBReader As IDataReader = DBCommand.ExecuteReader()
     Dim ADate As New ArrayList
Dim stops As Integer = stopstxt.Text - 1
     ' Dim movavg As Integer = DropDownList1.SelectedValue.ToString
    'Transfering data from Excel file to ADate and AD variables. Dim temp2 As Integer = stops For i As Integer = 0 To temp2
          DBReader.Read()
          If ((DBReader(0) >= idate) And (DBReader(0) <= fdate)) Then
               Dim dateround As Date
               dateround = DBReader(0)
               fullforecast.Add(dateround.ToString("d"))
          Else
               stops = stops - 1
          End If
     fullforecast.Add("Forecast next day")
fullforecast.Add("RMSE")
     DBReader.Close()
End Function
Function date full_forecast2(ByVal movavg As Integer, ByVal f As String, ByVal row As 🛭 🕊
Integer) As Double

'Open Excel file

Dim DBConnection = New OleDbConnection(
"Provider=Microsoft.Jet.OLEDB.4.0;" &

"Data Source=" & Server.MapPath("~/excel/" & f) & ";" &
     "Extended Properties=""Excel 8.0; HDR=No""")
     DBConnection.Open()
     'Query from Excel
Dim SQLString As String = "SELECT * FROM [Sheet1$A1:L500]"
Dim DBCommand = New OleDbCommand(SQLString, DBConnection)
   'Access to data from Excel file via DBReader, each row is moved forward to next row 😮
when the DBReader command is called.
     'To refer a position such as DBReader(0), DBReader(0) refers to data in the first m{arepsilon}
column.
     Dim DBReader As IDataReader = DBCommand.ExecuteReader()
     Dim ADate As New ArrayList
     Dim stops As Integer = stopstxt.Text - 1
     ' Dim movavg As Integer = DropDownList1.SelectedValue.ToString
     'Transfering data from Excel file to ADate and AD variables. Dim temp2 As Integer = stops For i As Integer = 0 To temp2
          DBReader.Read()
```

Fig. O.2. CMIMS coding-1 (21)

```
If ((DBReader(0) >= idate) And (DBReader(0) <= fdate)) Then</pre>
              Dim dateround As Date
              dateround = DBReader(0)
              fullforecast2.Add(dateround.ToString("d"))
         Else
              stops = stops - 1
         End If
    fullforecast2.Add("Forecast next day")
fullforecast2.Add("RMSE")
    DBReader.Close()
End Function
Function date_full_forecast3(ByVal movavg As Integer, ByVal f As String, ByVal row As 😮
Integer) As Double
      Open Excel file
    Dim DBConnection = New OleDbConnection( _
    "Provider=Microsoft.Jet.OLEDB.4.0;" &
"Data Source=" & Server.MapPath("~/excel/" & f) & ";" &
    "Extended Properties=""Excel 8.0; HDR=No""")
    DBConnection.Open()
    'Query from Excel
Dim SQLString As String = "SELECT * FROM [Sheet1$A1:L500]"
Dim DBCommand = New OleDbCommand(SQLString, DBConnection)
    'Access to data from Excel file via DBReader, each row is moved forward to next row oldsymbol{arepsilon}
 when the DBReader command is called.
     'To refer a position such as DBReader(0), DBReader(0) refers to data in the first oldsymbol{arepsilon}
column.
    Dim DBReader As IDataReader = DBCommand.ExecuteReader()
    Dim ADate As New ArrayList
Dim stops As Integer = stopstxt.Text - 1
    ' Dim movavg As Integer = DropDownList1.SelectedValue.ToString
    'Transfering data from Excel file to ADate and AD variables.
Dim temp2 As Integer = stops
For i As Integer = 0 To temp2
         DBReader.Read()
         If ((DBReader(0) \ge idate) And (DBReader(0) \le fdate)) Then
              Dim dateround As Date
              dateround = DBReader(0)
              fullforecast3.Add(dateround.ToString("d"))
         Else
              stops = stops - 1
         End If
    Next.
    fullforecast3.Add("Forecast next day")
    fullforecast3.Add("RMSE")
    DBReader.Close()
End Function
Function date full_forecast4(ByVal movavg As Integer, ByVal f As String, ByVal row As 😮
Integer) As Double
    Open Excel file
    Dim DBConnection = New OleDbConnection( _
    "Provider=Microsoft.Jet.OLEDB.4.0;" & "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & Server.MapPath("~/excel/" & f) & ";" & _
    "Extended Properties=""Excel 8.0; HDR=No""")
    DBConnection.Open()
    'Query from Excel
Dim SQLString As String = "SELECT * FROM [Sheet1$A1:L500]"
    Dim DBCommand = New OleDbCommand(SQLString, DBConnection)
    'Access to data from Excel file via DBReader, each row is moved forward to next row {m c}
when the DBReader command is called.

'To refer a position such as DBReader(0), DBReader(0) refers to data in the first ✔
column.
    Dim DBReader As IDataReader = DBCommand.ExecuteReader()
    Dim ADate As New ArrayList
    Dim stops As Integer = stopstxt.Text - 1
     ' Dim movavg As Integer = DropDownList1.SelectedValue.ToString
```

Fig. O.3. CMIMS coding-1 (22)

```
'Transfering data from Excel file to ADate and AD variables.

Dim temp2 As Integer = stops
For i As Integer = 0 To temp2

DBReader.Read()

If ((DBReader(0) >= idate) And (DBReader(0) <= fdate)) Then
Dim dateround As Date
dateround = DBReader(0)
fullforecast4.Add(dateround.ToString("d"))

Else
stops = stops - 1
End If

Next
fullforecast4.Add("Forecast next day")
fullforecast4.Add("RMSE")
DBReader.Close()
End Function

End Class
```

Fig. O.4. CMIMS coding-1 (23)

```
*************************
' LAIVFDT-OPN METHOD
Imports System. Data
Imports System.Data.OleDb
Partial Class laivfdt
     Inherits System.Web.UI.Page
     Dim SD1, SD2, SD3, SD4, SD5, SD6, SD7, SD8, SD9, SD10, SD11 As String Dim Output As String = ""
     Dim report As String = ""
     Dim IVFDTDate As Date
Dim Finalstatus As String
     Dim Status As String
     Dim d1st, d2st, d3st, d4st, d5st, d6st, d7st, d8st, d9st, d10st, d11st As String Dim d1de, d2de, d3de, d4de, d5de, d6de, d7de, d8de, d9de, d10de, d11de As String Dim d1sy, d2sy, d3sy, d4sy, d5sy, d6sy, d7sy, d8sy, d9sy, d10sy, d11sy As String
     Dim d1so, d2so, d3so, d4so, d5so, d6so, d7so, d8so, d9so, d10so, d11so As String Dim overm1 As String
     Dim overeq1 As String
     Dim typeid, model, capacity, mfgbrandname, serailno As String
Dim finalforecast1, finalforecast2, finalforecast3, finalforecast4 As String
Dim gfinalforecast As String
     Dim errortxt As String
     Dim overallstatus As String
     Dim count As Integer
     Protected Sub Page Load (ByVal sender As Object, ByVal e As System. EventArgs) Handles Me 🗸
      . Load
             Open Excel file
           Dim f2 As String = "CMIMSdatabase.xls"
           Dim DBConnection2 = New OleDbConnection(
                "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=" & Server.MapPath("~/excel/" & f2) & ";" & _
"Extended Properties=""Excel 8.0;HDR=No""")
           "Extended Properties=""Excel 8.0;HDR=No""")
DBConnection2.Open()
'Query from Excel file
Dim SQLString2 As String = "SELECT * FROM [MachineDetails$A2:L28]"
Dim DBCommand2 = New OleDbCommand(SQLString2, DBConnection2)
           Dim DBReader2 As IDataReader = DBCommand2.ExecuteReader()
           While (DBReader2.Read)
   If DBReader2(0) = Session("machine").ToString Then
        typeid = DBReader2(1)
        model = DBReader2(2)
                       capacity = DBReader2(3)
                       mfgbrandname = DBReader2(4)
                       serailno = DBReader2(5)
                 End If
           End While
           Dim f As String = "LAIVFDT.xls"
           Dim DBConnection = New OleDbConnection(
              "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=" & Server.MapPath("~/excel/" & f) & ";" & _
"Extended Properties=""Excel 8.0;HDR=No""")
           DBConnection.Open()
           'Query from Excel file
Dim SQLString As String = "SELECT * FROM [Sheet1$A1:L28]"
Dim DBCommand = New OleDbCommand(SQLString, DBConnection)
            'Access to data from Excel file via DBReader, each row is moved forward to next rowoldsymbol{arkappa}
       when the DBReader command is called.
            'To refer a position such as DBReader(0), DBReader(0) refers to data in the first 🗸
     column.
           Dim DBReader As IDataReader = DBCommand.ExecuteReader()
           Dim StartD, EndD As Date
           StartD = Date.Parse(Request.QueryString("idate")).ToShortDateString
EndD = Date.Parse(Request.QueryString("fdate")).ToShortDateString
            finalforecast1 = Session("mf1").ToString
finalforecast2 = Session("mf2").ToString
finalforecast3 = Session("mf3").ToString
```

Fig. O.5. CMIMS coding-2 (1)

```
finalforecast4 = Session("mf4").ToString
Label1.Text = ""
    report = report + "<h3>Report of machine maintenance</h3>"
    report = report + ""
report = report + "<b>Forecast data</b> from date:
" + StartD + " to date:" + EndD
report = report + "<hr>"
    report = report + "<hr>"
report = report + ""report = report + """report = report + """"report = report + """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""</t
    report = report + "MFG. brand name" + mfgbrandname
    report = report + "Capacity" + capacityreport = report + "Serial no" + serailno
    While (DBReader.Read)
         IVFDTDate = DBReader(0)
         If IVFDTDate >= StartD And IVFDTDate <= EndD Then
             SD1 = DBReader(1)
SD2 = DBReader(2)
             SD3 = DBReader(3)
             SD4 = DBReader(4)
             SD5 = DBReader(5)
             SD6 = DBReader(6)
             SD7 = DBReader(7)
             SD8 = DBReader(8)
             SD9 = DBReader(9)
             SD10 = DBReader(10)
             SD11 = DBReader(11)
             'Output = Output + DBReader(0).ToString + " <br > " Label1.Text = ""
             H1()
             check_1()
             ov1()
         End If
    End While
    report = report + "<hr>"
    report = report + ""report = report + ""tr>tist of equipment status:</b>"report = report + ""to Forecasting date:to Forecasting date:
    report = report + "<b>equipment positions:status</b></b></r>
    If (d1st = "PAF" Or d1st = "COF") Then report = report + "<span style='color:red'>D1<span style='color:red'</td>
'>" + d1st
    Else
         report = report + "D1" + d1st
    End If
    If (d2st = "PAF" Or d2st = "COF") Then
         report = report + "<span style='color:red'>D2<span style='color:red'</td>
'>" + d2st
    Else
        report = report + "D2" + d2st
    End If
    If (d3st = "PAF" Or d3st = "COF") Then
         report = report + "<span style='color:red'>D3<span style='color:red'
'>" + d3st
    Else
         report = report + "D3" + d3st
    End If
    If (d4st = "PAF" Or d4st = "COF") Then
         report = report + "<span style='color:red'>D4<span style='color:red'</td>
'>" + d4st
    Else
         report = report + "D4" + d4st
    End If
    If (d5st = "PAF" \text{ Or } d5st = "COF") Then
         report = report + "<span style='color:red'>D5<span style='color:red'
```

Fig. O.6. CMIMS coding-2 (2)

