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Central de Venezuela, sparked my interest in Mathematics & Computer Science.

• Special personal thanks to those artists, authors, philosophers and scientists that indirectly guided my

steps by enriching my life:

◦ Jorge Luis Borges [1899 - 1986]: by reading his opus I had my very personal World-Wide Web

back in the 1970s; with every page and reference, an opportunity to search for more, and more and

more!

◦ Lawrence Durrell, for The Alexandria Quartet.

◦ W. Somerset Maugham & Herman Hesse, for Larry, Lara, Demian and Siddhartha.

◦ J.R.R. Tolkien, pues no todos aquellos que andan errantes están perdidos.

◦ Ingmar Bergman, for The Seventh Seal (Swedish: Det sjunde inseglet) [1957].

◦ Bach, Handel, Mahler, Mozart & Puccini.

◦ ELP, Peter Gabriel, Genesis, King Crimson & Yes.

◦ Bertrand Russell, Alan Turing (do we need to ask why?), Kurt Gödel, John McCarthy, Alain
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Abstract

This doctoral thesis deals with a number of challenges related to investigating and devising solutions to the

Sentiment Analysis Problem, a subset of the discipline known as Natural Language Processing (NLP), follow-

ing a path that differs from the most common approaches currently in-use. The majority of the research and

applications building in Sentiment Analysis (SA) / Opinion Mining (OM) have been conducted and developed

using Supervised Machine Learning techniques. It is our intention to prove that a hybrid approach merging

fuzzy sets, a solid sentiment lexicon, traditional NLP techniques and aggregation methods will have the effect

of compounding the power of all the positive aspects of these tools.

In this thesis we will prove three main aspects, namely:

1. That a Hybrid Classification Model based on the techniques mentioned in the previous paragraphs will

be capable of:

(a) performing same or better than established Supervised Machine Learning techniques -namely,

Naı̈ve Bayes and Maximum Entropy (ME)- when the latter are utilised respectively as the only

classification methods being applied, when calculating subjectivity polarity, and

(b) computing the intensity of the polarity previously estimated.

2. That cross-ratio uninorms can be used to effectively fuse the classification outputs of several algorithms

producing a compensatory effect.

3. That the Induced Ordered Weighted Averaging (IOWA) operator is a very good choice to model the

opinion of the majority (consensus) when the outputs of a number of classification methods are combined

together.

For academic and experimental purposes we have built the proposed methods and associated prototypes in

an iterative fashion:

• Step 1: we start with the so-called Hybrid Standard Classification (HSC) method, responsible for sub-

jectivity polarity determination.

• Step 2: then, we have continued with the Hybrid Advanced Classification (HAC) method that computes

the polarity intensity of opinions/sentiments.

• Step 3: in closing, we present two methods that produce a semantic-specific aggregation of two or more

classification methods, as a complement to the HSC/HAC methods when the latter cannot generate a

classification value or when we are looking for an aggregation that implies consensus, respectively:

◦ the Hybrid Advanced Classification with Aggregation by Cross-ratio Uninorm (HACACU) method.

◦ the Hybrid Advanced Classification with Aggregation by Consensus (HACACO) method.
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Chapter 1

Report Organisation

They say that during a dark night it is not
possible to know where to go without
technology; but, what if we happen to enjoy
the benefits of a starry night?

Unknown

Before we start to get into the body of work we will be presenting in this report, we thought that it was

adequate to show a high altitude view of the organisation of this document. Hence, we will mention the parts

that make this PhD thesis report and provide some information on what each of them encompasses. The

structure of this report is as follows:

Part I - Introduction & Background: Part I supplies a gentle introduction to the topic of Sentiment Analysis

(SA) and Opinion Mining (OM), in order to provide context for our research. It includes a literature

review of the SA discipline, that in turn contributed to the effort presented in article [10].

Part II - Motivation, Hypothesis & Methodology: Part II describes the motivation behind our research as well

as our initial research hypothesis, which became the drivers behind the work we have done and that has

been documented in this report. We explain as well the research approach that was followed providing

details on how the experiments were conducted, what data sets were used and how the results were

analysed.

Part III - Methods, Techniques & Tools: The main methods, techniques and tools utilised in the sentiment

analysis discipline and research area are addressed in Part III. We present the two main approaches that

are current: the lexicon-based approach and the machine learning approach. Coverage related to other

techniques and tools that we have utilised in our research, especially on the aggregation side, are included

as well in this part. We have included the main techniques and elements and have provided plenty of

references for the curious readers looking for more details. The specifics of how some of the techniques

described here will be utilised, as well as some others tools to be introduced in the Proposed Solution

chapters, will be addressed in Part IV. Having said that, there will be some inevitable overlapping between

Part III and Part IV, with Part III presenting generic ideas about a given topic, method or technique,

and Part IV covering the same topic in more details and discussing as well specific implementation

information. Material from this Part III contributed to articles that have been published already by the

author of this report. See references [13, 17, 18].

Part IV - Proposed Solution & Experimental Results: The proposed solutions we have devised as a conse-

quence of this research effort is presented in Part IV, along with the results associated with the experi-

ments that have been conducted. As we have taken an incremental approach to building the proposed
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solution(s), the actual methods are presented accompanied by their respective experimental results. Es-

pecially, because the material here developed became central to a number of articles published by the

author in journals and conferences’ proceedings. Significant segments of material presented in this

Part IV, contributed to articles where the author of this report was the main contributor. See references

[10, 11, 12, 13, 14, 15, 16, 17, 18]. Special attention deserve Chapters 14, 15 and 16, where the match

with three published journal papers is very high. We have proposed one main method and two other ones

that can be seen as enhancements to the first one. These three methods that embody the most significant

contributions we have made to the body of knowledge of the Sentiment Analysis discipline, were shared

with the research community through the following journal articles before we completed this thesis’ re-

port. The devised methods and associated articles are the following:

1. A Hybrid Approach to the SA Problem at the sentence level, presented in reference [13] and covered

in Chapter 14 of this report.

2. An enhancement to the method described in (1) above, founded on Aggregation by Cross-ratio

Uninorm, shared in reference [18] and presented in Chapter 15 of this document.

3. An extension to the method described in (1) above, based on Aggregation by Consensus, discussed

in reference [17] and fully described in Chapter 16.

Part V - Conclusions & Further Work: Part V includes our conclusions and some recommendations related

to possible further work. Nevertheless, keep in mind that each of chapters 14, 15 and 16, are self-

contained in terms of the description of the proposed solution, its experimental results and their associated

conclusions & further work. As we have ended up devising one common solution on top of which three

other methods have been built, Part V summarised the findings already discussed in Part IV. Material

from this Part V contributed to articles that have been published already by the author. See references

[10, 11, 12, 13, 14, 15, 16, 17, 18].

Part VI - Appendices: We close this thesis’ report with the Appendix part, including full references to work

published by the author, Scheme & Python code samples from the proof-of-concept prototypes, data

preparation processes and code utilised and examples of the outputs of the different classification meth-

ods.
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Chapter 2

Sentiment Analysis Main Concepts

Without an alphabet, abstraction becomes an
exercise in futility.

Unknown.

A significant part of the content of this chapter was used in an article published by the author in 2015. See

reference [10]. In this chapter we will discuss the main components of Sentiment Analysis (SA) -or Opinion

Analysis- as a discipline. It will go deeper on what the main challenges are and it will stress topics that we

would like to concentrate as areas of research.

2.1 Key Ideas

SA is a discipline that has seen a lot of activity since approximately the year 2000 [133]. The main reason

for that, so it seems, is the proliferation of social media and its tools (i.e. Tweeter, Facebook, LikedIn, etc.),

that has made the availability of information about how people feel about things more readily available to the

masses. In addition, companies and other profit and non-profit organisations have accumulated a vast amount

of data as well on how their employees or customers feel about the products and services they receive from

the aforementioned organisations. Even Human Resources divisions, are keen on understanding whether a

potential employee will be loyal and become a long-term member of the company or she would leave after

receiving training and benefits.

In a way, a discipline that started as a research topic in Natural Language Processing (NLP) in Computer

Science schools around the world, has now made a transition to other departments in academia and the industry,

like those more related to business and management schools. The reason is very simple: everyone wants to

maximise their profits, and getting to understand what people think about oneself and one’s company could

make a big difference business-wise.

According to some respected researchers [133, 139], there are many challenges lying ahead for SA. Many are

the reasons, but the fact that NLP has been around for a long time but only has focused on Opinion Analysis

recently, suggests the intrinsic difficulties with this discipline.

Sentiment Analysis combines in its very own way the application of NLP, Computational Linguistics and Text

Analysis. A definition attributed to Michelle de Haaff, in her article “Sentiment Analysis, Hard But Worth

It”, published in her blog appeared at the web page CustomerThink (2010), is as follows: “classifying the

polarity of a given text at the document, sentence, or feature or aspect level, whether the expressed opinion in a

document, a sentence or an entity feature or aspect is positive, negative, or neutral”. She goes ahead as well to

loosely define Advanced Sentiment Analysis, like the one that goes ‘beyond polarity’ sentiment classification,

and it looks, for instance, at emotional states such as ‘angry’, ‘sad’, and ‘happy’.
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Understanding the emotions being conveyed by a given source, may it be a tweet, a document, a report, a

blog, a segment of a politician speech, etc., has proven to be an important activity for humans. However, when

volumes of opinions are many, human processing becomes a challenge, hence the need for automated processes

to extract sentiments from a variety of sources that keep growing in volume, complexity and diversity.

2.2 Sentiment Analysis Basics

Sentiment Analysis can be performed at many levels and at different complexity standards. According to Bing

Liu [133], the following are the most common approaches to this topic and the most used techniques in the

domain.

2.2.1 Level of Analysis issues

According to Liu [133] there are commonly 3 different levels of analysis:

• Document level.

• Sentence level.

• Entity and Aspect level.

Depending on how deep one would like to get into a specific technical issue one would have to decide the level

of analysis that will become the focus of the research. Kumar & Sebastian [123] represent graphically the levels

of sentiment analysis, using a slightly different approach, as in Fig. 2.1 below.

Fig. 2.1. Granularity Levels of Sentiment Analysis

Let us detail a bit more what each of those boxes in Fig. 2.1 mean in terms of Sentiment Analysis. The

definitions that follow have been mostly taken from [123, 129].

• Document Level: in this case we consider the document under analysis as a basic unit for which we need

to determine a sentiment orientation. In order to do this, some assumptions are made, like presuming that

5



2.2. Sentiment Analysis Basics Chapter 2. SA Main Concepts

every text in the document has got as object of its opinion the same object, and that the opinion-holder

is the same as well. Clearly, there could be problems with these assumptions. For example: what if

the document is a mix of opinions with several opinion-holders? We will not develop this case at the

document level in this report, as our research focuses on SA at the sentence level.

• Sentence level: as addressed by [123], at sentence level, research has been done on detection of subjective

sentences in a document and then, the sentiment orientation of these subjective sentences is determined.

It seems that the main challenge at this level of analysis is that both, positive-meaning and negative-

meaning sentences, may contain opinion words, making the differentiation process really hard. We have

focused our research on SA at the sentence level and it will become a central aspect of this report.

• Word Level: in this situation, we usually focus on looking for the ‘adjective’ part-of-speech. Neverthe-

less, ‘adverbs, nouns and verbs,’ could as well convey a sense of subjectivity and could carry opinions.

Kumar & Sebastian [123] mention that the automatic annotation of sentiment at the word level are either

dictionary-based approaches or corpus-based approaches. We are covering this option in our research as

it is a building-block for SA at the sentence level. See Section 2.2.2 for more details.

• Feature based: the common example to illustrate this level of sentiment analysis is to consider a product

review where the author talks about the positives and negatives of a product. As expected, the reviewer

may like some features while dislike others, however the general opinion of the product may be positive or

negative [123]. The other levels of sentiment analysis described above cannot address the complexities

of the example mentioned. Hence, the opinion analysis process must be conducted at a feature based

level. We are not covering this option in our research.

2.2.2 Sentiment Lexicon & its challenges

A sentiment (opinion) lexicon is defined as a list of positive and negative opinion words or sentiment words for

a specific language (Our case: English) [102]. It is assumed that such a lexicon could be built as well for any

other language that one desires to use. According to [82], the sentiment lexicon is the most important resource

for most crucial analysis algorithms.

Weichselbraun et al. [230] addressed the importance of context when producing sentiment lexicons due to their

perception that automated systems have a marginal ability to resolve ambiguities. Wilson et al. [237], Lau et

al. [126] and Lu et al. [81] are quoted in [230] and they provide respectively ample support for the importance

of context on the potential polarity of words. They argue that language models based on inference tend to do

better than other models that do not count with the ability to process context.

As the reader has already probably guessed, the importance of producing an accurate sentiment lexicon is

that any polarity / sentiment evaluation to be performed will be based on such a lexicon. In Chapter 15,

Section 14.1.1 we will explain how to enrich a sentiment lexicon with words with good-quality polarity scores

and part-of-speech (POS) tags.

2.2.3 Natural Language Processing (NLP) issues

We must always keep in mind that sentiment analysis is a Natural Language Processing (NLP) problem. As

such, many of the issues in NLP are as well problems that must be addressed when dealing with sentiment

analysis problems. In [26], Bird et al. address the need for a NLP toolkit that could be used efficiently in edu-

cation and research, providing as well the basic information required to start doing NLP, and the NLP features
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included in the so-called Natural Language Toolkit, or NLTK (NLTK is a platform for building computer pro-

grams in Python -a multi-paradigm high level programming language, designed by Guido van Rossum, in the

late 1980s- to work with human language data). According to Bird et al. [26] “NLTK is suitable for linguists,

engineers, students, educators, researchers, and industry users alike”. Some of the sub-problems that still are

the object of further research attention by the NLP community are:

1. Coreference resolution, as mentioned in [133] (not part of our research).

2. Negation handling, as mentioned in [133] (addressed in our research in Section 14.1.2.1).

3. Word sense disambiguation, as mentioned in [133] (addressed by our research in Chapter 14).

4. Meaning extraction (partially addressed in our research when sentiment polarity is extracted; see Sec-

tion 14.1.2).

5. Optimised parsing, using both, statistical/stochastic and fuzzy approaches (not part of our research).

As we can see, the proper resolution or any added improvements to any of the challenges above described

will have a positive effect in advancing the understanding of the sentiment analysis problem. If we consider

the stages of analysis in processing natural language as depicted by Robert Dale in his article published in the

Handbook of Natural Language Processing [67], see Fig 2.2, there is a lot of room to better certain stages of

the process as shown in the graphic just mentioned, as at least three -if not four- of the stages presented in the

graphic below, from bottom to top, would be very influential in any sentiment analysis process that could be

incorporated once the syntactic analysis stage has been at least partially completed.

Let us expand a bit on the contents of the boxes shown in Fig. 2.2.

• Tokenization: converts a string of characters into words, symbols, sentences or other items conveying

some sort of meaning, called tokens.

• Lexical analysis: usually deals with generating a lexicon and with applying tagging to the tokens already

generated in the previous step. Most often, the tagging process is called Parts of Speech tagging, or

PoS (parts of speech are nouns, pronouns, adjectives, conjunctions, verbs, adjectives and other related

categories).

• Syntactic analysis: provides a structure for every single sentence in a given text, including parsing.

• Semantic analysis: aims to find the meaning of sentences depending on the context.

• Pragmatic Analysis: covers the study of what is intended by a speaker and how it could be interpreted by

the listener.

If it is true that most of the open issues with NLP belong in Semantic & Pragmatic analysis, there is room for

improvement as well in the Lexical & Syntactic analysis phases, with Tokenization being somehow in a mature

state at this point. Lexical & Syntactic analysis, through PoS, Parsing and Lexicon generation are key topics if

one desires to be successful in Sentiment Analysis. Hence, we will consider the latter tasks as elements to be

further analysed (see Appendix D: Data Preparation & Processing and Section 14.1.1).

2.2.4 Media selection issues

The media upon which Sentiment Analysis is applicable is extensive and it has come of age because of Web

2.0 applications. As such, possible media or sources for Sentiment Analysis are, among others:

7
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Fig. 2.2. The stages of analysis in processing natural language

• Review sites (Products Reviews by costumers, etc.).

• Web-logs (better known as Blogs).

• Forums.

• Social networks (Twitter, LinkedIn, Facebook, etc.).

• Newspapers articles.

• Stock market & Financial (national and private financial institutions alike) Reports.

• Polls, Political Communiqués and/or Political Reports or Analysis.

• E-mails and internal communication in corporations.

• Others.

2.2.5 Opinions: formal definition

Opinions are easy to understand for human beings, but it is not that easy for a computer to have the same level

of understanding. As such, we must try to define formally ‘an opinion’ so we know what we are talking about.

Bing Liu [132] defines an opinion. In an opinion we find the following items:

8
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1. Opinion targets: entities and their features.

2. Sentiments: positive or negative.

3. Opinion holders: persons who hold the opinions.

4. Time: when opinions are expressed.

Opinions then can be: Regular, either (a) Direct opinions, (b) Indirect opinions, or Comparative Opinions. A

regular opinion -which is the type of opinion we are concentrating on for our research, is defined as a quintuple:

(e j,a jk, soi jkl,hi, tl) (2.1)

where

• e j is a target entity.

• a jk is an aspect/feature of the entity e j.

• soi jkl is the sentiment value of the opinion from the opinion holder hi on feature a jk of entity e j at time

tl. soi jkl is positive, negative or neutral, or more granular ratings.

• hi is an opinion holder.

• tl is the time when the opinion is expressed.

Bing Liu [132] provides a numbers of caveats to this definition, though:

• Although introduced using a product review, the definition is generic enough, in the sense that is appli-

cable to other domains, e.g. politics, social events, services, topics, etc.

• (e j,a jk) is also called the opinion target

• The five components in (e j,a jk, soi jkl,hi, tl) must correspond to one another.

In our research, we will focus on obtaining the third component (soi jkl) in Liu’s definition of an opinion 2.1,

using only the first two components (e j and a jk), regardless of whom the opinion holder is and the time at which

the action was performed.

Taboada et al. [208], establishes an important differentiation in clarifying the concepts of semantic orientation

and sentiment analysis. In [208] the authors refer to sentiment analysis as “the general method to extract sub-

jectivity and polarity from text”, whilst semantic orientation is defined as “the polarity and strength of words,

phrases, or texts”. These concepts and Liu’s formal definition of Sentiment Analysis are key to the under-

standing on this discipline. Bing Liu [132] describes the Sentiment Analysis task as requiring to “Structure the

unstructured”, as Natural Language is regarded as unstructured data. According to Liu, the problem definition

should provide a structure to the unstructured problem.

• Key tasks: identify key tasks and their interrelationships.

• Common framework: provide a common framework to unify different research directions.

• Understanding: help us understand the problem better.

Again, according to Bing Liu [132] in general terms the problem of Sentiment Analysis has two different

abstraction aspects: (1) Opinion definition (which we have already addressed in 2.1, and (2) Opinion summa-

rization (opinions are subjective, and we need opinions of a significant amount of people, hence, some kind of

summarisation will be required).

9
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2.2.6 Key tasks to be performed in SA

To summarise, the main components of the process of extracting sentiment from a given source, as taken from

Kumar & Sebastian [123], are:

• Subjectivity Classification: As per [123], a document is a collection of sentences that may, or may not,

express the author(s) opinion -those are called subjective-. The sentences that are factual in nature are

called objective. Usually, both types are present in a document. Subjectivity classification is [123]

“the task of classifying sentences as opinionated or not opinionated”. As such, S S ∪ S O = S , where S

represents all sentence in a given document, S S is the set of subjective sentences in S , and S O the set of

objective sentences in S .

• Sentiment Classification: after finishing the task of identifying whether a text is opinionated, then the

polarity of the opinion must be found. Usually, classifying an opinion as either positive or negative is

enough (Values = [positive, negative]). However, sometime a multi-class classification might be used,

with possible values of Values = [extremely negative, negative, neutral, positive, extremely positive].

This is the focus of our research.

• Complementary Tasks.

◦ Opinion Holder Extraction: depending on the type of application of sentiment analysis, it would

be necessary to identify the opinion holder. In some types of documents, there could be multiple

opinion holders expressing their opinions about different subjects, hence the need to identify in

those cases who is the opinion holder in every case.

◦ Object/Feature Extraction: a task that may be necessary to execute -or not- depending of the type of

document being processed, is the identification of the target entity about which opinions are being

issued. For instance, in social media is not uncommon that a number of issues (i.e. blogs) may be

addressed, so it is key to get to know about which object/feature opinions are being expressed.

A graphical representation of the described SA tasks follows in Figure 2.3 (dashed boxes represent optional

tasks). Even though Kumar and Sebastian [123] do not discuss specifically the concept of graduality of po-

Fig. 2.3. Tasks of Sentiment Analysis
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larity, we believe that computing the intensity of the subjectivity polarity would be valuable and should be an

important component of the fundamental tasks of sentiment analysis.

2.3 NLP, Machine Learning (ML) and SA

Machine Learning is a discipline that is extensively applied in the field of Sentiment Analysis. Bing Liu, in

[133], mentions that “We probably relied too much on Machine Learning” when referring to how limited our

understanding is about the Sentiment Analysis problem. Having said that, Machine Learning has played a

fundamental role in both, NLP and Sentiment Analysis (SA). In [129] Bing Liu mentions the different ma-

chine learning approaches applied in Sentiment Analysis while Kumar & Sebastian address multiple issues

in Sentiment Analysis and covered Machine Learning techniques in [123, 124] respectively. In [165] Pang et

al. address specifically the use of Supervised Learning techniques and Turney [212] covers an example of an

Unsupervised Learning approach. All in all, Machine Learning (ML) has become a fundamental tool in Sen-

timent Analysis, as it grew out of the text mining and classification discipline. As such, we will cover some

fundamental aspects of ML in this document in Section 8.1. Kumar & Sebastian [123] quote “Most researchers

have defined the Sentiment Analysis problem as essentially a text classification problem and machine learning

techniques have proved their dexterity in resolving the sentiment analysis tasks”. And then they continue by

saying that machine learning techniques require the representation of the key features of text or a documents

before doing the processing. These key features are represented as feature vectors which are used for the clas-

sification algorithm. According to [123], the main difference between supervised and unsupervised approaches

are:

• Supervised Learning (Chapter 9): “Machine Learning classification relies on the training set used, the

available literature reports detail classifiers with high accuracy, but they are often tested on only one

kind of sentiment source, mostly movie review, thus limiting the performance indication in more general

cases”.

• Unsupervised Learning (Chapter 10): “use sentiment driven pattern to obtain labels for words and

phrases”.

Considering the importance that most researchers assign to Machine Learning, we have further investigated the

topic as reported in Chapters 8, 9 and 10.

2.4 Other research directions for SA

There are some other directions in the research world that could be explored with the intention of applying

them to the Sentiment Analysis problem. We will discuss two of them: fuzzy sets / logic (which has been used

previously in NLP) and Sentic Computing (which is a newer approach; see Chapter 14).

2.4.1 Fuzzy Sets / Logic contribution to NLP and SA

In brief, there have been some successful applications of Fuzzy Sets/Logic theory to both, NLP and Sentiment

Analysis. In the literature we find research in the use of Fuzzy Logic in Anaphora Resolution (given an ex-

pression S i, its interpretation depends upon another expression S j in context). As a reference, see the work of

Witte & Bergler [241]. Subasic & Huettner [205] used fuzzy sets to analyse affect in text by introducing the

concept of fuzzy semantic typing. Named Entity recognition has been addressed as well using fuzzy techniques,
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as evidenced by the research of Kanagavalli & Raja [112]. At the same time, Nadali et al. [155] address the

problem of sentiment classification of customer reviews using a fuzzy sets approach. As fuzzy techniques are

at the heart of our research, we will address the topic in full details in Chapter 12.

2.5 Multiple research paths in SA still not explored in full

It is clear that the challenges present in the Sentiment Analysis discipline are many. According to some key

researchers in the area (Liu [130, 133], Feldman [82], Pang & Lee [164] and Manning et al. [139], among

others) the future of the research in this area lies on exploring as many options as possible among the many

challenges available and explore many sub-domains (customer reviews, politicians blogs, marketing sites, com-

pany’s opinion boards, etc.).

According to Cambria et al. [43] “Mining opinions and sentiments from natural language is challenging, be-

cause it requires a deep understanding of the explicit and implicit, regular and irregular, and syntactical and se-

mantic language rules. Sentiment analysis researchers struggle with NLP’s unresolved problems: co-reference

& anaphora resolution, negation handling, named-entity recognition, and word-sense disambiguation. Opinion

mining is a very restricted NLP problem, because the system only needs to understand the positive or negative

sentiments of each sentence and the target entities or topics. Therefore, sentiment analysis is an opportunity for

NLP researchers to make tangible progress on all fronts of NLP, and potentially have a huge practical impact.”

There are many topics of interest and challenges in Sentiment Analysis. Ronen Feldman [82], in his April 2013

article, focused on what he called the five specific problems in the field of sentiment analysis; namely:

• Document-level sentiment analysis.

• Sentence-level sentiment analysis.

• Aspect-based sentiment analysis.

• Comparative sentiment analysis.

• Sentiment lexicon acquisition.

According to Feldman [82], the architecture of a generic sentiment analysis system would somehow look like

the graphic presented in Fig. 2.4. At the same time Bing Liu [130] claims that the main technical challenges

for the multi-faceted problem that Sentiment Analysis represents, can be found among the topics below, which

are described with the help of the following paragraphs of text as an example:

“(1) Yesterday, I bought a Nokia phone and my girlfriend bought a moto. (2) We called each other when

we got home. (3) The voice on my phone was not clear. (4) The camera was good. (5) My girlfriend said that

the sound on her phone was clear. (6) I wanted a phone with good voice quality. (7) So I was satisfied and

returned the phone to BestBuy yesterday”

1. Object identification: discovering what is the object about which an opinion has been provided. In the

paragraph used as an example the objects are Motorola, abbreviated as ‘moto’ and Nokia. The noun

‘BestBuy’ corresponds to the name of the store; hence, it is neither part of the comparison processed that

the reviewer is providing nor an object in terms of the products’ comparison.

2. Feature extraction and synonym grouping: the features comment on in our example are ‘voice’, ‘sound’

and ‘camera’. According to [130] “Although there were attempts to solve this problem, it remains to be

12
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Fig. 2.4. Architecture of a generic sentiment analysis system, as per Feldman

a major challenge”. In addition, a feature can be referred to in different ways, i.e. ‘voice’ and ‘sound’

refer to the same feature in our example above.

3. Opinion orientation classification: the objective of this task is to find out whether there is an opinion on

a feature in a given sentence. If there is one, is it positive, negative or neutral? Again, Bing Liu [130]

claims that existing approaches are more often than not based on supervised and unsupervised methods.

One of the key issues is the identification of opinion words and phrases, as they are key in sentiment

analysis. It seems that the main challenge is that there are an unlimited number of expressions that

people could use in order to express opinions, and depending on the domains they can be very different.

Even when dealing with sentences in the same domain, same words may convey different opinions in

different contexts.

4. Integration: “Integrating the about tasks is also complex because we need to match the five pieces of

information in the quintuple. That is, the opinion ooi jkl must be given by opinion holder hi on feature

f jk of object o j at time tl”, as per [129, 130]. The quote just presented corresponds to the definition of

a direct opinion as “a quintuple (o j, f jk,ooi jkl,hi, tl), where o j is an object, f jk is a feature of the object

o j, ooi jkl is the orientation of the opinion on feature f jk of object o j, hi is the opinion holder and tl is

the time when the opinion is expressed by hi”. In addition, Bing Liu mentions that the fundamental

problem here is that NLP techniques that still need improvement must be applied to resolve challenges

like parsing, word-sense disambiguation, and co-reference resolution. The example provided in [130]

are: (i) understanding -on the example paragraph above- depending on the context what is ‘my phone’

and ‘her phone’ in sentences (3) and (5); (ii) to which phone does the camera belong to?; (iii) in sentence

(4), “The camera was good”, we do not have a pronoun and neither the sentence mentions a specific

phone. According to Bing Liu [129, 130] these are classical examples of co-reference resolution, the
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latter being a problem that, despite the fact that it has been studied by the NLP community for a long

time, still does not offer an accurate resolution.

2.6 Chapter Summary

In closing this chapter we would like to share the sub-topics that according to those that seem to be the most

recognised researchers in the area [43, 82, 102, 129, 130, 133, 164], are still key challenges for the sentiment

analysis discipline:

• Named Entity Recognition: what is the person actually talking about. A common example used in the

literature is the title of the movie “300”. i.e. It is referring to a group of Greeks or a movie?

• Anaphora Resolution: expressed in a more direct way, what a given pronoun or a noun phrase refers to.

Let us look at the sentence “We watched a film and went to dinner; it was awful”. What does “it” refer

to?

• Parsing: what is the subject and object of the sentence? Which one does the verb refer to? Which one

does the adjective actually refer to?

• Sarcasm & irony identification: Let us review the sentence “Great phone! The battery last a couple of

hours”. Clearly, the battery life is bad, and the reviewer is offering a negative recommendation about the

phone being mentioned.

• Use of abbreviations, poor spelling, punctuation or grammar, lack of capitalisation, etc.

• Sentiment (Opinion) Lexicon acquisition.

• Sentiment Polarity and its graduality or intensity.

• Negation handling.

• Aspect-based & Comparative sentiment analysis.

• Effective Classification of multiple opinions.

In this chapter we have covered the main ideas behind Sentiment Analysis, its main characteristics and per-

ceived research challenges. In the next chapter we will address the state of the art in the SA discipline.
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Chapter 3

State of the Art in Sentiment Analysis

“Salomon saith, There is no new thing upon
the earth. So that as Plato had an
imagination, that all knowledge was but
remembrance; so Salomon giveth his
sentence, that all novelty is but oblivion.”

Francis Bacon (1561-1626). Essays, Civil
and Moral. The Harvard Classics.

1909-1914. LVIII-Of Vicissitude of Things.

A significant part of the content of this chapter was used in an article published by the author in 2015 (see

reference [10]). As Opinion Mining sits at the confluence of several sub-disciplines -see Chapter 2- (funda-

mentally NLP, Computational Linguistics, Text Data Mining and AI) its origins cannot be tracked down to a

specific date, but rather to a collection of moments in time that defines progress in the sub-areas mentioned

above. Most of the important work in syntax and formal languages is attributed to Noam Chomsky [57, 58]

and his revolutionary work that occurred between the late 1950s and the late 1960s. Chomsky laid down the

bases for modern languages & grammar theory, syntax theory and the concept of transformational grammar as

well. In turn, these advances led to improvement in the automatic processing of syntax and grammars by using

productions and recursive calls. Parsing and Compiling theory, that today is taken for granted by many, was

positively influenced by the work of Chomsky and others that followed.

Already in 1872, Charles Darwin had published his work ‘The Expression of the Emotions in Man and Ani-

mals’, where he mainly addressed aspects of behaviours that are genetically determined. This is probably the

first work related to determining the origin and characteristics of emotions. Many other authors, mostly in the

Psychology camp, have augmented since then the knowledge we have today about emotions as a fundamental

human trait.

In 2013, the authors of [9] attempted to provide some insights in the evolution of Opinion Mining / Sentiment

Analysis. In principle, they see the evolution of Opinion Mining to have happened in phases, as follows:

1. Text interpretation phase.

2. Low-level opinion annotation phase.

3. Difference between subjectivity and objectivity phase.

4. Web data mining applications phase.

5. Lexical resources phase.
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In the following sub-sections we will focus on showing how the discipline has evolved, but at a higher level than

the work of Anbananthen & Elyasir [9]. We would like to approach this summary both ways, chronologically

and by the techniques that have been introduced into the discipline of Opinion Mining as we understand it today.

As we approach the progress in this discipline by decades, it will become apparent whether the techniques

incorporated are related to text interpretation, lexical resources, or otherwise.

3.1 Research time-line in SA/OM

3.1.1 1970 through 1979

The 1970s witnessed a lot of progress related to refining syntactic techniques and generating more advanced

parsing and compiling ideas that did reflect in more efficient algorithms. Making sure the proper parsing tree is

generated is a fundamental step before more complex tasks can be started. In this arena, the work of Hopcroft

[101] and Aho & Ullman [5, 6] is decisive, despite the fact that it concentrates in programming languages

instead of natural languages. It is reasonable to say that Aho, Hopcroft & Ullman brought rigour and formality

to the parsing techniques world.

3.1.2 1980 through 1989

It is possible to argue that no remarkable work applicable to Opinion Mining was done until the 1980s. The

work of Banfield [23] seems to have been instrumental. The so-called Banfield’s theory “proposed the use of

subjective and objective sentences as indicators, searching the text by providing simple queries and using the

psychological element as an important factor for natural language” as mentioned by [9]. In 1983, Winograd

[240] published work on language as a cognitive process that started a wave of further research into the cog-

nitive aspects of emotions. In 1987, Ortony et al. [160] published a landmark article called The psychological

foundations of the affective lexicon, along with his book The Cognitive Structure of Emotions [161] published

in 1988. These pieces of work are a common reference to building an affective/sentiment lexicon (see Sec-

tion 14.1.1) and have become important pieces of the puzzle in Opinion Mining.

Let us list the main concepts and/or techniques introduced during this decade in the context of computer assisted

activities in NLP somehow leaning towards what today we call Opinion Mining.

• Word sense: a word may have multiple meanings and the context would define the right one [236].

• Subjectivity Vs. Objectivity: categorisation of sentences into subjective or objective -or even neutral-.

Original concept apparently firstly documented by Ann Banfield [23].

• Strategies for Natural Language Processing: Carbonell [47] produced an important piece of work related

to using computational techniques in NLP.

• Structure of Emotions: serious work concerning the structure of emotions was performed and findings

published. Morgan & Heise [153] introduced a number of important concepts that would have key

ramifications in this research field.

• Cognition and emotions: Ortony et al. [161] produced the seminal work entitled “The Cognitive Structure

of Emotions” that defines a new path from the psychological perspective on emotions and the cognitive

process associated to them.
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3.1.3 1990 through 1999

The work of Charniak [50, 51] and separately the contributions of Abney [1] and Manning & Schütze [140]

were very influential as they incorporated the use of statistical methods in Natural Language Parsing, Linguistics

and more generically into NLP. In [95], Hearst et al. present the so-called ‘Text-Based Intelligent System’

that focuses on the concept of directionality (e.g. is the agent in favor of, neutral, or opposed to a given

event?). The authors claim that, with their method, sentence meaning is mapped to a metaphorical model

that is self-contained as no external references are required to find the directionality of a given sentence or

paragraph. In [232, 233] the concept of extraction of subjective words is articulated properly, to the point

that the authors even proposed a method to determine the beliefs of the characters in the narrative, once the

subjective terms have been identified. In 1997, Cardie [48] produces a survey of diverse empirical methods used

for information extraction. He discussed the architecture of an Information Extraction System and presented

concepts -originated by other authors- like tokenization and tagging, sentence analysis, extraction, etc. as

well as a good view on the use of a corpus or annotated corpus and learning algorithms. A landmark paper

was published in 1997 by Hatzivassiloglou & McKeown [92] that addresses the possibility of predicting the

semantic orientation of adjectives. As it becomes apparent, the semantic orientation of adjectives carry an

important weight on determining the semantic orientation of phrases. Towards the end of the 1990s some

researchers started looking at the use of fuzzy reasoning in Opinion Mining. Kruse et al. [122] surveyed

the application of fuzzy methods in Data Mining. In 1991, Miller and Charles [149] discussed what they

called the contextual correlates of semantic similarity, advancing the field even more when they researched

the basis of semantic similarities in a given context. In 1990, G.A. Miller et al. [147] gave to the research

community WordNet: an on-line lexical database of English. As presented at http://wordnet.princeton.

edu/, in WordNet [147] “Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms

(synsets), each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and

lexical relations. The resulting network of meaningfully related words and concepts can be navigated with a

browser. WordNet is also freely and publicly available for download. WordNet’s structure makes it a useful

tool for computational linguistics and natural language processing”. This development would prove to be

instrumental in the progress of the Opinion Mining discipline. In 1994, Eric Brill [36] published a piece of work

about the transformation-based Part of Speech Tagging. The concept of Part-of-Speech was pushed forward and

new ideas were put on the table in order to improve methods for part-of-speech tagging. This technique would

become key to properly identify the different parts and component of sentences in order to build algorithms that

would focus on extracting meaning and orientation out of sentences. The main achievements of this decade

could be summarised as:

• Statistical Techniques: use of statistical techniques in order to improve the quality and accuracy of the

process of generating parsing trees and other linguistic tools and artifacts [1, 50, 51, 140].

• Directionality: the concept of ‘directionality’, better known nowadays as orientation or polarity, is in-

troduced by [95]. Other authors contributed as well, but in principle the origin of the idea can be tracked

down to Hearst and the Palo Alto Xerox team.

• Annotated Corpus: the introduction of an annotated corpus, tokenization & tagging, as well as other

syntactic analysis tools achieve an adequate level of maturity as covered in [48]. Key research work that

added to this space are [77, 157], among others.

• Semantic orientation of adjectives: the prediction of semantic orientation of adjectives and sentences saw

an important development in the late 1990s mainly through the work of Hatzivassiloglou et al. [92].
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• Semantic similarity: the ideas behind semantic similarities when a given context is provided are advanced

[149].

• WordNet, an on-line lexical database of English: a lexical database of the English language is created

and made public [147].

• Transformation-based Part of Speech Tagging: the concepts and techniques associated to identifying

part-of-speech efficiently and accurately have matured and their use become more common in different

research areas [36].

3.1.4 2000 through 2016

With the beginning of the years 2000s, the Opinion Mining / Sentiment Analysis discipline starts an accelerated

development process. Bing Liu is one of the most respected researchers in Opinion Mining. His article, Senti-

ment Analysis: A Multifaceted Problem [130], addresses the complexities and multiple faces that this discipline

can show. Then, he published his book Sentiment Analysis and Opinion Mining [133] that presents the most

updated version of the discipline (2012). Pang & Lee [164] had published four years before their book Opin-

ion Mining and Sentiment Analysis that until 2012 was the most complete work in the area. In 2001, Subasic

& Huettner [205] released the most important contribution we are aware of to the use of Fuzzy Sets / Logic

principles in Opinion Mining. Since then, others have followed in their footsteps, but certainly, Fuzzy Sets

Theory has been so far a bit of an outsider in the research field for Sentiment Analysis. Jusoh & Alfawareh

[108] released in 2013 research work where they applied fuzzy sets to Opinion Mining and some researchers

have started to think about potential applications of fuzzy sets in SA (see Chapter 12). We have mentioned

before the importance of WordNet. In 2006, Esuli & Sebastiani [80], published their paper on SentiWordNet, a

lexical resource specific to Opinion Mining. SentiWordNet assigns to each synset -sets of synonyms for groups

of English words- of WordNet three sentiment scores: positivity, negativity, or objectivity. In 2013, Ronen

Feldman [82], attempted to bring Sentiment Analysis to the front-page and published and article in Communi-

cations of the ACM, called Techniques and Applications for Sentiment Analysis [82]. This article has created

a lot of additional attention in the research community. New techniques have been showing up steadily, and

Cambria et al. [43], addressed this in their article New Avenues in Opinion Mining and Sentiment Analysis. In

combination with Cambria & Hussain’s book [41], the authors proclaim that new techniques, like the so-called

Sentic Computing, could offer some new lights into the Sentiment Analysis problem (in our research work

we will present experimental results based on Sentic Computing techniques [176] in Chapter 14). In 2010,

Dzogang et al. [74], published in the IEEE Fuzzy Systems journal, their article Expressions of Graduality

for Sentiments Analysis - A Survey. The team of authors included the presence of the prestigious researcher

Bernadette Bouchon-Meunier. In our opinion, the main idea behind the article, was to depict how it is neces-

sary, in order to be successful in Sentiment Analysis and related disciplines, to understand two key factors: (a)

the inclusion of the use of some fundamental emotions structure coming from the world of Psychology and (b)

the further looking into the potential fitness of fuzzy sets to model graduality in a proper way. We will explore

the latter further in our research in Section 14.1.3.

Many of the tools utilised in Sentiment Analysis to resolve subjectivity identification and polarity extraction

are based on some sort of Machine Learning technique. Most of the literature and bench-marking processes

established are based in Supervised Learning. However, some Unsupervised Learning techniques have been

very successful as well, as discussed in an influential article by Peter Turney [212]. In this article, an unsuper-

vised technique is described an applied successfully. The content of the paper is about Semantic Orientation

Applied to Unsupervised Classification of Reviews. The techniques are mostly based on the PMI-IR algorithm
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that is used to estimate the semantic orientation of a phrase. As described in Turney’s article “PMI-IR uses

Pointwise Mutual Information (PMI) and Information Retrieval (IR) to measure the similarity of pairs of words

or phrases”. One of the main criticisms towards unsupervised methods is the existing difficulty to dynamically

enrich the lexicon. Some other methods have been proposed, like the one presented by Banea et al. [22], where

a Bootstrapping Method for Building Subjectivity Lexicons for Languages with Scarce Resources has been

presented. Approximately at the same time, Ding et al. [71] published a paper presenting what they called a

Holistic Lexicon. More recently, in 2011, Taboada et al. [208] released an important article in the Computa-

tional Linguistic journal, entitled Lexicon-Based Methods for Sentiment Analysis, where they emphasised a

number of techniques for generating a quality lexicon. Hatzivassiloglou et al. had published in the 1990s a re-

markable article about determining polarity of adjectives. In 2000, they addressed the gradability of subjective

sentences based on adjective orientation [93]. Their findings are stressed again by Srivastaval et al. with their

article from 2010 [200], Effects of adjective orientation and gradability on sentence subjectivity. The latter

topic was extensively covered as well by Wilson, Wiebe & Hoffmann in 2005 with their paper Recognizing

Contextual Polarity in Phrase-level Sentiment Analysis [238]. In this case, beyond using adjectives as the main

part-of-speech to attempt recognising subjectivity, they look at the context as well using some specific tech-

niques they proposed in their work. In 2009, Wiebe et al. [239], addressed again the recognition of contextual

polarity with their article Recognizing contextual polarity: An exploration of features for phrase-level sentiment

analysis. The focus of the research is at the sentence / phrase level.

When one attempts to establish the orientation of the sentiment in a document, one is faced with the need for

summarising somehow all the content. Hu & Liu [102] published their article Mining and summarizing cus-

tomer reviews with the idea of addressing some techniques to effectively summarising opinions. On the same

topic, Suanmali et al. [203] proposed a fuzzy logic based method for improving the summarisation of text.

Pang et al. [165] released to the research community their paper Thumbs up? Sentiment Classification using

Machine Learning Techniques. The emphasis in this article is in supervised machine learning techniques, that

as mentioned before, have become the most used tools in Sentiment Analysis until today. On that subject, in

2012, Kumar & Sebastian [124] presented a very well documented survey on Supervised Machine Learning.

Again, the central time in the article is devoted to Supervised Learning tools, highlighting the apparent benefits

of using Support Vector Machines (SVMs). Realising as well that determining subjectivity is such an important

aspect of Opinion Mining, Bing Liu contributed in 2010 with a chapter to the Handbook of Natural Language

Processing. His article was entitled Sentiment Analysis and Subjectivity, stressing one more time the impor-

tance of differentiating between objective and subjective sentences. If it is true that it is less common, some

researchers have looked into the possibility of applying semi-supervised methods in machine learning, like the

case of Dalal & Zaveri [65], where they introduce the use of semi-supervised learning for opinion summariza-

tion and classification for online product reviews.

In 2013 we see a cluster of interest in applying fuzzy techniques to our research topic. Either to assist in resolv-

ing ambiguity in text, as the work of Kanagavalli & Raja [112], or the article published by Ahmad & Rana [4]

that offers a review of Fuzzy sets in Data mining. The latter, is more focused in the data mining discipline, but

it offers some insights on how fuzzy sets are used in a domain that is so tightly related to Sentiment Analysis.

A more focused approach in Sentiment Analysis using fuzzy sets, is the paper by Fu & Wang [88], where fuzzy

sets are used to model sentiment classification at the sentence-level for Chinese. In addition, in 2007, Khoury et

al. [116] released their article on using fuzzy set theory to drive the semantic understanding of general linguistic

items. Dalal & Zaveri [66] introduce in 2014 a method based on fuzzy linguistic hedges for opinion mining in

online user product reviews. At the moment of writing this paper, this one seems to be most recent contribution

of fuzzy methods to Opinion Mining / Sentiment Analysis.
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Later on, some mixed-methods start to flourish. For example, we have the work of Liu & Tsou [134], combin-

ing a large sentiment lexicon and machine learning for subjectivity classification. In this article the focus is

in using Supervised Machine Learning methods jointly with a qualified sentiment lexicon. We believe that the

future of research in Opinion Mining is probably bound to lean towards hybrid methods. On the same token,

Wiebe & Riloff [235] proposed a method to do simultaneously subjectivity analysis and information extraction.

Their claim is that doing one enables the other. In 2011, the interest in fuzzy methods flares up again, with the

publishing of a research by van der Heide et al. [219], Computational Models of Affect and Fuzzy Logic. As the

title suggests, the authors cover the topic of modelling affect through applying fuzzy logic. Other researchers

have focused on using fuzzy logic only for determining the strength of a pre-established opinions in web re-

views. That is the case of the work from 2011 by Kar & Mandalof [113]. An attempt to combining together

two or more methods is due to Poria et al. [176].

For some time, the focus of identifying subjectivity by analysing adjectives was the standard. However, verbs

and nouns are capable as well of conveying an emotion or sentiment. The work of Maks & Vossen [136] fo-

cuses on exploring the analysis of verbs to create a verb lexicon that would aid on establishing sentiments in

opinion mining applications. Subrahmanian & Reforgiato Recupero [206] present a paper where they com-

bine adjective, verbs and adverbs in a effort to improve subjectivity classification. The article is called AVA:

Adjective-Verb-Adverb Combinations for Sentiment Analysis. We believe that using all of these three com-

ponents of part-of-speech simultaneously may contribute to a more reliable subjectivity polarity classification

process. In 2012, Nguyen et al. [249] divulge their paper Linguistic Features for Subjectivity Classification.

The authors reason as follows: “features play the most important role for getting accurate subjective sentences.

In this paper, we will enrich features by using syntactic information of the text. From our observation when

investigating opinion evidences in the texts, we will propose syntax-based patterns which are used for extract-

ing rich linguistic features” [249]. As they combine the new features with conventional ones obtained from

already established research lines of work, their method can be considered somehow as a hybrid approach.

Mudinas et al. [154], presented their article Combining Lexicon and Learning Based Approaches for Concept-

level Sentiment Analysis in 2012. They claim that their proposed system combines together concept-level

sentiment analysis and opinion mining lexicon-based and learning-based approaches. This is another sample

of researchers attempting to come up with hybrid approaches. Then, Lotfi Zadeh [266, 268] put forward the

concept of Precisiated Natural Language (PNL). Zadeh argues that “A Natural Language is basically a system

for describing perceptions”. What does Zadeh mean by precisiated? As per [268], “precisiated in the sense of

making it possible to treat propositions drawn from a natural language as objects of computation?”. Despite

the fact that the idea is very tempting, not too much additional research has been conducted in PNL -as far as

Sentiment Analysis goes-. We have decided to include it in this summary, as it puts forwards a concept that

could possibly blossom in the Opinion Mining arena. Wei Wei [229] released in 2011 an article entitled Ana-

lyzing Text Data for Opinion Mining that addresses the space of entity-related opinion detection and sentiment

ontology trees. This is a departure of most of the methods we have presented above, but we wanted to show it

as another possibility that some researchers are considering.

Dealing with metaphoric language is hard, and some researchers have spent some time suggesting how to ad-

dress the problem. Recognising irony and sarcasm are tough topics as well, and some work has been done in

this area. These topics are very important when dealing with opinions, particularly when the text being analysed

has got some politics content. Vanin et al. [220] released an article in 2013 providing some clues into irony

detection in Tweets. Shutova [195] proposed in 2010 models for understanding metaphors in NLP, whilst in

2013 Bollegala & Shutova [30] investigated the option of interpreting metaphors using paraphrases extracted

from the web. Rentoumi et al. [182] have investigated more specifically, metaphorical language in sentiment
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analysis (2012). In 2015, Hogenboom et al. [100] focus in using rhetorical structure in sentiment analysis, and

utilises structural aspects of text as an aid to distinguish important segments from those less important, as far

as contributing to the overall sentiment being communicated. As such, they put forward a hypothesis based

on segments’ rhetorical roles while accounting for the full hierarchical rhetorical structure in which these roles

are defined. Heerschop et al. [96] propose a Rhetorical Structure Theory (RST) based approach [138], called

Pathos, to perform document sentiment analysis partly based on the discourse structure of a document. Text

is then classified into important and less important spans, and by weighting the sentiment conveyed by distinct

text spans in accordance with their importance, the authors claim that they can improve the performance of a

sentiment classifier. The idea of applying discourse analysis to determine the parts of the text that are most rel-

evant to the overall document sentiment is obviously relevant and could be helpful in achieving our overall aim

by extending the model proposed in this paper. Other articles worth mentioning explore topics around senti-

ment lexicon-based techniques, like the 2014 contributions of Cho et al. [56] and Huang et al. [103]. The work

by Bravo-Márquez et al. [35] (2014) on the use of multiple techniques and tools in SA, offers a complete study

on how several resources that “are focused on different sentiment scopes” can complement each other. The

authors focus the discussion on methods and lexical resources that aid in extracting sentiment indicators from

natural languages in general. A comprehensive piece of work on semantic analysis is produced by Cambria et

al. [44], while in 2016, Schouten and Frasincar work [194] provides a complete survey, specific to aspect-level

sentiment analysis. As already mentioned, a number of researchers have explored the application of hybrid

approaches by combining various techniques with the aim of achieving better results than a standard approach

based on only one tool. Indeed, this has been done by Poria et al. in [176] where a novel framework for concept-

level sentiment analysis, Sentic Pattern, is introduced by combining linguistics, common-sense computing, and

machine learning for improving the accuracy of tasks such as polarity detection. The authors claim that “by

allowing sentiments to flow from concept to concept based on the dependency relation of the input sentence,

authors achieve a better understanding of the contextual role of each concept within the sentence and, hence,

obtain a polarity detection engine that outperforms state-of-the-art statistical methods”. When no matching

sentic pattern is found in SenticNet [45] (2014), they resort to Supervised Machine Learning. Related to the

use of lexicons in SA approaches, it is worth mentioning the following two research efforts. The first one is by

Hajmohammadi et al. [91] (2015) on a novel learning model based on the combination of uncertainty-based

active learning and semi-supervised self-training approaches, which also addressed the challenges associated

with the construction of reliable annotated sentiment corpora for a new language. This research provided us

with important lessons on the difficulties and potential pitfalls of embracing such a task and how to better deal

with it. The other research effort is by Hogenboom et al. [98, 99] (2015) on the use of emoticons as modifiers

of the sentiment expressed in text and as vehicles of sentiment by themselves. According to the findings of

the authors, the sentiment associated to emoticons dominates the sentiment conveyed by the text fragment in

which these emoticons are embedded. In their work they introduce a sentiment lexicon, which is a point of

commonality with the research presented here, as well as a cleverly designed emoticon lexicon. In 2016, Appel

et al. [13] published an article proposing a hybrid approach to sentiment analysis at the sentence level, which

not only establishes sentiment polarity (using semantic rules, improved negation management and an enhanced

sentiment lexicon), but also computes the intensity of the sentiment polarity (using fuzzy sets as a fundamental

tool). This latter article is based on research conducted and reported in this thesis report document.
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3.2 Bibliometrics

We believe that it would be interesting to understand the bibliometric aspects of the work published in the

Sentiment Analysis / Opinion Mining area of research. We will attempt to see the portion of work that has been

carried out using supervised machine learning methods versus those based on fuzzy set theory. The years of

publishings as well as the country where the work has been conducted will be reviewed as well.

Our approach will be founded on a simple search based on keywords (machine learning or fuzzy sets) in the

larger context of Sentiment Analysis / Opinion Mining. The tools that will be used are Scopus (a large abstract

and citation database of peer-reviewed literature by Elsevier B.V.) and the Web of Knowledge (an academic

citation indexing and search service by Thomson Reuters).

If it is true that the aforementioned search will exclude articles written before the term Sentiment Analysis saw

the light and became fully accepted -later on in the middle 2000s most likely- it will provide us with good

indicators of the numbers of publications on the topic since the middle 2000s as well as the country where the

research initiative was conducted and published. Likewise, articles indexed by other sub-topics of Sentiment

Analysis, like subjectivity classification or identification, polarity extraction, etc. could have been partially

excluded, too. Nevertheless, we believe that based on the review of the literature that we have carried out, the

potential exclusion of those articles will not create a deviation in the results we have obtained already. For

consistency, we are including only articles written in the English language. The results obtained using Scopus

and the Web of Knowledge are equivalent, so that we will present below only the results obtained using Scopus.

The two graphics shown below used the following keywords:

• (Fuzzy Sets) and (Sentiment Analysis): See Figure 3.1

• (Machine Learning) and (Sentiment Analysis): See Figure 3.2

Fig. 3.1. Outcome of search using keywords Fuzzy Sets and Sentiment Analysis

As we take a closer look to the graphics provided above, we immediately note two characteristics:

1. Research in Sentiment Analysis using Machine Learning techniques depicts a curve that shows primarily

a clear trend towards sustained growth, whilst the one representing the utilisation of Fuzzy Sets shows no

material growth and a clear lesser number of publications

2. When we look and the countries where the articles have been published we notice that the utilisation of

Machine Learning (ML) techniques -more specifically Supervised Machine Learning- is high all across

the board, showing the USA, China, India and Europe as clear leaders. If we observe now the utilisation
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Fig. 3.2. Outcome of search using keywords Machine Learning and Sentiment Analysis

of Fuzzy Sets to model the Sentiment Analysis problem, the first thing that we realise is that it is mainly

an affair mostly pursued in China, India and Europe. In addition, research using ML techniques seems to

have started earlier as well

Why is this? One dares to adventure that it is perhaps because a significant number of the researchers with

a Computer Science / Mathematics education background involved nowadays with researching SA/OM come

from the Text Data Mining and Classification fields where the use of statistical methods have been a well-

established tool for some time now. Hence, it would be natural to export the same knowledge and techniques

and apply them to a new domain that, nevertheless, is somehow related. Or is it perhaps that the utilisation of

Fuzzy Sets (FS) techniques have been proven to be not successful? If so, how has success been measured? It

is interesting to see that in the cases of China and India, and to a certain extent Europe as well, research efforts

are present in both camps (ML and FS). However, for the USA, at least for the period of time chosen and the

search keywords and data sources utilised, the focus is clearly on the ML camp, despite the fact that one of

the most influential papers supporting the use of FS was written in 2001 in the USA [205]. One may think as

well that two of the most reputed researches in SA/OM, Bing Liu [133] and Bo Pang [164], have made ML

their fundamental tool. For instance, Prof. Liu’s early research was in data mining, Web mining and machine

learning, fields in which he published abundantly (as appears in his Biography in his book [133]).

At this point, we can only draw some conjectures, but we believe that it will not be completely nonsensical

to think that the primary research interest of some authors may have migrated to this newer field of SA/OM.

Moreover, the use of statistical techniques in NLP and Computational Linguistics are common and have been

aptly utilised since the 1990s (see the work of Eugene Charniak [50, 51]).

Fuzzy Sets have been used extensively to model uncertainty and ambiguity, traits that are undoubtedly inherent

to Natural Languages and as a consequence part of the challenges inherited by SA/OM. Somehow, Fuzzy

Sets may seem alien to the community of Linguistics, with the exception perhaps of the utilisation of Fuzzy

Grammars. We conclude then that there are a number of potential reasons that could explain why the use of

Supervised Machine Learning techniques has been favoured. However, we have not been able to find so far hard

evidence that the utilisation of Fuzzy Sets, perhaps in combination with some other syntactic techniques and

even Unsupervised Learning tools, could not yield favourable results. Prof. Bing Liu, a world-wide recognised

expert in the area of SA/OM and one the researchers that have attempted to push the limits in the field of

Sentiment Analysis, has mentioned that “We probably relied too much on Machine Learning” [129, 130, 133],

when referring to how limited our understanding is about the Sentiment Analysis problem in despite of the
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recent progress that has been achieved.

As a result of the discussion presented in this section and other arguments to be presented in subsequent parts

of this report (Chapters 4 and 14), we do believe there is merit in investigating further the potential use of Fuzzy

Sets in the Sentiment Analysis problem; especially in the sub-areas of subjectivity polarity determination and

graduality.

Before we close this section, we will share an updated version of Fig. 3.1 and Fig. 3.2, with data covering

until the end of 2016. The information extracted from the original graphs contributed to the decision-making

process at the time (2014) on which research paths to follow. The updated figures provide an extended view

into what has happened in the last couple of years.

Fig. 3.3. Outcome of search using keywords Fuzzy Sets and Sentiment Analysis (2016)

Fig. 3.4. Outcome of search using keywords Machine Learning and Sentiment Analysis (2016)

As we can appreciate, the proportion of articles published on the SA topic using machine learning as a

tool of choice continues to be significantly higher that those cases where fuzzy sets have been applied instead.

Having said that, we observe that the slope of the curve for the latter case has changed showing an upwards

trend, indicating more interest in the research community on the possibility of applying fuzzy sets theory in the

SA domain.
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3.3 Chapter Summary

Let us try to summarise the main aspects covered in this section.

• A multifaceted problem: Sentiment Analysis (SA) / Opinion Mining (OM) recognised as a multifaceted

problem [130]. The most complete publications on the domain topic published by Bing Liu [133] and

Pang & Lee [164], and more recently Ronen Feldman [82].

• Adjectives, verbs and adverbs combination for subjectivity identification: in addition to using adjectives

as the main component of part-of-speech that influences the subjectivity of a given phrase, verbs, adverbs

and nouns are incorporated as well [136, 206].

• Subjectivity identification improved: A significant number of researchers have contributed to this aspect.

Probably all the references listed in this section. As representative of the progress in this sub-field, we

have chosen to highlight the work of Bing Liu and Ronen Feldman [82, 129].

• Graduality for Sentiment Analysis: an important topic presented very well by Dzogang et al. [74].

• Linguistic Lexicon enhanced: mostly, WordNet & SentiWordNet as covered by [78, 79, 80]. Specific

processes for the generation of efficient subjectivity lexicons [22].

• Utilization of Fuzzy Sets in Opinion Mining: a number of authors addressed in different fashions the

utilisation of fuzzy sets to model OM problems or to contribute to related problems (i.e. opinion sum-

marisation, ambiguity resolution, etc.) [7, 108, 113, 155, 205, 219].

• New approaches to Opinion Mining: mainly represented by Sentic Computing and other approaches

[41, 43, 46, 229].

• Metaphor, irony and sarcasm handling: Sarcasm & irony are hard to detect in an automated fashion.

Metaphors are difficult as well as it usually requires context and previous knowledge. Some research has

been done in this area, especially in the period 2000-2014. [30, 182, 195, 196, 197, 220].

• Supervised machine learning techniques: the most commonly used technique is Supervised Machine

Learning. A lot of progress has been achieved. References are abundant. [49, 71, 120, 123, 124, 133,

134, 164, 165, 208, 209, 238, 239] and many others.

• Unsupervised machine learning techniques: the most notorious examples of applying Unsupervised Ma-

chine Learning techniques have been published by Turney [212, 213, 214]. More recent contributions

have been provided by [89].

• Concept of Contextual Polarity introduced: polarity influenced by context is supposed to increase the

accuracy of the sentiment analysis process. Important work by [238, 239].

• Precisiated Natural Language (PNL): enables the possibility of treating propositions drawn from natural

language as objects of computation. The work of Lotfi Zadeh [268].

Combining the present Chapter with Chapter 2 (Part I of this document) we have enough content to establish

a solid research framework. We have shared as well some bibliometric data that highlights specific areas of

research. As such, we are now ready to explore what has motivated us to pursue the research contained in this

report.
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A complete motivation for our research is presented in Part II, Chapter 4, whilst our research hypothesis is

elaborated in Part II, Chapter 5.
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Part II

MOTIVATION, HYPOTHESIS &
METHODOLOGY
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Chapter 4

Motivation

I think the big mistake in schools is trying to
teach children anything, and by using fear as
the basic motivation. Fear of getting failing
grades, fear of not staying with your class,
etc. Interest can produce learning on a scale
compared to fear as a nuclear explosion to a
firecracker.

Stanley Kubrick

A significant part of the content of this chapter was used in articles published by the author. See references

[10, 11, 12, 13, 14, 15, 16, 17, 18]. Let us now discuss the fundamental motivation behind our research in

Sentiment Analysis (SA) / Opinion Mining (OM).

4.1 Aspects that has driven our research

In the article Expressions of Graduality for Sentiment Analysis - A Survey, the authors, Dzogang et al. [74],

go beyond the most common motivation for Sentiment Analysis and/or Opinion Mining -automate the classi-

fication of social media opinions, books reviews, films’ rankings, etc.- and attempt to “review methods taking

account of intrinsic psychological models components of graduality as well as extrinsic components issued

from computational intelligence approaches. In particular, beyond psychological models of sentiments that de-

fine affective states as multidimensional vectors in affective continuous spaces, we identify three components

of graduality, namely composition or blending, intensity and inheritance”.

Basically, the authors do a deeper analysis of the origins of emotions and sentiments and investigate among

the technical tools at hand, which are closer to the nature of the problem being analysed. A such, they even

address the Darwinian vision that “imposes sentiments to be organised as a finite set of of basic affective states,

universally shared by all human beings”. The latter are usually called primary sentiments. In [74], Dzogang et

al. make reference to key studies by R. Plutchik (The Emotions), P. Ekman (An argument for basic emotions)

and Cowie & Cornelius (Describing the emotional states that are expressed in speech), that discuss emotions

from a deep psychological standpoint, and in doing so, they highlight the nature of emotions and their gradual-

ity and fuzziness. In fact, in Dzogang et al. discuss briefly that authors in general refer mainly to psychological

models when attacking the sentiment analysis problem. However, appraisal event models may be successful at

developing “artificial affective agents”, as described in [77], [159] and [137]. Dzogang et al. claim that “it must

be underlined that some appraisal based approaches make use of graduality through fuzzy inference and fuzzy

aggregation for processing affective mechanisms ambiguity and imprecision.”. The caveat they make, though,

is that these so-called appraisal-based methods are not great at sentiments discrimination.
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As discussed at the SA Main Concepts Chapter 2 of this document, there are mainly two recognised main ap-

proaches to the problem of extracting sentiment automatically from a given source (see Fig. 8.1). Those are

[208]:

• (a) the lexicon-based approach, that involves calculating orientation for a document/sentence from the

semantic orientation of words or phrases in the source.

• (b) the classification approach which involves building classifiers from labelled instances of texts or

sentences.

See Chapter 8 for a complete discussion on the lexicon-based and machine learning approaches.

Taboada et al. [208] discuss the most common and accepted approaches to extract sentiment automatically

from texts. In Figure 8.1 we have attempted to summarise those, as we will discuss the subject further down

the road.

All these arguments make us think that if perhaps not great for deep psychological and physiological analysis,

the fact that fuzzy sets can be used successfully to model the ambiguity and imprecision of affective states, will

make them an acceptable tool for modelling sentiments. If in addition we recall a quote for Bing Liu [133],

one of the main world experts in Sentiment Analysis, “We probably relied too much on Machine Learning”, we

tend to believe that there might be room for pursuing a different avenue than the traditional Supervised Machine

Learning approach.

4.2 Chapter Summary

In this chapter we have established the aspects that has driven our research. In the next chapter we will cover

the main hypothesis that we have formulated.
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Chapter 5

Hypothesis

“Not all those who wander are lost.”

A line from the poem All That is Gold Does
Not Glitter by J. R. R. Tolkien, The

Fellowship of the Ring.

In this chapter we will establish our main research hypothesis and proposed-solutions as well as the key

research questions that will be addressed to achieve our research objective. The material presented here has

been partially utilised as well in articles by Appel et al. [10, 13].

5.1 Are there other paths besides Supervised Machine Learning to address the
Sentiment Analysis problem?

If we take a closer look to the SA/OM field and think about classification techniques, the first thing that comes

to mind is the utilisation of Machine Learning (ML) approaches. Traditionally, in ML we think of unsupervised,

semi-supervised or supervised machine learning algorithms. The latter technique, as we well know, relies heav-

ily on training, which implies counting with the adequate and voluminous annotated datasets. This constitutes a

drawback and we would like to avoid, if possible, having to count on prior data for training purposes, as this is

not always possible, and we would like to explore a path that does not require such a massive annotation effort.

As a consequence, supervised machine learning does not look like a technique that we would be interested in

pursuing. Ideally, in the context of SA/OM, an unsupervised strategy would rather “measure how far a word is

inclined towards positive and negative” [224].

Ultimately, the problem of SA/OM is basically a NLP problem with emphasis in finding when a sentence re-

veals an opinion -as opposed to a fact- and extracting the polarity of the opinion (usually, Positive or Negative).

Kanaga [112], in discussing ideas presented by Lotfi Zadeh in [269], says “The semantics of natural languages

and information analysis is best handled by the epistemic facet of Fuzzy Logic. In the epistemic facet, natural

language is viewed as a system for describing perceptions and an important branch of the same is possibility

theory and computational theory of perceptions”. Hence, does it worth to take a new look to Fuzzy Sets /

Logic as a potential effective tool in SA/OM? The path that we would like to pursue, will include the utilisation

of linguistic semantic rules, lexicon-based approaches and fuzzy sets as fundamental components of a hybrid

approach towards SA/OM. Based on the information, references and discussions shown in previous sections,

we would like to think that the following concepts could become cornerstone to a potential research direction

that would differ from the most commonly followed paths.

1. In Sentiment Analysis the most utilised approach, which accounts as well for most of the research pub-

lished, is text classification (see figure 8.1) relying heavily on Machine Learning techniques, especially
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Support Vector Machine (SVM) and Naı̈ve Bayes.

2. Fuzzy Sets and Fuzzy Logic have been used as well, but to a lesser extent, and the literature about it is

less abundant when compared to (1) above.

3. One of the main objections with regard to the use of Fuzzy Logic/Sets in Sentiment Analysis is given by

Balahur-Dobrescu [21]: “we can show that while the fuzzy models of emotion perform well for a series of

cases that fit the described patterns, they remain weak at the time of acquiring, combining and using new

information”. However, we believe that some of the shortness can be minimised by combining together

fuzzy methods and some semantic rules and linguistic techniques. See, for example, the progress reported

on acquiring new information on Kruse et al [122] (using neuro-fuzzy modelling) and Hüllermeier [104]

(applying learning fuzzy rules).

4. With the advent of SentiWordNet [79] and Senticnet [42, 45], the availability of solid sentiment lexicons

with incorporated updating capabilities has become a reality.

5. Hatzivassiloglou et al [92, 93] proposed a methodology to predict the semantic orientation of adjectives

that could be extended to nouns, adverbs, and verbs. It seems that predicting the semantic orientation of

certain parts of speech can greatly help on suggesting the semantic orientation of sentences and docu-

ments.

6. Grammatical dependencies may play a significant role in a proper understanding of a sentence. As quoted

from [200], “In any sentence, words are arranged in a proper sequence to communicate information. The

complete meaning of a sentence is not only determined by the meaning of words, but also by the pattern

in which words are arranged”.

7. Supervised machine learning has proven to be a strong classification tool. However, it will depend

enormously on the training data and we are attempting to move towards a system that depends less

on pre-existing annotated data. We would like to rely more on the richness of fuzzy sets as a modelling

apparatus, as well as in semantic rules, syntactic analysis and aggregation techniques (see Chapters 12, 13

and 14).

5.2 Research Questions

The fundamental research question we are posing is whether a hybrid approach as described in our Hy-

pothesis 1, is well equipped to model subjectivity polarity determination and polarity graduality determination

in Sentiment Analysis / Opinion Mining at the sentence level.

By well equipped we mean for it to be capable of delivering same or better results than the most commonly

used techniques whilst staying closer to the utilisation of models that are a good match to deal with problems

related to ambiguity and uncertainty, as the latter are present in natural languages. For simplicity, this question

can be decomposed into three sub-questions:

1. Are lexicon-based methods capable of delivering similar precision to the one provided by Supervised

Machine Learning techniques in the determination of polarity subjectivity in Sentiment Analysis?

2. Are fuzzy methods adequate to support subjectivity determination and model polarity in Sentiment Anal-

ysis by introducing gradualness (graduality) represented through the application of fuzzy sets?

3. Are semantic rules a good mechanism for computing semantic orientation in both, words and sentences?
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Is there going to be synergy among all these elements? Currently, most of research performed has been con-

ducted using Supervised Methods in Machine Learning (mostly SVM, Naı̈ve Bayes and others). Hence, our

comparing base will be defined by some of the latter methods.

In a way, we must try to determine whether obtaining good results in these three sub-questions will have an

aggregated positive effect when all get combined together. The key performance indicators that will be chosen

for the comparison will be decisive in understanding how successful our journey has been.

As a key clarification, let us mention that in our research, the focus will be at the Sentence Level - Senti-

ment Analysis. As such, as expressed by Liu [131] “Assumption of sentence-level sentiment classification:

The sentence expresses a single opinion from a single opinion holder”. In this case, notice that the quintuple

(e j,a jk, soi jkl,hi, tl) 2.1 is not utilised to address the problem [131].

In closing, we present below a diagram depicting a high-level view of a possible hybrid solution focused

specifically at the Sentence Level and utilising lexicon-based methods (Figure 5.1). Notice that the direct input

represented by the ‘Stream of Characters’ input-box in the diagram, corresponds to a set of sentences with

emoticons removed (in the case of the Twitter dataset). The sentences are just plain character strings ended by

a line-feed and carriage-return each. Spelling errors, special characters and numbers are all present. Notice that

the pre-processing occurs in the next step in the diagram, as shown by the ‘Pre-processing & PoS tagging’ box.

In the figure, the two greyed areas correspond to the fields that we are focusing on in our research:

Fig. 5.1. Generic view of a possible lexicon-based solution addressing SA at the sentence level
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1. Building a sentiment lexicon: the creation of a sentiment lexicon, counting with sentiment-conveying

terms (words), part-of-speech tags and polarity scores for each term (see Section 14.1.1).

2. Devise the necessary logic to evaluate the polarity of sentences (by using a sentiment lexicon-based

approach): the devising of the algorithms that will produce a classification output using a number of

rules and the sentiment lexicon previously defined (see Sections 14.1.2 and 14.1.2.1).

3. Design a process to identify the intensity/graduality of sentences: the generation of a mechanism to

identify the intensity/graduality of a given sentence (see Section 14.1.3).

The rest of elements in Fig 5.1 are constituted by:

1. A decision point securing that the language of the input is English.

2. A decision point that ensures that there is a sentiment lexicon available already.

3. A Pre-processing & part-of-speech tagging step (see Chapter 7).

4. A decision point making sure that we can focus on sentiment analysis at the sentence level (notice that

any other type, document or aspect levels, are rejected in this diagram.

There are other aspects that contributed to our motivation and hypothesis-making. Dzogang et al. stated

in [74] that usually authors refer mainly to psychological models when attacking the SA problem. However,

other models may be successful as well in this domain. As per Dzogang et al. “it must be underlined that some

appraisal based approaches make use of graduality through fuzzy inference and fuzzy aggregation for process-

ing affective mechanisms ambiguity and imprecision.” When dealing with SA, Bing Liu [133], one of the main

world experts in this area, says that “we probably relied too much on Machine Learning”. When it comes

to discussing the progress in the SA discipline, Poria et al. [176] introduced a novel idea to concept-level

sentiment analysis, which involves combining together linguistics, common-sense computing, and machine

learning, aiming to improve precision on polarity detection. This approach of merging techniques is as well a

hybrid style of compounding the power of several tools.

Considering all of the arguments above, we believe that the following concepts could be applied in combi-

nation:

- The concept of graduality expressed through fuzzy sets.

- The idea that other tools, together, besides Supervised Machine Learning in isolation, may be viable as well

when extracting sentiment from text (especially, if combined with other techniques).

- The positive contribution that NLP tools, semantic rules and a solid opinion lexicon can have in identifying

polarity.

Based on these arguments, our research hypothesis can be stated as follows:

Hypothesis 1. A sentiment analysis method at the sentence level, using a combination of sentiment lexicons,

NLP essential tools and fuzzy sets techniques, should perform same or better than today’s accepted text classi-

fication supervised machine learning algorithms when the latter are utilised in isolation.

We are establishing the aforementioned hypothesis as we are in search of a sentiment analysis method that

closely resembles the way human beings deal with this topic. We expect in the future to be able to expand our
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method to deal with human-aspects like humour, irony and sarcasm, which most likely will require providing

context. However, it is our belief that the sooner we get closer to the way humans process sentiment, the better

positioned we will be to take the next step. We call our proposed system a hybrid, because of the fact that it

uses a combination of methods and techniques that stem from different research disciplines: fuzzy set theory,

natural language processing algorithms and linguistic systems.

5.3 Chapter Summary

In this chapter we have addressed our research hypothesis. In the next chapter we will expand on the research

methodology that was followed.
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Chapter 6

Research Methodology

Confusion will be my epitaph,
As I crawl a cracked and broken path,
If we make it we can all sit back and laugh,
But I fear tomorrow I’ll be crying,
Yes I fear tomorrow I’ll be crying,
Yes I fear tomorrow I’ll be crying.