```
'>" + d5st
                  report = report + "D5" + d5st
        If (d6st = "PAF" Or d6st = "COF") Then
                report = report + "<span style='color:red'>Dd6<span style='color: *</td>
red'>" + d6st
                 report = report + "D6" + d6st
        If (d7st = "PAF" Or d7st = "COF") Then
                 report = report + "<span style='color:red'>D7<span style='color:red'
'>" + d7st
        Else
                 report = report + "D7" + d7st
        End If
        If (d8st = "PAF" Or d8st = "COF") Then
                 report = report + "<span style='color:red'>D8<span style='color:red'
'>" + d8st
        Else
                 report = report + "D8" + d8st
        If (d9st = "PAF" Or d9st = "COF") Then
                  report = report + "<span style='color:red'>D9<span style='color:red'
'>" + d9st
        Else
                 report = report + "D9" + d9st
         If (d10st = "PAF" Or d10st = "COF") Then
                 report = report + "<span style='color:red'>D10<span style='color: &
red'>" + d10st
        Else
                 report = report + "D10" + d10st
If (d11st = "PAF" Or d11st = "COF") Then
report = report + "<span style='color:red'>D11<span style='color: \mathbb{L}
red'>" + d11st
        Else
                 report = report + "D11" + d11st
        End If
        position:</b>D1"
                 report = report + "Daily check description:" + dlde
report = report + "Current status:" + dlst
report = report + "Problem:" + dlsy
                 report = report + "Solution:" + dlso
                  report = report + "<b>Overall status of equipment</b>"
                 report = report + ""tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr
                 count = count + 1
                 report = report + "<hr>"
                  report = report + "<b>Other equipment position:</b>D1"
                 report = report + "*tr>*tr>Current status:" + dlde report = report + "*tr>*Current status:" + dlst
                 report = report + "report = report + "<t
                 report = report + "or machine:" + overm1report = report + "overall status of equipment:" + overeq1count = count + 1
        End If
        If d2st = "PAF" Or d2st = "COF" Then
    report = report + "<hr>"
```

Fig. O.7. CMIMS coding-2 (3)

```
report = report + "<b><span style='color:red'>Core critical equipment ✔
position: </b>D2"
                              report = report + "Daily check description:" + d2de
                              report = report + "report = report + "report = report + "Problem:+ d2st
                              report = report + "report = report + "<t
                              report = report + "Overall status of machine:" + overm1
                              report = report + "Overall status of equipment:" + overeq1"
                              count = count + 1
               Else
                              report = report + "<hr>"
report = report + "<b>Other equipment position:</b>D2"
                              report = report + "*tr>*td>*Daily check description:* + d2dereport = report + "*Current status:* + d2st
                              report = report + ""tr>"td>"td>"td>" + d2syreport = report + ""tr>"tr>"td>"td>" + d3so
                              report = report + """'2'><b>Overall status of equipment</b>"report = report + ""'2'><b>Overall status of machine:" + overm1report = report + ""'2'><br/>report = report + "'2'><br/>report = report + "'2'<br/>report = rep
                              count = count + 1
               End If
              position:</b>D3"
                              report = report + "Daily check description:" + d3de
                               report = report + "Current status:" + d3st
                              report = report + "report = report + "report = report + "Solution:" + d3sy
                              report = report + """report = report + ""report = report + """report = report + """"""""""
                              report = report + "Overall status of equipment:" + overeq1"
                              count = count + 1
               Else
                              report = report + "<hr>"
                               report = report + "tr>to>Other equipment position:</b>D3"
                              report = report + ""tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr
                              report = report + "tr>Problem: td>" + d3sy
report = report + "tr>Solution: td>" + d3so
                             report - report + "Solution:" + d3so
report = report + "<b>Overall status of equipment</b>"
report = report + "Overall status of machine:" + overm1
report = report + "Overall status of equipment:" + overeq1
count = count + 1
              If d4st = "PAF" Or d4st = "COF" Then
report = report + "<hr>"
report = report + "*cb><span style='color:red'>Core critical equipment *\mathbf{\psi}$
position:</b>D4"
                             report = report + "Teport = report + "<t
                              report = report + "<b>Overall status of equipment</b>"
                              report = report + "Overall status of machine:" + overm1"
                              report = report + "Overall status of equipment:" + overeq1"
                              count = count + 1
               Else
                              report = report + "<hr>"
report = report + "<b>Other equipment position:</b>D4"
                              report = report + """tr>Teport = report + ""tr>trtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtr</
                              report = report + "Problem:" + d4sy
report = report + "Solution:" + d4so
                              report = report + "<bboowerall status of equipment</b>"
report = report + """+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "+ "</
                               count = count + 1
               End If
```

Fig. O.8. CMIMS coding-2 (4)

```
If d5st = "PAF" Or d5st = "COF" Then
  report = report + "<hr>"
                                    report = report + "<b><span style='color:red'>Core critical equipment &
position:</b>D5"
                                    report = report + "Teport = report 
                                     report = report + "Solution:" + d5so
                                     report = report + "<b>Overall status of equipment</b>"
                                    report = report + "overall status of machine:" + overm1 report = report + "overall status of equipment:" + overeq1 report + "" + overeq1 rep
                                    count = count + 1
                  Else
                                    report = report + "<hr>"
                                    report = report + "<b>Other equipment position:</b>D5"
                                    report = report + "" + d5de report + "
                                    report = report + "report = report + "report = report + "Follow:" + d5syreport = report + "Follow:" + d5so
                                     report = report + "<b>Overall status of equipment</b>"
                                    report = report + ""+ overm1report = report + ""+ overm1report = report + ""+ overeq1status of equipment:" + overeq1
                                     count = count + 1
                  End If
                   If d6st = "PAF" Or d6st = "COF" Then
                                    report = report + "<br/>colspan='2'><hr>"<br/>report = report + "<br/>colspan='2'><hr>"<br/>report = report + "<br/>colspan='2'><hr>"<br/>report = report + "<br/>colspan='2'><hr>"<br/>report = report + "<br/>colspan='2'><hr>
position:</b>D6"
                                    report = report + "Daily check description:" + d6de
report = report + "Current status:" + d6st
                                    report = report + "report = report + "<t
                                     report = report + "<b>Overall status of equipment</b>"
                                    report = report + "" + overm1report = report + "" + overm1report = report + "" + overeq1status of equipment:" + overeq1
                                    count = count + 1
                  Else
                                    report = report + "<hr>"
                                    report = report + "<b>Other equipment position:</b>D6"
                                    report = report + "Teport = report + "report = report + "Teport = report + "<t
                                    report = report + "tr>td>solution.<br/>*td> + usso<br/>*td> + usso<br/>*teport = report + "tr>colspan-'2'<br/>>>0verall status of equipment</br/>report = report + "voerall status of machine:" + overm1"
                                    report = report + "Overall status of equipment:" + overeq1"
                                    count = count + 1
                  End If
                  position:</b>D7"
                                    report = report + "Daily check description:" + d7dereport = report + "Current status:" + d7streport = report + "Problem:" + d7sy
                                    report = report + "Solution:" + d7so
                                    report = report + "<b>Overall status of equipment</b>"
                                    report = report + ""tr>*Verall status of machine:" + overm1report = report + "*Verall status of equipment:" + overeq1
                                    count = count + 1
                                    report = report + "<hr>"
                                     report = report + "<b>Other equipment position:</b>D7"
                                    report = report + ""+ d7dereport = report + ""+ d7dereport = report + ""+ d7st
                                    report = report + "report = report + "<t
                                    report = report + "Overall status of equipment:" + overeq1"
                                     count = count + 1
                  End If
```

Fig. O.9. CMIMS coding-2 (5)

```
If d8st = "PAF" Or d8st = "COF" Then
report = report + "<hr>"
report = report + "report = report + "*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<br/>*<
position: </b>D8"
                                                report = report + "Daily check description:" + d8de
report = report + "Current status:" + d8st
report = report + "Problem:" + d8sy
                                                report = report + "report = report + "<t
                                                report = report + "" + overm1report = report + "" + overm1report = report + "" + overeq1
                                                 count = count + 1
                       Else
                                                report = report + "<hr>"
report = report + "<b>Other equipment position:</b>D8"
                                                report = report + """tr>Tolarly check description:" + d8dereport = report + ""tr>tr>trtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtr<
                                               report = report + "Current status:" + d8st
report = report + "report = report + ""report = report + """td>" + d8sy
report = report + """report = report + """"td>""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""</td
                                                 count = count + 1
                        End If
                       If d9st = "PAF" Or d9st = "COF" Then
report = report + "<hr>"
report = report + "report = report + "report = report + "report = report + "**Core critical equipment **Core cri
position: </b>D9"
                                               report = report + "Daily check description:" + d9dereport = report + "Current status:" + d9st
                                                 report = report + "report = report + "report = report + "Solution:" + d9so
                                                 report = report + "<b>Overall status of equipment</b>"
                                                report = report + ""tr>"tr>total status of machine:" + overm1report = report + ""tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>
                                                 count = count + 1
                       Else
                                                report = report + "<hr>"
report = report + "<b>Other equipment position:</b>D9"
                                                 report = report + """tr>"tr>"tr>"tr>"tr>tr>"tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>tr>trtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtr<
                                                report = report + ""tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr>"tr
                                                report = report + "*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr>*tr
                                                 count = count + 1
                       If d10st = "PAF" Or d10st = "COF" Then
  report = report + "<hr>"
                                                report = report + "tr>to<b><span style='color:red'>Core critical equipment &
position:</b>D10"
                                                report = report + "Daily check description:" + d10dereport = report + "Current status:" + d10streport = report + "Problem:" + d10sy
                                                report = report + "report = report + "Solution:" + d10soreport = report + "colspan='2'><b>Overall status of equipment</b>"
                                                report = report + """+ overallstatus of machine:" + overm1report = report + ""+ overallstatus of equipment:" + overeq1
                                                count = count + 1
                       Else
                                                report = report + "<hr>"
                                                report = report + """tr>tr>"tr>tr"tr"tr"tr"tr"tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""tr""trtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtr
                                               count = count + 1
```

Fig. O.10. CMIMS coding-2 (6)

```
End If
           If d11st = "PAF" Or d11st = "COF" Then
                     report = report + "<hr>"
                      report = report + "<b><span style='color:red'>Core critical equipment &
position:</b>d11"
                     report = report + "Daily check description:" + d11de
report = report + "Current status:" + d11st
report = report + "Problem:" + d11sy
                      report = report + "Solution:" + d11so"
                      report = report + "<b>Overall status of equipment</b>"
                      report = report + "overall status of machine:" + overm1 report = report + "overall status of equipment:" + overeq1 report + "" + overeq1 rep
                      count = count + 1
           Else
                      report = report + "<hr>"
                      report = report + "<b>Other equipment position:</b>d11"
                     report = report + "*Dottler equipment position:# dildereport = report + "*Ctr>*Current status:* dilstreport = report + "*Ctr>*Problem:* dilsyreport = report + "*Ctr>*Solution:* dilsyreport = report + "*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*Ctr<<td>*C
                      report = report + "Overall status of machine:" + overm1
                      report = report + "Overall status of equipment:" + overeq1 count = count + 1
           End If
           \texttt{report} = \texttt{report} + \texttt{"<td} colspan='2'><b>Overall prediction of machine \textit{\textbf{x}}
  maintenance:</b>
          report = report + "Maintenance Plan"
                      End If
                      If Session("pred1") = "MF2" Then
                                report = report + "Emergency Maintenance"
                      End If
                      If Session("pred1") = "MF3" Then
                                report = report + "Maintenance within 1-2 working day"
                      End If
          End If
           If (Session("pred2") <> "") And (Session("chkb2") = "1") Then
                     report = report + " Filling time:"
If Session("pred2") = "MF1" Then
                                report = report + "Maintenance Plan"
                      End If
                      If Session("pred2") = "MF2" Then
                                report = report + "Emergency Maintenance"
                      End If
                      If Session("pred2") = "MF3" Then
    report = report + "Maintenance within 1-2 working day"
                      End If
           End If
           If (Session("pred3") <> "") And (Session("chkb3") = "1") Then
                      report = report + " Filling peak:"
If Session("pred3") = "MF1" Then
    report = report + "Maintenance Plan"
                      End If
                      If Session("pred3") = "MF2" Then
    report = report + "Emergency Maintenance"
                      If Session("pred3") = "MF3" Then
    report = report + "Maintenance within 1-2 working day"
                      End If
           End If
           If (Session("pred4") <> "") And (Session("chkb4") = "1") Then
                     report = report + "V-P pressure:"If Session("pred4") = "MF1" Then
                                report = report + "Maintenance Plan"
                      End If
                      If Session("pred4") = "MF2" Then
    report = report + "Emergency Maintenance"
                      End If
```

Fig. O.11. CMIMS coding-2 (7)