Peter John Sinfield (King Crimson), 1969

A significant part of the content of this chapter was used in articles published by the author. See references

[10, 11, 12, 13, 14, 15, 16, 17, 18]. In this chapter we will describe in detail our proposed solution to the

sentiment analysis problem at the sentence level. The research methodology that will be used is discussed from

three different perspectives: the process that will be followed, the data that will be used and the description of

the indicators that will be utilised for measuring the performance of the proposed SA solution.

6.1 The process

In order to measure success, the proposed method should perform the same or better than today’s accepted

supervised machine learning text classification solutions when utilised in isolation. In the specific case of the

SA problem, the proposed solution is compared against two supervised machine learning methods that enjoy a

high level of acceptance and credibility in the text classification research community and that are relatively easy

to implement: Naı̈ve Bayes (NB) (Section 9.1) and Maximum Entropy (ME) (Section 9.2). At this time, we

have opted not to compare results against a popular classification technique, Support Vector Machine (SVM),

because we are focusing our research hypothesis at performing sentiment analysis at the sentence level, and

research from Wang and Manning [225] demonstrated that Naı̈ve Bayes actually outperforms SVMs for ‘snip-

pets’: “for short snippet sentiment tasks, NB actually does better than SVMs (while for longer documents the

opposite result holds).” The comparison will focus on sentiment/opinion polarity determination.

6.2 The data

A natural question to answer at this point is what data to use to benchmark our results. The following subsec-

tions will describe the details of the data sets utilised in this study.
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6.2.1 Twitter datasets

Based on the terms and conditions for the utilisation of the data and because of privacy acts’ related regulations,

many Twitter datasets have been withdrawn from public access as a request from Twitter. However, despite the

fact just mentioned, there are still a few Twitter datasets available publicly. We have chosen two of them:

• The first one we have utilised is Sentiment140. This dataset offers Twitter corpus data available at their
site in CSV format and any trace of emoticons has been removed. We will call this data set Twitter A. It
is available at:
http://help.sentiment140.com/for-students .

• The second dataset has been provided by Twitter Sentiment Analysis Training Corpus. It contains approximately a
million and a half classified tweets, each row is marked as 1 for positive sentiment and 0 for negative sentiment. The
dataset is based on data from two sources: University of Michigan Sentiment Analysis competition on Kaggle and
the Twitter Sentiment Corpus by Niek Sanders. We have randomly chosen 1000 tweets of each type (negative and
positive) that have been used in our experiments. We will call this dataset Twitter B. This dataset required much
more cleansing effort when compared to the Twitter A data (there were numerous errors, mistypes, emoticons,
strange characters, etc., that needed to be removed). It can be downloaded at:
http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/ .

6.2.2 Movie Review dataset

Pang and Lee [164] published the datasets that were utilised in SA experiments and for which the results were
addressed and discussed in [162, 163, 165]. The datasets are sub-divided into categories, namely, sentiment
polarity datasets, sentiment scale datasets and subjectivity datasets. As such, it seems adequate to use the Movie
Review Dataset provided by Pang and Lee. The fact that many articles in SA discuss this dataset and have used
it to validate their own methods and approaches makes it an ideal candidate from the benchmarking angle. This
dataset was first used in the experiments described in [163]. The dataset is available at:
http://www.cs.cornell.edu/people/pabo/movie-review-data/ .

6.3 Indicators in the evaluation of Sentiment Analysis

It has become customary to evaluate the performance of sentiment classification systems utilising the following four
indeces, as defined in [91, 189] (refer to the so-called confusion matrix given in Table 6.1):

• Accuracy – the portion of all true predicted instances against all predicted instances:

T P + T N
T P + T N + FP + FN

• Precision – the portion of true positive predicted instances against all positive predicted instances:

T P
T P + FP

• Recall – the portion of true positive predicted instances against all actual positive instances:

T P
T P + FN

• F1-score – a harmonic average of precision and recall:

2×Precision×Recall
Precision + Recall

36

http://help.sentiment140.com/for-students
http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/
http://www.cs.cornell.edu/people/pabo/movie-review-data/


6.4. Chapter Summary Chapter 6. Research Methodology

Predicted Positives Predicted Negatives
Actual Positive in-
stances

# of True Positive (TP) in-

stances

# of False Negative (FN) in-

stances

Actual Negative in-
stances

# of False Positive (FP) in-

stances

# of True Negative (TN) in-

stances

Table 6.1. Confusion Matrix

Readers are referred to the work by Sadegh et al. [91, 189] for more elaborated details on these performance indicators.

6.4 Chapter Summary

The research methodology we have followed has been described in this chapter. Part III on this report, covering methods,
techniques and tools, will be developed next.
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Part III

METHODS, TECHNIQUES & TOOLS
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Chapter 7

A summary of the mechanics of Text Manipulation

“When Odin arrived, he asked Mimir for a
drink from the water. The well’s guardian,
knowing the value of such a draught, refused
unless the seeker offered an eye in return.
Odin -whether straight away or after
anguished deliberation, we can only wonder-
gouged out one of his eyes and dropped it
into the well. Having made the necessary
sacrifice, Mimir dipped his horn into the well
and offered the now-one-eyed god a drink.”

Paul C. Bauschatz, 1982. The Well and the
Tree: World and Time in Early Germanic

Culture.

This chapter presents a summary of the main techniques that are used in text manipulation, as the latter plays a
significant role in the data preparation stage that precedes sentiment classification. As in other disciplines, the pre-
processing of the data is vital in the domain of SA. If we recall the material covered in subsection 2.2.3 (see Figure 2.2),
we see that the tokenization phase and some Lexical Analysis tasks are performed before any further analysis can take
place. Fundamentally, before we move into a proper analysis the text must somehow be prepared. We need firstly to
remove noise, parse the paragraphs and generate proper Part-Of-Speech (POS) tags as a pre-work step.

7.1 Sentences as Unstructured Data

Natural Language Processing (NLP) is a field of computer science, artificial intelligence, and linguistics concerned
with the interactions between computers and human languages ([3] and http://en.wikipedia.org/wiki/Natural_

language_processing). Sentences are usually presented as text (string of characters) and documents can de described as
a collection of sentences. For many, text -as the vehicle used to represent Natural Languages- is the ultimate Unstructured
Data. In a way, before any analysis can be performed, data -text- must be organised and structured in order to be able to
make sense out of it.

7.2 Bag of Words (BoW)

A Bag of Words is a representation used in NLP and Information Retrieval (IR) to address the unstructured nature of
sentences in paragraphs in documents. A bag is a set that allows repetition in its members. Let us use an example to visu-
alise a BoW. The example below was inspired after http://en.wikipedia.org/wiki/Bag-of-words_model. Let us
look at two sentences: Document1 = “Robert likes to watch football. His girlfriend likes football too” and Document2 =

“Robert also likes to watch movies”. Let us build a dictionary based on these two sentences:

39

http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Bag-of-words_model


7.3. Tokenization Chapter 7. Mechanics of text manipulation

{

“Robert”: 1,
“likes”: 2,
“to”: 3,
“watch”: 4,
“football”: 5,
“his”: 6,
“also”: 7,
“movies”, 8,
“games”: 9,
“girlfriend”: 10,
“too”: 11,
“romantic”: 12

}

There are 12 different words represented in the dictionary. As there are 12 different unrepeated words in the BoW, a
vector with 12 entries can be used to represent the contents of Document 1 and Document 2. The number that follows
every distinct word -in the dictionary- corresponds to the position used to represent a given word in the vector. E.g. in the
first vector below, the fifth position represents the word ”football”.

[ 1, 2, 1, 1, 2, 1, 0, 0, 0, 1, 1, 0 ] representing Document1
[ 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 ] representing Document2

The number in the vector, represents how many times that word appears in the Document. For the first vector repre-
senting Document 1 the word “football” shows 2 times and the word “too” only once.

7.3 Tokenization

Once a sentence -or a full document- is provided, it is entered as a string of characters. Somehow, this string must be
broken into pieces that allow a more effective manipulation. This string contains items that are noise or are of no interest
at all, like white-space, blank-lines, line-breaks, carriage-returns, etc. Tokenization is the process of taking a string of
characters of length n as input and breaking it up into words and punctuation as an output [25, 26]. Let us look at an
example.

Let us tokenize some text, using an example taken from [26]:

>>> import nltk
>>> sentence = ”””At eight o′clock on Thursday morning Arthur didn′t f eel very good.”””
>>> tokens = nltk.word tokenize(sentence)
>>> tokens
[′At′, ′eight′, ”o′clock”, ′on′, ′Thursday′, ′morning′, ′Arthur′,′ did′,”n′t”,′ f eel′,′ very′,′ good′,′ .′]

The output above has been obtained using the Programming Language Python and NLTK (Natural Language Toolkit), a
set of libraries and code for Natural Language Processing [25]. If we analyse the answer stored in the variable tokens, we
notices that all tokens are words or punctuation. Of particular importance is the way a verb in a negation form (didn’t) has
been treated. It is presented as two tokens, respectively ′did′ and ”n′t”. Tokenization is the beginning of this manipulation
process, but there is much more to it. In Appendix D, we provide more information on tokenization and data manipula-
tion & processing in general. In the aforementioned appendix we include as well information on the specific tokenizer
and parser that were utilised to process sentences in the experimental datasets, as a preamble to the actual sentiment
classification process.
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7.4 POS Tagging

In [156], Nau uses the above example to introduce the topic of Part Of Speech (POS) Tagging. In a given sentence in the
English language we can find words that may belong into many of the different established identifiable POS particles. As
per [156], let us analyse the sentence “Flies like a flower”:

• Flies: noun or verb?

• like: preposition, adverb,conjunction, noun or verb?

• a: article, noun, or preposition?

• flower: noun or verb?

This situation is known as lexical ambiguity and it can be resolved with a technique known as Part-of-Speech tagging.
The POS tagger is usually executed before a parse tree (Section 7.5) is built. Let us see a couple of examples taken from
[26]. We will use the example presented in subsection 7.3 (we will continue using the variable tokens that stores the
tokenization version of the example sentence.

>>> tagged = nltk.pos tag(tokens)
>>> tagged [ 0 : 6 ]
[(′At′, ′IN′), (′eight′, ′CD′), (”o′clock”, ′JJ′), (′on′, ′IN′), (′Thursday′, ′NNP′), (′morning′, ′NN′),
(′Arthur′,′NNP′), (′did′,′VBD′), (”n′t”,′RB′), (′ f eel′,′VB′), (′good′,′ JJ′), (′.′,′ .′)]

If we look with attention to this output and inspect the contents of variable tagged, we noticed that labels belonging
in the set of established POS have been assigned to the example sentence. It seems that the default tagger for the version
of NLTK we are using is a Maximum Entropy tagger trained on the Penn Treebank corpus [141]. The meaning of the
PoS-labels displayed in the example shown above is covered in Table 7.1.

Label Description
IN Preposition/Subordinating conjunction
CD Cardinal Number
JJ Adjective
NNP Proper Noun, Singular
NN Noun, Singular or mass
VBD Verb, Past tense
RB Adverb
VB Verb, Base form
. Sentence-final punctuation

Table 7.1. Labels used by the POS tagger in the example shown

There are a number of methods that are used for POS tagging. As explained by Nau [156]:

• Rule-Based POS Tagging

• Transformation-Based Tagging (e.g. Brill’s tagger [36])

• Stochastic Tagging

POS tagging is supposed to be very useful for many reasons. Especially for Word-Sense disambiguation and to reduce
the number of parses required. Most of modern POS-taggers correspond to one of the methods described above, or to a
combination of them. See Appendix D for more details on the PoS tagger we utilised in our work, that according to Bird
[25, 26] is very efficient.
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7.5 Parsing

Once the POS tagger has completed its job, we still need to move forward and generate a parse-tree and identify named
entities. For continuity, let us proceed with the same example we have mentioned before. Identify named entities and
parse-tree. As taken from [26] :

>>> entities = nltk.chunk.ne chunk(tagged)
>>> entities
Tree(′S ′, [(′At′,′ IN′), (′eight′,′CD′), (”o′clock”,′ JJ′),

(′on′, ′IN′), (′Thursday′, ′NNP′), (′morning′, ′NN′),
Tree(′PERS ON′, [(′Arthur′,′NNP′)]),

(′did′, ′VBD′), (”n′t”,′RB′), (′ f eel′, ′VB′),
(′very′, ′RB′), (′good′, ′JJ′), (′.′, ′.′)])

Notice that the full parse-tree includes a tree inside the original tree (a sentence inside a sentence) and a named-entity, a
‘PERSON’ called ‘Arthur’ has been identified. As we continue with more complex analysis tasks, this type of information
would prove to be very useful, as it will assist on identifying the different elements presented in an opinionated sentence
(multiple nested subjects, scope of negation, etc.).

7.6 Lemmatisation & Stopwords

A lemma is the canonical form of a given word and the process of determining the lemma for a given word is referred to
as lemmatisation. For example, the chosen form of a noun is the singular (‘horse’ instead of ‘horses’). For the verbs, ‘run,
runs, ran and running’ are represented by the word ‘run’, that is the associated lemma (sources: [183] and Wikipedia). As
we can see using lemmas is very useful to simplify the SA process. We can refer to the lemma of a given word instead
of worrying about all different forms associated to a word (note: for other activities in NLP, like obtaining full semantics
out of a phrase, differentiating between a singular or a plural in a noun may be critical). For instance, for the creation of a
dictionary to be used in SA, the words in the aforementioned dictionary will be indexed by the lemma.

What about stop words (or stopwords)? In computational linguistics and NLP stop words are words that are carved out or
removed out before doing the analysis of the input data. The list of stopwords will change depending on the application.
The needs of filtering out some words in a search engine (elimination of articles, etc.) are different than those associated to
the SA problem and the level of detail used in a SA application. For example, stopwords in text coming from documents
or reviews will have to be approached differently than when the input text come from Twitter. For instance, NLTK [25]
comes with a so-called stopwords corpus, that contains 128 stopwords for the English language. The NLTK documenta-
tion provides all required details on the subject (http://www.nltk.org/ and https://github.com/nltk/nltk/wiki).
As expected, it is possible to define your own stopwords list. In our particular case, the analysis is focused on sentences.
As such, we have used the stopwords list embedded in our NLTK [26] package, which represents a best-practices approach
to the problem of NLP data pre-processing (see Appendix D).

7.7 Chapter Summary

In this chapter we briefly touched base on the main aspects of the mechanics of text manipulation. These tasks are an
essential preamble to the core tasks of natural language processing, and more specifically, to the SA discipline as a whole.
In the next chapter we will introduce the basics of machine learning and lexicon-based approaches to the SA problem.
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Chapter 8

Machine Learning & Lexicon-Based Approaches to SA

The earliest known dictionaries were kept in
the Mesopotamian city of Elba (now part of
Syria). These clay tablets inscribed in
columns of cuneiform writing date from
about the 2300s BC and consist of words in
the Sumerian language and their equivalents
in the Akkadian language.

Dictionary - MSN Encarta, 2009.

In this chapter we briefly discuss the two main approaches to SA. This is relevant because in our proposed method
(see Part IV) we have selected one of these aforementioned approaches as our main technique.

As discussed in Section 2, there are two recognised main approaches to the problem of extracting sentiment automat-
ically from a given source.

(a) The lexicon-based approach, that involves calculating orientation for a document/sentence from the semantic ori-
entation of words or phrases in the source.

(b) The classification approach which involves building classifiers from labeled instances of texts or sentences.

Taboada et al. [208] discuss the most common and accepted approaches to extract sentiment automatically from texts.
In Figure 8.1 we have attempted to summarise those, as we will discuss the subject further down the road. A third
option to address the SA problem is the (c) rule-based approach, which basically “looks for opinion words in a text and
then classifies it based on a number of positive and negative words. It considers different rules for classification such as
dictionary polarity, negation words, booster words, idioms, emoticons, mixed opinions, etc.” [64]. A domain-independent
rule based system for semantically classifying sentiment from customer reviews [115] is a good example of this approach.
A fourth option could be the so-called (d) Statistical model approach, where each review is represented “as a mixture of
latent aspects and ratings. It is assumed that aspects and their ratings can be represented by multinomial distributions and
try to cluster head terms into aspects and sentiments into ratings” [64]. A good representative of this approach is the work
of Moghaddam and Ester [152]. Both options (a) and (b) are used extensively. During our research, we have developed a
hybrid approach that corresponds to a lexicon-based model that incorporates semantic rules and fuzzy set theory to model
graduality (see Chapter 14). In summary, we have devised a model based on option (a) and will compare it against two
well-known algorithms that represent option (b).

8.1 ML Approaches

We will review in more detail the techniques associated to Machine Learning (ML) in Chapter 9 (Supervisd ML) and
Chapter 10 (Unsupervised ML). Tom Mitchell’s definition of ML follows: [151] “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T ,
as measured by P, improves with experience E”. As already mentioned, the fundamental idea behind ML approaches is
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Fig. 8.1. Automatic extraction of sentiment, as per reproduced from Taboda et al. [208]

the utilisation of a number of learning algorithms that are applied to datasets that have been previously labelled, so the
patterns/features akin to the cases are learnt. Then, the new (unseen) data is presented to the algorithms, which will attempt
to classify the new datasets, accordingly. ML has strong connections to the worlds of Statistics and Optimisation, as well
as to theoretical Computer Science. For more details on ML, please refer to [8, 27, 72, 114, 121, 124, 134, 142, 151].

8.2 Lexicon-Based Methods (LBM)

The fundamental idea behind a Lexicon-based method is the use of a dictionary of sentiment words and even phrases. For
our discussion, we will focus in the paper by Taboada et al. [208]. Let us keep in mind that Semantic Orientation (SO)
is defined as a measure of subjectivity and opinion in text. “sentiment analysis refers to the general method to extract
subjectivity and polarity from text (potentially also speech), and semantic orientation refers to the polarity and strength
of words, phrases, or texts. Our concern is primarily with the semantic orientation of texts, but we extract the sentiment
of words and phrases towards that goal” [208]. We would like to stress that in lexicon-based approaches, dictionaries of
words annotated with the word’s semantic orientation, or polarity, are required. In some cases, lexicon-based methods
utilise unsupervised learning methods, of which [212, 213, 214] are very good examples, or focus in the utilisation of
Semantic Rules and a number of NLP techniques. In Part IV of this thesis the lexicon based approach will be fully
described and a new hybrid Lexicon-based Method to address the SA problem will be developed and experimentally
compared against some of the most used SML approaches in SA.

8.3 Chapter Summary

In this chapter we have addressed the machine learning and the lexicon-based approaches to the SA problem. We have
as well refer the reader to the chapters in this document where we put at use these methods. In the next chapter we will
cover Supervised Machine Learning methods.
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Chapter 9

Supervised Machine Learning (SML)

“Those who educate children well are more
to be honoured than they who produce them;
for these only gave them life, those the art of
living well.”

Aristotle.

This chapter reviews supervised learning techniques with a view to adopting some of them as the basis for perfor-
mance comparison against our proposed method, which is introduced in Part IV. There are plenty of tested and mature
algorithms for text classification that rely on supervised machine learning. According to Alpaydin [8], In Supervised
Machine Learning, the fundamental idea is to learn a mapping from the input to an output. The correct values for this
output are provided by a supervisor. Hence, supervised algorithms make use of labelled training data to create a function,
where this aforementioned function is supposed to predict the correct output. Generally speaking [142], “The classifi-
cation problem consists of taking input vectors and deciding which of N classes they belong to, based on training from
exemplars of each class”. The assumption for this approach is that each member of the exemplars set belongs to one and
only one class. In addition, the set of classes encompasses all possible answers in the solution space. These assumptions
collide with our understanding of the real world, but it seems that they enable some of these algorithms to behave with
certain level of accuracy.

In this Chapter, we focus on three supervised machine learning methods, namely, Naı̈ve Bayes (NB), Maximum En-
tropy (ME) and Support Vector Machine (SVM), as these three techniques are largely utilised and are considered to be
among the best in their class.

9.1 Naı̈ve Bayes (NB)

As a preamble, we will use some of the definitions provided in [164, 165] for the Machine Learning problem. Pang et al.
[165] argue that “Our aim in this work was to examine whether it suffices to treat sentiment classification simply as a spe-
cial case of topic-based categorization (with the two‘topics’ being positive sentiment and negative sentiment), or whether
special sentiment-categorization methods need to be developed”. Then they proceed defining what they call a standard
bag-of-features framework. This is formally represented as [165]: Let { f1, . . . , fm} be a predefined set of m features that
can appear in a document. Let ni(d) be the number of times fi occurs in document d. Then each document d is represented
by the document vector ~d := (n1(d),n2(d), . . . ,nm(d)).

In discussing the NB technique, Pang et al. [165] elaborate that one possible approach to text classification is to as-
sign to a given document d the class c∗ = arg maxc P(c |d). Before continuing, let us recall the Bayes’ rule:

P(c |d) =
P(c) P(d | c)

P(d)
, (9.1)
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where P(d) has no role at all in selecting c∗. According to [165], “To estimate the term P(d | c), Naive Bayes decomposes
it by assuming the fi’s are conditionally independent given d’s class”:

PNB(c |d) :=
P(c) (

∏m
i=1 P( fi | c)ni(d))

P(d)
. (9.2)

Pang et al. continues by saying that the training method they used “consists of relative-frequency estimation of P(c) and
P( fi |c), using add-one smoothing”. In essence, NB is a simple probabilistic classifier that is based on the Bayes’ theorem.
Basically, in the presence of a sample input NB should be able to predict a probability distribution over a set of classes. In
this case, word frequencies are the characteristics used to decide whether a paragraph belongs to one category or another
one. For that to happen, we would have to count with a dictionary (or corpus) previously labelled with the semantic
orientation of words (i.e. ‘fabulous’ conveys a positive intention whilst ‘terrible’ would convey a negative one).

Despite its apparent simplicity, NB has proven to be very successful in many situations. Quoting [165], “Despite its
simplicity and the fact that its conditional independence assumption clearly does not hold in real-world situations, Naı̈ve
Bayes-based text categorization still tends to perform surprisingly well”. We have shown above the formal definition
of the NB classification method. Now, we will show a description of the NB algorithm more centred around SA and
more didactic, too. It is based on a Sentiment Symposium Tutorial given by Christopher Potts from the Center for the
Study of Language and Information from Stanford University (San Francisco, November 2011) [179]. Please see URL:
sentiment.christopherpotts.net/index.html.

As mentioned already, the NB method has the reputation to be the simplest probabilistic classifier model based on data
used previously for training. According to Potts [179] the following (verbatim) is a recipe for training an NB classifier
(using just the words as features):

1. Estimate the probability P(c) of each class c ∈ C by dividing the number of words in documents in c by the total
number of words in the corpus.

2. Estimate the probability distribution P(w | c) for all words w and classes c. This can be done by dividing the number
of tokens of w in documents in c by the total number of words in c.

3. To score a document d for class c, calculate

score(d,c) def
= P(c)∗

n∏
i = 1

P(wi | c)

4. If you simply want to predict the most likely class label, then you can just pick the c with the highest score value.
To get a probability distribution, calculate

P(c | d) def
=

score(d,c)∑
c′ ∈C score(d,c′)

Potts continues writing [179] “The last step is important but often overlooked. The model predicts a full distribution
over classes. Where the task is to predict a single label, one chooses the label with the highest probability. It should
be recognized, though, that this means losing a lot of structure. For example, where the max label only narrowly beats
the runner-up, we might want to know that. The main drawback to the NB model is that it assumes each feature to be
independent of all other features. This is the ‘naı̈ve’ assumption seen in the multiplication of P(wi | c) in the definition of
score. Thus, for example, if you had a feature best and another world’s best, then their probabilities would be multiplied
as though independent, even though the two are overlapping. The same issues arise for words that are highly correlated
with other words (idioms, common titles, etc.)”.

9.1.1 Naı̈ve Bayes Explained

In simple terms, the NB algorithm enables us to predict a class, given a set of features using probability. AYLIEN [19], in
their BLOG on Data Science (http://blog.aylien.com/naive-bayes-for-dummies-a-simple-explanation/),
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provides a simple explanation and example to aid in understanding how Naı̈ve Bayes work. For the sake of the argument,
let us assume that we have data on 1,000 pieces of fruit. The fruits in the dataset are bananas, oranges and some other
fruit. In order to describe the fruits we rely on three features of the fruits as described in Table 9.1 below. We could

Fruit Long Sweet Yellow Total
Banana 400 350 450 500
Orange 0 150 300 300
Other 100 150 50 200
Total 500 650 800 1000

Table 9.1. Fruits Example - Features & Quantities, as presented in [19]

predict whether a fruit is a banana or an orange, based on its features; namely, long-shape, sweetness and colour. In terms
of distribution, in the complete set of fruits the percentage allocation is: 50% of the fruits are bananas, 30% are oranges
and 20% are other fruits. From our training set, which characteristics are displayed in Table 9.1, we can assert that, from
500 bananas:

• 400 are long.

• 350 are sweet.

• 450 are yellow.

Likewise, from 300 oranges, 0 are long, 150 are sweet and 300 are yellow. From the remaining 200 fruits, 100 are long,
150 are sweet and 50 are yellow. Do we have enough evidence to predict the class to which another fruit belongs? Let us
assume that we receive as input for the next fruit, the following features: long, sweet and yellow, then we can classify it
using the Naı̈ve Bayes Equations 9.1 or 9.2 for each case and compare all of the results. The winner will be the one with
the highest probability, as follows:

• P(Banana) = 0.252 .

• P(Orange) = 0 .

• P(Other fruit) = 0.01875 .

The highest probability is 0.252, so as per Naı̈ve Bayes we can assume that the long, sweet and yellow fruit that was
recently introduced is in fact a Banana.

9.2 Maximum Entropy (EM)

The Maximum Entropy classification algorithm (EM or MaxEnt) is another technique that has been extensively used by
the Machine Learning community to deal with NLP problems. According to [165], in some situations it may outperform
Naı̈ve Bayes in text classification tasks. ME estimate of P(c |d) is expressed as follows:

PME(c |d) :=
1

Z(d)
exp

∑
i

λi, c Fi, c(d, c)

 (9.3)

where Z(d) is a normalization function, Fi, c is a feature/class function for feature fi and class c, defined as follows:

Fi, c(d, c′) :=

1 ni(d) > 0 and c′ = c

0 otherwise
(9.4)

One of the main properties of EM is that the algorithm does not make any assumptions about the relationships between
features. The λi, c’s are feature-weight parameters. If we look at the definition of PME we notice that a large value for
λi, c would imply that “ fi is considered a strong indicator for class c. The parameter values are set so as to maximize the
entropy of the induced distribution subject to the constraint that the expected values of the feature/class functions with
respect to the training data: the underlying philosophy is that we should choose the model making the fewest assumptions
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about the data while still remaining consistent with it, which makes intuitive sense” [165]. Additional information about
EM can be found in the literature, like [8, 27, 142] and others.

9.2.1 Maximum Entropy Explained

In their article [158], Nigam et al. explain that the motivation behind maximum entropy is that “one should prefer the most
uniform models that also satisfy any given constraints”. For example, assume that we are in the presence of a four-way
text classification task. The only piece of information we are given is that on average, 40% of documents with the word
‘professor’ in them are in the faculty class. Then, when we are given a document with the particle ‘professor’ in it, we
can say that it has a 40% chance of being a faculty document; we can say as well that it has a 20% chance to belong in
each one of the other three classes. If a document does not have the word ‘professor’ we would guess then the uniform
class distribution, 25% each. In essence, it is a classifier which rather select the uniformity (maximum entropy) if no data
is observed. As the algorithm starts seeing the data, it is forced to take distance from the maximum entropy by explaining
data. Once the data has been explained, the classifier tries again to maximize the entropy on whatever data left that it has
not examined yet.

9.3 Support Vector Machine (SVM)

The Support Vector Machine (SVM) algorithm is attributed to Vladimir Vapnik, as part of the material covered in his
books [222, 223]. However, it seems that the original idea goes back to work carried out by Vapnik in the mid-seventies
and published in Russian in 1979 [221]. For this section we have relied heavily on the work of Burges [39] and Vapnik
himself [222]. As mentioned by many authors, among them [130, 132, 133, 164, 165], SVM has been used successfully
in classification and regression analysis.

As discussed in [121, 142], SVM is a classifier based on statistical learning. SVM is a non-probabilistic classifier. Infor-
mally speaking, SVM operates by constructing a model that assigns occurrences of data that it has never seen before to
one category or another, provided that previously the SVM learning algorithm has been given a set of training examples
(those examples have been previously labelled as belonging to one of the two categories being considered). Basically,
SVM analyses datasets and identifies patterns in the data [2]. In order to define SVM properly we must go back to the
concept of linearly separable binary classification. Given L training points, where each input xi has D attributes and is in
one of the two classes yi = −1 or yi = +1, the training data is of the form

{xi, yi} where i = 1 . . . L, yi ∈ {−1, 1}, x ∈ <D

We are working under the assumption that the data is linearly separable (we can draw a line in a graph separating both
classes of objects when D = 2 and a hyperplane on graphs x1, x2 . . . xD, when D > 2). This hyperplane can be described
by w · x + b = 0 where [85]:

• w is normal to the hyperplane.

• b
‖w‖ is the perpendicular distance from the hyperplane to the origin.

“Support Vectors are the examples closest to the separating hyperplane and the aim of Support Vector Machines is to
orientate this hyperplane in such a way as to be as far as possible from the closest members of both classes.” [85].

If we analyse Figure 9.1 -reproduced from the original graphic presented in [85]-, “implementing a SVM boils down
to selecting the variables w and b so that our training data can be described by”:

xi · w + b ≥ +1 f or yi = +1 (9.5)

xi · w + b ≥ −1 f or yi = −1 (9.6)

Combining these two inequalities we get:
yi (xi ·w + b) − 1 ≥ 0 ∀i (9.7)
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In Figure 9.1, the points that are closest to the separating hyperplane, called Support Vectors, are highlighted by being

Fig. 9.1. Hyperplane through two linearly separable classes

shown in circles. “The two planes H1 and H2 that these points that lie on can be described by” [85]:

xi · w + b = +1 for H1 (9.8)

xi · w + b = −1 for H2 (9.9)

In Figure 9.1, d1 is defined as the distance from H1 to the hyperplane and d2 as the distance from H2 to the aforementioned
hyperplane. “The hyperplane’s equidistance from H1 and H2 means that d1 = d2 (a quantity known as the SVM’s margin).
In order to orientate the hyperplane to be as far from the Support Vectors as possible, we need to maximize this margin”
[85]. A number of algebraic manipulations follow as per [85]. The aforementioned margin is equal to 1

‖w‖ . Attempting to
maximise this function as per equation 9.7 is equivalent to obtaining:

min ‖ w ‖ such that yi(xi · w + b) − 1 ≥ 0 ∀i

Hence, minimising ‖ w ‖ is equivalent to minimising 1
2 ‖ w ‖2 and “the use of this term makes it possible to perform

Quadratic Programming (QP) optimization later on” [85]. Therefore, we must find:

min
1
2
‖ w ‖2 s.t. yi(xi · w + b) − 1 ≥ 0 ∀i (9.10)

9.3.1 Support Vector Machine Explained

Below, a step-by-step process on how to use an SVM to solve a linearly separable binary classification problem.

• Create H, where Hi j = yiy jxi · x j

• Find α so that
L∑

i = 1

αi −
1
2
αT Hα

is maximized, subject to the constraints

αi ≥ 0 ∀i and
L∑

i = 1

αiyi = 0.

This is done using a QP solver.
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• Calculate

w =

L∑
i = 1

αiyixi.

• Determine the set of Support Vectors S by finding the indices such that αi > 0.

• Calculate
b =

1
N

∑
s∈S

(yS −
∑
m∈S

αmymxm · xS ).

• Each new point x′ is classified by evaluating

y′ = sgn(w · x′ + b).

If the data is not completely linearly separable, Fletcher argues that the SVM methodology can be extended by introducing
some manipulations (i.e. relaxing some constraints in 9.5 and 9.6). We will not present the development to make the
SVM capable of dealing with not fully linearly separable problems. Instead, we would rather refer the reader to [85].

9.4 Naı̈ve Bayes (NB) Vs. Support Vector Machine (SVM) for snippets

Despite the fact that SVM has become one of the most widely utilised supervised machine learning algorithms -especially
for classification- and that it is in general a method that shows higher accuracy and precision results, there are cases where
a naı̈ve approach, like the one implements through Naı̈ve Bayes produces better results. At this time, we have opted not to
compare our experimental results against SVM, because we are focusing our research hypothesis on performing sentiment
analysis at the sentence level, and research from Wang and Manning [225] demonstrated that Naı̈ve Bayes actually out-
performs SVMs for ‘snippets’: “for short snippet sentiment tasks, NB actually does better than SVMs (while for longer
documents the opposite result holds).”

Hence, Naı̈ve Bayes and Maximum Entropy, the latter being a method that seems to slightly outperform Naı̈ve Bayes un-
der specific circumstances, are the chosen methods for comparison purposes against our proposed solution (see Part IV).
The comparison will focus on the precision of the sentiment/opinion polarity determination task.

9.5 Chapter Summary

In this chapter we have discussed the fundamentals of key supervised machine learning methods, like Maximum Entropy
(ME) and Naı̈ve Bayes (NB). As we will be comparing our proposed method’s results with those obtained when using
the aforementioned machine learning methods, the topic possesses some relevance. In the next chapter we will address
another variant of machine learning, namely, Unsupervised Machine Learning.
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Chapter 10

Unsupervised Machine Learning (UML)

“Many of the fundamental ideas in artificial
intelligence have an ancient heritage. Some
of the most fundamental, surely, are that
thinking is a computational process, that
computational processes involve combining
symbols, that computation can be made
mechanical, and that the mathematics of
computation involves combinatorics. All of
these ideas have their origin, so far as we
know, in the work of an eccentric 13th
century Spanish genius, Ramón Lull
(1232-1316). Lull’s sources were partly
mystical, but the interesting part of his
thought drew from -or against- an analytic
tradition in logic and combinatorics.”

Excerpt from the article Ramón Lull and the
Infidels, by Clark Glymour, Kenneth M. Ford

& Patrick J. Hayes, AI Magazine, Vol. 19,
No. 2, pp. 136, 1998.

In Unsupervised Machine Learning (UML) we attempt to find structure in data that is unlabelled. According to Al-
paydin [8], in Unsupervised Learning there is only input and there is no supervisor or expert. The objective is to find
‘the regularities’ in the input. We are trying to find ‘a structure’ to the input in such a way that some patterns occur
more frequently than others. These identified patterns would be able to assist in producing a prediction. Because of
the way most Unsupervised Learning algorithms work, it is considered that Unsupervised Learning (UL) is somehow
domain-independent (product reviews, blogs, political speeches, etc.). In addition, in the case of NLP, UL methods are
independent of the language being used in the text or speech being analysed. When an UL system is exposed to unseen
new data, there is no need for previously labelling the new data as the method will not require any labelling in order to
work. In this regard, UML methods could be a better fit for situations when there are not plenty of linguistic resources at
reach or a design decision has been made with the purpose of avoiding having to manually label data. Notice that many
of the currently available labelled linguistics resources have been manually labelled through time.

There are a number of techniques that are considered Unsupervised Machine Learning (UML) methods, among them
[142], Clustering (K-Means, Hierarchical Clustering, etc.), Hidden Markov models, Self-Organizing Maps (SOM), the
Expectation Maximization Algorithm and others. In this section we will address methods that are mentioned in the liter-
ature examined as adequate for addressing the subjectivity and orientation problem in SA. In this chapter we will address
in more detail the Pointwise Mutual Information - Information Retrieval (PMI-IR) & the Latent Semantic Analysis (LSA)
methods and Vector Space Models (VSMs).
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10.1 Pointwise Mutual Information - Information Retrieval (PMI-IR) Method

Let us describe the Pointwise Mutual Information - Information Retrieval (PMI-IR) method attributed to Church & Hanks
[61] and fully applied in the context of SA by Turney [212]. As described by Turney [212] and Turney & Littman [213],
the first part of this method’s process is to extract from the input text phrases containing adjectives and verbs. Hatzi-
vassiloglou & Wiebe [93] had previously established that it is possible to predict the semantic orientation of adjectives.
Turney [212] provides evidence to suggest that Hatzivassiloglou & Wiebe’s claim is not always valid as he argues that the
same adjective might have different semantic orientations depending on the context it is used [212]. Indeed, the adjective
‘unpredictable’ has opposite orientation when used in an automotive review to indicate an ‘unpredictable steering’ (nega-
tive) in comparison to its use in a movie review to highlight its ‘unpredictable plot’ (positive). Thus, it is necessary for the
PMI-IR algorithm to extract a pair of words, with one of them being an adjective or adverb while the second one provides
context to determine the semantic orientation. As explained by Turney, a part-of-speech tagger, like Brill [36], is applied
to the original input text. The algorithm will extract two consecutive words from the input text if its tags correspond to
any of the patterns presented in Table 10.1. The aforementioned tags are displayed In Table 10.2, and are presented in

First Word Second Word Third Word
(Not Extracted)

1. JJ NN or NNS anything
2. RB, RBR, or RBS JJ not NN nor NNS
3. JJ JJ not NN nor NNS
4. NN or NNS JJ not NN nor NNS
5. RB, RBR, or RBS VB, VBD, VBN, or

VBG
anything

Table 10.1. Patterns of tags for extracting two-word phrases from input text

Santorini [192].

Tags Definitions
JJ Adjective
NN Noun, singular or mass
NNS Noun, plural
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle

Table 10.2. Tags definitions as per Santorini [192]

The Pointwise Mutual Information (PMI) between two words, word1 and word2, represents the amount of information
that we obtain about the presence of one of the words when we observe the other [212]. PMI is defined as follows [61]:

PMI(word1, word2) = log2

[
p(word1 & word2)
p(word1) p(word2)

]
(10.1)

where p(word1 & word2) represents the probability that word1 and word2 co-occur. Now, what we are trying to identify
is the Semantic Orientation (SO) of a given phrase. Turney [212] defines SO as:

S O(phrase) = PMI(phrase, “excellent”)−PMI(phrase, “poor”) (10.2)

According to Turney, he has chosen the words “excellent” and “poor” because in the review system he was analysing, a
poor review is represented with one star “*” and an excellent review is given five stars “*****”. Now, let us go back to
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the assumptions and rationale provided by Turney.

In equation 10.2, SO is positive when “phrase is more strongly associated with ‘excellent’ and negative when phrase is
more strongly associated with ‘poor’”. Turney uses then the AltaVista Advanced Search Engine (www.altavista.com/
sites/search/adv as it is convenient for his analysis. AltaVista has a NEAR operator that “constrains the search to
documents that contain the words within ten words of one another, in either order.” Turney claims that research has shown
that the operator NEAR works better than the logical AND when one is attempting to measure the strength of semantic
association between words.

Turney [212] continues by defining hits(query) as the number of hits returned given the query ‘query’ to the search
engine. Then, SO can be calculated by using equations 10.1 and 10.2, performing some algebraic manipulation and
assuming the co-occurrence is interpreted as NEAR:

S O(phrase) = log2

[
hits(phrase NEAR “excellent”) hits(“poor”)
hits(phrase NEAR “poor”) hits(“excellent”)

]
(10.3)

Here are some clarifications as provided directly by Turney [212]:

1. Equation 10.3 is a log-odds ratio

2. To avoid division by zero, Turney added 0.01 to the hits (0.01 was arbitrarily chosen)

3. phrase when both hits(phrase NEAR ”excellent”) AND hits(phrase NEAR ”poor”) were simultaneously less
than 4, were skipped (4 was arbitrarily chosen)

4. Turney added the particle “AND (NOT host:epinions)” to every query, to tell AltaVista to exclude the Epinions
Web site www.epinions.com/?sb=1 in its searches (Product Review and Consumer Reports)

The third step in the process is then the calculation of the average semantic orientation of the phrases in the analysed
reviews. A given review will be labelled as recommended if the average is positive, and not recommended if the average
is negative.

In [131] Bing Lui mentions that Turney manages to achieve classification accuracies that range between 84% and 66% on
reviews belonging respectively to the automobile reviews and movie reviews categories. According to Liu [131] the main
advantage of the method proposed by Turney [212] is that “it provides a prevailing opinion on an entity, topic or event”.
However, he argues that the main disadvantages are:

• “It does not give details on what people liked and/or disliked” [131]. For Bing Liu, in a review the person writing
her thoughts most likely will link her opinions to a specific entity.

• “It is not easily applicable to non-reviews, e.g. forum and blog postings” [131]. In the case on these forums
and blogs, most likely opinions will be issued about more than one entity (and many of those opinions might be
comparisons among several entities).

10.2 Vector Space Models (VSM) of Semantics & Pointwise Mutual Informa-
tion (PMI)

How would our Opinion Lexicon improve if we could find a score reflecting the distance (how near or how far) a given
lexicon’s word is from a few ‘seed words’ of a pre-recognised extreme polarity, either negative or positive? Basically, we
believe we would be looking for border conditions; a sort of a Max/Min in the polarity range ∈ [0, . . . ,1] in R. If so, we
could assign a meaningful score to every word in our lexicon that would help us to establish how near or how far from the
polarity edges -positive or negative- a word is. Let us start with some mathematical concepts.

As mentioned by Turney [210], “statistical approaches to synonym recognition are based on co-occurrence”, as men-
tioned as well by Manning and Schütze [140], whom distinguish between co-occurrence (or association) and collocation:
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collocation refers to ‘grammatically bound elements that occur in a particular order’, but co-occurrence and association
refer to ‘the more general phenomenon of words that are likely to be used in the same context’. Mainly, when it refers
to synonyms order does not matter, so they co-occur. At this point we are more interested in the idea of terms that are
collocated, and Pointwise Mutual Information (PMI) has been utilised extensible in the analysis of collocation. Let us
introduce firstly some basic concepts, most of which belong to the category of Vector Space Models (VSMs) of Semantics
[216, 231].

The Euclidean Distance between vector x and y of dimension n is defined as√√ n∑
i=1

|xi − yi|2 (10.4)

In turn, the Cosine Distance between vectors u and v of n dimensions is defined as

Cosine Distance(u,v) = 1−Cosine Similarity(u,v) (10.5)

where,

Cosine Similarity = cos(θ) =
A ·B

‖ A ‖ ‖ B ‖
=

∑n
i=1 Ai×Bi√

[
∑n

i=1(Ai)2 ×

√∑n
i=1(Bi)2

(10.6)

where, the operator ‘·’ stands for the dot product or scalar product, and ‖ v ‖ corresponds to the magnitude of the vector v.

The concept of neighbourhood between two words is of significant importance as well. Let us assume we do have a
matrix m, word x word, where the count in cell m[i, j] is the number of times that word i and word j occurred together in
the same text. Then the function neighbour allows to understand what are the closest word to a given word wk, according to
the concept of Cosine distance defined above. Some parts of the information in this sub-section have been obtained from
(http://web.stanford.edu/class/cs224u/), CS 224U (LING 188/288) Natural Language Understanding, Spring
2014 at Stanford University.

According to Turney and Littman [213, 215] it is possible to infer semantic orientation from semantic association. As
such, they defined seven positive words [good, nice, excellent, positive, f ortunate, correct, superior] and seven neg-
ative words [bad, nasty, poor, negative, un f ortunate, wrong, in f erior] that are used as a paradigm for positive and
negative semantic orientation. “The semantic orientation of a given word is calculated from the strength of its association
with the seven positive words, minus the strength of its association with the seven negative words” [213]. The concept of
using PMI to calculate the strength of the semantic association between words stems from Church and Hanks [60]. The
Pointwise Mutual Information (PMI) between two words, word1 and word2, is defined by Church and Hanks [59, 60] as:

PMI(word1, word2) = log2

(
p(word1) & p(word2)
p(word1) p(word2)

)
(10.7)

where p(word1) & p(word2) corresponds to the probability that word1 and word2 co-occur. The product p(word1)
p(word2) compensates for the case that the words are statistically independent. The ratio between both components is “a
measure of degree of statistical dependence between the words. The log of the ratio is the amount of information that we
acquire about the presence of one word when we observe the other”. Then, it follows that the semantic orientation of a
word, word, is calculated by SO-PMI-IR as follows [59, 60]:

SO-PMI-IR(word) = PMI(word,PositiveParadigms) − PMI(word,NegativeParadigms) (10.8)

where,
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PositiveParadigms = { good, nice, excellent, positive, fortunate, correct, superior }, and

NegativeParadigms = { bad, nasty, poor, negative, unfortunate, wrong, inferior }

D. Terence Langendoen [125] says in his review of some of the work of the famous English linguist J. R Firth [84]:
“His notion of meaning by collocation, however, deserves careful attention. Firth viewed this notion as an attempt to
formalize within semantic theory Wittgenstein’s thesis that ‘the meaning of words lies in their use’ .” Hence, we see
that collocation and semantic enjoy a very peculiar link. Basically, “words that occur in similar contexts tend to have
similar meanings” [216]. We will attempt to exploit that link by using PMI to determine how close semantically a word
x is to another word y. However, there are some issues that must be addressed first. According to Turney and Pantel
[216] “computers understand very little of the meaning of human language”. This situation translates into challenges for
humans to give orders to computers and limits the capabilities of computers to analyse, process and understand text. As
per [216], the so-called Vector Space Models of Semantics (VSMs) are beginning to address the limitations we have just
mentioned (statement circumscribed to the time period the article was published: 2010). The main idea behind Vector
Space Models, as developed by Salton et al. [190, 191], is that one can represent each document in a collection as a point
in space (a vector in vector space). “Points that are close together in this space are semantically similar and points that are
far apart are semantically distant. The user’s query is represented as a point in the same space as the documents” [216].
The success of VSM in information retrieval has encouraged other researchers to explore other uses of VSM in NLP.
As already mentioned, it has been reported [216] that VSM performs very well on processes orientated to measuring the
similarity of meaning between words -phrases and documents-. Turney and Pantel [216] claim that the leading algorithms
for measuring semantic relatedness use VSMs [166].

There are a number of tools in the VSM arsenal, and the PMI is one that is very efficient at finding word similarity.
“Each word is represented by a feature vector. Each feature corresponds to a context in which the words occurs” [166].
Pantel and Lin continue: “For example, “sip ” is a verb-object context. The word wine occurred in this context, the
context is a feature of wine. The value of a feature is the pointwise mutual information (PMI) between the feature and
the word. Let c be a context and Fc(w) be the frequency count of a word w occurring in context c. The pointwise mutual
information, miw,c between c and w is defined as”:

miw,c =

Fc(w)
N∑

i Fi(w)
N ×

∑
j Fc( j)
N

(10.9)

where N =
∑

i
∑

j Fi( j) is the total frequency counts of all words and their contexts. As per the authors, a well-known
problem with mutual information is that it is biased towards infrequent words or features. As a consequence, miw,c is
multiplied with a discounting factor:

Fc(w)
Fc(w) + 1

×
min

(∑
i Fi(w),

∑
j Fc( j)

)
min

(∑
i Fi(w),

∑
j Fc( j)

)
+ 1

(10.10)

Pantel and Lin [166] close by stating “We compute the similarity between two words wi and w j using the cosine coefficient
of their mutual information vectors”:

sim(wi,w j) =

∑
c miwic×miw jc√∑
c mi2wic×

∑
c mi2w jc

(10.11)

We have shown the basis for using PMI and its mathematical foundations. In our research work we will be using the PMI
discounting factor version as mentioned above to obtain relationships of attraction or gravity for the words that are part of
our Opinion Lexicon. This ‘negative gravity’ and ‘positive gravity’ as we have decided to call them, represent the average
distance between a given word and the PositiveParadigms seeds and the NegativeParadigms seeds, respectively.

At Stanford University, Chris Potts [178] generated some Python code for VSM and prepared some clean data sets based
on data available at IMDB (http://www.imdb.com/), the so-called Internet Movie Database. We see that as per [178],
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there is available a frequency matrix with a structure as shown below in Table 10.3. It is a Word×Word Matrix, where
the count in cell m[i, j] corresponds to the number of times that Word i and Word j occurred together in the same text
(called c[i, j] in Table 10.3). The file prepared by Prof. Potts, named ‘imdb-wordword.csv’ contains a (2,998 x 2,998)
(Word x Word) matrix, representing a Frequency Matrix generated from movie reviews available in IMDB. For conve-
nience, we will use this data and the VSM Python code provided by Prof. Potts, for our experiments and tests and for
extracting information to augment the richness of our Opinion Lexicon. The process that we followed to generate these

Count Word1 Word2 Wordk Wordn

Word1 c11 c12 c1k c1n

Word2 c21 c22 c2k c2n

. . . . . . . . . . . . . . .

Wordn cn1 cn2 ckn cnn

Table 10.3. VSM Word x Word Matrix

aforementioned ‘positive gravity’ and ‘negative gravity’ coefficients is as follows:

1. Obtain the matrix m containing the Word x Word structure detailing frequency, as described above.

2. Generate the PPMI (Positive PMI with discounting adjustment) matrix p, as described in [211].

3. For every word in matrix p, calculate the cosine distance with respect to the set of positive seeds and the set of
negative seeds. For every word in p we will generate distance values: one telling us ‘how close’ a given word wk

is from being semantically positive (Maxdist) and another telling us ‘how far’ it is from that (Mindist) -or in other
words, how close wk is to the cluster of negative seeds-.

4. Apply the concept of Semantic Orientation (CSOR) described by Potts in [179] and calculate the SO of the words
in matrix p.

5. From all these scores described above, Maxdist, Mindist and CSOR, incorporate them into our opinion lexicon (for
those words that are actually included already in the lexicon as sentiment-carrying words).

Note: in Section 14.1.1 we describe the final version of our sentiment lexicon and its attributes. However, attributes
Maxdist, Mindist and CSOR are not part of it. After a number of experiments, we noticed that we did not have enough
data to populate these aforementioned three variables. As such, they became very hard to use efficiently in our proposed
model. Hence, we decided to reject these attributes from the lexicon and continue using the sentiment lexicon described in
Section 14.1.1 on this report. For completeness, we have decided to include the Vector Space Models (VSM) of Semantics
& PMI in this report, as they were part of our research and they looked promising. Nevertheless, as mentioned already
the lack of data made these techniques unusable in our proposed model.

10.3 Latent Semantic Analysis (LSA) Method

Turney & Littman [214] addressed as well the inference of semantic orientation from association. According to Turney, as
mentioned before, a word’s orientation is associated to its neighbour words’ orientation. As such, the Semantic Orientation
of a given word, by association, SO-A, is proposed as follows:

S O−A(word) =
∑

pword ∈Pwords

A(word, pword) −
∑

nword ∈Nwords

A(word, nword) (10.12)

where,

• Pwords: a set of words with positive semantic orientation.

• Nwords: a set of words with negative semantic orientation.

• A(w1, w2): a measure of association between w1 and w2.

◦ Maps to a real number.
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◦ Positive/Negative - Presence/Absence.

The following seven positive and seven negative words are defined as “paradigms of positive and negative semantic
orientation” [214]:

• Positive set: good, nice, excellent, positive, fortunate, correct and superior.

• Negative set: bad, nasty, poor, negative, unfortunate, wrong and inferior.

For Turney & Littman, the above paradigm words represent semantic orientation rather than training the LSA algorithm.
According to the authors, SO-LSA applies Latent Semantic Analysis (LSA) in order to compute the intensity or strength
of the semantic link that exists between two words. LSA utilises an algorithm called Singular Value Decomposition [214]
with the objective of analysing the statistical relationships among all words in a given corpus. The text being analysed is
initially used to build a matrix, in which the rows represent words in the corpus, whilst the columns correspond to words
in the corresponding chunk of text. For more information on the mechanics of this method, refer to [216, 231].

10.4 Word-frequency Lists / Dictionaries

Technically speaking, a Word-frequency Dictionary is not an UML method. However, it is a strategy that has been used in
a number of situations [26, 135, 164, 165, 173, 177, 231], and we make use of it in our proposed model (see Chapter 14).
In our case, we opted for creating a word-frequency dictionary with the following structure and mnemonics (W=word,
NO= Number of occurrences in corpus, SN = pointer to sentence number, PR = Polarity, either Positive or Negative):

[W NO { (SN1,PR) . . . (SNn,PR) } ], where n = number of words that are part of the dictionary.

Notice that the third element in the dictionary is a list of pairs, where the first value corresponds to a pointer to a sentence
where the word in question is present, and the second one provides the polarity of the sentence to which the first value is
pointing. The application of this strategy in assisting in polarity identification, does require two steps. In this first step, the
whole dictionary is created. In the second one, the dictionary is used to look for those cases where the following condition
is satisfied: for the sentence being processed, not even one of the participating words exist in the lexicon. As such, we
will attempt to determine the polarity of the words by computing how many times they have been spotted in sentences
that have yielded previously a specific polarity (either positive or negative).

If Count (Positive Occurrences) > Count (Negative Occurrences) then the Sentence being Processed will get assigned a
Positive polarity
If Count (Positive Occurrences) < Count (Negative Occurrences) then the Sentence being Processed will get assigned a
Negative polarity
Otherwise, the sentence will be assigned an Objective polarity.

For a corpus of n words, this algorithm is computationally expensive as it will have a Θ2 order. See sub-section 14.1.4.1.1
for more information on when and how this technique is utilised in our proposed solution.

10.5 Other Methods

Among other options, Rothfels & Tibshirani [185] proposed an Unsupervised Method based on a revised version of PMI
and other components. More recently Blein et al. [28] proposed the Latent Dirichlet Allocation (LDA) algorithm (a
generative model that allows sets of observations to be explained by unobserved groups that explain why some parts
of data are similar). Reed [181] provides a good tutorial on LDA. Usha and Devi [218] present a method based on
Gibbs Sample procedure (a Markov chain Monte Carlo algorithm for obtaining a sequence of observations which are
approximated from a specified multivariate probability distribution). In [128] a Weakly Supervised joint sentiment-topic
(JST) detection method is presented, which according to the authors is a novel probabilistic modeling framework based
on latent Dirichlet allocation (LDA) [28] and that is supposed to be capable of detecting simultaneously sentiment and
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topic out of a given text (as the aforementioned method is classified as weakly-supervised we have arbitrarily decided to
placed it under Unsupervised Methods).

10.6 Chapter Summary

In this chapter we have discussed unsupervised machine learning techniques. As we have covered as well supervised
machine methods in the previous chapter, this concludes the content related to machine learning. In the next chapter we
will aboard the topic of the fundamental concepts of emotions.
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Chapter 11

The Concept of Emotions

“I wish it need not have happened in my
time”, said Frodo. “So do I”, said Gandalf,
“and so do all who live to see such times. But
that is not for them to decide. All we have to
decide is what to do with the time that is
given us.”

J.R.R. Tolkien, The Fellowship of the Ring.

In this chapter, we are looking at sentiments from the perspective of the theory of emotions, which is rooted in
neurological and psychological foundations. We have addressed this topic as we were interested in understanding how
these aspects could impact, if at all, the classification of sentiments.

11.1 The Ortony-Clore-Collins (OCC) Model

According to Ortony et al. [161] the cognitive structure of emotions must have some specific characteristics: “We share
Abelson’s (1983) view that an analysis of emotion must go beyond differentiating positive from negative emotions to give
a systematic account of the qualitative differences among individual emotions such as fear, envy, anger, pride, relief and
admiration”. In [161], the authors attempt to establish the cognitive antecedents of emotion and strive to produce system-
atic explanations. In time, the Ortony-Clore-Collins model (OCC) has become a reference and baseline for most of the
work conducted in the field. According to Schnoebelen [193], Ortony et al. start out with a notion of eliciting conditions,
which to be effective “the experiencing individual must encode the relevant situation in a particular way.”. Schnoebelen
continues saying that “the OCC model propose an arousal-producing mechanism that simultaneously registers valence”.
The main generalisations that Ortony et al. find in the past literature are [193]:

• Emotion involves arousal and appraisal.

• Any dimensional characterization of emotion is likely to include at least activation and valence.

• There are basically two sides of a coin; activation = arousal and valence = appraisal.

• These dimensions are, for OCC, uninformative/unsurprising.

Emotions are “valenced reactions to events, agents, or objects, with their particular nature being determined by the way in
which the eliciting situation is construed” [161, pp. 13]. According to Schnoebelen [193], this is a refinement of an earlier
notion that “emotions are internal, mental states that vary in intensity and that are focused predominately on affect. By
affect we simply mean evaluative reactions to situations as good or bad” [161, 190-191]. An Emotion type is “a distinct
kind of emotion that can be realized in a variety of recognizably related forms” [193].

Emotion types are divided by whether they focus on events, agents, or objects [193]. “Events are simply people’s con-
struals about things that happen, considered independently of any beliefs they may have about actual or possible cause.
Objects are objects viewed qua-objects. This leaves us with agents, which are things considered in light of their actual or
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presumed instrumentality or agency in causing or contributing to events. Agents can be non-human animate beings, inan-
imate objects or abstractions, such as institutions, and even situations, provided they are construed as causally efficacious
in the particular context” [161, pp.18]. Figure 11.1 reproduces the global structure of emotion types as per Ortony et al.

Fig. 11.1. Original Structure of Emotions of the OCC model ([161, pp. 19], re-illustrated from [201])

For Ortony et al. there are global factors that determine emotional intensity [193]:

• Sense of reality (how much do you believe the emotion-inducing situation is real?)

• Proximity (how close in psychological space do you feel to the situation?)

• Unexpectedness (how surprised are you by the situation?)

• Arousal (how much are you aroused prior to the situation?)

The structure proposed by Ortony et al. is the so-called OCC Model, as depicted in Fig. 11.1. There are three main
branches stemming from a tree and they represent the three different ways in which an individual can react to the world.
The representation is logical and does not follow any temporal approach. Each one of the aforementioned branches are
linked to broad classes of affective reactions. The intensity of the emotions will dictate whether or not they will be
interpreted as such, hence the importance of knowing which are the factors affecting the intensity of such feelings. These
aforementioned reactions can have a valence (representing intensity) associated to them [161, 19-20].

11.2 OCC Revisited

Despite the fact that the OOC Model is considered to be a very solid one, some authors considered that the model includes
some minor ambiguities that should be removed if one were to attempt to use the OCC Model for computational purposes.
As such, Steunebrink et al. [202] have proposed the so-called OOC Model Revisited, to identify and clarify several of the
aforementioned ambiguities. In addition, they introduce a new inheritance-based view of the logical structure of emotions
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of the OCC model proposed by Ortony et al. [161], which is depicted in Fig. 11.2.

When commenting on the main differences between the Revisited OCC and the original one, the authors claim the

Fig. 11.2. A disambiguated, inheritance-based hierarchy of emotions of the OCC model ([202, pp. 7]).

following (taken from [202]):

1. The Revisited OCC Model “represents the inheritance structure explicitly, because it has labels at every point in
the hierarchy, and the conditions of every child node are a superset of those of its parent node(s)”.

2. “Along each connection are written (in small caps) the additional condition(s) that make an emotion type a special-
ization of its parent type(s). Ambiguous terms are avoided; for example, we have omitted or replaced the phrases
‘focusing on’ and ‘prospects (ir)relevant’”.

3. “Satisfaction, fears-confirmed, relief, and disappointment have been moved from under hope/fear to become spe-
cializations of joy/distress. This is because we regard a confirmation or disconfirmation to be an actual consequence
(of an event)”.

4. “Happy-for, resentment, gloating, and pity have been moved from the left of” the original OCC model “to the
bottom right of” the Revisited OCC model.

5. As “love/hate does not seem to extend its parent type”, “we have added interest/digust as an additional (i.e., besides
love/hate) specialization of liking/disliking, based on the familiarity with the object in question”.
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6. “One thing that we find particularly attractive about”, the Revisited OCC Model, “is that type specifications now
follow immediately from the diagram. Descriptions can easily be formed by following any link from child to parent
node, inserting the text on the link.”. The resulting type specifications are displayed in Table 11.1.

Table 11.1. Emotion type specifications corresponding to Fig. 11.2 (as reproduced from [202, pp. 8]).

This Revisited OCC Model seems to be a better fit for those attempting to produce any sort of computational model of
emotions, because emotions are formalised “in a way which is both truthful to the OCC model and useful for Artificial
Intelligence” [202].

11.3 Other models of emotion

Personally speaking, we believe that the best way to understand human emotions is reading the works of Homer, Dante
and Shakespeare. However, we realise that this style of learning may lack the level of formality required in research
initiatives. It is commonly believed that one of the first documents dealing with the origin and evolution of emotions and
related topics can be tracked down to Charles Darwin with his treaty on primary emotions [69]. James [105, 106] and
more recently Plutchik [174] and Ekman [76] produced dramatic contributions to this field of study. Let us look at some
of the contributions provided by some of these authors.

11.3.1 Darwin

One of the main contributions of Charles Darwin to this topic was his idea of looking at emotions as an evolutionary
aspect. In his work published in 1872 [69], Darwin introduced the concept of basic emotions. According to Charles
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Darwin, emotions are biologically determined [69] and they establish a common link among beings. All in all, his ideas
germinated in a number of researchers whom carried on with the work generating many other theories.

11.3.2 Plutchik

In [29], Blewitt discusses the main ideas proposed by Plutchik [174, 175]. This researcher is recognised as having
introduced the so-called eight basic emotions (joy versus sadness; anger versus fear; trust versus disgust; and surprise
versus anticipation) and advanced emotions (those that result when a given subject experiences in parallel a number of
emotions). Plutchik argued that the eight basic emotions are bipolar and that emotions can be expressed at different
intensities (the latter concept is interesting to us as it ties to the idea of graduality). Plutchik’s psycho-evolutionary theory
of basic emotions includes ten postulates [175]:

1. The concept of emotion is applicable to all evolutionary levels and applies to all animals including humans.

2. Emotions have an evolutionary history and have evolved various forms of expression in different species.

3. Emotions served an adaptive role in helping organisms deal with key survival issues posed by the environment.

4. Despite different forms of expression of emotions in different species, there are certain common elements, or
prototype patterns, that can be identified.

5. There is a small number of basic, primary, or prototype emotions.

6. All other emotions are mixed or derivative states; that is, they occur as combinations, mixtures, or compounds of
the primary emotions.

7. Primary emotions are hypothetical constructs or idealized states whose properties and characteristics can only be
inferred from various kinds of evidence.

8. Primary emotions can be conceptualized in terms of pairs of polar opposites.

9. All emotions vary in their degree of similarity to one another.

10. Each emotion can exist in varying degrees of intensity or levels of arousal.

11.3.3 Ekman

Paul Ekman, was an American psychologist who is considered to be a pioneer in the study of emotions and their rela-
tion to facial expressions [76]. Below we present the so-called Basic Emotions that Ekman proposes in his theory (see
Table. 11.2). Ekman affirms that the number of basic emotions is limited. However, he claims as well that there are

Name Definition
Anger A strong feeling of annoyance, displeasure, or hos-

tility
Disgust A feeling of revulsion or strong disapproval aroused

by something unpleasant or offensive
Fear An unpleasant emotion caused by the threat of dan-

ger, pain, or harm
Happiness Feeling or showing pleasure or contentment
Sadness Feeling or showing sorrow; unhappy
Surprise A feeling of mild astonishment or shock caused by

something unexpected

Table 11.2. Basic Emotions - Ekman’s Theory [29, 76]

‘non-basic’ emotions that happen to be combinations of the aforementioned basic emotions.
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11.4 Non-psychological models

There are some models of emotions that are not based on psychological backgrounds. However, for completeness we will
mention two other lines of thinking about emotions.

11.4.1 Neurobiological Background

Neurologist António Damásio [68], provides an extraordinary account of his challenge with respect to one of the original
ideas of Descartes (the human mind as separate from bodily processes). In [68], Damásio, among many other complex
situations, argues that there are primary and secondary emotions, and provides a classification as follows (as quoted from
[24]):

• Primary emotions (fear, anger, joy, etc.):

◦ fast, hardwired stimulus response patterns

◦ trigger fight or flight behaviors

◦ ontogenetically earlier types of emotion

• Secondary emotions (hope, shame, etc.)

◦ lead to cognitively elaborated, deliberative behaviors

◦ are based on memories and expectations

◦ ‘social emotions’ developed during infancy

◦ ‘utilize the machinery of primary emotions’

11.4.2 Social/Interpersonal Background

According to Parkinson et al. [167] “emotions are not necessarily defined by the quality of the associated feeling state but
may instead derive their identity from the interpersonal dynamics that provide the context for their subjective aspects”.
The authors highlight as being of particular interest the so-called ‘sociomoral emotions’ [24, 167].

• Embarrassment: ‘an interruption of the orderly performance of social action’.

• ‘Shame’: a person’s ‘failure to live up to central standards of conduct [in the eye of others]’.

• Guilt: ‘blameworthy action is the key elicitor’.

For the curious reader, please refer to [167] for complete details.

11.5 Chapter Summary

In this chapter we have addressed some concepts related to the theory of emotions. We have made some decisions related
to the potential incorporation of these aspects into our proposed classification model (see Chapter 17), and the concepts
described in this chapter, were important in the decision-making process. In the next chapter we will cover an important
research field that has proven to be instrumental in our research and associated results: Fuzzy Reasoning.
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Chapter 12

Fuzzy Reasoning in Sentiment Analysis

“Vivimos en un mundo esencialmente
apócrifo, en un cosmos o poema de nuestro
pensar, ordenado o construido todo él sobre
supuestos indemostrables, postulados de
nuestra razón, que llaman principios de la
lógica, los cuales, reducidos al principio de
identidad que los resume y reasume a todos,
constituyen un solo y magnı́fico supuesto: el
que afirma que todas las cosas, por el mero
hecho de ser pensadas, permanecen
inmutables, ancladas, por decirlo ası́, en el
rı́o de Heráclito. Lo apócrifo de nuestro
mundo se prueba por la existencia de la
lógica, por la necesidad de poner el
pensamiento de acuerdo consigo mismo, de
forzarlo en cierto modo, a que sólo vea lo
supuesto o puesto por él, con exclusión de
todo lo demás. Y el hecho -digámoslo de
pasada- de que nuestro mundo esté todo él
cimentado sobre un supuesto que pudiera ser
falso, es algo terrible, o consolador. Según se
mire. Pero de esto hablaremos otro dı́a.”

Antonio Machado (Juan de Mairena, 1936).

“When we are not sure, we are alive.”

Graham Greene.

In this chapter the fundamentals of the application of fuzzy sets to the SA problem are discussed. We start by briefly
addressing some fuzzy sets and fuzzy logic basic concepts, and we close the chapter presenting some real cases of the
utilisation of fuzzy reasoning techniques in the SA field.

According to Zadeh [261, 264, 265] fuzzy sets are incredibly helpful when information is incomplete or imprecise and
ambiguity is present. But, what could be at the same time imprecise and ambiguous and in another occasions, very pre-
cise? There is no doubt that Natural Languages fit this description. As such, we believe that there is certainly lots of
merits in considering fuzzy sets/logic as a tool that could perform well in NLP-related problems.
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12.1 Fuzzy Sets

In this section we will briefly refresh the mind of the reader about the main ideas involving fuzzy sets and fuzzy logic.
Fuzzy Sets were introduced by Lotfi A. Zadeh in 1965 [261]. As covered in [119], if X is the universal set defined in a
specific problem, with elements denoted generally by x, then a fuzzy set A in X is a set of ordered pairs:

A = {(x, µA(x)) | x ∈ X} (12.1)

where µA : X → [0, 1] is called the membership function of A and µA(x) represents the degree of membership of the
element x in A. Notice that if the range of the membership function is enforced to be either 0 or 1, then the fuzzy set
becomes a regular (crisp) set. Now let us take a look at the basic operations with fuzzy sets which extend classical set
theory consistently.

1. Intersection (min operator):
µA∩B(x) = min {µA(x), µB(x)}

that is equivalent in classical sets to
x ∈ A ∩ B⇔ x ∈ A ∧ x ∈ B

2. Union (max operator):
µA∪B(x) = max{µA(x), µB(x)}

that is equivalent in classical sets to
x ∈ A ∪ B ⇔ x ∈ A ∨ x ∈ B

3. Complement:
µĀ = 1−µA(x)

t-norms and t-conorms -‘t’ for triangular- were introduced to enable generalisation from boolean to multi-valued logic.
t-norms define a general class of intersection operators for fuzzy sets, whilst t-conorms define a general class of operator
for performing the union of fuzzy sets.

A t-norm is a two valued function
T [0, 1] x [0, 1]→ [0, 1]

which satisfies the following conditions:

1. T (x, 1) = x ∀x (boundary)

2. T (x, y) = T (y, x) ∀x, y (commutativity)

3. T (x, y) ≤ T (x, z) i f y ≤ z (monotonicity)

4. T (x, T (y, z)) = T (T (x, y), z) (associativity)

The most commonly used t-norm for fuzzy intersection is the minimum (min) operator.

A t-conorm is a two valued function
S [0, 1] x [0, 1]→ [0, 1]

which satisfies the following conditions:

1. S (x, 0) = x ∀x (boundary)

2. S (x, y) = S (y, x) ∀x, y (commutativity)

3. S (x, y) ≤ S (x, z) i f y ≤ z (monotonicity)

4. S (x, S (y, z)) = S (S (x, y), z) (associativity)
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The most commonly used t-conorm for fuzzy union is the maximum (max) operator.

The work of De Cock et al. [63] and De Cock & Kerre [62] is very illustrative about modelling linguistics expressions
using fuzzy relations and introducing ‘fuzzy modifiers’ for adverbs applying fuzzy relations.

12.2 Fuzzy Logic

Fuzzy logic is a form of many-valued logic. As introduced by Lotfi A. Zadeh “it deals with reasoning that is approximate
rather than fixed and exact” [261]. As fuzzy logic is based on fuzzy sets, its variables may have a truth value that ranges
in degree between 0 and 1 in R, as opposed to those of classical logic based on binary sets, admitting exclusively either a
value of 0 or 1. Another great advantage of fuzzy logic is the enabling of the use of linguistics variables. In real life situa-
tions, experts have to deal with vague, ambiguous or imprecise information or have to express their opinions on qualitative
aspects. According to Zadeh, “Variables whose values are not numbers but words or sentences in a natural or artificial
language. The motivation for the use of words or sentences rather than numbers is that linguistic characterizations are, in
general, less specific than numerical ones”.

“As an extension of the case of multi-valued logic, valuations (µ : Vo → W) of propositional variables (Vo) into a
set of membership degrees W can be thought of as membership functions mapping predicates into fuzzy sets (or more
formally, into an ordered set of fuzzy pairs, called a fuzzy relation). With these valuations, many-valued logic can be
extended to allow for fuzzy premises from which graded conclusions may be drawn” [90]. This extension is sometimes
called ‘fuzzy logic in the narrow sense’ as opposed to ‘fuzzy logic in the wider sense’, which originated in the engineer-
ing fields of automated control and knowledge engineering, and which encompasses many topics involving fuzzy sets and
‘approximated reasoning’. [263]. For more details on fuzzy logic, please refer to [38, 90, 118, 119, 184, 261, 264, 269].

12.3 Fuzzy Sets applied to the SA Problem

In this section we will proceed in two steps. Firstly, we will describe the elements that we believe can be used to apply
fuzzy sets to the SA problem. Secondly, we will present some of the documented cases of actual applications of fuzzy sets
to the SA problem.

12.3.1 Fuzzy Sets in SA

It is well-known that linguistic variables and linguistic characterisations are less precise that numerical ones. It is sort of
intuitive to think of fuzzy sets as good tools to model natural languages. But how? Is it the fuzzification of the dictionary?
Is it the introduction of fuzziness in the polarity range in the sentiment lexicon? Is it a different approach, like using fuzzy
sets for subjectivity identification or only for polarity clarification? Or both, perhaps?

In the sub-sections that follow we will cover more details on the better known cases on the use of fuzzy sets in SA.
However, we would like to establish early enough our leaning. In our mind the most interesting use of fuzzy sets in
the SA problem, would be linked to the introduction of fuzziness at the heart of the linguistic/lexicon-based approach.
That would imply using fuzzy sets in the potential creation of a sentiment lexicon capable of managing graduality in the
polarity attribute (i.e. {excellent,verygood,good}), all being possible states of a positive opinion, but certainly not all
three of them expressing the same opinion strength. In the case of identifying subjectivity, we tend to believe that there
is merit on looking at both options: (a) using fuzzy sets, and (b) utilising NLP linguistic techniques (based most likely
on semantic rules or unsupervised learning). This way we would be in the presence of a hybrid approach where fuzzy
sets and linguistic methods would be applied. We could even extrapolate that it would be reasonable to use linguistic
approaches to predict polarity and to apply fuzzy sets to ‘validate’ the previous assessment, and further on, to establish
the strength or intensity of the polarity case, once the latter has been identified appropriately. We will elaborate more on
this approach in Part IV.
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12.3.2 Fuzzy Sets Cases

There are a few approaches to the utilisation of fuzzy sets in the SA problem that has been documented. We will cover
in the next paragraph some of them, but cannot guarantee that we will cover all of them. We will detail those that we
consider to be of greater significance because of the approach they have followed or because they claim to have found
results that are comparable -or better- than those exhibited in research based on Supervised Machine Learning (SML).

12.3.2.1 Case 1: Affect Analysis using Fuzzy Semantic Typing

Subasic and Huettner proposed in [204, 205] an approach to affect analysis using what they called fuzzy semantic typing.
Most of the contents of this sub-section has been extracted from the work they published in 2001 [205]. The authors seem
to have given their deepest thoughts to the problem of applying fuzzy sets to identify emotions in an automated fashion.
Their proposal is based on a fusion of traditional NLP tools and fuzzy logic techniques aimed to be used to decipher
affect content in text. As per Subasic and Huettner, the linguistic resources used by the fuzzy typing system are: the
affect-lexicon, the so-called fuzzy-thesaurus and what they call affect-category groups.