```
If Session("pred4") = "MF3" Then
             report = report + "Maintenance within 1-2 working day"
         End If
    End If
\label{thm:conclusion} report + "colspan='2'><b>The conclusion of machine health: </b>"
     'If overm1 = "Very good" And overeq1 = "ACT" Then
' report = report + "Overall status of machine is acceptable *\mathbb{\varepsilon}$
 and all equipment of machine has very good status. Machine maintenance is upon machine oldsymbol{\ell}
 maintenance plan"
     'End If
    'If overm1 = "Good" And overeq1 = "ACT" Then
' report = report + "Overall status of machine is acceptable \( \varphi \)
and most of machine equipment have good status. However, some equipment of machine should be inspected and maintained. Machine maintenance is upon machine maintenance
    'End If
     'If overm1 = "Good" And overeq1 = "UAC" Then
         report = report + "Overall status of machine is
unacceptable. Some equipment of macine has good status and some machine equipment need &
to inspect and maintain. Machine maintenance is upon maintenance with 1-2 working days. 🗸
     * End If
    'If overm1 = "Moderate" And overeq1 = "ACT" Then
' report = report + "Overall status of machine is
unacceptable. Some equipment of macine has moderate status and some machine equipment
need to repair and maintain. Machine maintenance is upon maintenance with 1-2 working days."

'End If
    'If overm1 = "Moderate" And overeq1 = "UAC" Then
' report = report + "Overall status of machine is
unacceptable. Some equipment of macine has moderate status and some machine equipment
need to repair and maintain. Machine maintenance is upon maintenance with 1-2 working days."
     'End If
    'If overm1 = "Moderate" And overeq1 = "UAC" Then
          report = report + "Overall status of machine is
unacceptable. Some equipment of macine has moderate status and some machine equipment
need to repair and maintain. Machine maintenance is upon maintenance with 1-2 working days."
     'End If
     'If overm1 = "Poor" And overeq1 = "ACT" Then
          report = report + "Overall status of machine is
unacceptable. Some equipment of macine has poor status and some machine equipment must 🗸
fix or replace with new equipment. Machine maintenance is upon maintenance with 1-2 working days."
     'End If
report = report + "D4Checking an electronic line and sensor
thermocouple of heater barrel)."

report = report + "D5Checking purge cover interlock, exhaust pipe and 🗷
shutter value."
    report = report + "D6Checking melt leakage at a nozzle."
    report = report + """report = report + """report = report + """report = report + """report = report + """
report = report + "D9Checking safety door (Operation side)."report = report + "D9Checking mold mounting bolts and bolts/nuts at fixed platen."
report = report + "D10Checking mold mounting bolts and bolts/nuts at
moved platen."
    report = report + "D11Checking and cleaning tie bar and slide ring
value.
```

Fig. O.12. CMIMS coding-2 (8)

```
report = report + "NOFNormal operation status"
report = report + "PAFPartial failure status"
    report = report + "UACUnacceptable status"
       End If
    End If
End Sub
Sub A1 0()
    A1_U()
If SD10 = "NOP" Then
'Output = Output + "show Msg box4 <br>"
        box4()
        A1_1()
    Else
        If SD10 = "PAF" Then
             ' Output = Output + "show Msg box5 <br>"
            box5()
            A1_2()
        Else
            If SD10 = Output + "COF" Then
'Output = "show Msg box6 <br>"
                 box6()
                 'A1_3() ***
            Else
'5 1 ***
                 Output = Output + "error please check the condisiton and try again"
        End If
    End If
End Sub
Sub A1_1()
    If SD4 = "NOP" Then
        'Output = Output + "show Msg box7 <br>"
        box7()
        A1_1_1()
    Else
        If SD4 = "PAF" Then
             'Output = Output + "show Msg box8 <br>"
            box8()
            A1_1_2()
        Else
             If SD4 = "COF" Then
                 ' Output = Output + "show Msg box9 <br>"
                 box9()
                A1_1_2()
            Else '5_1 ***
                Output = Output + "error please check the condisiton and try again"
             End If
        End If
    End If
End Sub
Sub A1 1 1()
If SD8 = "NOP" Then
        'Output = Output + "show Msg box10 <br>"
        box10()
        A1_1_1_1()
    Else
        If SD8 = "PAF" Then
             'Output = Output + "show Msg box11 <br>"
            box11()
            A1_1_1_2()
             If SD8 = "COF" Then
                'Output = Output + "show Msg box12 <br>'box12()
                A1_1_2()
            Else
'5_1 ***
+ =
                 Output = Output + "error please check the condisiton and try again"
```

Fig. O.13. CMIMS coding-2 (9)

```
End If
        End If
    End If
End Sub
box13()
    Else
        If SD6 = "PAF" Then
'Output = Output + "show Msg box14 <br>"
            box14()
            A1_1_1_1_2()
        Else
            If SD6 = "COF" Then
                 'Output = Output + "show Msg box15 Moderate UAC<br>"
                box15()
                o () ' ตัวโอ ไม่ใช่ศูนย์นะครับ
            Else '5_1 ***
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
Sub A1_1_1_1_1()
    If SD2 = "NOP" Then
        'Output = Output + "show Msg box16 Very Good ACT<br>"
        box16()
        0()
    Else
        If SD2 = "PAF" Then
            'Output = Output + "show Msg box17 Good UAC<br>"
            box17()
            0()
        Else
            If SD2 = "COF" Then
                 'Output = Output + "show Msg box18 Good UAC <br>"
                box18()
                0()
            Else
'5 1 ***
+ =
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
Sub A1_1_1_1_2()
If SD1 = "NOP" Then
        'Output = Output + "show Msg box19 Moderate ACT<br>"
        box19()
        0()
    Else
        If SD1 = "PAF" Then
             'Output = Output + "show Msg box20 Moderate UAC<br>"
        Else
            If SD1 = "COF" Then
                 'Output = Output + "show Msg box21 Poor UAC<br>"
                box21()
                0()
            Else '5_1 ***
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
```

Fig. O.14. CMIMS coding-2 (10)

```
Sub A1_1_1_2()
    If SD3 = "NOP" Then
        'Output = Output + "show Msg box22 <br>"
        box22()
       A1_1_1_2_1()
    Else
        If SD3 = "PAF" Then
            'Output = Output + "show Msg box23 Poor UAC<br>"
            box23()
           0()
        Else
            If SD3 = "COF" Then
                 'Output = Output + "show Msg box24 Poor UAC<br>"
                box24()
                0()
            Else
'5_1 ***
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
Sub A1 1 1 2 1()
If SD7 = "NOP" Then
        'Output = Output + "show Msg box25 Moderate ACT<br>"
        0()
    Else
        If SD7 = "PAF" Then
            'Output = Output + "show Msg box26 Poor UAC<br>"
            box26()
            0()
            If SD7 = "COF" Then
               'Output = Output + "show Msg box27 Poor<br/>box27()
               0()
            Else
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
Sub A1_1_2()
    box28()
        A1_1_2_1()
    Else
        If SD11 = "PAF" Then
            'Output = Output + "show Msg box29 Poor UAC<br>"
            box29()
            0()
        Else
            If SD11 = "COF" Then
                'Output = Output + "show Msg box30 Poor UAC <br>"
                box30()
                0()
            Else
'5 1 ***
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
Sub A1_1_2_1()
    If SD6 = "NOP" Then
        'Output = Output + "show Msg box31 <br>"
        box31()
        A1_1_2_1_1()
```

Fig. O.15. CMIMS coding-2 (11)

```
Else
        If SD6 = "PAF" Then
            'Output = Output + "show Msg box32 Poor UAC<br>"
            box32()
        Else
            If SD6 = "COF" Then
                 'Output = Output + "show Msg box33 Poor UAC<br>"
                box33()
            Else
'5 1 ***
+ =
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
Sub A1_1_2_1_1()
    If SD1 = "NOP" Then
        'Output = Output + "show Msg box34 Good ACT<br>"
        box34()
        0()
    Else
        If SD1 = "PAF" Then
            Output = Output + "show Msg box35 Moderate UAC<br>"
            box35()
            0()
        Else
            If SD1 = "COF" Then
                 ' Output = Output + "show Msg box36 Moderate UAC<br>"
                box36()
                0()
            Else '5_1 ***
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
Sub A1 2()
    If SD5 = "NOP" Then
        Output = Output + "show Msg box37 <br>"
        box37()
A1_2_1()
    Else
        If SD5 = "PAF" Then
             'Output = Output + "show Msg box38 Moderate UAC<br>"
            box38()
            0()
        Else
            If SD5 = "COF" Then
                 'Output = Output + "show Msg box39 Moderate UAC<br>"
                box39()
                0()
            Else
                Output = Output + "error please check the condisiton and try again"
        End If
    End If
End Sub
Sub A1_2_1()
If SD6 = "NOP" Then
        'Output = Output + "show Msg box40 Moderate ACT<br>"
        box40()
        0()
    Else
        If SD6 = "PAF" Then
            'Output = Output + "show Msq box41 Poor UAC<br>"
            box41()
            0()
```

Fig. O.16. CMIMS coding-2 (12)

```
Else
             If SD6 = "COF" Then
                'Output = Output + "show Msg box42 Poor UAC<br>"box42()
                0()
            Else
'5_1 ***
                Output = Output + "error please check the condisiton and try again"
            End If
        End If
    End If
End Sub
Sub B1 0()
    If SD4 = "NOP" Then
         'Output = Output + "show Msg box43 <br>"
        box43()
        B1_1()
    Else
        If SD4 = "PAF" Then
             'Output = Output + "show Msg box44 Poor UAC <br>"
            box44()
             'N/A
        Else
             If SD4 = "COF" Then
                 Output = Output + "show Msg box45 Poor UAC<br>"
                box45()
                0()
            Else
'5 1 ***
                 Output = Output + "error please check the condisiton and try again"
             End If
        End If
    End If
End Sub
    If SD6 = "NOP" Then
        'Output = Output + "show Msg box46 Very Good ACT<br>"
        box46()
        0()
    Else
        If SD6 = "PAF" Then
             'Output = Output + "show Msg box47 Moderate UAC<br>"
            box47()
            0()
        Else
             If SD6 = "COF" Then
                 'Output = Output + "show Msg box48 Moderate UAC<br>"
                box48()
                0()
            Else '5_1 ***
                \overline{\text{Output}} = \text{Output} + \text{"error please check the condisiton and try again"}
        End If
    End If
End Sub
Sub C1 0()
If SD7 = "NOP" Then
        'Output = Output + "show Msg box49 Very Poor UAC<br>"
        0()
    Else
        If SD7 = "PAF" Then
             'Output = Output + "show Msg box50 Very Poor UAC<br>"
            box50()
             0()
        Else
             If SD7 = "COF" Then
                'Output = Output + "show Msg box51 Very Poor UAC<br/>box51()
                 0()
```

Fig. O.17. CMIMS coding-2 (13)

```
Else '5_1 ***
                       Output = Output + "error please check the condisiton and try again"
                 End If
            End If
     End If
End Sub
Sub o()
      Label1.Text = Output.ToString()
End Sub
Sub box1()
     d9st = "NOP"
      d9de = "The status of injection machine equipment is good."
platen part of the mold clamping unit is tight and not damage or screw holes are not \boldsymbol{\ell} damage and no water leakage from the temperature control piping."

d9so = "N/A"
      d9sy = "The machine has normal operation. The mold mounting bolts/nuts at the fixed \boldsymbol{\ell}
End Sub
Sub box2()
      d9st = "PAF"
      d9de = "The status of injection machine equipment is moderate."
 d9sy = "The mold mounting bolts and bolts/nuts at the fixed platen part of the mold \boldsymbol{\ell} clamping unit is tiny loose or screw holes have a little wear or there is some water \boldsymbol{\ell}
leakage from the temperature control piping. "

d9so = "Tightness of mold mounting bolts or fixing screw holes or fixing the
temperature control piping."
End Sub
Sub box3()
     d9st = "COF"
     d9de = "The status of injection machine equipment is poor."
d9sy = "The machine has abnormal operation. The mold mounting bolts/nuts at the fixed platen part of the mold clamping unit is absolutely loose or damage or screw holes are damaged or the temperature control piping is damaged."

d9so = "Tightness of mold mounting bolts or modifying screw engagement length of mounting or fixing the temperature control piping."
mold mounting or fixing the temperature control piping.
End Sub
Sub box4()
     d10st = "NOP"
     d10de = "The status of injection machine equipment is good."
dlosy = "The machine has normal operation. The mold mounting bolts/nuts at the moved platen part of the mold clamping unit is tight and not damage or screw holes are \checkmark
not damage and no water leakage from the temperature control piping."
     d10so = "N/A"
End Sub
Sub box5()
     d10st = "PAF"
d10de = "The status of injection machine equipment is moderate."
     d10sy = "The mold mounting bolts and bolts/nuts at the moved platen part of the
mold clamping unit is tiny loose or screw holes have a little wear or there is some water leakage from the temperature control piping. "

d10so = "Tightness of mold mounting bolts or fixing screw holes or fixing the
temperature control piping."
End Sub
Sub box6()
     d10st = "COF"
     d10de = "The status of injection machine equipment is poor."
d10sy = "The machine has abnormal operation. The mold mounting bolts/nuts at the
moved platen part of the mold clamping unit is absolutely loose or damage or screw holes are damaged or the temperature control piping is damaged."
      d10so = "Tightness of mold mounting bolts or modifying screw engagement length of
mold mounting or fixing the temperature control piping.
End Sub
Sub box7()
     d4st = "NOP"
      d4de = "The status of injection machine equipment is good."
      d4sy = "The machine has normal operation. The heater band and the heating cylinder 🗸
```

Fig. O.18. CMIMS coding-2 (14)

Appendix P

CMIMS Coding (2) - in Accompanying CD-ROM Disk.

In appendix P in accompanying CD-ROM disk, figure P.1 to P.18 illustrate CMIMS coding-(2) for LAIVFDT-OPN method coding as following.

```
are not damaged in the heater's wiring terminal and the band is not disconnected and
the thermocouple mounting face of the heating cylinder and the temperature sensor of it \boldsymbol{\ell}
 are clean and the thermocouple clamp springs and lead wire coating are not damaged." d4so = "N/A"
End Sub
Sub box8()
      d4st = "PAF"
d4de = "The status of injection machine equipment is moderate."

d4sy = "There is a tiny wear of the heater's wiring terminal caused by burns or the 
band is not connected or the thermocouple mounting face of the heating cylinder and 
the temperature sensor of it are dirty or the thermocouple holes of the heating 
cylinder have a little damaged or the thermocouple clamp springs and lead wire coating 

have a little damaged."
      d4so = "Fixing the heater's wiring terminal and connecting the band or cleaning the {m \kappa}
 thermocouple mounting face and the temperature sensor or fixing the thermocouple holes \boldsymbol{\ell} of the heating cylinder and the thermocouple clamp springs and lead wire coating,"
End Sub
Sub box9()
      d4st = "COF"
d4sy = "The heater's wiring terminal is damaged or the thermocouple holes of heating cylinder dirty; or the thermocouple clamp springs or lead wire coating are damaged."
      	ilde{d}4so = "A new heater's wiring terminal is replaced or replacing a new thermocouple oldsymbol{arepsilon}
holes of heating cylinder or a new thermocouple clamp springs or a new lead wire
coating.
End Sub
Sub box10()
      d8st = "NOP"
d8st = "NOF"

d8de = "The status of injection machine equipment is good."

d8sy = "The machine has normal operation. The ""the safety door is open" message 
us displayed on the ""ABNORMAL"" screen when the safety door is opened and disappears 
when the door is closed. The mold closing /opening operations stop immediately and the

motor power turned off upon opening the safety door (operation side)."
      d8so = "N/A"
End Sub
Sub box11()
d8st = "PAF"
d8de = "The status of injection machine equipment is moderate."
      d8sy = "The mold closing/opening when the safety door (operation side) is opened." d8so = "Reset by selecting the mode on the operational panel to the [STAND BY] mode ✔
when the safety door is open and checking the mold does not close/open upon pressing the [CLAM CLOSE] button or [CLAM OPEN] button."
End Sub
Sub box12()
      d8st = "COF"
       d8de = "The status of injection machine equipment is poor."
      {\tt d8sy = "The mold closing/opening is still operating when the safety door (operation \textbf{\textit{x}}
side) is opened or there is abnormal sound or malfunction during safety door opening/ \mathbf{k} closing in an uninterrupted operation."
      d8so = "Fixing the safety door (operation side) system."
Sub box13()
d6st = "NOP"
d6de = "The status of injection machine equipment is good. "
       d6sy = "The machine has normal operation. There is no melt leakage from the nozzle 🗸
during uninterrupted operation."
      d6so = "N/A"
End Sub
Sub box14()
      d6st = "PAF"
       d6de = "The status of injection machine equipment is moderate."
       d6sy = "There is melt leakage from the nozzle during uninterrupted operation or the \boldsymbol{\ell}
screw wear or the back flow of resin in the barrel has been occurred or there is a 
tiny damage of the surface of nozzle head or seal ring. "

d6so = "Cleaning the nozzle head or purging the barrel of repairing the surface of 
nozzle head or seal ring."
```

Fig. P.1. CMIMS coding-2 (15)

```
End Sub
Sub box15()
d6st = "COF"
      d6de = "The status of injection machine equipment is poor."
      d6sy = "There is a lot of melt leakage from the nozzle during uninterrupted
operation or higher filling time; or seal ring has been broken or the surface of screw 
head (nozzle head) or seal ring is damaged"

d6so = "Replacing a new screw head or seal ring; or fixing screw head or seal ring"

overm1 = "moderate"
      overeq1 = "UAC"
End Sub
Sub box16()
  d2st = "NOP"
  d2de = "The status of injection machine equipment is good."
      d2sy = "The machine has normal operation in the emergency stop button (rear side). \boldsymbol{\ell}
When pressing the [EMERGENCY STOP] button on the setting panel bracket to look the button, ""the emergency stop button has been depressed" message is displayed on the
depressed. "

d2so = "N/A"
      overm1 = "Very Good"
      overeq1 = "ACT"
End Sub
Sub box17()
d2st = "PAF"
      d2de = "The status of injection machine equipment is moderate."
      d2sy = "The molding machine is still operating when the emergency stop button (rear \mathbf{k}
  side) is depressed."
  d2so = "Reset by setting the [MOTOR] and [HEATERS] buttons on the operational panel 
do not turn on the power when the [EMERGENCY STOP] button is depressed."
  overm1 = "Good"
      overeq1 = "UAC"
End Sub
Sub box18()
      d2st = "COF"
      d2de = "The status of injection machine equipment is poor."
      d2sy = "The molding machine is still operating when the emergency stop button (rear \mathbf{r}
  side) is depressed."
      d2so = "Fixing the emergency stop button operation system." overm1 = "Good" overeq1 = "UAC"
End Sub
Sub box19()
      d1st = "NOP"
dlde = "The status of injection machine equipment is good."

dlsy = "The machine has normal operation. The ""the safety door is open" message 
us displayed on the ""ABNORMAL" screen when the safety door is opened and disappears 
when the door is closed. The mold closing /opening operations stop immediately and the 
motor power turned off upon opening the safety door (non-operation side)."
      d1so = "N/A"
      overm1 = "Moderate"
      overeq1 = "ACT"
End Sub
Sub box20()
d1st = "PAF"
      dlde = "The status of injection machine equipment is moderate."
      dlsy = "The mold closing/opening when the safety door (non-operation side) is
opened.
diso = "Reset by selecting the mode on the operational panel to the [STAND BY] mode \boldsymbol{\ell} when the safety door is open and checking the mold does not close/open upon pressing \boldsymbol{\ell} the [CLAM CLOSE] button or [CLAM OPEN] button."
      overm1 = "Moderate"
      overeq1 = "UAC"
End Sub
Sub box21()
d1st = "COF"
      dlde = "The status of injection machine equipment is poor."
```

Fig. P.2. CMIMS coding-2 (16)

```
dlsy = "The mold closing/opening is still operating when the safety door (non-
operation side) is opened or there is abnormal sound or malfunction during safety door 
opening/closing in an uninterrupted operation."

dlso = "Fixing the safety door (non-operation side) system."

overm1 = "Poor"
     overeq1 = "UAC"
End Sub
Sub box22()
d3st = "NOP"
     d3de = "The status of injection machine equipment is good."
d3sy = "The machine has normal operation. The water jacket has not reached the desired temperature via the setting value in the water cooling field on the ""TEMP""
screen. There is no water leakage in the surrounding area.
     d3so = "N/A"
End Sub
Sub box23()
     d3st = "PAF"
     d3de = "The status of injection machine equipment is moderate."
     d3sy = "The water jacket has reached the desired temperature via the setting value oldsymbol{arepsilon}
in the water cooling or the hopper temperature is higher than 10 degree Celsius."
     d3so = "Checking whether there is water feeding in the water jacket using water
flow water or clean the cooling water piping or checking to ensure there is no water
leakage. "
     overm1 = "Poor"
     overeq1 = "UAC"
End Sub
Sub box24()
     d3st = "COF"
     d3de = "The status of injection machine equipment is poor."
     d3sy = "The water jacket has reached the desired temperature via the setting value 🗷
in the water cooling or the hopper temperature is higher than 10 degree Celsius or cooling water piping is dilapidated."

d3so = "Fixing or replacement of new cooling water facility or water jacket."

overm1 = "Poor"
     overeq1 = "UAC"
End Sub
Sub box25()
d7st = "NOP"
     d7de = "The status of injection machine equipment is good."
     d7sy = "The machine has normal operation in the emergency stop button (front side).
When pressing the [EMERGENCY STOP] button on the setting panel bracket to look the button, ""the emergency stop button has been depressed"" message is displayed on the screen. Pressing the [MOTOR] and [HEATERS] buttons on the operation [STOP] button is
depressed. "
d7so = "N/A"
     overm1 = "Moderate"
     overeq1 = "ACT"
End Sub
Sub box26()
d7st = "PAF"
     d7de = "The status of injection machine equipment is moderate."
     d7sy = "The molding machine is still operating when the emergency stop button
(front side) is depressed."
 d7so = "Reset by setting the [MOTOR] and [HEATERS] buttons on the operational panel do not turn on the power when the [EMERGENCY STOP] button is depressed."