• Affect Lexicon is defined as a collection of entries for terms that mean affects. In addition, every entry for an affect
term, includes additional key data like the parts-of-speech that word belong to, its affect categories, its centralities
and its intensities. Entries in the affect lexicon follows this form:

〈lexical entry〉 〈part o f speech tag〉 〈a f f ect category〉〈centrality〉〈intensity〉

as in the example (‘arrogance’ sn superiority 0.7 0.9). In the affect lexicon just mentioned, we must clarify the
meaning of a few items.
Lexical entry is a single entry for terms that carry emotional connotations or directly imply an emotion/affect.
Part of Speech tag: understanding what part-of-speech a given term belongs to is critical, otherwise it would be
very hard to resolve ambiguity issues. For instance, the word ‘alert’ could mean ‘intelligence’ (when it is an adjec-
tive) or it could imply a ‘warning’ (when it is a verb). Subasic and Huettner claim that a word’s PoS could affect
its centrality, its intensity or/and its category values. The following example provided by the researchers is very
illustrative. The word ‘craze’ has the following two entries in their dictionary: (‘craze’ vb insanity 0.8) and (‘craze’
sn insanity 0.5). Then, ‘craze’, as a verb belongs to the affect category ‘insanity’ with a degree of 0.8; and ‘craze’,
as a noun (in singular) belong to the same category, but with a degree of 0.5 instead. In this case, Subasic and
Huettner claim that this situation is an evidence that “the verb ‘craze’ means to make insane or as if insane -very
central to the insanity category!- while the noun ‘craze’ means an exaggerated and often transient enthusiasm- i.e.,
it belongs to insanity only in a less central way, in a more metaphorical way.” [205].
Affect category: the authors offer the disclaimer that several of the categories proposed have wander away from
their main affect domain. For example, the words health, intelligence and deprivation are hardly affects. The
same situation present itself with the word destruction, justice and death. The authors claim that they had to create
such categories in order to deal with cases where the meaning of a word cannot be captured using affect categories
and the same (non-affect) meaning kept appearing in the texts they were trying to analyse. As a consequence, the
authors have created some not-strictly-affect categories to deal with these ‘special’ words. Subasic and Huettner
claim to have created eighty-three affect categories. They have produced as well an explicit antonym for all cate-
gories, with the exception of some words ‘death, irritation, and crime’. See Fig. 12.1 that present a table with all
83 categories as taken from Subasic and Huettner [205].
Centrality: it ranges from 0 to 1 by increments of 0.1. As such, if a word belongs to more than one affect cat-
egory it most likely have different centralities, as in: (‘emasculate’ vb weakness 0.7), (‘emasculate’ vb lack 0.4),
and (‘emasculate’ vb violence 0.3). But, how is centrality assigned? It seems that all decisions about centrality
are passed to the lexicon developer. The authors claim that the questions the lexicon developer should ask herself
are: (a) To what extent is affect word X related to a given category C? (b) To what extent does affect word X
co-occur with a given category C? (c) To what extent can affect word X be substituted with category C in the text,
without changing the semantic? (as quoted from [205]). Centrality computations are performed by obtaining fuzzy
membership degrees.
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Fig. 12.1. The Complete List of Affect Categories and Opposite Affect Categories (captured as a figure) as presented in [205]

Intensity: represent the strength of the affect level described by the entry. Intensity degrees range from 0 to 1, with
0.1 increments. In the scores designed by the authors, numbers below 0.4 on the scales of intensity and centrality
are those more subjective and notional. The task of assigning values to entries in the lexicon has be assigned to a
single linguist professional. As such, the classification will respond to the background, experience and prejudices
of one person (the chosen linguist). Even though a rational process is being followed, there is still some subjectivity
involved.

• Fuzzy Thesaurus: it is used to establish relationships “between pairs of affect categories, based on the centralities
of items assigned to both categories in the lexicon” [205, pp. 486]. The entries in the thesaurus are of the form
〈a f f ect category1〉, 〈a f f ect category2〉, 〈relationship degree〉, as in ‘attraction, love, 0.8’ arranged in a matrix.
“When the relationship degree is equal to 0, no entry is recorded in the fuzzy thesaurus. When the relationship
degree is equal to 1.0 we say that we have discovered affectual synonyms” [205], as in ‘conflict, violence, 1.0’,
‘pain, harm, 1.0’. “Non-synonymous pairs having entries in the matrix are related to some specified degree”.
The fuzzy thesaurus is produced by the system created by the authors from the affect lexicon. It is created using
max-min composition [259].

R(ACi, AC j) =
∨

A∈AffectLexicon

{CA(ACi) ∧CA(AC j)} (12.2)

where ACi, AC j are affect categories whose relationship degree R(ACi, AC j) we want to compute and CA(ACi),
CA(AC j) represent the centralities of affect categories ACi, AC j with respect to affect A. The terms CA(ACi),
CA(AC j) are taken directly from the affect lexicon. According to the authors, it is difficult to modify the affect
intensity set in a consistent manner, so they leave it to the user to “accommodate the intensities of the added
categories for his/her particular purposes”. It is important to notice that since the fuzzy thesaurus is generated from
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the affect lexicon, any changes in the latter will trigger the need for a re-generation of the fuzzy thesaurus.

• Affect Category Groups: these are automatically generated by clustering the fuzzy thesaurus. Hence, those affect
categories that are very similar will get grouped together. As an example the authors mention that ‘love’, ‘attrac-
tion’, ‘happiness’, ‘desire’ and ‘pleasure’ become one affect category group. Affect category group ACG is a set
of affect categories ACi such that

ACG = {ACi, i = 1, · · · ,N | R(ACi, AC j) > RT , i, j = 1, · · · ,N, i , j} (12.3)

where RT , 0 < RT ≤ 1.0 is a threshold defined by the user (this ACG is not the same similarity relation described
by Zadeh in [259]).

Words are assigned specific meta-data from the typing lexicon, as a form of semantic categories and associate degrees,
that eventually will produce an outcome for the whole document being analysed. Here is the complete process:

• Affect Sets: it corresponds to the set of affective categories for a given piece of text, inclusive of intensities and
centralities.

• Tagging of Free Text: Subasic and Huettner provides a graphic that depicts the process of generating the affect set,
Fig. 12.2, that describes the following steps:

Fig. 12.2. Generation of the affect set for a document: a fuzzy set representing affective content of a document, as re-illustrated from
Subasic and Huettner [205].

1. Normalization and tagging: as expected, the document goes through the process of parsing and tokenization,
and the resulting tokens are normalised as per the grammar database shown in Fig.12.2. Then the normalised
tokens are looked up in the affect lexicon. It is important to notice that if a given token has got a number
of lexicon entries, all affect categories -with its centralities and intensities- are retrieved. By following this
process the initial affect set per document is generated.

2. Combination of Centralities and Intensities and Document Affect Set: here it is the step-by-step process that
the authors have created for attempting to reducing the initial affect set (centralities and intensities of recur-
ring categories are combined).
(a) For each affect category in the tagging set:

(a.1) “Compute the maximal centrality (fuzzy union) of all centralities attached to that affect category in
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the tagged document. The result is the centrality of that category for the document as a whole” [205].
(a.2) “Compute the average intensity of all intensities attached to the affect category in the tagged docu-

ment. The result is the intensity of that category for the document as a whole” [205].
(b) “Counts of affect categories are combined with intensities using simple averaging to yield the overall
intensity score for the document” [205].

As can be appreciated in Fig. 12.3, the algorithm devised by the authors combines “recurring affect categories into
a set of unique tags, with centralities and intensities that accurately reflect the overall document content” [205]. It
must be noticed the authors’ claim, that the number of occurrences of a particular affect category in a given docu-
ment would affect its intensity, but it will not affect its centrality. This is a direct consequence of having defined
and managed them differently. “Centrality indicates the purity of quality represented by an affect category. Inten-
sity indicates the strength of that quality. Centrality, as the purity of a quality, depends on the maximal centrality
over all instances of that affect category in a particular document. This is to say, the maximal purity of the quality
in the document already implies vaguer or more diluted degrees of that quality and, therefore, is appropriate as the
combined centrality/purity for that category. The appropriate operation here is thus fuzzy union” [205].

Subasic & Huettner decide to compute the intensity attached to an affect category as the average of all intensi-
ties attached to instances of that category, as “the more times an affect category is present in the document and
the higher the intensities of its instances, the higher will be the combined intensity/strength attached to it. We
believe this model is closer to how humans perceive intensities of words as they read” [205]. The overall intensity
is computed by using a simple average over all affect category instances and their respective intensities

I(D) =

N∑
j=1

I(ACI j)
N

(12.4)

where,

I(D) is the overall intensity of a document D;
N is the total number of affect category instances in the document D;
I(ACI j) is the intensity of an affect category instance ACI j.

Subasic and Huettner proceed to claim the possibilities that the fuzzy semantic typing framework could have, and in order
to support their claim, they present the following example. They illustrate their point by showing retrieval of similar
phrases that could be extended to retrieval of larger portions of text (i.e. paragraphs or sentences). See Table 12.1 that was
produced by running the process we will describe below.

1. The authors found the affect profile of the sentence fear, anger, grief and pain filled the room.

2. The authors gathered all phrases from a pre-compiled list of 34 phrases, from four different documents with affect
profiles most similar to the provided seed phrase. “As a similarity measure between the affect profile of the seed
phrase A and the affect profile of a candidate phrase B”, they propose to use (as elaborated in [274]):

S (A, B) =
2 × ‖ A∩B ‖
‖ A∪B ‖

(12.5)

where ‖ A∩ B ‖ represents the sum of the intersections (minimum values) of the affect sets’ centralities for the
respective affect categories and ‖ A∪ B ‖ represents the sum of the unions (maximum values) of the affect sets’
centralities for the respective affect categories [205].

The authors found sentences, as shown in Table 12.1, where scores for similarity to the seed phrase are ordered by de-
creasing value. Each phrase is presented with its associated affect centrality and intensity profiles, similarity degrees and
average intensities.
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Fig. 12.3. Entries and Associated Affect Categories with Centralities and Intensities (captured as a figure), as shown in [205]

The authors claim that this ‘retrieval-by-similarity’ technique could be complemented with the ‘filtering-on-intensity
technique’. These two, combined together, can become powerful at extracting interesting facts from data. The authors
carry one mentioning that combining these techniques with statistical methods would enhance the power of the proposed
method. If we were to submit a query, love, pain to a text corpus, in search of sentences holding both qualities, “vector
space retrieval would return sentences containing many instances of love with a high score, even if there is no mention of
pain in them”. They claim, on the contrary, that their proposed technique would gives preference to documents having a
higher maximal centralities level for the existing categories, irrespectively of their total count in the sentence. Subasic and
Huettner believe that this example shows that “in the quantitative approach, we are concerned with finding information
that is statistically similar to our query. In the qualitative approach, we are more concerned with a particular qualitative
profile of the target information”. Clearly, the authors aimed and claimed that their proposed method falls more under the
qualitative profile.

72



12.3. FS applied to the SA Problem Chapter 12. Fuzzy Reasoning in SA

Table 12.1. Phrase Retrieval, as reproduced from Subasic and Huettner [205]

12.3.2.2 Case 2: Using fuzzy sets for OM

In 2013, Jusoh and Alfawareh [108] described their approach to using fuzzy sets in opinion mining. Their method includes
five steps, those being:

1. Sentence Tokenization

2. SenWord Extraction

3. Assign Positive/Negative Fuzzy Sets

4. Calculate Degree of SenWord

5. Visualization

We will focus on items 2,3 and 4 above, as they are more relevant to the research work we will present in Part IV of this
report.

• SenWord Extraction: in essence, SenWord are words that convey either a positive or a negative message. Jusoh
and Alfawareh create a positive lexicon and a negative lexicon, that are sets of SenWord’s expressing a positive or
a negative connotation, respectively. The work is done manually, using common sense and linguistic knowledge,
as per the authors’ claim. A real number between [0, 1] is then assigned to a given SenWord. The stronger the
connotation of positive, the higher the number would be and the closer to 1.0. For example, excellent receives a
value of 0.9 whilst good gets 0.5. Figure 12.4 shows examples of positive and negative lexicons as presented by
[108].

• Assign Positive/Negative Fuzzy Sets: The authors define a fuzzy set of a given review as FR = {(wi, µR(wi)), where
wi is a given word in the lexicon and µR(wi) is the membership function value of word wi}. For the following input:
‘It is marvelous, one of the best days I ever lived’, the authors claim that there are two SenWords: marvelous and
best. Let us assume as well that in the positive lexicon we find pairs (marvelous, 0.8) and (best, 0.9).
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• Calculate Degree of SenWord: the authors use the max operator. Hence, the degree of sentiment of a given opinion
(i.e. the one for the opinion expressed above) would be calculated as max{0.8, 0.9} = 0.9.

The method proposed by Jusoh and Alfawareh seems to be straightforward in the sense that it basically creates two
lexicons -positive and negative- and then assign scores to each word. It is not completely clear how, but it seems that the
lexicons will grow as the computing system processes more information (it looks like new words would get incorporated
into the lexicons if they were not part of it already).

Fig. 12.4. Examples of positive and negative lexicons (captured as a figure), as presented in [108]

12.3.2.3 Case 3: Fuzzy Sets Classification of Chinese Sentiment

In [88], Fu and Wang discuss their ideas on the utilisation of fuzzy sets for sentence-level SA (in Chinese). The authors
propose what they call “a fine-to-coarse strategy to estimate sentence sentiment intensity”. Fu and Wang define “three
fuzzy sets to represent the respective sentiment polarity classes” [88] (negative, positive and neutral) and create member-
ship functions to model the different degrees of opinions in a subjective sentence. Fu and Wang determine polarity at the
sentence level “under maximum membership principle” [88]. Let us take an in-depth look at their proposed method.

Sentiment words and morphemes
The authors justify that they must work with morphemes (in Linguistics, a morpheme is is the smallest grammatical unit
in a language). It seems that Chinese sentiment words / items can be classified as either static polar words or dynamic
polar words. For a static word, its polarity will not change, whilst a dynamic word may see its polarity changed by context
or domain. According to Fu and Wang, “a pre-compiled dictionary cannot cover all sentiment words in real text, which
raises an issue of predicting the polarity of out-of-vocabulary (OOV) sentiment words”. In order to deal with this problem,
the authors introduce the idea of using sentiment morphemes. We will omit from the re-illustration of Table 12.2 below
(with some cosmetic changes) the Chinese Characters (Ideograms), but will keep the basic idea behind having sentiment
morphemes and more complex sentiment words composed out of sentiment morphemes.

Morpheme-level polarity
The authors explain that word-level polarity is usually determined by main sentiment morphemes within specific senti-
ment words. As such the words ‘undermine’ and ‘corruption’ in the example in Table 12.2 do share the same negative
sentiment morpheme, ‘fail’. As a consequence, they do have the same negative orientation. It is precisely based on this
last observation that they decide to use morpheme-level polarity to assisting in predicting the polarity of static sentiment
terms, instead of a sentiment lexicon. As there is no dictionary of sentiment morphemes available -or so the authors claim-
they propose the (automatic) extraction of sentiment morphemes from existing sentiment lexicon using a chi-square (χ2),
which result in a positive/negative polarity value for a sentiment morpheme if the final chi-square value derived is posi-
tive/negative.
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Morpheme Types Sentiment morphemes Sentiment words composed by senti-
ment morphemes

Positive morpheme ‘beauty’ ‘exquisite’
‘graceful’

‘love’ ‘like’
‘adoration’

Negative morphemes ‘dirty’ ‘pollution’
‘corruption’

‘fail’ ‘corruption’
‘undermine’

Table 12.2. Types of Chinese sentiment morphemes as per the authors [88]

Word-level polarity
Word-level polarity is calculated by introducing morpheme-based rules. After a normalization process to bring all values
of χ2′ for each sentiment morpheme m into the interval [−1, 1]. This chi-square chi(m), which is normalized, is consid-
ered to represent the score for the opinion of the sentiment morpheme m. Fu and Wang proceed by claiming that “Thus,
we can determine whether a word is a sentiment or not using a simple rule: if a word contains sentiment morphemes, it is
a sentiment word. Finally, we can calculate the opinion score of a word w consisting of morphemes mi, (1 ≤ i ≤ 2), using
the following two rules” [88]:

• If m1 is a negation (like ‘not’, ‘non-’) then S core(w) = −1 x chi(m2).

• If m1 is not a negation morpheme, then S core(w) = S ign(chi(mi)) x Max(|chi(mi)|), where Max(|chi(mi)|) is the
largest absolute value among the opinion scores of morphemes within a word w, and the expression S ign(chi(mi))
represents the positive or negative sign of m.

Identifying phrase-level polarity
Fu and Wang apply lexical polarity in order to manage contextual polarity and find out sentiment orientation of a given
phrase within an opinionated sentence. They base their approach on the work of Hatzivassiloglou and Wiebe [93] and
Turney [212], and they take into consideration four types of structures during the sentiment phrase extraction (see Ta-
ble 12.3). Contrary to the work of Turney [212], the authors consider “phrases with negations as their initial words. In
this way, we can handle the local negation that may reverse polarity” [88]. The authors claim that by using rules similar
to those proposed by Bo Pang et al. [102] they can calculate the opinion score of extracted phrases. They use the concept
of increased dynamic polar words (e.g. high, increase, upgrade) and decreased dynamic polar words (e.g. down, reduce,
diminish), where S ign(Increased dynamic polar word) = 1 and S ign(Decreased dynamic polar word) = −1.

Structure of a Phrase Examples
Phrases that include an adjective “high success rate”
Phrases including a verb “carefully discuss”
Phrases carrying an idiom “intent to deceive the public”
Phrases starting with a negation “no evidence”

Table 12.3. Structures of opinion phrases, as illustrated by [88]

Sentence Sentiment Classification using fuzzy sets
As per Fu and Wang [88], if X is an unordered set of sentiment opinions (represented by x), then a a positive-meaning
sentiment fuzzy set P̃ in X can be defined as a set of ordered pairs, namely

P̃ = {(x, µP̃(x)) | x ∈ X} ,

where µP̃(x) denotes the membership function of x in P̃, that maps X to the membership space M. Fu and Wang have
chosen to use the rise semi-trapezoid distribution [273] as the best function for computing the membership degree of the

75



12.3. FS applied to the SA Problem Chapter 12. Fuzzy Reasoning in SA

positive sentiment fuzzy set

µP̃(x) =


0 if x < a;
x−a
b−a if a ≤ x ≤ b;

1 if x > b.

(12.6)

where x denotes the opinion score of the sentence under discussion. Parameters a and b seem to be adjustable and they are
defined as a = Min(xi) + λ1(Max(xi) − Min(xi)/k) and b = Min(xi) + λ2(Max(xi) − Min(xi)/k). Max(xi) and Min(xi)
are the maximum and minimum values within X. λ1, λ2 and k are parameters that seem to have been set arbitrarily as
λ1 = 5.2, λ2 = 5.4 and k = 10.

A neutral meaning sentiment fuzzy set Ẽ in X can be stated as a set of ordered pairs

Ẽ = {(x, µẼ(x)) | x ∈ X} ,

where

µẼ(x) =



0 if x < a;
x−a
b−a if a ≤ x < b;

1 if b ≤ x < c;
d−x
d−c if c ≤ x < d;

0 if x ≥ d.

(12.7)

x represents the opinion score of the sentence under discussion. Parameters a, b, c and d are defined, respectively, as
follows:
a = Min(xi) + λ1(Max(xi) − Min(xi)/k), and
b = Min(xi) + m1(Max(xi) − Min(xi)/k), and
c = Min(xi) + m2(Max(xi) − Min(xi)/k), and
d = Min(xi) + λ2(Max(xi) − Min(xi)/k).

Max(xi) and Min(xi) are the maximum and minimum values within X. λ1, λ2, m1, m2 and k are parameters that seem
to have been set arbitrarily as λ1 = 5.2, λ2 = 5.5, m1 = 5.26, m2 = 5.33 and k = 10.

A negative sentiment fuzzy set, Ñ in X, can be defined as a set of ordered pairs, namely

Ñ = {(x, µÑ(x)) | x ∈ X} ,

where

µÑ(x) =


1 if x < a;
b−x
b−a if a ≤ x ≤ b;

0 if x > b.

(12.8)

x represents the opinion score of the sentence being discussed. Adjustable parameters a and b are represented as:
a = Min(xi) + λ1(Max(xi) − Min(xi)/k), and
b = Min(xi) + λ2(Max(xi) − Min(xi)/k).

Min(xi) and Max(xi) are the minimum and maximum values in X. λ1, λ2 and k are parameters that seem to have been set
arbitrarily as λ1 = 5.2, λ2 = 5.3 and k = 10.

Determining sentence polarity
By utilising the above mentioned membership functions, Fu and Wang can obtain the grade of the membership of a given
opinionated sentence in each sentiment fuzzy set, and in turn they can find out as well its polarity under the principle of
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maximum membership. As such, let Ã1, Ã2 . . . Ãn be the fuzzy sets of X, ∃x0 ∈ X, if

Ãk(x0) = max
1≤i≤n
{Ãi(x0)}

then x0 is a membership of the fuzzy set Ãk.

In our opinion, the work of these researchers establishes a bridge-head for the utilisation of fuzzy sets in computing
polarity in sentences that are subjective. It is unclear to us, how the values of the parameters used in defining the member-
ship functions for positive, neutral and negative cases were established (λ1, m1, λ2, m2 and k). We assume that the values
of these parameters were estimated using as basis experimental results. Another aspect to consider is that the methodology
used seems to be rather complex on the determination of morpheme-level polarity, but it could be attributed to the use of
Chinese language ideograms and predicting polarity of sentiment terms that are not included in the existing vocabulary
(aspects like the use of χ2, etc.). We see the possibility of using in our work some of the ideas behind the three fuzzy sets
and membership functions calculations presented in this sub-section, but rather at a conceptual level as it will be apparent
later in Part IV.

12.3.2.4 Case 4: Sentiment Classification of Customer Reviews based on FL

Nadali et al. [155] present a rather straightforward approach to the topic of applying fuzzy sets to to the SA problem.
In essence, their approach is to build a Fuzzy Inference System (FIS) to address the problem at hand, which requires
fuzzification and defuzzification steps. The method proposed by Nadali et al., as described in [155], is as follows:

• Part 1: Input and preparation

1. Review sentence: take the input sentence and apply PoS tagging

2. Find Opinion words: opinion words are extracted. The following PoS particles are considered by the authors
as capable of carrying an opinion: adjectives, adverbs, verbs and nouns.

• Part 2: Fuzzy Logic System

1. Fuzzify: fuzzification inputs correspond to the four PoS particles identified before. A specific degree is
assigned to each opinion word by a human expert (ranging from 0 to 10).

2. Membership Function (MF) Design: MFs are defined to find membership values for each of the inputs.
The authors used a Triangular Membership Function in their proposed method. “Rank of MF is decelerated
by human experts” [155]. The linguistic variables utilised (see Fig. 12.5) were created encompassing three
levels: Low, Moderate and High. For example, initially the selected PoS particles were assigned degrees. For

Fig. 12.5. MF’s used to present the linguistic labels, as published in [155]

instance, ‘like, 4’, ‘love, 5’, ‘good, 3’, ‘excellent, 6’, ‘really, 5’, ‘extremely, 9’, ‘enjoy, 8’ and ‘very, 5’. When
the MF is applied, we obtain respectively: µ(very) = 0.5, µ(like) = 0.4, µ(extremely) = 0.9, µ(good) = 0.3,
and µ(en joy) = 0.8.
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3. Fuzzy Rules Design: In this phase the authors define a number of IF-THEN Rules to address the problem.
The IF-THEN rules have been created under the shape of the general form that follows:

IF x1 is H AND x2 is J THEN Orientation is K.

H, J ∈ {Low, Moderate, High}

K ∈ {very strong, strong, moderate, very weak, weak}

See Fig. 12.6 for examples of some of the IF-THEN rules created by the authors.

Fig. 12.6. Subset of samples of IF-THEN Rules, as displayed in [155]

4. Defuzzification: They use the Mamdani’s center of gravity defuzzification method,

y∗ =

∫
y µ(y) y dy∫
y µ(y) dy

where y∗ is the crisp value; µ(y) is the MF of the corresponding value y in the previous result.

• Part 3: Final output: as described in the previous item, the crisp value is output. The authors claim that “We
define crisp values for each of the output, for example: ‘Neutral: 0’, Weakly positive: 0.2, very weak positive: 0.4,
Moderate positive: 0.6, Strong Positive: 0.8, Very Strong Positive: 1. Based on these numbers we can find the
orientation of sentence 1 and 2 as belonging to Very Strong Positive and Moderate Positive”.

12.4 Chapter Summary

In this chapter we have presented some basic fuzzy sets concepts and have illustrated their applicability to the SA problem,
by sharing specific examples of their utilisation. The fuzzy sets approach to SA is very important to us as we have based
our method to identifying sentiment graduality, in the use of fuzzy sets. In the next chapter we will consider options for
the aggregation of information in a classification effort, showing as well a number of possible semantics that could be
incorporated into an aggregation method.
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Chapter 13

Aggregation Methods Fundamentals

“En una noche del tiempo, un hombre quiso
saber quien era Dios. Lanzó su ojo derecho
al espacio, y tragó su ojo izquierdo para ver
lo que tenı́a en sus antros.”

Gustavo Adolfo Núñez Testa [1958-2013],
circa 1973.

In this chapter, we introduce the theoretical basis for the deployment of aggregation approaches rooted in the concepts
of achieving consensus and generating a compensatory effect in the aggregation process itself.

There are a number of aggregation methods that could be utilised in a number of disciplines, domains and scenarios.
The ones being presented in this chapter correspond to the aggregation methods we have put at use through some of the
proposed solutions that were devised in our research. Mainly, we will cover Fuzzy majority aggregation through the use
of Induced Ordered Weighted Averaging (IOWA) Operators and Uninorm Aggregation. The methods we are describing
in this chapter will be utilised and further explained in Chapter 16.

13.1 OWA Operators

Usually, the first step taken in a group decision-making resolution process is that of aggregating the information from
which to derive a group solution to the problem. Yager’s OWA operator [256] has been proved to be extremely useful in
these decision making problems because it allows to implement the concept of fuzzy majority [251].

Definition 13.1 (OWA Operator). : An OWA operator of dimension n is a function F : Rn→ R, that has associated a set
of weights or weighting vector W = (w1, . . . ,wn) to it, so that wi ∈ [0,1] and

∑n
i=1 wi = 1, with the following expression:

F(a1, . . . ,an) =

n∑
i=1

wi ·aσ(i),

being σ : {1, . . . ,n} → {1, . . . ,n} a permutation such that aσ(i) ≥ aσ(i+1),∀i = 1, . . . ,n− 1 (i.e., aσ(i) is the i-th highest value
in the set {a1, . . . ,an}).

If B is the vector whose components are the ordered arguments values, bi = aσ(i), then:

F(a1,a2, . . . ,an) = WT B (13.1)

A point that deserve attention in the definition of the OWA operator is how to obtain the associated weighting vector.
In [256], Yager proposed two ways to obtain W. The first approach he introduced is the use of some kind of learning
mechanism using some sample data; and the second approach he described is that of trying to give some semantics or
meaning to the weights. The latter case allowed applications in the area of quantifier guided aggregations [251] because
weights are derived “from a functional form of the linguistic quantifier” [168]. This approach would be favourable for
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the problem we are considering because it allows the aforementioned implementation of the concept of ‘fuzzy majority’.
This will be exploited later on in our proposed consensus approach to the SA problem driven by support-based IOWA
majority presented in Chapter 16. Notice that the average operator is a particular type of OWA operator with weighting
vector WAverage = [1/n,1/n, . . . ,1/n].

According to Pasi and Yager, let Q : [0,1]→ [0,1] be a function such that Q(0) = 0, Q(1) = 1, and Q(x) ≥ Q(y) for
x > y corresponding to a fuzzy set representation of a proportional monotone quantifier. Then, for a given value x ∈ [0,1],
the value Q(x) corresponds to the degree to which x satisfies the fuzzy concept being represented by the quantifier [168].
Based on function Q, the elements of the OWA weighting vector are determined in the following way [168]:

wi = Q
( i
n

)
−Q

(
i−1

n

)
(13.2)

Hence, wi represents the increase of satisfaction in getting i with respect to (i−1) criteria satisfied.
Some examples of linguistic quantifiers, depicted in Fig. 13.1, are “at least half”, “most of” and “as many as

possible”, which can be represented by the following function

Q(r) =


0 if 0 ≤ r < a
r−a
b−a if a ≤ r ≤ b
1 if b < r ≤ 1

(13.3)

utilising the values (0,0.5), (0.3,0.8) and (0.5,1) for (a,b), respectively [110].

Fig. 13.1. Linguistic quantifiers “at least half”, “most of” and “as many as possible”

Alternative representations for the concept of fuzzy majority can be found in the literature. For example, Yager
in [251] considered the parameterized family quantifiers Q(r) = ra (a ≥ 0) as a possible representation. This family of
functions guarantees that [54]: (i) all the experts contribute to the final aggregated value (strict monotonicity property),
and (ii) associates, when a ∈ [0,1], higher weight values to the aggregated values with associated higher importance values
(concavity property).

The degree of orness of an OWA aggregation operator expresses its closeness to the OR behaviour, which is defined
as

orness(W) =

(
1

n−1

) n∑
j=1

((n− j)∗w j) (13.4)

The OWA operator F∗ with the weighting vector W∗ defined as [1,0, . . . ,0] corresponds to the OR operator (i.e., the
max), in which case, orness(W∗) = 1. Similarly, the OWA operator with the weighting vector W∗ defined as [0, . . . ,0,1]
corresponds to the AND operator (i.e., the min), in which case, orness(W∗) = 0. It is clear that the orness of the Average
operator, i.e. the OWA operator with equal weighting vector components, is 0.5. It is important to mention some key
properties of OWA operators [256, 257].
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Property 1. For any OWA operator F

F∗(a1,a2, . . . ,an) ≤ F(a1,a2, . . . ,an) ≤ F∗(a1,a2, . . . ,an).

Property 2. (Commutative). Let 〈a1,a2, . . . ,an〉 be a bag of aggregates and let 〈d1,d2, . . . ,dn〉 be a permutation of the ai’s.
Then for any OWA operator

F(a1,a2, . . . ,an) = F(d1,d2, . . . ,dn)

Property 3. (Monotonicity). Assume ai and ci are collection of aggregates, i = 1, . . . ,n, such that for each i, ci ≤ ai, then

F(c1,c2, . . . ,cn) ≤ F(a1,a2, . . . ,an),

where F is any OWA operator.

Property 4. (Idempotency). If ai = a for all i = 1, . . . ,n then for any OWA operator

F(a,a, . . . ,a) = a.

These properties show that OWA operators comply with the properties that are expected in an averaging operator. Another
key measure of OWA operators is the dispersion, defined as:

Disp(W) = −

n∑
i=1

wi . ln(wi).

Disp(W) measures the degree to which all aggregates are used equally in the resulting final aggregation [169].
Notice that for orness(W) ∈ [0,1], the nearer W is to a logical OR, the closer its value is to 1; whilst the nearer it is

to a logical AND, the closer its value is to 0. As per [169], in general, “an OWA operator with much of non-zero weights
near to the top will be an or-like operator”, orness(W) ≥ 0.5, “and when much of the weights are non-zero near to the
bottom, the OWA operator will be and-like”, with andness(W) = 1−orness(W). As per the discussion presented in [169],
“the following theorem shows that as we move weight up the vector we increase the orness(W), while moving weight
down causes us to decrease orness(W)”.

Theorem 13.1. Assume W and W′ are two n-dimensional OWA vectors such that

W = [w1,w2, . . .wn]T , W′ =
[
w1, . . . , (w j + ε), . . . , (wk − ε), . . . ,wn

]T
,

where ε > 0, j < k.

Then orness(W′) > orness(W). According to Yager [256], OWA operators are among the most commonly utilised op-
erators in multi-criteria decision-making and aggregation in situation where only some portion of the criteria must be
satisfied. However, as we will present in the next Section 13.1.1 and in Chapter 16, the semantic of the OWA’s aggrega-
tion process we have shown does not provide a good representation of the majority concept. For that, we will introduce a
generalisation of the OWA operator with a specific semantic in the aggregation process.

13.1.1 IOWA Operators

Mitchell and Estrakh in [150] described a modified OWA operator in which the input arguments are not re-arranged
according to their values but rather using a function of the arguments. Inspired by this work, Yager and Filev introduced
in [258] a more general type of OWA operator, which they named the Induced OWA (IOWA) operator:

Definition 13.2 (IOWA Operator). An IOWA operator of dimension n is a mapping I −F : (R×R)n −→ R, which has an

associated set of weights W = (w1, · · · ,wn) to it, so that wi ∈ [0, 1],
n∑

i=1
wi = 1,

I−F (〈u1,a1〉, . . . , 〈un,an〉) =

n∑
i=1

wi ·aσ(i),
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and σ : {1, . . . ,n} −→ {1, . . . ,n} is a permutation function such that uσ(i) ≥ uσ(i+1), ∀i = 1, . . . ,n−1.

In the above definition the reordering of the set of values to aggregate, {a1, . . . ,an}, is induced by the reordering of the
set of values {u1, . . . ,un} associated to them, which is based upon their magnitude. Yager and Filev called the vector of
values (u1, . . . ,un) the order inducing vector and {a1, . . . ,an} the values of the argument variable [252, 258]. Thus, the main
difference between the OWA operator and the IOWA operator is the reordering step of the argument variable. In the case
of OWA operator the reordering is based upon the magnitude of the values to be aggregated, while in the case of IOWA
operator an order inducing vector is used as the criterion to induce that reordering of the values to aggregate. Obviously,
an immediate consequence of definition 13.2 is that if the order inducing vector components coincide with the argument
values then the IOWA operator reduces to the OWA operator. In fact, the OWA operator as well as the weighted average
(WA) operator are included in the more general class of IOWA operators, which means that the IOWA operators allow to
take control of the aggregation stage of any multi-criteria decision making problem in the sense that importance can be
given to the magnitude of the values to be aggregated as the OWA operators do or to the information sources as the WA
operators do. In fact, the IOWA operator, in our opinion, can play a significant role in the proposed Hybrid Solution to
the SA problem as elaborated in Chapter 16.

13.2 Uninorms

Aggregation operators are usually classified into one of the following three categories:

(i) Conjunctive operators like the family of t-norm operators, which has the minimum operator as its largest element.
These operators behave like a logical “and”

(ii) Disjunctive operators like the family of t-conorm operators. These operators are the “dual” of conjunctive opera-
tors, and they behave like a logical “or”. The maximum operator is the smallest of all t-norms operators.

(iii) Compensative operators are located between the minimum and the maximum operators, and consequently are
neither conjunctive nor disjunctive. These type of operators are known as “averaging operator” and they are widely
used in multi-criteria decision making problems. The arithmetic mean, the weighted mean and the ordered weighted
averaging (OWA) operators are representative examples of this class.

It is worth mention the family of uninorm operators [255] as it does not belong fully to any of the three classes
described above. Indeed, a uninorm operator, U, is defined as a is a mapping U : [0,1]2 −→ [0,1] satisfying the properties:

1. Commutativity: U(x,y) = U(y, x)

2. Monotonicity: U(x1,y1) ≥ U(x2,y2) if x1 ≥ x2 and y1 ≥ y2

3. Associativity: U(x,U(y,z)) = U(U(x,y),z)

4. Identity element: ∃ e ∈ [0,1] : ∀ x ∈ [0,1], U(x,e) = x

Uninorm, t-norm and t-conorm operators share the commutativity, associativity and monotonicity properties. However,
the set of uninorm operators has both the set of t-norm operators and the set of t-conorm operators as its subsets. Indeed,
a uninorm operator with “e = 1” becomes a t-norm operator; while a uninorm operator with “e = 0” becomes a t-conorm
operator. In general, a uninorm operator with identity element e ∈]0,1[ behaves like (i) a t-norm operator when all
aggregated values are below e; (ii) a t-conorm operator when all aggregated values are above e; (iii) a compensative
operator otherwise.

13.3 Chapter Summary

In this chapter we had illustrated the importance of efficient aggregation techniques. OWA and IOWA operators were
described, as well as uninorms, in particular the special type of cross-ratio uninorm operators. In Part IV, we will discuss
in details our proposed solution, which encompasses three models related to the SA classification problem:

• A Hybrid Approach to the SA Problem at the Sentence Level (Chapter 14).
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• A Model Extension using Aggregation by Uninorm (Chapter 15).

• A Model Extension utilising Aggregation by Consensus (Chapter 16).

The three components of our proposed solution to the SA problem at the sentence level will be further elaborated in
Part IV, in the chapters mentioned in the itemisation above. In these chapters we will include as well the experimental
evaluation of our proposed solution.
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PROPOSED SOLUTION &
EXPERIMENTAL RESULTS

84



Chapter 14

A Hybrid Approach to the SA Problem at the Sentence
Level

“According to the Latin and Greek classics,
the lamias lived in Africa. The top part of
their bodies was that of a beautiful woman;
the bottom, took the shape of a serpent. They
had a remote divine origin, as they were the
result of one of many love affairs of Zeus.”.
“Según los clásicos latinos y griegos, las
lamias habitaban en Africa. De la cintura
para arriba su forma era la de una hermosa
mujer; más abajo la de una sierpe. Su remoto
origen era divino; procedı́an de uno de los
muchos amores de Zeus.”.

Jorge Luis Borges [32]

A significant part of the content of this chapter was used in articles published by the author. See references [10,
11, 12, 13, 14, 15, 16, 17, 18]. In this chapter we will describe in detail our proposed solution to the sentiment analysis
problem at the sentence level.

14.1 Hybrid Standard Classification (HSC) Method

Let us clarify first what we mean by utilising a ‘hybrid approach’ that is key to our proposed solution. Our intention
is to manage hybrid concepts at two different levels: (a) the methods employed by the sentiment classifiers, and (b)
the techniques used to build key components in our approach, like the creation and population of the sentiment/opinion
lexicon, and the word dictionaries. The following paragraphs will discuss the different components of our proposed hybrid
solution. A graphic depiction of our proposed system is provided in Fig. 14.1.

14.1.1 Component 1: the sentiment/opinion lexicon

Liu compiled an opinion lexicon that “does include a list of positive and negative opinion words or sentiment words for
English (around 6,800 words) [. . . ] compiled over many years starting from [their] first paper [102]” (http://www.cs.
uic.edu/˜liub/FBS/sentiment-analysis.html#lexicon).

These opinion lexicon words will be used as a starting point in our proposed solution to the SA problem and they will
be enriched in a number of ways, including a new structure and organisation more adequate for the research approach
proposed here. Part of the reasoning behind using Liu’s lexicon is to re-use data resulting from an existing good quality
example of words compilation and as a point of commonality with previous research efforts for benchmarking purposes.
In generating our own sentiment/opinion lexicon we have taken the following actions:
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Fig. 14.1. View of our proposed hybrid approach

1. We have utilised, as a starting point, the opinion-conveying-words that are part of the opinion lexicon used by Hu
and Liu in [102]. These words correspond only to four elements of part-of-speech (PoS) that have been proved to
be capable of delivering opinions [92, 94, 111, 234]: nouns, verbs, adjectives and adverbs.

2. We have used SentiWordNet [78, 79, 80], which extends some of the functionality of WordNet [83, 147], as a
source of polarity or valence scores for words that were originally in Hu and Liu’s list. As such, we have taken
the words supplied by Hu and Liu, and looked them up in SentiWordNet. For those terms matching, the Positive
and Negative scores available in SentiWordNet have been extracted and entries in our lexicon have been created
combining the words from Hu and Liu’s list and the semantic attributes present in SentiWordNet.

In terms of the characteristics of the polarity scores extracted from SentiWordNet, it is important to keep in mind that the
polarity scores belong in the interval [0,1]. Hence

0 ≤ PositiveS core, NegativeS core, Ob jectivityS core ≤ 1

0 ≤ (PositiveS core + NegativeS core) ≤ 1

Ob jectivityS core = 1− (PositiveS core + NegativeS core)

As such, when the sum of PositiveS core (PSC) and NegativeS core (NSC) is equal to 1 for a given word Wordk, then the
term Wordk is fully opinionated, as opposed to the case when the addition of these two scores is zero, in which case the
term Wordk is fully Neutral or Objective. The Objectivity Score (COBJ) can be seen as a value of ambiguity/hesitancy, as
it is the difference between 1 and the classification of a word as a negative/positive carrier of meaning. Thus, if PSC and
NSC add, for example, to 0.9, then there is 0.1 points for the given word to occupy a semantic neutral space or hesitancy.

Not every word in Liu’s opinion lexicon is present in SentiWordNet. Hence, for those absent words we have chosen
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to keep them in the new opinion lexicon, but they do not have polarity scores associated nor the proper PoS tag. They have
been flagged in a special way so they can be recognised and enriched once the required information becomes available.
Entries in the sentiment lexicon have the following structure:

R = (Word, S OL, PoS , PS C, NS C, COBJ, VDX, UPDC)

then we get the following graphical representation for elements in the sentiment lexicon (n = length(lexicon) = number of
words in the lexicon):

R1 R2 Rk Rk+1 Rn

A full description of the components of our Sentiment/Opinion Lexicon follows:

Word: word in the lexicon (entries).

SOL: semantic orientation label (pos/neg); inherited from Hu & Liu list [102].

PoS: part of speech (n=noun; v=verb; a=adjective; r=adverb; s=adjective satellite).

PSC: Positive Score as taken from SentiWordNet [79].

NSC: Negative Score as taken from SentiWordNet [79].

COBJ: Calculated Objectivity Score.

VDX: Versioning index for identifying/managing synonyms (future use).

UPDC: Update Counter to keep track of every time a given entry in the lexicon is updated.

Section 14.1.4.1 will explain the mechanics of how the sentiment lexicon is utilised.
Notice that our prototype has been built as a proof of concept tool, and not yet as a finished software product. Several

of the programming constructs and data structures used correspond to native features of the programming language used
for creating the prototype: Scheme [73, 207], a dialect of LISP [145]. As part of future work, we intend to port the code
to a member of the family of the C programming language. Then, we will focus on algorithm efficiency by using the
appropriate data structures (e.g. hash map instead of list data type) and effective programming techniques.

14.1.2 Component 2: semantic rules (SR)

In a classical SA approach with linguistic content semantic rules are utilised, as they assist in modelling the SA problem
in a more rigorous fashion. In addition to the most common rules, a number of authors, among them [155, 205, 248],
have pointed out the fact that having rules for negation handling and to deal with the use of specific PoS particles, like
‘but, despite, unless, ...’ could positively affect the final outcome of a classification exercise. Thus, some rule strategy is
needed to be put in place as the order of the different PoS play a role in the semantic of a sentence. Researchers have been,
through time, improving the quality of these semantic rules so that they are more encompassing of the possible cases that
must be managed. These research efforts are summarised by Xie et al. in [248], which includes a full presentation of their
semantic rules approach. Up to certain extent, the semantic rules devised in the current hybrid proposed system are based
on those presented by Xie et al. and as such a subset of the rules the aforementioned authors presented is utilised with
the incorporation of new rules. We have followed the same naming convention for rules utilised by Xie et al. (R1, R2, ...,
R13) with the addition of a super-index (RkHS C) to represent the rules actually utilised in the proposed method. Gaps in
the sequential numbering utilised by Xie et al. represent rules that have not been implemented (R2, R4, R5, R8 and R9).
The semantic rules utilised in the proposed method are displayed in Table 14.1 and Table 14.2.

Despite the apparent completeness of existing semantic rules by Xie et al., we have incorporated two new rules for
managing particular PoS particles that were not included in the original set of rules provided in [248]: the particle while
and the particle however. The process of adding these rules was the result of observation and experimentation. We
first looked at the cases of sentences in the datasets and examined whether the existing semantic rules were capable of
processing the data. Secondly, we look for syntactic structure patterns in the data, and realised that treating the particles
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Rule Semantic Rules Example
R1HS C Polarity (not vark) = -Polarity (vark) ‘not bad.’
R3HS C Polarity (NP1 VP1) = Compose (NP1, VP1) ‘Crime has decreased.’
R6HS C Polarity (ADJ to VP1) = Compose (ADJ, VP1) ‘Unlikely to destroy the planet.’
R7HS C Polarity (VP1 NP1) = Compose (VP1, NP1) ‘Destroyed terrorism.’
R10HS C Polarity (not as ADJ as NP) = -Polarity (ADJ) ‘That wasn’t as bad as the original.’
R11HS C If sentence contains “but”, disregard all previous senti-

ment and only take the sentiment of the part after “but”.
‘And I’ve never liked that director,
but I loved this movie.’

R12HS C If sentence contains “despite”, only take the sentiment
of the part before “despite”.

‘I love the movie, despite the fact
that I hate that director.’

R13HS C If sentence contains “unless”, and “unless” is followed
by a negative clause, disregard the “unless” clause.

‘Everyone likes the video unless he
is a sociopath.’

Table 14.1. Semantic rules actually implemented in our Hybrid Approach (HSC)

Compose Functions Revised Algorithms
Compose (arg1, arg2) 1. Return -Polarity(arg2) if arg1 is negation.

2. Return Polarity(arg1) if (Polarity(arg1) = Polar-
ity(arg2).
3. Otherwise, return the majority term polarity in arg1 and
arg2.

Table 14.2. Compose function implemented in HSC

Rule Semantic Rules Example
R14HS C

New
If sentence contains “while”, disregard the sentence fol-
lowing the ‘while’ and take the sentiment only of the
sentence that follows the one after the ‘while’.

‘While they did their best, the team
played a horrible game.’

R15HS C

New
If sentence contains “however”, disregard the sentence
preceding the ‘however’ and take the sentiment only of
the sentence that follows the ‘however’.

‘The film counted with good actors.
However, the plot was very poor.’

Table 14.3. New semantic rules extending those presented by Xie et al. in [248]

“while” and “however” as special elements would result in better semantic orientation computation performance. The
new rules are given in Table 14.3.

Section 14.1.4.1 will explain the mechanics of how the semantic rules are put at work.

14.1.2.1 Negation effects

Negation can play a major role in identifying subjectivity polarity, and more generally, meaning. According to the well-
known researcher Christopher Potts, Stanford University (http://sentiment.christopherpotts.net/lingstruc.
html), “sentiment words behave very differently when under the semantic scope of negation”. Dr. Potts notices that the
so-called ‘Weak’ (mild) words such as good and bad behave like their opposites when negated (bad = not good, good =

not bad), whilst ‘Strong’ (intense) words like superb and terrible have very general meanings under negation. According
to Potts [177] “not superb is consistent with everything from horrible to just-shy-of-superb, and different lexical items
for different senses. These observations suggest that it would be difficult to have a general a priori rule for how to
handle negation. It does not just turn good to bad and bad to good. Its effects depend on the words being negated. An
additional challenge for negation is that its expression is lexically diverse and its influences are far-reaching (syntactically
speaking)”. The method that Dr. Potts seems to favour for approximating the effects of negation is due to Das and Chen
[70] and Pang, Lee, and Vaithyanathan [165]. When this method is incorporated at the tokenization level, the negation
problem is relatively well managed. Let us look at an example:

Example 1. I don’t think I will enjoy it: it might be too spicy.
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As per the negation handling technique just mentioned, all words between the negation particle don’t and the colon (:)
would be tagged with the suffix ‘ NEG’, clearly defining the scope of the negation. All words after the colon (:) would not
be tagged at all.

Notice that even long-distance effects can be effectively managed. In our proposed approach, we have chosen to apply
this smart tokenization strategy. There are good reasons for that. First of all, it saves us time as the scope of negation
is defined early on, and if a polarity inversion is required, it can be done at tokenization time. Secondly, if a part of a
sentence is identified as one that will not contribute to the final semantic orientation, then such part of the sentence can be
discarded at this point, minimising the effort required at sentiment computing time.

14.1.3 Component 3: fuzzy sets approach to the SA problem

We have already established that we rely on an opinion lexicon that has been developed using a number of techniques and
that started out with opinion-conveying words that were compiled by linguists and other scientists interested in the SA
problem. In this sub-section we address the rest of components necessary to be able to classify sentences into Positive or
Negative and, in addition, qualify the strength of the associated polarity. In order to do that we must address the following:

• Describe and construct the fuzzy methodology that will be utilised in this effort.

• Describe the fuzzy granulation, i.e. the linguistic discrimination, that will be implemented to represent the subjec-
tive classification of sentences into positive or negative.

• Provide the logic necessary, in combination with the lexicon and the fuzzy sets already mentioned, to address the
classification problem at hand.

• Describe the mechanics behind the whole process as we incorporate the use of fuzzy sets components.

14.1.3.1 Basic concepts on perceptions and linguistic variables for polarity intensity

When we refer to Natural Languages (English in our case) it is clear that humans have developed the ability to classify
objects, without the need to produce an actual measurement. When we say that someone or something is slightly large,
very large, or not very large, we all understand the message. However, we have not measured or produced metrics for the
object we are referring to. We continually use perceptions in the context of multiple events. According to Zadeh [266]:
“reflecting the bounded ability of the human brain to resolve detail, perceptions are intrinsically imprecise. In more con-
crete terms, perceptions are f-granular, meaning that (1) the boundaries of perceived classes are unsharp and (2) the values
of attributes are granulated, with a granule being a clump of values (points, objects) drawn together by indistinguishabil-
ity, similarity, proximity, and function” (see Fig. 14.2 for a re-illustration of the graphic originally published by Zadeh in
[267]). In [267], Zadeh continues, by saying that “a granule may be crisp or fuzzy, depending on whether its boundaries
are or are not sharply defined. For example, age may be granulated crisply into years and granulated fuzzily into fuzzy
intervals labeled very young, middle-aged, old and very old.” Fig. 14.3 re-illustrates the graphical representation of the
latter idea as originally presented by Zadeh in [266]. When it comes to the Theory of Perceptions, Zadeh’s contribution is
unique [266, 267]. Additionally, in 1973 Zadeh introduced the concept of linguistic variables: “a variable whose values
are words instead of numbers” [262].

When deciding which linguistic variables to use in modelling our problem, we came to the realisation that the intensity
or degree of polarity with which the grade of positivity or negativity of a sentence X could be understood corresponds to
a perception. More specifically, the perception PX that a given person Y has about how positive or negative a sentence
X might be. A sentence could either be Negative or Positive, and then again ‘Most Positive’ or ‘Very Positive’, or
‘Most Negative’ or ‘Very Negative’, and so on. Based on the definitions and concepts provided above by Zadeh, a fuzzy
granulation of positive/negative sentiment using fuzzy intervals is considered appropriate. According to G.A. Miller [148],
7 plus or minus 2, is the effective number of categories that a subject (individual or person) can maintain. In our case,
we have chosen a conservative approach and have devised 5 labels (7 minus 2), symmetrically distributed in the domain
[0,1]. Additionally, our choice of trapezoidal function obeys to the fact that it generalises a triangular function and we
have aimed for both: more generality and for more than one value at the top of every category. A trapezoidal membership
function (MF), as shown in Fig. 14.4, is usually represented by the following 4-tuple (a,b,c,d).
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Fig. 14.2. The Concept of a Granule as presented by Zadeh
Fig. 14.3. Crisp Granulation and Fuzzy Granulation as introduced
by Zadeh

µÃ(x) =



0 if x ≤ a;
x−a
b−a if a ≤ x ≤ b;

1 if b ≤ x ≤ c;
d− x
d− c if c ≤ x ≤ d;

0 if d ≤ x.

a b c d 1

1

x

µÃ

Fig. 14.4. Trapezoidal membership function

Specifically, the following granules on the perception of the positivity or negativity of a given sentence X are sug-
gested: G = {Poor; S light; Moderate; Very; Most}, with the following 4-tuples:

• MF (Poor): (0, 0, 0.050, 0.150)

• MF (Slight): (0.050, 0.150, 0.250, 0.350)

• MF (Moderate): (0.250, 0.350, 0.650, 0.750)

• MF (Very): (0.650, 0.750, 0.850, 0.950)

• MF (Most): (0.850, 0.950, 1,1)

Thus, the intensity associated with the semantic positive/negative scores for words occupies a certain fuzzy interval as
Fig. 14.5 illustrates. Section 14.2 will explain the mechanics of how the fuzzy sets described are utilised in determining
the graduality of the intensity of polarity.

Calculating the level of intensity on the polarity of a sentence is advantageous in itself, as now it can be determined
how strong or weak a given positive/negative sentiment might be in natural language. Hence, we are able to say that the
sentiment towards a specific sentence is moderately positive/negative, poorly positive/negative, most positive/negative,
etc. as per the linguistic labels we have already defined in section 14.1.3.1. Indeed, linguistic polarity intensity could
be amenable to be further processed via the computing with words methodology introduced by Zadeh in [267], enabling
computing with sentiments to be realised in practice.

Natural Languages are a prime example of ambiguity, hidden meanings and multiple interpretations. In future, the
proposed method could be taken to a next level, which should include the ability to incorporate approximate reasoning,
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Fig. 14.5. Linguistic variables, fuzzy granulation and trapezoidal membership functions

via Fuzzy Logic, by bringing in the capability of computing with sentiments carried by words and sentences. Potential
application around social media, such as product review sites, seems an obvious choice because the sentiment around a
specific product based on the linguistic labels that the reviewers have given to the product (good, bad, acceptable, etc.)
are possible to be computed. In this case, the entities manipulated to calculate the accumulated or aggregated sentiment
would be words as opposed to numbers. Let us keep in mind that a sentiment in social media is typically expressed in
words and not in numbers; at least for the regular user. In Fig. 14.6, a word is a label of a fuzzy set and those example
labels are poor, most and slight. The computation of the aggregated sentiment is performed by directly manipulating the
sentiment labels provided by each reviewer. In addition, in the presence of a proper fuzzy logic system, deductions can
also be made out of facts expressed in words or determined via the SA approach presented here. In conjunction with social
network analysis (SNA) [226, 242, 244, 247], it could be possible for a company, for marketing purposes for example, to
identify the most influential nodes in a network that have a very or most positive sentiment towards a particular product
[170, 171, 172].

Fig. 14.6. Computing with Sentiments - General Diagram
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14.1.4 The hybrid approach (HSC) and Its process

In this section we will describe how all the pieces fall into place in our proposed hybrid method in order to calculate both
the sentiment polarity and the intensity of such polarity. Our approach consists of 2-steps, which will be described in the
next two sub-sections.

14.1.4.1 Calculating the polarity of sentiments in sentences

There are several tasks that must be executed in strict order in order to determine the polarity of sentences. Every
intermediate step has an outcome that is consumed by the next step. Briefly, the tasks are as follows:

1. Tokenization, error cleansing, PoS tagging and smart parsing. The semantic rules, as per section 14.1.2, are applied
at tokenization/tagging time and, when applicable, sub-sentences may be discarded at that point (e.g. if the particle
‘but’ is present, the sub-sentence before the particle ‘but’ will be discarded). In addition, if a sentence is made
of two or more sub-sentences, the proper tagging is performed so that at interpretation time the overall polarity is
calculated as per the appropriate composition rule (Table 14.2). This step would imply changing the polarity of a
given word-sentiment-carrying particle if such a particle is negated.

2. The resulting essential particles that convey sentiment/opinion (adjective, nouns, verbs and adverbs) are looked up
in the sentiment lexicon bringing across the semantic properties (PoSs and polarity scores) of the term matched.

3. Words that are not in the Opinion Lexicon are tagged as such. Details on how these words are treated are provided
in Section 14.3.2.

4. The semantic orientation (S OR) of each sentence is calculated following the process described after this itemised
list.

5. After processing a given sentence, those words without a pos/neg label are treated as an exception. This situation
happens when the word in question was not in SentiWordNet or it was present, but there were no polarity scores
available. More details are given in Section 14.3.1.

6. The overall sentiment of the sentence is produced, and if indicated as such by the semantic rules, a composition is
performed for those sentences made of a collection of sub-sentences to derive its compounded semantic orientation
(CS O) based on its sub-sentence S OR values. The actual process of computing a sentence S OR is addressed in the
paragraph below.

14.1.4.1.1 Computing a sentence S OR. During the actual semantic orientation calculation, both the pos/neg label
associated with the words in the lexicon and their respective polarity scores, are taken into consideration. The proposed
system performs word counting of both orientations (neg/pos) for every sentence.

If count(positive words) > count(negative words)
then [the sentence is classified as ‘positive’], hence S OR = ‘Positive’

If count(positive words) < count(negative words)
then [the sentence is classified as ‘negative’], hence S OR = ‘Negative’

If count(positive words) = count(negative words)
then [There is a tie. Follow alternative process], hence S OR = Table 14.4 result.

Ties are resolved using a three-level stratified algorithm, as displayed in Table 14.4. The different strata shown
are mutually exclusive, and every step is executed only if the previous step does not resolve the existing tie. As the posi-
tive/negative IP values in our lexicon range is [0,1], the semantic orientation calculation requires: (i) the Positive/Negative
label in our lexicon (SOL) and (ii) the positive/negative IP values in our lexicon.

If a sentence S is made of n sub-sentences (S 1,S 2, . . . ,S n), then the CS O of the full paragraph/sentence is calculated
by S OR sub-sentence counting.
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Strata Task
Stratus 1 The polarity scores or intensity of polarity (IP) are reviewed and the highest value (among

negative and positive words) wins
Stratus 2 There is a hierarchy of importance around the PoS particles to which the words in a sen-

tence belong. The aforementioned hierarchy, from most influential to least influential is:
(i) adjectives, (ii) adverbs, (iii) verbs and (iv) nouns. If the previous step fails to produce a
classification, the hierarchy just described is used and a higher priority is assigned to the IP
values of adjectives, followed by adverbs, verbs and nouns

Stratus 3 If the two previous steps fail, we examine our dictionary and search for the participant
words; we extract the frequencies with which each word has appeared in a sentence with a
specific polarity (pos/neg); the polarity associated to the highest value wins

Table 14.4. Stratified Algorithm for Tie Breaks

1. If count(Positive S OR Sentences) > count(Negative S OR Sentences)
then CS O(S 1,S 2,...,S n) = Positive

2. If count(Positive S OR Sentences) < count(Negative S OR Sentences)
then CS O(S 1,S 2,...,S n) = Negative

3. If count(Positive S OR Sentences) = count(Negative S OR Sentences)
then CS O(S 1,S 2,...,S n) = S OR of S k; IP(S k) = max{IP(S 1), IP(S 2), . . . , IP(S n)}

Notice that the natural separators for sentences are punctuation marks (period, comma, exclamation sign, question
mark, colon, semicolon, etc.), and naturally the sentences would be broken accordingly into sub-sentences at tagging/-
parsing time. For complex data inputs, like long paragraphs/sentences or even documents, the expectation is that there
would be many sub-sentences participating in multiple compositions. For short paragraphs or snippets, like those exhib-
ited in the Twitter datasets (see Sub-section 6.2.1), we will have to compose semantic orientations for a low number of
sub-sentences. By inspecting the data, there would be a composition of 3 to 5 sub-sentences at the most, with the majority
of the cases being restricted to 2 or 3 of them. For Twitter data, it is not uncommon that the author of the tweet simply
does not use punctuation marks at all, which would result in zero sub-sentences at tokenization time (just one longer than
usual sentence).

14.2 Hybrid Advanced Classification (HAC) Method: computing the intensity
of polarity

This approach enhances the hybrid standard classification method (HSC) described above by incorporating:

1. Determination of the intensity of polarity (IP) with which a given sentence leans towards being positive or negative.

The IP of a sentence (X) is to be derived from the IP values of its associated list of sentiment-carrying words
(W1, . . . ,Wn). In other words, the partial IP values of words of a sentence X are to be fused appropriately to derive
the global sentence IP value. Mathematically, this problem means that an appropriate mapping f : [0,1]n→ [0,1]
is needed to be defined such that:

IP(X) = f
(
IP(W1), ..., IP(Wn)

)
.

Fusion operators can be roughly classified into the following categories: conjunctive, disjunctive and compensative:

(a) Conjunctive operators that behave like a logical “and”. In this case, the global IP value is high only when
all the partial IP values are high but compensation is not possible as the presence of just one small partial IP
value will result in a small global value no matter how big the rest of partial IP values are. A well known
family of conjunctive operators is the t-norm family, and the minimum operator is the largest of all t-norms.

(b) Disjunctive operators behave like a logical “or”, and can be seen as the dual operators of conjunctive op-
erators. In this case, the global IP is low only when all the partial IP values are low. As with conjunctive
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operators, compensation is not possible as the presence of just one high partial IP value will result in a high
global IP value no matter how low the rest of partial values are. The family of t-conorms belongs to this type
of operators, and the maximum is the smallest of all t-conorms.

(c) Compensative operators are comprised between the minimum and the maximum, and therefore they are
neither conjunctive nor disjunctive. In this kind of operators, a small partial IP value can be compensated by
a high partial IP value. This type of operator is also known as an averaging operator with mean, weighted
mean and ordered weighted averaging (OWA) operator being widely used in multi-criteria decision making
problems.

A class of fusing operators that behaves like a conjunctive operator when all values are low, like a disjunctive
operator when all values are high, and like a compensatory operator otherwise, does exist, and it is the family of
uninorms operators [255].

Definition 14.1. A uninorm operator U is a mapping U : [0,1]2 −→ [0,1] having the following properties:

(a) Commutativity: U(x,y) = U(y, x)

(b) Monotonicity: U(x1,y1) ≥ U(x2,y2) if x1 ≥ x2 and y1 ≥ y2

(c) Associativity: U(x,U(y,z)) = U(U(x,y),z)

(d) Identity element: ∃ e ∈ [0,1] : ∀ x ∈ [0,1], U(x,e) = x

Uninorm operators share with t-norm and t-conorm operators the commutativity, associativity and monotonicity
properties. Furthermore, the uninorm operator generalises both the t-norm operator and the t-conorm operators. In
general, a uninorm operator has an identity element lying anywhere in the unit interval [0,1]; a t-norm operator has
1 as its identity element and therefore it is a uninorm operator with identity element 1; while a t-conorm operator
has 0 as its identity element and therefore it is a uninorm operator with identity element 0. It is well known that
a uninorm operator with identity element e ∈ [0,1] behaves like (i) a t-norm operator when all partial IP values
are below e; (ii) a t-conorm operator when all partial IP values are above e; (iii) a compensative operator in the
presence of partial values below and above e. An interesting particular case of uninorm operators are the symmetric
aggregative operators, i.e. uninorm operators that have a representation in terms of a single variable function. In
particular, the representable uninorm operator with identity element e = 0.5 has been characterised as the most
appropriate for modelling cardinal consistency of reciprocal preference relations [55].

Based on the above, a general approach in this step would be the implementation of a uninorm operator to derive the
IP of a sentence X from the IP of its associated list of sentiment-carrying words. The experimental section reported
in Sub-section 14.4.4.2 made use of the minimum operator, which as mentioned above is a type of uninorm:

IP(X) = min{IP(W1) . . . IP(Wn)}. (14.1)

Once a sentence IP value is obtained, the linguistic labels (granules) l ∈ G with highest µl(IP(X)) is assigned to
classify the positive/negative polarity. In those cases when there exist two consecutive labels with equal µl(IP(X)),
we classify the polarity of the sentence with the label meaning higher as per the ordinal ordering implicitly ex-
pressed in the representation given in Fig. 14.5. For example, when IP(X) = 0.3, the polarity will be assigned the
label Moderate rather than the label Slight.

2. Diagnosing when a given sentence could be considered rather objective/neutral as opposed to either positive or
negative: not all sentences have been created equal, and even in the test dataset that have been carefully chosen,
there are some sentences that one could argue that are rather neutral (not leaning towards negative or positive).
With the Hybrid Advanced Classification (HAC) system we could consider those sentences classified as having an
IP belonging in the poor interval, as prime candidates to have a Semantic Orientation that would be leaning more
towards Objective than to Subjective.
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14.3 Sentiment lexicon enrichment

This section addresses the classification issue that arises when dealing with sentences for which the data in the lexicon
in not enough and a SOR score cannot be produced. A response to such issues is presented in the form of an almost
automated approach to enriching the sentiment lexicon by incorporating new opinion-carrying particles into the lexicon
to minimise the number of cases when polarity classification is not possible.

14.3.1 Dealing with sentences when the data in the lexicon in not enough

One problem that we will encounter is that a given sentence being processed would include words that are not in the lexicon
(none of them are in the lexicon). In such a case, our method cannot provide a S OR recommendation. If at least one word
would have been included in the lexicon, the S OR would have been calculated using the information available, utilising the
computation process given in the previous subsection. At this point, the only way forward is to incorporate the new words
in the lexicon using some specific criteria as it is shown in the following paragraph. In the interim, no classification can
be offered, but once the lexicon is updated, a polarity classification is very possible. Considering the frequency at which
SentiWordNet is updated by the on-line feedback provided by regular users (http://sentiwordnet.isti.cnr.it), it
is fair to say that the growth of the capabilities of our lexicon is guaranteed by the increase on the size of the corpora
incorporated into SentiWordNet.

14.3.2 Enriching the sentiment/opinion lexicon

Methodologies based on the utilisation of a sentiment lexicon would eventually come across situations where words car-
rying opinions in a given sentence are not included in the lexicon. The only solution to this problem is to enrich the
sentiment lexicon by either adding new words that were not originally part of the aforementioned lexicon or completing/-
modifying data attributes already in the lexicon. In this section we will focus on the former case and will explain how to
incorporate new opinion-carrying particles into the lexicon.

In order to keep a strict control, we perform off-line the process of adding words to the lexicon using a semi-automated
mechanism with some human intervention. The SentiWordNet database can be downloaded and utilised for off-line
processing, which is the chosen mechanism. The process we have implemented is given below (every step in the list
below uses the output of the previous step) with the pseudo-code required given in Algorithms 15.1, 15.2 and 15.3:

1. Process sentence using NLP techniques (tokenization, negation-handling, PoS tagging, parsing, etc.).

2. Compare sentiment-conveying words found in previous step against sentiment lexicon.

3. Obtain list of the words that were not found in the current/most-recent sentiment lexicon. These words are candi-
dates to be added to the lexicon, but not all not-found words will be added to the lexicon; i.e. there are words that
are not considered to be sentiment-carrying words, hence they should not be added to the lexicon.

4. Eliminate repeated words and check the PoS group the words belong to.

5. Compare off-line the list of words obtained in previous step against the available SentiWordNet’s database and
generate list of matches and no-matches.

6. Remove from the list generated in the previous step any particle not-found (there will be words that are not in
SentiWordNet). The list of words generated in Step 5 represents candidate-words to be included in our Lexicon.
However, those words that are not available in SentiWordNet cannot be added automatically to our lexicon, hence,
they are rejected by being removed from the list of matches, and are placed instead in the list of exceptions that
will require human intervention in order to make an educated decision.

7. Transform the list of matches from the previous step into a format that enables them to be potentially incorporated
into our sentiment/opinion lexicon (the format of the lexicon of our proposed method).

8. Invoke the Lexicon Editor Program (written by our team) to provide a visual interface to an expert to analyse the
candidate words already in opinion lexicon format. The human operator will decide the polarity label for each entry
as the system prompts her with an input query. The expert (ideally, a linguist) will decide whether the candidate
word should be (a) deleted, (b) classified as neutral polarity, or (c) classified as having negative or positive polarity.
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9. Add the list of words previously obtained to the existing Sentiment Lexicon in order to generate an updated version
of the lexicon.

Notice that all steps described above are automated by software that we have developed as part of our prototype, with
the exception of step number 8. At a given point in time, some human interaction is usually required to make decisions
about whether a given word should be part of the lexicon. A possible partial solution would be to simply add all words
found in SentiWordNet as the latter is supposed to contain words labelled already as Positive, Negative or Objective. We
have taken the latter approach in order to minimise user intervention. However, we still do a visual inspection before new
words are added to the lexicon, in order to avoid the introduction of noise.

Procedure AddNewWords
Data: OldLex, NewLex, NFW are linked-lists
Result: NewLex
while NFW is not empty do

if NFW.info ∈ SentiWordNet then
Extract Polarity Scores and PoS particles for words ∈ NFW;
NewLex← NewLex ∪ BuildNewLexEntryWith(NFW.info = SentiWordNet.info)

else
NewLex← NewLex ∪ LookUpInDict(NFW.info)

end
end
return NewLex

Algorithm 14.1: Add new words to Sentiment Lexicon

Procedure BuildNewLexEntryWith
Data: SentiWordNet all synsets
Result: NewEntryInLexiconFormat
NewEntryLexiconFormat← Create entry in lexicon format using the data brought in from SentiWordNet return

NewEntryInLexiconFormat

Algorithm 14.2: Generate new entry in lexicon format

Procedure LookUpInDict
Data: word, MyDict: word is a term not found in the dictionary and MyDict is our dictionary
Result: NewEntryInLexiconFormat
while MyDict is not empty do

if MyDict.info = word then
NewEntryInLexiconFormat← Obtain polarity of word from dictionary MyDict, and create
Lexicon-format entry

else
NewEntryLexiconFormat← Create entry in Lexicon format with label indicating: Requires
manual intervention;

Report to Linguist expert and generate manual entry into the Lexicon
end

end
return NewLex

Algorithm 14.3: Look Up in Dictionary
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14.4 Experimental Results

In this section we will look at the experimental results, starting with the outcome obtained when using the two mentioned
SML methods, Naı̈ve Bayes and Maximum Entropy. After this, we will show the results obtained from applying the
proposed hybrid method. We will close the section with a comparison of the results. For the preparation and processing
of the sentences using the SML classifiers mentioned above, we used extensively the material presented by Bird et al. [26]
and Perkins [173].

14.4.1 Experimental Methodology - Summary

As described in Chapter 6, we have followed a rigorous experimental methodology. In brief, the main idea was to take the
designated datasets and process them using three different classification methods:

• Naı̈ve Bayes Classifier

• Maximum Entropy Classifier

• The proposed HSC/HAC Classifier

Then, the results of the three aforementioned classifiers would be compared utilising the performance indices described
in Section 6.3, with emphasis on Precision as that indicator has been utilised previously to establish the current state-of-
the-art.

14.4.2 Naı̈ve Bayes classifier

In discussing the Naı̈ve Bayes (NB) classifier, Pang et al. in [165] elaborate that one possible approach to text classification
is to assign to a given document d the class c∗ = arg maxc P(c | d). In order to estimate P(d | c) (see Chapter 9.1 for all
equations and formulae), NB assumes the class features are conditionally independent, with ni(d) representing the number
of possible classification classes (it would be 2 for a binary classifier).

In essence, NB is a probabilistic classifier that is based on the Bayes’ theorem. Basically, in the presence of a sample
input NB should be able to predict a probability distribution over a set of classes. In this case, word frequencies are the
characteristics used to decide whether a paragraph belongs to one category or another. For that to happen, we would have
to count with a dictionary (or corpus) previously labelled with the semantic orientation of words (i.e. ‘fabulous’ conveys
a positive intention whilst ‘terrible’ would convey a bad one). However, despite its apparent simplicity, NB has proven to
be very successful in many situations [165].

In the experiments, the NB classifier was trained using some of the recommendations presented by Perkins in [173].
The classifier uses the concept of ‘bag of words’ [231] to create ‘feature vectors’ exhibiting the main traits of each
sentence. In this case, the NB classifier is a binary classifier, with a sentence being classified either as ‘negative’ or
‘positive’, with both categories being exclusive. The movie reviews corpus available with NLTK 2.x was used to train
the classifier. The training dataset consists of 1,500 instances (1,500 files containing full paragraphs) that have been pre-
labelled as either positive or negative. There were 500 instances used to test the classifier. Once the classifier has been
trained and tested, a different dataset of ‘movie reviews’ sentences (5,331 sentences pre-labelled as Positive and 5,331
pre-labelled as Negative), was used to evaluate all classifiers (see Sub-section 6.2.2).

The NB classification algorithm returns a probability value that represents the sentence belonging with a specific label
(negative or positive). Thus, the probability value has to be 0.5 or higher for a sentence to belong in a specific category
(positive or negative, depending on which case is being tested). With regard to the Twitter Dataset, the classifier was
trained using the same data and process described above, until the classifier was ready to be exposed to the test dataset. It
is important to notice that the main objective of the use of the Twitter dataset is twofold: (a) to validate the results obtained
using the movie database data, and (b) to gain more understanding on the effect of showing shorter sentences -as those
typically available in Twitter- to the classifiers. Table 14.5 shows the results obtained after running the NB classifier with
the test datasets:
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Metric Twitter A dataset Movie database dataset
Accuracy 0.6785 0.6717
Precision 0.6315 0.6274

Recall 0.8619 0.8456
F1-Score 0.7315 0.7204

Table 14.5. Naı̈ve Bayes classifier performance indexes

14.4.3 Maximum Entropy classifier

The Maximum Entropy (ME) classification algorithm has been extensively used by the Machine Learning community
to deal with text classification problems. One of the main properties of ME is that the algorithm does not make any
assumptions about the relationships between features to derive the estimate of P(c |d), which is expressed by the equations
and formulae described in Section 9.2. The λi, c’s are feature-weight parameters, and a large value for λi, c would imply
that “ fi is considered a strong indicator for class c. The parameter values are set so as to maximise the entropy of the
induced distribution subject to the constraint that the expected values of the feature/class functions with respect to the
model are equal to their expected value with respect to the training data” [165]. Additional information about ME can be
found in the literature, for example, in [8, 27, 142].