overm1 = "Poor"
     overeq1 = "UAC"
End Sub
Sub box27()
d7st = "COF"
     d7de = "The status of injection machine equipment is poor."
     d7sy = "The molding machine is still operating when the emergency stop button ont side) is depressed."
(front side)
     d7so = "Fixing the emergency stop button operation system."
overm1 = "Poor"
     overeq1 = "UAC"
End Sub
```

Fig. P.3. CMIMS coding-2 (17)

```
Sub box28()
     d11st = "NOP"
     dllde = "The status of injection machine equipment is good."
     dllsy = "The machine has normal operation. There is no peeling, rust or crack in m{arepsilon}
the coating at the exterior of the molding machine."
End Sub
Sub box29()
     d11st = "PAF"
     d11de = "The status of injection machine equipment is moderate."
dlide = "The status of injection machine equipment is moderate."

dlisy = "There is some peeling or rust in the exterior of the molding machine."

dliso = "Clean the exterior of the molding machine (such as cover, machine frame,
pipe hose and platen) using an air gun or rag."

overm1 = "Poor"
     overeq1 = "UAC"
End Sub
Sub box30()
     d11st = "COF"
     d11de = "The status of injection machine equipment is poor."
     dllsy = "There is a lot of peeling, rust or some crack in the exterior of the
molding machine."
     dliso = "Clean the exterior of the molding machine (such as cover, machine frame,
pipe hose and platen) using an air gun or rag or replacement with new equipment.'

overm1 = "Poor"
     overeq1 = "UAC"
End Sub
Sub box31()
d6st = "NOP"
     d6de = "The status of injection machine equipment is good."
     d6sy = "The machine has normal operation. There is no melt leakage from the nozzle 🗸
during uninterrupted operation."
     d6so = "N/A"
End Sub
Sub box32()
d6st = "PAF"
     d6de = "The status of injection machine equipment is moderate."
     d6sy = "There is melt leakage from the nozzle during uninterrupted operation or the oldsymbol{arepsilon}
screw wear or the back flow of resin in the barrel has been occurred or there is a tiny damage of the surface of nozzle head or seal ring. "

d6so = "Cleaning the nozzle head or purging the barrel of repairing the surface of vozzle head or seal ring."
     overm1 = "Poor"
     overeq1 = "UAC"
End Sub
Sub box33()
d6st = "COF"
     d6de = "The status of injection machine equipment is poor."
     d6sy = "There is a lot of melt leakage from the nozzle during uninterrupted
operation or higher filling time; or seal ring has been broken or the surface of screw 🗸
head (nozzle head) or seal ring is damaged"
     d6so = "Replacing a new screw head or seal ring; or fixing screw head or seal ring" overm1 = "Poor"
     overeq1 = "UAC"
End Sub
Sub box34()
d1st = "NOP"
dist - NOT

dide = "The status of injection machine equipment is good."

dlsy = "The machine has normal operation. The ''the safety door is open'' message
us displayed on the ''ABNORMAL'' screen when the safety door is opened and disappears
when the door is closed. The mold closing /opening operations stop immediately and the oldsymbol{arepsilon}
motor power turned off upon opening the safety door (non-operation side)."
     d1so = "M/A"
overm1 = "Good"
     overeq1 = "ACT"
End Sub
Sub box35()
```

Fig. P.4. CMIMS coding-2 (18)

```
dlde = "The status of injection machine equipment is moderate."

dlsy = "The mold closing/opening when the safety door (non-operation side) is ned."
          d1st = "PAF"
opened.
         dlso = "Reset by selecting the mode on the operational panel to the [STAND BY] mode \mathbf{k}
when the safety door is open and checking the mold does not close/open upon pressing the [CLAM CLOSE] button or [CLAM OPEN] button."

overm1 = "Moderate"
          overeq1 = "UAC"
End Sub
Sub box36()
                           "COF"
          d1st =
          dlde = "The status of injection machine equipment is poor."
dlay = "The mold closing/opening is still operating when the safety door (non-operation side) is opened or there is abnormal sound or malfunction during safety door opening/closing in an uninterrupted operation."
          dlso = "Fixing the safety door (non-operation side) system." overm1 = "Moderate"
          overeq1 = "UAC"
End Sub
Sub box37()
                           "NOP"
d5sy = "The machine has normal operation. Injection machine and plasticizing are to performed when the purge cover safety door is open. Shutter valve is disabled when the safety and purge cover safety door are open. The purge cover safety door is not broken."
          d5de = "The status of injection machine equipment is good."
broken.
          d5so = "N/A"
End Sub
Sub box38()
d5st = "PAF"
          d5de = "The status of injection machine equipment is moderate."
d5sy = "Injection and plasticizing are not performed when the purge cover safety door is open or shutter valve is disabled when the safety door and purge cover safety door are open."
         d5so = "Reset by pressing the [INJECTION] button and [PLASTICIZING] button and
checking the safety door and purge cover are open.'
overm1 = "Moderate"
          overeq1 = "UAC"
End Sub
Sub box39()
d5st = "COF"
          d5de = "The status of injection machine equipment is poor."
d5sy = "Injection and plasticizing are not performed when the purge cover safety door is open or shutter valve is disabled when the safety door and purge cover safety door are open or the purge cover safety door is broken."
          d5so = "Fixing or replacement of a new purge cover." overm1 = "Moderate"
          overeq1 = "UAC"
End Sub
Sub box40()
          d6st = "NOP"
d6de = "The status of injection machine equipment is good. "
          d6sy = "The machine has normal operation. There is no melt leakage from the nozzle oldsymbol{arepsilon}
during uninterrupted operation."
          d6so = "N/A"
          overm1 = "Moderate"
          overeq1 = "ACT"
End Sub
Sub box41()
          d6st = "PAF"
          d6de = "The status of injection machine equipment is moderate."
          d6sy = "There is melt leakage from the nozzle during uninterrupted operation or the \mathbf{r}
screw wear or the back flow of resin in the barrel has been occurred or there is a tiny damage of the surface of nozzle head or seal ring. "

d6so = "Cleaning the nozzle head or purging the barrel of repairing the surface of repairing the surface
          overm1 = "Poor"
```

Fig. P.5. CMIMS coding-2 (19)

```
overeg1 = "UAC"
End Sub
Sub box42()
     d6st = "COF"
dost = "COF"

d6de = "The status of injection machine equipment is poor."

d6sy = "There is a lot of melt leakage from the nozzle during uninterrupted operation or higher filling time; or seal ring has been broken or the surface of screw kead (nozzle head) or seal ring is damaged"
     doso = "Replacing a new screw head or seal ring; or fixing screw head or seal ring"
      overm1 = "Poor"
      overeq1 = "UAC"
End Sub
Sub box43()
               "NOP"
      d4st =
      d4de = "The status of injection machine equipment is good. "
d4de = The status of injection machine equipment is good. The data of the heating cylinder are not damaged in the heater's wiring terminal and the band is not disconnected and the thermocouple mounting face of the heating cylinder and the temperature sensor of it are clean and the thermocouple clamp springs and lead wire coating are not damaged."
     d4so = "N/A"
End Sub
Sub box44()
d4st = "PAF"
     d4de = "The status of injection machine equipment is moderate." d4sy = "There is a tiny wear of the heater's wiring terminal caused by burns or the \mathbf{k}
 band is not connected or the thermocouple mounting face of the heating cylinder and
the temperature sensor of it are dirty or the thermocouple holes of the heating \boldsymbol{\ell} cylinder have a little damaged or the thermocouple clamp springs and lead wire coating \boldsymbol{\ell}
have a little damaged."
     d4so = "Fixing the heater's wiring terminal and connecting the band or cleaning the \boldsymbol{\ell}
 thermocouple mounting face and the temperature sensor or fixing the thermocouple holes \boldsymbol{\ell}
 of the heating cylinder and the thermocouple clamp springs and lead wire coating,"
      overm1 = "Poor"
      overeq1 = "UAC"
End Sub
Sub box45()
     d4st = "COF"
      d4de = "The status of injection machine equipment is poor."
d4sy = "The heater's wiring terminal is damaged or the thermocouple holes of
heating cylinder dirty; or the thermocouple clamp springs or lead wire coating are damaged."
                                                                                                                                  V
     diso = "A new heater's wiring terminal is replaced or replacing a new thermocouple
holes of heating cylinder or a new thermocouple clamp springs or a new lead wire
coating. "
      overm1 = "Poor"
      overeq1 = "UAC"
End Sub
Sub box46()
      d6st = "NOP"
dose = "The status of injection machine equipment is good."

d6sy = "The machine has normal operation. There is no melt leakage from the nozzle &

during uninterrupted operation."

d6so = "N/A"
      overm1 = "Very Good"
      overeq1 = "ACT"
End Sub
Sub box47()
d6st = "PAF"
      d6de = "The status of injection machine equipment is moderate."
      d6sy = "There is melt leakage from the nozzle during uninterrupted operation or the
  screw wear or the back flow of resin in the barrel has been occurred or there is a
tiny damage of the surface of nozzle head or seal ring. "

d6so = "Cleaning the nozzle head or purging the barrel of repairing the surface of 
nozzle head or seal ring."
      overm1 = "Moderate"
      overeq1 = "UAC"
End Sub
```

Fig. P.6. CMIMS coding-2 (20)

```
Sub box48()
     d6st = "COF"
d6de = "The status of injection machine equipment is poor."
      d6sy = "There is a lot of melt leakage from the nozzle during uninterrupted
operation or higher filling time; or seal ring has been broken or the surface of screw 
head (nozzle head) or seal ring is damaged"

d6so = "Replacing a new screw head or seal ring; or fixing screw head or seal ring"

overm1 = "Moderate"
      overeq1 = "UAC"
End Sub
Sub box49()
d7st = "NOP"
      d7de = "The status of injection machine equipment is good."
d/sy = "The machine has normal operation in the emergency stop button (front side). 
When pressing the [EMERGENCY STOP] button on the setting panel bracket to look the button, ""the emergency stop button has been depressed" message is displayed on the
screen. Pressing the [MOTOR] and [HEATERS] buttons on the operation [STOP] button is
                                                                                                                               K
depressed. "

d7so = "N/A"

overm1 = "Very Poor"

overeq1 = "UAC"
End Sub
Sub box50()
d7st = "PAF"
      d7de = "The status of injection machine equipment is moderate."
      d7sy = "The molding machine is still operating when the emergency stop button
(front side) is depressed."
 d7so = "Reset by setting the [MOTOR] and [HEATERS] buttons on the operational panel do not turn on the power when the [EMERGENCY STOP] button is depressed."

overm1 = "Very Poor"

overeq1 = "UAC"
End Sub
Sub box51()
d7st = "COF"
     d7de = "The status of injection machine equipment is poor."
d7sy = "The molding machine is still operating when the emergency stop button
                   is depressed."
(front side)
      d7so = "Fixing the emergency stop button operation system."
      overm1 = "Very Poor"
overeq1 = "UAC"
End Sub
Sub check 1()
      If (finalforecast1 = "MF1") Then
           check_2()
      Else
            'goto L
           check_41()
      End If
End Sub
Sub check_2()
      If (finalforecast2 = "MF1") Then
           check_3()
      Else
            goto M
           check_15()
      End If
End Sub
Sub check_3()
    If (finalforecast3 = "MF1") Then
           check 11()
           check 4()
      End If
End Sub
Sub check 4()
      If (finalforecast3 = "MF2") Then
           check_9()
```

Fig. P.7. CMIMS coding-2 (21)

```
Else
     check_5()
End If
End Sub
Sub check 5()
     If (finalforecast3 = "MF3") Then
          check_6()
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
     'goto V
End Sub
Sub check 6()
     If (finalforecast4 = "MF1") Then gfinalforecast = "gMO2" 'goto S
     Else
     check_7()
End If
End Sub
Sub check_7()
     incom_r()
If (finalforecast4 = "MF2") Then
    gfinalforecast = "gMO2"
    'goto S
     Else
     check_8()
End If
End Sub
Sub check_8()