Following Perkins’s recommendations [173], the Generalized Iterative Scaling (GIS) learning method was used to
train the ME classifier. As the NB classifier, the ME classifier returns a probability value of the sentence belonging with
a specific label (negative or positive), and a probability value equal or higher than 0.5 is required for a sentence to belong
in a specific category. Table 14.6 presents the results obtained when the trained classifier is applied to the test datasets:

Metric Twitter A dataset Movie database dataset
Accuracy 0.6759 0.6757
Precision 0.6293 0.6291

Recall 0.8610 0.8561
F1-Score 0.7313 0.7253

Table 14.6. Maximum Entropy classifier performance indexes

14.4.4 Proposed hybrid method (HSC/HAC)

The proposed hybrid method has been applied to the test datasets in two different sub-methods or incarnations that grow
each time in complexity (HSC and HAC). The results of having applied the classification method HSC (polarity determina-
tion) to the test datasets, are followed by the results obtained by applying the HAC method to the test dataset (determining
polarity intensity). The proposed hybrid method is first applied to both twitter datasets (see Sub-section 6.2.1), Twitter A
dataset and Twitter B dataset, and later on to the movie database dataset (see Sub-section 6.2.2).

14.4.4.1 HSC results

Notice that we have a first and a second pass of the proposed HSC method. When running the experiments, we reset our
lexicon to its initial state every time, for the sake of comparison against different data sets. The 2nd pass of the method
corresponds to the phase in which the sentiment lexicon and dictionary have learnt new words/terms. The latter mimics
better real life scenarios, as every new run of our method should benefit from what it has already learnt.

Table 14.7 presents the HSC (1st pass and 2nd pass) results when applied to the data marked in this article as Twitter A
dataset (see Sub-section 6.2.1), while for performance confirmation purposes Table 14.8 presents the HSC 2nd pass results
when applied to the data marked in this chapter as Twitter B dataset (see Sub-section 6.2.1). Table 14.9 presents only the
HSC 2nd pass results when applied to the test data marked as Movie Review dataset (see Sub-section 6.2.2).

At the beginning of this Chapter we mentioned that we are focusing on Sentiment Analysis at the sentence level.
Initial experimental results show that the closer the data utilised reflect the concept of a snippet (a short sentence usually
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Metric HSC (1st pass) HSC (2nd pass)
Accuracy 0.8273 0.8802
Precision 0.8093 0.8424
Recall 0.8626 0.9451
F1-Score 0.8351 0.8866

Table 14.7. HSC classifier - Twitter A dataset performance indexes

Metric HSC (2nd pass)
Accuracy 0.8655
Precision 0.8406
Recall 0.8531
F1-Score 0.8332

Table 14.8. HSC classifier - Twitter B dataset performance indexes

Metric HSC (2nd pass)
Accuracy 0.7585
Precision 0.7278
Recall 0.8257
F1-Score 0.7737

Table 14.9. HSC classifier - Movie Review dataset performance indexes

found in one line or equivalent in social media systems like Twitter), the better our proposed system performs. We will
discuss this further in section 14.4.5.

14.4.4.2 HAC results

In subsection 14.4.4.1 we have seen the results obtained by the proposed hybrid method in terms of estimating the polarity
of three different datasets. With HAC, we incorporate the fuzzy sets approach already described and as a consequence we
can incorporate a finer granularity level into the polarity classification process. Details of the results achieved with the
Movie Review dataset are provided in Table 14.10 and Table 14.11.

False Negatives 929
No Semantic Orientation (NOSOR) 35
NOSOR (2nd run) 0
True Positives 4,402

Poorly 577
Slight 1,106
Moderate 1,041
Very 1,365
Most 313

Total Number of Sentences 5,331

Table 14.10. HAC classifier increased granularity for Positive Polarity dataset

Notice that in the 2nd pass there are no cases of NOSORs. During the 1st pass, the proposed system either learnt
new terms (words) that were added to the lexicon, or was capable of finding polarity scores to terms already resident in
the sentiment lexicon. With this added granularity to the polarity classification, we can inspect sentences classified in the
lower end of the spectrum [0,1] as well, i.e. sentences labelled as ‘poor’, and revise them because in terms of classification
they could be borderline with Neutral/Objective. Representative examples are sentences like ‘The theatre was completed
full.’ and “The Sinner counted with great actors.”, which seem to express facts instead of opinions.

There were no annotations for polarity intensities in any of the utilised datasets. This was expected as the datasets
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False Positives 1,646
No Semantic Orientation (NOSOR) 76
NOSOR (2nd run) 0
True Negatives 3,685

Poorly 770
Slight 1,089
Moderate 789
Very 864
Most 173

Total Number of Sentences 5,331

Table 14.11. HAC classifier increased granularity for Negative Polarity dataset

were annotated only for polarity (negative or positive). We did annotate 10% of all sentences in the larger dataset though
(movie review) in the positive-polarity dataset, which represents approximately 530 sentences distributed as follows: 100
each for the Poor, Slight, Very and Most labels, and 130 for the Moderate one. Table 14.12 presents the indicators for the
10% sample, which are considered very hopeful as efficiency in predicting polarity intensity accurately was above 80%
in all cases.

Metric Poor Slight Moderate Very Most
No. of Sentences 100 100 130 100 100
Estimated Correct (%) 81.00 89.00 93.08 91.00 87.00
Estimate Incorrect (%) 19.00 11.00 6.92 9.00 13.00

Table 14.12. Movie Review Positive Polarity dataset sample - HAC classifier performance

14.4.5 Comparison of experimental results

In this subsection we will take a closer look at the experimental results. The first comparison table (Table 14.13) corre-
sponds to results achieved when the different methods were applied to the dataset identified in this article as Twitter A
dataset. As stated before, the 2nd pass represents better real life scenarios, as our lexicon has already learnt new terms
and their associated properties. The results obtained are very encouraging as the proposed hybrid method improves the
results obtained by NB/ME by a significant magnitude. As a performance confirmation exercise for the proposed hybrid
method, the data marked as the Twitter B dataset was used. Similar results to those achieved for Twitter A dataset were
obtained, with an Accuracy of 0.8655 and a Precision of 0.8406. From now on, our comparison will focus on Accuracy
and Precision (specially the latter) as the state of the art cases we are using for this exercise are based on the principle of
using Precision as the main element of comparison.

Metric NB ME HSC (2nd pass)
Accuracy 0.6785 0.6759 0.8802
Precision 0.6315 0.6293 0.8424

Table 14.13. Twitter A dataset performance indexes comparison - NB/ME vs. HSC

Moving on to the results obtained using the Movie Review dataset (Table 14.14), we observe that the proposed HSC
method performs better than NB/ME, although it is worth mentioning that the overall performance of HSC (for precision)
is reduced by approximately 11.46% with respect to its performance on the Twitter datasets. The explanation that we
offer for this behaviour is data related. The sentences in the Movie Review dataset are rather complex (a short paragraph
or a long sentence made up of a few sub-sentences on average). The type of sentences available in both Twitter datasets
are of a simpler nature and they are closer to the concept of a ‘snippet’. Let us keep in mind as well that the focus of our
research was directed toward presenting a sentiment analysis approach at the sentence level. In the following paragraphs,
examples of the type of sentences found in the different datasets are provided to support this analysis.
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Metric NB ME HSC (2nd pass)
Accuracy 0.6717 0.6757 0.7585
Precision 0.6274 0.6291 0.7278

Table 14.14. Movie Review dataset performance indexes comparison - NB/ME vs. HSC

Movie Review dataset examples

Example 2. “it was with great anticipation that i sat down to view braveheart last week as it premiered on american
cable. the academy award winning film had been highly acclaimed. it also featured the music of one of my favorite film
composers , james horner . what i was in for was a disappointing and overlong film which was anything but the best
picture of 1995 ...”

Example 3. “Vampire’s is a rude , chauvinistic movie where women are portrayed as pawns of abuse , present only
to pleasure men , feed vampires , readied to be bashed or beaten - till one’s sensibilities is shocked by the low iq and
mentality of this regressive movie . to make matters worse , the buffoons that go hunting vampires are all rednecks , and
deserve to have their heads bitten off , if not , their bodies carved in half .”

Twitter A dataset examples

Example 4. “To hell with this economy. I hate aig and their non loan given asses.”

Example 5. ‘US planning to resume the military tribunals at Guantanamo Bay ... only this time those DTS on trial will
be AIG execs and Chrysler debt holders.’

Twitter B dataset examples

Example 6. “There are huge lines at the Apple store.”

Example 7. “I had to wait for six friggin’ hours in line at the Microsoft store. that’s not cool man.”

14.4.5.1 Impact of different techniques in hybrid approach

Next we would like to show the improvements in the performance of the proposed system as some of the techniques
mentioned in this Chapter were introduced. Table 14.15 shows the precision of the proposed HSC method as specific
enhancements were applied one after another, and as such provides a picture of the impact that the different techniques
generated as they were added to the proposed solution. Indeed, every step shown in the table inherits the benefits of having
introduced a specific technique in the previous step. This results in the precision of the final process being close to 10%
higher than that at the start.

Technique incorporated Precision (%) Accumulated Impact (%)
Using pre-existing semantic rules 76.77
Adding effective PoS tagging 79.33 3.33
Adding smart negation handling 81.17 5.73
Adding new semantic rules (R14 & R15) 83.36 8.58
After 2nd pass (once the lexicon has learnt new terms) 84.24 9.73

Table 14.15. Impact of different techniques in hybrid approach precision (Twitter A dataset)

14.4.5.2 Analysis of specific examples

Let us take a closer look at some examples that we believe are of interest. We will start by showing instances that
exemplified the different intensities in polarity and their associated linguistic labels, as produced by the proposed HAC
method, and then we will continue sharing examples of sentences that have proven to be too hard to classify for the
proposed classifier.

101



14.4. Experimental Results Chapter 14. A Hybrid Approach to the SA Problem at the Sentence Level

14.4.5.2.1 Examples of polarity intensity graduality as per the five linguistic labels introduced

Example 8. Poor: “effective but too-tepid biopic.”

Example 9. Slight: “if you sometimes like to go to the movies to have fun, wasabi is a good place to start.”

Example 10. Moderate: “occasionally melodramatic , it’s also extremely effective.”

Example 11. Very: “the movie’s ripe , enrapturing beauty will tempt those willing to probe its inscrutable mysteries .”

Example 12. Most: “one of the greatest family-oriented, fantasy-adventure movies ever.”

14.4.5.2.2 Examples of challenging sentences for the proposed hybrid classifier

Example 13. “spiderman rocks.”
In this case, the proposed classifier does not understand what the term ‘rocks’ means. As such, the sentence was wrongly
classified as having a negative polarity.

Example 14. “it extends the writings of jean genet and john rechy, the films of fassbinder, perhaps even the nocturnal
works of goya.”
This sentence offers the names of great world-class film directors and actors, and claims that the director of the reviewed
movie extends their work. However, the lack of context impacts on the ability of the proposed algorithm to classify this
sentence properly.

Example 15. “after watching the movie I found myself between a rock and a hard place.”
In this instance, the use of idioms creates problems for the proposed classifier.

14.4.6 Performance comparison against Machine Learning and state of the art

An accurate and strict comparison cannot be performed unless every method involved is evaluated against exactly the same
dataset, and in the case of lexicon driven methods when the same lexicon is used. Therefore, the values shown below are
rather informative of the performance achieved by each method in different experimental settings. A comparison against
state of the art techniques that are not purely machine learning based was not part of this research, but it will be performed
in the near future once we execute some of the recommendations offered in Section 14.5 such as the possible replacement
of SentiWordNet with SenticNet [45].

Poria et al. [176] provides results for machine learning experiments that we have reused in the comparison shown
below in Table 14.16. Notice that the proposed hybrid method does approximately 17% better than the machine learning
techniques in general, and 21.50% better against NB/ME. For some time, Socher et al. [198, 199] have been considered
state of the art. At the sentence level the proposed hybrid method performs better than Socher et al. [198] and is close to
the performance of Socher et al. [199]. Ensemble classification from Poria et al. [176] has achieved the best performance
of all, with a precision of 86.21%.

Algorithm Precision (%)
Naı̈ve Bayes (from section 14.4.2) 62.74
Machine learning [176] 67.35
HSC/HAC - Movie Review dataset 72.78
Socher et al. [198] 80.00
HSC/HAC - Twitter dataset 84.24
Socher et al. [199] 85.40
Ensemble classification [176] 86.21

Table 14.16. Proposed hybrid method against state of the art
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14.5 Chapter Summary

In general, our proposed hybrid system works very well at the sentence level with a high level of accuracy (88.02%) and
precision (84.24%) when the method is applied against twitter-like datasets. The fact that our hybrid system significantly
improved the results obtained using Naı̈ve Bayes (NB) and Maximum Entropy (ME), satisfies our initial hypothesis that
a hybrid method using sentiment lexicons, NLP essential techniques and fuzzy sets, should be able to perform well. An-
other benefit of our proposed system is that we have managed to identify different strengths in the polarity degree of the
input sentences with regard to the specific base-case (negative or positive). There is an interesting and intended effect of
the introduction of the fuzzy sets component of our method. Those sentences classified in the ‘poor’ side of the polarity
intensity spectrum are prime candidates to be considered rather neutral or objective sentences, instead of subjective (this
functionality could be built into a subjectivity determination schema). Also, it allows for a computing with sentiments
methodology to be realised.

Summarising, in this chapter we have fully described our proposed solution to the sentiment analysis problem at the
sentence level. The focus has been on two fundamentals aspects:

• Subjective Polarity Identification (HSC)

• Polarity Intensity Determination (HAC)

In the next chapter (Chapter 15), we will present an extension to our proposed model based on aggregation by Uninorm.
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Chapter 15

Sentiment Aggregation by Uninorm

As far as the laws of mathematics refer to
reality, they are not certain; and as far as they
are certain, they do not refer to reality.

Albert Einstein (1879-1955) [75].

A significant part of the content of this chapter was used in articles published by the author. See references [10, 11, 12,
13, 14, 15, 16, 17, 18]. In this section we will look at a proposed extension to our original model discussed in Chapter 14,
which is based on aggregation by uninorm. The experimental results associated to this new approach will be presented,
too.

15.1 SA Aggregation by Uninorm

There are situations in which lexicon-based methods for Sentiment Analysis (SA) are not able to generate a classification
output for specific instances of a dataset. Most often, the reason for this situation is the absence in the sentiment lexicon of
terms that are required in the classification effort. In this Chapter we present a method that utilises a cross-ratio uninorm
to aggregate the classification values produced by two supervised machine learning methods in order to compensate for
the lack of ability of our initially proposed hybrid method to offer an immediate classification estimation in situations
like the one above described. The solution we are presenting in this Chapter can be seen as an enhancement to the hybrid
method for Sentiment Analysis (HAC/HSC) introduced in Chapter 14. The experiments results demonstrate that the newly
proposed technique improves the performance of HSC/HAC, as the latter is now capable of always providing an outcome
and the outputs obtained by the application of the presented cross-ratio uninorm enjoys very good performance indexes.
The study of effective mechanisms for aggregation has been a central part of research in the fields of fuzzy systems and
soft-computing [34, 40, 87, 187]. In [187], Rudas, Fodor & Pap mention that “the theory of fuzzy sets today uses a well
developed parts of mathematics such as aggregation operations, a generalized theory of relations, generalized measure
theory, etc.”. Fuzzy sets methods play a key role in many fields, of particular interest for us, in the areas of data fusion,
decision-making and group decision-making. In the latter, the clear intention is to combine in a meaningful way the
opinion of a number of individuals or methods.

A number of authors have performed in-depth explorations of the utilisation of aggregation functions. A very com-
plete presentation of aggregation and aggregative uninorms can be found in the work of Yager and Rybalov [255] and
Rudas and Fodor [186]. In [188] Rudas, Pap & Fodor show how key information fusion is in many complex areas like
decision making, utility theory, fuzzy inference systems, robotics and vision. The authors cover aggregation functions
and their fundamental properties, with four main classes of aggregation functions being identified. In [107], Jočić and
Štajner-Papuga focus on pairs of binary aggregation operators on the unit interval that verify the distributivity law, which
is important in the utility theory. More recently, Wu et al. [245] present an interesting discussion on the use of aggregation
methods for group decision-making in the specific context of social networks. The authors investigate a uninorm based ap-
proach to propagate trust through a network. In [270] the authors propose a new method to apply in group decision-making
context with incomplete reciprocal preference relations. The method performs a multiplicative consistency analysis of the
opinions of each expert, and provides an aggregation.
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In [242, 243, 246], the mathematical modelling of the multiplicative transitivity property originally introduced by
Tanino for reciprocal fuzzy preference relations is investigated and derived for the case of intuitionistic reciprocal pre-
ference relations. They use as a starting point Zadeh’s extension principle and the horizontal representation theorem of
fuzzy sets based on the concept of alpha level set. Their findings assist the authors in the building of a novel consistency
based induced ordered weighted averaging operator. According to these researchers, the aforementioned operator is ca-
pable of associating a higher contribution in the aggregated value to the more consistent information. In [217], Ureña
et al. present an approach to decision-making based on intuitionistic preference relations, which provide a simple but
flexible representation structure of experts’ preference on a set of alternative options, “while at the same time allowing to
accommodate degrees of hesitation inherent to all decision making processes.” [217]. In addition, the authors introduce
the concept of expert’s confidence which is based on the hesitancy degree of the reciprocal intuitionistic fuzzy preference
relations. Then, they provide a group decision-making procedure, “based on a new aggregation operator that takes into
account not only the experts’ consistency but also their confidence degree towards the opinion provided.”. Meng and Chen
address a new method to deal with group decision making with incomplete fuzzy preference information in [146] based
on the application of an induced hybrid weighted aggregation operator. A particular feature of this aggregation operator is
that “the group consistency is no smaller than the highest individual inconsistency, and the group consensus is no smaller
than the smallest consensus between the individual fuzzy preference relations.” [146].

As mentioned before, it is not uncommon for lexicon-based sentiment analysis methods to be compromised when
processing sentences containing terms/words that are not in the lexicon. In situations like this there are some palliatives
that could be applied, some of which are described in Chapter 14, like the use of a previously-generated word dictionary
or vocabulary that could assist in finding an alternative solution. In general, the options available when a lexicon-based
method cannot deliver an answer are:

• Addition of the missing word(s) into the lexicon, as suggested in Chapter 14. This option is a valid one, provided
that there is no noise introduced into the lexicon. In order to guarantee the latter, human intervention may be
required, which would prevent the classification system to provide an immediate answer.

• Utilise a word-frequency dictionary, as mentioned before. This, however, may not always produce a good answer
and additionally, it is typically expensive from the computational standpoint.

• Introduce a method that is not lexicon-dependent, like a machine learning algorithm like the one presented in Poria
et al. [176] or another option, like Naı̈ve Bayes.

• Select a proper aggregation technique that could smartly fusion the classification outputs of two or more algo-
rithms that are not lexicon-dependent. In our particular case, we propose the aggregation of the outcomes of two
supervised machine learning techniques: Naı̈ve Bayes (NB) and Maximum Entropy (ME), utilising a cross-ratio
uninorm U(x,y).

In this Chapter we have chosen to propose the latter option among those presented above for reasons that will become
evident as we progress with the presentation of the material.

In Chapter 14 we proposed a hybrid method to the Sentiment Analysis / Opinion Mining problem at the Sentence Level.
By using semantic rules, fuzzy sets, unsupervised machine learning techniques and a sentiment lexicon improved with the
support of SentiWordNet [79], the method proved to be better than some of the established supervised machine learning
techniques when they are used in isolation. One of the challenges of our proposed method was producing a classification
outcome when the opinion lexicon utilised did not contained at least one sentiment-conveying word of those present in
the sentence being processed. In the previous Chapter, we presented the success of our Hybrid Standard Classification
(HSC) System and the Hybrid Advanced Classification (HAC) System that work as a two-step approach: (a) determine
polarity, and (b) compute the intensity of the previously determined polarity. In this Chapter we propose the introduction
of a mechanism to rely on when HSC/HAC cannot issue a classification value. We will resort to aggregating the output
of a number of supervised machine learning methods in order to be capable of always producing a classification outcome.
The proposed aggregation method is a cross-ratio uninorm. As aforementioned, the set of uninorm operators has both the
set of t-norm operators and the set of t-conorm operators as its subsets. Indeed, a uninorm operator with identity element
“e = 1” becomes a t-norm operator; while a uninorm operator with identity element “e = 0” becomes a t-conorm operator.
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In general, a uninorm operator with identity element e ∈]0,1[ behaves like (i) a t-norm operator when all aggregated values
are below e; (ii) a t-conorm operator when all aggregated values are above e; (iii) a compensative operator otherwise.

Notice that the semantic orientation discrimination between positive, negative or neutral is in accordance with the be-
haviour of uninorm operators. Thus, based on the above, we suggest that when a lexicon-based method, like the HSC/HAC
technique, is unable to derive the polarity of a sentence then an alternative approach could consist of implementing a
uninorm operator to aggregate the polarity classification outputs, {x1, x2, . . . , xn}, of non-lexicon dependent classification
methods, {m1,m2, . . . ,mn}, respectively. Thus, the resulting aggregation would be defined by U(x1, x2, . . . , xn) = Λ, where
Λ ∈ [0,1] and U is an appropriate uninorm operator. In the following section, we present the class of cross-ratio uninorm
operators implemented in this alternative approach to SA.

15.2 Cross-ratio Aggregative Uninorm Operators

Neither t-norm operators nor t-conorm operators allow “low” values to be compensated by “high” values or viceversa.
However, as explained above “uninorm operators may allow values separated by their identity element to be aggregated
in a compensating way” [86].

Yager and Rybalov [255] provided the following representation of uninorms in terms of a strictly increasing continu-
ous function of a single variable φ : [0,1] −→ [−∞,∞] (generator function):

U(x,y) = φ−1 [
φ(x) +φ(y)

]
∀x,y ∈ [0,1]2\{(0,1), (1,0)}.

such that φ(0) = −∞, φ(1) = +∞. Chiclana et al. in [55] proved that the and-like representable uninorm operator with
e = 0.5 and φ(x) = ln x

1−x [117], known as the cross-ratio uninorm,

U(x,y) =

 0, (x,y) ∈ {(0,1), (1,0)}
xy

xy + (1− x)(1− y)
, Otherwise. (15.1)

is the solution to the functional equation modelling the concept of cardinal consistency of reciprocal preference relations.
The cross-ratio uninorm operator has also been utilised in the influential PROSPECTOR expert system [20]. Fodor [86]
extended the cross-ratio uninorm with the identity element e = 0.5, so the identity element e can take on any value in
]0,1[:

U(x,y) =


0, (x,y) ∈ {(0,1), (1,0)}

(1− e)xy
(1− e)xy + e(1− x)(1− y)

, Otherwise.
(15.2)

Expression (15.2) presents the cross-ratio uninorm as an aggregation operator of two arguments. However, associa-
tivity property allows uninorm operators to fuse n (> 2) arguments:

U(x1, x2, . . . , xn) =


0, if ∃ i, j : (xi, x j) ∈ {(0,1), (1,0)}

(1− e)n−1 ∏n
i=1 xi

(1− e)n−1 ∏n
i=1 xi + en−1 ∏n

i=1(1− xi)
, Otherwise.

(15.3)

Values in the interval [−1,1] could be used as well. Indeed, if we were interested in having semantic orientation values
in [−1,1], then according to [186], there is the possibility of using the modified combining function C : [−1,1]2→ [−1,1]
proposed by van Melle [37]:

C(x,y) =


x + y(1− x) , i f min(x,y) ≥ 0
x + y(1 + x) , i f max(x,y) ≤ 0.

x + y
(1−min(|x|, |y|)

,Otherwise.
(15.4)

Notice that C is not defined in the points (−1,1) and (1,−1). However, as per Rudas and Fodor [186], rescaling
function C to a binary operator on [0,1], it is possible to obtain a representable uninorm with identity element 0.5 and
“as underlying t-norm and t-conorm the product and the probabilistic sum.” [186]. This result allows therefore to provide
the following definition of C in (−1,1) and (1,−1): C(−1,1) = C(1,−1) = −1. In this Chapter we will not be using
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equation (15.4), but it has been introduced here in an effort to show the generalisation in the method being proposed if
semantic orientation values in [−1,1] were to be used.

15.3 The Proposed Uniorm-driven aggregation mechanism to consolidate the
output of selected supervised machine learning algorithms

Our hybrid method will continue working as initially proposed and expected for polarity and polarity intensity classifi-
cation, using the same sentiment lexicon, semantic rules and the rest of the elements originally presented in the previous
Chapter. The changes we are about to describe are primarily occurring to the outputs representing the semantic orienta-
tion previously produced by the two supervised machine learning approaches, NB and ME, and to the new aggregated
semantic orientation that our method will produce in absentia of any other/better output available.

As we mentioned before, polarity scores and semantic orientation polarities were measured using what we have called
the pair 〈ps, pl〉, where ps = Polarity Score ∈ [0,1], with 0 representing an extremely weak polarity and 1 representing a
very strong one, and pl = Polarity label ∈ {Positive,Negative}. In order to work in this new complementary approach a
conversion must be enforced to the unit interval that accounts for negative and positive polarities represented by a given
number ∈ [0,1], without having to utilise an additional bit of information to represent the positive/negative label. As dis-
cussed in the previous section, we must be capable of differentiating the values that Positive Scores and Negative Scores
can assume as well as the resulting semantic orientation of any possible combination among them. As a consequence, we
have mapped the already described polarity/semantic scores pair 〈ps, pl〉 for all outputs of the NB and ME methods, to a
new interval as follows:

• Negative values represented by the pair 〈ps,Negative〉, where ps ∈ [0, 1] are mapped to [0, 0.4999].

• Positive values 〈ps,Positive〉, where ps ∈ [0, 1] are mapped to [0.5001, 1].

Now, all scores belong in the unit interval, leaving the value of 0.5 as the neutral element e representing Objective/Neutral
semantic orientation. This value of e = 0.5 corresponds with the identity element introduced in equations (15.1) and
(15.2). As a consequence, the new introduced polarity spectrum maps to two symmetrical half unit-interval ranges and
their values are ready to be aggregated by a cross-ratio uninorm having as neutral element e = 0.5. Full details about the
science behind these equations and associated approach can be found in Section 13.2 and Section 15.2 of this document.

15.3.1 The proposed aggregation process (HACACU)

The proposed aggregation process describe in this section is called Hybrid Advanced Classification with Aggregation by
Cross-ratio Uninorm (HACACU). Let us recall that the outputs of Naı̈ve Bayes (NB) and Maximum Entropy (ME) are
numbers that belong in the unit interval, and the cut off point is given by values that are either greater than or less than
0.5.

If Output(NB) > 0.5→ Semantic Orientation is Positive
If Output(NB) < 0.5→ Semantic Orientation is Negative.

If Output(ME) > 0.5→ Semantic Orientation is Positive
If Output(ME) < 0.5→ Semantic Orientation is Negative.

The above If-Then clauses satisfy our criteria of the neutral element being e = 0.5.

In the case that our Hybrid Classification Method is incapable of producing a classification as a consequence of some
of the limitations of lexicon-based techniques, then the proposed alternative option is described as:

1. Collect the outputs of NB

2. Collect the outputs of ME
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3. For each sentence, feed both outputs -NB and ME- to the cross-ratio uninorm presented above in equation (15.1),
which will produce a value (Result) for each sentence

(a) If Result > 0.5 then Semantic Orientation = Positive

(b) If Result < 0.5 then Semantic Orientation = Negative

(c) If Result = 0.5 then Semantic Orientation = Neutral

Graphically, the proposed complementary method is presented in Fig. 15.1. Notice that this proposed improvement

Fig. 15.1. Enhanced Option for Hybrid Classification Method - Cross-ratio Uninorm Aggregation (shaded area)

ensures that our enhanced Hybrid Advanced Classification Method with Aggregation (HACA) -as an extension to the
method we presented in Chapter 14- is always in a position to produce a classification output.

15.4 Experimental results

In the method proposed in Chapter 14, when the sentiment lexicon did not contain the necessary terms/words to produce a
classification output when processing a given sentence, there were only two possible paths to follow: (a) add terms to the
lexicon (off-line process), or (b) use the services of a Word-frequency dictionary (on-line process) that is computationally
costly to build. The latter method has been utilised in our HSC method [13], as a last resort, when the necessary terms
for producing a classification are not present in our sentiment lexicon. Experimental results are reported in this section
regarding the performance of the alternative path proposed in this Chapter based on the cross-ratio uninorm operator.

15.4.1 Experimental Methodology - Summary

In terms of running the experiments to test the success of the semantic aggregation by cross-ratio uninorm, the situation
was a bit different than the one faced when comparisons were made against supervised machine learning methods that
required previous training. In the case of the experiments results presented in this chapter, comparisons are established
between the proposed uninorm method, and other techniques that do not require training, namely arithmetic mean and
word-frequency dictionary. The process utilised was to run the specific methods using their own idiosyncratic approaches:
(a) calculating the arithmetic mean of the outputs of the NB and ME methods, (b) searching in the word-frequency
dictionary for the semantic orientation polarity of previous occurrences of specific sentiment-conveying words, and (c)
obtaining the polarity orientation by using the proposed HSC method under different scenarios (addressing the problem
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through the word-frequency dictionary, applying the cross-ratio uninorm strategy, or enabling the addition of new terms
to the sentiment lexicon).

15.4.2 Datasets utilised

We make use of the Movie Review Dataset provided by Pang and Lee and available at http://www.cs.cornell.edu/
people/pabo/movie-review-data/ . In addition, we utilise a dataset containing Twitter data, Sentiment140, which is
available at http://help.sentiment140.com/for-students.

15.4.3 Results for the application of Cross-ratio Uninorm Aggregation to test datasets

In order to assess the validity of the alternative path based on the cross-ratio uninorm proposed here, experiments were
carried out to compare:

1. The cross-ratio uninorm performance as an aggregation tool of the classification outputs when applying the NB
and ME algorithms against the performance achieved using the arithmetic mean aggregation instead, and the clas-
sification performance using exclusively the services of a word-frequency dictionary (Subsection 15.4.3.1);

2. The performance of the cross-ratio uninorm implementation in the HSC lexicon-based method against the perfor-
mances of the HSC lexicon-based method with the off-line addition of missing-words to the lexicon and with the
Word-frequency dictionary, respectively, when the lexicon cannot respond (Subsection 15.4.3.2). The performance
of the Cross-ratio uninorm method when embedded in our hybrid method (HSC) as a complement

15.4.3.1 Cross-ratio uninorm against two other possible techniques

Tables 15.1 and 15.2 show comparative results of the cross-ratio uninorm aggregation of the classification outputs when
applying the NB and ME algorithms against two other alternative methods: (a) the arithmetic mean, and (b) the classifica-
tion outputs obtained by using the Word-frequency dictionary described in Chapter 14. Experiments have been performed
for both the Movie DB dataset (10,662 occurrences, the complete set) and the Twitter dataset (15,000 occurrences).

Alternative Method Accuracy Precision Recall F1-score
Arithmetic Mean 0.46 0.52 0.47 0.49
Word-frequency Dictionary 0.58 0.66 0.57 0.61
Cross-ratio Uninorm (NB & ME) 0.66 0.67 0.64 0.66

Table 15.1. Method Vs. Indicators (Movie DB: 10,662 sentences)

Alternative Method Accuracy Precision Recall F1-score
Arithmetic Mean 0.50 0.57 0.43 0.49
Word-frequency Dictionary 0.56 0.69 0.56 0.62
Cross-ratio Uninorm (NB & ME) 0.75 0.78 0.82 0.80

Table 15.2. Method Vs. Indicators (Twitter dataset: 15,000 sentences)

In this comparison, the cross-ratio uninorm (NB & ME) comes ahead of the other two algorithms in all four per-
formance indicators. Particularly, the recall indicator (how many of the true positives sentences were found) displayed
by the cross-ratio uninorm is the highest of all by a significant margin. In the next section, when the sentiment lexicon
cannot respond, the cross-ratio uninorm (NB & ME) technique enhancement to our HSC method will be compared against
the HSC lexicon-based approach with the off-line addition of missing-words to the lexicon and with the Word-frequency
dictionary, respectively.

15.4.3.2 Cross-ratio uninorm as an enhancer of our hybrid method

In the hybrid model we presented in Chapter 14 we did show that during the first pass of the proposed hybrid algorithm,
there were sentences that could not be classified as the sentiment lexicon did not count with the required terms/words in
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order to produce a classification outcome. Two approaches to circumvent this problem were proposed: (a) the use of a
word-frequency dictionary that served its purpose but it has a negative aspect in that its creation involves an algorithm of
complexity O(n2), where n is the numbers of words in the dataset being utilised; or (b) incorporate new terms into the
dictionary, which could not be done interactively and required an expert human intervention.

The next step in our experimental phase is to study and analyse the performance of the cross-ratio uninorm (NB &
ME) when embedded in our HSC method. To force the application of the cross-ratio uninorm, terms were randomly
removed from the sentiment lexicon leading to a number of sentences that could not be classified using the HSC method
(1,337 sentences in total). Hence, the services of: (1) the Word-frequency Dictionary; (2) the Cross-ratio Uninorm; and
(3) off-line addition of missing terms to the sentiment lexicon, were demanded for those 1,337 sentences. The obtained
results are presented in Table 15.3 (for Movie Dataset) and Table 15.4 (for Twitter Dataset).

Method Accuracy Precision Recall F1-score
(1) Hybrid using Word Dictionary 0.66 0.64 0.77 0.69
(2) Hybrid using Cross-ratio Uninorm 0.74 0.71 0.82 0.76
(3) Hybrid with word-addition enabled 0.76 0.73 0.83 0.77

Table 15.3. All Hybrid methods derived from HSC [13] - Movie Dataset

We see that the cross-ratio uninorm approach performs second-best in the group, achieving results that are very close
to those attained by HSC with word-addition enabled (only 2% below in Accuracy and Precision). In third place we
get the Word-frequency Dictionary that is 8% and 7% worse than the cross-ratio uninorm for Accuracy and Precision,
respectively.

We repeated the same experiment using this time the Twitter Dataset, obtaining the results presented in Table 15.4,
which basically confirms the previous results and analysis. We can say with confidence that the alternative option when
the lexicon cannot offer a solution based on the Cross-ratio Uninorm constitutes an excellent alternative at a very low cost,
both computationally and people-wise.

Method Accuracy Precision Recall F1-score
(1) Hybrid using Word Dictionary 0.77 0.74 0.84 0.79
(2) Hybrid using Cross-ratio Uninorm 0.86 0.81 0.93 0.87
(3) Hybrid with word-addition enabled 0.88 0.84 0.94 0.89

Table 15.4. All Hybrid methods derived from HSC [13] - Twitter Dataset

15.5 Chapter Summary

By using the cross-ration uninorm for aggregating the outcomes of NB and ME algorithms when the sentiment lexi-
con cannot assist in producing a classification, we see a slight improvements in precision when compared to the results
achieved by recurring to the word-frequency dictionary. The magnitude of this precision betterment is of approximately
0.0395 (3.95%) for the movie database full dataset and of 0.0055 (0.55%) for the complete twitter dataset. Further con-
clusions and future research regarding the sentiment aggregation by uninorm introduced in this chapter will be provided
in Chapter 18.

Summarising, in this chapter we have shared a proposed enhancement to our hybrid model addressing the SA problem
which is based on aggregation by Uninorm. In the next chapter (Chapter 16) we will discuss another model that could
improve our hybrid method, but this time the technique is based on aggregation by Consensus.
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Chapter 16

Sentiment Aggregation by Consensus

“Reason cannot defeat emotion, an emotion
can only be displaced or overcome by a
stronger emotion.”.

Baruch Spinoza [1632-1677]

A significant part of the content of this chapter was used in articles published by the author. See references [10, 11, 12,
13, 14, 15, 16, 17, 18]. In this section we will look at a proposed extension to our original model discussed in Chapter 14,
which is based on aggregation by consensus. The experimental results associated to this aforementioned approach will be
presented, too.

16.1 Consensus in SA

In group decision-making there are many situations where the opinion of the majority of participants is critical. The
scenarios could be multiple, like a number of doctors finding commonality on the diagnose of an illness or parliament
members looking for consensus on an specific law being passed. In this Chapter we present a method that utilises Induced
Ordered Weighted Averaging (IOWA) operators to aggregate a majority opinion from a number of Sentiment Analysis
(SA) classification systems, where the latter occupy the role usually taken by human decision-makers as typically seen
in group decision situations. In this case, the numerical outputs of different SA classification methods are used as input
to a specific IOWA operator that is semantically close to the fuzzy linguistic quantifier ‘most of’. The object of the
aggregation will be the intensity of the previously determined sentence polarity in such a way that the results represents
what the majority stand for. During the experimental phase, the use of the IOWA operator coupled with the linguistic
quantifier ‘most of’ (IOWAmost) proved to yield superior results than those achieved when utilising other techniques
commonly applied when some sort of averaging is needed, such as arithmetic mean or median techniques.

16.2 Discussion

Group decision making is a task where a number of agents get involved in a decision process to generate a value that
represents their individual decisions in the group process [97]. In the case of the Sentiment Analysis (SA) problem
research effort presented in this Chapter, the agents would be any number n of SA classification methods, where n ≥ 2.
Experiments have been conducted using three methods: (a) Naı̈ve Bayes [165], (b) Maximum Entropy [27], and our (c)
Hybrid Approach to SA problem reported in Chapter 14.

Additional insights are provided on how to continue improving the results obtained in our Hybrid Approach to the
SA Problem mentioned before. The central idea in this Chapter is that several classification methods could be utilised in
such a way that each of them performs the classification task following their intrinsic characteristics and design principles.
Then, a proper model should be put in place to account in a sensible manner for the opinions of all of them. We would
like to obtain a classification value that articulates all of them, that summarises the collective opinion of these methods,
with the caveat that we would like the final classification value to reflect the opinion of the majority. In particular, we
would like to compute what the opinion of the majority is with respect to the intensity of the polarity of a given sentence.
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The concept of aggregating diverse methods recommendations is not technique dependent. Nevertheless, a proper
aggregation method must be chosen. Arithmetic mean and median are central tendency values/techniques that have been
used in the past [173]. However, we are in search of an aggregation mechanism that gives more importance to the
classification output of some methods depending on the characteristics of the values they produce. As a consequence, we
propose the use of an IOWA operator [54, 258] to aggregate the outcome of several opinion classification methods using an
induced guiding principle. We will discuss further Yager’s Ordered Weighted Averaging (OWA) operator [256] and will
present our rationale for having selected one of them as the aggregation mechanism of choice. In order to test our ideas,
we will utilise the classification outcomes of Naı̈ve Bayes, Maximum Entropy and the Hybrid Advanced Classification
method presented in Chapter 14 as the individual polarity classification values to derive a consensus IOWA majority based
polarity classification for the SA problem.

16.3 Consensus aggregation - Related work

A number of authors have explored the utilisation of members of the family of OWA operators in different situations
and domains, with Pasi and Yager providing comprehensive information about OWA operators [168]. Boroushaki and
Malczewski [33] present a very interesting example of applying a fuzzy majority approach for Geographical Information
Systems (GIS) based on multi-criteria group decision-making. Bordogna and Sterlacchini [31] address a multi criteria
group decision making process based on the soft fusion of coherent evaluations of spatial alternatives (GIS-Spatial Anal-
ysis). In the work of Wei and Yuan [227], we can learn about the application to coal mine safety of linguistic aggregation
operators in order to achieve effective decision-making. Mata et al. [144] presents the utilisation of a Type-1 OWA opera-
tor [271] as a vehicle to obtain aggregation in the presence of unbalanced fuzzy linguistic information in decision making
problems, while Chiclana and Zhou [52] demonstrate that type-2 fuzzy sets can be effectively defuzzified using a Type-1
OWA alpha-level aggregation approach [272].

As we know, in multiple attribute decision-making situations, optimistic and pessimistic extremes are represented
by maximum and minimum. Wei et al. [228] propose a method based on Induced OWA operators in multiple attribute
decision-making, in order to capture human attitudes that fall between the two extremes points of optimism and pessimism.
In [180], Qian and Xu extend the properties of IOWA operators by incorporating linguistic preference information in ap-
plications in group decision making. Mata et al. [143] propose a Type-1 OWA methodology devised to achieve consensus
in multi-granular linguistic contexts. The work of Peláez et al. [169] on OWA operators in decision-making aimed to ob-
taining the opinion of the majority is very influential. More recently, Yager and Alajlan [253] addressed again the problem
of obtaining a consensus subjective probability distribution from the individual opinions of a group of agents about the
subjective probability distribution. In [254], Yager and Alajlan revise the parameterization aspects of OWA aggregation
operators. The authors stress the fact that the aforementioned parameterization is achieved by the characterizing OWA
weights. Yager and Alajlan expand on a number of different paths to provide these characterizing OWA weights. As
typically the importance of the values being aggregated is application-dependent and the arguments have different im-
portances, it becomes key “appropriately combining the individual argument weights with the characterizing weights of
the operator to obtain operational weights to be used in the actual aggregation” [254]. The authors present “the use of a
vector containing the prescribed weights and the use of a function called the weight generating function from which the
characterizing can be extracted” [254]. Finally, it is worth mentioning Perkins’s work [173] on the use of median, voting
and arithmetic mean when aggregating multiple classification results as relevant to the present work.

16.4 Fuzzy Majority in Collective Decision Making modelled with an IOWA
Operator

It has been already established by Yager [250, 258] that the OWA operator provides a parameterized family of mean type
aggregation operators. The parameterized aspect is directly associated to the weighting vector. In this section we will take
a closer look at OWA operators, fuzzy majority and other related decision making aspects.
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16.4.1 The Linguistic Quantifier in Fuzzy Logic

The same way as other fuzzy logic concepts relate to classical logic, the linguistic quantifier generalises the idea of
quantification of classical logic. In classical logic there exist two types of quantifiers that can be used in propositions:
the universal quantifier (for all) and the existential quantifier (there exists). According to Pasi and Yager [168], by using
linguistic quantifiers we are capable of referencing a variable number of elements of the domain of discourse. This
referencing can be done in a crisp way or in a vague (fuzzy) manner. See Table 16.1 for more details. Pasi and Yager

Referencing type Examples
Crisp at least k of the elements, half of the ele-

ments, all of the elements
Vague (fuzzy) most of the elements, some of the ele-

ments, approximately k of the elements

Table 16.1. Crisp and fuzzy referencing to elements of the domain of discourse

[168] differentiate between two types of fuzzy quantified propositions as presented in Table 16.2. According to Zadeh

Type of fuzzy
quantified propo-
sition

Components Statement Examples

Q X are Y Q = Linguistic
quantifier, Y = a
fuzzy predicate,
X= set of elements

Q elements of set
X satisfy the fuzzy
predicate Y

Most of the criteria are
satisfied by alternative Ai,
in which Q = most, X =
the set of the criteria, and
Y = satisfies alternative
Ai

Q B X are Y Q = Linguistic
quantifier, B & Y =
a fuzzy predicates,
X= set of elements

Q elements of set
X which satisfy
the fuzzy predicate
B also satisfy the
fuzzy predicate Y

Most of the important cri-
teria are satisfied by alter-
native Ai, in which B =
important

Table 16.2. Types of fuzzy quantified propositions

[260], in fuzzy logic the quantifiers have been defined as fuzzy subsets of two main types: absolute and proportional. As
discussed in [168], “absolute quantifiers, such as about 7, almost 6, etc. are defined as fuzzy subsets with membership
function µQ :<+→ [0,1], where ∀x ∈ <+; µQ(x) indicates the degree to which the amount x satisfies the concept Q. In
addition, as per [168], proportional quantifiers like most, or about 70%, are defined as fuzzy subsets of the unit interval:
µQ : [0,1]→ [0,1], where ∀x ∈ [0,1], µQ(x) indicates the degree to which the proportion x satisfies the concept Q. For
sake of simplicity from now on we will indicate µQ by Q and µQ(x) by Q(x)”.

16.4.2 Linguistic Quantifiers as soft specifications of majority-based aggregation

The focus of the discussion in this Chapter will be on monotonic non-decreasing linguistic quantifiers, like most and at
least. We will concentrate on the quantifier “most” as we are attempting to model a majority. As per Pasi and Yager
[168], our objective is use linguistic quantifiers “in guiding an aggregation process aimed at computing a value which
synthesizes the majority of values to be aggregated”. The aimed value is known as a ‘majority opinion’. Notice that in
multi-agent decision making the synthesis or aggregation of a majority opinion is a key topic. As we will discuss later on
in this chapter, OWA operators can be built on top of the concept of the fuzzy definition of a linguistic quantifier. In [168],
the authors discuss extensively whether the result of aggregating a collection of values with a quantifier that corresponds
to the concept of majority, will be representative of the majority of values. The semantics behind the aggregation being
performed is the key to reflecting the concept of a majority. As such, the two alternatives in terms of OWA semantics
presented in [168] are: (1) OWA operators as an aggregation guided by ‘majority’ linguistic quantifiers, and (2) IOWA
operators as drivers of a majority opinion.
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1. Case 1 - The semantic of OWA operators is an aggregation guided by ‘majority’ linguistic quantifiers [168]: The
authors see the OWA operator as an aggregation operator taking a collection of argument values and returning a
value. As we know, the weights of the OWA operator will determine the behaviour of the aggregation operator.

• One possible semantics is the one that presents the OWA operator as a generalisation of the idea of an
averaging or summarising operator, i.e. wi = 1/n for all i yields the simple average as all elements in the
aggregation contribute equally to the final result.

• Another semantics for the OWA operator to be considered, is the one in which the OWA operator is a gener-
alisation of the classical logic quantifiers there exists and for all.

In [168], Pasi and Yager claim that these semantics of the aggregation do not really reflect the concept of majority
in group decision making applications. Hence, the authors suggest the following different approach.

2. Case 2 - Using IOWA operators to obtain a majority opinion: this corresponds to the concept of majority as typ-
ically used in group decision making applications, where more than one agent participates, and it is closer to the
linguistic quantifier most. “We want an evaluation that correspond to a majority of the experts holding a similar
opinion, where by majority we intend most” [168]. In fact we require an operator that calculates an average-like
aggregation of “a majority of values that are similar”.

Pasi and Yager [168] propose an aggregation that according to them does have a majority semantics. That proposal
is based on the utilisation of OWA operators “with an inducing ordering variable which is based on a proximity
metric over the elements to be aggregated.” [168]. The authors focus on a method for calculating the weights used
in the OWA operator that would allow them to obtain the weights from a functional form Q : [0,1]→ [0,1] such
that Q(0) = 0, Q(1) = 1, and Q(x) ≥ Q(y) for x > y corresponding to a fuzzy set representation of a proportional
monotone qualifier. “For a given value x ∈ [0,1], the Q(x) is the degree to which x satisfies the fuzzy concept being
represented by the quantifier” [168]. Based on function Q, the OWA vector is determined in the way described
below [168]:

wi = Q(i/n)−Q((i−1)/n) (16.1)

Hence, wi represents the increase of the satisfaction in getting i with respect to (i−1) criteria satisfied. The authors
claim that, for example, if they were going to define the so-called weighting vector of the OWA operator that is
associated to the linguistic quantifier most, a possible membership function of the most quantifier would be:

µmost(x) =


1 if x ≥ 0.9

2x−0.8 if 0.4 < x < 0.9

0 if x ≤ 0.4

(16.2)

The main idea being pursued is that “most similar values must have close positions in the induced ordering in

Fig. 16.1. A possible definition of the linguistic quantifier most, as presented in [168], page 395

order to appropriately be aggregated” [168]. We interpret this as similar values should be closer to each other
in the support vector and the final output should reflect in a closer manner the opinion of the majority. “To this
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aim our intent is to take the most similar values in the quantity specified by the quantifier and apply to them an
averaging operator.” [168]. What is needed is the ability to calculate the similarities between the opinion values
being considered. “The values of the inducing variable of the IOWA operator are obtained by means of a function
of the similarities between pairs of the opinion values.” [168]. Such a function is defined using a support function
introduced by Yager in [257]. We reproduce below the calculation presented by Yager, in order to obtain the afore-
mentioned support function.

A support function, S up [257], is a binary function that calculates a value S up(a,b) which expresses the sup-
port from b for a, where α is a desired tolerance. “The more similar, the more close two values are, the more they
support each other”. The higher the tolerance is, the less we impose that the two values have to be closer to each
other as absolute values.

S up(ai,a j) =

1 if |ai−a j| < α

0 otherwise
(16.3)

If we were to aggregate a set of values and we wanted to order them in increasing order of support, “we compute
for each value the sum of its support values with respect to all others values to be aggregated” [168]. Then, for
each decision-maker opinion “we sum all the supports it has in order to obtain its overall support”. These overall
supports for a decision-maker’s opinion are utilised as “the values of the order inducing variable”. Below an exam-
ple created by Yager to clarify the concept of a support vector is provided.

Let us assume that the threshold parameter is α = 0.4 and that we have the following values to aggregate:

a1 = 0.9, a2 = 0.7, a3 = 0.6, a4 = 0.1, a5 = 0

Using equation 16.3 above, we obtain the following support values:

S up(a1,a2) = 1 S up(a1,a3) = 1 S up(a1,a4) = 0 S up(a1,a5) = 0
S up(a2,a1) = 1 S up(a2,a3) = 1 S up(a2,a4) = 0 S up(a2,a5) = 0
S up(a3,a1) = 1 S up(a3,a2) = 1 S up(a3,a4) = 0 S up(a3,a5) = 0
S up(a4,a1) = 0 S up(a4,a2) = 0 S up(a4,a3) = 0 S up(a4,a5) = 1
S up(a5,a1) = 0 S up(a5,a2) = 0 S up(a5,a3) = 0 S up(a5,a4) = 1

The overall support for each ai is computed by adding the support values for ai. The support for each ai is de-
noted as si:

s1 = 2, s2 = 2, s3 = 2, s4 = 1, s5 = 1

Pasi and Yager [168] claim that it becomes evident that there are two clusters of similar values in si. Hence, the
support function (equation 16.3) induces “a clustering of the arguments which can be controlled by the choice of
the threshold parameter α in the aforementioned function S up(ai,a j)”. In the above example we can see that there
are two clusters, 2’s and 1’s, with some ties of the support values. Yager claims that in order to address the ties we
could impose a ‘stricter’ condition by setting α = 0.3. Then, the new support vector would be:

s1 = 1, s2 = 2, s3 = 1, s4 = 1, s5 = 1

This result enables us to “order the elements to be aggregated in the following increasing order of similarity” [168]:

Induced S imilarity Order, I = [0 0.1 0.6 0.9 0.7]

Pasi and Yager conclude that the use of an adequate support function enables us to induce an ordering based
on proximity. This concept is key in understanding IOWA operators, as now it would be possible to generate a
majority-based aggregation of the previous values ai. As per Yager, “The selected IOWA operator should then
correspond to the linguistic quantifier most. Let us recall the definition of the linguistic quantifier most presented
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in equation ( 16.2)”. This linguistic quantifier when used in equation ( 16.1) would derive the weighting vector
W = [0 0 0.4 0.4 0.2]. Aggregating the vector I we obtain: IW = 0.74. However, the fact that the fifth element
of the vector W is smaller than the fourth element, and despite the fact that this condition is coherent with “the
interpretation of the weights as increase in satisfaction in having i + 1 with respect to having i criteria satisfied”,
the expectation is that “in an aggregation with semantics of majority what would be expected is that the weights
of the weighting vector are non-decreasing.”. In fact, as in the induced order of the arguments the top value is the
‘most supported’ one from all the other values (the most representative) “it should be more emphasized than the
others, or at least not less emphasized.”. Pasi and Yager argue that a new strategy is required for the construction of
the weighting vector that would contribute to generate a value more representative of a majority of the aggregated
elements. The objective of this new strategy is to stress the most supported values in the resulting aggregation,
i.e. the values shown on the right hand side of the vector of values participating in the aggregation do have more
influence in the aggregation. As such, Pasi and Yager propose the following process for the construction of a
weighting vector with non-decreasing weights.
Let us assume that the overall support (similarity) values computed for the n values to be aggregated s1, s2, . . . , sn.
In order to calculate the non-decreasing weights of the weighting vector, the authors define the values t1, t2, . . . , tn
based on a modification of the s1, s2, . . . , sn values:

ti = si + 1.

In [168] the authors claim that by doing this manipulation, “the similarity of the value ai with itself (similarity
value equal to 1) is also included in the definition of the overall support for ai. The ti values are in increasing order,
that is t1 is the smallest value among the ti. On the basis of the t j values, the weights of the weighting vector are
computed as follows”:

wi =
Q(ti/n)∑

i=1,...,n Q(ti/n)
(16.4)

“The value Q(ti/n) denotes the degree to which a given member of the considered set of values represents the
majority”. As such, equation 16.4 is the weights semantic we will apply to our aggregation problem.

Recall that we are looking for options to enhance our Hybrid Approach to the SA problem and that those improvements
could come in the form of improvements in Accuracy, Precision and Recall. Others might come in a different presentation,
looking more toward specific applications of our method either in isolation or in combinations with other techniques.

In this Chapter we address one of those specific applications, which is the scenario in which one might be interested in
finding an aggregated value representing the opinion of the majority. In such a situation a proper aggregation mechanism
must be found to integrate the opinion of several agents participating in a collective decision-making process.

Our Research Objective (Consensus in Sentiment Analysis driven by support-based majority): Replace a number of
n human agents in a collective decision-making process with the output of a number n of sentiment/opinion classification
methods and aggregate these outputs with a method that semantically represents the concept of majority opinion (n ≥ 2).

Fig 16.2 depicts graphically the aggregation approach we propose to satisfy Our Research Objective. In the next
section we will continue addressing the proposed IOWA aggregation operator that will address the consensus of opinion
problem in sentiment analysis, centred around obtaining the intensity of the sentence’s polarity.

16.5 The Proposed IOWA Approach to Sentiment Analysis (HACACO)

In this section we will describe how IOWA operators could be used to implement a fuzzy majority approach in the presence
of recommendations (outputs) supplied by a number of classification systems. Full details about the science behind these
equations and associated approach can be found in Section 13.1 and Section 13.1.1 of this document. We have called this
method Hybrid Advanced Classification Method by Aggregation by Consensus (HACACO).
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16.5.1 The Concept of Fuzzy Majority implemented using IOWA Operators

Constructing a majority opinion could be explained as “the collective evaluation of a majority of the agents involved in
the decision problem” [168]. The following authors provide ample and detailed information about the OWA operators
and its applications: Pérez et al. [170] and León et al. [127]; Yager [256]; Chiclana et al. [53] and Pasi & Yager [168].
Of particular interest are the three latter ones. In addition, Bordogna & Sterlacchini [31] and Boroushaki & Malczewski
[33] provide very good examples of real applications of OWA operators.

16.5.2 Fuzzy majority in determining intensity of the polarity of predetermined subjectivity

Let us for a moment think of the problem of determining subjectivity polarity for a given sentence S k using the recom-
mendations of several systems. In a way, each method to be used and applied to the aforementioned sentence S k, can
be seen as a ‘person’ giving her opinion on whether the sentence S k is positive or negative. In the end, we would like
to collect all provided answers and come up with a sort of weighted mean of the inputs received. Basically, we would
like to aggregate the polarity value of sentence S k measured by using different classification methods. Hence, the final
value will be the ‘induced aggregation of the majority’ of the subjectivity polarity of sentence S k when one takes into
consideration all the different contributions of all the participating methods. The different applied methods will issue their
individual judgement on whether a sentence is positive or negative. We will call these methods {M1, M2 . . .Mn}. These
techniques will arrive to their respective conclusions using their own appraisal strategies. Each method will have their
own peculiarities. For instance, the Naı̈ve Bayes method will classify a bag-of-words features, the fuzzy method will
look at the level of belonging of a given particle to a given category (fuzzy set), the Maximum Entropy technique will
apply its own philosophy, and so on. In fact, we would like to think that in addition to obtaining the aggregation already
targeted, we could in the future incorporate the level of trust that we have on each method, ensuring that well-established
proven or accurate methods carry more weight than the rest as we would do when considering the opinions of a number
of people, depending on how much we trust each of them-. Figure 16.2 shows a graphical representation of the way the
IOWA operator with the semantic ‘most’ is introduced, in order to achieve our pre-establish objective. The hybrid method

Fig. 16.2. IOWAmost Operator aggregating classifier methods outputs

described in Chapter 14, can be improved with the incorporation of an IOWA operator with the semantic of the linguistic
quantifier most, namely, IOWAmost, to handle the numerical output of three classification methods. In the example we
are building, those methods are Naı̈ve Bayes, Maximum Entropy and our Hybrid Method (HSC/HAC). Our IOWAmost

operator is capable of taking as input any number of outputs belonging to a variety of methods, with no theoretical limit
to the number of methods’ outputs that could be used. However, in order to make sense of the number n of methods to be
aggregated the condition n ≥ 2 is enforced.
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16.5.3 Experiments results obtained applying IOWAmost aggregation

In order to do a proper comparison, we will evaluate how the IOWAmost operator performs when compared to both
Arithmetic mean and Median [173]. However, we will firstly describe briefly the experimental methodology and the
datasets utilised during the experimental phase.

16.5.4 Experimental Methodology - Summary

It is important to notice that the datasets for the experiments described in this section were not annotated at the beginning
of the process, hence we had to introduce two additional tasks:

1. Assign intensity labels in G = {Poor;S light; Moderate;Very; Most} to the randomly selected 500 sentences.

2. Devise a criteria to discern the concept of what consensus would look like.

Both tasks above were executed by three individuals: the main researcher (the PhD candidate), the local thesis advisor
(PhD) and a person knowledgeable in the English language (an English-major graduate). The latter did play the role of
the expert (Linguist) when conflict resolution was required. For item number one above, the three individuals assigned a
label to each of the 500 sentences according to their own criteria. The English-major resolved conflicts as they appeared,
and a final decision on the assigned intensity polarity label was made. For item number two, the approach followed was
to attentively observe how the combined classification scores were fused together, noticing whether the tested operators
were capable to compensate for extreme values, close values and normally distributed occurrences. The expected effect
of the IOWA Operator is precisely to compensate for the existence of outliers and to attempt to produce a number that
reflects the semantic of the quantifier being used, in this case, the linguistic quantifier most that is driving the aggregation
towards the opinion of the majority. As such, when the resulting aggregation was analysed, if the resulting number looked
like one that had been obtained by smart aggregation/compensation, the score was considered to represent a successful
case of consensus aggregation.

16.5.5 Datasets used

As mentioned in previous chapters, Pang and Lee [164] have published datasets that were utilised in SA experiments.
As such, it seems adequate to use the Movie Review Dataset provided by Pang and Lee (available at: http://www.

cs.cornell.edu/people/pabo/movie-review-data/). In order to use the output of all classifiers as an input to the
IOWAmost process all participating scores have been converted to the interval [0,1] ∈ R, where S k corresponds to any
sentence in the test dataset and mi = {m1,m2, . . . ,mn} represents the different classification methods i being aggregated
(n ≥ 2), then:

IOWAS k
most(m1,m2, . . . ,mn) = ΘS k (16.5)

Once the aggregation with the semantic representing the opinion of the majority has been computed, then we must calcu-
late to which intensity level that value Θ corresponds. For that, we use the classification method presented in Chapter 14,
Sub-section 14.1.3, that estimates the intensity of the polarity of sentences, which is partially reproduced below. Recall
that we used trapezoidal membership functions represented by the following 4-tuple (a,b,c,d):

µÃ(x) =



0 if x ≤ a;
x−a
b−a if a ≤ x ≤ b;

1 if b ≤ x ≤ c;
d− x
d− c if c ≤ x ≤ d;

0 if d ≤ x.

(16.6)

Specifically, the following granules on the perception of the intensity of the polarity, either positivity or negativity of a
given sentence S are suggested: G = {Poor; S light; Moderate; Very; Most}, with the following 4-tuples (MF means
membership function):

• MF (Poor): (0, 0, 0.050, 0.150)
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• MF (Slight): (0.050, 0.150, 0.250, 0.350)

• MF (Moderate): (0.250, 0.350, 0.650, 0.750)

• MF (Very): (0.650, 0.750, 0.850, 0.950)

• MF (Most): (0.850, 0.950, 1,1)

The aggregated value Θ previously computed in equation 16.5 will take on the value x in equation 16.6 and in consequence
a proper linguistic label belonging in G will be generated. This value represents the polarity intensity (how positive or
how negative) of a given sentence S k (µÃ(ΘS k ) ∈G).

16.5.6 Comparison criteria

The comparison we are attempting to make might be challenging to achieve as the intensity of the polarity of a sentence
would be vague in nature, as opposed to crisp. We are trying to see which method is semantically closer to the opinion
of the majority among the participating methods. The classification of a sentences as belonging to one of the granules
we defined in section 14.1.3.1, G = {Poor; S light; Moderate; Very; Most}, is rather a subjective exercise. The datasets
used count each (positive occurrences and negative occurrences) with 5,331 sentences. We have annotated 500 sentences,
approximately 10%, assigning each of them a value vk ∈ G, that has been estimated by looking at the classification
outcomes of the three classifiers we are utilising as inputs and estimating a linguistic label in G that is representative of
the opinion of the majority.

16.5.7 Non-OWA Aggregation - The outputs of the three classification methods combined
without the application of the IOWA operator

Before we applied the IOWAmost operator, we tested the idea of combining directly the results of the three chosen meth-
ods. The outcomes, which are summarised below, are not as good as those obtained by using the IOWA operator, as it
will become evident later on. This fact, basically, shows that the IOWA operator does a much better job at aggregating the
individual outcomes of the three aforementioned techniques, by giving more weight to the leaning opinion of the majority.
In essence, by weighing properly the advises of the three methods -NB, ME and our Hybrid Advanced Approach- we do
obtain a more realistic aggregation effect that represents what the majority stands for.

The first method we used -that does not utilise the IOWA operator- is Median. Below in Table 16.3 shows the associated
Performance Indexes for Median. The second method we used -that does not utilise the IOWA operator- is Arithmetic

Represents opinion of the majority 337
Does not represent opinion of the majority 163
% of success 67.40

Table 16.3. Method I: Median

mean. With this technique we simply obtain an arithmetic average of the outputs of the involved systems. Table 16.4
shows the associated Performance Indexes for Arithmetic Mean.

Represents opinion of the majority 388
Does not represent opinion of the majority 112
% of success 77.60

Table 16.4. Method II: Arithmetic Mean
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16.5.8 IOWA Aggregation - Combination of outputs of the three classification methods using
operator IOWAmost

These results that we have obtained, simply re-enforce the applicability of doing aggregation using the IOWA operator
with a semantic associated to a specific linguistic quantifier (in this case, most). The results of using IOWAmost are shown
in Table 16.5 and Table 16.6, whilst Table 16.7 presents a comparison of results.

Represents opinion of the majority 500
Does not represent opinion of the majority 0
% of success 100.00

Table 16.5. IOWAmost operator - Tolerance = 0.30

Represents opinion of the majority 500
Does not represent opinion of the majority 0
% of success 100.00

Table 16.6. IOWAmost operator - Tolerance = 0.50

Notice that the aggregation results obtained using the IOWA operator are much more compelling than the rest. Especially,

Classification
Method

Median Arithmetic
Mean

IOWAtolerance=0.3
most IOWAtolerance=0.5

most

% of success 67.40% 77.60% 100.00% 100.00%

Table 16.7. The three aggregating methods - Performance Indexes Compared

because IOWAmost always represents the targeted majority, as a consequence is the best option when compared to the other
two methods tested. The main difference between the results obtained when using different tolerance values (0.3 and 0.5)
when IOWAmost is applied, is not in whether the outcome will distance itself from representing the opinion of the majority,
but rather in which linguistic label in G a specific sentence will be assigned to. Depending on the majority value calculated
a sentence classified as ‘Moderate’ with a tolerance of 0.3 could now be labelled as ‘Very’ in terms of intensity, when
the tolerance value changes to 0.5. In reality, the lower the tolerance, the more demanding the IOWA operator is on how
closely the values in the aggregation support each other.

16.5.9 Examples of applying the IOWAmost operator to specific members of the dataset

In this section we will present examples of the application of the IOWAmost operator to several sentences. The examples
include the output of three different classification methods, m1,m2,m3, where their outputs belong in the interval [0,1].

Example 16. (m1 m2 m3) = (0.959112 0.500030 1.00000).
Arithmetic mean = 0.819716
Median = 0.959112
IOWA (Tolerance = 0.50) = 0.819717
With a tolerance of 0.5, which does not enforce strict support among the values to be aggregated, all the elements con-
tribute to the aggregation, generating a value that is extremely close to the arithmetic mean.

Example 17. (m1 m2 m3) = (0.564631 0.508914 1.000000).
Arithmetic mean = 0.691181
Median = 0.564631
IOWA (Tolerance = 0.50) = 0.536773
With a tolerance of 0.3, which does enforce a stricter support among the values to be aggregated (in this case the first two
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values), the value that represents the sentiment of the majority is closer to the elements with higher support: 0.564631
and 0.508914; as a consequence the generated value is not that close to the arithmetic mean, neither the mean, although
it is closer to the latter.

Example 18. (m1 m2 m3) = (0.989550 0.682592 0.600000).
Arithmetic mean = 0.757380
Median = 0.682592
IOWA (Tolerance = 0.30) = 0.641296
With a tolerance of 0.3, again the IOWA aggregation with the semantic most, generates an aggregation between 0.682592
and 0.600000, which are supporting each other, representing again the opinion of the majority.

16.5.10 The role of the threshold parameter in the calculation of the support vector in IOWA

We have mentioned before that the IOWA operator used to generate the aggregation is formulated in such a way that a
tolerance input is provided during the aggregation process. Let us look at the results obtained when we map the tolerance
parameter against the polarity intensity classification of the test dataset. The tolerance value (α) is used in the calculation

Fig. 16.3. Tolerance vs. Polarity Values

of the support vector mentioned above in equation (16.3). The farther apart ai and a j, the higher the value of |ai - a j|. The
higher the tolerance value α becomes, the more likely the support function S upα(ai,a j) will take a value of 1, which means
that both values ai and a j will be part of the aggregation being performed. This translates into a situation in which: if a
value ai is too far apart from the rest of values a j ( j , i) so that its corresponding distances to the them exceed the defined
tolerance for the support vector, |ai - a j| > α, then that value contribution to the aggregation process will be very low as
it will have assigned a value of ti = 1. A tolerance value α = 1 means that all values considered in the aggregation will
contribute equally to the collective aggregated value regardless of how close they are to each other, and the IOWA1

most will
coincide with the arithmetic mean. On the other hand, a tolerance value of, let us say, 0.1 will imply that the considered
values for aggregation will have to be very close to each other to have a high support and higher contribution to the
collective aggregated value. In our experiment, Fig. 16.3 shows that the highest the value of the tolerance parameter
is, the more the intensity polarities are distributed towards the linguistic labels ‘very’ and ‘most’, which are located
towards the very right-end of the unit interval [0,1]. Notice as well that the tipping point in the x-axis is the value 0.5
(in Fig. 16.3, HAC stands for Hybrid Advanced Classification, whilst HACA means Hybrid Advanced Classification with
IOWA Aggregation, that are methods we introduced in Chapter 13 and developed in Chapters 15 and 16).
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16.6 Chapter Summary

The method we have introduced in this Chapter enables us to produce the opinion of the majority by using an IOWA ope-
rator reflecting the semantics of the fuzzy quantifier most. The experimental results show that the proposed aggregation by
consensus method is a much better option than two other approaches (Arithmetic Mean and Median) when the objective
is to obtain an opinion that represents the majority.

In this chapter we have presented an enhancement to our proposed hybrid method that is based on aggregation by
Consensus. In the next chapter (Chapter 17) we will present some other research options that were explored but that did
not come to fruition.
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Chapter 17

Other Paths Explored

“It’s hard to build models of inflation that
don’t lead to a multiverse. It’s not
impossible, so I think there’s still certainly
research that needs to be done. But most
models of inflation do lead to a multiverse,
and evidence for inflation will be pushing us
in the direction of taking [the idea of a]
multiverse seriously.”

Alan Guth, Theoretical Physicist and
Cosmologist. Developed the idea of cosmic

inflation in 1979.

17.1 Other research paths explored but not pursued

In our research effort, there were a number of alternatives that were explored and provided invaluable learnings, even if
at the end, they did not become part of the proposed research solution. A number of options were explored -some of
them in detail- and then abandoned either because the outcomes produced were not successful or because we did not think
convenient at the time to keep exploring those paths.

17.1.1 Polarity and Polarity Intensity Classification in one step

Our proposed solution HSC/HAC works in two steps, with Step HSC calculating the subjectivity polarity and Step HAC
supplying the polarity intensity. We considered doing it all in one step with an aggregative cross-uninorm as presented
in section 15.2, equation 15.4. Having to perform polarity and polarity intensity computations in one step may be cum-
bersome if we attempt to use methods that require as input only numbers. That was the case of our approach, as the
participating elements in the calculation were the polarity scores of the words making up a sentence. The main two
challenges were:

• The attributes Positive (PSC) and Negative Polarity (NSC) in the lexicon had to be translated from the unit interval
[0, 1] to the interval [−1, 1].

• We were not able to incorporate critical elements that are part of the HSC/HAC approach, like the fact that there
is an apparent hierarchy of importance among the opinion-conveying part of speech elements already identified
(adjectives, adverbs, verbs and nouns). We believe that when it comes to semantic orientation calculation, the
strata approach mentioned in Chapter 14, Table 14.4 is effective. A possible future effort would be to use a one-
step process as described above, but combining the use of the cross-uninorm with an algorithm that acknowledges
as well the level of importance among members of the selected Part-of-Speech class.

These topics above mentioned were covered as well in Appel et al. [16].

123



17.1. Other research paths explored but not pursued Chapter 17. Other Paths Explored

17.1.2 Incorporation of the Concept of Emotion

In Chapter 11, we discussed the concept of emotions from a psychological point of view. Specifically, in Section 11.1 we
discussed the Ortony - Clore - Collins (OCC) model. Initially, we considered using the OCC model in the formulation of
our proposed solution, but after looking at the details and doing some crude modelling inspired in the structure introduced
by OCC, we did not find any fundamental difference in the results obtained when calculating subjectivity polarity. Using
the OCC Revisited model described in section 11.2 (Fig. 11.2), we went through the effort of naming and defining types,
some properties and interrelationships of the entities in our lexicon. However, the impact produced was not significant.
Having said that, we did not go too deep into this area, and perhaps there is room for more research to be conducted in
this field, possibly as further work.

17.1.3 VSM & PMI as Lexicon Quality Enhancers

In Section 10.2 we discussed the possibility of using the VSM and the PMI approaches as options to introduce valuable
data into the Sentiment Lexicon. How could we increase the knowledge of our Sentiment Lexicon (SL) / Opinion Lexi-
con (OL)? As shown in Table 17.1, we had a number of opinion-conveying words for which we did not find a synset in
SentiWordNet. Hence, we thought about the possibility of deriving some additional data that could be included in our
Sentiment Lexicon. We proposed back then a lexicon entry as described below:

#(Word SOL PoS PositiveScore NegativeScore CalculatedObjectivityScore SemanticOrientation
MaxDist MinDist UpdateCounter)

The labels devised for the particles that were supposed to be part of our sentiment lexicon were:

1. Word: word in the lexicon (entries)

2. SOL: Semantic Orientation label (either POS or NEG)

3. PoS: Part of Speech (n=noun; v=verb; a=adjective; r=adverb; s=adjective satellite)

4. Positive Score (PSC), as taken from SentiWordNet [79]

5. Negative Score (NSC), as taken from SentiWordNet [79]

6. Calculated Objectivity Score (COBJ)

7. Calculated Semantic Orientation (CSOR)

8. Calculated Max Distance to Positive Seeds (MAXDIST)

9. Calculated Min Distance to Negative Seeds (MINDIST)

10. Update Counter (UPDC): to keep track of every time a given entry in the lexicon is updated)

Items 7, 8 and 9, ‘CSOR’, ‘MAXDIST’ and ‘MINDIST’, were obtained using the methodology discussed in section 10.2,
making full use of the VSM/PMI approaches.

As such, in terms of completion (how well populated it is) the state of the opinion lexicon is shown in Table 17.1.
Nevertheless, notice the low percentage of completion for CSORs, MAXDISTs and MINDISTs, which is between 5.0%
and 6.5%. What this means is that the Word x Word matrix described in section 10.2, which was used as part of our Vector
Space Model of Semantics strategy, did not contain many of the words that were already part of our opinion lexicon.
Having said that, the PoS, PSC, NSC and COBJ levels of completion exceed the 60% mark, which is a rather acceptable
level. As a consequence, we made the decision of continuing using those values considered as key to our lexicon, which
were PSC, NSC and PoS.

We never utilised any of the two techniques (VSM & PMI) in the final proposed solution, as described in Chapter 14. In
closing, the reasons why we opted out of creating these attributes (CSOR, MAXDIST & MINDIST) as part of the lexicon,
were:
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Positive
Lexicon

% com-
pleteness

Negative
Lexicon

% of com-
pleteness

No. of Entries 2,006 n/a 4,783 n/a
Entries w/ PoS 1,320 65.80% 2,878 60.17%
Entries w/ PSC 1,320 65.80% 2,878 60.17%
Entries w/ NSC 1,320 65.80% 2,878 60.17%
Entries w/ COBJ 1,320 65.80% 2,878 60.17%
Entries w/ CSOR 147 7.33% 243 5.08%
Entries w/ MAXDIST 249 12.41% 307 6.42%
Entries w/ MINDIST 249 12.41% 307 6.42%
Entries w/ UPDC n/a n/a n/a n/a

Table 17.1. Opinion/Sentiment Lexicon Status - Completeness of data (attributes)

• There were many terms (words) for which we could not calculate these attributes. This situation happened as many
terms were not available in the public corpus that was used to generate the PMI matrix.

• After experimentation, the impact they made and their contribution to the final results were not as influential
as initially thought. We opted instead for another alternative, like using a Word Dictionary of Frequencies of
Occurrences (Section 10.4).

Fundamentally, the idea behind using a computed maximum and a minimum distance from a given word X to one of
the two sets of paradigms for positive and negative meaning words, as described by Turney [212] and Turney & Littman
[213, 214], was to be able to know how far or near a given word X was from holding a specific subjectivity polarity.
The initial intention was being capable of finding the polarity of a word when the latter was not present in the sentiment
lexicon. As in many cases the needed word was not in the calculated PMI Matrix, we ended up opting out of this strategy.

17.2 Chapter Summary

In this chapter we have discussed a number of research options that we initiated exploring but did not pursue on imple-
menting. In the next chapter, which is included in Part V, we will share our conclusions and will discuss some possible
further work options.
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CONCLUSIONS & FURTHER WORK
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Chapter 18

Conclusions & Further Work

The Good, the Bad and the Ugly. (Il buono, il
brutto, il cattivo.)

Title of the 1966 Italian epic Spaghetti
Western film directed by Sergio Leone.

Some portions of the contents of this chapter were utilised in articles published by the author. See references [10,
11, 12, 13, 14, 15, 16, 17, 18]. The following three sections will cover individually the conclusions and further work
aspects of the three approaches firstly described in the Abstract of this document and elaborated in detail in Chapters 14
through 16:

1. The design of a Hybrid Classification Model based on: (i) the positive contribution that NLP tools, semantic
rules and a solid opinion lexicon can have in identifying sentiment polarity; and (ii) the concept of graduality
expressed through fuzzy sets. Through extensive experimental work, this method has been proved capable of
extracting sentiment from text whilst being a much better performer than established Supervised Machine Learning
techniques -namely, Naı̈ve Bayes and Maximum Entropy (ME)- when the latter are utilised respectively as the only
classification method being applied.

2. The introduction of cross-ratio uninorms to effectively fuse the classification outputs of several algorithms produc-
ing a compensatory effect, as an alternative approach to the existing two approaches to deal with those cases when
a lexicon-based SA method cannot produce a classification output (there are terms required for the analysis that are
absent from the sentiment lexicon): use the services of a Word-frequency Dictionary or add to the lexicon (off-line)
the missing words required to complete the analysis.

3. The utilisation of a specific Induced Ordered Weighted Averaging (IOWA) operator as a tool to model the opinion
of the majority (consensus) when the outputs of a number of classification methods are combined together.

Overall, the main formulated hypothesis and associated research questions discussed in Chapter 5 (Section 5.2) have been
proven and answered. Our experimental results have shown that:

1. In fact, a hybrid approach as described in our Hypothesis 1, is indeed well equipped to model subjectivity polarity
determination and polarity graduality determination in Sentiment Analysis / Opinion Mining at the sentence level.

2. Lexicon-based methods are capable of delivering similar precision to the one provided by more traditional Super-
vised Machine Learning techniques in the determination of polarity subjectivity in Sentiment Analysis.

3. Fuzzy methods are an excellent tool to model polarity intensity in Sentiment Analysis by introducing gradualness
(graduality) via fuzzy sets.

4. Semantic rules are a very good mechanism for computing semantic orientation in both, words and sentences.

The following sections will provide conclusions that are specific to the three proposed methods introduced in this PhD
Thesis in Chapters 14, 15 and 16.
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18.1 Hybrid Classification (HSC/HAC)

As mentioned in Chapter 14, Section 14.5, our proposed hybrid system (HSC/HAC) works very well at the sentence
level showing high scores for the selected performance indicators. Our expectation is that the quality of the content of
SentiWordNet, or more recent tools like SenticNet [45], should continue to improve with time. Those enhancements
will contribute to the betterment of our proposed hybrid solution as it will reflect positively in the quality of our opinion
lexicon. In theory, as time passes, both SentiWordNet and our proposed opinion lexicon should become better and more
complete. The ability to incorporate new terms into the current opinion lexicon in an expedite way is another benefit
provided by our proposed solution.

In essence, hybrid techniques can play an important role in the advancement of the Sentiment Analysis discipline
by combining together a number of elements that tend to produce better results. Similar results, in terms of combining
techniques effectively, have been reported by other researches [176].

By carefully analysing the sentences processed using the aforementioned classification methods, we are capable of
extracting the main characteristics in those sentences that posed a problem for our classification method. If we group
together the cases that our system considered challenging to classify properly, we find the following traits:

• The absence in our Sentiment Lexicon of words (terms) that convey opinion is a challenge for our system. If
for a given sentence, at least one term is available in the lexicon, our system will attempt to generate a semantic
orientation based on that existing term, but if none is available the sentence is classified as a NSO (no Semantic
Orientation available).

• The use of jargon, argot, idiom and/or lingo is hard to deal with, and sometimes it misguides the system in classi-
fying opinions properly.

• Imagery, metaphors, similes, sarcasm, humour and other language figures that rely on previous knowledge and/or
context represent a challenge for our system. For future research, a starting point would be the work of Justo et al.
[109].

• Double negation offers difficulties that we must continue to study and improve.

• In the presence of very complex paragraphs the precision of our proposed hybrid method is negatively impacted.

In terms of future research work, we believe there are a number of avenues that should be pursued in the short-term:

• Create an automatic real-time interface, via API, with SentiWordNet or functionally equivalent tool (see next item)
to search dynamically for polarity and PoS tagging updates for all terms of interest.

• Investigate the possibility of using SenticNet [45] as a source of a more mature and comprehensive set of semantic
attributes to enrich our own lexicon -or to replace it. The concept-level sentiment analysis approach introduced by
Poria et al. [176], sentic patterns, and its dependency-based rules could provide a broader semantic coverage than
the one we currently enjoy with SentiWordNet.

• Work on an algorithm to incorporate context in the tagging/parsing process and in the sentiment-determination
modules in order to improve the ability of the system to deal with humour, metaphors, similes, sarcasm and irony
(an initial approach could be the utilisation of context-sensitive grammars during the parsing process).

• Port the proof-of-concept prototype code from Scheme to C, C++, C# or Python, in order to increase efficiency and
integration capabilities.

• Continue developing a computing with sentiments approach, using as a foundation the method presented in Chap-
ter 14.

• Introduce the use of Induced OWA operators [258] as an aggregation mechanism in the calculation of the semantic
orientation of sentences. This type of operator could be used to ensure that specific values among those elements
considered would drive the aggregation according to a predefined operator. This aggregation could be performed
at both levels, the words participating in a sentence and the sub-sentences making up a full sentence or paragraph.
Work on this approach has already started and we have as an initial outcome the work presented in Chapter 16.
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18.1.1 Examples of sentences

There are some sentences that has proven to be challenging for our hybrid system to elucidate properly. We will show
some examples that represent classes of sentences that have something in common that make them challenging for our
system to evaluate properly.

Examples of sentences Labelled as Negative that were wrongly classified

Sentence 1 (from Twitter): “Played with an android google phone. The slide out screen scares me. I would break
that fucker so fast. Still prefer my iphone.”
The author of this sentence indirectly point to a negative aspect of the android google phone by saying that she could
break its slide out screen easily; hence, she prefers her iphone phone. Our system does not comprehend the subtlety.

Sentence 2 (from Twitter): “Was just told that Nike layoffs started today.”
This sentence is part of a thread related to unemployment in the USA. Our system does not see this sentence as Negative,
as it seems to be implying simply that lay-offs had started for an object called ‘Nike’.

Sentence 3 (from MoviesReviews): “While the performances are often engaging this loose collection of largely im-
provised numbers would probably have worked better as a one hour TV documentary.”
The suggestion expressed by the author of the sentence that the movie would have worked better as a TV documentary
does not seem to carry enough weight to sway the classifier from identifying this sentence as positive. Let us look at
the structure of a sentence using the particle ‘while’: While < S entence X > < S entence Y >. According to one of the
Semantic Rules (Rule 14) 14.1.2 we defined and applied in our system, in the presence of sentences using the particle
‘while’, the semantic of the whole sentence is defined by the semantics of < S entence Y >. The sub-sentence ‘would
probably have worked better as a one hour TV documentary’ is not conveying a real negative connotation but it rather
suggests a preference.

Examples of sentences Labelled as Positive that were wrongly classified

Sentence 4 (from Twitter): “Lebron is the boss.”
Lebron James is an American professional basketball player. Our hybrid system is unable to classify this sentence as
positive as there is not context for it to know who Lebron James is. As such this sentence is classified to be an objective
expression stating the Lebron is the boss.

Sentence 5 (from Twitter): “Let is go Cavalliers.”
Firstly, the intended expression is “Let us go Cavalliers” instead us “Let is go Cavalliers”. However, even entering the
right sentence our system fails to recognise that the Cavalliers is a basketball team and that the author of the sentence is
encouraging them to win an upcoming game. Again, the system sees it an an objective sentence.

Sentence 6 (from MoviesReviews): “Steers turns in snappy screenplay that curls at the edges and it is so clever you
want hate it, but he somehow pulls it off.”
One of the semantic rules in our hybrid system calls for taking the semantic after a ‘but’ particle as the semantic orien-
tation of a sentence, ignoring the proceeding sentence. In this case the sub-sentence that follows the ‘but’ particle, “he
somehow pulls it off”, uses an expression to point to the fact that the author of the movie’s script manages to deliver -in the
end- something very good. Our system did not understand the meaning of ‘pulls it off’ as something positive. In another
sentence using the ‘but’ particle, though, our system succeeds: “The film started with a cloudy sky but suddenly the sun
came out in all its splendour making it for a lovely day”. In this latter case, the sub-sentence after the ‘but’ particle is
clearer to our system, (...the sun made it for a lovely day), which provides a solid positive meaning for the sub-sentence. In
the former case, the sub-sentence after the ‘but’ used a lingo expression whilst the latter one employed a well constructed
sentence that was parsed and tagged properly.
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Examples of sentences correctly classified

Sentence 7 (Positive): “The Rock is destined to be the 21st century new Conan and that he is going to make a splash
even greater than Arnold Schwarzenegger, Jean Claud van Damme or Steven Segal.”
Sentence 8 (Positive): “Emerges as something rare an issue movie that is so honest and keenly observed that it does not
feel like one.”
Sentence 9 (Negative): “It is so laddish and juvenile only teenage boys could possibly find it funny.”
Sentence 10 (Negative): “A visually flashy but narratively opaque and emotionally vapid exercise in style and mystifica-
tion.”

In general, our proposed hybrid system works very well with a high level of accuracy and precision, with the excep-
tion of some cases where the sentences at hand belong in one of the categories described in the list just discussed above.

18.2 HACACU: HSC/HAC plus Cross-ratio Aggregation

Cross-ratio uninorm operators can certainly play a significant role in aggregating the opinions of a number of classifica-
tion systems in a more balanced way, compensating when required for specific data traits, as discussed in Section 15.2,
behaving like a conjunctive, disjunctive or compensatory operator as required.

If we recall our initial motivation, for those cases when a lexicon-based SA method cannot produce a classification
output (there are terms required for the analysis that are absent from the sentiment lexicon) we could as an alternative
option use the services of a Word-frequency Dictionary or add to the lexicon (off-line) the missing words required to
complete the analysis. However, adding words off-line is expensive because it requires the knowledge of an expert and it
is time consuming, which means that the method cannot produce an answer immediately, i.e. it prevents its automation.
The other alternative method involves the creation of the Word-frequency Dictionary, which is computationally expensive,
O(n2), for creation and traversing. In contrast to these approaches, the alternative cross-ratio uninorm approach is easy to
implement and is computationally inexpensive. In addition, it performs much better than the Word-frequency Dictionary.
Although the proposed cross-ration uninorm approach performs slightly worse than the off-line addition of the missing
words to the lexicon, it has the advantage of being less time consuming and allows to automate the whole SA process.
This situation provides us with options:

1. If one can afford the costs of adding missing terms to the sentiment lexicon and it is possible to wait for a more
precise answer, then HSC as presented in Chapter 14 is the best choice.

2. If one is urged to provide an answer immediately, then there is the convenient alternative of using the cross-ratio
uninorm approach presented in this Chapter.

It is a matter of a compromise, between off-line extra time to look for the required words and getting them in the lexi-
con, and providing an immediate answer with a potential slight lesser accuracy. In order to put things in perspective, let
us remember that many commercial software packages in the realm of machine learning provide the option of utilising
the so-called ensemble averaging methods. Typically, this technique works by combining previously created methods in
order to produce a desired output. Usually the steps are: (i) obtain the outputs of N methods, (ii) separately, train each
model, and (iii) combine the method outputs and average their values. In some cases, a slightly more complex approach
is followed, and the ensemble averaging is performed as ỹ(x;α) =

∑N
j=1α jy j(x), where each method output is y j, α values

represent a set of weights, and N is the number of methods being considered. This version corresponds to a weighted
sum instead of a mere average. However, as it has been shown in the experimental results section, the proposed uninorm
based method performs better than standard average functions. As such, a uninorm approach would provide better results.
In addition, if it is true that the proposed technique was introduced as a complement to the lexicon-based classification
method presented in Chapter 14, we believe that the cross-ratio uninorm described here could be utilised as well as a more
efficient and focused ensemble method where the semantic of the aggregation represents a symmetric aggregative effect.

In terms of further work, there are two avenues that could be pursued in the short-term:
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• In addition to obtaining the aggregation already mentioned among the classification methods, we could incorporate
the level of trust that one has on each method {M1,M2, . . .Mn}, ensuring that those better established and proven
methods carry more weight (as we would do when pondering the opinions of a number of people, depending on
how much we trust each of them).

• There are multiple uninorm operators available (which stem from the research field of decision making theory) and
some of them are highly flexible depending on the selection of the appropriate quantifier or function. As such, we
would like to explore further additional options that could potentially provide even better results. Especially, around
the possibility of utilising equation 15.4 in aggregating words polarity scores and sub-sentences polarity scores in
an approach to produce a semantic orientation score without the need for using polarity labels (Positive/Negative)
and using the polarity interval [−1,1] instead of [0,1]. Of course, such changes would require the introduction of
modifications to the existing sentiment lexicons.

18.3 HACACO: HSC/HAC plus Consensus Aggregation

Induced Ordered Weighted Averaging (IOWA) operators can certainly play a significant role in aggregating the opin-
ions of a number of sentiment classification systems. The aforementioned operator works by producing a value that get
significantly closer to the collective opinion of the participants. The IOWAmost operator we have presented in this article
conveys the semantic of the opinion of the majority, which is represented by the linguistic quantifier most. Its performance
in identifying the intensity of the opinion of the majority, according to our experiments, surpassed the one exhibited by
Arithmetic Mean and Median techniques.
The results we have obtained are sensible as our IOWAmost operator produce results that gravitate towards the opinion of
most of the input values being processed. In essence, IOWAmost produces a larger pull towards the values that support
each other, driving the results in the direction of what the majority stands for.

In terms of further work, we believe there are some avenues that could be pursued in the short-term:

• Investigate other OWA operators that could potentially produce a better aggregation representing the semantic
majority opinion.

• In addition to obtaining the aggregation already mentioned among the classification methods, we could incorporate
the level of trust that one would have on each method {M1,M2, . . .Mn}, ensuring that those better established,
respected and proven methods carry more weight in the aggregation, as one would do when pondering the opinions
of a number of experts, depending on how much one trusts each of them.

• Utilise the OWA measure Dispersion, Disp(W), which calculates the degree to which all aggregates are used
equally in the resulting final aggregation [169]. The idea would be to gain a deeper understanding on how the
support vector is configured to contribute to the semantic of a majority opinion, depending on the data values
participating in the aggregation.

18.4 Evolution of the proposed solutions

It would be rather interesting to see how our proposed hybrid system evolved in time as new features were incorporated.
In Table 18.1, we present the full progression of the methods we have introduced in this doctoral thesis document.

18.5 Chapter Summary

In this chapter we have shared our conclusions, which brings us to the end of this thesis report. The next components of
this report, collected as appendices, are summarised below:

• Appendix A: Scientific contributions of the author during his PhD studies

• Appendix B: Prototype Outputs

131



18.5. Chapter Summary Chapter 18. Conclusions & Further Work

Method Acronym Description Precision (Movie
DB)

Precision
(Twitter DB)

Hybrid Standard
Classification

HSC Produces a Polarity Classifica-
tion using our hybrid method

0.7278 0.8424

Hybrid Advanced
Classification

HAC Generates a polarity intensity
classification

Precision =

0.7278 (same as
HSC). [Intensity
Correctness:
Poor = 0.81,
Slight = 0.89,
Moderate = 0.93,
Very = 0.91, and
Most = 0.87]

Precision
= 0.8424
(same as
HSC) [In-
tensity
Correctness:
N/A]

Hybrid Advanced
Classification
with Aggregation
by Cross-ratio
Uninorm

HACACU Incorporates Cross-ratio Uni-
norm Aggregation to compen-
sate for situations where it
is not possible to output a
lexicon-based classification

0.7673 0.8479

Hybrid Advanced
Classification with
Aggregation by
Consensus

HACACO Adds the ability to find
consensus among a number
of classification methods
(achieve 100% accuracy
modelling consensus)

N/A N/A

Table 18.1. Evolution of the Proposed Method

• Appendix C: Scheme Code - SA Hybrid System (Proof of Concept)

• Appendix D: Data Preparation & Pre-processing

• Appendix E: Classification Output for Naı̈ve Bayes & Maximum Entropy

• Appendix F: Samples of outputs of Syntactic Conversions Programs

• Appendix G: Examples of the application of Semantic Rules & Negation
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[170] Luis G. Pérez, Francisco Mata, and Francisco Chiclana. Social Network Decision Making with Linguistic
Trustworthiness-Based Induced OWA Operators. International Journal of Intelligent Systems, 29(12):1117–1137,
2014. ISSN 1098-111X. doi: 10.1002/int.21686. URL http://dx.doi.org/10.1002/int.21686.
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“De molen gaat niet om met wind die voorbij
is. (The windmill does not care for the wind
that has gone past.)”.

Dutch Anonymous

“For my part I know nothing with any
certainty, but the sight of the stars makes me
dream.”

Vincent van Gogh [1853-1890]

“...Serán ceniza, mas tendrá sentido; Polvo
serán, mas polvo enamorado.”

Francisco de Quevedo [1580-1645]

“If I wanted you to understand it, I would
have explained it better.”

Johan Cruijff [1947-2016]

“I went to one of my favourite spots under a
tree. I sat there, thinking about the meaning
of life. It was so warm and pleasant that I
soon relaxed, dozed off, and drifted into a
dream. In my dream, I found myself flying
up above the field. I looked behind me and
saw that I had wings. They were large and
beautiful, and they fluttered rapidly. I had
turned into a butterfly! It was such a feeling
of freedom and joy, to be so carefree and fly
around so lightly in any way I wished.
Everything in this dream felt absolutely real
in every way. Before long, I forgot that I was
ever Chuang Tzu. I was simply the butterfly
and nothing else”.

Chuang Tzu [c. 369 BC-c. 286 BC]

“When I get a little money I buy books; and
if any is left I buy food and clothes”

Erasmus of Rotterdam [1466-1536]
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“My paint is like a rocket, which describes its
own space. I try to make the impossible
possible. What is happening I cannot foresee,
it is a surprise. Painting, like passion, is an
emotion full of truth and rings a living sound,
like the roar coming from the lion’s breast.”

Karel Appel [1921-2006]
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Appendix A

Scientific contributions enabled by the student’s PhD
research

A.1 Journal Articles

There are a number of articles that have appeared in journals that have as a common root the research presented in this
PhD Thesis. The list of articles that have appeared in Journals is the following:

Author(s) Publication Article
Appel, Chiclana
& Carter

Acta Polytechnica Hungarica - Journal
of Applied Sciences

Main Concepts, State of the Art and Future
Research Questions in Sentiment Analysis
[10]

Appel, Chiclana,
Carter & Fujita

Knowledge-Based Systems A Hybrid Approach to the Sentiment
Analysis Problem and the Sentence Level
[13]

Appel, Chiclana,
Carter & Fujita

International Journal of Intelligent Sys-
tems

A Consensus Approach to the Senti-
ment Analysis Problem driven by Support-
Based IOWA majority [17]

Appel, Chiclana,
Carter & Fujita

Knowledge-Based Systems Cross-ratio Uninorm aggregation as an en-
hancement to a hybrid approach to the sen-
timent analysis problem at the sentence
level [18]

Appel, Chiclana,
Carter & Fujita

Under review in Applied Intelli-
gence (Springer); Special issue on
Knowledge-Based Systems and Data
Sciences

Successes and challenges in developing a
hybrid approach to sentiment analysis [16]

Table A.1. Articles Published in Journals
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A.2 Articles in conference’s proceedings

There are a number of articles that have appeared in conference’s proceedings that have as a common root the research
presented in this PhD Thesis. The list of articles that have appeared in Conference Proceedings is the following:

Author(s) Publication Article
Appel, Chiclana,
Carter & Fujita

Proceedings of the IEEE WCCI 2016 -
Vancouver, Canada

A Hybrid Approach to Sentiment Analysis
[12]

Appel, Chiclana,
Carter & Fujita

Proceedings of IAE/AIE 2016 -
Morioka, Japan

A Hybrid Approach to Sentiment Analysis
with Benchmarking Results [11]

Appel, Chiclana,
Carter & Fujita

Proceedings of IAE/AIE 2017 - Arras,
France

A consensus approach to sentiment analy-
sis [14]

Appel, Chiclana,
Carter & Fujita

Proceedings of FUZZ-IEEE 2017 -
Naples, Italy

IOWA and Cross-ratio Uninorm operators
as aggregation tools in sentiment analysis
and ensemble methods [15]

Table A.2. Articles Published in Conference Proceedings
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Appendix B

Prototype Outputs

B.1 Main Program Output

Note: transcripts for execution of prototypes for the HSC (polarity identification) and HAC (intensity of polarity determination) models.

Chez Scheme (SWL) T r a n s c r i p t [ Sun Nov 15 1 6 : 5 1 : 2 2 2015]
> ( load ”C : / Use r s / O r e s t e s / Desktop / # DMUOctober2015 /

SchemeLibraryLos5000 / Code / main . s s ” )
> ( s t a r t−m a i n )
> ( t r a n s c r i p t− o f f )

============================================================================
BEGINNING R e s u l t s u s i n g Hybr id Method HSC .

R e s u l t s f o r POS D a t a s e t ( Format : ( POSs NEGs OBJs NOSORs ERRs ) :
(4367 929 0 35 0)
R e s u l t s f o r NEG D a t a s e t ( Format : ( POSs NEGs OBJs NOSORs ERRs ) :
(1646 3609 0 76 0)

END R e s u l t s u s i n g Hybr id Method HSC .
============================================================================

============================================================================
BEGINNING R e s u l t s u s i n g Hybr id Method HAC.

OUTPUT FORMAT f o r POSs D a t a s e t : (POOR SLIGHTLY Modera te Very Most NOSOR N e g a t i v e )
(577 1106 1006 1365 313 35 929)
OUTPUT FORMAT f o r NEGs D a t a s e t : (POOR SLIGHTLY Modera te Very Most NOSOR P o s i t i v e )
(770 1089 713 864 173 76 1646)

END R e s u l t s u s i n g Hybr id Method HAC.
============================================================================

PERFORMANCE STATISTICS
TP = 4367
FN = 929
FP = 1646
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TN = 3609

Pass One (ACC PRE REC F1 ) :
(0 .755947303573121 0.726259770497256 0.8245845921450151 0 .772305243611283)

Pas s Two (ACC PRE REC F1 ) :
(0 .7584880885387357 0.7278439153439153 0.825736259613581 0 .7737059495562002)

==================================================
Outpu t Completed .
==================================================

B.2 Dictionary Output

Chez Scheme (SWL) T r a n s c r i p t [ Sun Nov 15 1 7 : 4 1 : 2 4 2015]
> ( load ”C : / Use r s / O r e s t e s / Desktop / # DMUOctober2015 / SchemeLibra ry / Code / m a i n d i c t . s s ” )
> ( gend i c t−main )
( )
> ( c a r ( cdddr ( cddddr w o r l d a l f a ) ) )
( h a t e 42

(1 2 3 4 7 9 17 19 26 28 29 31 32 38 39 40 51 60 68 68 68 88
91 91 103 109 113 118 123 123 126 133 134 135 140 140 141
160 170 173 176 1 7 7 ) )

> ( t r a n s c r i p t− o f f )

>

B.3 Cross-ratio Uninorm Output

Note: this is an example showing the difference values obtained when applying a Cross-Ratio Uninorm aggre-
gation (with identity element, e = 0.5) against the traditional Average function.

Note : comput ing o f C r o s s−R a t i o Uninorm & Average f o r two e l e m e n t s .

============================================================================
=== C r o s s− r a t i o Uninorm Vs . Average ========================================
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

============================================================================
============================================================================
Element x = 0.9591121579003756
Element y = 0.6124176583810436

C r o s s− r a t i o Uninorm = 0.9737288484860317

A r i t h m e t i c Mean = 0.7857649081407097

============================================================================
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B.4 IOWA Output

Examples of application of the IOWA operator representing consensus. The other two methods shown are Arithmetic mean and Median.

============================================================================

I t e m s t o a g g r e g a t e (m1 m2 m3) = ( 0 . 9 5 9 1 1 2 0 .500030 1 . 0 0 0 0 0 )
A r i t h m e t i c mean = 0 .819716
Median = 0 .959112
IOWA ( T o l e r a n c e = 0 . 5 0 ) = 0 .819717

I t e m s t o a g g r e g a t e (m1 m2 m3) = ( 0 . 5 6 4 6 3 1 0 .508914 1 . 0 0 0 0 0 0 )
A r i t h m e t i c mean = 0 .691181
Median = 0 .564631
IOWA ( T o l e r a n c e = 0 . 5 0 ) = 0 .536773

I t e m s t o a g g r e g a t e (m1 m2 m3) = ( 0 . 9 8 9 5 5 0 0 .682592 0 . 6 0 0 0 0 0 )
A r i t h m e t i c mean = 0 .757380
Median = 0 .682592
IOWA ( T o l e r a n c e = 0 . 3 0 ) = 0 .641296

=====================================================================================
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Appendix C

Scheme Code - SA Hybrid System Proof of Concept

C.1 Main Program

Disclaimer: the collection of code presented in this Appendix corresponds to a prototype that was developed as a proof-of-
concept for the methods being devised. The programs have not been developed for efficiency or speed, but rather as a computa-
tional mechanism to prove the validity of the proposed methods. This prototype is not fully integrated and it must be executed
in parts, as needed.

; ;
;;========= S t a r t a l l c a l c u l a t i o n s ====
;;=====================================
( load ”C : / Use r s / Orestes−PC−Win10 / Desktop / # DMUOctober2015 / SchemeLibraryLos5000 /

Code / s o r c a l c . s s ” )
( load ”C : / Use r s / Orestes−PC−Win10 / Desktop / # DMUOctober2015 / SchemeLibraryLos5000 /

Code / s o r c a l c v 2 . s s ” )
( load ”C : / Use r s / Orestes−PC−Win10 / Desktop / # DMUOctober2015 / SchemeLibraryLos5000 /

Code / s o r c a l c v 3 . s s ” )
( load ”C : / Use r s / Orestes−PC−Win10 / Desktop / # DMUOctober2015 / SchemeLibraryLos5000 /

Code / mecacho . s s ” )
; ;
( d e f i n e s t a r t−m a i n

( lambda ( )
( b e g i n

( c a l c− s o r− a l l s e t− s i m p l e )
( c a l c− f u z z y )
( p r i n t− s t a t s− p i ( g e n l i s t p o s n e g r e s u l p o s z ) ( g e n l i s t p o s n e g r e s u l n e g z ) )
( n e w l i n e )
( d i s p l a y ”==================================================” )
( n e w l i n e )
( d i s p l a y ” Outpu t Completed . ” )
( n e w l i n e )
( d i s p l a y ”==================================================” )
( n e w l i n e )
( n e w l i n e ) ) ) )

C.2 HSC Code

Note: some fragments of the code with perceived implementation/technique value, have been omitted as they might be commercialised
in the immediate future.

; ;
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;;==================================================================
; ; LOAD a t once CALCULUS . s s and o t h e r u t i l i t i e s
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code / c a l c u l u s . s s ” )
;;==================================================================
;;===========================================
; ;=== USO de l a s r u t i n a s ====================
;;===========================================
;;================================
; ;=== G e n e r a t i o n o f DICTIONARY ===
;;================================
; ; 1 . Buscar l a s a l i d a OUTPUTTAGS ( o u t t a g s )
; ; 2 . ( remover− sobras ( c o n t e o s i ( a r r e g l a−p a r e s ( s u p e r− f l a t t e n ( d i c k y 0 1
; ; ( saca−word−a l l− s in n e g s e n t s ) ( saca−word−a l l− s in n e g s e n t s ) 1 ) ) ) ) )
; ; > ( )
; ; > ( l e n g t h w o r l d a l f a )
; ; Note : w o r l d a l f a c o n t a i n s members o f t h e form :
; ; ( ( s i m p l i s t i c 15 (1 54 925 1182 1341 1513 . . . )
; ; ( s i l l y 57 (1 142 184 275 382 508 537 . . . ) . . . ) ) )
; ; Each member o f d i c t i o n a r y c o n t a i n s :
; ; ( theword f r e q u e n c y ( l i s t o f s e n t e n c e s where t h e word shows up ) )
; ;
; ;
( d e f i n e c o r r i− d i c t

( lambda ( )
( r emove r− sob r a s ( c o n t e o s i ( a r r e g l a− p a r e s

( s u p e r− f l a t t e n ( d i cky01
( s a c a−w o r d−a l l− s i n n e g s e n t s )
( s a c a−w o r d−a l l− s i n n e g s e n t s ) 1 ) ) ) ) ) ) )

; ;
; ;
;;===================================================================================
; ;=== DECIDIDOR−MAX hace e l p r im er −and s i m p l e r− SOR c a l c u l o
; ; ( dec id idor−max ( f i l t r a − i n i t i a l − s o r ( c a l c− i n i t i a l− s o r SALIDA−DE−GETYOURBEARINGS ) ) )
; ; OR
; ; ( s e t ! wow ( dec id idor−max ( f i l t r a − i n i t i a l − s o r ( c a l c− i n i t i a l− s o r 2
; ; SALIDA−DE−GETYOURBEARINGS ) ) ) )
; ; ( cuan tos−son−pos a v e r p o s s ) . . . cambiar ”−pos” por ”−neg ” , ”− e r r ” , ”−nosor ”
; ; & ”−o b j ” as needed
;;===================================================================================
; ;
;;========================================
; ;=== Globa l v a r i a b l e s f o r t h i s module ===
;;========================================
; ;
( s e t ! r e s u l p o s z ’ ( ) )
( s e t ! r e s u l n e g z ’ ( ) )
; ;
;;===========================
; ;=== LOAD D i c t i o n a r i e s =====
;;===========================
; ;
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data /

d i c t t a g s n e g s . s s ” )
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( s e t ! n e g d i c t k r e a d b u f f e r )
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data /

d i c t t a g s p o s s . s s ” )
( s e t ! p o s d i c t k r e a d b u f f e r )
;;========================================
; ; T h i s v a r i a b l e c o n t a i n s a l l words q u a l i f i e d as OBJ because t h e r e
; ; i s no enough i n f o
; ; The f o r m a t i s ( ( NumberOfSentence word ) . . .
; ; ( NumberOfSentence word ) )
; ; i . e d e l car = (5327 n e v e r t h e l e s s )
( s e t ! p o r s i a c a s o ’ ( ) )
( s e t ! p o r s i a c a s o f u l l ’ ( ) )
( s e t ! newwow ’ ( ) )
( s e t ! newwowbest ’ ( ) )
( s e t ! puchu lon ’ ( ) )
; ;
;;================================================
; ;=== RUNNING t h e CLASSIFICATION HYBRID SYSTEM ===
;;================================================
; ;
;;==============================
;;===== CALCULATE SIMPLE SOR ===
;;==============================
;;==============================
; ;=== C a l c u l a t e ALL D a t a s e t s ===
;;==============================
( d e f i n e c a l c− s o r− a l l s e t− s i m p l e

( lambda ( )
( b e g i n

( n e w l i n e )
( d i s p l a y ”===============================================================” )
( n e w l i n e )
( d i s p l a y ”BEGINNING R e s u l t s u s i n g Hybr id Method HSC . ” )
( n e w l i n e )
( n e w l i n e )
( c l e a r− t e m p s )
( n e w l i n e )
( d i s p l a y ” R e s u l t s f o r POS D a t a s e t ( Format : ( POSs NEGs OBJs NOSORs ERRs ) : ” )
( n e w l i n e )
( d i s p l a y ( c a l c− s o r−p o s s e t− s i m p l e ) )
( c l e a r− t e m p s )
( n e w l i n e )
( d i s p l a y ” R e s u l t s f o r NEG D a t a s e t ( Format : ( POSs NEGs OBJs NOSORs ERRs ) : ” )
( n e w l i n e )
( d i s p l a y ( c a l c− s o r−n e g s e t− s i m p l e ) )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ”END R e s u l t s u s i n g Hybr id Method HSC . ” )
( n e w l i n e )
( d i s p l a y ”===============================================================” )
( n e w l i n e )
( n e w l i n e )
( n e w l i n e ) ) ) )

; ;
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; ;

; ;
; ; C a l c u l a t e SOR f o r POS S e t ( Outpu t : (# pos−sor # neg−sor # o b j− s o r
; ; # nosor− sor # e r r− s o r )
; ; Globa l b i n d i n g PORSIACASO , g e n e r a t e d by ” c a l k y 2 ”
( d e f i n e c a l c− s o r−p o s s e t− s i m p l e

( lambda ( )
( b e g i n

( s e t ! e l p o s s e t ( g e t y o u r b e a r i n g s ( l i m p i a d o r−x p o s s e n t s ) ) )
( s e t ! wow ( dec id idor−max ( f i l t r a − i n i t i a l − s o r

( c a l c− i n i t i a l− s o r 2 e l p o s s e t 1 ) ) ) )
( s e t ! l i s t a o b j s ( ex t r ae r−ob j− sennum wow 1 ) )
( s e t ! l i s t a o b j s a u g ( dame−pal−obj−alpha

l i s t a o b j s p o r s i a c a s o ) )
( s e t ! temp1 ( s a c a p i o j o s l i s t a o b j s a u g p o s d i c t k ) )
( s e t ! temp2 ( cons igue−negpos wow temp1 ) )
( s e t ! temp3 ( s a c a l e− b r i l l o temp2 ) )
( s e t ! temp4 ( p u l e− h e b i l l a− p a r a p o s temp3 ) )
( s e t ! temp5 ( new−wow wow temp4 ) )
( s e t ! r e s u l p o s z newwow )
( l i s t ( cuan tos− son−pos newwow )

( cuan tos−son−neg newwow )
( cu an t o s− so n−ob j newwow )
( c u an t o s− s on−n os o r newwow )
( c u a n t o s− s o n− e r r newwow ) ) ) ) )

; ; C a l c u l a t e SOR f o r NEG S e t ( Outpu t : (# pos−sor # neg−sor # o b j− s o r
; ; # nosor− sor # e r r− s o r )
; ; Globa l b i n d i n g PORSIACASO , g e n e r a t e d by ” c a l k y 2 ”
( d e f i n e c a l c− s o r−n e g s e t− s i m p l e

( lambda ( )
( b e g i n

( s e t ! e l n e g s e t ( g e t y o u r b e a r i n g s ( l i m p i a d o r−x n e g s e n t s ) ) )
( s e t ! wow ( dec id idor−max ( f i l t r a − i n i t i a l − s o r

( c a l c− i n i t i a l− s o r 2 e l n e g s e t 1 ) ) ) )
( s e t ! l i s t a o b j s ( ex t r ae r−ob j− sennum wow 1 ) )
( s e t ! l i s t a o b j s a u g ( dame−pal−obj−alpha l i s t a o b j s p o r s i a c a s o ) )
( s e t ! temp1 ( s a c a p i o j o s l i s t a o b j s a u g n e g d i c t k ) )
( s e t ! temp2 ( cons igue−negpos wow temp1 ) )
( s e t ! temp3 ( s a c a l e− b r i l l o temp2 ) )
( s e t ! temp4 ( p u l e− h e b i l l a temp3 ) )
( s e t ! temp5 ( new−wow wow temp4 ) )
( s e t ! r e s u l n e g z newwow )
( l i s t ( cuan tos− son−pos newwow )

( cuan tos−son−neg newwow )
( cu an t o s− so n−ob j newwow )
( c ua n to s− s on−n os o r newwow )
( c u a n t o s− s o n− e r r newwow ) ) ) ) )

; ; CLEAR Temp & Globa l b i n d i n g s f o r SOR C a l c u l a t i o n s
( d e f i n e c l e a r− t e m p s

( lambda ( )
( s e t ! wow ’ ( ) )
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( s e t ! l i s t a o b j s ’ ( ) )
( s e t ! l i s t a o b j s a u g ’ ( ) )
( s e t ! temp1 ’ ( ) )
( s e t ! temp2 ’ ( ) )
( s e t ! temp3 ’ ( ) )
( s e t ! temp4 ’ ( ) )
( s e t ! temp5 ’ ( ) )
( s e t ! temp6 ’ ( ) )
( s e t ! temp7 ’ ( ) )
( s e t ! temp8 ’ ( ) )
( s e t ! temp9 ’ ( ) )
( s e t ! temp10 ’ ( ) )
( s e t ! temp11 ’ ( ) )
( s e t ! puchu lon ’ ( ) )
( s e t ! newwow ’ ( ) )
( s e t ! newwowbest ’ ( ) )
( s e t ! p o r s i a c a s o ’ ( ) ) ) )

;;=================================================
;;=================================================
; ;=== DIFERENTE APPROACH Usando PSCORE & NSCORE ===
;;=================================================
; ;
( d e f i n e c a l c− s o r− n e g s e t− s i m p l e− d i f e r e n t e

( lambda ( )
( b e g i n

( s e t ! e l n e g s e t ( g e t y o u r b e a r i n g s
( l i m p i a d o r−x n e g s e n t s ) ) )

( s e t ! wow ( dec id idor−max ( f i l t r a − i n i t i a l − s o r
( c a l c− i n i t i a l− s o r 2 e l n e g s e t 1 ) ) ) )

( s e t ! l i s t a o b j s ( ex t r ae r−ob j− sennum wow 1 ) )
( s e t ! l i s t a o b j s a u g ( dame−pal−obj−alpha

l i s t a o b j s p o r s i a c a s o ) )
( s e t ! temp1 ( s a c a p i o j o s l i s t a o b j s a u g n e g d i c t k ) )
( s e t ! temp2 ( cons igue−negpos wow temp1 ) )
( s e t ! temp3 ( s a c a l e− b r i l l o temp2 ) )
( s e t ! temp4 ( p u l e−h e b i l l a−p a r a p o s n e g temp3 ) )
( s e t ! temp5 ( new−wow wow temp4 ) )
( d i s p l a y ( l i s t ( cuan tos− son−pos newwow )

( cuan tos−son−neg newwow )
( cu an t o s− so n−ob j newwow )
( c ua n to s− s on−n os o r newwow )
( c u a n t o s− s o n− e r r newwow ) ) )

( s e t ! newwowbest newwow )
( s e t ! temp6 ( jodido−obj−num newwow 1 ) )
( s e t ! temp7 ( j o d i d o−o b j−v e c s e l n e g s e t temp6 ) )
( s e t ! temp8 ( le tnum−vecs temp7 ) )
( s e t ! temp9 ( c a l c u l a−b o l u d o s temp8 ) )
( s e t ! temp10 ( c a l c u l a d o r a−m i o b j s temp9 ) )
( s e t ! temp11 ( comprime−bro temp10 ) )
( d i s p l a y ( l i s t ( cuan tos− son−pos newwowbest )

( cuan tos−son−neg newwowbest )
( cu an t o s− so n−ob j newwowbest )
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( c ua n to s− s on−n os o r newwowbest )
( c u a n t o s− s o n− e r r newwowbest ) ) )

) ) )

( d e f i n e c a l c− s o r− p o s s e t− s i m p l e− d i f e r e n t e
( lambda ( )

( b e g i n
( s e t ! e l p o s s e t ( g e t y o u r b e a r i n g s

( l i m p i a d o r−x p o s s e n t s ) ) )
( s e t ! wow ( dec id idor−max ( f i l t r a − i n i t i a l − s o r

( c a l c− i n i t i a l− s o r 2 e l p o s s e t 1 ) ) ) )
( s e t ! l i s t a o b j s ( ex t r ae r−ob j− sennum wow 1 ) )
( s e t ! l i s t a o b j s a u g ( dame−pal−obj−alpha

l i s t a o b j s p o r s i a c a s o ) )
( s e t ! temp1 ( s a c a p i o j o s l i s t a o b j s a u g p o s d i c t k ) )
( s e t ! temp2 ( cons igue−negpos wow temp1 ) )
( s e t ! temp3 ( s a c a l e− b r i l l o temp2 ) )
( s e t ! temp4 ( p u l e−h e b i l l a−p a r a p o s n e g temp3 ) )
( s e t ! temp5 ( new−wow wow temp4 ) )
( d i s p l a y ( l i s t ( cuan tos− son−pos newwow )

( cuan tos−son−neg newwow )
( cu an t o s− so n−ob j newwow )
( c ua n to s− s on−n os o r newwow )
( c u a n t o s− s o n− e r r newwow ) ) )

( s e t ! newwowbest newwow )
( s e t ! temp6 ( jodido−obj−num newwow 1 ) )
( s e t ! temp7 ( j o d i d o−o b j−v e c s e l p o s s e t temp6 ) )
( s e t ! temp8 ( le tnum−vecs temp7 ) )
( s e t ! temp9 ( c a l c u l a−b o l u d o s temp8 ) )
( s e t ! temp10 ( c a l c u l a d o r a−m i o b j s−p o s temp9 ) )
( s e t ! temp11 ( comprime−bro temp10 ) )
( d i s p l a y ( l i s t ( cuan tos− son−pos newwowbest )

( cuan tos−son−neg newwowbest )
( cu an t o s− so n−ob j newwowbest )
( c ua n t o s− s on−n os o r newwowbest )
( c u a n t o s− s o n− e r r newwowbest ) ) )

) ) )

; ; t a k e s t h e o u t p u t o f s a c a l e− b r i l l o and g e n e r a t e
; ; l i s t o f t h e form :
; ; ( ( NumSent pos / neg ) ( NumSent pos / neg ) )
( d e f i n e p u l e−h e b i l l a−p a r a p o s n e g

( lambda ( l s )
( i f ( n u l l ? l s )

’ ( )
( i f (> ( c a a r ( c d r ( c a r l s ) ) )

( c a r ( c d r ( c a r ( c d r ( c a r l s ) ) ) ) ) )
( cons ( l i s t ( c a a r l s ) ’ pos )

( p u l e−h e b i l l a−p a r a p o s n e g ( c d r l s ) ) )
( i f (< ( c a a r ( c d r ( c a r l s ) ) )

( c a r ( c d r ( c a r ( c d r ( c a r l s ) ) ) ) ) )
( cons ( l i s t ( c a a r l s ) ’ neg )

( p u l e−h e b i l l a−p a r a p o s n e g ( c d r l s ) ) )
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( cons ( l i s t ( c a a r l s ) ’ o b j )
( p u l e−h e b i l l a−p a r a p o s n e g ( c d r l s ) ) ) ) ) ) ) )

; ; i n p u t =( neg o b j pos . . . ) ; Outpu t : ( Sen1 . . . SenN ) f o r t h o s e s e n t e n c e s
; ; l a b e l l e d as OBJ ( c a l l w i t h c t =1)
; ; l a t = NEWWOW
( d e f i n e jodido−obj−num

( lambda ( l a t c t )
( cond

( ( n u l l ? l a t ) ’ ( ) )
( ( equal ? ( c a r l a t ) ’ o b j ) ( cons c t ( jodido−obj−num

( c d r l a t ) (+ c t 1 ) ) ) )
( e l s e ( jodido−obj−num ( c d r l a t ) (+ c t 1 ) ) ) ) ) )

; ; genera l i s t a de matches w i t h INPUT= ELNEGSET
; ; Sa l idaDe ( jodido−obj−num )
( d e f i n e j o d i d o−o b j−v e c s

( lambda ( neggy numby )
( cond

( ( n u l l ? numby ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a r numby )

( jod ido−ob j−vecs−aux neggy ( c a r numby ) 1 ) )
( j o d i d o−o b j−v e c s neggy

( c d r numby ) ) ) ) ) ) )

; ; a u x i l i a r o f j o d i d o−o b j− v e c s
( d e f i n e jod ido−ob j−vecs−aux

( lambda ( l i s t a num c t )
( cond

( ( n u l l ? l i s t a ) ’ t r o u b l e )
( ( = num c t ) ( c a r l i s t a ) )
( e l s e ( jod ido−ob j−vecs−aux

( c d r l i s t a ) num (+ c t 1 ) ) ) ) ) )

; ; toma s a l i d a de j o d i d o−o b j− v e c s y e l i m i n a de l a l i s t a atomos ,
; ; de jando s o l o l i s t a
; ; de v e c t o r e s con p o l a r i t y l a b e l s
( d e f i n e le tnum−vecs

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a a r l s )

( le tnum−vecs−aux ( c a r ( c d r ( c a r l s ) ) ) ) )
( l e tnum−vecs ( c d r l s ) ) ) ) ) ) )

; ; a u x i l i a r f u n c t i o n t o l e t n u m−v e c s
( d e f i n e le tnum−vecs−aux

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( atom ? ( c a r l s t ) ) ( le tnum−vecs−aux ( c d r l s t ) ) )
( e l s e ( cons ( c a r l s t )

( le tnum−vecs−aux ( c d r l s t ) ) ) ) ) ) )
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; ; v a l i d a r s a l i d a de l e t n u m−v e c s
( d e f i n e seco ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( ( and

( l i s t ? ( c a r l ) )
( number ? ( c a a r l ) )
( sopa ? ( c a r ( c d r ( c a r l ) ) ) ) )

( s eco ? ( c d r l ) ) )
( e l s e # f ) ) ) )

; ; a u x i l i a r de seco ?
( d e f i n e sopa ?

( lambda ( l s )
( cond

( ( n u l l ? l s ) # t )
( ( and

( l i s t ? ( c a r l s ) )
( v e c t o r ? ( c a a r l s ) )
( atom ? ( c a r ( c d r ( c a r l s ) ) ) ) )

( sopa ? ( c d r l s ) ) )
( e l s e # f ) ) ) )

; ; c a l c u l a r SOR de OBJs o b t e n i d o s porque Num−POSs i g u a l Num−NEGS
; ; S i no hay POS−score or NEG−score , pero
; ; UPDATEINDEX en e l v e c t o r es mayor de 1 ,
; ; TRUST e l P o l a r i t y l a b e l d e l v e c t o r
; ; r e t o r n a l i s t a de l s i s t a s de l a forma :
; ; ( ( numerosen t ( ( p o s s c o r e n e g s c o r e u p d t i n d e x P o l a r i t y L a b e l )
; ; ( p o s s c o r e n e g s c o r e u p d t i n d e x P l a r i t y L a b e l ) ) . . . ) )
( d e f i n e c a l c u l a−b o l u d o s

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a a r l s ) ( c a l c u l a−b o l u d o s− a u x

( c a r ( c d r ( c a r l s ) ) ) ) )
( c a l c u l a−b o l u d o s ( c d r l s ) ) ) ) ) ) )

; ; a u x u l i a r de c a l c u l a−b o l u d o s
( d e f i n e c a l c u l a−b o l u d o s− a u x

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( atom ? ( c a r l ) ) ( c a l c u l a−b o l u d o s− a u x ( c d r l s ) ) )
( ( v e c t o r ? ( c a a r l ) )

( cons ( l i s t ( g e t p o s s c o r e ( c a a r l ) ) ( g e t n e g s c o r e ( c a a r l ) )
( g e t u p d t i n d e x ( c a a r l ) ) ( c a r ( c d r ( c a r l ) ) ) )
( c a l c u l a−b o l u d o s− a u x ( c d r l ) ) ) )

( e l s e ( c a l c u l a−b o l u d o s− a u x ( c d r l ) ) ) ) ) )
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; ; how c l o s e a number num i s t o number k
( d e f i n e howclose to−k

( lambda ( num bench )
( abs (− bench num ) ) ) )

; ; howc lose to−0
( d e f i n e howclose to−0

( lambda ( num )
( howclose to−k num 0 . 0 0 ) ) )

; ; howc lose to−1
( d e f i n e howclose to−1

( lambda ( num )
( howclose to−k num 1 . 0 0 ) ) )

; ; C a l c u l a p r e− r e s u l t a d o s basado en o u t p u t de
; ; ” c a l c u l a−b o l u d o s ”
( d e f i n e c a l c u l a d o r a−m i o b j s

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a a r l s )

( c a l c u l a d o r a−m i o b j s− a u x ( c a r ( c d r ( c a r l s ) ) ) ) )
( c a l c u l a d o r a−m i o b j s ( c d r l s ) ) ) ) ) ) )

; ; a u x u l i a r t o c a l c u l a d o r a−m i o b j s
( d e f i n e c a l c u l a d o r a−m i o b j s− a u x

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( = ( l e n g t h l ) 1 )

( i f ( and
( number ? ( c a a r l ) )
( number ? ( c a r ( c d r ( c a r l ) ) ) ) )

( i f (> ( c a a r l ) ( c a r ( c d r ( c a r l ) ) ) )
’ pos
’ neg )

( c a r ( cdddr ( c a r l ) ) ) ) )
( e l s e ( c o n t a l o s− t o d o s−p a n a

( c a l c u l a d o r a−m i o b j s−a u x−a u x l ) 0 0 ) ) ) ) )

; ; r e t o r n a l i s t a de ( neg pos neg pos ) l u e g o de a p l i c a r
; ; l o s c r i t e r i o s a p r o p i a d o s
( d e f i n e c a l c u l a d o r a−m i o b j s−a u x−a u x

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( and

( number ? ( c a a r l ) )
( number ? ( c a r ( c d r ( c a r l ) ) ) ) )

( i f (> ( c a a r l ) ( c a r ( c d r ( c a r l ) ) ) )
( cons ’ pos
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( c a l c u l a d o r a−m i o b j s−a u x−a u x ( c d r l ) ) )
( cons ’ neg

( c a l c u l a d o r a−m i o b j s−a u x−a u x ( c d r l ) ) ) ) )
( e l s e ( cons ( c a r ( cdddr ( c a r l ) ) )

( c a l c u l a d o r a−m i o b j s−a u x−a u x ( c d r l ) ) ) ) ) ) )

; ; C a l c u l a p r e− r e s u l t a d o s basado en o u t p u t de ” c a l c u l a−b o l u d o s ”
; ; ( para POS)
( d e f i n e c a l c u l a d o r a−m i o b j s−p o s

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a a r l s )

( c a l c u l a d o r a−m i o b j s−a u x−p o s ( c a r ( c d r ( c a r l s ) ) ) ) )
( c a l c u l a d o r a−m i o b j s−p o s ( c d r l s ) ) ) ) ) ) )

; ; a u x u l i a r t o c a l c u l a d o r a−m i o b j s ( para POS)
( d e f i n e c a l c u l a d o r a−m i o b j s−a u x−p o s

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( = ( l e n g t h l ) 1 )

( i f ( and
( number ? ( c a a r l ) )
( number ? ( c a r ( c d r ( c a r l ) ) ) ) )

( i f (>= ( c a a r l ) ( c a r ( c d r ( c a r l ) ) ) )
’ pos
’ neg )

( c a r ( cdddr ( c a r l ) ) ) ) )
( e l s e ( c o n t a l o s− t o d o s−p a n a

( ca l cu l ado ra−miob j s−aux−aux−pos l ) 0 0 ) ) ) ) )

; ; r e t o r n a l i s t a de ( neg pos neg pos ) l u e g o de a p l i c a r l o s c r i t e r i o s
; ; a p r o p i a d o s ( para POS)
( d e f i n e ca l cu l ado ra−miob j s−aux−aux−pos

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( and

( number ? ( c a a r l ) )
( number ? ( c a r ( c d r ( c a r l ) ) ) ) )

( i f (>= ( c a a r l ) ( c a r ( c d r ( c a r l ) ) ) )
( cons ’ pos

( ca l cu l ado ra−miob j s−aux−aux−pos ( c d r l ) ) )
( cons ’ neg

( ca l cu l ado ra−miob j s−aux−aux−pos ( c d r l ) ) ) ) )
( e l s e ( cons ( c a r ( cdddr ( c a r l ) ) )

( ca l cu l ado ra−miob j s−aux−aux−pos ( c d r l ) ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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; ; c o n t a l o s− t o d o s−p a n a ( c u e n t a l o s NEGs and POSs . Llamar con
; ; ( l pneggy cneggy ) , cneggy & pneggy = 0
( d e f i n e c o n t a l o s− t o d o s−p a n a

( lambda ( l cneggy cpoggy )
( cond

( ( n u l l ? l ) ( i f (> cpoggy cneggy ) ’ pos ’ neg ) )
( ( equal ? ( c a r l ) ’ pos ) ( c o n t a l o s− t o d o s−p a n a

( c d r l ) cneggy (+ cpoggy 1 ) ) )
( e l s e ( c o n t a l o s− t o d o s−p a n a ( c d r l )

(+ cneggy 1) cpoggy ) ) ) ) )

; ; comprime−bro : reemp laza NEGs / POSs as per l i s t ” l s ” y r e s u l a t d o
; ; de NEWWOW; c t =1 es e l c o n t a d o r
( d e f i n e comprime−bro

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( b e g i n

( s e t ! newwowbest
( comprime−bro−aux ( c a r l s ) newwowbest 1 ) )

( comprime−bro ( c d r l s ) ) ) ) ) ) )

; ; a u x i l i a r t o comprime−bro
( d e f i n e comprime−bro−aux

( lambda ( p a r i n f bdd c t )
( cond

( ( n u l l ? bdd ) ’ ( ) )
( ( = ( c a r p a r i n f ) c t ) ( cons ( c a r ( c d r p a r i n f ) )

( comprime−bro−aux p a r i n f
( c d r bdd ) (+ c t 1 ) ) ) )

( e l s e ( cons ( c a r bdd )
( comprime−bro−aux p a r i n f ( c d r bdd )
(+ c t 1 ) ) ) ) ) ) )

;;======================================================================
;;========================================
; ;
;;========================================
;;======================================================================
; ;==== MAIN CALL : I n i t i a l Case o f CALCULATING SOR ======================
; ; ( dec id idor−max ( f i l t r a − i n i t i a l − s o r ( c a l c− i n i t i a l− s o r
; ; SALIDA−DE−GETYOURBEARINGS 1 ) ) )
; ; ( cuan tos−son−pos a v e r p o s s ) . . . cambiar −pos por −neg , −err ,
; ; −nosor & −o b j
;;======================================================================
; ;
;;=========================================================
; ;=== Module f o r e s t i m a t i o n pos / neg o f s e t o f s e n t e n c e s ===
;;=========================================================
( d e f i n e c a l c− i n i t i a l− s o r

( lambda ( l s )
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( cond
( ( n u l l ? l s ) ’ ( ) )
( ( l i s t a− a t o m i c a ? ( c a r l s ) )

( cons ’ n o s o r ( c a l c− i n i t i a l− s o r ( c d r l s ) ) ) )
( e l s e ( cons ( c a l k y ( c a r l s ) )

( c a l c− i n i t i a l− s o r ( c d r l s ) ) ) ) ) ) )

; ; c a l c− i n i t i a l− s o r 2 V e r s i o n 2: c a l l l i k e ( c a l c− i n i t i a l− s o r 2 l s 1 ) , c t d = 1
( d e f i n e c a l c− i n i t i a l− s o r 2

( lambda ( l s c t d )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( l i s t a− a t o m i c a ? ( c a r l s ) )

( cons ’ n o s o r
( c a l c− i n i t i a l− s o r 2 ( c d r l s ) (+ c t d 1 ) ) ) )

( e l s e
( cons ( c a l k y 2 ( c a r l s ) c t d )

( c a l c− i n i t i a l− s o r 2 ( c d r l s )
(+ c t d 1 ) ) ) ) ) ) )

; ; a u x i l i a r o f c a l k y
( d e f i n e goodyone−4ca lc ?

( lambda ( l s )
( and

( l i s t ? l s )
( v e c t o r ? ( c a r l s ) )
( or

( equal ? ( c a r ( c d r l s ) ) ’ pos )
( equal ? ( c a r ( c d r l s ) ) ’ neg )
( equal ? ( c a r ( c d r l s ) ) ’ o b j ) ) ) ) )

; ; r e t o r n a l i s t a de e i t h e r NOSORs or ( cp cn co )
( d e f i n e f i l t r a − i n i t i a l − s o r

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r l ) ’ n o s o r )

( cons ’ n o s o r ( f i l t r a − i n i t i a l − s o r ( c d r l ) ) ) )
( ( l i s t ? ( c a r l ) ) ( cons ( c a l c u l a d o r−y ( c a r l ) 0 0 0 )

( f i l t r a − i n i t i a l − s o r ( c d r l ) ) ) )
( e l s e ( cons ’ error ( f i l t r a − i n i t i a l − s o r ( c d r l ) ) ) ) ) ) )

; ; a u x i l i a r de f i l t r a − i n i t i a l − s o r
( d e f i n e c a l c u l a d o r−y

( lambda ( l cp cn co )
( cond

( ( n u l l ? l ) ( l i s t cp cn co ) )
( ( equal ? ( c a r l ) ’ o b j )

( c a l c u l a d o r−y ( c d r l ) cp cn (+ co 1 ) ) )
( ( equal ? ( c a r l ) ’ neg )

( c a l c u l a d o r−y ( c d r l ) cp (+ cn 1) co ) )
( ( equal ? ( c a r l ) ’ pos )
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( c a l c u l a d o r−y ( c d r l ) (+ cp 1) cn co ) )
( e l s e ( c a l c u l a d o r−y ( c d r l ) cp cn co ) ) ) ) )

; ; macro d e c i d i d o r
( d e f i n e dec id idor−max

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? ( c a r l s ) ’ n o s o r )

( cons ’ n o s o r ( dec id idor−max ( c d r l s ) ) ) )
( e l s e ( cons ( d e c i d i d o r ( c a r l s ) )

( dec id idor−max ( c d r l s ) ) ) ) ) ) )

; ; d e c i d e e l SOR de l a o r a c i o n generando e i t h e r POS or NEG:
; ; a u x i l i a r de dec id idor−max
( d e f i n e d e c i d i d o r

( lambda ( l )
( cond

( ( n u l l ? l ) ’ error )
((> ( c a r l ) ( c a r ( c d r l ) ) ) ’ pos )
((< ( c a r l ) ( c a r ( c d r l ) ) ) ’ neg )

; ; ( (= ( car l ) ( car ( cdr l ) ) ) ’ o b j )
( ( = ( c a r l ) ( c a r ( c d r l ) ) ) ’ o b j )

( e l s e ’ u n d e c i d e d ) ) ) )

; ; c u e n t a c u a n t o s f u e r o n POS en r e s u l t a d o de DECIDIDOR−MAX
( d e f i n e cuan tos− son−pos

( lambda ( l )
( i f ( n u l l ? l )

0
( i f ( equal ? ( c a r l ) ’ pos )

(+ 1 ( cuan tos− son−pos ( c d r l ) ) )
( cuan tos− son−pos ( c d r l ) ) ) ) ) )

; ; c u e n t a c u a n t o s f u e r o n NEG en r e s u l t a d o de DECIDIDOR−MAX
( d e f i n e cuan tos−son−neg

( lambda ( l )
( i f ( n u l l ? l )

0
( i f ( equal ? ( c a r l ) ’ neg )

(+ 1 ( cuan tos−son−neg ( c d r l ) ) )
( cuan tos−son−neg ( c d r l ) ) ) ) ) )

; ; c u e n t a c u a n t o s f u e r o n OBJ en r e s u l t a d o de DECIDIDOR−MAX
( d e f i n e cu an t o s− so n−ob j

( lambda ( l )
( i f ( n u l l ? l )

0
( i f ( equal ? ( c a r l ) ’ o b j )

(+ 1 ( c ua n to s− so n−ob j ( c d r l ) ) )
( cu an t o s− so n−ob j ( c d r l ) ) ) ) ) )

; ; Genera l i s t a de l o s numeros de l a s o r a c i o n e s que r e s u l t a r o n OBJ .
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; ; Numor=numero de o r a c i o n
( d e f i n e c u a l e s− s o n−o b j

( lambda ( l numor )
( i f ( n u l l ? l )

’ ( )
( i f ( equal ? ( c a r l ) ’ o b j )

( cons numor ( c u a l e s− s o n−o b j ( c d r l ) (+ numor 1 ) ) )
( c u a l e s− s o n−o b j ( c d r l ) (+ numor 1 ) ) ) ) ) )

; ; c u e n t a c u a n t o s f u e r o n ERROR en r e s u l t a d o de DECIDIDOR−MAX
( d e f i n e c u a n t o s− s o n− e r r

( lambda ( l )
( i f ( n u l l ? l )

0
( i f ( equal ? ( c a r l ) ’ error )

(+ 1 ( c u a n t o s− s o n− e r r ( c d r l ) ) )
( c u a n t o s− s o n− e r r ( c d r l ) ) ) ) ) )

; c u e n t a c u a n t o s f u e r o n NOSOR en r e s u l t a d o de DECIDIDOR−MAX
( d e f i n e c u an t o s− s on−n os o r

( lambda ( l )
( i f ( n u l l ? l )

0
( i f ( equal ? ( c a r l ) ’ n o s o r )

(+ 1 ( cu a n t o s− s on−n os o r ( c d r l ) ) )
( c ua n to s− s on−n os o r ( c d r l ) ) ) ) ) )

;;===================================================================
; ;=== I n s t r u c c i o n e s para c o n s e g u i r r e s u l t a d o s para
; ; l a s o r a c i o n e s OBJ ===
;;===================================================================
; ;
; ;
; ; g e n e r a t e l i s t w i t h number o f s e n t e n c e s o f works c l a s s i f i e d as OBJ
( d e f i n e ex t r ae r−ob j− sennum

( lambda ( l s c t )
( i f ( n u l l ? l s )

’ ( )
( i f ( equal ? ( c a r l s ) ’ o b j )

( cons c t ( ex t r ae r−ob j− sennum ( c d r l s ) (+ c t 1 ) ) )
( ex t r ae r−ob j− sennum ( c d r l s ) (+ c t 1 ) ) ) ) ) )

; ; r e t u r n s l i s t o f form ( ( Num1 ( w1 w2 . . . wk ) ) . . .
; ; (NumK ( wk wj . . . wn ) ) ) :
; ; where Wk are works c l a s s i f i e d as OBJ .
( d e f i n e dame−pal−obj−alpha

( lambda ( l l s )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a r l )

( dame−pal−obj−alpha−pr ima ( c a r l ) l s ) )
( dame−pal−obj−alpha ( c d r l ) l s ) ) ) ) ) )
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; ; a u x i l i a r o f dame−pal−obj−alpha
( d e f i n e dame−pal−obj−alpha−pr ima

( lambda ( i t em l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( = i t em ( c a a r l s ) ) ( cons ( c a r ( c d r ( c a r l s ) ) )

( dame−pal−obj−alpha−pr ima i t em ( c d r l s ) ) ) )
( e l s e ( dame−pal−obj−alpha−pr ima i t em ( c d r l s ) ) ) ) ) )

; ; r e t u r n s l i s t o f t h e form
; ; ( ( numberSent ( sentNum . . . sentNumb ) ) . . . )
( d e f i n e s a c a p i o j o s

( lambda ( l a u g d i c t k )
( cond

( ( n u l l ? l a u g ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a a r l a u g )

( s u p e r− f l a t t e n ( s a c a p i o j o s− a u x
( c a r ( c d r ( c a r l a u g ) ) ) d i c t k ) ) )

( s a c a p i o j o s ( c d r l a u g ) d i c t k ) ) ) ) ) )

; ; a u x i l i a r t o s c a p i o j o s
( d e f i n e s a c a p i o j o s− a u x

( lambda ( l d i c c )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( s a c a p i o j o s−a u x−a u x ( c a r l ) d i c c )

( s a c a p i o j o s− a u x ( c d r l ) d i c c ) ) ) ) ) )

; ; a u x i l i a r o f s a c a p i o j o s−a u x
( d e f i n e s a c a p i o j o s−a u x−a u x

( lambda ( i t em d i c c )
( i f ( equal ? i t em ( c a a r d i c c ) )

( c a r ( cdd r ( c a r d i c c ) ) )
( s a c a p i o j o s−a u x−a u x i t em ( c d r d i c c ) ) ) ) )

; ; g e n e r a t e l i s t o f t h e form :
; ; ( ( NumOfSent ( o b j neg o b j pos neg pos pos neg neg neg neg ) ) . . . )
( d e f i n e cons igue−negpos

( lambda ( l a t l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a a r l s )

( s u p e r− f l a t t e n ( cons igue−negpos−aux
( c a r ( c d r ( c a r l s ) ) ) l a t ) ) )

( cons igue−negpos l a t ( c d r l s ) ) ) ) ) ) )

; ; a u x i l i a r t o c o n s i g u e−n e s p o s
( d e f i n e cons igue−negpos−aux

( lambda ( l l a t )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( cons igue−negpos−aux2 ( c a r l ) l a t 1 )

( cons igue−negpos−aux ( c d r l ) l a t ) ) ) ) ) )
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; ; a u x i l i a r t o cons igue−negpos−aux
( d e f i n e cons igue−negpos−aux2

( lambda ( numb l a t c t )
( cond

( ( n u l l ? l a t ) ’ ( ) )
( ( = numb c t ) ( cons ( c a r l a t )

( cons igue−negpos−aux2 numb ( c d r l a t ) (+ c t 1 ) ) ) )
( e l s e ( cons igue−negpos−aux2 numb ( c d r l a t ) (+ c t 1 ) ) ) ) ) )

; ; r e t u r n s a l i s t o f t h e form : ( ( numSent ( c o u n t p o s c o u n t n e g ) ) . . . )
( d e f i n e s a c a l e− b r i l l o

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a a r l s ) ( l i s t ( cuenta−pos−uhu

( c a r ( c d r ( c a r l s ) ) ) )
( cuenta−neg−uhu ( c a r ( c d r ( c a r l s ) ) ) ) ) )
( s a c a l e− b r i l l o ( c d r l s ) ) ) ) ) ) )

; ; c o u n t t h e POS o c c u r r e n c e s
( d e f i n e cuenta−pos−uhu

( lambda ( l )
( i f ( n u l l ? l )

0
( i f ( equal ? ( c a r l ) ’ pos )

(+ 1 ( cuenta−pos−uhu ( c d r l ) ) )
( cuenta−pos−uhu ( c d r l ) ) ) ) ) )

; ; c o u n t t h e NEG o c c u r r e n c e s
( d e f i n e cuenta−neg−uhu

( lambda ( l )
( i f ( n u l l ? l )

0
( i f ( equal ? ( c a r l ) ’ neg )

(+ 1 ( cuenta−neg−uhu ( c d r l ) ) )
( cuenta−neg−uhu ( c d r l ) ) ) ) ) )

; ; t a k e s t h e o u t p u t o f s a c a l e− b r i l l o and
; ; g e n e r a t e l i s t o f t h e form :
; ; ( ( NumSent pos / neg ) ( NumSent pos / neg ) )
; ; OJOOJOOJOOJOOJOOJOOJO
( d e f i n e p u l e− h e b i l l a

( lambda ( l s )
( i f ( n u l l ? l s )

’ ( )
( i f (> ( c a a r ( c d r ( c a r l s ) ) )

( c a r ( c d r ( c a r ( c d r ( c a r l s ) ) ) ) ) )
( cons ( l i s t ( c a a r l s ) ’ pos )

( p u l e− h e b i l l a ( c d r l s ) ) )
( cons ( l i s t ( c a a r l s ) ’ neg )

( p u l e− h e b i l l a ( c d r l s ) ) ) ) ) ) )

; ; t a k e s t h e o u t p u t o f s a c a l e− b r i l l o and g e n e r a t e l i s t o f t h e form :
; ; ( ( NumSent pos / neg ) ( NumSent pos / neg ) )
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( d e f i n e p u l e− h e b i l l a− p a r a p o s
( lambda ( l s )

( i f ( n u l l ? l s )
’ ( )
( i f (>= ( c a a r ( c d r ( c a r l s ) ) )

( c a r ( c d r ( c a r ( c d r ( c a r l s ) ) ) ) ) )
( cons ( l i s t ( c a a r l s ) ’ pos )

( p u l e− h e b i l l a− p a r a p o s ( c d r l s ) ) )
( cons ( l i s t ( c a a r l s ) ’ neg )

( p u l e− h e b i l l a− p a r a p o s ( c d r l s ) ) ) ) ) ) )

; ; t a k e s s a l i d a de p u l e− h e b i l l a and g e n e r a t e s new l i s t de r e s u l t a d o s
; ; w i t h o n l y pos / neg p a r t i c l e s
( d e f i n e new−wow

( lambda ( oldwow newcand )
( cond

( ( n u l l ? newcand ) ’ ( ) )
( e l s e ( b e g i n

( s e t ! newwow ( new−wow−aux oldwow ( c a r newcand ) 1 ) )
( new−wow newwow ( c d r newcand ) ) ) ) ) ) )

; ;
( d e f i n e new−wow−aux

( lambda ( o l d l l c t )
( cond

( ( n u l l ? o l d l ) ’ ( ) )
( ( equal ? ( c a r l ) c t ) ( cons ( c a r ( c d r l ) )

( new−wow−aux ( c d r o l d l ) l (+ c t 1 ) ) ) )
( e l s e ( cons ( c a r o l d l )

( new−wow−aux ( c d r o l d l ) l (+ c t 1 ) ) ) ) ) ) )

;;============================
;;============= END ==========
;;============================

; ;
( d e f i n e g r o u p−p o r s i a c a s o

( lambda ( l s )
( i f ( n u l l ? l s )

’ ( )
( cons ( l i s t ( c a r ( c d r ( c a r l s ) ) )

( g roup−por s i−aux ( c a r ( c d r ( c a r l s ) ) ) l s ) )
( g r o u p−p o r s i a c a s o ( c d r l s ) ) ) ) ) )

; ; a u x i l i a r o f g r o u p−p o r s i a c a s o
( d e f i n e g roup−por s i−aux

( lambda ( i t em l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? i t em ( c a r ( c d r ( c a r l s ) ) ) )

( cons ( c a a r l s )
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( g roup−por s i−aux i t em ( c d r l s ) ) ) )
( e l s e ( g roup−por s i−aux i t em ( c d r l s ) ) ) ) ) )

; ; v e r s i hay p a l a b r a s r e p r e t i d a s en l a s a l i d a
; ; de ” g r o u p−p o r s i a c a s o ”
( d e f i n e b a s t a r d s− r e p ?

( lambda ( l s )
( cond

( ( n u l l ? l s ) # f )
( ( member−weird−case ? ( c a a r l s )

( c d r l s ) ) # t )
( e l s e ( b a s t a r d s− r e p ? ( c d r l s ) ) ) ) ) )

( d e f i n e b a s t a r d s− r e p− p r i n t
( lambda ( l s )

( cond
( ( n u l l ? l s ) ’ ( ) )
( ( member−weird−case ?