If (finalforecast4 = "MF3") Then
          gfinalforecast = "gPO1"
'goto S
    Else 'goto V
         errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_9()
     If (finalforecast4 = "MF1") Then
gfinalforecast = "gG01"
     gilna.
'goto S
Else
         check_10()
     End If
End Sub
check_14()
End If
End Sub
Sub check_11()
     If (finalforecast4 = "MF1") Then
gfinalforecast = "gVG1"
'goto S
     Else
          check 12()
     End If
End Sub
Sub check_12()
    If (finalforecast4 = "MF2") Then
        gfinalforecast = "gGO1"
         'goto S
```

Fig. P.8. CMIMS coding-2 (22) 189

```
check 13()
     End If
End Sub
Sub check 13()
     If (finalforecast4 = "MF3") Then gfinalforecast = "gMO2" 'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
End Sub
Sub check_14()

If (finalforecast4 = "MF3") Then

gfinalforecast = "gMO1"
           goto S
          'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 15()
     If (finalforecast2 = "MF2") Then
          check_16()
     Else
'goto N
          check_28()
     End If
End Sub
Sub check 16()
If (finalforecast3 = "MF1") Then
         check_25()
     Else
          check_17()
     End If
End Sub
Sub check_17()
    If (finalforecast3 = "MF2") Then
          check_22()
     Else
     check_18()
End If
End Sub
Sub check 18()
     If (finalforecast3 = "MF3") Then
          check_19()
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_19()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gMO1"

'goto S
          check_20()
     End If
End Sub
Sub check 20()
     If (finalforecast4 = "MF2") Then gfinalforecast = "gMO2"
'goto S
     Else
```

Fig. P.9. CMIMS coding-2 (23)

```
check_21()
     End If
End Sub
Sub check 21()
     If (finalforecast4 = "MF3") Then gfinalforecast = "gPO3" 'goto S
     Else
           'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 22()
   If (finalforecast4 = "MF1") Then
      gfinalforecast = "gGO2"
      'goto S
     check_23()
End If
End Sub
Sub check 23()
     If (finalforecast4 = "MF2") Then
gfinalforecast = "gMO1"
'goto S
     Else
         check_24()
     End If
End Sub
Sub check 24()

If (finalforecast4 = "MF3") Then

gfinalforecast = "gMO3"

'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 25()
     If (finalforecast4 = "MF1") Then gfinalforecast = "gVG1"

"goto S
     Else
          check_26()
     End If
End Sub
Sub check_26()
If (finalforecast4 = "MF2") Then
         gfinalforecast = "gGO2"
'goto S
     Else
          check_27()
     End If
End Sub
Sub check 27()
     If (finalforecast4 = "MF3") Then
          gfinalforecast = "gMO2"
'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_28()
     If (finalforecast2 = "MF3") Then
          check_33()
```

Fig. P.10. CMIMS coding-2 (24)

```
errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 29()
     If (finalforecast3 = "MF3") Then
          check_30()
    Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 30()
     If (finalforecast4 = "MF1") Then gfinalforecast = "gP01"
           goto S
     Else
          check 32()
     End If
End Sub
Sub check 31()
     If (finalforecast4 = "MF2") Then gfinalforecast = "gPO2"
'goto S
     Else
     check_32()
End If
End Sub
Sub check 32()
     If (finalforecast4 = "MF3") Then gfinalforecast = "gVP1" 'goto S
    Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_33()
     If (finalforecast3 = "MF1") Then
          check_38()
     Else
          check_34()
     End If
End Sub
Sub check 34()
     If (finalforecast3 = "MF2") Then
          check_35()
         check 29()
     End If
End Sub
Sub check_35()
    If (finalforecast4 = "MF1") Then
   gfinalforecast = "gMO2"
   'goto S
     Else
         check_36()
     End If
End Sub
Sub check 36()

If (finalforecast4 = "MF2") Then

gfinalforecast = "gMO3"

'goto S
     Else
     check_37()
End If
```

Fig. P.11. CMIMS coding-2 (25)

```
End Sub
Sub check 37()

If (finalforecast4 = "MF3") Then

gfinalforecast = "gPO2"

'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 38()
     If (finalforecast4 = "MF1") Then gfinalforecast = "gMO2"
'goto S
     Else
         check_39()
     End If
End Sub
Sub check 39()

If (finalforecast4 = "MF2") Then

gfinalforecast = "gM02"

'goto S
     Else
         check_39()
     End If
End Sub
Sub check_40()
If (finalforecast4 = "MF3") Then
          gfinalforecast = "gP01"
'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_41()
     If (final forecast1 = "MF2") Then
          check_42()
          goto 0
          check 81()
     End If
End Sub
Sub check_42()
If (finalforecast2 = "MF1") Then
          check_49()
     Else
'goto P
          check_55()
     End If
End Sub
Sub check_43()
     If (finalforecast3 = "MF3") Then
          check_44()
     Else
          'qoto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_44()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gMO2"

'goto S
     check_45()
End If
```

Fig. P.12. CMIMS coding-2 (26)

```
End Sub
Sub check 45()

If (finalforecast4 = "MF2") Then

gfinalforecast = "gMO3"

'goto S
     Else
         check 46()
     End If
End Sub
Sub check 46()

If (finalforecast4 = "MF3") Then

gfinalforecast = "gP02"

'goto S
     Else 'goto V
           errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_47()
     If (finalforecast3 = "MF2") Then
          check_48()
     Else
          check_43()
     End If
End Sub
Sub check 48()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gGO2"

'goto S
          check_50()
     End If
End Sub
Sub check 49()
If (finalforecast3 = "MF1") Then
          check_52()
     Else
          check 47()
     End If
End Sub
Sub check_50()
   If (finalforecast4 = "MF2") Then
        gfinalforecast = "gMO1"
        'goto S
     Else
          check 51()
     End If
End Sub
Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 52()
     gfinalforecast4 = "MF1") Then
gfinalforecast = "gGO1"
"goto S
     Else
          check 53()
     End If
End Sub
```

Fig. P.13. CMIMS coding-2 (27)

```
Sub check_53()
If (finalforecast4 = "MF2") Then
          gfinalforecast = "gGO2"
'goto S
     Else
     check_54()
End If
End Sub
Sub check_54()
If (finalforecast4 = "MF3") Then
          gfinalforecast = "gMO2"
'goto S
     Else
     'print Error! Please forecast again
'goto F
End If
End Sub
Sub check_55()
If (finalforecast2 = "MF2") Then
          check_56()
          'goto Q
          check_68()
     End If
End Sub
Sub check_56()
    If (finalforecast3 = "MF1") Then
          check_65()
     check_61()
End If
End Sub
Sub check 57()
If (finalforecast3 = "MF3") Then
          check_58()
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 58()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gMO3"

'goto S
     check_59()
End If
End Sub
Sub check 59()
     If (finalforecast4 = "MF2") Then gfinalforecast = "gMO3" 'goto S
     Else
          check_60()
     End If
End Sub
Sub check_60()
   If (finalforecast4 = "MF3") Then
      gfinalforecast = "gPO2"
            goto S
          'goto V
           errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_61()
```

Fig. P.14. CMIMS coding-2 (28)

```
If (finalforecast3 = "MF2") Then
    check_62()
     Else
          check_57()
     End If
End Sub
Sub check 62()
     If (finalforecast4 = "MF1") Then gfinalforecast = "gMO1"
'goto S
     Else
          check_63()
     End If
End Sub
Sub check_63()
     If (finalforecast4 = "MF2") Then
    gfinalforecast = "gMO1"
            goto S
     Else
          check 64()
     End If
End Sub
Sub check_64()
   If (finalforecast4 = "MF3") Then
        gfinalforecast = "gMO3"
        'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 65()
     If (finalforecast4 = "MF1") Then gfinalforecast = "gGO2"
           goto S
          check 66()
     End If
End Sub
Sub check 66()
     If (finalforecast4 = "MF2") Then gfinalforecast = "gMO1"
'goto S
     Else
          check_67()
     End If
End Sub
Sub check 67()
     ineck or()
If (finalforecast4 = "MF3") Then
    gfinalforecast = "gMO3"
    "goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 68()
     If (finalforecast2 = "MF3") Then
          check_69()
     Else
'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_69()
     If (finalforecast3 = "MF1") Then
```

Fig. P.15. CMIMS coding-2 (29)

```
check_78()
    Else
          check_74()
     End If
End Sub
Else
'goto V
         errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 71()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gP02"

'goto S
     Else
     check_72()
End If
End Sub
Sub check_72()
    If (finalforecast4 = "MF2") Then
   gfinalforecast = "gPO2"
   'goto S
     Else
     check_73()
End If
End Sub
Sub check_73()
If (finalforecast4 = "MF3") Then
          gfinalforecast = "gVP1"
'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_74()
     If (finalforecast3 = "MF2") Then
         check_75()
     Else
     check_70()
End If
End Sub
Sub check 75()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gMO3"

'goto S
     check_76()
End If
End Sub
Sub check 76()
     If (finalforecast4 = "MF2") Then
    gfinalforecast = "gMO3"
    'goto S
     Else
     check_77()
End If
End Sub
Sub check_77()
     If (finalforecast4 = "MF3") Then
gfinalforecast = "gP02"
'goto S
     Else
```

Fig. P.16. CMIMS coding-2 (30)

```
'goto V
         errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 78()
     If (finalforecast4 = "MF1") Then
    gfinalforecast = "gMO2"
    'goto S
     Else
         check_79()
     End If
End Sub
Sub check 79()
    check /9()
If (finalforecast4 = "MF2") Then
   gfinalforecast = "gMO3"
   'goto S
    Else
         check 80()
     End If
End Sub
Sub check 80()
    If (finalforecast4 = "MF3") Then
         gfinalforecast = "gPO2"
'goto S
    Else 'goto V
    errortxt = "Error! Please forecast again."
End If
End Sub
Sub check_81()
    If (finalforecast1 = "MF3") Then
         check_82()
    Else 'goto V
         errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_82()
If (finalforecast2 = "MF1") Then
         check_91()
    Else
'goto R
         check_95()
     End If
End Sub
Sub check_83()
    If (final forecast3 = "MF3") Then
         check_84()
    Else 'goto V
         errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 84()
    If (finalforecast4 = "MF1") Then gfinalforecast = "gP01" 'goto S
    check_85()
End If
End Sub
Sub check 85()
    If (finalforecast4 = "MF2") Then gfinalforecast = "gPO2"
'goto S
    Else
```

Fig. P.17. CMIMS coding-2 (31)

```
check_86()
     End If
End Sub
Sub check 86()
     If (finalforecast4 = "MF3") Then gfinalforecast = "gVP1"
'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 87()

If (finalforecast3 = "MF2") Then
          check 88()
     Else
          check_83()
     End If
End Sub
Sub check_88()
   If (finalforecast4 = "MF1") Then
        gfinalforecast = "gMO2"
        'goto S
     check_89()
End If
End Sub
Sub check_89()
     If (finalforecast4 = "MF2") Then gfinalforecast = "gMO3"
           goto S
     Else
          check_90()
     End If
End Sub
Sub check 90()
     If (finalforecast4 = "MF3") Then gfinalforecast = "gPO2"
'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Else
         check_87()
     End If
End Sub
Sub check_92()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gMO2"

'goto S
     Else
     check_93()
End If
End Sub
Sub check 93()
     If (finalforecast4 = "MF2") Then gfinalforecast = "gMO2" 'goto S
     Else
          check_94()
     End If
```

Fig. P.18. CMIMS coding-2 (32)

Appendix Q

CMIMS Coding (2), (3), (4) and (5) - in Accompanying CD-ROM Disk.

In appendix Q in accompanying CD-ROM disk, figure Q.1 to P.13 illustrate CMIMS coding-(2) for LAIVFDT-OPN method coding, Figure Q.14 shows CMIMS coding-(3) for loading data file, Figure Q.15 depicts CMIMS coding-(4) for loading data file and Figure Q.16 exposes CMIMS coding-(5) as following.