( c a a r l s ) ( c d r l s ) ) ( cons
( member−weird−case−pr in t

( c a a r l s ) ( c d r l s ) )
( b a s t a r d s− r e p− p r i n t ( c d r l s ) ) ) )

( e l s e ( b a s t a r d s− r e p− p r i n t ( c d r l s ) ) ) ) ) )

( d e f i n e member−weird−case ?
( lambda ( i t em l s )

( cond
( ( n u l l ? l s ) # f )
( ( equal ? i t em ( c a a r l s ) ) # t )
( e l s e

( member−weird−case ? i t em ( c d r l s ) ) ) ) ) )
; ;
( d e f i n e member−weird−case−pr in t

( lambda ( i t em l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? i t em ( c a a r l s ) )

( cons ( c a r l s )
( member−weird−case−pr in t i t em ( c d r l s ) ) ) )

( e l s e ( member−weird−case−pr in t i t em ( c d r l s ) ) ) ) ) )

;;====================================
; ; c a l c u l a t e per fo rmance i n d i c a t o r s
; ; INPUT : TP , FP , FN , TN
; ; OUTPUT: ( A P R F1 )
;;====================================
( d e f i n e i n d c− c o n f u s i o n

( lambda ( t p fp fn t n )
( append ( i n d c− c o n f u s i o n 1 t p fp fn t n )

( i n d c− c o n f u s i o n 2
( i n d c− c o n f u s i o n 1 t p fp fn t n ) ) ) ) )
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( d e f i n e i n d c− c o n f u s i o n 1
( lambda ( t p fp fn t n )

( l i s t ( / (+ t p t n ) (+ (+ t p (+ t n fp ) ) fn ) )
( / t p (+ t p fp ) )
( / t p (+ t p fn ) ) ) ) )

( d e f i n e i n d c− c o n f u s i o n 2
( lambda ( l )

( l i s t ( / (∗ 2 (∗ ( c a r ( c d r l ) ) ( c a r ( cdd r l ) ) ) )
(+ ( c a r ( c d r l ) ) ( c a r ( cdd r l ) ) ) ) ) ) )

;;=====================
; ;=== V e r s i o n TWO =====
;;=====================
( d e f i n e i n d c 2− c o n f u s i o n 2

( lambda ( t p fp fn t n )
( append ( i n d c 2− c o n f u s i o n 2 1 t p fp fn t n )

( i n d c 2− c o n f u s i o n 2 2
( i n d c 2− c o n f u s i o n 2 1 t p fp fn t n ) ) ) ) )

( d e f i n e i n d c 2− c o n f u s i o n 2 1
( lambda ( t p fp fn t n )

( l i s t ( / (+ t p (+ t n 1 1 1 ) )
(+ (+ t p (+ t n fp ) ) (+ fn 1 1 1 ) ) )

( / (+ t p 35) (+ t p (+ fp 3 5 ) ) )
( / (+ t p 35) (+ t p (+ 35 fn ) ) ) ) ) )

( d e f i n e i n d c 2− c o n f u s i o n 2 2
( lambda ( l )

( l i s t ( / (∗ 2 (∗ ( c a r ( c d r l ) ) ( c a r ( cdd r l ) ) ) )
(+ ( c a r ( c d r l ) ) ( c a r ( cdd r l ) ) ) ) ) ) )

; ;
;;============================
; ;=== Manejar OBJs ===========
;;============================
; ; Llamar como ( dame− losobj7 n e g s s e t / p o s s e t low 1)
( d e f i n e dame− losobj7

( lambda ( l s low c t )
( cond

( ( n u l l ? low ) ’ ( ) )
( ( = ( c a r low ) c t ) ( cons ( dame− losob7−aux l s

( c a r low ) )
( dame− losobj7 l s ( c d r low ) (+ c t 1 ) ) ) )
( e l s e ( dame− losobj7 l s ( c d r low ) 1 ) ) ) ) )

;;========================
; ;=== END Manejar OBJs ===
;;========================
; ;
; ;
;;===============================================
; ;=== START s t a t i s t i c s f o r s c o r e s o f L e x i c o n s ===
;;===============================================
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; ;
; ; r e t u r n s t h e number o f p o s s c o r e t h a t are numbers
; ; AND d i f f e r e n t from z e r o
( d e f i n e cuan tos−sonnum−pos lex

( lambda ( l s )
( cond

( ( n u l l ? l s ) 0 )
( ( and

( number ? ( g e t p o s s c o r e ( c a a r l s ) ) )
( not (= ( g e t n e g s c o r e ( c a a r l s ) ) 0 . 0 ) ) )

(+ 1 ( cuantos−sonnum−pos lex ( c d r l s ) ) ) )
( e l s e ( cuan tos−sonnum−pos lex ( c d r l s ) ) ) ) ) )

; ; r e t u r n s t h e number o f n e g s c o r e t h a t are numbers AND
; ; d i f f e r e n t from z e r o f o r a g i v e n l e x i c o n ” l s ”
( d e f i n e cuantos−sonnum−neglex

( lambda ( l s )
( cond

( ( n u l l ? l s ) 0 )
( ( and

( number ? ( g e t n e g s c o r e ( c a a r l s ) ) )
( not (= ( g e t n e g s c o r e ( c a a r l s ) ) 0 . 0 ) ) )

(+ 1 ( cuantos−sonnum−neglex ( c d r l s ) ) ) )
( e l s e ( cuantos−sonnum−neglex ( c d r l s ) ) ) ) ) )

; ; r e t u r n s t h e number o f n e g s c o r e t h a t are numbers AND
; ; d i f f e r e n t from z e r o f o r a g i v e n l e x i c o n ” l s ”
( d e f i n e cuan tos− sonnum−ob j l ex

( lambda ( l s )
( cond

( ( n u l l ? l s ) 0 )
( ( and

( number ? ( g e t o b j s c o r e ( c a a r l s ) ) )
( not (= ( g e t o b j s c o r e ( c a a r l s ) ) 0 . 0 ) ) )

(+ 1 ( cuan tos− sonnum−ob j l ex ( c d r l s ) ) ) )
( e l s e ( cuan tos− sonnum−ob j l ex ( c d r l s ) ) ) ) ) )

; ; r e t u r n s t h e summation o f p o s s c o r e s t h a t are numbers AND
; ; d i f f e r e n t from z e r o f o r a g i v e n l e x i c o n ” l s ”
( d e f i n e sumar−possco re

( lambda ( l s )
( cond

( ( n u l l ? l s ) 0 )
( ( number ? ( g e t p o s s c o r e ( c a a r l s ) ) )

(+ ( g e t p o s s c o r e ( c a a r l s ) )
( sumar−possco re ( c d r l s ) ) ) )

( e l s e ( sumar−possco re ( c d r l s ) ) ) ) ) )

; ; r e t u r n s t h e summation o f n e g s c o r e s t h a t are numbers AND
; ; d i f f e r e n t from z e r o f o r a g i v e n l e x i c o n ” l s ”
( d e f i n e sumar−negscore

( lambda ( l s )
( cond
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( ( n u l l ? l s ) 0 )
( ( number ? ( g e t n e g s c o r e ( c a a r l s ) ) )

(+ ( g e t n e g s c o r e ( c a a r l s ) )
( sumar−negscore ( c d r l s ) ) ) )

( e l s e ( sumar−negscore ( c d r l s ) ) ) ) ) )

; ; r e t u r n s t h e summation o f o b j s c o r e s t h a t are numbers
; ; f o r a g i v e n l e x i c o n ” l s ”
( d e f i n e s u m a r−o b j s c o r e

( lambda ( l s )
( cond

( ( n u l l ? l s ) 0 )
( ( number ? ( g e t o b j s c o r e ( c a a r l s ) ) )

(+ ( g e t o b j s c o r e ( c a a r l s ) )
( s u m a r−o b j s c o r e ( c d r l s ) ) ) )

( e l s e ( s u m a r−o b j s c o r e ( c d r l s ) ) ) ) ) )

; ; r e t u r n max POSSCORE o f a g i v e n l e x i c o n ” l s ”
; ; c a l l e d f i r s t t i m e w i t h max = −1 .0 ,
; ; f u n k = { g e t p o s s c o r e , g e t n e g s c o r e , g e t o b j s c o r e }
( d e f i n e dame−max−lex

( lambda ( l s max )
( i f ( n u l l ? l s )

max
( i f ( number ? ( g e t o b j s c o r e ( c a a r l s ) ) )

( i f (> ( g e t o b j s c o r e ( c a a r l s ) ) max )
( dame−max−lex ( c d r l s )

( g e t o b j s c o r e ( c a a r l s ) ) )
( dame−max−lex ( c d r l s ) max ) )

( dame−max−lex ( c d r l s ) max ) ) ) ) )

; ; r e t u r n min POSSCORE o f a g i v e n l e x i c o n ” l s ”
; ; c a l l f i r s t t i m e win min = 9 9 . 0 ,
; ; f u n k = { g e t p o s s c o r e , g e t n e g s c o r e , g e t o b j s c o r e }
( d e f i n e dame−min−lex

( lambda ( l s min )
( i f ( n u l l ? l s )

min
( i f ( number ? ( g e t o b j s c o r e ( c a a r l s ) ) )

( i f (< ( g e t o b j s c o r e ( c a a r l s ) ) min )
( dame−min−lex ( c d r l s )

( g e t o b j s c o r e ( c a a r l s ) ) )
( dame−min−lex ( c d r l s ) min ) )

( dame−min−lex ( c d r l s ) min ) ) ) ) )

;;=========================================
; ;=== END s t a t i s t i c s s c o r e s o f LEXICONS ===
;;=========================================
; ;

;;============================================
; ;=== R e b u i l d PORSIACASO =====================
; ;=== ( p o r s i a c a s o p o r s i a c a s o p o r s i a c a s o 1) ===
;;============================================
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( d e f i n e b u i l d p o r s i
( lambda ( c t l s )

( cond
( ( = c t 183) ’ ( ) )
( e l s e

( cons ( l i s t c t ( b u i l d p o r s i− a u x c t l s ) )
( b u i l d p o r s i (+ c t 1 ) l s ) ) ) ) ) )

; ; a u x i l i a r f o r BUILDPORSI
( d e f i n e b u i l d p o r s i− a u x

( lambda ( c l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( = ( c a a r l ) c ) ( cons ( c a r ( c d r ( c a r l ) ) )

( b u i l d p o r s i− a u x c ( c d r l ) ) ) )
( e l s e ( b u i l d p o r s i− a u x c ( c d r l ) ) ) ) ) )

; ; g e t a l i s t w i t h t h e s e n t e n c e numbers t h a t were n o t OBJ
( d e f i n e t e l l b l a n k y s s

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ ( ) )

( cons ( c a a r l s ) ( t e l l b l a n k y s s ( c d r l s ) ) ) )
( e l s e ( t e l l b l a n k y s s ( c d r l s ) ) ) ) ) )

;;=================================== AUXILIAR PROCEDURES =============
; ;
;;==========================
; ;=== SNOC ( mysnoc ) ========
;;==========================
( d e f i n e mysnoc

( lambda ( i t em l s t )
( cond

( ( n u l l ? l s t ) ( cons i t em ’ ( ) ) )
( e l s e ( cons ( c a r l s t ) ( mysnoc i t em ( c d r l s t ) ) ) ) ) ) )

;;==================================== END AUXILIAR PROCS ==============
; ;
;;======================================================================
; ;=== B u i l d a d i c t i o n a r i o or WORD, # t i m e s shows i n s e t , and i n which
; ; s e n t e n c c e s t h e word shows up ===
;;======================================================================
; ; Creo que : R e c e i v e s S a l i d a D e B u i l d p o r s i , l i s t a de poss / negs ( 5 3 3 1 ) ,
; ; n e g s e n t s & p o s s e n t s ( ap lanados )
; ;
;;======================================================================
; ; a p l i c a r a l a s a l i d a de ’ saca−word−al l−s in ’
;;======================================================================
( d e f i n e d icky01

( lambda ( l s l a l s num )
( cond

( ( n u l l ? l s ) ’ ( ) )
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( e l s e ( cons ( d icky01−aux ( c a r l s ) l a l s num )
( d i cky01 ( c d r l s ) l a l s (+ num 1 ) ) ) ) ) ) )

; ; a u x i l i a r t o d i c k y 0 1
; ; d e v u e l v e l i s t a de l a forma :
; ; ”( (W1 frequencyOfW1 Lis tOfSentenceNumbersWhereW1Shows ) . . . . )”
( d e f i n e dicky01−aux

( lambda ( l l s numsent )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( member ( c a r l ) l s ) ( cons ( l i s t ( c a r l ) ( m e m b e r− l i s t a− a l l

( c a r l ) l s numsent ) ) ( d icky01−aux ( c d r l ) l s numsent ) ) )
( e l s e ( cons ( l i s t ( c a r l ) ( l i s t numsent ) )

( d icky01−aux ( c d r l ) l s numsent ) ) ) ) ) )

; ; member−all ?
( d e f i n e member−al l ?

( lambda ( i t em l s )
( i f ( n u l l ? l s )

# f
( or

( equal ? ( c a r l s ) i t em )
( and

( not ( p a i r ? ( c a r l s ) ) )
( member−al l ? i t em ( c d r l s ) ) )

( and
( p a i r ? ( c a r l s ) )
( or

( member−al l ? i t em ( c a r l s ) )
( member−al l ? i t em ( c d r l s ) ) ) ) ) ) ) )

; ; member−counter−al l
( d e f i n e member−coun te r−a l l

( lambda ( i t em l s )
( cond

( ( n u l l ? l s ) 1 )
( ( equal ? ( c a r l s ) i t em )

(+ 1 ( member−coun te r−a l l i t em ( c d r l s ) ) ) )
( e l s e ( member−coun te r−a l l i t em ( c d r l s ) ) ) ) ) )

; ; m e m b e r− l i s t a−a l l
( d e f i n e m e m b e r− l i s t a− a l l

( lambda ( i t em l s num )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? ( c a r l s ) i t em ) ( cons num

( m e m b e r− l i s t a− a l l i t em ( c d r l s ) (+ num 1 ) ) ) )
( e l s e ( m e m b e r− l i s t a− a l l i t em ( c d r l s ) num ) ) ) ) )

; ;
( d e f i n e w e i r d− f l a t t e n

( lambda ( l s t )
( cond
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( ( n u l l ? l s t ) ’ ( ) )
( ( atom ? ( c a a r l s t ) ) ( cons ( c a r l s t )

( w e i r d− f l a t t e n ( c d r l s t ) ) ) )
( e l s e ( cons ( w e i r d− f l a t t e n ( c a r l s t ) )

( w e i r d− f l a t t e n ( c d r l s t ) ) ) ) ) ) )

( d e f i n e weird−atom ?
( lambda ( x )

( and ( not ( p a i r ? x ) ) ( not ( n u l l ? x ) ) ) ) )

; ; c o n s t r u y e p a r e s ”( ( p a l a b r a OracionDondeAparece ) . . . )”
( d e f i n e a r r e g l a− p a r e s

( lambda ( l s )
( i f ( odd ? ( l e n g t h l s ) )

’ ( )
( a r r e g l a−p a r e s− a u x l s ) ) ) )

; ; a u x u l i a r de a r r e g l a−p a r e s
( d e f i n e a r r e g l a−p a r e s− a u x

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a r l s ) ( c a r ( c d r l s ) ) )

( a r r e g l a−p a r e s− a u x ( cdd r l s ) ) ) ) ) ) )

; ; member para l i s t a de p a r e s de l a forma
; ; ”( ( w1 number ) ( w2 number ) . . . (wN number ) ) ” , pero c u e n t a
( d e f i n e member−pares−cnt

( lambda ( i t em l s p )
( cond

( ( n u l l ? l s p ) 0 )
( ( equal ? ( c a a r l s p ) i t em )

(+ 1 ( member−pares−cnt i t em ( c d r l s p ) ) ) )
( e l s e ( member−pares−cnt i t em ( c d r l s p ) ) ) ) ) )

; ;
( d e f i n e member−pares−mklst

( lambda ( i t em l s p )
( cond

( ( n u l l ? l s p ) ’ ( ) )
( ( equal ? ( c a a r l s p ) i t em ) ( cons ( c a r ( c d r ( c a r l s p ) ) )

( member−pares−mklst i t em ( c d r l s p ) ) ) )
( e l s e ( member−pares−mklst i t em ( c d r l s p ) ) ) ) ) )

; ; genera v e c t o r ( p a l a b r a f r e q ( n1 n2 n3 ) ) con r e p e t i c i o n e s

( d e f i n e c o n t e o s i
( lambda ( l s )

( cond
( ( n u l l ? l s ) ’ ( ) )
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( e l s e ( cons ( l i s t ( c a a r l s )
( member−pares−cnt ( c a a r l s ) l s )
( member−pares−mklst ( c a a r l s ) l s ) )

( c o n t e o s i ( c d r l s ) ) ) ) ) ) )

; ; VARIABLE RESULTADO s i n r e p e t i c i o n d e l DICCIONARIO
( s e t ! w o r l d a l f a ’ ( ) )

; ; remover o c u r r e n c i a s r e p e t i d a s
( d e f i n e r emove r− sob r a s

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e

( b e g i n
( s e t ! w o r l d a l f a ( snoc ( c a r l s ) w o r l d a l f a ) )
( r emove r− sob r a s ( d e s−h a c e r ( c a r l s )

( c d r l s ) ) ) ) ) ) ) )

; ; a u x i l i a r de remover− sobras
( d e f i n e d e s−h a c e r

( lambda ( l i t e m l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a a r l ) ( c a r l i t e m ) )

( d e s−h a c e r l i t e m ( c d r l ) ) )
( e l s e ( cons ( c a r l )

( d e s−h a c e r l i t e m ( c d r l ) ) ) ) ) ) )

; ;
;;============================
; ;=== f l a t t e n ( s u p e r ) ========
;;============================
( d e f i n e s u p e r− f l a t t e n

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( p a i r ? ( c a r l s ) )

( append ( s u p e r− f l a t t e n ( c a r l s ) )
( s u p e r− f l a t t e n ( c d r l s ) ) ) )

( e l s e ( cons ( c a r l s )
( s u p e r− f l a t t e n ( c d r l s ) ) ) ) ) ) )

; ;
;;===========================================================
; ;=== o b t a i n f l a t l i s t o f words from Outpu t o f P ar se r =======
; ;=== r e t u r n i n g ( ( NS1 ( w1 w2 wn ) . . . ( NSn ( w1 w2 wn ) ) ) ====
;;===========================================================
( d e f i n e saca−word−a l l

( lambda ( l s num )
( cond

( ( n u l l ? l s ) ’ ( ) )
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( e l s e ( cons ( l i s t num ( d e s p o j a r− z ( c a r l s ) ) )
( s aca−word−a l l ( c d r l s ) (+ num 1 ) ) ) ) ) ) )

; ; a u x i l i a r o f saca−word−al l
( d e f i n e d e s p o j a r− z

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( c a a r l s ) ( d e s p o j a r− z ( c d r l s ) ) ) ) ) ) )

; ; same as saca−word−al l pero s i n NSn
( d e f i n e s a c a−w o r d−a l l− s i n

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( d e s p o j a r− z ( c a r l s ) )

( s a c a−w o r d−a l l− s i n ( c d r l s ) ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Load L i b r a r i e s S e c t i o n −−−−−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code / mi iodec2014 . s s ” )
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code / v a r i o u s . s s ” )
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code / p r e f i l t e r . s s ” )
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code / l e x e d i t o r . s s ” )
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code / iowacode23nov2014 . s s ” )
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; I n i t i a l i s e Globa l B i n d i n g s −−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data /

mylexposnegob jv7 . s s ” )
( s e t ! t h e l e x r e a d b u f f e r )
; ;
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data /

mylexnegsv7 . s s ” )
( s e t ! n e g l e x r e a d b u f f e r )
; ;
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data /

mylexpossv7 . s s ” )
( s e t ! p o s l e x r e a d b u f f e r )
; ;
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data /

mylexob j sv7 . s s ” )
( s e t ! o b j l e x r e a d b u f f e r )
; ;
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data /

o u t p u t t a g s p o s v 7 . t x t ” )
( s e t ! p o s s e n t s r e a d b u f f e r )
; ;
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data /

o u t p u t t a g s n e g v 7 . t x t ” )
( s e t ! n e g s e n t s r e a d b u f f e r )
; ;
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; ;
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data / s e n t e n c e d a t a /

s e n t e n c e s p o s . t x t ” )
( s e t ! p o s o r i g s r e a d b u f f e r )
; ;
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Data / s e n t e n c e d a t a /

s e n t e n c e s n e g . t x t ” )
( s e t ! n e g o r i g s r e a d b u f f e r )
; ;
; ; ( r e a d− f i l e ” / Users / o r e s t e s a p p e l / Desk top / SchemeLibrary / Data / s e n t e n c e d a t a /

s e n t e n c e s o b j . t x t ” )
; ; ( s e t ! o b j o r i g s r e a d b u f f e r )
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Programs f o r C a l c u l a t i n g Seman t i c O r i e n t a t i o n o f a L i s t o f S e n t e n c e s −−−
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; R e t u r n s a l i s t w i th on ly o b j e c t s from l e x i c o n or ’ n o w o r d s f o r s e n t e n c e ’ symbol
( d e f i n e g e t v e c s o n l y

( lambda ( l s t )
( i f ( n u l l ? l s t )

’ ( )
( i f ( n u l l ? ( g e t v e c s o n l y− a u x ( c a r l s t ) ) )

( cons ’ n o w o r d s f o r s e n t e n c e ( g e t v e c s o n l y ( c d r l s t ) ) )
( cons ( g e t v e c s o n l y− a u x ( c a r l s t ) )

( g e t v e c s o n l y ( c d r l s t ) ) ) ) ) ) )

; ; Aux f u n c t i o n t o g e t v e c s o n l y ( works a t t h e s e n t e n c e l e v e l )
( d e f i n e g e t v e c s o n l y− a u x

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( symbol ? ( c a r l s ) ) ( g e t v e c s o n l y− a u x ( c d r l s ) ) )
( ( and

( l i s t ? ( c a r l s ) )
( v e c t o r ? ( c a a r l s ) ) ) ( cons ( c a r l s )
( g e t v e c s o n l y− a u x ( c d r l s ) ) ) )

( e l s e ( g e t v e c s o n l y− a u x ( c d r l s ) ) ) ) ) )

;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Some GLOBAL s u p p o r t f u n c t i o n s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; y i e l d s t h e number o f s e n t e n c e s coming o u t o f ’ g e t y o u r b e a r i n g s ’
; ; w i th ” n o t e r m s n v a r ”
( d e f i n e v e r s y

( lambda ( l )
( cond

( ( n u l l ? l ) 0 )
( ( e q u a l ? ( c a r l ) ’ n o t e r m s n v a r ) (+ ( v e r s y ( c d r l ) ) 1 ) )
( e l s e ( v e r s y ( c d r l ) ) ) ) ) )

; ; l i k e ve r sy , b u t r e t u r n s a l i s t w i th a l l s e n t e n c e numbers i n s t e a d
( d e f i n e v e r s y 2
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( lambda ( l c )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( e q u a l ? ( c a r l ) ’ n o t e r m s n v a r ) ( cons c ( v e r s y 2 ( c d r l )

(+ c 1 ) ) ) )
( e l s e ( v e r s y 2 ( c d r l ) (+ c 1 ) ) ) ) ) )

; ; o b t a i n o r i g i n a l s e n t e n c e g i v e n t h e s e n t e n c e number
; ; s e n t e n c e numbers come i n a l i s t o f i n t e g e r s ; t y p e = ’n ’ o r ’p ’
( d e f i n e s a c a s e n t y

( lambda ( l s t y p e )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( i f ( e q u a l ? t y p e ’ n )

( cons ( s a c a s e n t y− a u x ( c a r l s ) n e g o r i g s 1 )
( s a c a s e n t y ( c d r l s ) t y p e ) )

( cons ( s a c a s e n t y− a u x ( c a r l s ) p o s o r i g s 1 )
( s a c a s e n t y ( c d r l s ) t y p e ) ) ) ) ) ) )

; ; a u x u l i a r f u n c t i o n de s a c a s e n t y
( d e f i n e s a c a s e n t y− a u x

( lambda (numm l o s o r i g c u r s o r )
( cond

( ( n u l l ? l o s o r i g ) ’ ( ) )
( ( = numm c u r s o r ) ( cons ( c a r l o s o r i g )

( s a c a s e n t y− a u x numm
( c d r l o s o r i g ) (+ c u r s o r 1 ) ) ) )

( e l s e ( s a c a s e n t y− a u x numm ( c d r l o s o r i g ) (+ c u r s o r 1 ) ) ) ) ) )

; ; r e t u r n o r a c i o n X de l a s a l i d a de ” g e y t o u r b e a r i n g s ”
( d e f i n e o r a c i o n−x

( lambda ( l s t t a r g e t c o u n t )
( cond

( ( n u l l ? l s t ) ’ ou t−of− r ange )
( ( = t a r g e t c o u n t ) ( c a r l s t ) )
( e l s e ( o r a c i o n−x ( c d r l s t ) t a r g e t (+ c o u n t 1 ) ) ) ) ) )

; ; L i s t a l l PoS t a g s i n t h e l i s t o f s e n t e n e s g e n e r a t e d i n Python
( d e f i n e g e t m e t a g s p o s p

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( e l s e ( cons ( ge tme tagsposp−aux ( c a r l s t ) ) ( g e t m e t a g s p o s p

( c d r l s t ) ) ) ) ) ) )

; ; aux f o r g e t m e t a g s p o s p
( d e f i n e ge tme tagsposp−aux

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( c a r ( c d r ( c a r l ) ) ) ( ge tme tagsposp−aux

( c d r l ) ) ) ) ) ) )
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; ; f l a t t e n a g i v e n l i s t
( d e f i n e m y f l a t t e n−x

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( p a i r ? ( c a r l s ) ) ( append ( m y f l a t t e n−x ( c a r l s ) )

( m y f l a t t e n−x ( c d r l s ) ) ) )
( e l s e ( cons ( c a r l s ) ( m y f l a t t e n−x ( c d r l s ) ) ) ) ) ) )

; ; remove d u p l i c a t e s from a f l a t l i s t o f symbols
( d e f i n e r e m d u p s m y f l a t t e n

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
((> ( l e n g t h l s ) 1 ) ( i f ( member ( c a r l s ) ( c d r l s ) )

( r e m d u p s m y f l a t t e n ( c d r l s ) )
( cons ( c a r l s )

( r e m d u p s m y f l a t t e n
( c d r l s ) ) ) ) )

( e l s e ( cons ( c a r l s ) ( r e m d u p s m y f l a t t e n
( c d r l s ) ) ) ) ) ) )

; ; d sds
( d e f i n e who le th ing−x

( lambda ( l s )
( r e m d u p s m y f l a t t e n ( m y f l a t t e n−x ( g e t m e t a g s p o s p l s ) ) ) ) )

; ; chage t h e pos s c o r e and n e g s c o r e f o r l i s t o f
; ; t h e form ( v1 neg )
( d e f i n e c a m b i a s c o r e s−n e g l e x

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( e q u a l ? ( c a r ( c d r ( c a r l s ) ) ) ’ neg )

( cons ( ca mb ia sc o r e s−a ux
( c a r l s ) ) ( c a m b i a s c o r e s−n e g l e x ( c d r l s ) ) ) )

( e l s e ( cons ( c a r l s ) ( c a m b i a s c o r e s−n e g l e x
( c d r l s ) ) ) ) ) ) )

; ; a u x i l i a r f u n c t i o n o f c a m b i a s c o r e s−n e g l e x
( d e f i n e ca mb ia sc o r e s−a ux

( lambda ( l )
( l i s t ( l i s t−>v e c t o r ( l i s t ( ge tword ( c a r l ) )

( g e t p o s ( c a r l ) )
( g e t n e g s c o r e ( c a r l ) )
( g e t p o s s c o r e ( c a r l ) )
( g e t o b j s c o r e ( c a r l ) )
( g e t s o r ( c a r l ) )
( g e t m a x d i s t ( c a r l ) )
( g e t m i n d i s t ( c a r l ) )
( g e t u p d t i n d e x

( c a r l ) ) ) )
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( c a r ( c d r l ) ) ) ) )

;;============================================
; ; === check c o n t e n t s a f t e r g e t y o u r b e a r i n g s ===
;;============================================
; ; d e v u l e v e l i s t a de o r a c i o n e s que no t i e n e n n i un s o l o v e c t o r ,
; ; con e l numero de o r a c i o n
( d e f i n e a f t e r b e a r i n g s

( lambda ( l s c t )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( and

( l i s t ? ( c a r l s ) )
( t o d o s a t o m s ? ( c a r l s ) ) ) ( cons ( l i s t c t ( c a r l s ) )
( a f t e r b e a r i n g s ( c d r l s ) (+ c t 1 ) ) ) )

( e l s e ( a f t e r b e a r i n g s ( c d r l s ) (+ c t 1 ) ) ) ) ) )

; ; aux de a f t e r b e a r i n g s
( d e f i n e t o d o s a t o m s ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( ( atom ? ( c a r l ) ) ( t o d o s a t o m s ? ( c d r l ) ) )
( e l s e # f ) ) ) )

; ; d e v u l e v e l i s t a de o r a c i o n e s que t i e n e n por l o menos un
; ; v e c t o r , con e l numero de o r a c i o n
( d e f i n e a f t e r b e a r i n g s v e c

( lambda ( l s c t )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( and

( l i s t ? ( c a r l s ) )
( t o d o s l i s t a b u e n a ? ( c a r l s ) ) )

( cons ( l i s t c t ( c a r l s ) )
( a f t e r b e a r i n g s v e c ( c d r l s ) (+ c t 1 ) ) ) )

( e l s e ( a f t e r b e a r i n g s v e c ( c d r l s )
(+ c t 1 ) ) ) ) ) )

; ; aux de a f t e r b e a r i n g s v e c
( d e f i n e t o d o s l i s t a b u e n a ?

( lambda ( l )
( cond

( ( n u l l ? l ) # f )
( ( atom ? ( c a r l ) ) ( t o d o s l i s t a b u e n a ? ( c d r l ) ) )
( ( v e c t o r ? ( c a a r l ) ) # t )
( e l s e ( t o d o s l i s t a b u e n a ? ( c d r l ) ) ) ) ) )

; ; r e t o r n a v e r da d s i t o d o s l o s e l e m e n t o s de l a l i s t a son
; ; l i s t a s t ambien
( d e f i n e m y− s o n t o d o s l i s t a s ?

( lambda ( l s )
( cond

( ( n u l l ? l s ) # t )
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( ( l i s t ? ( c a r l s ) ) ( m y− s o n t o d o s l i s t a s ? ( c d r l s ) ) )
( e l s e # f ) ) ) )

; ; v e r s i e l r e s u l t a d o de G e t y o u r b e a r i n g s es
; ; comple t amen te k o s c h e r
( d e f i n e k o s c h e r b e a r i n g s ?

( lambda ( l s )
( i f ( n o t ( l i s t ? ( c a r l s ) ) )

# f
( k o s c h e r b e a r i n g s 2 ? l s ) ) ) )

; ; a u x i l i a r o f k o s c h e r b e a r i n g s ?
( d e f i n e k o s c h e r b e a r i n g s 2 ?

( lambda ( l s )
( cond

( ( n u l l ? l s ) # t )
( ( o r

( l i s t a− a t o m i c a ? ( c a r l s ) )
( l i s t a−m i x t a ? ( c a r l s ) )
( l i s t a− v e c t o r e s ? ( c a r l s ) ) )

( k o s c h e r b e a r i n g s 2 ? ( c d r l s ) ) )
( e l s e # f ) ) ) )

; ; a u x i l i a r de k o s c h e r b e a r i n g s ?
( d e f i n e l i s t a− a t o m i c a ?

( lambda ( l )
( t o d o s a t o m s ? l ) ) )

; ; a u x i l i a r de k o s c h e r b e a r i n g s ?
( d e f i n e l i s t a−m i x t a ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( ( o r

( atom ? ( c a r l ) )
( and

( l i s t ? ( c a r l ) )
( v e c t o r ? ( c a a r l ) )
( atom ? ( c a r ( c d r ( c a r l ) ) ) ) ) )

( l i s t a−m i x t a ? ( c d r l ) ) )
( e l s e # f ) ) ) )

; ; a u x i l i a r de k o s c h e r b e a r i n g s ?
( d e f i n e l i s t a− v e c t o r e s ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( ( and

( l i s t ? ( c a r l ) )
( v e c t o r ? ( c a a r l ) )
( atom ? ( c a r ( c d r ( c a r l ) ) ) ) )

( l i s t a− v e c t o r e s ? ( c d r l ) ) )
( e l s e # f ) ) ) )
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C.3 HAC Code

Note: some fragments of the code with perceived implementation/technique value, have been omitted as they might be commercialised
in the immediate future.

; ;
;;==================================================================
; ; LOAD a t once CALCULUS . s s and o t h e r u t i l i t i e s
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code / s o r c a l c v 3 . s s ” )
;;==================================================================
;;===============================
; ;=== Fuzzy Ve s i on o f SORcalc ===
;;===============================
; ;
;;========================================
; ;=== F i r s t S t e p : V a l i d a t e LEXicons ======
;;========================================
; ; ( r e a d− f i l e ” / Users / o r e s t e s a p p e l / Desk top / SchemeLibrary / Data / m y l e x o b j s v 7 . s s ”)
; ; ( s e t ! p r i m e r l e x r e a d b u f f e r )
; ; ( s e t ! a l t e r l e x ’ ( ) )
; ;
; ; GLOBAL MAXIMORUM V a r i a b l e
( s e t ! maximorumx −1 . 0 )
; ;
; ;=== To modufy POS , OBJ & NEG S c o r e s
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; O r e s t e s Appel − L e x A l t e r E d i t o r
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;;==============================================
; ;=== I n i t i a l CALL TO THE SYSTEM by t h e User ===
;;==============================================
( d e f i n e l e x e d a l t e r

( lambda ( )
( b e g i n

( welcome )
( p r o c e s a d o r a l t e r p r i m e r l e x 1 ) ) ) )

; ;
; ; i n i t i a l header when e n t e r i n g t h e s y s t e m
; ;
( d e f i n e w e l c o m e a l t e r

( lambda ( )
( d i s p l a y ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ”−−− Welcome t o t h e Lexicon E d i t o r System −−−” )
( n e w l i n e )
( d i s p l a y ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ”A p a i r ( V ec to r O r i e n t a t i o n ) w i l l be d i s p l a y e d .

P l e a s e e n t e r t h e d e s i r e d POS and NEG O r i e n t a t i o n
v a l u e s s e p a r a t e d by BLANK and h i t ENTER . ” )

( n e w l i n e )
( d i s p l a y ” E n t e r t h e word END when done . ” )
( n e w l i n e ) ) )
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; ;
; ; i n i t i a l d i a l o g t o d e c i d e t h e p rop er way o f e n t e r i n g da ta
; ;
( d e f i n e p r o c e s a d o r a l t e r

( lambda ( l count )
( i f ( n u l l ? l )

( e l b a n n e r )
( b e g i n

( n e w l i n e )
( i f ( or

( and ( number ? ( g e t p o s s c o r e ( c a a r l ) ) )
(> ( g e t p o s s c o r e ( c a a r l ) ) 0 . 0 ) )

( and ( number ? ( g e t n e g s c o r e ( c a a r l ) ) )
(> ( g e t n e g s c o r e ( c a a r l ) ) 0 . 0 ) ) )

( b e g i n
( d i s p l a y ( l i s t count ( c a r l ) ) )
( s e t ! a l t e r l e x

( snoc ( pa tch−no ( c a r l ) ) a l t e r l e x ) )
( p r o c e s a d o r a l t e r ( c d r l ) (+ count 1 ) ) )

( b e g i n
( d i s p l a y ( l i s t count ( c a r l ) ) )
( n e w l i n e )
( d i s p l a y ” Your s e l e c t i o n f o r POS ( e n t e r END t o end ,

and Q f o r no change ) ==> ” )
( l e t ( ( s e l ( read ) ) )

( b e g i n
( i f

( or
( equal ? s e l ’ end )

( equal ? s e l ’END) )
( e l b a n n e r g b l )
( b e g i n

( i f
( or

( equal ? s e l ’w)
( equal ? s e l ’W) )
( b e g i n

( s e t ! a l t e r l e x ( snoc
( pa tch−no ( c a r l ) ) a l t e r l e x ) )

( n e w l i n e )
( p r o c e s a d o r a l t e r ( c d r l ) (+ count 1 ) ) )

( b e g i n
( i f

( and
( number ? s e l )
(>= s e l 0 . 0 )
(<= s e l 1 . 0 ) )
( b e g i n

( d i s p l a y s e l )
( n e w l i n e )
( d i s p l a y ” Your s e l e c t i o n f o r NEG ==> ” )
( l e t ( ( s e l 2 ( read ) ) )

( d i s p l a y s e l 2 )
( i f
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( and
( number ? s e l 2 )
(>= s e l 2 0 . 0 )
(<= s e l 2 1 . 0 )
(<= (+ s e l s e l 2 ) 1 . 0 ) )
( b e g i n

( s e t ! a l t e r l e x ( snoc ( p a t c h−v e c− a l t e r
( c a r l ) s e l s e l 2 ) a l t e r l e x ) )

( n e w l i n e )
( p r o c e s a d o r a l t e r ( c d r l ) (+ count 1 ) ) )

( p r o c e s a d o r a l t e r l count ) ) ) )
( p r o c e s a d o r a l t e r l count ) ) ) ) ) ) ) ) ) ) ) ) ) )

; ; OLD V e r s i o n : don ’ t use i t
( d e f i n e p r o c e s a d o r a l t e r z z z

( lambda ( l count )
( i f ( n u l l ? l )

( e l b a n n e r )
( b e g i n

( n e w l i n e )
( d i s p l a y ( l i s t count ( c a r l ) ) )
( n e w l i n e )
( d i s p l a y ” Your s e l e c t i o n f o r POS ( e n t e r END t o end ,

and Q f o r no change ) ==> ” )
( l e t ( ( s e l ( read ) ) )

( b e g i n
( i f ( or

( equal ? s e l ’ end )
( equal ? s e l ’END) )

( e l b a n n e r g b l )
( b e g i n

( i f ( or
( equal ? s e l ’ q )
( equal ? s e l ’Q) )

( b e g i n
( s e t ! a l t e r l e x

( snoc ( pa tch−no ( c a r l ) ) a l t e r l e x ) )
( n e w l i n e )
( p r o c e s a d o r a l t e r ( c d r l ) (+ count 1 ) ) )

( b e g i n
( i f ( number ? s e l )

( b e g i n
( d i s p l a y s e l )
( n e w l i n e )
( d i s p l a y ” Your s e l e c t i o n f o r NEG ==> ” )
( l e t ( ( s e l 2 ( read ) ) )

( i f ( number ? s e l 2 )
( b e g i n

( d i s p l a y s e l 2 )
( s e t ! a l t e r l e x

( snoc ( p a t c h−v e c− a l t e r
( c a r l ) s e l s e l 2 ) a l t e r l e x ) )

( n e w l i n e )
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( p r o c e s a d o r a l t e r
( c d r l ) (+ count 1 ) ) )

( p r o c e s a d o r a l t e r l count ) ) ) )
( p r o c e s a d o r a l t e r l count ) ) ) ) ) ) ) ) ) ) ) )

; ; Patch v e c t o r a p p r o p i a t e l y w i t h POS , NEG and OBJ S c o r e s
( d e f i n e p a t c h−v e c− a l t e r

( lambda ( todo sop son )
( l i s t

( l i s t−>v e c t o r ( l i s t ( ge tword ( c a r todo ) )
( g e t p o s ( c a r todo ) )
sop
son
(− 1 . 0 (+ sop son ) )
( g e t s o r ( c a r todo ) )
( g e t m a x d i s t ( c a r t odo ) )
( g e t m i n d i s t ( c a r t odo ) )
( g e t u p d t i n d e x ( c a r todo ) ) ) )

( c a r ( c d r todo ) ) ) ) )

; ; c a l l e d when no changes on v e c t o r are r e q u i r e d
( d e f i n e pa tch−no

( lambda ( l s )
l s ) )

; ;
; ; Banner f o r a p p l i c a t i o n L E X e d a l t e r
( d e f i n e e l b a n n e r

( lambda ( )
( b e g i n

( n e w l i n e )
( d i s p l a y ” −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ” −−− Thanks f o r u s i n g t h e sys tem .

Have a n i c e day . −−−” )
( n e w l i n e )
( d i s p l a y ” −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e ) ) ) )

; ;
; ; Banner f o r a p p l i c a t i o n L E X e d a l t e r
( d e f i n e e l b a n n e r g b

( lambda ( e l e )
( b e g i n

( n e w l i n e )
( d i s p l a y ” −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ” −−− Thanks f o r u s i n g t h e sys tem .

Have a n i c e day . −−−” )
( n e w l i n e )
( d i s p l a y ” −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
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( s e t ! a l t e r l e x ( append a l t e r l e x e l e ) ) ) ) )

; ; V a l i d a t i o n−2 f o r g o o d− s t r u c t u r e o f t h e L e x i c o n ( goodpana lex ? i s V a l i d a t i o n−1 )
( d e f i n e s u p e r p a n a l e x ?

( lambda ( l e x )
( cond

( ( n u l l ? l e x ) # t )
( ( and

( and
( number ? ( g e t p o s s c o r e ( c a a r l e x ) ) )
(>= ( g e t p o s s c o r e ( c a a r l e x ) ) 0 . 0 )
(<= ( g e t p o s s c o r e ( c a a r l e x ) ) 1 . 0 ) )

( and
( number ? ( g e t n e g s c o r e ( c a a r l e x ) ) )
(>= ( g e t n e g s c o r e ( c a a r l e x ) ) 0 . 0 )
(<= ( g e t n e g s c o r e ( c a a r l e x ) ) 1 . 0 ) )

( and
( number ? ( g e t o b j s c o r e ( c a a r l e x ) ) )
(>= ( g e t o b j s c o r e ( c a a r l e x ) ) 0 . 0 )
(<= ( g e t o b j s c o r e ( c a a r l e x ) ) 1 . 0 ) ) )

( s u p e r p a n a l e x ? ( c d r l e x ) ) )
( e l s e # f ) ) ) )

; ; f u l l h e a l t h− c h e c k on L e x i c o n s
( d e f i n e l e x h e a l t h y ?

( lambda ( l e x )
( and

( goodpana l ex ? l e x )
( s u p e r p a n a l e x ? l e x ) ) ) )

; ; c a l c u l a t e how many v a l u e s are numbers g i v e n a l e x i c o n ,
; ; a l a b e l ’POS ( or NEG or OBJ )
; ; and f u n c t i o n ( g e t p o s c o r e , g e t n e g s c o r e or g e t o b j s c o r e )
( d e f i n e howmany−num

( lambda ( l s p a r t myfun )
( cond

( ( n u l l ? l s ) 0 )
( ( and

( equal ? ( c a r ( c d r ( c a r l s ) ) ) p a r t )
( v e c t o r ? ( c a r ( c a r l s ) ) )
( number ? ( myfun ( c a r ( c a r l s ) ) ) )
( number ? ( myfun ( c a r ( c a r l s ) ) ) ) )

(+ 1 ( howmany−num ( c d r l s ) p a r t myfun ) ) )
( e l s e ( howmany−num ( c d r l s ) p a r t myfun ) ) ) ) )

; ; c a l c u l a t e SUM o f v a l u e s f o r a g i v e n l a e b l
; ; ( POS , NEG, OBJ ) and a g i v e n g e t s c o r e
; ; ( g e t p o s s c o r e , g e t n e g s c o r e , g e t o b j s c o r e )
( d e f i n e howmany−num−suma

( lambda ( l s p a r t myfun )
( cond

( ( n u l l ? l s ) 0 )
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( ( and
( equal ? ( c a r ( c d r ( c a r l s ) ) ) p a r t )
( v e c t o r ? ( c a r ( c a r l s ) ) )
( number ? ( g e t n e g s c o r e ( c a r ( c a r l s ) ) ) )
( number ? ( g e t o b j s c o r e ( c a r ( c a r l s ) ) ) )
( number ? ( g e t p o s s c o r e ( c a r ( c a r l s ) ) ) )
( number ? ( myfun ( c a r ( c a r l s ) ) ) ) )

(+ ( myfun ( c a r ( c a r l s ) ) )
( howmany−num−suma ( c d r l s ) p a r t myfun ) ) )

( e l s e ( howmany−num−suma
( c d r l s ) p a r t myfun ) ) ) ) )

; ; c a l c u l a MAX v a l u e f o r POS , NEG and OBJ s c o r e s
; ; l e x= l e x i c o n ; p a r t =’ pos ( or o t h e r l a b e l depend ing on
; ; S u b s e t ) ; max= s t a r t i n g v a l u e (− 1 . 0 ) ; and
; ; myfun = g e t p o s s c o r e , g e t n e g s c o r e or g e t o b j s c o r e
( d e f i n e max−pos−how

( lambda ( l e x p a r t max myfun )
( cond

( ( n u l l ? l e x ) max )
((> ( myfun ( c a a r l e x ) ) max )

( max−pos−how ( c d r l e x ) p a r t
( myfun ( c a a r l e x ) ) myfun ) )

( e l s e ( max−pos−how ( c d r l e x )
p a r t max myfun ) ) ) ) )

; ; c a l c u l a MIN v a l u e f o r POS , NEG and OBJ s c o r e s
; ; l e x= l e x i c o n ; p a r t =’ pos ( or o t h e r l a b e l depend ing on
; ; S u b s e t ) ; min= s t a r t i n g v a l u e ( 9 9 . 0 ) ; and
; ; myfun = g e t p o s s c o r e , g e t n e g s c o r e or g e t o b j s c o r e
( d e f i n e min−pos−how

( lambda ( l e x p a r t min myfun )
( cond

( ( n u l l ? l e x ) min )
((< ( myfun ( c a a r l e x ) ) min )

( min−pos−how ( c d r l e x ) p a r t ( myfun ( c a a r l e x ) ) myfun ) )
( e l s e ( min−pos−how ( c d r l e x ) p a r t min myfun ) ) ) ) )

;;===================================
; ;=== END V a l i d a t e LEXicons =========
;;===================================

;;======================================================
; ;=== C a l c u l a t i o n f o r Membership F u n c t i o n s
; ; f o r Fuzzy T e c h n i q u e s ===
;;======================================================
; ;
; ; ( d e f i n e ca lc−mf
; ; ( lambda ( num )
; ; ( cond
; ; ((< num 0 . 0 0 0 ) ’ e r r l t 0 )
; ; ( ( and (>= num 0 . 0 0 0 ) (< num 0 . 2 2 5 ) )
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; ; ( or ( calc−mf−vneg num ) ( calc−mf−neg num ) ) )
; ; ( ( and (>= num 0 . 2 2 5 ) (< num 0 . 4 5 0 ) )
; ; ( or ( calc−mf−neg num ) ( ca lc−mf−obj num ) ) )
; ; ( ( and (>= num 0 . 4 5 0 ) (< num 0 . 6 7 5 ) )
; ; ( or ( ca lc−mf−obj num ) ( calc−mf−pos num ) ) )
; ; ( ( and (>= num 0 . 6 7 5 ) (< num 0 . 9 0 0 ) )
; ; ( or ( calc−mf−pos num ) ( calc−mf−vpos num ) ) )
; ; ((>= num 0 . 9 0 0 ) ( ca lc−mf−vpos num ) )
; ; ((> num 1 . 0 0 0 ) ’ e r r g t 1 ) ) ) )

; ; R e t u r n s l i s t o f t h e form
; ; ( output− for−VNEG output− for−NEG output− for−OBJ
; ; output− for−POS output− for−VPOS )
; ; C a l c u l a t e t h e MF v a l u e f o r a g i v e n e n t r y ( num )
( d e f i n e calc−mf

( lambda ( num )
( l i s t

( calc−mf−weak num )
( calc−mf−mild num )
( ca lc−mf−modera te num )
( ca lc−mf−very num )
( ca lc−mf−ext reme num ) ) ) )

; ; MF Weak
( d e f i n e calc−mf−weak

( lambda ( num )
( cond

( ( and (>= num 0 . 0 0 0 ) (<= num 0 . 1 0 0 ) ) 1 . 0 0 )
( ( and (>= num 0 . 1 0 0 ) (<= num 0 . 2 2 5 ) )

( / (− 0 .225 num ) (− 0 .225 0 . 1 0 0 ) ) )
( ( = num 0 . 2 2 5 ) 0 . 0 0 )
( e l s e ’ nv−weak ) ) ) )

; ; MF Mild
( d e f i n e calc−mf−mild

( lambda ( num )
( cond

((< num 0 . 1 0 0 ) ’ nv−mild )
( ( and (>= num 0 . 1 0 0 ) (<= num 0 . 2 2 5 ) )

( / (− num 0 . 1 0 0 ) (− 0 .225 0 . 1 0 0 ) ) )
( ( and (>= num 0 . 2 2 5 ) (<= num 0 . 3 2 5 ) ) 1 . 0 0 )
( ( and (>= num 0 . 3 2 5 ) (<= num 0 . 4 5 0 ) )

( / (− 0 .450 num ) (− 0 .450 0 . 3 2 5 ) ) )
( ( = num 0 . 4 5 0 ) 0 . 0 0 )
( e l s e ’ nv−mild ) ) ) )

; ; MF Moderate
( d e f i n e ca lc−mf−modera te

( lambda ( num )
( cond

((< num 0 . 3 2 5 ) ’ nv−moderate )
( ( and (>= num 0 . 3 2 5 ) (<= num 0 . 4 5 0 ) )

( / (− num 0 . 3 2 5 ) (− 0 .450 0 . 3 2 5 ) ) )
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( ( and (>= num 0 . 4 5 0 ) (<= num 0 . 5 5 0 ) ) 1 . 0 0 )
( ( and (>= num 0 . 5 5 0 ) (<= num 0 . 6 7 5 ) )

( / (− 0 .675 num ) (− 0 .675 0 . 5 5 0 ) ) )
( ( = num 0 . 6 7 5 ) 0 . 0 0 )
( e l s e ’ nv−moderate ) ) ) )

; ; MF Very
( d e f i n e ca lc−mf−very

( lambda ( num )
( cond

((< num 0 . 5 5 0 ) ’ nv−very )
( ( and (>= num 0 . 5 5 0 ) (<= num 0 . 6 7 5 ) )

( / (− num 0 . 5 5 0 ) (− 0 .675 0 . 5 5 0 ) ) )
( ( and (>= num 0 . 6 7 5 ) (<= num 0 . 7 7 5 ) ) 1 . 0 0 )
( ( and (>= num 0 . 7 7 5 ) (<= num 0 . 9 0 0 ) )

( / (− 0 .900 num ) (− 0 .900 0 . 7 7 5 ) ) )
( e l s e ’ nv−very ) ) ) )

; ; MF Extreme
( d e f i n e ca lc−mf−ext reme

( lambda ( num )
( cond

((< num 0 . 7 7 5 ) ’ nv−extreme )
( ( and (>= num 0 . 7 7 5 ) (<= num 0 . 9 0 0 ) )

( / (− num 0 . 7 7 5 ) (− 0 .900 0 . 7 7 5 ) ) )
( ( and (>= num 0 . 9 0 0 ) (<= num 1 . 0 0 ) ) 1 . 0 0 )
( e l s e ’ nv−extreme ) ) ) )

; ; R e t u r n s l i s t o f t h e form ( output− for−VNEG
; ; output− for−NEG output− for−OBJ
; ; output− for−POS output− for−VPOS )
; ; C a l c u l a t e t h e MF v a l u e f o r a g i v e n e n t r y ( num )
( d e f i n e calc−mf−ample

( lambda ( num )
( l i s t

( ca lc−mf−poor2 num )
( c a l c−m f− s l i g h t l y 2 num )
( ca lc−mf−modera te2 num )
( ca lc−mf−very2 num )
( calc−mf−most2 num ) ) ) )

; ; MF Weak
( d e f i n e calc−mf−poor2

( lambda ( num )
( cond

( ( and (>= num 0 . 0 0 0 ) (<= num 0 . 0 5 0 ) ) 1 . 0 0 )
( ( and (>= num 0 . 1 0 0 ) (<= num 0 . 1 5 0 ) )

( / (− 0 .150 num ) (− 0 .150 0 . 1 0 0 ) ) )
( ( = num 0 . 1 5 ) 0 . 0 0 )
( e l s e ’ nv−poor ) ) ) )

; ; MF Mild
( d e f i n e c a l c−m f− s l i g h t l y 2
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( lambda ( num )
( cond

((< num 0 . 0 5 0 ) ’ n v− s l i g h t l y )
( ( and (>= num 0 . 1 0 0 ) (<= num 0 . 2 2 5 ) )

( / (− num 0 . 1 0 0 ) (− 0 .225 0 . 1 0 0 ) ) )
( ( and (>= num 0 . 2 2 5 ) (<= num 0 . 3 2 5 ) ) 1 . 0 0 )
( ( and (>= num 0 . 3 2 5 ) (<= num 0 . 4 5 0 ) )

( / (− 0 .450 num ) (− 0 .450 0 . 3 2 5 ) ) )
( ( = num 0 . 4 5 0 ) 0 . 0 0 )
( e l s e ’ n v− s l i g h t l y ) ) ) )

; ; MF Moderate
( d e f i n e ca lc−mf−modera te2

( lambda ( num )
( cond

((< num 0 . 3 2 5 ) ’ nv−moderate )
( ( and (>= num 0 . 3 2 5 ) (<= num 0 . 4 5 0 ) )

( / (− num 0 . 3 2 5 ) (− 0 .450 0 . 3 2 5 ) ) )
( ( and (>= num 0 . 4 5 0 ) (<= num 0 . 5 5 0 ) ) 1 . 0 0 )
( ( and (>= num 0 . 5 5 0 ) (<= num 0 . 6 7 5 ) )

( / (− 0 .675 num ) (− 0 .675 0 . 5 5 0 ) ) )
( ( = num 0 . 6 7 5 ) 0 . 0 0 )
( e l s e ’ nv−moderate ) ) ) )

; ; MF Very
( d e f i n e ca lc−mf−very2

( lambda ( num )
( cond

((< num 0 . 5 5 0 ) ’ nv−very )
( ( and (>= num 0 . 5 5 0 ) (<= num 0 . 6 7 5 ) )

( / (− num 0 . 5 5 0 ) (− 0 .675 0 . 5 5 0 ) ) )
( ( and (>= num 0 . 6 7 5 ) (<= num 0 . 7 7 5 ) ) 1 . 0 0 )
( ( and (>= num 0 . 7 7 5 ) (<= num 0 . 9 0 0 ) )

( / (− 0 .900 num ) (− 0 .900 0 . 7 7 5 ) ) )
( e l s e ’ nv−very ) ) ) )

; ; MF Extreme
( d e f i n e calc−mf−most2

( lambda ( num )
( cond

((< num 0 . 7 7 5 ) ’ nv−most )
( ( and (>= num 0 . 7 7 5 ) (<= num 0 . 9 0 0 ) )

( / (− num 0 . 7 7 5 ) (− 0 .900 0 . 7 7 5 ) ) )
( ( and (>= num 0 . 9 0 0 ) (<= num 1 . 0 0 ) ) 1 . 0 0 )
( e l s e ’ nv−most ) ) ) )

; ; Globa l v a r i a b l e ELNEGSET c o n t a i n s outcome o f
; ; GETYOURBEARINGS f o r NEG s e t
; ; Globa l v a r i a b l e ELPOSSET c o n t a i n s outcome o f
; ; GETYOURBEARINGS f o r POS s e t
; ;
;;==============================================
; ;=== F I l t r a r e s u l t a d o s de g e t y o u r−b e a r i n g s ====
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;;==============================================
; ; d e l e t e from t h e o u t p u t o f GETYOURBEARINGS words
; ; w i t h no l e x i c o n match
( d e f i n e l o s b u e n o s y

( lambda ( l s )
( i f ( n u l l ? l s )

’ ( )
( cons ( d e j a− l o s b u e n o s y ( c a r l s ) )

( l o s b u e n o s y ( c d r l s ) ) ) ) ) )

; ; a u x i l i a r de LOSBUENOSy
( d e f i n e d e j a− l o s b u e n o s y

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( atom ? ( c a r l s t ) )

( d e j a− l o s b u e n o s y ( c d r l s t ) ) )
( e l s e ( cons ( c a r l s t )

( d e j a− l o s b u e n o s y ( c d r l s t ) ) ) ) ) ) )

; ; r e p l a c e i n o u t p u t o f LOSBUENOSy l o s v a c i o s por NOSOR
; ; y agrega e l numero de o r a c i o n
( d e f i n e f i l t r a− l o s b u e n o s y

( lambda ( l s c t )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? ( c a r l s ) ’ ( ) )

( cons ( l i s t c t ’ n o s o r ) ( f i l t r a− l o s b u e n o s y
( c d r l s ) (+ c t 1 ) ) ) )

( e l s e
( cons ( l i s t c t ( c a r l s ) ) ( f i l t r a− l o s b u e n o s y
( c d r l s ) (+ c t 1 ) ) ) ) ) ) )

;;===================================================
; ;=== END de f i l t r a r e s u l t a d o s de GETYOURBEARINGS ===
;;===================================================
; ;
; ; produce l i s t a de forma ( ( num ( ( MaxPosValue
; ; MinPosValue NumOfPoss ) ( MaxNegValue MinNegValue
; ; NumofNegs ) ( MaxObjValue MinObjValue
; ; NumofObjs ) ) )
; ; . . . l o s s i g u i e n t e s para cada o r a c i o n NUM )
; ; I n p u t = S a l i d a de FILTRA−LOSBUENOSy
( d e f i n e p a s o 2 s o r c a l c 2

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a a r l s )

( p a s o 2 s o r c a l c 2− a u x ( c a r ( c d r ( c a r l s ) ) ) ) )
( p a s o 2 s o r c a l c 2 ( c d r l s ) ) ) ) ) ) )

; ; a u x i l i a r de PASO2SORCALC2
( d e f i n e p a s o 2 s o r c a l c 2− a u x

( lambda ( l s )
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( cond
( ( n u l l ? l s ) ’ ( ) )
( ( equal ? l s ’ n o s o r ) ’ n o s o r )
( e l s e ( l i s t ( l i s t ( losmaxxy l s ’ pos )

( lo sminny l s ’ pos )
( cuantosmaxxy l s 0 ) )

( l i s t ( losmaxxy l s ’ neg )
( losminny l s ’ neg )
( cuan tosminny l s 0 ) )

( l i s t ( losmaxxy l s ’ o b j )
( losminny l s ’ o b j )
( cuantosmmobj l s 0 ) ) ) ) ) ) )

; ; c u e n t a cu an ta matches de l e x i c o n por o r a c i o n son POS
( d e f i n e cuantosmaxxy

( lambda ( l c o n t a )
( i f ( n u l l ? l )

c o n t a
( i f ( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ pos )

( cuantosmaxxy ( c d r l ) (+ c o n t a 1 ) )
( cuantosmaxxy ( c d r l ) c o n t a ) ) ) ) )

; ; c u e n t a cu an ta matches de l e x i c o n por o r a c i o n son NEG
( d e f i n e cuan tosminny

( lambda ( l c o n t a )
( i f ( n u l l ? l )

c o n t a
( i f ( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ neg )

( cuan tosminny ( c d r l ) (+ c o n t a 1 ) )
( cuan tosminny ( c d r l ) c o n t a ) ) ) ) )

; ; c u e n t a cu an ta matches de l e x i c o n por o r a c i o n son OBJ
( d e f i n e cuantosmmobj

( lambda ( l c o n t a )
( i f ( n u l l ? l )

c o n t a
( i f ( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ o b j )

( cuantosmmobj ( c d r l ) (+ c o n t a 1 ) )
( cuantosmmobj ( c d r l ) c o n t a ) ) ) ) )

; ; c a l c u l a e l MAXIMUM among l o s P o s i t i v e S c o r e s para
; ; l a s p a l a b r a s
; ; de t i p o ETIQ=POS , NEG or OBJ
( d e f i n e losmaxxy

( lambda ( l e t i q )
( bes t i a−max ( losmaxxy−aux l e t i q ) − 1 . 0 0 ) ) )

; ; a u x i l i a r o f LOSMAXXY
( d e f i n e losmaxxy−aux

( lambda ( l e t i q )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l ) ) ) e t i q )

( cons ( p o s i t r o n ( c a a r l ) )

200



C.3. HAC Code Appendix C. Scheme Code - SA Hybrid System Proof of Concept

( losmaxxy−aux ( c d r l ) e t i q ) ) )
( e l s e ( losmaxxy−aux ( c d r l ) e t i q ) ) ) ) )

; ; c a l c u l a e l MAXIMUM among l o s N e g a t i v e S c o r e s
; ; para l a s p a l a b r a s
; ; de t i p o ETIQ=POS , NEG or OBJ
( d e f i n e losminny

( lambda ( l e t i q )
( bes t i a−max ( losminny−aux l e t i q ) − 1 . 0 0 ) ) )

; ; a u x u l i a r de LOSMINNY
( d e f i n e losminny−aux

( lambda ( l e t i q )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l ) ) ) e t i q )

( cons ( n e g a t r o n ( c a a r l ) )
( losminny−aux ( c d r l ) e t i q ) ) )

( e l s e ( losminny−aux ( c d r l ) e t i q ) ) ) ) )

; ; c a l c u l a e l maximo en una l i s t a de r a t i o n a l nums
( d e f i n e bes t i a−max

( lambda ( l max )
( cond

( ( n u l l ? l ) max )
((> ( c a r l ) max )

( bes t i a−max ( c d r l ) ( c a r l ) ) )
( e l s e ( bes t i a−max ( c d r l ) max ) ) ) ) )

; ; r u t u r n s e l POSITIVE s c o r e o f a g i v e n word
( d e f i n e p o s i t r o n

( lambda ( v )
( v e c t o r− r e f v 2 ) ) )

; ; r e t u r n s e l NEGATIVE s c o r e o f a g i v e n word
( d e f i n e n e g a t r o n

( lambda ( v )
( v e c t o r− r e f v 3 ) ) )

; ; r e t o r n a e l p r im er e l e m e n t o de l a l i s t a
; ; (MAXPOSSCORE MAXNEGSCORE NUMOFELEMENTSOFTHISTYPE)
( d e f i n e ge t−maxpscore

( lambda ( l )
( c a r l ) ) )

; ; r e t o r n a e l segundo e l e m e n t o de l a l i s t a
; ; (MAXPOSSCORE MAXNEGSCORE NUMOFELEMENTSOFTHISTYPE)
( d e f i n e ge t−maxnscore

( lambda ( l )
( c a r ( c d r l ) ) ) )

; ; r e t o r n a e l t e r c e r e l e m e n t o de l a l i s t a
; ; (MAXPOSSCORE MAXNEGSCORE NUMOFELEMENTSOFTHISTYPE)
( d e f i n e get−numele
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( lambda ( l )
( c a r ( c d r ( c d r l ) ) ) ) )

;;=====================================================
; ;=== S t a r t s SOR C a l c u l a t i o n u s i n g Fuzzy T e c h n i q u e s ===
;;=====================================================
; ; Main c a l l de CALC−FUZZY
; ;
; ; ( s e t ! e l u n o ( l o s b u e n o s y l s ) )
; ; ( s e t ! e l d o s ( f i l t r a− l o s b u e n o s y e l u n o 1 ) )
; ; ( s e t ! e l t r e s ( p a s o 2 s o r c a l c 2 e l d o s ) )
;;======================================================================
; ; 1 . Globa l v a r i a b l e s ELSIETEP and ELSIETEN c o n t a i n l i s t o f t h e form : =
; ; ( (1 pos ( pos 0 . 5 ) modera te ) . . . ) ===
; ; 2 . Globa l v a r i a b l e s LISTOPACOMPAP and LISTOPACOMPAN c o n t a i n s
; ; l i s t o f t h e form : ===
; ; ( ( pos 1 . 0 ) ( neg 0 . 7 7 ) . . . ( nosor nosor ) )
;;======================================================================
; ;
( d e f i n e c a l c− f u z z y

( lambda ( )
( b e g i n

( n e w l i n e )
( d i s p l a y ”===============================================================” )
( n e w l i n e )
( d i s p l a y ”BEGINNING R e s u l t s u s i n g Hybr id Method HAC. ” )
( n e w l i n e )
( s e t ! e l un op ( l o s b u e n o s y e l p o s s e t ) )
( s e t ! e l d o s p ( f i l t r a− l o s b u e n o s y e l un op 1 ) )
( s e t ! e l t r e s p ( p a s o 2 s o r c a l c 2 e l d o s p ) )
( s e t ! e l c u a t r o p ( c a l c u l a− t r u e e l t r e s p ) )
( s e t ! e l c i n c o p ( f i l t r a − a c t u a r i o e l c u a t r o p ) )
( s e t ! e l s e i s p ( con t ado r−x e l c i n c o p ) )
( s e t ! e l s i e t e p

( j o i n t− f u z z y− c a l c− t r a n s r e s u l p o s z e l c u a t r o p ) )
( s e t ! l i s t o p a c o m p a p ( saca−va l−compara e l s i e t e p ) )
( s e t ! e l un on ( l o s b u e n o s y e l n e g s e t ) )
( s e t ! e l d o s n ( f i l t r a− l o s b u e n o s y e l un on 1 ) )
( s e t ! e l t r e s n ( p a s o 2 s o r c a l c 2 e l d o s n ) )
( s e t ! e l c u a t r o n ( c a l c u l a− t r u e e l t r e s n ) )
( s e t ! e l c i n c o n ( f i l t r a − a c t u a r i o e l c u a t r o n ) )
( s e t ! e l s e i s n ( con t ado r−x e l c i n c o n ) )
( s e t ! e l s i e t e n

( j o i n t− f u z z y− c a l c− t r a n s r e s u l n e g z e l c u a t r o n ) )
( s e t ! l i s t o p a c o m p a n ( saca−va l−compara e l s i e t e n ) )
( s t a t s− f i n a s− f u z z y e l s i e t e n e l s i e t e p )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ”END R e s u l t s u s i n g Hybr id Method HAC. ” )
( n e w l i n e )
( d i s p l a y ”=================================================================” )
( n e w l i n e )
( n e w l i n e )
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) ) )

; ; a c t u a l c a l c u l a t i o n o f SORs
( d e f i n e c a l c u l a− t r u e

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ n o s o r )

( cons ( c a r l s )
( c a l c u l a− t r u e ( c d r l s ) ) ) )

( e l s e ( cons ( l i s t ( c a a r l s )
( c a l c u l a− t r u e− a u x ( c a r ( c d r ( c a r l s ) ) ) ) )

( c a l c u l a− t r u e ( c d r l s ) ) ) ) ) ) )

( d e f i n e c a l c u l a− t r u e− a u x
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( e l s e ( c a l c u l a− t r u e− a u x− z l ) ) ) ) )

( d e f i n e c a l c u l a− t r u e− a u x− z
( lambda ( l )

( cond
( ( and

(= ( ge t−numele ( c a r l ) ) 0 )
(= ( ge t−numele ( c a r ( c d r l ) ) ) 0 ) )

( l i s t ( what− todow−obj
( c a r ( c d r ( c d r l ) ) ) ) 0 . 5 ) )

( ( and
(= ( ge t−numele ( c a r l ) ) 0 )
(> ( ge t−numele ( c a r ( c d r l ) ) ) 0 ) ) ( l i s t ’ neg
( ge t−maxnscore ( c a r ( c d r l ) ) ) ) )

( ( and
(> ( ge t−numele ( c a r l ) ) 0 )
(= ( ge t−numele ( c a r ( c d r l ) ) ) 0 ) )

( l i s t ’ pos ( ge t−maxpscore ( c a r l ) ) ) )
((> ( ge t−numele ( c a r l ) ) ( ge t−numele ( c a r ( c d r l ) ) ) )

( l i s t ’ pos ( ge t−maxpscore ( c a r l ) ) ) )
((< ( ge t−numele ( c a r l ) ) ( ge t−numele ( c a r ( c d r l ) ) ) )

( l i s t ’ neg ( ge t−maxnscore ( c a r ( c d r l ) ) ) ) )
( ( = ( ge t−numele ( c a r l ) ) ( ge t−numele ( c a r ( c d r l ) ) ) )

( i f (> ( ge t−maxpscore
( c a r l ) ) ( ge t−maxnscore ( c a r ( c d r l ) ) ) )

( l i s t ’ pos ( ge t−maxpscore ( c a r l ) ) )
( l i s t ’ neg ( ge t−maxnscore ( c a r ( c d r l ) ) ) ) ) )

( e l s e ’ w o r k i n g o n i t ) ) ) )

; ; what t o do w i t h OBJs
( d e f i n e what− todow−obj

( lambda ( l )
( cond

( ( = ( ge t−numele l ) 0 )
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( a l e a t o r i o 1 0 ) )
((> ( ge t−maxpscore l )

( ge t−maxnscore l ) ) ’ pos )
((< ( ge t−maxpscore l )

( ge t−maxnscore l ) ) ’ neg )
( e l s e ( a l e a t o r i o 1 0 ) ) ) ) )

; ; random o p t i o n when no more c h o i c e s are l e f t
( d e f i n e a l e a t o r i o

( lambda ( seedx )
( i f ( even ? ( random seedx ) )

’ pos
’ neg ) ) )

; ; p r o c e s s NOSORs
( d e f i n e f i l t r a − a c t u a r i o

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ n o s o r )

( cons ’ n o s o r ( f i l t r a − a c t u a r i o
( c d r l s ) ) ) )

( e l s e ( cons ( c a a r ( c d r ( c a r l s ) ) )
( f i l t r a − a c t u a r i o ( c d r l s ) ) ) ) ) ) )

; ; c o u n t t h e pr op er o c c u r e n c e s o f POS , NEG,
; ; OBJ and NOSOR
( d e f i n e con t ado r−x

( lambda ( l s )
( l i s t ( cuentamecomo l s ’ pos )

( cuentamecomo l s ’ neg )
( cuentamecomo l s ’ o b j )
( cuentamecomo l s ’ n o s o r ) ) ) )

; ; a c t u a l c o u n t i n g f u n c t i o n . A u x i l i a r t o con tador−x
( d e f i n e cuentamecomo

( lambda ( l s e t i q )
( cond

( ( n u l l ? l s ) 0 )
( ( equal ? ( c a r l s ) e t i q )

(+ 1 ( cuentamecomo ( c d r l s ) e t i q ) ) )
( e l s e ( cuentamecomo ( c d r l s ) e t i q ) ) ) ) )

;;==========================================================================
; ;=== Genera te i n t e n s i t y o f p o l a r i t y u s i n g : ===
; ;=== V a r i a b l e g l o b a l RESULPOSZ and RESULNEGZ , o u t p u t s o f CALC−SIMPLE . ===
; ;=== V a r i a b l e g l o b a l ELCINCOPOS and ELCINCONEG , o u t p u t s o f CALC−FUZZY , ===
; ;=== each o f t h e form : ( ( 1 ( neg 0 . 3 ) ) . . . ( Num Sentence
; ; ( neg / pos MaxValueFor P o l a r i t y ) ) ) ===
;;==========================================================================
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; ;
( d e f i n e j o i n t− f u z z y− c a l c− t r a n s

( lambda ( l s i m p l e l complex )
( cond

( ( n u l l ? l s i m p l e ) ’ ( ) )
( ( equal ? ( c a r l s i m p l e ) ’ n o s o r )

( cons ( l i s t ( c a a r l complex ) ’ n o s o r )
( j o i n t− f u z z y− c a l c− t r a n s

( c d r l s i m p l e ) ( c d r l complex ) ) ) )
( e l s e ( cons

( l i s t ( c a a r l complex ) ( c a r l s i m p l e )
( c a r ( c d r ( c a r l complex ) ) )
( decode−z ( p− square ( c− squa re ( calc−mf−ample

( c a r ( c d r ( c a r ( c d r ( c a r l complex ) ) ) ) ) ) ) 1 −1.0 1 ) ) maximorumx )
( j o i n t− f u z z y− c a l c− t r a n s ( c d r l s i m p l e ) ( c d r l complex ) ) ) ) ) ) )

; ; manages t h e non−numeric v a l u e s o f t h e o u t p u t , l i k e nv−most ,
; ; nv−poor and t h e r e s t
( d e f i n e c− squa re

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( not ( number ? ( c a r l s ) ) ) ( cons −99 ( c− squa re ( c d r l s ) ) ) )
( e l s e ( cons ( c a r l s ) ( c− squa re ( c d r l s ) ) ) ) ) ) )

; ; c a l c u l a t e t h e MAX o f t h e p r o v i d e d outcome v a l u e s f o r t h e 5 MFs
( d e f i n e p− square

( lambda ( l s c n t max i n d i c e )
( cond

( ( n u l l ? l s ) ( b e g i n ( s e t ! maximorumx max ) i n d i c e ) )
( ( = ( c a r l s ) −99) ( p− square ( c d r l s )

(+ c n t 1 ) max i n d i c e ) )
((>= ( c a r l s ) max ) ( p− square ( c d r l s )

(+ c n t 1 ) ( c a r l s ) c n t ) )
( e l s e ( p− square ( c d r l s ) (+ c n t 1 )

max i n d i c e ) ) ) ) )

; ; decode t h e o u t p u t o f p−square
( d e f i n e decode−z

( lambda ( num )
( cond

( ( = num 1) ’ poor )
( ( = num 2) ’ s l i g h t l y )
( ( = num 3) ’ modera t e )
( ( = num 4) ’ ve ry )
( ( = num 5) ’ most )
( e l s e ’ n o i n t e n s i t y ) ) ) )

; ;
;;======================================================================
; ; l s n e g = ELSIETEN ; l s p o s = ELSIETEP
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( d e f i n e s t a t s− f i n a s− f u z z y
( lambda ( l s n e g l s p o s )

( b e g i n
( n e w l i n e )
( d i s p l a y ”OUTPUT FORMAT f o r POSs D a t a s e t :

(NumOfPOOR NumOfSLIGHTLY NumOfModerate NumOfVery
NumOfMost NumOfNOSOR NumOfNegative ” )

( n e w l i n e )
( d i s p l a y ( l i s t ( mira−z−poss l s p o s ’ poor )

( mira−z−poss l s p o s ’ s l i g h t l y )
( mira−z−poss l s p o s ’ modera t e )
( mira−z−poss l s p o s ’ ve ry )
( mira−z−poss l s p o s ’ most )
( mi ra−posneg−nosor l s p o s )
( m i r a− z p e c i a l−n e g s l s p o s ) ) )

( n e w l i n e )
( d i s p l a y ”OUTPUT FORMAT f o r NEGs D a t a s e t :

(NumOfPOOR NumOfSLIGHTLY NumOfModerate NumOfVery
NumOfMost NumOfNOSOR NumOfPosi t ive ” )

( n e w l i n e )
( d i s p l a y ( l i s t ( mira−z−negs l s n e g ’ poor )

( mira−z−negs l s n e g ’ s l i g h t l y )
( mira−z−negs l s n e g ’ modera t e )
( mira−z−negs l s n e g ’ ve ry )
( mira−z−negs l s n e g ’ most )
( mi ra−posneg−nosor l s n e g )
( m i r a− z p e c i a l−p o s s l s n e g ) ) )

( n e w l i n e ) ) ) )

; ; y i e l d s number o f POS c l a s s i f i c a t i o n s w i t h i n t e n s i t y INTEN
( d e f i n e mira−z−poss

( lambda ( l s i n t e n )
( cond

( ( n u l l ? l s ) 0 )
( ( and

( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ pos )
( equal ? ( c a r ( cdddr ( c a r l s ) ) ) i n t e n ) )

(+ 1 ( mira−z−poss ( c d r l s ) i n t e n ) ) )
( e l s e ( mira−z−poss ( c d r l s ) i n t e n ) ) ) ) )

; ; y i e l d s number o f NEG c l a s s i f i c a t i o n s w i t h i n t e n s i t y INTEN
( d e f i n e mira−z−negs

( lambda ( l s i n t e n )
( cond

( ( n u l l ? l s ) 0 )
( ( and

( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ neg )
( equal ? ( c a r ( cdddr ( c a r l s ) ) ) i n t e n ) )

(+ 1 ( mira−z−negs ( c d r l s ) i n t e n ) ) )
( e l s e ( mira−z−negs ( c d r l s ) i n t e n ) ) ) ) )

; ; y i e l d s number o f NOSOR c l a s s i f i c a t i o n s , f o r POSs and NEGs
( d e f i n e mira−posneg−nosor

( lambda ( l s )
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( cond
( ( n u l l ? l s ) 0 )
( ( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ n o s o r )

(+ 1 ( mira−posneg−nosor ( c d r l s ) ) ) )
( e l s e ( mi ra−posneg−nosor ( c d r l s ) ) ) ) ) )

; ; G e n e r a t e s l i s t a de l a forma ( ( pos / neg Fuzzy−Value
; ; Fuzzy−Value MAPPED) or ( nosor nosor ) . . . ) o f LENGTH = 3 .
; ; R e s u l t s d e p o s i t e d i n g l o b a l v a r i a b l e s LISTOPACOMPAP
; ; and LISTOPACOMPAN
( d e f i n e saca−va l−compara

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ n o s o r )

( cons ( l i s t ’ n o s o r ’ n o s o r )
( saca−va l−compara ( c d r l s ) ) ) )

( e l s e ( cons ( l i s t ( c a r ( c d r ( c a r l s ) ) )
( c a r ( cddddr ( c a r l s ) ) )
( i f ( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ neg )

( map−cambio 0 . 0 1 . 0 0 . 0 0 .5000 ( c a r ( cddddr ( c a r l s ) ) ) )
( map−cambio 0 . 0 1 . 0 0 .5001 1 . 0 ( c a r ( cddddr ( c a r l s ) ) ) ) ) )

( saca−va l−compara ( c d r l s ) ) ) ) ) ) )

; ;
; ; S p e c i a l t o c o u n t POSs i n L i s t o f N e g a t i v e l a b e l s
; ;
( d e f i n e m i r a− z p e c i a l−p o s s

( lambda ( l s )
( cond

( ( n u l l ? l s ) 0 )
( ( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ pos )

(+ 1 ( m i r a− z p e c i a l−p o s s ( c d r l s ) ) ) )
( e l s e ( m i r a− z p e c i a l−p o s s ( c d r l s ) ) ) ) ) )

; ;
; ; S p e c i a l t o c o u n t NEGs i n L i s t o f P o s i t i v e l a b e l s
; ;
( d e f i n e m i r a− z p e c i a l−n e g s

( lambda ( l s )
( cond

( ( n u l l ? l s ) 0 )
( ( equal ? ( c a r ( c d r ( c a r l s ) ) ) ’ neg )

(+ 1 ( m i r a− z p e c i a l−n e g s ( c d r l s ) ) ) )
( e l s e ( m i r a− z p e c i a l−n e g s ( c d r l s ) ) ) ) ) )

; ; c a l l HSC , HAC and HACA: l a t o l = t o l e r a n c e = 0 .5000
( d e f i n e t h e f u l l− c a l c

( lambda ( l a t o l )
( b e g i n

( c a l c− s o r− a l l s e t− s i m p l e )
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( c a l c− f u z z y )
( c a l c− i o w a− s t u f f l a t o l ) ) ) )

C.4 HACACU & HACACO Code

Note: some fragments of the code with perceived implementation/technique value, have been omitted as they might be commercialised.