```
End Sub
Sub check 94()

If (finalforecast4 = "MF3") Then
          gfinalforecast = "gPO1"
'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_95()
     If (\overline{\text{finalforecast2}} = "MF2") Then
          check_96()
     Else
'goto T
          check_108()
     End If
End Sub
Sub check_96()
If (finalforecast3 = "MF1") Then
          check_104()
     Else
     check_97()
End If
End Sub
Sub check 97()
     If (finalforecast3 = "MF2") Then
          check_102()
     Else check_98()
End If
End Sub
Sub check_98()
     If (\overline{\text{finalforecast3}} = "MF3") Then
          check_99()
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 99()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gPO2"

'goto S
     Else
     check_100()
End If
End Sub
Sub check_100()
     f (finalforecast4 = "MF2") Then gfinalforecast = "gPO2"

'goto S
     Else
     check_101()
End If
End Sub
Sub check_101()
    If (finalforecast4 = "MF3") Then
        gfinalforecast = "gVP1"
        'goto S
     Else 'goto V
          errortxt = "Error! Please forecast again."
     End If
End Sub
```

Fig. Q.1. CMIMS coding-2 (33)

```
Sub check_102()
     If (finalforecast4 = "MF1") Then gfinalforecast = "gMO3" 'goto S
     Else
          check_103()
      End If
End Sub
Sub check_103()

If (finalforecast4 = "MF2") Then

gfinalforecast = "gMO3"

'goto S
     Else
     check_107()
End If
End Sub
Sub check_107()
    If (finalforecast4 = "MF3") Then
        gfinalforecast = "gPO1"
            goto S
     Else
           'qoto V
           errortxt = "Error! Please forecast again."
      End If
End Sub
Sub check_104()
    If (finalforecast4 = "MF1") Then
        gfinalforecast = "gMO2"
           goto S
          check_105()
     End If
End Sub
Sub check_105()
     If (finalforecast4 = "MF2") Then gfinalforecast = "gMO3"
            goto S
     Else
           check_106()
      End If
End Sub
Sub check 106()

If (finalforecast4 = "MF3") Then

gfinalforecast = "gP02"

'goto S
     Else 'goto V
           errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 108()
     If (finalforecast2 = "MF3") Then
          check_109()
     Else
           'goto V
           errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 109()
If (finalforecast3 = "MF1") Then
          check_110()
     Else
          check_115()
     End If
End Sub
Sub check_110()
```

Fig. Q.2. CMIMS coding-2 (34)

```
If (finalforecast3 = "MF2") Then
           check 118()
     Else
           check_111()
     End If
End Sub
Sub check 111()
     If (finalforecast3 = "MF3") Then
           check_112()
     Else 'goto V
           errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 112()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gVP1"

'goto S
     Else
     check_113()
End If
End Sub
Sub check_113()

If (finalforecast4 = "MF2") Then

gfinalforecast = "gVP1"

'goto S
     Else
          check_114()
     End If
End Sub
Sub check_114()
     If (finalforecast4 = "MF3") Then gfinalforecast = "gVP1" 'goto S
     Else 'goto V
           errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check 115()

If (finalforecast4 = "MF1") Then

gfinalforecast = "gP01"

'goto S
     Else
          check_116()
      End If
End Sub
Sub check 116()

If (finalforecast4 = "MF2") Then

gfinalforecast = "gP02"

'goto S
     check_117()
End If
End Sub
Sub check 117()
     If (finalforecast4 = "MF3") Then
gfinalforecast = "gVP1"
           goto S
     Else
'goto V
           errortxt = "Error! Please forecast again."
     End If
End Sub
Sub check_118()
     If (finalforecast4 = "MF1") Then
```

Fig. Q.3. CMIMS coding-2 (35)

```
gfinalforecast = "gPO2"
          goto S
    Else
         check_119()
    End If
End Sub
Sub check 119()
     If (finalforecast4 = "MF2") Then
         gfinalforecast = "gPO2"
          goto S
    Else
         check 120()
     End If
End Sub
Sub check 120()
     If (finalforecast4 = "MF3") Then
         gfinalforecast = "gVP1"
'goto S
    Else 'goto V
         errortxt = "Error! Please forecast again."
     End If
End Sub
Sub overall()
    If (overm1 = "very good" And overeq1 = "ACT" And gfinalforecast = "gVG1") Then overallstatus = "The overall status of machine is acceptable. All machine
equipment positions have very good status. A machine is ready for operation and Machine {m \kappa}
 maintenance is upon machine maintenance plan."
    Else
         If (overm1 = "Good" And overeq1 = "ACT" And gfinalforecast = "gGO1") Then
              overallstatus = "The overall status of machine is acceptable and most of
machine equipment positions have good status. However some machine equipment should
inspect and maintain. Machine maintenance is upon maintenance in 1-2 working days for some machine equipment."
         Else
             If (overm1 = "Good" And overeq1 = "UAC" And gfinalforecast = "gGO2") Then overallstatus = "The overall status of machine is acceptable. Some
machine equipment has good status. Some machine equipment need to inspect and maintain.\boldsymbol{\mathcal{L}} Machine maintenance is upon maintenance in 1-2 working days."
             Else
                  If (overm1 = "Moderate" And overeq1 = "ACT" And qfinalforecast = "qMO1" &
) Then
                       overallstatus = "The overall status of machine is acceptable. Some 🗸
machine equipment has moderate status. Some machine equipment need to inspect and fix. \boldsymbol{k} Machine maintenance in 1-2 working days is required."
                  Else
                       If (overm1 = "Moderate" And overeg1 = "UCT" And gfinalforecast =
"gMO2") Then
                           overallstatus = "The overall status of machine is unacceptable. &
 Some machine equipment has moderate status. Some machine equipment has to fix or
maintenance. Machine maintenance is upon emergent maintenance.
                       Else
                           If (overm1 = "Moderate" And overeq1 = "UAC" And gfinalforecast &
= "qMO3") Then
                                overallstatus = "The overall status of machine is
unacceptable. Some machine equipment has moderate status. Some machine equipment has to \boldsymbol{\ell}
 emergency repair or maintenance. Machine maintenance is upon emergent maintenance."
                           Else
                                If (overm1 = "Poor" And overeg1 = "ACT" And gfinalforecast &
= "qPO1") Then
                                     overallstatus = "The overall status of machine is
unacceptable. Some machine equipment has poor status. Some machine equipment need to
fix or replace with new equipment. Machine maintenance is upon emergent maintenance."
                                Else
                                     If (overm1 = "Poor" And overeg1 = "UAC" And
                                                                                                     V
qfinalforecast = "qPO2") Then
                                         overallstatus = "The overall status of machine is
unacceptable. Some machine equipment has poor status. Some machine equipment need to
fix or replace with new equipment immediately. Machine maintenance is upon emergent maintenance."
```

Fig. Q.4. CMIMS coding-2 (36)

```
If (overm1 = "Very Poor" And overeq1 = "UAC" And
gfinalforecast = "gVP1") Then
                                              overallstatus = "The overall status of machine &
is unacceptable. Some machine equipment has very poor status. Some machine equipment \boldsymbol{\varkappa} must immediately fix or replace with new equipment. The emergent maintenance of machine \boldsymbol{\varkappa}
 is required."
                                         Else
                                              overallstatus = " Input data error! Please try 🗹
again."
                                          End If
                                     End If
                                End If
                            End If
                       End If
                  End If
             End If
         End If
    End If
End Sub
Sub ov1()
    If (overm1 = "Very Good") Then
         ov12()
    Else
    ov2()
End If
End Sub
Sub ov2()
    If (overm1 = "Good") Then
         ov3()
    Else
        ov4()
    End If
End Sub
Sub ov3()
    If (overeq1 = "ACT") Then
         ov26()
    Else
        ov5()
    End If
End Sub
Sub ov4()
    If (overm1 = "Moderate") Then
         ov8()
    ov6()
End If
End Sub
Sub ov5()
    If (overeq1 = "UAC") Then
         ov32()
    Else
         overallstatus = "Machine conditions not found."
    End If
End Sub
Sub ov6()
    If (overm1 = "Poor") Then
         ov14()
    Else
        ov7()
    End If
End Sub
Sub ov7()
    If (overm1 = "Very Poor") Then
         ov10()
```

Fig. Q.5. CMIMS coding-2 (37)

```
overallstatus = "Machine conditions not found."
    End If
End Sub
Sub ov8()
    If (overeq1 = "ACT") Then
        ov38()
    Else
    ov9()
End If
End Sub
Sub ov9()
    If (overeq1 = "UAC") Then
       ov44()
    Else
    ov61()
End If
End Sub
Sub ov10()
    If (overeq1 = "ACT") Then
        ov61()
    Else
    ov11()
End If
End Sub
Sub ov11()
    If (overeq1 = "UAC") Then
        ov65()
    Else
    overallstatus = "Machine conditions not found."
End If
End Sub
Sub ov12()
    If (overeq1 = "ACT") Then
        ov16()
    Else
    ov13()
End If
End Sub
Sub ov13()
If (overeq1 = "UAC") Then
        ov21()
    overallstatus = "Machine conditions not found."
End If
End Sub
Sub ov14()
   If (overeq1 = "ACT") Then
        ov50()
    Else
    ov15()
End If
End Sub
Sub ov15()
    If (overeq1 = "UAC") Then
        ov56()
    overallstatus = "Machine conditions not found."
End If
End Sub
Sub ov16()
    If (gfinalforecast = "gVG1") Then
        overallstatus1()
    Else
    ov17()
End If
```

Fig. Q.6. CMIMS coding-2 (38)

```
End Sub
    If (gfinalforecast = "gGO1") Or (gfinalforecast = "gGO2") Then
         overallstatus2()
    Else
         ov18()
    End If
End Sub
Sub ov18()
    If (gfinalforecast = "gMO1") Then
         overallstatus3()
    Else
        ov19()
    End If
End Sub
Sub ov19()
    If (gfinalforecast = "gMO2") Then
         overallstatus4()
         ov20()
    End If
End Sub
Sub ov20()
    If (gfinalforecast = "gMO3") Or (gfinalforecast = "gPO1") Then
         overallstatus5()
overallstatus = "The results of forecasting are not available. Forecasting machine maintenance values contrast with prediction of machine equipment status or matching conditions not found."

End If
End Sub
Sub ov21()
    If (gfinalforecast = "gVG1") Then
         overallstatus2()
    Else
        ov22()
    End If
End Sub
Sub ov22()
    If (gfinalforecast = "gGO1") Or (gfinalforecast = "gGO2") Then
         overallstatus3()
         ov23()
    End If
End Sub
Sub ov23()
    If (gfinalforecast = "gMO1") Then
         overallstatus4()
    Else
    ov24()
End If
End Sub
Sub ov24()
    If (gfinalforecast = "gMO2") Then
         overallstatus5()
    Else
        ov25()
    End If
End Sub
Sub ov25()
    If (gfinalforecast = "gMO3") Or (gfinalforecast = "gPO1") Then
         overallstatus6()
         overallstatus = "The results of forecasting are not available. Forecasting
machine maintenance values contrast with prediction of machine equipment status or
```

```
matching conditions not found."
End If
End Sub
Sub ov26()
    If (gfinalforecast = "gVG1") Then overallstatus2()
    Else
    ov27()
End If
End Sub
Sub ov27()
    If (gfinalforecast = "gGO1") Or (gfinalforecast = "gGO2") Then
        overallstatus3()
    Else
       ov28()
    End If
End Sub
Sub ov28()
    If (gfinalforecast = "gMO1") Then
        overallstatus4()
    Else
    ov29()
End If
End Sub
Sub ov29()
    If (gfinalforecast = "gMO2") Then
        overallstatus5()
    Else
        ov30()
    End If
End Sub
Sub ov30()
    If (gfinalforecast = "gMO3") Or (gfinalforecast = "gPO1") Then
        overallstatus6()
    Else
       ov31()
    End If
End Sub
Sub ov31()
    If (gfinalforecast = "gPO2") Or (gfinalforecast = "gVP1") Then
        overallstatus7()
        overallstatus = "The results of forecasting are not available. Forecasting
machine maintenance values contrast with prediction of machine equipment status or matching conditions not found."