; ;
;;===============================
; ; LOAD F i l e s f o r IOWA ==========
;;===============================
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Da taPy thon /

NaiveBayes / n e g a t i v e c a s e s n b . t x t ” )
( s e t ! nbnegx r e a d b u f f e r )
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Da taPy thon /

NaiveBayes / p o s i t i v e c a s e s n b . t x t ” )
( s e t ! nbposx r e a d b u f f e r )
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Da taPy thon /

MaxEntropy / n e g a t i v e c a s e s m e . t x t ” )
( s e t ! menegx r e a d b u f f e r )
( r e a d− f i l e ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Da taPy thon /

MaxEntropy / p o s i t i v e c a s e s m e . t x t ” )
( s e t ! meposx r e a d b u f f e r )
;;===============================
;;=============================================================
; ;=== Segment f o r c a l c u l a t i n g SOR u s i n g IOWA and r e s u l t s
; ; o f 3 methods ===
;;=============================================================
; ;
;;=============================================
; ;=== S e n t e n c e s c h o o s i n g and i d e n t i f i c a t i o n ===
;;=============================================
; ; g e n e r a t e l i s t o f 3 s e n t e n c e s numbers m e e t i n g g i v e n c r i t e r i a
; ; C a l l l i k e ( p r o v i d e− s e n t n u m− l a b e l l s 1 0 ’ s l i g h t l y ) ,
; ; where l s = ELSIETEN and ELSIETEP
( d e f i n e p r o v i d e− s e n t n u m− l a b e l

( lambda ( l s c o n t f l a g g y l a b e l )
( cond

( ( or
( n u l l ? l s )
(= f l a g g y 3 ) ) ’ ( ) )

( ( equal ? ( c a r ( c a r l s ) ) ’ n o s o r )
( p r o v i d e− s e n t n u m− l a b e l

( c d r l s ) (+ c o n t 1 ) l a b e l ) )
( ( equal ? ( c a r ( cdddr ( c a r l s ) ) ) l a b e l )

( cons c o n t ( p r o v i d e− s e n t n u m− l a b e l ( c d r l s )
(+ c o n t 1 ) (+ f l a g g y 1) l a b e l ) ) )

( e l s e ( p r o v i d e− s e n t n u m− l a b e l ( c d r l s )
(+ c o n t 1 ) f l a g g y l a b e l ) ) ) ) )

; ; Re torna l a o r a c i o n marcada con e l numero NUMSENT
; ; n e g o r i g s AND p o s o r i g s c o n t a i n t h e o r i g i n a l s e n t e n c e s
( d e f i n e pasamela−y
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( lambda ( l s sentnum c o n t )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( = sentnum c o n t ) ( c a r l s ) )
( e l s e ( pasamela−y ( c d r l s )

sentnum (+ c o n t 1 ) ) ) ) ) )

; ; CONVERSION i n Range ( L i n e a r )
; ; Given two ranges , [ a1 , a2 ] and [ b1 , b2 ] ; t h e n a v a l u e
; ; s i n range [ a1 , a2 ]
; ; i s l i n e a r l y mapped t o a v a l u e t i n range [ b1 , b2 ]
; ; when : t = b1 + { ( s − a1 ) ( b2 − b1 ) \ over ( a2 − a1 )}
; ; E jemplos :
; ; ( map−cambio 0 . 0 1 . 0 0 . 0 0 . 4 9 0 . 3 ) PRODUCE 0 .147
; ; ( map−cambio 0 . 0 1 . 0 0 . 5 0 1 . 0 0 . 3 ) PRODUCE 0 .650
; ;
( d e f i n e map−cambio

( lambda ( a1 a2 b1 b2 s )
(+ b1

( / (∗ (− s a1 )
(− b2 b1 ) )

(− a2 a1 ) ) ) ) )

( d e f i n e map−nb−pos
( lambda ( v a l )

( map−cambio 0 .50000000 0 .99999852 0 . 0 1 . 0 v a l ) ) )

( d e f i n e map−me−pos
( lambda ( v a l )

( map−cambio 0 .50000000451 0 .500168230 0 . 0 1 . 0 v a l ) ) )

( d e f i n e map−nb−neg
( lambda ( v a l )

( map−cambio 0 .50000000 0 .999987442 0 . 0 1 . 0 v a l ) ) )

( d e f i n e map−me−neg
( lambda ( v a l )

( map−cambio 0 .50000000459 0 .500141235 0 . 0 1 . 0 v a l ) ) )

; ;
; ; BUILD l i s t a para s u p l i r a IOWA P r o c e s s
; ; I n p u t : Resu l t s−of−NB Resul ts−of−ME l i s t o p a c o m p a n / p
; ; Outpu t : ( ( (0 .9390256821983421 pos )
; ; (0 .5000406225810768 pos ) ( 1 . 0 neg ) )
; ; ( (0 .860015516808406 pos )
; ; (0 .500025678163244 pos ) ( nosor nosor ) )
; ; ( (0 .9790256821983421 pos )
; ; (0 .5100040225810768 pos ) ( . 9 5 neg ) ) )
; ; For NEGs
( d e f i n e b u i l d i t 4 i o w a−n e g

( lambda ( l n b lme l o r e )
( i f

( n u l l ? l n b )
’ ( )
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( cons ( p roces s4 iowa−neg
( c a r l n b ) ( c a r lme ) ( c a r l o r e ) )
( b u i l d i t 4 i o w a−n e g ( c d r l n b )

( c d r lme ) ( c d r l o r e ) ) ) ) ) )

; ; For POSs
( d e f i n e b u i l d i t 4 i o w a−p o s

( lambda ( l n b lme l o r e )
( i f

( n u l l ? l n b )
’ ( )
( cons ( p r oc e s s 4 i ow a−po s

( c a r l n b ) ( c a r lme ) ( c a r l o r e ) )
( b u i l d i t 4 i o w a−p o s

( c d r l n b ) ( c d r lme ) ( c d r l o r e ) ) ) ) ) )

; ; FORMATOS o f I n p u t
; ; NB = (512 0.50000420247266397 neg 1)
; ; me = (101 0.9249393530588206 pos 1 )
; ; ore = ( pos 0 .5999999999999996 0 . 8 0 0 0 3 9 )
; ; OUTPUT = ( ( 0 . 5 0 0 0 0 neg ) ( 0 . 9 2 4 9 pos )
; ; ( 0 . 5 9 9 9 pos ) )
; ; a u x i l i a r t o b u i l d i t 4 i o w a
( d e f i n e p roces s4 iowa−neg

( lambda ( nb me o r e v a l )
( l i s t ( l i s t ( map−nb−neg ( c a r ( c d r nb ) ) )

( c a r ( cdd r nb ) ) )
( l i s t ( map−me−neg ( c a r ( c d r me ) ) )

( c a r ( cdd r me ) ) )
( l i s t ( c a r ( c d r o r e v a l ) )

( c a r o r e v a l ) ) ) ) )

( d e f i n e p r oc es s 4 i ow a−po s
( lambda ( nb me o r e v a l )

( l i s t ( l i s t ( map−nb−pos ( c a r ( c d r nb ) ) )
( c a r ( cdd r nb ) ) )

( l i s t ( map−me−pos ( c a r ( c d r me ) ) )
( c a r ( cdd r me ) ) )

( l i s t ( c a r ( c d r o r e v a l ) )
( c a r o r e v a l ) ) ) ) )

; ;
; ; r e p l a c e ’ n o s o r s i n o u t p u t from b u i l d i t 4 i o w a
; ;
( d e f i n e p r e m a s a j e a−b e f o r e− i o w a

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( equal ? ( c a a r ( cdd r ( c a r l s ) ) ) ’ n o s o r )

( cons ( l i s t ( c a a r l s ) ( c a r ( c d r ( c a r l s ) ) )
( c a r ( c d r ( c a r l s ) ) ) )

( p r e m a s a j e a−b e f o r e− i o w a ( c d r l s ) ) ) )
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( e l s e ( cons ( c a r l s )
( p r e m a s a j e a−b e f o r e− i o w a ( c d r l s ) ) ) ) ) ) )

; ; b u i l d t h e l i s t t o be pa s s ed t o IOWA
( d e f i n e e x t r a c t x−v a l s− i o w a

( lambda ( l s )
( i f ( n u l l ? l s )

’ ( )
( cons ( e x t r a c t x− i o w a x ( c a r l s ) )

( e x t r a c t x−v a l s− i o w a ( c d r l s ) ) ) ) ) )

; ; a u x i l i a r t o e x t r a c t− v a l s− i o w a
; ; r e t u r n s t h e l i s t f o r IOWA s o r t e d from l e s s t o more
( d e f i n e e x t r a c t x− i o w a x

( lambda ( l s )
( l i s t ( c a a r l s ) ( c a a r ( c d r l s ) )

( c a a r ( cdd r l s ) ) ) ) )
; ; ( l i s t − s o r t < ( l i s t ( caar l s ) ( caar ( cdr l s ) )
; ; ( caar ( cddr l s ) ) ) ) ) )

;;=========================================
; ;=== Calc f o r IOWA (ACTUAL) ==============
;;=========================================
; ; S a l i d a s o f sor−calc−SIMPLE :
; ; ∗ r e s u l p o s z : r e s u l t a d o s de p o s i t i v e s e t .
; ; Format : ( neg pos . . . neg )
; ; ∗ r e s u l n e g z : r e s u l t a d o s de n e g a t i v e s e t .
; ; Format : ( neg pos . . . pos )
; ; paiowapos2 : r e s u l t a d o s POS l i s t o s para IOWA a n a l y s i s .
; ; Format : ( 0 . 0 1 1 0 . 0 3 0 . 7 9 ) ,
; ; o r d e r e d a l r e a d y from l e s s e r t o g r e a t e r .
; ; paiowaneg2 : r e s u l t a d o s NEG l i s t o s para IOWA a n a l y s i s .
; ; Format : same as above .
; ;
; ; Parameter t o c a l c− i o w a− s t u f f i s TOLERANCE .
; ; C a l l w i t h T o l e r a n c e = 0 . 5 0 0 0 0 0 .
( d e f i n e c a l c− i o w a− s t u f f

( lambda ( t o l l y )
( b e g i n

( s e t ! pa iowapos1 ( p r e m a s a j e a−b e f o r e− i o w a
( b u i l d i t 4 i o w a−p o s nbposx meposx l i s t o p a c o m p a p ) ) )

( s e t ! pa iowapos2 ( e x t r a c t x−v a l s− i o w a paiowapos1 ) )
( s e t ! paiowaneg1 ( p r e m a s a j e a−b e f o r e− i o w a

( b u i l d i t 4 i o w a−n e g nbnegx menegx l i s t o p a c o m p a n ) ) )
( s e t ! paiowaneg2 ( e x t r a c t x−v a l s− i o w a paiowaneg1 ) )
( s e t ! t o l e r a n c e t o l l y )
( s e t ! v e c i ’ ( ) )
( s e t ! iowaposs ’ ( ) )
( s e t ! s u p v e c i ’ ( ) )
( s e t ! o rde rednewsupvec ’ ( ) )
( s e t ! a g g r e g a 0 . 0 )
( s e t ! iowaposs ( i o w a f u n l i s t p o s pa iowapos2 ) )
( s e t ! v e c i ’ ( ) )
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( s e t ! iowanegs ’ ( ) )
( s e t ! s u p v e c i ’ ( ) )
( s e t ! o rde rednewsupvec ’ ( ) )
( s e t ! a g g r e g a 0 . 0 0 )
( s e t ! iowanegs ( i o w a f u n l i s t n e g paiowaneg2 ) )
( s e t ! negnewt ( p ro iowawor ld paiowaneg1 ) )
( s e t ! posnewt ( p ro iowawor ld pa iowapos1 ) )
( n e w l i n e )
( d i s p l a y ”==========================================================” )
( n e w l i n e )
( d i s p l a y ”BEGINNING R e s u l t s A g g r e g a t i o n u s i n g IOWA

wi th Hybr id Method HACA. ” )
( n e w l i n e )
( n e w l i n e )
( j c l a s s y iowanegs iowaposs )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ”END R e s u l t s A g g r e g a t i o n u s i n g IOWA

wi th Hybr id Method HACA. ” )
( n e w l i n e )
( d i s p l a y ”===========================================================” )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ”===========================================================” )
( n e w l i n e )
( d i s p l a y ”BEGINNING R e s u l t s A g g r e g a t i o n u s i n g

VOTING and AVERAGING i n s t e a d of OWA O p e r a t o r s . ” )
( n e w l i n e )
( d a l e s i n i o w a posnewt negnewt )
( manipulaprom ( damepromediogamma paiowapos2 )

( damepromediogamma paiowaneg2 ) )
( n e w l i n e ) ( n e w l i n e )
( d i s p l a y ”END R e s u l t s A g g r e g a t i o n u s i n g VOTING and AVERAGING

i n s t e a d of OWA O p e r a t o r s . ” )
( n e w l i n e )
( d i s p l a y ”===========================================================” )
( n e w l i n e )
( n e w l i n e )
( n e w l i n e )
) ) )

; ; ( d e f i n e v e c i ’ ( ) )
; ; ( d e f i n e s u p v e c i ’ ( ) )
; ; ( d e f i n e orderednewsupvec ’ ( ) )

; ;
; ; a p p l y IOWA p a r a m e t e r s t o l i s t o f v a l u e s o f t y p e
; ; ( ( v a l 1 v a l 2 v a l 3 ) . . . ( v a l 1 v a l 2 v a l 3 ) )
( d e f i n e i o w a f u n l i s t p o s

( lambda ( l s t )
( i f ( n u l l ? l s t )

’ ( )
( cons ( iowafunkpos ( c a r l s t ) )

( i o w a f u n l i s t p o s ( c d r l s t ) ) ) ) ) )
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( d e f i n e i o w a f u n l i s t n e g
( lambda ( l s t )

( i f ( n u l l ? l s t )
’ ( )
( cons ( iowafunkneg ( c a r l s t ) )

( i o w a f u n l i s t n e g ( c d r l s t ) ) ) ) ) )

; ; a p p l y IOWA p a r a m e t e r s t o one i t e m o f
; ; t y p e ( v a l 1 v a l 2 v a l 3 )
( d e f i n e iowafunkpos

( lambda ( p r e v e c i )
( b e g i n

( s e t ! s u p v e c i ( gen− sup−vec to r p r e v e c i t o l e r a n c e 1 ) )
( s e t ! v e c i ( f i l t e r − t h e l v a l

( m y l i s t− s o r t− p a i r− 1 s t
( m y l i s t− s o r t−p a i r−2 n d

( i n d u c e d− s o r t− p a i r s s u p v e c i p r e v e c i ) ) ) ) )
( s e t ! o rde rednewsupvec

( newsupvec
( p1d ivp2

( q t i n s ( x− i s− t o f n ( t i s s u p v e c i )
( l e n g t h ( t i s s u p v e c i ) ) ) )

( s u m q t i n s ( q t i n s ( x− i s− t o f n
( t i s s u p v e c i ) ( l e n g t h ( t i s s u p v e c i ) ) ) ) ) ) ) )

( multmyvecs o rde rednewsupvec v e c i )
) ) )

; ; a p p l y IOWA p a r a m e t e r s t o one i t e m o f t y p e ( v a l 1 v a l 2 v a l 3 )
( d e f i n e iowafunkneg

( lambda ( p r e v e c i )
( b e g i n

( s e t ! s u p v e c i ( gen− sup−vec to r p r e v e c i t o l e r a n c e 1 ) )
( s e t ! v e c i ( f i l t e r − t h e l v a l

( m y l i s t− s o r t− p a i r− 1 s t
( m y l i s t− s o r t−p a i r−2 n d

( i n d u c e d− s o r t− p a i r s s u p v e c i p r e v e c i ) ) ) ) )
( s e t ! o rde rednewsupvec

( newsupvec
( p1d ivp2

( q t i n s ( x− i s− t o f n ( t i s s u p v e c i )
( l e n g t h ( t i s s u p v e c i ) ) ) )

( s u m q t i n s ( q t i n s ( x− i s− t o f n ( t i s s u p v e c i )
( l e n g t h ( t i s s u p v e c i ) ) ) ) ) ) ) )

( multmyvecs o rde rednewsupvec v e c i )
) ) )

; ; i s X a NAN?
( d e f i n e i s n a n ?

( lambda ( x )
( not (= x x ) ) ) )
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; ; c u a n t o s NAN hay en una l i s t a f r numeros
( d e f i n e c u a n t o s n a n

( lambda ( l s )
( cond

( ( n u l l ? l s ) 0 )
( ( i s n a n ? ( c a r l s ) )

(+ 1 ( c u a n t o s n a n ( c d r l s ) ) ) )
( e l s e ( c u a n t o s n a n ( c d r l s ) ) ) ) ) )

( d e f i n e c u a n t o s<=>xy
( lambda ( l x y )

( cond
( ( n u l l ? l ) 0 )
( ( and

(>= ( c a r l ) x )
(< ( c a r l ) y ) )

(+ 1 ( c u a n t o s<=>xy ( c d r l ) x y ) ) )
( e l s e ( c u a n t o s<=>xy ( c d r l ) x y ) ) ) ) )

( d e f i n e j c l a s s y
( lambda ( l n e g s l p o s s )

( b e g i n
( l e t ( ( r e s ( j c l a s s y− a u x l n e g s l p o s s ) ) )

( n e w l i n e )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ”POS S e t r e s u l t s a s COUNT of C l a s s e s from

POOR t o MOST ( u s i n g HACA) : ” )
( d i s p l a y ( c a r ( c d r r e s ) ) )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ” R e s u l t s f o r POS D a t a s e t [ Format : ( TP FP ) ] : ” )
( d i s p l a y ( l i s t ( sumaweirdo ( c a r ( c d r r e s ) ) )

( c a r ( c a r ( c d r r e s ) ) ) ) )
( n e w l i n e )
( i f ( not (= (+ ( sumaweirdo ( c a r ( c d r r e s ) ) )

( c a r ( c a r ( c d r r e s ) ) ) ) ( l e n g t h paiowapos1 ) ) )
( b e g i n ( d i s p l a y ” P o t e n t i a l OBJ s e n t e n c e s = ” )

( d i s p l a y (− ( l e n g t h paiowapos1 )
(+ ( sumaweirdo ( c a r ( c d r r e s ) ) )

( c a r ( c a r ( c d r r e s ) ) ) ) ) ) ( n e w l i n e ) )
( b e g i n ( d i s p l a y ” P o t e n t i a l OBJ s e n t e n c e s = 0 ” )

( n e w l i n e ) ) )
( n e w l i n e )
( d i s p l a y ”NEG S e t r e s u l t s a s COUNT of C l a s s e s from

POOR t o MOST ( u s i n g HACA) : ” )
( d i s p l a y ( c a r r e s ) )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ” R e s u l t s f o r NEG D a t a s e t [ Format : (TN FN ) ] : ” )
( d i s p l a y ( l i s t ( sumaweirdo ( c a r r e s ) ) ( c a a r r e s ) ) )
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( n e w l i n e )
( i f ( not (= (+ ( sumaweirdo ( c a r r e s ) )

( c a a r r e s ) ) ( l e n g t h paiowaneg1 ) ) )
( b e g i n ( d i s p l a y ” P o t e n t i a l OBJ s e n t e n c e s = ” )

( d i s p l a y (− ( l e n g t h paiowaneg1 )
(+ ( sumaweirdo ( c a r r e s ) ) ( c a a r r e s ) ) ) ) ( n e w l i n e ) )

( b e g i n ( d i s p l a y ” P o t e n t i a l OBJ s e n t e n c e s = 0 ” )
( n e w l i n e ) ) )

( n e w l i n e )
( n e w l i n e )
( n e w l i n e ) ) ) ) )

( d e f i n e j c l a s s y− a u x
( lambda ( l n l p )

( l i s t ( l i s t ( c u a n t o s<=>xy l n 0 .000 0 . 1 0 0 )
( c u a n t o s<=>xy l n 0 .150 0 . 3 5 0 )
( c u a n t o s<=>xy l n 0 .350 0 . 7 5 0 )
( c u a n t o s<=>xy l n 0 .750 0 . 9 5 0 )
( c u a n t o s<=>xy l n 0 .950 1 . 0 0 1 ) )

( l i s t ( c u a n t o s<=>xy l p 0 .000 0 . 1 5 0 )
( c u a n t o s<=>xy l p 0 .150 0 . 3 5 0 )
( c u a n t o s<=>xy l p 0 .350 0 . 7 5 0 )
( c u a n t o s<=>xy l p 0 .750 0 . 9 5 0 )
( c u a n t o s<=>xy l p 0 .950 1 . 0 0 1 ) ) ) ) )

; ; suma t o d o s menos POOR
( d e f i n e sumaweirdo

( lambda ( l 5 )
(+ (+ ( c a r ( c d r l 5 ) ) ( c a r ( cdd r l 5 ) ) )

(+ ( c a r ( cdddr l 5 ) ) ( c a r ( cddddr l 5 ) ) ) ) ) )

( d e f i n e p ro iowawor ld
( lambda ( l s )

( i f ( n u l l ? l s )
’ ( )
( cons ( pro iowawor ld−aux ( c a r l s ) )

( p ro iowawor ld ( c d r l s ) ) ) ) ) )

( d e f i n e pro iowawor ld−aux
( lambda ( l )

( mylookupoa ( c a r ( l i s t − s o r t > ( l i s t ( c a a r l )
( c a a r ( c d r l ) ) ( c a a r ( cdd r l ) ) ) ) ) l ) ) )

( d e f i n e mylookupoa
( lambda ( v a l l t )

( cond
( ( n u l l ? l t ) ’ ( ) )
( ( = ( c a a r l t ) v a l ) ( c a r ( c d r ( c a r l t ) ) ) )
( e l s e ( mylookupoa v a l ( c d r l t ) ) ) ) ) )

; ; add t h o s e l a b e l l e d as POS
( d e f i n e c o n s i g u e− a l p h a
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( lambda ( l )
( cond

( ( n u l l ? l ) 0 )
( ( equal ? ( c a r l ) ’ pos )

(+ 1 ( c o n s i g u e− a l p h a ( c d r l ) ) ) )
( e l s e ( c o n s i g u e− a l p h a ( c d r l ) ) ) ) ) )

; ; add t h o s e l a b e l l e d as NEG
( d e f i n e c o n s i g u e−b e t a

( lambda ( l )
( cond

( ( n u l l ? l ) 0 )
( ( equal ? ( c a r l ) ’ neg )

(+ 1 ( c o n s i g u e−b e t a ( c d r l ) ) ) )
( e l s e ( c o n s i g u e−b e t a ( c d r l ) ) ) ) ) )

( d e f i n e d a l e s i n i o w a
( lambda ( l p l n )

( b e g i n
( n e w l i n e )
( d i s p l a y ” For POS D a t a s e t ( w i t h o u t IOWA

and u s i n g Vot ing ) , l i s t o f t h e form ( TP FN ) : ” )
( d i s p l a y ( l i s t ( c o n s i g u e− a l p h a l p ) ( c o n s i g u e−b e t a l p ) ) )
( n e w l i n e )
( d i s p l a y ” For NEG D a t a s e t ( w i t h o u t IOWA

and u s i n g Vot ing ) , l i s t o f t h e form (TN FP ) : ” )
( d i s p l a y ( l i s t ( c o n s i g u e−b e t a l n ) ( c o n s i g u e− a l p h a l n ) ) )
( n e w l i n e )
( n e w l i n e ) ) ) )

; ; o b t a i n average i n s t e a d o f IOWA
( d e f i n e damepromediogamma

( lambda ( l s )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( / (+ (+ ( c a a r l s ) ( c a r ( c d r ( c a r l s ) ) ) )

( c a r ( cdd r ( c a r l s ) ) ) ) 3 . 0 0 0 0 0 0 0 0 )
( damepromediogamma ( c d r l s ) ) ) ) ) ) )

; ; c a l l w i t h c o n t p = 0
; ; s e l e c t >= v a l v a l u e s
( d e f i n e s i n s a l p o s

( lambda ( l a t c o n t p v a l )
( cond

( ( n u l l ? l a t ) c o n t p )
((>= ( c a r l a t ) v a l )

( s i n s a l p o s ( c d r l a t ) (+ c o n t p 1 ) v a l ) )
( e l s e ( s i n s a l p o s ( c d r l a t ) c o n t p v a l ) ) ) ) )

; ; c a l l w i t h c o n t p = 0
; ; s e l e c t < v a l v a l u e s
( d e f i n e s i n s a l n e g

( lambda ( l a t c o n t n v a l )
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( cond
( ( n u l l ? l a t ) c o n t n )
((< ( c a r l a t ) v a l )

( s i n s a l n e g ( c d r l a t ) (+ c o n t n 1 ) v a l ) )
( e l s e ( s i n s a l n e g ( c d r l a t ) c o n t n v a l ) ) ) ) )

; ; l i s t a r e s u l t a d o s de p r o m e r d i o s i n s t e a d o f IOWAs
( d e f i n e manipulaprom

( lambda ( l p o s l n e g )
( b e g i n

( n e w l i n e )
( d i s p l a y ” R e s u l t s u s i n g AVERAGE f o r

p r e− l a b e l l e d POSs ( TP FN ) : ” )
( d i s p l a y ( l i s t ( s i n s a l p o s l p o s 0 0 . 5 0 0 0 )

( s i n s a l n e g l p o s 0 0 . 5 0 0 0 ) ) )
( n e w l i n e )
( d i s p l a y ” R e s u l t s u s i n g AVERAGE f o r

p r e− l a b e l l e d NEGs (TN FP ) : ” )
( d i s p l a y ( l i s t ( s i n s a l n e g l n e g 0 0 . 5 0 0 0 )

( s i n s a l p o s l n e g 0 0 . 5 0 0 0 ) ) )
( n e w l i n e ) ) ) )

; ;
;;=========================================
; ;=== Calc f o r IOWA (MODIFIED) ============
;;=========================================
; ; S a l i d a s o f sor−calc−SIMPLE :
; ; ∗ r e s u l p o s z : r e s u l t a d o s de p o s i t i v e s e t . Format : ( neg pos . . . neg )
; ; ∗ r e s u l n e g z : r e s u l t a d o s de n e g a t i v e s e t . Format : ( neg pos . . . pos )
; ; paiowapos2 : r e s u l t a d o s POS l i s t o s para IOWA a n a l y s i s . Format : ( 0 . 0 1 1 0 . 0 3 0 . 7 9 ) ,
; ; o r d e r e d a l r e a d y from l e s s e r t o g r e a t e r .
; ; paiowaneg2 : r e s u l t a d o s NEG l i s t o s para IOWA a n a l y s i s . Format : same as above .
; ;
; ; Parameter t o c a l c− i o w a− s t u f f i s TOLERANCE . C a l l w i t h T o l e r a n c e = 0 . 3 0 0 0 0 0 .
( d e f i n e c a l c− i o w a− s t u f f− d i s c r e t e

( lambda ( t o l l y )
( b e g i n

( s e t ! pa iowapos1 ( p r e m a s a j e a−b e f o r e− i o w a ( b u i l d i t 4 i o w a−p o s nbposx meposx
l i s t o p a c o m p a p ) ) )

( s e t ! pa iowapos2 ( e x t r a c t x−v a l s− i o w a paiowapos1 ) )
( s e t ! paiowaneg1 ( p r e m a s a j e a−b e f o r e− i o w a ( b u i l d i t 4 i o w a−n e g nbnegx menegx

l i s t o p a c o m p a n ) ) )
( s e t ! paiowaneg2 ( e x t r a c t x−v a l s− i o w a paiowaneg1 ) )
( s e t ! t o l e r a n c e t o l l y )
( s e t ! v e c i ’ ( ) )
( s e t ! iowaposs ’ ( ) )
( s e t ! s u p v e c i ’ ( ) )
( s e t ! o rde rednewsupvec ’ ( ) )
( s e t ! a g g r e g a 0 . 0 )
( s e t ! iowaposs ( i o w a f u n l i s t p o s pa iowapos2 ) )
( s e t ! v e c i ’ ( ) )
( s e t ! iowanegs ’ ( ) )
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( s e t ! s u p v e c i ’ ( ) )
( s e t ! o rde rednewsupvec ’ ( ) )
( s e t ! a g g r e g a 0 . 0 0 )
( s e t ! iowanegs ( i o w a f u n l i s t n e g paiowaneg2 ) )
( s e t ! negnewt ( p ro iowawor ld paiowaneg1 ) )
( s e t ! posnewt ( p ro iowawor ld pa iowapos1 ) )
( n e w l i n e )
( d i s p l a y ”===============================================================

=============” )
( n e w l i n e )
( d i s p l a y ”BEGINNING R e s u l t s A g g r e g a t i o n u s i n g IOWA wi th Hybr id Method HACACO. ” )
( n e w l i n e )
( n e w l i n e )

; ; ( j c l a s s y iowanegs iowaposs )
; ; ( n u e v o c l a s s y iowanegs iowaposs )

( d i s p l a y ”TP = ” ) ( d i s p l a y ( bazuka−pos iowaposs 0 ) ) ( n e w l i n e )
( d i s p l a y ”FN = ” ) ( d i s p l a y ( bazuka−neg iowaposs 0 ) ) ( n e w l i n e )
( d i s p l a y ”TN = ” ) ( d i s p l a y ( bazuka−neg iowanegs 0 ) ) ( n e w l i n e )
( d i s p l a y ”FP = ” ) ( d i s p l a y ( bazuka−pos iowanegs 0 ) ) ( n e w l i n e )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ”END R e s u l t s A g g r e g a t i o n u s i n g IOWA wi th Hybr id Method HACACO. ” )
( n e w l i n e )
( d i s p l a y ”========================================================” )
( n e w l i n e )
( n e w l i n e )
( d i s p l a y ”========================================================” )
( n e w l i n e )
( d i s p l a y ”BEGINNING R e s u l t s A g g r e g a t i o n u s i n g VOTING and AVERAGING i n s t e a d

of OWA O p e r a t o r s . ” )
( n e w l i n e )
( d a l e s i n i o w a posnewt negnewt )
( manipulaprom ( damepromediogamma paiowapos2 ) ( damepromediogamma paiowaneg2 ) )
( n e w l i n e )
( d i s p l a y ”END R e s u l t s A g g r e g a t i o n u s i n g VOTING and AVERAGING i n s t e a d of

OWA O p e r a t o r s . ” )
( n e w l i n e )
( d i s p l a y ”=========================================================” )
( n e w l i n e )
( n e w l i n e )
( n e w l i n e )
) ) )

( d e f i n e f i l t r a − l o
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( r e v e r s e ( c d r ( r e v e r s e ( c a r l ) ) ) ) ( f i l t r a − l o ( c d r l ) ) ) ) ) ) )

( d e f i n e bazuka−pos
( lambda ( l c )

( cond
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( ( n u l l ? l ) c )
((>= ( c a r l ) 0 . 5 ) ( bazuka−pos ( c d r l ) (+ c 1 ) ) )
( e l s e ( bazuka−pos ( c d r l ) c ) ) ) ) )

( d e f i n e bazuka−neg
( lambda ( l c )

( cond
( ( n u l l ? l ) c )
((< ( c a r l ) 0 . 5 ) ( bazuka−neg ( c d r l ) (+ c 1 ) ) )
( e l s e ( bazuka−neg ( c d r l ) c ) ) ) ) )

;;==============================================
; ;=== C r o s s− r a t i o Uninorm Code =================
;;==============================================
; ;
; ; C r o s s− r a t i o Uninorm f o r 2 v a r i a b l e s
( d e f i n e uxy

( lambda ( x y e )
( cond

( ( or
( and

(= x 0)
(= y 1 ) )

( and
(= x 1)
(= y 0 ) ) ) 0 )

( e l s e ( / (∗ (∗ (− 1 e ) x ) y )
(+ (∗ (∗ (− 1 e ) x ) y ) (∗ e (∗ (− 1 x ) (− 1 y ) ) ) ) ) ) ) ) )

; ;
; ; promedio = average
( d e f i n e promedio

( lambda ( x y )
( / (+ x y ) 2 . 0 ) ) )

; ; main c a l l f o r c r o s s− r a t i o uninorm t e s t ( whole d a t a s e t )
; ; Parameter t o c a l c− c r o s s− r a t i o i s t o l l y . C a l l w i t h t o l l y = 0 .500000 ( i d e n t i t y e l e m e n t ) .
( d e f i n e c a l c− c r o s s− r a t i o

( lambda ( t o l l y )
( b e g i n

( s e t ! pa iowapos1 ( p r e m a s a j e a−b e f o r e− i o w a ( b u i l d i t 4 i o w a−p o s nbposx meposx
l i s t o p a c o m p a p ) ) )

( s e t ! pa iowapos2 ( e x t r a c t x−v a l s− i o w a paiowapos1 ) )
( s e t ! paiowaneg1 ( p r e m a s a j e a−b e f o r e− i o w a ( b u i l d i t 4 i o w a−n e g nbnegx menegx

l i s t o p a c o m p a n ) ) )
( s e t ! paiowaneg2 ( e x t r a c t x−v a l s− i o w a paiowaneg1 ) )
( s e t ! t o l e r a n c e t o l l y )
( n e w l i n e )

; ; F i r s t e l e m e n t o n l y
( d i s p l a y ”=============================================================

===============” )
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( n e w l i n e )
( d i s p l a y ”=== C r o s s− r a t i o Uninorm Vs . Average =========================

===============” )
( n e w l i n e )
( d i s p l a y ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ”=============================================================

===============” )
( n e w l i n e )
( d i s p l a y ”=============================================================

===============” )
( n e w l i n e )
( d i s p l a y ” Element x = ” ) ( d i s p l a y ( c a r ( c a r pa iowapos2 ) ) ) ( n e w l i n e )
( d i s p l a y ” Element y = ” ) ( d i s p l a y ( c a r ( c d r ( c a r pa iowapos2 ) ) ) ) ( n e w l i n e )
( n e w l i n e )
( d i s p l a y ” C r o s s− r a t i o Uninorm = ” ) ( d i s p l a y ( uxy ( c a r ( c a r pa iowapos2 ) )

( c a r ( c d r ( c a r pa iowapos2 ) ) ) t o l l y ) ) ( n e w l i n e ) ( n e w l i n e )
( d i s p l a y ” A r i t h m e t i c Mean = ” ) ( d i s p l a y ( promedio ( c a r ( c a r pa iowapos2 ) )

( c a r ( c d r ( c a r pa iowapos2 ) ) ) ) ) ( n e w l i n e )
( n e w l i n e )
( d i s p l a y ”==============================================================

==============” )
) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−− IOWA C a l c u l a t i o n s Code −−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; −−− REMOVE COMMENTS FOR TESTING −−−−−−−

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; ( d e f i n e t h e l s u p ’ ( 1 1 2 3 2 ) )
; ; ( d e f i n e t h e l v a l ’ ( 0 0 0 . 3 0 . 7 0 . 9 ) )
; ; ( d e f i n e p r e v e c i ’ ( 0 . 9 0 . 7 0 . 6 0 . 1 0 ) )
; ; ( d e f i n e p r e v e c i ’ ( 1 1 1 0 . 5 0 0 ) )
; ; ( d e f i n e v e c i ’ ( 0 0 . 1 0 . 6 0 . 9 0 . 7 ) )
; ; ( d e f i n e p r e v e c i ’ ( 0 . 7 0 . 5 0 . 2 1 ) )
; ; ( d e f i n e t o l e r a n c e 0 . 4 )
; ; ( d e f i n e aggrega 0 . 0 )

; ; O p p o s i t e t o CONS
( d e f i n e snoc

( lambda ( i t em l s t )
( i f ( n u l l ? l s t ) ( cons i t em ’ ( ) ) ( cons ( c a r l s t )

( snoc i t em ( c d r l s t ) ) ) ) ) )

; ; s o r t i n a s c e n d i n g o r d e r a l i s t o f atoms
( d e f i n e m y l i s t− s o r t

( lambda ( l a t )
( cond

( ( n u l l ? l a t ) ’ ( ) )
( ( = ( c a r l a t ) ( apply min l a t ) ) ( cons ( c a r l a t )

( m y l i s t− s o r t ( c d r l a t ) ) ) )
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( e l s e ( m y l i s t− s o r t ( append ( c d r l a t )
( l i s t ( c a r l a t ) ) ) ) ) ) ) )

; ; S o r t i n a s c e n d i n g o r d e r a l i s t o f p a i r s
; ; Trans form ( ( 1 0 ) (1 0 ) (3 0 . 7 ) (2 0 . 9 ) (2 0 . 3 ) ) i n t o
; ; ( ( 1 0 ) (1 0 ) (2 0 . 3 ) (2 0 . 9 ) (3 0 . 7 ) )
( d e f i n e m y l i s t− s o r t− p a i r− 1 s t

( lambda ( l a t )
( cond

( ( n u l l ? l a t ) ’ ( ) )
( ( = ( c a a r l a t ) ( apply min ( t r a n v− 1 s t l a t ) ) )

( cons ( c a r l a t )
( m y l i s t− s o r t− p a i r− 1 s t ( c d r l a t ) ) ) )

( e l s e ( m y l i s t− s o r t− p a i r− 1 s t
( append ( c d r l a t )
( l i s t ( c a r l a t ) ) ) ) ) ) ) )

; ; S o r t i n a s c e n d i n g o r d e r a l i s t o f p a i r s
; ; Trans form ( ( 1 0 ) (1 0 ) (2 0 . 3 ) (3 0 . 7 ) (2 0 . 9 ) ) i n t o
; ; ( ( 1 0 ) (1 0 ) (2 0 . 3 ) (2 0 . 9 ) (3 0 . 7 ) )
( d e f i n e m y l i s t− s o r t−p a i r−2 n d

( lambda ( l a t )
( cond

( ( n u l l ? l a t ) ’ ( ) )
( ( = ( c a r ( c d r ( c a r l a t ) ) ) ( apply min

( t r anv−2nd l a t ) ) )
( cons ( c a r l a t )

( m y l i s t− s o r t−p a i r−2 n d ( c d r l a t ) ) ) )
( e l s e ( m y l i s t− s o r t−p a i r−2 n d

( append ( c d r l a t )
( l i s t ( c a r l a t ) ) ) ) ) ) ) )

; ; Trans form ( ( a b ) ( c d ) (3 y ) ) i n t o ( b d y )
( d e f i n e t r anv−2nd

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( c a r ( c d r ( c a r l ) ) )

( t r anv−2nd ( c d r l ) ) ) ) ) ) )

; ; Trans form ( ( a b ) ( c d ) (3 y ) ) i n t o ( a c 3 )
( d e f i n e t r a n v− 1 s t

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( c a a r l )

( t r a n v− 1 s t ( c d r l ) ) ) ) ) ) )

; ; Take l i s t s (1 2 3) and ( a b c ) and c r e a t e
; ; ( ( 1 a ) (2 b ) (3 c ) )
( d e f i n e i n d u c e d− s o r t− p a i r s

( lambda ( l s u p l v a l )
( cond
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( ( n u l l ? l s u p ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a r l s u p ) ( c a r l v a l ) )

( i n d u c e d− s o r t− p a i r s ( c d r l s u p )
( c d r l v a l ) ) ) ) ) ) )

; ; E x t r a c t t h e l s u p p o r t ( t h e l s u p ) de l a s l i s t a generada
; ; por m y l i s t− s o r t− p a i r
( d e f i n e f i l t e r − t h e l s u p

( lambda ( l l a t )
( cond

( ( n u l l ? l l a t ) ’ ( ) )
( e l s e ( cons ( c a a r l l a t )

( f i l t e r − t h e l s u p ( c d r l l a t ) ) ) ) ) ) )

; ; E x t r a c t t h e l v a l u e s ( t h e l v a l ) de l a s l i s t a generada
; ; por m y l i s t− s o r t− p a i r
( d e f i n e f i l t e r − t h e l v a l

( lambda ( l l a t )
( cond

( ( n u l l ? l l a t ) ’ ( ) )
( e l s e ( cons ( c a r ( c d r ( c a r l l a t ) ) )

( f i l t e r − t h e l v a l
( c d r l l a t ) ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; ’ most ’ f u n c t i o n e v a l u a t i o n V e r s i o n 1
( d e f i n e m o s t f u n e v a l v 1

( lambda ( x )
( cond

((<= x 0 . 4 ) 0 . 0 )
((>= x 0 . 9 ) 1 . 0 )
( ( and (> x 0 . 4 )

(< x 0 . 9 ) )
(− (∗ x 2) 0 . 8 ) )

( e l s e ’ u n d e f i n e d ) ) ) )

; ; E v a l u a t e t h e pa s s ed v e r s i o n o f t h e most
; ; q u a n t i f i e r f u n c t i o n
( d e f i n e e v a l u a t e−m o s t

( lambda ( x myfun )
( myfun x ) ) )

; ; Clean t h e o u t p u t o f ’ e v a l ua t e−m o s t ’ by r e d u c i n g i t
; ; t o 1 p a r t i n t e g e r and 2 d e c i m a l s
( d e f i n e c l e a n− e v a l u a t e−m o s t

( lambda ( v a l u e )
( i f (= ( s t r i n g− l e n g t h ( number−>s t r i n g v a l u e ) ) 3 )

( s t r i n g−>number ( s u b s t r i n g
( number−>s t r i n g v a l u e ) 0 3 ) )

( s t r i n g−>number ( s u b s t r i n g
( number−>s t r i n g v a l u e ) 0 4 ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; ’ Sup ’ f u n c t i o n e v a l u a t i o n V e r s i o n 1
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( d e f i n e supv1
( lambda ( x1 x2 t o l )

( i f (< ( abs (− x1 x2 ) ) t o l )
1
0 ) ) )

; ; Get r e s u l t s ( summation ) f o r row ’ k ’
; ; vec = l i s t−>v e c t o r l a t ) ; k = row number b e i n g worked o u t ;
; ; t o l = t o l e r a n c e s u p p o r t f u n c t i o n ;
; ; c o n t = c o u n t e r f o r vec l e n g t h ( f i r s t c a l l , c o n t = 0 ) ;
; ; t o p v e c = l e n g t h v e c t o r
( d e f i n e a d d f i l a s u p v e c

( lambda ( vec k t o l count t o p v e c )
( cond

( ( = count t o p v e c ) 0 )
( ( = count (− k 1 ) ) ( a d d f i l a s u p v e c vec k t o l

(+ count 1) t o p v e c ) )
( e l s e (+ ( supv1 ( v e c t o r− r e f vec (− k 1 ) )

( v e c t o r− r e f vec count ) t o l )
( a d d f i l a s u p v e c vec k t o l (+ count 1) t o p v e c ) ) ) ) ) )

; ; Genera te S u p p o r t V e c t o r : ( S1 . . . Sn )
; ; o r i g l a t = l i s t o f v a l u e s A = ( A1 , . . . , Ak ) ;
; ; t o l = t o l e r a n c e
; ; s u p p o r t f u n c t i o n ; f i l a n u m = number o f row
; ; ( must s t a r t w i t h 1 ) ;
; ; o r i g l a t must be t h e o r i g i n a l l i s t o f v a l u e s A
; ; ( i t must NOT change )
( d e f i n e gen− sup−vec to r

( lambda ( o r i g l a t t o l f i l a n u m )
( cond

((> f i l a n u m ( l e n g t h o r i g l a t ) ) ’ ( ) )
( e l s e ( cons ( a d d f i l a s u p v e c

( l i s t−>v e c t o r o r i g l a t ) f i l a n u m t o l 0
( l e n g t h o r i g l a t ) )

( gen− sup−vec to r o r i g l a t t o l (+ f i l a n u m 1 ) ) ) ) ) ) )

; ; Gener i c f u n c t i o n t o c o n v e r t LIST t o VECTOR
( d e f i n e c o n v− l i s t− t o−v e c

( lambda ( l a t )
( l i s t−>v e c t o r l a t ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; C a l c u a l t e t i s , as t i = s i + 1
; ; s i = S u p p o r t V e c t o r ’S ’
( d e f i n e t i s

( lambda ( s i )
( cond

( ( n u l l ? s i ) ’ ( ) )
( e l s e ( cons (+ ( c a r s i ) 1 ) ( t i s ( c d r s i ) ) ) ) ) ) )
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; ; C a l c u l a t e de x ’ s t h a t w i l l go i n t o t h e Q( x ) e v a l u a t i o n ,
; ; where x i = t i / n
; ; l o s t i s = l i s t o f new t i s ’ s
; ; n = l e n g t h o f s u p p o r t v e c t o r
( d e f i n e x− i s− t o f n

( lambda ( l o s t i s n )
( cond

( ( n u l l ? l o s t i s ) ’ ( ) )
( e l s e ( cons ( i n e x a c t ( / ( c a r l o s t i s ) n ) ) ( x− i s− t o f n

( c d r l o s t i s ) n ) ) ) ) ) )

; ; C a l c u l a t e l o s v a l o r e s de Q( x ) , where x = t i s / ( P1 )
( d e f i n e q t i n s

( lambda ( l i s t x s )
( cond

( ( n u l l ? l i s t x s ) ’ ( ) )
( e l s e ( cons ( e v a l u a t e−m o s t ( c a r l i s t x s )

m o s t f u n e v a l v 1 )
( q t i n s ( c d r l i s t x s ) ) ) ) ) ) )

; ; C a l c u l a t e s u m a t o r i a o f a l l q t i n s ( P2 )
( d e f i n e s u m q t i n s

( lambda ( l i s t q t i n s )
( cond

( ( n u l l ? l i s t q t i n s ) 0 )
( e l s e (+ ( c a r l i s t q t i n s ) ( s u m q t i n s

( c d r l i s t q t i n s ) ) ) ) ) ) )

; ; C a l c u l a t e P1 / P2 , e s d e c i r , t h e new s u p p o r t v e c t o r v a l u e s
( d e f i n e p1d ivp2

( lambda ( p 1 l i s t p2 )
( cond

( ( n u l l ? p 1 l i s t ) ’ ( ) )
( e l s e ( cons ( i n e x a c t ( / ( c a r p 1 l i s t ) p2 ) ) ( p1d ivp2

( c d r p 1 l i s t ) p2 ) ) ) ) ) )

; ; Genera te t h e new S u p p o r t V e c t o r
( d e f i n e newsupvec

( lambda ( m i l i s t a )
( s o r t < m i l i s t a ) ) )

; ; M u l t y p l y 2 v e c t o r s o f same l e n g t h ( v e c t o r s are r e p s e n t e d
; ; as LATs ) l v e c 1 − S u p p o r t v e c t o r l i s t ; l v e c 2 −
; ; l i s t o f a c t u a l l v a l s
( d e f i n e multmyvecs

( lambda ( l v e c 1 l v e c 2 )
( cond

( ( n u l l ? l v e c 1 ) 0 )
( e l s e (+ (∗ ( c a r l v e c 1 ) ( c a r l v e c 2 ) )

( multmyvecs ( c d r l v e c 1 )
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( c d r l v e c 2 ) ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−− Example o f g e n e r a t i o n o f IOWA −−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( d e f i n e v e c i ’ ( ) )
( d e f i n e s u p v e c i ’ ( ) )
( d e f i n e o rde rednewsupvec ’ ( ) )

( d e f i n e i o w a t e s t
( lambda ( )
( b e g i n

( d i s p l a y ” V ec to r o r i g i n a l t o be a g g r e g a t e d = ” )
( w r i t e p r e v e c i ) ( n e w l i n e )
( s e t ! s u p v e c i ( gen− sup−vec to r p r e v e c i t o l e r a n c e 1 ) )
( d i s p l a y ” S u p p o r t V ec to r = ” )
( w r i t e s u p v e c i ) ( n e w l i n e )
( d i s p l a y ” With a T o l e r a n c e o f : ” )
( w r i t e t o l e r a n c e ) ( n e w l i n e )
( s e t ! v e c i ( f i l t e r − t h e l v a l

( m y l i s t− s o r t− p a i r− 1 s t ( m y l i s t− s o r t−p a i r−2 n d
( i n d u c e d− s o r t− p a i r s s u p v e c i p r e v e c i ) ) ) ) )

( d i s p l a y ” The Induced S i m i l a r i t y Order V ec to r
b e i n g a g g r e g a t e d = ” )

( w r i t e v e c i ) ( n e w l i n e )
( s e t ! o rde rednewsupvec

( newsupvec
( p1d ivp2 ( q t i n s ( x− i s− t o f n ( t i s s u p v e c i )

( l e n g t h ( t i s s u p v e c i ) ) ) )
( s u m q t i n s ( q t i n s ( x− i s− t o f n ( t i s s u p v e c i )

( l e n g t h ( t i s s u p v e c i ) ) ) ) ) ) ) )
( d i s p l a y ”New S u p p o r t V ec to r = ” )
( w r i t e orde rednewsupvec )
( n e w l i n e )
( d i s p l a y ” A g g r e g a t i o n = ” )
( s e t ! a g g r e g a ( multmyvecs o rde rednewsupvec v e c i ) )
( w r i t e a g g r e g a )
( n e w l i n e )
( n e w l i n e ) ) ) )

C.5 Support Code

; ; are a l l members o f a l i s t v e c s ?
( d e f i n e a l l v e c s ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( e l s e

( i f ( v e c t o r ? ( c a r l ) )
( a l l v e c s ? ( c d r l ) )
# f ) ) ) ) )

; ; are a l l members o f a l i s t p a i r s ?
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( d e f i n e a l l p a i r ?
( lambda ( l )

( cond
( ( n u l l ? l ) # t )
( e l s e

( i f ( p a i r ? ( c a r l ) )
( a l l p a i r ? ( c d r l ) )
# f ) ) ) ) )

; ; i s v a l u e >= 1
( d e f i n e i s v a l u e >=1

( lambda ( l i s t a )
( cond

( ( n u l l ? l i s t a ) ’ ( ) )
( e l s e ( i f (>= ( c a r ( c d r ( c a r l i s t a ) ) ) 1 . 0 0 )

( cons ( c a r l i s t a )
( i s v a l u e >=1 ( c d r l i s t a ) ) )

( i s v a l u e >=1 ( c d r l i s t a ) ) ) ) ) ) )

; ; i s v a l u e <= 0
( d e f i n e i s v a l u e <0

( lambda ( l i s t a )
( cond

( ( n u l l ? l i s t a ) ’ ( ) )
( e l s e ( i f (< ( c a r ( c d r ( c a r l i s t a ) ) ) 0 . 0 0 )

( cons ( c a r l i s t a )
( i s v a l u e <0 ( c d r l i s t a ) ) )

( i s v a l u e <0 ( c d r l i s t a ) ) ) ) ) ) )

; ; i s v a l u e = 0
( d e f i n e i s v a l u e =0

( lambda ( l i s t a )
( cond

( ( n u l l ? l i s t a ) ’ ( ) )
( e l s e ( i f (= ( c a r ( c d r ( c a r l i s t a ) ) ) 0 . 0 0 )

( cons ( c a r l i s t a )
( i s v a l u e =0 ( c d r l i s t a ) ) )

( i s v a l u e =0 ( c d r l i s t a ) ) ) ) ) ) )

; ; r e s i z e l i s t o f v e c t o r s mixed (5 and 6 l e n g t h )
; ; t o a l l l e n g t h = 8 v e c t o r s
( d e f i n e r e s i z e v e c t o r 5 t o 8

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( = ( v e c t o r− l e n g t h ( c a r l ) ) 8 )

( cons ( c a r l ) ( r e s i z e v e c t o r 5 t o 6 ( c d r l ) ) ) )
( e l s e ( cons ( i n s p e c t i o n v e c ( c a r l ) )

( r e s i z e v e c t o r 5 t o 8 ( c d r l ) ) ) ) ) ) )

; ; Re−wri te a v e c t o r o f l e n g t h 5 , e x t e n d i n g i t
; ; t o l e n g h t 6 , add ing
; ; symbol ’ n o i n f o i n
; ; v e c− r e f = 2 , 3 , 4 , 5 , 6 and 7
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( d e f i n e i n s p e c t i o n v e c
( lambda ( vec )

( i f (= ( v e c t o r− r e f vec 2 ) −1)
( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )

( v e c t o r− r e f vec 1 )
’ nopsc
’ nonsc
’ n oc ob j
’ n o c s o r
’ nomaxd i s t
’ n o m i n d i s t
) )

( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )
( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
’ n o c s o r
’ nomaxd i s t
’ n o m i n d i s t
) ) ) ) )

; ; check t h a t a l l v e c t o r s i n t h e l i s t are o f l e n g h t h = 8
( d e f i n e a l l l e n g t h 8 ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( e l s e ( i f (= ( v e c t o r− l e n g t h ( c a r l ) ) 8 )

# t
# f ) ) ) ) )

; ; are bo th l i s t t h e same w i t h r e s p e c t t o t h e f i r s t e l e m e n t
; ; o f t h e v e c t o r
; ; t h e words i n t h e l i s t o f v e c t o r s
( d e f i n e s a m e l o v e c s ?

( lambda ( l v 1 l v 2 )
( i f (= ( l e n g t h l v 1 ) ( l e n g t h l v 2 ) )

( s ame lovecsaux l v 1 l v 2 )
# f ) ) )

; ; aux f u n c t i o n o f s a m e l o v e c s ? compares heads o f
; ; bo th v e c t o r s
( d e f i n e same lovecsaux

( lambda ( l v 1 l v 2 )
( cond

( ( n u l l ? l v 1 ) # t )
( ( not ( equal ? ( v e c t o r− r e f

( c a r l v 1 ) 0 ) ( v e c t o r− r e f ( c a r l v 2 ) 0 ) ) ) # f )
( e l s e ( s ame lovecsaux ( c d r l v 1 ) ( c d r l v 2 ) ) ) ) ) )

; ; v a l i d a s i hay a lgun e l e m e n t o d e l v e c t o r con ’ x ’ en
; ; l u g a r de a v a l i d PoS
( d e f i n e i s t h e r e− a−n o n p o s ?

( lambda ( l v e c )
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( cond
( ( n u l l ? l v e c ) # f )
( ( equal ? ( v e c t o r− r e f ( c a r l v e c ) 1 ) ’ x ) # t )
( e l s e ( i s t h e r e− a−n o n p o s ? ( c d r l v e c ) ) ) ) ) )

; ; r e p l a c e t h e x i n v e c t o r− r e f 1 : PoS t a g
( d e f i n e r e p l a c e p o s t

( lambda ( l v e c )
( cond

( ( n u l l ? l v e c ) ’ ( ) )
( e l s e ( i f ( equal ? ( v e c t o r− r e f ( c a r l v e c ) 1 ) ’ x )

( cons ( do rep ( c a r l v e c ) )
( r e p l a c e p o s t ( c d r l v e c ) ) )

( cons ( c a r l v e c )
( r e p l a c e p o s t ( c d r l v e c ) ) ) ) ) ) ) )

; ;
( d e f i n e dorep

( lambda ( vec )
( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )

’ n o p o s t a g
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
( v e c t o r− r e f vec 5 )
( v e c t o r− r e f vec 6 )
( v e c t o r− r e f vec 7 ) ) ) ) )

; r e s i z e l i s t o f v e c t o r s o f l e n g t h 8 ) t o a l l
; ; l e n g t h = 9 v e c t o r s
( d e f i n e r e s i z e v e c t o r 8 t o 9

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( i n s p e c t i o n v e c 9 ( c a r l ) )

( r e s i z e v e c t o r 8 t o 9 ( c d r l ) ) ) ) ) ) )

; ; Re−wri te a v e c t o r o f l e n g t h 8 , e x t e n d i n g i t t o
; ; l e n g h t 9 , add ing
; ; v a l u e 0 f o r l e a r n i n g f i e l d v e c t o r− r e f i s 8
( d e f i n e i n s p e c t i o n v e c 9

( lambda ( vec )
( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )

( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
( v e c t o r− r e f vec 5 )
( v e c t o r− r e f vec 6 )
( v e c t o r− r e f vec 7 )
0 ) ) ) )
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; ; check t h a t a l l v e c t o r s i n t h e l i s t are o f l e n g h t h = 9
( d e f i n e a l l l e n g t h 9 ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( e l s e ( i f (= ( v e c t o r− l e n g t h ( c a r l ) ) 9 )

# t
# f ) ) ) ) )

; ; Add s e m a n t i c o r i e n t a t i o n t o l e x i c o n
; ; ( l e x = l e x i c o n ; l s o = l i s t o f SO )
( d e f i n e addso

( lambda ( l s o l e x )
( i f ( n u l l ? l s o )

’ ( )
( cons ( p e r f o r m a d d s o

( c a r l s o ) l e x ) ( addso ( c d r l s o ) l e x ) ) ) ) )

; ; Per form addso
( d e f i n e p e r f o r m a d d s o

( lambda ( l s t l e x )
( cond

( ( n u l l ? l e x ) ’ ( ) )
( ( equal ? ( c a r l s t ) ( v e c t o r− r e f ( c a r l e x ) 0 ) )

( cons ( c o n s t r u c t v e c ( c a r ( c d r l s t ) )
( c a r l e x ) ) ( p e r f o r m a d d s o l s t ( c d r l e x ) ) ) )

( e l s e ( p e r f o r m a d d s o l s t ( c d r l e x ) ) ) ) ) )

; ; C o n s t r u c t v e c w i t h SO added
( d e f i n e c o n s t r u c t v e c

( lambda ( v a l o r vec )
( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )

( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
v a l o r
( v e c t o r− r e f vec 6 )
( v e c t o r− r e f vec 7 )
( v e c t o r− r e f vec 8 ) ) ) ) )

; ; i n t e r s e c t i o n v a c i a de two l v e c s ( l e x i c o n s )
( d e f i n e e m p t y i n t e r s e c t ?

( lambda ( l v e c 1 l v e c 2 )
( cond

( ( n u l l ? l v e c 1 ) # t )
( ( e s t a e n l v e c 2 ? ( c a r l v e c 1 ) l v e c 2 ) # f )
( e l s e ( e m p t y i n t e r s e c t ? ( c d r l v e c 1 ) l v e c 2 ) ) ) ) )

; ; A u x i l i a r f o r e m p t y i n t e r s e c t ?
( d e f i n e e s t a e n l v e c 2 ?

( lambda ( vec l v e c )
( cond
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( ( n u l l ? l v e c ) # f )
( ( equal ? ( v e c t o r− r e f vec 0 )

( v e c t o r− r e f ( c a r l v e c ) 0 ) )
( b e g i n ( d i s p l a y vec ) ( n e w l i n e ) # t ) )
( e l s e ( e s t a e n l v e c 2 ? vec ( c d r l v e c ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Programs u t i l i t i e s para a c t u a l i z a r y r e t r i e v e
; ; p a r t e s d e l vec de l e x i c o n
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( d e f i n e ge tword

( lambda ( vec )
( v e c t o r− r e f vec 0 ) ) )

( d e f i n e g e t p o s
( lambda ( vec )

( v e c t o r− r e f vec 1 ) ) )

( d e f i n e g e t p o s s c o r e
( lambda ( vec )

( v e c t o r− r e f vec 2 ) ) )

( d e f i n e g e t n e g s c o r e
( lambda ( vec )

( v e c t o r− r e f vec 3 ) ) )

( d e f i n e g e t o b j s c o r e
( lambda ( vec )

( v e c t o r− r e f vec 4 ) ) )

( d e f i n e g e t s o r
( lambda ( vec )

( v e c t o r− r e f vec 5 ) ) )

( d e f i n e g e t m a x d i s t
( lambda ( vec )

( v e c t o r− r e f vec 6 ) ) )

( d e f i n e g e t m i n d i s t
( lambda ( vec )

( v e c t o r− r e f vec 7 ) ) )

( d e f i n e g e t u p d t i n d e x
( lambda ( vec )

( v e c t o r− r e f vec 8 ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Programs de match y reemp lazo de SOs , Min and Max
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Rep lace MAXDIST end l v e c s : r e t o r n a l a l i s t a de v e c t o r e s ,
; ; para a q u e l l o s v e c t o r e s que s a t i s f a c e n l a comparacion
( d e f i n e r e p l a c e m a x d i s t

( lambda ( lmax l v e c )
( cond
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( ( n u l l ? lmax ) ’ ( ) )
( ( f o u n d i t ? ( c a r lmax ) l v e c )

( cons ( f i x v e c t o r 6
( d e l i v e r i t ( c a r lmax ) l v e c )
( c a r ( c d r ( c a r lmax ) ) ) )

( r e p l a c e m a x d i s t ( c d r lmax ) l v e c ) ) )
( e l s e ( r e p l a c e m a x d i s t ( c d r lmax ) l v e c ) ) ) ) )

; ; Rep lace MINDIST end l v e c s : r e t o r n a l a l i s t a de v e c t o r e s ,
; ; para a q u e l l o s v e c t o r e s que s a t i s f a c e n l a comparacion
( d e f i n e r e p l a c e m i n d i s t

( lambda ( lmax l v e c )
( cond

( ( n u l l ? lmax ) ’ ( ) )
( ( f o u n d i t ? ( c a r lmax ) l v e c )

( cons ( f i x v e c t o r 7
( d e l i v e r i t ( c a r lmax ) l v e c )
( c a r ( c d r ( c a r lmax ) ) ) )

( r e p l a c e m i n d i s t ( c d r lmax ) l v e c ) ) )
( e l s e ( r e p l a c e m i n d i s t ( c d r lmax ) l v e c ) ) ) ) )

; ; Rep lace CSOR end l v e c s : r e t o r n a l a l i s t a de v e c t o r e s ,
; ; para a q u e l l o s v e c t o r e s que s a t i s f a c e n l a comparacion
( d e f i n e r e p l a c e c s o r

( lambda ( lmax l v e c )
( cond

( ( n u l l ? lmax ) ’ ( ) )
( ( f o u n d i t ? ( c a r lmax ) l v e c )

( cons ( f i x v e c t o r 5
( d e l i v e r i t ( c a r lmax ) l v e c )
( c a r ( c d r ( c a r lmax ) ) ) )

( r e p l a c e c s o r ( c d r lmax ) l v e c ) ) )
( e l s e ( r e p l a c e c s o r ( c d r lmax ) l v e c ) ) ) ) )

; ; check and r e t u r n s # t s i e l v e c t o r buscado p e r t e n c e a l v e c s
( d e f i n e f o u n d i t ?