End If
End Sub
Sub ov32()
    If (gfinalforecast = "gVG1") Then
        overallstatus3()
    Else
        ov33()
    End If
End Sub
Sub ov33()
    If (gfinalforecast = "gGO1") Or (gfinalforecast = "gGO2") Then
        overallstatus4()
    Else
        ov34()
    End If
End Sub
Sub ov34()
    If (gfinalforecast = "gMO1") Then
        overallstatus5()
    Else
```

Fig. Q.8. CMIMS coding-2 (40)

```
ov35()
    End If
End Sub
Sub ov35()
    If (gfinalforecast = "gMO2") Then
        overallstatus6()
    Else
        ov36()
    End If
End Sub
Sub ov36()
    If (gfinalforecast = "gMO3") Or (gfinalforecast = "gPO1") Then
        overallstatus7()
    Else
        ov37()
    End If
End Sub
Sub ov37()

If (gfinalforecast = "gPO2") Or (gfinalforecast = "gVP1") Then
        overallstatus = "The results of forecasting are not available. Forecasting
machine maintenance values contrast with prediction of machine equipment status or matching conditions not found."

End If
End Sub
Sub ov38()
    If (gfinalforecast = "gVG1") Then
        overallstatus3()
    Else
        ov39()
    End If
End Sub
Sub ov39()
    If (gfinalforecast = "gGO1") Or (gfinalforecast = "gGO2") Then
        overallstatus4()
    Else
        ov40()
    End If
End Sub
Sub ov40()
    If (gfinalforecast = "gMO1") Then
        overallstatus5()
        ov41()
    End If
End Sub
Sub ov41()
    If (gfinalforecast = "gMO2") Or (gfinalforecast = "gMO3") Then
        overallstatus6()
    Else
    ov42()
End If
End Sub
Sub ov42()
    If (gfinalforecast = "gPO1") Or (gfinalforecast = "gPO2") Then
        overallstatus7()
    Else
    ov43()
End If
End Sub
Sub ov43()

If (gfinalforecast = "gVP1") Then
        overallstatus8()
```

Fig. Q.9. CMIMS coding-2 (41) 210

```
overallstatus = "The results of forecasting are not available. Forecasting
machine maintenance values contrast with prediction of machine equipment status or matching conditions not found."

End If
End Sub
Sub ov44()
    If (gfinalforecast = "gVG1") Then
         overallstatus4()
    Else
         ov45()
    End If
End Sub
Sub ov45()
    If (gfinalforecast = "gGO1") Then
         overallstatus5()
         ov46()
    End If
End Sub
Sub ov46()
    If (gfinalforecast = "gGO1") Or (gfinalforecast = "gMO1") Then
         overallstatus6()
    Else
    ov47()
End If
End Sub
Sub ov47()
    If (gfinalforecast = "gMO2") Or (gfinalforecast = "gMO3") Then
         overallstatus7()
    Else
         ov48()
    End If
End Sub
Sub ov48()
    If (gfinalforecast = "gPO1") Or (gfinalforecast = "gPO2") Then
         overallstatus8()
    Else
         ov48()
    End If
End Sub
Sub ov49()
    If (gfinalforecast = "gVP1") Then
         overallstatus9()
overallstatus = "The results of forecasting are not available. Forecasting machine maintenance values contrast with prediction of machine equipment status or matching conditions not found."
    End If
End Sub
Sub ov50()
    If (gfinalforecast = "gVG1") Then
         overallstatus4()
    Else
         ov51()
    End If
End Sub
Sub ov51()
    If (gfinalforecast = "gGO1") Then
    overallstatus5()
    Else
    ov52()
End If
End Sub
Sub ov52()
    If (qfinalforecast = "qGO1") Or (qfinalforecast = "qMO1") Then
```

Fig. Q.10. CMIMS coding-2 (42)

```
overallstatus6()
    Else
         ov53()
    End If
End Sub
Sub ov53()
    If (gfinalforecast = "gMO2") Or (gfinalforecast = "gMO3") Then
         overallstatus7()
    Else
    End If
End Sub
Sub ov54()
    If (gfinalforecast = "gPO1") Or (gfinalforecast = "gPO2") Then
         overallstatus8()
         ov55()
    End If
End Sub
Sub ov55()
    If (gfinalforecast = "gVP1") Then
         overallstatus9()
overallstatus = "The results of forecasting are not available. Forecasting machine maintenance values contrast with prediction of machine equipment status or matching conditions not found."
    End If
End Sub
Sub ov56()
    If (gfinalforecast = "gVG1") Then
         overallstatus5()
    Else
        ov57()
    End If
End Sub
Sub ov57()
    If (gfinalforecast = "gGO1") Or (gfinalforecast = "gGO2") Then
         overallstatus6()
    ov58()
End If
End Sub
    If (gfinalforecast = "gMO1") Or (gfinalforecast = "gMO2") Then
         overallstatus7()
    Else
         ov59()
    End If
End Sub
Sub ov59()
    If (gfinalforecast = "gMO3") Or (gfinalforecast = "gPO1") Then
         overallstatus8()
    Else
        ov60()
    End If
End Sub
Sub ov60()
    If (gfinalforecast = "gPO2") Or (gfinalforecast = "gVP1") Then
         overallstatus9()
         overallstatus = "The results of forecasting are not available. Forecasting
machine maintenance values contrast with prediction of machine equipment status or matching conditions not found."
    End If
End Sub
```

Fig. Q.11. CMIMS coding-2 (43)

```
Sub ov61()
    If (gfinalforecast = "gVG2") Then
         overallstatus6()
    Else
        ov62()
    End If
End Sub
Sub ov62()
    If (gfinalforecast = "gMO1") Or (gfinalforecast = "gMO2") Then
        overallstatus7()
    Else
        ov63()
    End If
End Sub
Sub ov63()
    If (gfinalforecast = "gMO3") Or (gfinalforecast = "gPO1") Then
         overallstatus8()
    ov64()
End If
End Sub
Sub ov64()
    If (gfinalforecast = "gPO2") Or (gfinalforecast = "gVP1") Then
         overallstatus9()
        overallstatus = "The results of forecasting are not available. Forecasting
machine maintenance values contrast with prediction of machine equipment status or
matching conditions not found."
End If
End Sub
Sub ov65()
    If (gfinalforecast = "gGO2") Or (gfinalforecast = "gMO1") Then
    overallstatus7()
    Else
    End If
End Sub
Sub ov66()
    If (gfinalforecast = "gMO2") Or (gfinalforecast = "gMO3") Then
        overallstatus8()
        ov67()
    End If
End Sub
If (gfinalforecast = "gPO1") Or (gfinalforecast = "gPO2") Or (gfinalforecast = "gVP1") Then
        overallstatus9()
    Else
overallstatus = "The results of forecasting are not available. Forecasting machine maintenance values contrast with prediction of machine equipment status or
matching conditions not found."
    End If
End Sub
Sub overallstatus1()
overallstatus = "The overall status of machine is acceptable. All machine equipment

✓ Machine maint
 positions have very good status. A machine is ready for operation and Machine maint
nance is upon machine maintenance plan."
End Sub
Sub overallstatus2()
overallstatus = "The overall status of machine is acceptable and most of machine
equipment positions have good status. However some machine equipment should inspect and {m x}
maintain. Machine maintenance is upon maintenance within 1-2 working days for some
machine equipment."
End Sub
Sub overallstatus3()
```

Fig. Q.12. CMIMS coding-2 (44)

```
overallstatus = "The overall status of machine is acceptable. Some machine
equipment has good status. Some machine equipment needs to inspect and maintain.
Machine maintenance is upon maintenance within 1-2 working days."
Sub overallstatus4()
overallstatus = "The overall status of machine is acceptable. Some machine
equipment has moderate status. Some machine equipment should fix. Machine maintenance within 1-2 working days is required."
End Sub
Sub overallstatus5()
overallstatus = "The overall status of machine is unacceptable. Some machine
equipment has moderate status. Some machine equipment needs to fix. Machine maintenance r is upon emergent maintenance."
End Sub
Sub overallstatus6()
overallstatus = "The overall status of machine is unacceptable. Some machine
equipment has moderate status. Some machine equipment has to emergent repair or
maintenance. Machine maintenance is upon emergent maintenance."
End Sub
Sub overallstatus7() overallstatus = "The overall status of machine is unacceptable. Some machine
equipment has poor status. Some machine equipment should fix or replace with new equipment. Machine maintenance is upon emergent maintenance."
Sub overallstatus8()
overallstatus = "The overall status of machine is unacceptable. Some machine
equipment has poor status. Some machine equipment needs to fix or replace with new
equipment immediately. Machine maintenance is upon emergent maintenance."
Sub overallstatus9()
overallstatus = "The overall status of machine is unacceptable. Some machine
equipment has very poor status. Some machine equipment must immediately fix or replace 
with new equipment. The emergent maintenance of machine is required."
End Sub
```

End Class

```
using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System. Web. UI. WebControls. WebParts;
using System.Xml.Linq;
using System. IO;
public partial class LoadFileHOT2FTS: System.Web.UI.Page
     protected void Page_Load(object sender, EventArgs e)
     protected void Button1 Click(object sender, EventArgs e)
          if (FileUpload1.HasFile)
               try
                    if (FileUpload1.PostedFile.ContentLength < 102400)</pre>
                         String filename = Path.GetFileName(FileUpload1.FileName);
FileUpload1.SaveAs(Server.MapPath("~/excel/HO2TFTS.xls"));
Label1.Text = "Upload status: File uploaded!";
                         Label1.Text = "Upload status: The file has to be less than 100 kb!";
               catch (Exception ex)
      Label1.Text = "Upload status: The file could not be uploaded. The following \pmb{\varepsilon} error occured: " + ex.Message;
          }
     protected void Button3_Click(object sender, EventArgs e)
          Response.Redirect("./excel/HO2TFTS.xls");
```

```
using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Ling;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using System. IO;
public partial class LoadFileLAIVFDTModel : System.Web.UI.Page
     protected void Page_Load(object sender, EventArgs e)
     protected void Button1_Click(object sender, EventArgs e)
          if (FileUpload1.HasFile)
                try
                     if (FileUpload1.PostedFile.ContentLength < 102400)
                          String filename = Path.GetFileName(FileUpload1.FileName);
FileUpload1.SaveAs(Server.MapPath("~/excel/LAIVFDT.xls"));
Label1.Text = "Upload status: File uploaded!";
                          Label1.Text = "Upload status: The file has to be less than 100 kb!";
                catch (Exception ex)
                     Label1. Text = "Upload status: The file could not be uploaded. The following ✔
      error occured: " + ex.Message;
          }
     protected void Button2_Click(object sender, EventArgs e)
          Response.Redirect("./excel/LAIVFDT.xls");
```

Fig. Q.15. CMIMS coding-4

*******	******	*****	*****	*****
***		Master Page		**
********	*******	******	*****	*****
	s MasterPage System.Web.UI.Masto	erPage		
**************************************	******	************ Default	*****	******
********	*******	********	******	******
Partial Clas	s _Default			
Inherits	System.Web.UI.Page			
End Class				

Fig. Q.16. CMIMS coding-5