( lambda ( l s t l v e c )
( cond

( ( n u l l ? l v e c ) # f )
( ( equal ? ( c a r l s t ) ( ge tword ( c a r l v e c ) ) ) # t )
( e l s e ( f o u n d i t ? l s t ( c d r l v e c ) ) ) ) ) )

; ; s i f o u n d i t ? i s # t , r e t o r n a e l ” vec ” s o b r e e l
; ; c u a l se debe hacer e l r eemp lazo de v a l o r
( d e f i n e d e l i v e r i t

( lambda ( l s t l v e c )
( cond

( ( n u l l ? l v e c ) ’ ( ) )
( ( equal ? ( c a r l s t ) ( ge tword ( c a r l v e c ) ) ) ( c a r l v e c ) )
( e l s e ( d e l i v e r i t l s t ( c d r l v e c ) ) ) ) ) )

; ; remove l o s ’ ( ) que haya en una l i s t a de v e c t o r e s
( d e f i n e r emoveemptyse t s

( lambda ( l v e c s )
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( i f ( equal ? ( c a r l v e c s ) ’ ( ) )
( r emoveemptyse t s ( c d r l v e c s ) )
( cons ( c a r l v e c s ) ( r emoveemptyse t s ( c d r l v e c s ) ) ) ) ) )

; ; d e v u e l v e e l v e c t o r con e l v a l o r deseado ya reemplazado
; ; para vec i n d e x 5 : CSOR
( d e f i n e f i x v e c t o r 5

( lambda ( vec v a l o r )
( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )

( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
v a l o r
( v e c t o r− r e f vec 6 )
( v e c t o r− r e f vec 7 )
( v e c t o r− r e f vec 8 ) ) ) ) )

; ; d e v u e l v e e l v e c t o r con e l v a l o r deseado ya reemplazado
; ; para vec i n d e x 6 : MAXDIST
( d e f i n e f i x v e c t o r 6

( lambda ( vec v a l o r )
( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )

( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
( v e c t o r− r e f vec 5 )
v a l o r
( v e c t o r− r e f vec 7 )
( v e c t o r− r e f vec 8 ) ) ) ) )

; ; d e v u e l v e e l v e c t o r con e l v a l o r deseado ya reemplazado
; ; para vec i n d e x 7 : MINDIST
( d e f i n e f i x v e c t o r 7

( lambda ( vec v a l o r )
( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )

( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
( v e c t o r− r e f vec 5 )
( v e c t o r− r e f vec 6 )
v a l o r
( v e c t o r− r e f vec 8 ) ) ) ) )

; ; r eemp laza en l a l i s t a de v e c t o r e s d e l l e x i c o n ,
; ; l o s v e c t o r e s p r o v i s t o s en l a l i s t a de v e c t o r e s :
; ; l v e c s : INCOMPLETO
( d e f i n e u p d a t e e l l e x i c o n

( lambda ( l v e c s l e x )
( cond

( ( n u l l ? l v e c s ) ’ ( ) )
( ( e s t a e n ? ( c a r l v e c s ) l e x )
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( cons ( f i x l e x ( c a r l v e c s ) l e x )
( u p d a t e e l l e x i c o n ( c d r l v e c s ) l e x ) ) )

( e l s e ( u p d a t e e l l e x i c o n ( c d r l v e c s ) l e x ) ) ) ) )

( d e f i n e e s t a e n ?
( lambda ( vec l e x )

( cond
( ( n u l l ? l e x ) # f )
( ( equal ? ( ge tword vec ) ( ge tword ( c a r l e x ) ) ) # t )
( e l s e ( e s t a e n ? vec ( c d r l e x ) ) ) ) ) )

( d e f i n e f i x l e x
( lambda ( vec l e x )

( cond
( ( n u l l ? l e x ) ’ ( ) )
( ( equal ? ( ge tword vec ) ( ge tword ( c a r l e x ) ) ) vec )
( e l s e ( f i x l e x vec ( c d r l e x ) ) ) ) ) )

( d e f i n e l o o p c o r r e c t i o n s
( lambda ( l 1 l 2 )

( cond
( ( n u l l ? l 1 ) ’ ( ) )
( e l s e ( l o o p c o r r e c t i o n s ( c d r l 1 )

( l o o p l e x ( c a r l 1 ) l 2 ) ) ) ) ) )

( d e f i n e l o o p l e x
( lambda ( vec l )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( ge tword vec ) ( ge tword ( c a r l ) ) )

( cons vec ( l o o p l e x vec ( c d r l ) ) ) )
( e l s e ( cons ( c a r l )

( l o o p l e x vec ( c d r l ) ) ) ) ) ) )

( d e f i n e use−sub−sor
( lambda ( new o l d l v e c )

( sub− so r ( c a r ( c d r ( c a r l o s s o ) ) )
( c a r ( c a r l o s s o ) ) l o s n e g s ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; l l a m a r a cambios en n e g l e x con SOR
( d e f i n e c a m b i o s− j− l o s n e g s− s o r

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ done )
( e l s e ( b e g i n

( s e t ! l o s n e g s ( sub− so r ( c a r l s t ) l o s n e g s ) )
( c a m b i o s− j− l o s n e g s− s o r ( c d r l s t ) ) ) ) ) ) )

; l l a m a r a cambios en n e g l e x con MAX
( d e f i n e cambios− j− losnegs−max
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( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ done )
( e l s e ( b e g i n

( s e t ! l o s n e g s ( sub−max ( c a r l s t ) l o s n e g s ) )
( cambios− j− losnegs−max ( c d r l s t ) ) ) ) ) ) )

; l l a m a r a cambios en n e g l e x con MIN
( d e f i n e cambios− j− losnegs−min

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ done )
( e l s e ( b e g i n

( s e t ! l o s n e g s ( sub−min ( c a r l s t ) l o s n e g s ) )
( cambios− j− losnegs−min ( c d r l s t ) ) ) ) ) ) )

; ; l l a m a r a cambios en p o s l e x con SOR
( d e f i n e c a m b i o s− j− l o s p o s s− s o r

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ done )
( e l s e ( b e g i n

( s e t ! l o s p o s s ( sub− so r ( c a r l s t ) l o s p o s s ) )
( c a m b i o s− j− l o s p o s s− s o r ( c d r l s t ) ) ) ) ) ) )

; l l a m a r a cambios en p o s l e x con MAX
( d e f i n e cambios− j− losposs−max

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ done )
( e l s e ( b e g i n

( s e t ! l o s p o s s ( sub−max ( c a r l s t ) l o s p o s s ) )
( cambios− j− losposs−max ( c d r l s t ) ) ) ) ) ) )

; l l a m a r a cambios en p o s l e x con MIN
( d e f i n e cambios− j− l o sposs−min

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ done )
( e l s e ( b e g i n

( s e t ! l o s p o s s ( sub−min ( c a r l s t ) l o s p o s s ) )
( cambios− j− l o sposs−min ( c d r l s t ) ) ) ) ) ) )

; ; r e c i b e l i s t a de cambio p u n t u a l , como ’ ( poor v a l o r ) y
; ; un l e x i c o n ( l i s t a de v e c t o r e s )
( d e f i n e sub− so r

( lambda ( l s t v l v e c )
( cond

( ( n u l l ? l v e c ) ’ ( ) )
( ( equal ? ( ge tword ( c a r l v e c ) ) ( c a r l s t v ) )

( cons ( f i x v e c t o r c i t o 5
( c a r l v e c ) ( c a r ( c d r l s t v ) ) )

( sub− so r l s t v ( c d r l v e c ) ) ) )
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( e l s e ( cons ( c a r l v e c )
( sub− so r l s t v ( c d r l v e c ) ) ) ) ) ) )

; ; r e c i b e l i s t a de cambio p u n t u a l , como ’ ( poor v a l o r )
; ; y un l e x i c o n ( l i s t a de v e c t o r e s )
( d e f i n e sub−max

( lambda ( l s t v l v e c )
( cond

( ( n u l l ? l v e c ) ’ ( ) )
( ( equal ? ( ge tword ( c a r l v e c ) ) ( c a r l s t v ) )

( cons ( f i x v e c t o r c i t o 6 ( c a r l v e c ) ( c a r ( c d r l s t v ) ) )
( sub−max l s t v ( c d r l v e c ) ) ) )

( e l s e ( cons ( c a r l v e c ) ( sub−max l s t v ( c d r l v e c ) ) ) ) ) ) )

; r e c i b e l i s t a de cambio p u n t u a l , como ’ ( poor v a l o r ) y un
; ; l e x i c o n ( l i s t a de v e c t o r e s )
( d e f i n e sub−min

( lambda ( l s t v l v e c )
( cond

( ( n u l l ? l v e c ) ’ ( ) )
( ( equal ? ( ge tword ( c a r l v e c ) ) ( c a r l s t v ) )

( cons ( f i x v e c t o r c i t o 7
( c a r l v e c ) ( c a r ( c d r l s t v ) ) )

( sub−min l s t v ( c d r l v e c ) ) ) )
( e l s e ( cons ( c a r l v e c )

( sub−min l s t v ( c d r l v e c ) ) ) ) ) ) )

( d e f i n e f i x v e c t o r c i t o 5
( lambda ( vec v a l )

( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )
( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
v a l
( v e c t o r− r e f vec 6 )
( v e c t o r− r e f vec 7 )
( v e c t o r− r e f vec 8 ) ) ) ) )

( d e f i n e f i x v e c t o r c i t o 6
( lambda ( vec v a l )

( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )
( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
( v e c t o r− r e f vec 5 )
v a l
( v e c t o r− r e f vec 7 )
( v e c t o r− r e f vec 8 ) ) ) ) )

( d e f i n e f i x v e c t o r c i t o 7
( lambda ( vec v a l )
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( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )
( v e c t o r− r e f vec 1 )
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
( v e c t o r− r e f vec 5 )
( v e c t o r− r e f vec 6 )
v a l
( v e c t o r− r e f vec 8 ) ) ) ) )

; ; s i s e desea cambiar a d j e t i v o s a t e l l i t e de ’ s ’ a ’a ’
( d e f i n e f i x− s a t e l l i t e− v e c

( lambda ( vec )
( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f vec 0 )

’ a
( v e c t o r− r e f vec 2 )
( v e c t o r− r e f vec 3 )
( v e c t o r− r e f vec 4 )
( v e c t o r− r e f vec 5 )
( v e c t o r− r e f vec 6 )
( v e c t o r− r e f vec 7 )
( v e c t o r− r e f vec 8 )
( v e c t o r− r e f vec 9 ) ) ) ) )

; ; r u t i n a que hace e l l oop ( s i s e q u i e r e r e e m p l a z a r
; ; a d j e t i v o s s a t e l i t a l e s )
( d e f i n e f i x − s a t e l l i t e − l o s

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( equal ? ( g e t p o s ( c a r l s t ) ) ’ s ) ( cons

( f i x− s a t e l l i t e− v e c ( c a r l s t ) )
( f i x − s a t e l l i t e − l o s ( c d r l s t ) ) ) )

( e l s e ( cons ( c a r l s t )
( f i x − s a t e l l i t e − l o s ( c d r l s t ) ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; STATISTICS
( d e f i n e s t a t s m i n e

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) 0 )
( ( number ? ( g e t u p d t i n d e x ( c a r l s t ) ) )

(+ 1 ( s t a t s m i n e ( c d r l s t ) ) ) )
( e l s e ( s t a t s m i n e ( c d r l s t ) ) ) ) ) )

( d e f i n e s t a t s p o s
( lambda ( l s t )

( cond
( ( n u l l ? l s t ) 0 )
( ( or

( equal ? ( g e t p o s ( c a r l s t ) ) ’ n )
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( equal ? ( g e t p o s ( c a r l s t ) ) ’ a )
( equal ? ( g e t p o s ( c a r l s t ) ) ’ s )
( equal ? ( g e t p o s ( c a r l s t ) ) ’ v )
( equal ? ( g e t p o s ( c a r l s t ) ) ’ r ) )

(+ 1 ( s t a t s p o s ( c d r l s t ) ) ) )
( e l s e ( s t a t s p o s ( c d r l s t ) ) ) ) ) )

( d e f i n e itemswmax
( lambda ( l v e c s )

( cond
( ( n u l l ? l v e c s ) ’ ( ) )
( ( number ? ( g e t m a x d i s t ( c a r l v e c s ) ) )

( cons ( c a r l v e c s ) ( itemswmax ( c d r l v e c s ) ) ) )
( e l s e ( itemswmax ( c d r l v e c s ) ) ) ) ) )

( d e f i n e i temswmin
( lambda ( l v e c s )

( cond
( ( n u l l ? l v e c s ) ’ ( ) )
( ( number ? ( g e t m i n d i s t ( c a r l v e c s ) ) )

( cons ( c a r l v e c s ) ( i temswmin ( c d r l v e c s ) ) ) )
( e l s e ( i temswmin ( c d r l v e c s ) ) ) ) ) )

( d e f i n e i t e m s w n o p o s s c o r e
( lambda ( l v e c s )

( cond
( ( n u l l ? l v e c s ) ’ ( ) )
( ( number ? ( g e t p o s s c o r e ( c a r l v e c s ) ) )

( i t e m s w n o p o s s c o r e ( c d r l v e c s ) ) )
( e l s e ( cons ( c a r l v e c s )

( i t e m s w n o p o s s c o r e ( c d r l v e c s ) ) ) ) ) ) )

; ; c a l l w i t h dmax = −1
( d e f i n e themax

( lambda ( l dmax )
( cond

( ( n u l l ? l ) dmax )
( ( not ( number ? ( g e t p o s s c o r e ( c a r l ) ) ) )

( themax ( c d r l ) dmax ) )
((> ( g e t p o s s c o r e ( c a r l ) ) dmax ) ( themax ( c d r l )

( g e t p o s s c o r e ( c a r l ) ) ) )
( e l s e ( themax ( c d r l ) dmax ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−− R o u t i n e s f o r p r o c e s s i n g t h e r e s u l t s o f S u p e r v i s e d
; ; L e a r n i n g t e c h n i q u e s −−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( d e f i n e w r o n g−p o s i t i v e s− c o u n t

( lambda ( l )
( cond

( ( n u l l ? l ) 0 )
( ( and ( equal ? ( c a r ( c d r ( c d r ( c a r l ) ) ) ) ’ neg )

( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 1 ) )
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(+ 1 ( w r o n g−p o s i t i v e s− c o u n t ( c d r l ) ) ) )
( e l s e ( w r o n g−p o s i t i v e s− c o u n t ( c d r l ) ) ) ) ) )

( d e f i n e t r u e− p o s i t i v e s− c o u n t
( lambda ( l )

( cond
( ( n u l l ? l ) 0 )
( ( and ( equal ? ( c a r ( c d r ( c d r ( c a r l ) ) ) ) ’ pos )

( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 1 ) )
(+ 1 ( t r u e− p o s i t i v e s− c o u n t ( c d r l ) ) ) )

( e l s e ( t r u e− p o s i t i v e s− c o u n t ( c d r l ) ) ) ) ) )

( d e f i n e w r o n g−n e g a t i v e s−c o u n t
( lambda ( l )

( cond
( ( n u l l ? l ) 0 )
( ( and ( equal ? ( c a r ( c d r ( c d r ( c a r l ) ) ) ) ’ pos )

( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 0 ) )
(+ 1 ( w r o n g−n e g a t i v e s−c o u n t ( c d r l ) ) ) )

( e l s e ( w r o n g−n e g a t i v e s−c o u n t ( c d r l ) ) ) ) ) )

( d e f i n e t r u e− n e g a t i v e s− c o u n t
( lambda ( l )

( cond
( ( n u l l ? l ) 0 )
( ( and ( equal ? ( c a r ( c d r ( c d r ( c a r l ) ) ) ) ’ neg )

( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 0 ) )
(+ 1 ( t r u e− n e g a t i v e s− c o u n t ( c d r l ) ) ) )

( e l s e ( t r u e− n e g a t i v e s− c o u n t ( c d r l ) ) ) ) ) )

( d e f i n e w r o n g− p o s i t i v e s− e x t r a c t
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( and ( equal ? ( c a r ( c d r ( c d r ( c a r l ) ) ) ) ’ neg )

( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 1 ) )
( cons ( c a r l ) ( w r o n g− p o s i t i v e s− e x t r a c t ( c d r l ) ) ) )
( e l s e ( w r o n g− p o s i t i v e s− e x t r a c t ( c d r l ) ) ) ) ) )

( d e f i n e t r u e− p o s i t i v e s− e x t r a c t
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( and ( equal ? ( c a r ( c d r ( c d r ( c a r l ) ) ) ) ’ pos )

( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 1 ) )
( cons ( c a r l ) ( t r u e− p o s i t i v e s− e x t r a c t ( c d r l ) ) ) )
( e l s e ( t r u e− p o s i t i v e s− e x t r a c t ( c d r l ) ) ) ) ) )

( d e f i n e w r o n g−n e g a t i v e s− e x t r a c t
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( and ( equal ? ( c a r ( c d r ( c d r ( c a r l ) ) ) ) ’ pos )

( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 0 ) )

238



C.5. Support Code Appendix C. Scheme Code - SA Hybrid System Proof of Concept

( cons ( c a r l ) ( w r o n g−n e g a t i v e s− e x t r a c t ( c d r l ) ) ) )
( e l s e ( w r o n g−n e g a t i v e s− e x t r a c t ( c d r l ) ) ) ) ) )

( d e f i n e t r u e− n e g a t i v e s− e x t r a c t
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( and ( equal ? ( c a r ( c d r ( c d r ( c a r l ) ) ) ) ’ neg )

( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 0 ) )
( cons ( c a r l ) ( t r u e− n e g a t i v e s− e x t r a c t ( c d r l ) ) ) )
( e l s e ( t r u e− n e g a t i v e s− e x t r a c t ( c d r l ) ) ) ) ) )

( d e f i n e c u a n t o s−o r i g n e g s
( lambda ( l )

( cond
( ( n u l l ? l ) 0 )
( ( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 0 )

(+ 1 ( c u a n t o s−o r i g n e g s ( c d r l ) ) ) )
( e l s e ( c u a n t o s−o r i g n e g s ( c d r l ) ) ) ) ) )

( d e f i n e c u a n t o s−o r i g p o s s
( lambda ( l )

( cond
( ( n u l l ? l ) 0 )
( ( eq ? ( c a r ( c d r ( c d r ( c d r ( c a r l ) ) ) ) ) 1 )

(+ 1 ( c u a n t o s−o r i g p o s s ( c d r l ) ) ) )
( e l s e ( c u a n t o s−o r i g p o s s ( c d r l ) ) ) ) ) )

( d e f i n e siemprenum
( lambda ( l )

( cond
( ( n u l l ? l ) # t )
( ( number ? ( c a r ( c a r l ) ) )

( s iemprenum ( c d r l ) ) )
( e l s e # f ) ) ) )

( d e f i n e s i e m p r e s t r i n g
( lambda ( l )

( cond
( ( n u l l ? l ) # t )
( ( s t r i n g ? ( c a r ( c d r ( c a r l ) ) ) )

( s i e m p r e s t r i n g ( c d r l ) ) )
( e l s e # f ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−− V a l i d a t i o n l e x i c o n s −−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( d e f i n e r e p e t i d a s

( lambda ( l 1 l 2 )
( cond

( ( n u l l ? l 1 ) ’ ( ) )
( e l s e

( cons ( e s t a r e p ( ge tword ( c a r l 1 ) ) l 2 )
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( r e p e t i d a s ( c d r l 1 ) l 2 ) ) ) ) ) )

( d e f i n e e s t a r e p
( lambda ( wrd l s t )

( cond
( ( n u l l ? l s t ) ’ ( ) )
( ( equal ? ( ge tword ( c a r l s t ) ) wrd )

( c a r l s t ) )
( e l s e ( e s t a r e p wrd ( c d r l s t ) ) ) ) ) )

( d e f i n e q u i t a v a c i o s
( lambda ( l a v e c )

( cond
( ( n u l l ? l a v e c ) ’ ( ) )
( ( and

( not ( v e c t o r ? ( c a r l a v e c ) ) )
( equal ? ( c a r l a v e c ) ’ ( ) ) )

( q u i t a v a c i o s
( c d r l a v e c ) ) )

( e l s e ( cons ( c a r l a v e c )
( q u i t a v a c i o s ( c d r l a v e c ) ) ) ) ) ) )

; ;
; ;
;;=========================== MEGA Globa l V a r i a b l e s ===========
; ; ” t h e l e x ” i s The Opin ion L e x i c o n
; ; ” n e g l e x ” i s t h e NEG Opin ion L e x i c o n
; ; ” p o s l e x ” i s t h e POS Opin ion L e x i c o n
; ; ” o b j l e x ” i s t h e OBJ Opin ion L e x i c o n
;;=============================================================
; ;
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; l i m p i a d o r : a p l i c a a l l f u n c t i o n s t o p r o c e s s r u l e s
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( d e f i n e l i m p i a d o r−x

( lambda ( l s t )
( manejador−x ( q u i t a− b a s u r a ( f i n d− n e g a t i o n ( d e a l w i t h− u n l e s s

( d e a l w i t h− d e s p i t e
( d e a l w i t h−b u t ( e x t r a c t− e s s e n t i a l s l s t ) ) ) ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; JOIN LEXICONS
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; j o i n pos and neg l e x i c o n s
( d e f i n e j o i n− l e x s

( lambda ( l 1 l 2 )
( append l 1 l 2 ) ) )

; ; add l a b e l t o l e x i c o n s and c r e a t e per o c c u r r e n c e ( v l a b e l )
( d e f i n e a d d− l a b e l

( lambda ( l a b e l l )
( cond

( ( n u l l ? l ) ’ ( ) )
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( e l s e ( cons ( l i s t ( c a r l ) l a b e l )
( a d d− l a b e l l a b e l ( c d r l ) ) ) ) ) ) )

; ; t e s t p r e d i c a t e f o r new l e x i c o n
( d e f i n e t e s t n e w l e x ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( ( and

( v e c t o r ? ( c a r ( c a r l ) ) )
( or

( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ neg )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ pos ) ) )

( t e s t n e w l e x ? ( c d r l ) ) )
( e l s e # f ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
; ; t a k e a l i s t o f t h e form ( a b ) ands r e p l a c e ”b”
; ; by t h e r i g h t t a g i n PoS
; ;
; ; ( n=nouns , v=verbs , a= a d j e c t i v e s , r=a d v e r b s )
; ; (CC) ( c o n j u n c t i o n AND, OR, BUT) ( c )
; ; ( EX ) ( e x i s t e n t i a l THERE) ( x )
; ; (MD) ( modal CAN, SHOULD, WILL ) (m)
; ; ( ABL ) ( p r e− q u a l i f i e r QUITE , RATHER ) ( q )
; ; (QL) ( q u a l i f i e r VERY FAIRLY ) ( l )
; ; ( CS ) ( c o n j u n c t i o n IF , ALTHOUGH) ( i )
; ; ( IN ) ( p r e p o s i t i o n s , DESPITE ) ( p )
; ;
( d e f i n e e x t r a c t− e s s e n t i a l s

( lambda ( l s t )
( r e m o v e n u l l s a l l ( d o d o f i l t e r g o o d

( d o d o r e p l a c e g o o d l s t ) ) ) ) )

; ; r e p l a c e t h e pr op er t a g s
( d e f i n e r e p l a c e g o o d

( lambda ( l )
( cond

( ( or
( equal ? ( c a r ( c d r l ) ) ’BE)
( equal ? ( c a r ( c d r l ) ) ’BED)
( equal ? ( c a r ( c d r l ) ) ’BED∗ )
( equal ? ( c a r ( c d r l ) ) ’BEDZ)
( equal ? ( c a r ( c d r l ) ) ’BEDZ∗ )
( equal ? ( c a r ( c d r l ) ) ’BEG)
( equal ? ( c a r ( c d r l ) ) ’BEM)
( equal ? ( c a r ( c d r l ) ) ’BEM∗ )
( equal ? ( c a r ( c d r l ) ) ’BEN)
( equal ? ( c a r ( c d r l ) ) ’BER)
( equal ? ( c a r ( c d r l ) ) ’BER∗ )
( equal ? ( c a r ( c d r l ) ) ’BEZ)
( equal ? ( c a r ( c d r l ) ) ’BEZ∗ )
( equal ? ( c a r ( c d r l ) ) ’DO)

241



C.5. Support Code Appendix C. Scheme Code - SA Hybrid System Proof of Concept

( equal ? ( c a r ( c d r l ) ) ’DO∗ )
( equal ? ( c a r ( c d r l ) ) ’DOD)
( equal ? ( c a r ( c d r l ) ) ’DOD∗ )
( equal ? ( c a r ( c d r l ) ) ’DOZ)
( equal ? ( c a r ( c d r l ) ) ’DDZ) ; ; we i rd acronym
( equal ? ( c a r ( c d r l ) ) ’DOZ∗ )
( equal ? ( c a r ( c d r l ) ) ’HV)
( equal ? ( c a r ( c d r l ) ) ’HV∗ )
( equal ? ( c a r ( c d r l ) ) ’HVD)
( equal ? ( c a r ( c d r l ) ) ’HVD∗ )
( equal ? ( c a r ( c d r l ) ) ’HVG)
( equal ? ( c a r ( c d r l ) ) ’HVN)
( equal ? ( c a r ( c d r l ) ) ’HVZ)
( equal ? ( c a r ( c d r l ) ) ’HVZ∗ )
( equal ? ( c a r ( c d r l ) ) ’VB)
( equal ? ( c a r ( c d r l ) ) ’VB−HL)
( equal ? ( c a r ( c d r l ) ) ’VBD)
( equal ? ( c a r ( c d r l ) ) ’VBG)
( equal ? ( c a r ( c d r l ) ) ’VBN)
( equal ? ( c a r ( c d r l ) ) ’VBN−HL)
( equal ? ( c a r ( c d r l ) ) ’VBZ−HL)
( equal ? ( c a r ( c d r l ) ) ’VHB) ; ; we i rd acronym
( equal ? ( c a r ( c d r l ) ) ’VBZ ) )

( l i s t ( c a r l ) ’ v ) )
( ( or

( equal ? ( c a r ( c d r l ) ) ’NN)
( equal ? ( c a r ( c d r l ) ) ’NN$)
( equal ? ( c a r ( c d r l ) ) ’NNS)
( equal ? ( c a r ( c d r l ) ) ’NNS−HL)
( equal ? ( c a r ( c d r l ) ) ’NN−HL)
( equal ? ( c a r ( c d r l ) ) ’NNS$)
( equal ? ( c a r ( c d r l ) ) ’NP)
( equal ? ( c a r ( c d r l ) ) ’NP$ )
( equal ? ( c a r ( c d r l ) ) ’NPS)
( equal ? ( c a r ( c d r l ) ) ’NPS$ )
( equal ? ( c a r ( c d r l ) ) ’NR)
( equal ? ( c a r ( c d r l ) ) ’NR$)
( equal ? ( c a r ( c d r l ) ) ’NRS ) )

( l i s t ( c a r l ) ’ n ) )
( ( or

( equal ? ( c a r ( c d r l ) ) ’RB)
( equal ? ( c a r ( c d r l ) ) ’EX)
( equal ? ( c a r ( c d r l ) ) ’RB$)
( equal ? ( c a r ( c d r l ) ) ’RBR)
( equal ? ( c a r ( c d r l ) ) ’RBT)
( equal ? ( c a r ( c d r l ) ) ’RN)
( equal ? ( c a r ( c d r l ) ) ’ d t x )
( equal ? ( c a r ( c d r l ) ) ’ a b l )
( equal ? ( c a r ( c d r l ) ) ’ ap )
( equal ? ( c a r ( c d r l ) ) ’RP ) )

( l i s t ( c a r l ) ’ r ) )
( ( or

( equal ? ( c a r ( c d r l ) ) ’ J J )
( equal ? ( c a r ( c d r l ) ) ’ j j− h l )
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( equal ? ( c a r ( c d r l ) ) ’ J J $ )
( equal ? ( c a r ( c d r l ) ) ’ JJR )
( equal ? ( c a r ( c d r l ) ) ’ J JS )
( equal ? ( c a r ( c d r l ) ) ’ JJT ) )

( l i s t ( c a r l ) ’ a ) )
( ( equal ? ( c a r ( c d r l ) ) ’CC)

( l i s t ( c a r l ) ’ c ) )
( ( equal ? ( c a r ( c d r l ) ) ’CC−HL)

( l i s t ( c a r l ) ’ i ) )
( ( equal ? ( c a r ( c d r l ) ) ’EX)

( l i s t ( c a r l ) ’ x ) )
( ( equal ? ( c a r ( c d r l ) ) ’MD)

( l i s t ( c a r l ) ’m) )
( ( equal ? ( c a r ( c d r l ) ) ’ abx )

( l i s t ( c a r l ) ’ b ) )
( ( equal ? ( c a r ( c d r l ) ) ’QL)

( l i s t ( c a r l ) ’ l ) )
( ( equal ? ( c a r ( c d r l ) ) ’QLP)

( l i s t ( c a r l ) ’ l ) )
( ( equal ? ( c a r ( c d r l ) ) ’CS )

( l i s t ( c a r l ) ’ i ) )
( ( equal ? ( c a r ( c d r l ) ) ’ IN )

( l i s t ( c a r l ) ’ p ) )
( e l s e l ) ) ) )

; ; do r e p l a c e g o o d f o r a l l t h e l i s t o f ( a b ) ’ s
( d e f i n e d o r e p l a c e g o o d

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( r e p l a c e g o o d ( c a r l ) )

( d o r e p l a c e g o o d ( c d r l ) ) ) ) ) ) )

; ; c a l l d o r e p l a c e g o o d f o r t h e whole l i s t o f
; ; ( ( a b ) ( x y ) ) . . . ( ( a1 b1 ) ( x y ) )
( d e f i n e d o d o r e p l a c e g o o d

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( d o r e p l a c e g o o d ( c a r l ) )

( d o d o r e p l a c e g o o d ( c d r l ) ) ) ) ) ) )

; ;
( d e f i n e f i l t e r n o n e s s

( lambda ( l )
( cond

( ( or
( equal ? ( c a r ( c d r l ) ) ’ n )
( equal ? ( c a r ( c d r l ) ) ’ v )
( equal ? ( c a r ( c d r l ) ) ’ a )
( equal ? ( c a r ( c d r l ) ) ’ r )
( equal ? ( c a r ( c d r l ) ) ’ n inv )
( equal ? ( c a r ( c d r l ) ) ’ v inv )
( equal ? ( c a r ( c d r l ) ) ’ a i n v )

243



C.5. Support Code Appendix C. Scheme Code - SA Hybrid System Proof of Concept

( equal ? ( c a r ( c d r l ) ) ’ r i n v )
( equal ? ( c a r ( c d r l ) ) ’ c )
( equal ? ( c a r ( c d r l ) ) ’ x )
( equal ? ( c a r ( c d r l ) ) ’m)
( equal ? ( c a r ( c d r l ) ) ’ q )
( equal ? ( c a r ( c d r l ) ) ’ l )
( equal ? ( c a r ( c d r l ) ) ’ i )
( equal ? ( c a r ( c d r l ) ) ’ p )
( equal ? ( c a r ( c d r l ) ) ’ n e g a t i o n )
( equal ? ( c a r ( c d r l ) ) ’ pun to ) ) l )

( e l s e ’ ( ) ) ) ) )

; ;
( d e f i n e d o f i l t e r g o o d

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( f i l t e r n o n e s s ( c a r l ) )

( d o f i l t e r g o o d
( c d r l ) ) ) ) ) ) )

( d e f i n e d o d o f i l t e r g o o d
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( d o f i l t e r g o o d ( c a r l ) )

( d o d o f i l t e r g o o d
( c d r l ) ) ) ) ) ) )

; ;
( d e f i n e r e m o v e n u l l s

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r l ) ’ ( ) )

( r e m o v e n u l l s ( c d r l ) ) )
( e l s e ( cons ( c a r l )

( r e m o v e n u l l s ( c d r l ) ) ) ) ) ) )

( d e f i n e r e m o v e n u l l s a l l
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( r e m o v e n u l l s ( c a r l ) )

( r e m o v e n u l l s a l l
( c d r l ) ) ) ) ) ) )

; ;
( d e f i n e i s t h e r e− n e g a t i o n ?

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) # f )
( ( equal ? ( c a r ( c d r ( c a r l s t ) ) )

’ n e g a t i o n ) # t )
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( e l s e ( i s t h e r e− n e g a t i o n ?
( c d r l s t ) ) ) ) ) )

; ;
( d e f i n e f i n d− n e g a t i o n

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( i s t h e r e− n e g a t i o n ? ( c a r l s t ) )

( cons ( c l e a n−n e g a t i o n
( c a r l s t ) ) ( f i n d− n e g a t i o n ( c d r l s t ) ) ) )

( e l s e ( cons ( c a r l s t ) ( f i n d− n e g a t i o n
( c d r l s t ) ) ) ) ) ) )

; ; remove t h e ’ n e g a t i o n ’ p a r t i c l e
( d e f i n e c l e a n−n e g a t i o n

( lambda ( l s t )
( l e t [ ( pasada1 ( append ( n e g a t i o n−b l s t 0 )

( c l e a n−n e g a t i o n−a u x
( n e g a t i o n− a l s t 0 ) 0 ) ) ) ]

( l e t [ ( pasada2 ( append ( n e g a t i o n−b pasada1 0)
( c l e a n−n e g a t i o n−a u x

( n e g a t i o n− a pasada1 0) 0 ) ) ) ]
( append ( n e g a t i o n−b pasada2 0)

( c l e a n−n e g a t i o n− a u x
( n e g a t i o n− a pasada2 0) 0 ) ) ) ) ) )

; ; g e t s u b− s e n t e n c e BEFORE t h e ’ n e g a t i o n p a r t i c l e .
; ; C a l l f i r s t w i t h sem=0
( d e f i n e n e g a t i o n−b

( lambda ( l sem )
( cond

( ( or
( n u l l ? l )
(= sem 1 ) ) ’ ( ) )

( ( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ n e g a t i o n )
( n e g a t i o n−b l 1 ) )

( e l s e ( cons ( c a r l )
( n e g a t i o n−b ( c d r l ) sem ) ) ) ) ) )

; ; g e t s u b− s e n t e n c e AFTER t h e ’ n e g a t i o n p a r t i c l e
; ; ( e x c l u d i n g i t ) . C a l l f i r s t w i t h sem=0
( d e f i n e n e g a t i o n− a

( lambda ( l sem )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( and

(= sem 0)
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ n e g a t i o n ) )

( n e g a t i o n− a ( c d r l ) 1 ) )
( ( = sem 1) ( cons ( c a r l )

( n e g a t i o n− a ( c d r l ) sem ) ) )
( e l s e ( n e g a t i o n− a ( c d r l ) sem ) ) ) ) )

; ; t h i s i s t h e r o u t i n e t h a t p r o c e s s t h e s u b− s e n t e n c e a f t e r
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; ; t h e n e g a t i o n p a r t i c l e and g e n e r a t e t h e i n v e r s i o n p a r t i c l e s i n t h e s e n t e n c e
( d e f i n e c l e a n−n e g a t i o n−a u x

( lambda ( l s t sem )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( and

(= sem 0)
( equal ? ( c a r ( c d r ( c a r l s t ) ) ) ’ n ) )

( cons ( l i s t ( c a a r l s t ) ’ n inv )
( c l e a n−n e g a t i o n− a u x ( c d r l s t ) 1 ) ) )

( ( and
(= sem 0)
( equal ? ( c a r ( c d r ( c a r l s t ) ) ) ’ v ) )

( cons ( l i s t ( c a a r l s t ) ’ v inv )
( c l e a n−n e g a t i o n− a u x ( c d r l s t ) 1 ) ) )

( ( and
(= sem 0)
( equal ? ( c a r ( c d r ( c a r l s t ) ) ) ’ a ) )

( cons ( l i s t ( c a a r l s t ) ’ a i n v )
( c l e a n−n e g a t i o n−a u x ( c d r l s t ) 1 ) ) )

( ( and
(= sem 0)
( equal ? ( c a r ( c d r ( c a r l s t ) ) ) ’ r ) )

( cons ( l i s t ( c a a r l s t ) ’ r i n v )
( c l e a n−n e g a t i o n−a u x ( c d r l s t ) 1 ) ) )

( e l s e ( cons ( c a r l s t )
( c l e a n−n e g a t i o n−a u x ( c d r l s t ) sem ) ) ) ) ) )

; ; l o o k f o r i n v e r t e d p o l a r i t y words i n a s e n t e n c e .
; ; R e t u r n s # t i f f i n d s an i n v e r t e d p a r t i c l e , o t h e r w i s e r e t u r n s # f
( d e f i n e f i n d− i n v e r t e d−x ?

( lambda ( l )
( cond

( ( n u l l ? l ) # f )
( ( or

( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ n inv )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ v inv )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ a i n v )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ r i n v ) ) # t )

( e l s e ( f i n d− i n v e r t e d−x ? ( c d r l ) ) ) ) ) )

; ; r e t u r n s s e n t e n c e s w i t h an i n v e r t e d p a r t i c l e s p r e s e n t ∗ o n l y ∗
( d e f i n e w r i t e− i n v e r t e d s

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( f i n d− i n v e r t e d−x ? ( c a r l s t ) ) ( cons ( c a r l s t )

( w r i t e− i n v e r t e d s ( c d r l s t ) ) ) )
( e l s e ( w r i t e− i n v e r t e d s ( c d r l s t ) ) ) ) ) )

; ; p i c k o n l y r e l e v a n t p a i r s from a s e n t e n c e
( d e f i n e s o l o− r e l e v a n t− s e n t

( lambda ( l )
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( cond
( ( n u l l ? l ) ’ ( ) )
( ( or

( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ n inv )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ v inv )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ a i n v )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ r i n v )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ n )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ v )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ a )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ r ) )

( cons ( c a r l )
( s o l o− r e l e v a n t− s e n t ( c d r l ) ) ) )

( e l s e ( s o l o− r e l e v a n t− s e n t ( c d r l ) ) ) ) ) )

; ; Trans form l i s t o f s e n t e n c e s i n l i s t o f s e n t e n c e s w i t h
; ; r e l e v a n t p a i r s ∗ o n l y ∗
( d e f i n e s o l o− r e l e v a n t

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( e l s e ( cons ( s o l o− r e l e v a n t− s e n t ( c a r l s t ) )

( s o l o− r e l e v a n t
( c d r l s t ) ) ) ) ) ) )

; ;
; ; m y f l a t t e n f o r t h e n e g a t i o n u n n e c e s s a r y n e s t i n g
( d e f i n e m y f l a t t e n

( lambda ( x )
( cond

( ( n u l l ? x ) ’ ( ) )
( ( and

( p a i r ? ( c a r x ) )
(= ( l e n g t h ( c a r x ) ) 2 ) ) ( cons ( c a r x )
( m y f l a t t e n ( c d r x ) ) ) )

( e l s e ( m y f l a t t e n ( c a r x ) ) ) ) ) )

( d e f i n e e n t r y f l a t t e n
( lambda ( x )

( cond
( ( n u l l ? x ) ’ ( ) )
( ( q u a l i t y− c h e c k ? ( c a r x ) )

( cons ( c a r x ) ( e n t r y f l a t t e n ( c d r x ) ) ) )
( e l s e ( cons ( m y f l a t t e n ( c a r x ) )

( e n t r y f l a t t e n ( c d r x ) ) ) ) ) ) )

( d e f i n e q u a l i t y− c h e c k ?
( lambda ( x )

( cond
( ( n u l l ? x ) # t )
( ( and

( p a i r ? ( c a r x ) )
(= ( l e n g t h ( c a r x ) ) 2 ) )
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( q u a l i t y− c h e c k ? ( c d r x ) ) )
( e l s e # f ) ) ) )

; ;
; ; g o o d−d a t a s e t ?
( d e f i n e g o o d−d a t a s e t ?

( lambda ( l o p )
( cond

( ( n u l l ? l o p ) # t )
( ( good−aux ? ( c a r l o p ) )

( g o o d−d a t a s e t ? ( c d r l o p ) ) )
( e l s e # f ) ) ) )

( d e f i n e good−aux ?
( lambda ( l )

( cond
( ( n u l l ? l ) # t )
( ( and

( p a i r ? ( c a r l ) )
(= ( l e n g t h ( c a r l ) ) 2 )
( or

( symbol ? ( c a r ( c a r l ) ) )
( number ? ( c a r ( c a r l ) ) ) )

( or
( symbol ? ( c a r ( c d r ( c a r l ) ) ) )
( number ? ( c a r ( c d r ( c a r l ) ) ) ) ) )

( good−aux ? ( c d r l ) ) )
( e l s e ( b e g i n ( d i s p l a y l ) # f ) ) ) ) )

; ;
; ;
; ; f i x y− d a t a s e t
( d e f i n e f i x y− d a t a s e t

( lambda ( l o p )
( cond

( ( n u l l ? l o p ) # t )
( ( f i xy−aux ? ( c a r l o p ) ) ( cons ( c a r l o p )

( f i x y− d a t a s e t ( c d r l o p ) ) ) )
( e l s e ( cons ( f i x− t h e− c r a p ( c a r l o p ) )

( f i x y− d a t a s e t ( c d r l o p ) ) ) ) ) ) )

; ; aux de f i x y− d a t a s e t
( d e f i n e f ixy−aux ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( ( and

( p a i r ? ( c a r l ) )
(= ( l e n g t h ( c a r l ) ) 2 )
( or

( symbol ? ( c a r ( c a r l ) ) )
( number ? ( c a r ( c a r l ) ) ) )

( or
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( symbol ? ( c a r ( c d r ( c a r l ) ) ) )
( number ? ( c a r ( c d r ( c a r l ) ) ) ) ) )

( f i xy−aux ? ( c d r l ) ) )
( e l s e ( b e g i n ( d i s p l a y l ) # f ) ) ) ) )

; ; f i x− t h e− c r a p
( d e f i n e f i x− t h e− c r a p

( lambda ( l s t )
( c a r l s t ) ) )

; ; R o u t i n e f o r BUT
( d e f i n e d e a l w i t h−b u t

( lambda ( l o p )
( cond

( ( n u l l ? l o p ) ’ ( ) )
( ( i s t h e r e− b u t ?

( c a r l o p ) )
( i f ( equal ? ( c a a a r l o p ) ’ b u t )

( cons ( c d r ( c a r l o p ) )
( d e a l w i t h−b u t ( c d r l o p ) ) )

( i f ( b u t t y l a s t y ? ( c a r l o p ) ( l e n g t h ( c a r l o p ) ) )
( cons ( d a m e b e f o r e b u t x ( c a r l o p )

( p o s i t i o n− b u t x ( c a r l o p ) 1 ) 1 )
( d e a l w i t h−b u t ( c d r l o p ) ) )
( cons ( f i l t e r − b u t ( c a r l o p ) )

( d e a l w i t h−b u t ( c d r l o p ) ) ) ) ) )
( e l s e ( cons ( c a r l o p )

( d e a l w i t h−b u t ( c d r l o p ) ) ) ) ) ) )

; ; g e n e r i c i s t h e r e− p a r t i c l e ?
( d e f i n e i s t h e r e − p a r t i c l e ?

( lambda ( l x )
( cond

( ( n u l l ? l ) # f )
( ( equal ? ( c a r ( c a r l ) ) x ) # t )
( e l s e ( i s t h e r e − p a r t i c l e ? ( c d r l ) x ) ) ) ) )

; ; i s t h e r e− p a r t i c l e i n s t a n t i a t e d w i t h ” b u t ”
( d e f i n e i s t h e r e− b u t ?

( lambda ( l )
( i s t h e r e − p a r t i c l e ? l ’ b u t ) ) )

; ; f i l t e r o u t ” b u t ”
( d e f i n e f i l t e r − b u t

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r ( c a r l ) ) ’ b u t ) ( c d r l ) )
( e l s e ( f i l t e r − b u t ( c d r l ) ) ) ) ) )

; ; r e t u r n s TRUE i f ’ but ’ i s l a s t or b e f o r e− l a s t
; ; i n a s e n t e n c e
; ; max=l e n g t h o f l i s t ; l s =s e n t e n c e w i t h
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; ; b u t p a r t i c l e
( d e f i n e b u t t y l a s t y ?

( lambda ( l s max )
( cond

( ( n u l l ? l s ) # f )
( ( or

(= ( p o s i t i o n− b u t x l s 1 ) max )
(= ( p o s i t i o n− b u t x l s 1 ) (− max 1 ) ) ) # t )

( e l s e # f ) ) ) )

; ; d e v u l e v e l a p o s i c t i o n en l a l i s t a de l a p a r t i c u l a
; ; ’ ( b u t c )
( d e f i n e p o s i t i o n− b u t x

( lambda ( l s c t )
( cond

( ( n u l l ? l s ) 0 )
( ( equal ? ( c a a r l s ) ’ b u t ) c t )
( e l s e ( p o s i t i o n− b u t x ( c d r l s ) (+ c t 1 ) ) ) ) ) )

; ; r e t u r n s s e n t e n c e BEFORE p a r t i c l e ’ b u t
; ; l s =s e n t e n c e ; l i m i t e = donde e s t a e l ’ but ’ ;
; ; c t=c o n t a d o r c u r r e n t p o s i t i o n
( d e f i n e d a m e b e f o r e b u t x

( lambda ( l s l i m i t e c t )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( = l i m i t e c t ) ( c d r l s ) )

( e l s e ( cons ( c a r l s )
( d a m e b e f o r e b u t x ( c d r l s )
l i m i t e (+ c t 1 ) ) ) ) ) ) )

; ; R o u t i n e f o r DESPITE
; ;
; ; i s t h e r e− p a r t i c l e i n s t a n t i a t e d w i t h ” d e s p i t e ”
( d e f i n e i s t h e r e− d e s p i t e ?

( lambda ( l )
( i s t h e r e − p a r t i c l e ? l ’ d e s p i t e ) ) )

( d e f i n e f i l t e r − d e s p i t e
( lambda ( l f l a g )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( and

( equal ? ( c a r ( c a r l ) ) ’ d e s p i t e )
( not (= f l a g 0 ) ) ) ’ ( ) )

( e l s e ( cons ( c a r l )
( f i l t e r − d e s p i t e ( c d r l ) (+ f l a g 1 ) ) ) ) ) ) )

( d e f i n e d e a l w i t h− d e s p i t e
( lambda ( l o p )

( cond
( ( n u l l ? l o p ) ’ ( ) )
( ( i s t h e r e− d e s p i t e ? ( c a r l o p ) )
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( cons ( f i l t e r − d e s p i t e ( c a r l o p ) 0 )
( d e a l w i t h− d e s p i t e ( c d r l o p ) ) ) )

( e l s e ( cons ( c a r l o p )
( d e a l w i t h− d e s p i t e ( c d r l o p ) ) ) ) ) ) )

; ; R o u t i n e f o r UNLESS f o l l o w e d by n e g a t i o n
; ; I f s e n t e n c e c o n t a i n s ” u n l e s s ” and ” u n l e s s ” i s
; ; f o l l o w e d by a n e g a t i v e c l a u s e ,
; ; d i s r e g a r d t h e ” u n l e s s ” c l a u s e .
; ; i . e . Everyone l i k e s t h i s v ideo , u n l e s s he
; ; i s a s o c i o p a t h .
; ;
; ;
; ; i s t h e r e− p a r t i c l e i n s t a n t i a t e d w i t h ” u n l e s s ”
; ; ( works a t t h e s e n t e n c e l e v e l )
( d e f i n e i s t h e r e− u n l e s s ?

( lambda ( l )
( i s t h e r e − p a r t i c l e ? l ’ u n l e s s ) ) )

; ; r e t u r n t h e s u b− s e n t e n c e r i g h t a f t e r t h e ’ u n l e s s ’
; ; p a r t i c l e ( works a t t h e s e n t e n c e l e v e l )
( d e f i n e a f t e r− u n l e s s

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r ( c a r l ) ) ’ u n l e s s ) ( c d r l ) )
( e l s e ( a f t e r− u n l e s s ( c d r l ) ) ) ) ) )

; ; r e t u r n t h e s u b− s e n t e n c e r i g h t b e f o r e t h e
; ; ’ u n l e s s ’ p a r t i c l e ( works a t t h e s e n t e n c e l e v e l )
( d e f i n e b e f o r e− u n l e s s

( lambda ( l sem )
( cond

( ( or
( n u l l ? l )
(= sem 1 ) ) ’ ( ) )

( ( equal ? ( c a r ( c a r l ) ) ’ u n l e s s )
( b e f o r e− u n l e s s l 1 ) )

( e l s e ( cons ( c a r l )
( b e f o r e− u n l e s s ( c d r l ) 0 ) ) ) ) ) )

; ; r e t u r n s # t i f t h e s u b− s e n t e n c e a f t e r ’ u n l e s s ’
; ; i s n e g a t i v e ( works a t t h e s e n t e n c e l e v e l )
( d e f i n e f i l t e r − u n l e s s

( lambda ( l )
( cond

( ( n u l l ? l ) # f )
( ( and

( i s t h e r e− u n l e s s ? l )
( not ( equal ? ( a f t e r− u n l e s s l ) ’ ( ) ) )
( not ( equal ? ( b e f o r e− u n l e s s l 0 ) ’ ( ) ) ) )

( i f ( s e e i f i n n e g ? ( a f t e r− u n l e s s l ) )
( b e f o r e− u n l e s s l 0 )
( append ( b e f o r e− u n l e s s l 0 )
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( a f t e r− u n l e s s l ) ) ) )
( e l s e l ) ) ) )

; ; r e t u r n s # t i f t h e g i v e n word i s i n t h e n e g a t i v e l e x i c o n
( d e f i n e s e e i f i n n e g ?

( lambda ( l )
( cond

( ( n u l l ? l ) # f )
( ( s e e i f i n n e g− a u x ? ( c a r ( c a r l ) ) n e g l e x ) # t )
( e l s e ( s e e i f i n n e g ? ( c d r l ) ) ) ) ) )

; ; a u x i l i a r f u n c t i o n f o r s e e i f i n n e g ?
( d e f i n e s e e i f i n n e g− a u x ?

( lambda ( wrd t a b l a )
( cond

( ( n u l l ? t a b l a ) # f )
( ( equal ? wrd ( ge tword ( c a a r t a b l a ) ) ) # t )
( e l s e ( s e e i f i n n e g− a u x ? wrd ( c d r t a b l a ) ) ) ) ) )

; ; d e a l w i t h ’ u n l e s s ’ ( works a t t h e f u l l l i s t o f
; ; t e s t words l e v e l )
( d e f i n e d e a l w i t h− u n l e s s

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( i s t h e r e− u n l e s s ? ( c a r l ) )

( cons ( f i l t e r − u n l e s s ( c a r l ) )
( d e a l w i t h− u n l e s s ( c d r l ) ) ) )

( e l s e ( cons ( c a r l )
( d e a l w i t h− u n l e s s ( c d r l ) ) ) ) ) ) )

; ;
; ; ROUTINE f o r MODALS
; ;
; ; R o u t i n e n o t imp lemen ted so f a r ( don ’ t s e e need f o r i t )
; ;
; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; r u t i n a t h a t removes ( pun to pun to ) and a n y t h i n g e l s e t h a t i s n o t
; ; ( a , a inv , r , r i n v , v , v inv , n , n i n v )

( d e f i n e q u i t a− b a s u r a
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( q u i t a−b a s u r a− a u x ( c a r l ) )

( q u i t a− b a s u r a ( c d r l ) ) ) ) ) ) )

; ; a u x i l i a r o f q u i t a basura
( d e f i n e q u i t a−b a s u r a− a u x

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( e s b u s c a d o ? ( c a r l s t ) ) ( cons ( c a r l s t )

( q u i t a−b a s u r a− a u x ( c d r l s t ) ) ) )
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( e l s e ( q u i t a−b a s u r a− a u x ( c d r l s t ) ) ) ) ) )

; ; p r e d i c a d o de qu i ta−basura−aux
( d e f i n e e s b u s c a d o ?

( lambda ( lmin )
( cond

( ( n u l l ? lmin ) # f )
( ( or

( equal ? ( c a r ( c d r lmin ) ) ’ v )
( equal ? ( c a r ( c d r lmin ) ) ’ v inv )
( equal ? ( c a r ( c d r lmin ) ) ’ r )
( equal ? ( c a r ( c d r lmin ) ) ’ r i n v )
( equal ? ( c a r ( c d r lmin ) ) ’ a )
( equal ? ( c a r ( c d r lmin ) ) ’ a i n v )
( equal ? ( c a r ( c d r lmin ) ) ’ n )
( equal ? ( c a r ( c d r lmin ) ) ’ n inv ) ) # t )

( e l s e # f ) ) ) )

; ; r e p l a c e ’ ( ) f o r ’ n o t e r m s n v a r
( d e f i n e manejador−x

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r l ) ’ ( ) )

( cons ’ n o t e r m s n v a r ( manejador−x ( c d r l ) ) ) )
( e l s e ( cons ( c a r l )

( manejador−x ( c d r l ) ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
; ; look−up i n l e x i c o n s
; ;
; ; l o o k f o r word i n s p e c i f i e d l e x i c o n (WORD L e v e l )
( d e f i n e look4word

( lambda ( word l e x )
( cond

( ( n u l l ? l e x ) ’ wordno t found )
( ( equal ? ( ge tword ( c a a r l e x ) ) word ) ( c a r l e x ) )
( e l s e ( look4word word ( c d r l e x ) ) ) ) ) )

; ; g e t l i s t o f v e c t o r s from t h e l e x i c o n t h a t are i n t h e g i v e n
; ; s e n t e n c e (SENTENCE L e v e l ) :
; ; r e v i e r t e p o l a r i d a d de l o s Xinv
( d e f i n e g e t w o r d s 4 s e n t

( lambda ( s e n t l e x )
( cond

( ( n u l l ? s e n t ) ’ ( ) )
( ( equal ? ( look4word ( c a r ( c a r s e n t ) ) l e x )

’ wordno t found ) ( cons ( c a r ( c a r s e n t ) )
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( g e t w o r d s 4 s e n t ( c d r s e n t ) l e x ) ) )
( e l s e ( i f ( or

( equal ? ( c a r ( c d r ( c a r s e n t ) ) ) ’ a i n v )
( equal ? ( c a r ( c d r ( c a r s e n t ) ) ) ’ r i n v )
( equal ? ( c a r ( c d r ( c a r s e n t ) ) ) ’ n inv )
( equal ? ( c a r ( c d r ( c a r s e n t ) ) ) ’ v inv ) )

( cons ( t r a n s f o r m e r v e c
( look4word ( c a r ( c a r s e n t ) ) l e x ) )
( g e t w o r d s 4 s e n t ( c d r s e n t ) l e x ) )

( cons ( look4word ( c a r ( c a r s e n t ) ) l e x )
( g e t w o r d s 4 s e n t ( c d r s e n t ) l e x ) ) ) ) ) ) )

; ; g e n e r a t e l i s t o f t h e form ( ( ( vec1 . . . vecn ) neg )
; ; ( ( vec1 . . . v eck ) pos ) ) :
; ; runs a t t h e WHOLE−LIST−OF−SENTENCES L e v e l .
( d e f i n e g e t y o u r b e a r i n g s

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( equal ? ( c a r l s t ) ’ n o t e r m s n v a r ) ( cons ’ n o t e r m s n v a r

( g e t y o u r b e a r i n g s ( c d r l s t ) ) ) )
( ( equal ? ( g e t w o r d s 4 s e n t ( c a r l s t ) t h e l e x ) ’ ( ) )

( cons ( l i s t ’ s e n t w i t h n o w o r d s i n l e x ’ ( ) )
( g e t y o u r b e a r i n g s ( c d r l s t ) ) ) )

( e l s e ( cons ( g e t w o r d s 4 s e n t ( c a r l s t ) t h e l e x )
( g e t y o u r b e a r i n g s ( c d r l s t ) ) ) ) ) ) )

; ; Change t h e p o l a r i t y o f a word i n L e x i c o n
( d e f i n e t r a n s f o r m e r v e c

( lambda ( vec )
( l i s t ( l i s t−>v e c t o r ( l i s t ( v e c t o r− r e f ( c a r vec ) 0 )

( v e c t o r− r e f ( c a r vec ) 1 )
( v e c t o r− r e f ( c a r vec ) 3 )
( v e c t o r− r e f ( c a r vec ) 2 )
( v e c t o r− r e f ( c a r vec ) 4 )
( v e c t o r− r e f ( c a r vec ) 5 )
( v e c t o r− r e f ( c a r vec ) 6 )
( v e c t o r− r e f ( c a r vec ) 7 )
( v e c t o r− r e f ( c a r vec ) 8 ) ) )

( i f ( equal ? ( c a r ( c d r vec ) ) ’ pos ) ’ neg ’ pos ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Obta in l i s t o f words NOT i n L e x i c o n
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Obta in l i s t o f words NOT i n L e x i c o n
; ;
; ; c l e a n l i s t o f NOTFOUNDS: To be c a l l e d r i g h t a f t e r n o t f o u n d− l i s t
( d e f i n e n e w w o r d s f o r l e x

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( not ( or

( equal ? ( c a r l ) ’ ( ) )
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( equal ? ( c a r l ) ’ s e n t w i t h n o w o r d s i n l e x ) ) )
( cons ( c a r l )
( n e w w o r d s f o r l e x ( c d r l ) ) ) )
( e l s e ( n e w w o r d s f o r l e x ( c d r l ) ) ) ) ) )

; ; produce l i s t o f NOTFOUND words
( d e f i n e n o t f o u n d− l i s t

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r l ) ’ n o t e r m s n v a r )

( n o t f o u n d− l i s t ( c d r l ) ) )
( ( c o n t a i n− s y m b o l s ? ( c a r l ) )

( append ( n o t f o u n d− l i s t− a u x ( c a r l ) )
( n o t f o u n d− l i s t ( c d r l ) ) ) )

( e l s e ( n o t f o u n d− l i s t ( c d r l ) ) ) ) ) )

; ; r e t u r n s # t i f t h e r e are any symbo l s i n t h e l i s t
( d e f i n e c o n t a i n− s y m b o l s ?

( lambda ( l )
( cond

( ( n u l l ? l ) # f )
( ( p a i r ? ( c a r l ) ) ( c o n t a i n− s y m b o l s ? ( c d r l ) ) )
( e l s e # t ) ) ) )

; ; aux f u n c t i o n o f n o t f o u n d− l i s t
( d e f i n e n o t f o u n d− l i s t− a u x

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( p a i r ? ( c a r l ) ) ( n o t f o u n d− l i s t− a u x ( c d r l ) ) )
( e l s e ( cons ( c a r l )

( n o t f o u n d− l i s t− a u x ( c d r l ) ) ) ) ) ) )

; ; remove d u p l i c a t e s from l i s t
( d e f i n e r e m o v e−d u p l i c a t e d

( lambda ( l s t )
( i f ( n u l l ? l s t )

’ ( )
( i f ( member ( c a r l s t ) ( c d r l s t ) )

( r e m o v e−d u p l i c a t e d ( c d r l s t ) )
( cons ( c a r l s t )

( r e m o v e−d u p l i c a t e d ( c d r l s t ) ) ) ) ) ) )

; ; c u a n t a s v e c e s aparece una p a l a b r a en l a l i s t a
; ; l l a m r con aux f u n c t i o n w i t h c o u n t e r = 0
( d e f i n e q u a n t a s r e p

( lambda ( l s l l )
( cond

( ( n u l l ? l s ) ’ ( ) )
( e l s e ( cons ( l i s t ( c a r l s ) ( q u a n t a s r e p a u x

( c a r l s ) l l ) )
( q u a n t a s r e p ( c d r l s ) l l ) ) ) ) ) )
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; ; c a l c u l a l a s o c u r r e n c i a s de una p a l a b r a y d e v u e l v e
; ; l i s t ( v a l o c u r r e n c i a s ) .
( d e f i n e q u a n t a s r e p a u x

( lambda ( v a l l l )
( cond

( ( n u l l ? l l ) 0 )
( ( equal ? v a l ( c a r l l ) )

(+ 1 ( q u a n t a s r e p a u x v a l ( c d r l l ) ) ) )
( e l s e ( q u a n t a s r e p a u x v a l ( c d r l l ) ) ) ) ) )

; ; p i c k from t h e l i s t t h o s e p a i r s ( word occr )
; ; where occr >= v a l
( d e f i n e g e t t h o s e >v a l

( lambda ( v a l l )
( cond

( ( n u l l ? l ) ’ ( ) )
((>= ( c a r ( c d r ( c a r l ) ) ) v a l ) ( cons ( c a r l )

( g e t t h o s e >v a l v a l ( c d r l ) ) ) )
( e l s e ( g e t t h o s e >v a l v a l ( c d r l ) ) ) ) ) )

; ; remove r e p e a t e d p a i r s ( word num occurs )
( d e f i n e p a r e s d u p n o

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( member ( c a r l ) ( c d r l ) ) ( p a r e s d u p n o ( c d r l ) ) )
( e l s e ( cons ( c a r l ) ( p a r e s d u p n o ( c d r l ) ) ) ) ) ) )

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;END o f Obta in l i s t o f words NOT i n L e x i c o n
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; ; r e t u r n number o f o c c u r r e n c e s i n l i s t o f s e n t e n c e s t h a t i s n o t
; ; t h e e x p e c t e d PoS
( d e f i n e cuan to s−cada−wei rd

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) 0 )
( ( or

( equal ? ( g e t p o s ( c a r l s t ) ) ’ n )
( equal ? ( g e t p o s ( c a r l s t ) ) ’ v )
( equal ? ( g e t p o s ( c a r l s t ) ) ’ a )
( equal ? ( g e t p o s ( c a r l s t ) ) ’ n o p o s t a g )
( equal ? ( g e t p o s ( c a r l s t ) ) ’ r ) )

( cuan to s−cada−wei rd ( c d r l s t ) ) )
( e l s e ( cons ( g e t p o s ( c a r l s t ) )

( cuan to s−cada−wei rd ( c d r l s t ) ) ) ) ) ) )

; ; r e t u r n number o f o c c u r r e n c e s i n l i s t o f s e n t e n c e s o f
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; ; a p a r t i c u l a r PoS
( d e f i n e cuan tos−cada−pos

( lambda ( l s t t h e p o s )
( cond

( ( n u l l ? l s t ) 0 )
( ( equal ? ( g e t p o s ( c a r l s t ) ) t h e p o s )

(+ 1 ( cuan tos−cada−pos
( c d r l s t ) t h e p o s ) ) )

( e l s e ( cuan tos−cada−pos ( c d r l s t ) t h e p o s ) ) ) ) )

; ; r e t u r n number o f o c c u r r e n c e s i n l i s t o f s e n t e n c e s
; ; o f a p a r t i c u l a r PoS
( d e f i n e pos−s

( lambda ( l s t )
( cond

( ( n u l l ? l s t ) ’ ( ) )
( ( equal ? ( g e t p o s ( c a r l s t ) ) ’ s )

( cons ( c a r l s t ) ( pos−s ( c d r l s t ) ) ) )
( e l s e ( pos−s ( c d r l s t ) ) ) ) ) )

; ; c a l l w i t h l i s t and min=99
( d e f i n e m i n i n l i s t

( lambda ( l min )
( cond

( ( n u l l ? l ) min )
((< ( c a r l ) min )

( m i n i n l i s t ( c d r l ) ( c a r l ) ) )
( e l s e ( m i n i n l i s t ( c d r l ) min ) ) ) ) )

; ; c a l l w i t h l i s t and max=−99
( d e f i n e m a x i n l i s t

( lambda ( l max )
( cond

( ( n u l l ? l ) max )
((> ( c a r l ) max ) ( m a x i n l i s t ( c d r l ) ( c a r l ) ) )
( e l s e ( m a x i n l i s t ( c d r l ) max ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
; ; l= l i s t a de v a l o r e s d e v u e l t o s por r u t i n a s de r u l e s , c o u n t e r=mark
; ; p o s i t i o n i n l i s t ,
; ; c a l l f i r s t w i t h 1 ,
; ; v a l=v a l u e we want t o compare f o r i n t e r m s o f l e n g t h o f l i s t o f v a l u e s
( d e f i n e v a c i o n o p u e d e

( lambda ( l c o u n t e r v a l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( and

( p a i r ? ( c a r l ) )
(>= ( l e n g t h ( c a r l ) ) v a l ) ) ( v a c i o n o p u e d e ( c d r l )
(+ c o u n t e r 1 ) v a l ) )

( e l s e ( cons ( l i s t c o u n t e r ( c a r l ) ) ( v a c i o n o p u e d e ( c d r l )
(+ c o u n t e r 1 ) v a l ) ) ) ) ) )
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; ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; BUSCA en Sen t iWordNe t p a l a b r a s n o t found i n o r i g i n a l L e x i c o n
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
( d e f i n e newwordys

( lambda ( lw or ds l e x )
( cond

( ( n u l l ? l wo rd s ) ’ ( ) )
( ( newwordys−aux ? ( c a r l wo rd s ) l e x )

( cons ( newwordys−aux−cons ( c a r lw or ds ) l e x )
( newwordys ( c d r lw or ds ) l e x ) ) )

( e l s e ( newwordys ( c d r l wor ds ) l e x ) ) ) ) )

( d e f i n e newwordys−aux ?
( lambda ( word l e x )

( cond
( ( n u l l ? l e x ) # f )
( ( equal ? ( v e c t o r− r e f ( c a r l e x ) 0 ) word ) # t )
( e l s e ( newwordys−aux ? word ( c d r l e x ) ) ) ) ) )

( d e f i n e newwordys−aux−cons
( lambda ( word l e x )

( cond
( ( n u l l ? l e x ) ’ n o t f o u n d )
( ( equal ? ( v e c t o r− r e f ( c a r l e x ) 0 ) word ) ( c a r l e x ) )
( e l s e ( newwordys−aux−cons word ( c d r l e x ) ) ) ) ) )

; ;
( d e f i n e l i m p i a−m o l l e j a

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( e l s e ( cons ( v e c t o r− r e f ( c a r l ) 0 )

( l i m p i a−m o l l e j a ( c d r l ) ) ) ) ) ) )

( d e f i n e f i n d− s t u f f
( lambda ( l 1 l 2 )

( cond
( ( n u l l ? l 1 ) ’ ( ) )
( ( member ( c a r l 1 ) l 2 ) ( f i n d− s t u f f ( c d r l 1 ) l 2 ) )
( e l s e ( cons ( c a r l 1 ) ( f i n d− s t u f f ( c d r l 1 ) l 2 ) ) ) ) ) )

; ; l i s t p o s− s c o r e s o f v e c s
( d e f i n e p s r e l s

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( and

( number ? ( g e t p o s s c o r e ( c a a r l ) ) )
( not (= ( g e t p o s s c o r e ( c a a r l ) ) 0 ) ) )

( cons ( g e t p o s s c o r e ( c a a r l ) )
( p s r e l s ( c d r l ) ) ) )

( e l s e ( p s r e l s ( c d r l ) ) ) ) ) )
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; ;
; ; Conver t l e n =6 v e c t o r s augmented w i t h Sen t iWordNe t t o
; ; l e n =9 v e c t o r s i n l i s t
; ; o f form ( ( v1 s o r ) . . . ( vn s o r ) )
( d e f i n e m o r f e a r

( lambda ( l v e c s )
( cond

( ( n u l l ? l v e c s ) ’ ( ) )
( e l s e ( cons ( make−morfear ( c a r l v e c s ) )

( m o r f e a r ( c d r l v e c s ) ) ) ) ) ) )

( d e f i n e make−morfear
( lambda ( vec )

( l i s t ( l i s t−>v e c t o r ( l i s t ( ge tword vec )
( g e t p o s vec )
( g e t p o s s c o r e vec )
( g e t n e g s c o r e vec )
( g e t o b j s c o r e vec )
’ n o c s o r
’ nomaxd i s t
’ n o m i n d i s t
1 ) ) ’ o b j ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; CREAR new l e x s w i t h f o r m a t ( v e c t o r pos / neg / o b j )
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; l s t = l e x i c o n ; l a b e l =pos / neg / o b j
( d e f i n e creanewlexman

( lambda ( l s t l a b e l )
( i f ( n u l l ? l s t )

’ ( )
( cons ( l i s t ( c a r l s t ) l a b e l ) ( c reanewlexman ( c d r l s t ) l a b e l ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; LEXICON FORMAT SAMPLE a t I n i t i a l i s a t i o n t i m e
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; i n i t i a l i s e t h e l e x i c o n s . They s h o u l d be l oad ed from t h e v a r i a b l e
; ; ’ r e a d b u f f e r ’ g e n e r a t e d by r e a d− f i l e
; ; ( d e f i n e t h e n e g l e x ’ ( ) )
; ; ( d e f i n e t h e p o s l e x ’ ( ) )
; ; ( d e f i n e d i c t ’ ( # ( two− faced n o p o s t a g nopsc nonsc n oco b j
; ; no cs or n o m a x d i s t n o m i n d i s t 0 )
; ; # ( t w o− f a c e s n o p os t a g nopsc nonsc noc ob j
; ; no cs or n o m a x d i s t n o m i n d i s t 0 )
; ; # ( abnormal a 0 . 0 0 . 7 5 0 . 2 5 n ocs or
; ; n o m a x d i s t n o m i n d i s t 0 ) ) )
; ;

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; O r e s t e s Appel − L e x E d i t o r
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;=== I n i t i a l CALL TO THE SYSTEM by t h e User ===
;;==============================================
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( d e f i n e l e x e d
( lambda ( )

( b e g i n
( welcome )
( p r o c e s a d o r o l d p a n a l e x 1 ) ) ) )

; ;
; ; i n i t i a l header when e n t e r i n g t h e s y s t e m
; ;
( d e f i n e welcome

( lambda ( )
( d i s p l a y ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ”−−− Welcome t o t h e Lexicon E d i t o r System −−−” )
( n e w l i n e )
( d i s p l a y ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ”A p a i r ( V ec to r O r i e n t a t i o n ) w i l l be d i s p l a y e d .

P l e a s e e n t e r t h e d e s i r e d O r i e n t a t i o n v a l u e and h i t ENTER . ” )
( n e w l i n e )
( d i s p l a y ” E n t e r t h e word END when done . ” )
( n e w l i n e ) ) )

; ;
; ; i n i t i a l d i a l o g t o d e c i d e t h e p rop er way o f e n t e r i n g da ta
; ;
( d e f i n e p r o c e s a d o r

( lambda ( l count )
( i f ( n u l l ? l )

( b e g i n
( n e w l i n e )
( d i s p l a y ” −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ” −−− Thanks f o r u s i n g t h e sys tem .

Have a n i c e day . −−−” )
( n e w l i n e )
( d i s p l a y ” −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e ) )

( b e g i n
( n e w l i n e )
( d i s p l a y ( l i s t count ( c a r l ) ) )
( n e w l i n e )
( d i s p l a y ” Your s e l e c t i o n ==> ” )
( l e t ( ( s e l ( read ) ) )

( i f ( or ( equal ? s e l ’ end )
( equal ? s e l ’END) )

( b e g i n
( n e w l i n e )
( d i s p l a y ” −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e )
( d i s p l a y ” −−− Thanks f o r u s i n g t h e sys tem .

Have a n i c e day . −−−” )
( n e w l i n e )
( d i s p l a y ” −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
( n e w l i n e ) )
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( b e g i n
( s e t ! newpanalex ( cons ( pa t ch−vec

( c a a r l ) s e l ) newpanalex ) )
( n e w l i n e )
( p r o c e s a d o r ( c d r l ) (+ count 1 ) ) ) ) ) ) ) ) )

( d e f i n e pa tch−vec
( lambda ( v so )

( l i s t v ( i f ( equal ? so ’ p )
’ pos
( i f ( equal ? so ’ n )

’ neg
( i f ( equal ? so ’ o )

’ o b j
’ d e l ) ) ) ) ) )

; ;
( d e f i n e goodpana l ex ?

( lambda ( l )
( cond

( ( n u l l ? l ) # t )
( ( and

(= ( l e n g t h ( c a r l ) ) 2 )
( v e c t o r ? ( c a a r l ) )
(= ( v e c t o r− l e n g t h ( c a a r l ) ) 9 )
( symbol ? ( c a r ( c d r ( c a r l ) ) ) )
( or

( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ pos )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ neg )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ d e l )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ o b j ) ) )

( goodpana l ex ? ( c d r l ) ) )
( e l s e # f ) ) ) )

( d e f i n e t e l l m e b r o
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( or

( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ pos )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ neg )
( equal ? ( c a r ( c d r ( c a r l ) ) ) ’ o b j ) )

( t e l l m e b r o ( c d r l ) ) )
( e l s e ( cons ( c a r l )

( t e l l m e b r o ( c d r l ) ) ) ) ) ) )

( d e f i n e r e p e t i d o ?
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( vecmember ( c a r l ) ( c d r l ) ) ( cons ( c a r l )

( r e p e t i d o ? ( c d r l ) ) ) )
( e l s e ( r e p e t i d o ? ( c d r l ) ) ) ) ) )
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( d e f i n e vecmember
( lambda ( e l e l s )

( cond
( ( n u l l ? l s ) # f )
( ( equal ? ( ge tword ( c a r e l e ) )

( ge tword ( c a a r l s ) ) ) # t )
( e l s e ( vecmember e l e ( c d r l s ) ) ) ) ) )

( d e f i n e r i g h t v e c k y
( lambda ( l s t )

( i f ( n u l l ? l s t )
’ ( )
( cons ( bu i ldmevecky ( c a r l s t ) )

( r i g h t v e c k y ( c d r l s t ) ) ) ) ) )

( d e f i n e bu i ldmevecky
( lambda ( l s t )

( l i s t ( l i s t−>v e c t o r ( l i s t ( ge tword ( c a r l s t ) )
( g e t p o s ( c a r l s t ) )
( g e t p o s s c o r e ( c a r l s t ) )
( g e t n e g s c o r e ( c a r l s t ) )
( g e t o b j s c o r e ( c a r l s t ) )
’ n o c s o r
’ nomaxd i s t
’ n o m i n d i s t
1 ) )

( c a r ( c d r l s t ) ) ) ) )

( d e f i n e bveckyfwords
( lambda ( l )

( i f ( n u l l ? l )
’ ( )
( cons ( bveckyfwords−aux ( c a r l ) )

( bveckyfwords ( c d r l ) ) ) ) ) )

( d e f i n e bveckyfwords−aux
( lambda ( wrd )

( l i s t ( l i s t−>v e c t o r ( l i s t wrd
’ n o p o s t a g
’ nopsc
’ nonsc
’ n oc ob j
’ n o c s o r
’ nomaxd i s t
’ n o m i n d i s t
1 ) )

’ o b j ) ) )

( d e f i n e s a c a m e t e n e g s
( lambda ( l s t )

( i f ( n u l l ? l s t )
’ ( )
( i f ( n u l l ? ( sacametenegs−x ( c a r l s t ) ) )

( s a c a m e t e n e g s ( c d r l s t ) )
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( cons ( sacametenegs−x ( c a r l s t ) )
( s a c a m e t e n e g s ( c d r l s t ) ) ) ) ) ) )

( d e f i n e s a c a m e t e p o s s
( lambda ( l s t )

( i f ( n u l l ? l s t )
’ ( )
( i f ( n u l l ? ( sacame teposs−x ( c a r l s t ) ) )

( s a c a m e t e p o s s ( c d r l s t ) )
( cons ( s acame teposs−x ( c a r l s t ) )

( s a c a m e t e p o s s ( c d r l s t ) ) ) ) ) ) )

( d e f i n e s a c a m e t e o b j s
( lambda ( l s t )

( i f ( n u l l ? l s t )
’ ( )
( i f ( n u l l ? ( s a c a m e t e o b j s−x ( c a r l s t ) ) )

( s a c a m e t e o b j s ( c d r l s t ) )
( cons ( s a c a m e t e o b j s−x ( c a r l s t ) )

( s a c a m e t e o b j s ( c d r l s t ) ) ) ) ) ) )

( d e f i n e sacame teposs−x
( lambda ( l )

( i f ( equal ? ( c a r ( c d r l ) ) ’ pos )
l
’ ( ) ) ) )

( d e f i n e sacametenegs−x
( lambda ( l )

( i f ( equal ? ( c a r ( c d r l ) ) ’ neg )
l
’ ( ) ) ) )

( d e f i n e s a c a m e t e o b j s−x
( lambda ( l )

( i f ( equal ? ( c a r ( c d r l ) ) ’ o b j )
l
’ ( ) ) ) )

; ; agrega l a b l e pos / neg / o b j a l i s t a de v e c t o r e s
; ; r e t o r n a d o s de Sen t iWordNe t
; ; Pasa l= l i s t a de new v e c s ; l a b e l =pos / neg / o b j
( d e f i n e a g r e g a l a b e l

( lambda ( l l a b e l )
( i f ( n u l l ? l )

’ ( )
( cons ( l i s t ( c a r l ) l a b e l )

( a g r e g a l a b e l ( c d r l ) l a b e l ) ) ) ) )

; ; compara l i s t a de p a l a b r a s = ( p1 . . . pn ) c o n t r a
; ; new l e x i c o n ( ( v l a b e l ) . . . )
; ; y d e v u l e v e p a l a b r a s que no e s t a n en e l
; ; nuevo l e x i c o n
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( d e f i n e damelos
( lambda ( l l e x )

( i f ( n u l l ? l )
’ ( )
( i f ( not ( damelos−aux ? ( c a r l ) l e x ) )

( cons ( damelos2 ( c a r l ) l e x )
( damelos ( c d r l ) l e x ) )

( damelos ( c d r l ) l e x ) ) ) ) )

( d e f i n e damelos−aux ?
( lambda ( wrd l e x )

( cond
( ( n u l l ? l e x ) # f )
( ( equal ? ( ge tword ( c a a r l e x ) ) wrd ) # t )
( e l s e ( damelos−aux ? wrd ( c d r l e x ) ) ) ) ) )

( d e f i n e damelos2
( lambda ( wrd l e x )

( cond
( ( n u l l ? l e x ) wrd )
( ( equal ? ( ge tword ( c a a r l e x ) ) wrd ) ’ ( ) )
( e l s e ( damelos2 wrd ( c d r l e x ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; t a k e 2 l i s t s o f p a l a b r a s and r e t u r n s a l i s t w i t h
; ; p1−words n o t i n p2
( d e f i n e mamachicha

( lambda ( p1 p2 )
( cond

( ( n u l l ? p1 ) ’ ( ) )
( ( member ( c a r p1 ) p2 ) ( mamachicha

( c d r p1 ) p2 ) )
( e l s e ( cons ( c a r p1 ) ( mamachicha

( c d r p1 ) p2 ) ) ) ) ) )

; ; ve s i l a s p a l a b r a s en una l i s t a e s t a n r e p e t i d a s y
; ; r e t o r n a such a l i s t
( d e f i n e w h a t t h e r e p s

( lambda ( l )
( cond

( ( n u l l ? l ) ’ ( ) )
( ( member ( c a r l ) ( c d r l ) ) ( cons ( c a r l )

( w h a t t h e r e p s ( c d r l ) ) ) )
( e l s e ( w h a t t h e r e p s ( c d r l ) ) ) ) ) )

; ; b u i l d a l e x− v e c t o r from a l i s t o f words ( w1 , . . . , wn )
( d e f i n e gimmevecky

( lambda ( l )
( i f ( n u l l ? l )

’ ( )
( cons ( gimmevecky−aux ( c a r l ) )

( gimmevecky ( c d r l ) ) ) ) ) )

; ; aux f o r gimmevecky
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( d e f i n e gimmevecky−aux
( lambda ( wrd )

( l i s t−>v e c t o r ( l i s t wrd
’ n o p o s t a g
’ nopsc
’ nonsc
’ n oc ob j
’ n o c s o r
’ nomaxd i s t
’ n o m i n d i s t
1 ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Compare l i s t o f words w i t h vec from Sen t iWordNe t and r e t u r n
; ; a l i s t o f Sen t iWordNe t v e c s f o r t h o s e words found i n vec
; ;
( d e f i n e m o r e v e c s t o u s e

( lambda ( l l v e c s )
( i f ( n u l l ? l )

’ ( )
( cons ( morevecs touse−aux ( c a r l ) l v e c s )

( m o r e v e c s t o u s e ( c d r l ) l v e c s ) ) ) ) )

; ; aux f u n c t i o n f o r m o r e v e c s t o u s e
( d e f i n e morevecs touse−aux

( lambda ( wrd vecs )
( cond

( ( n u l l ? vecs ) ’ n o t f o u n d )
( ( equal ? ( ge tword ( c a r vecs ) ) wrd ) ( c a r vec s ) )
( e l s e ( morevecs touse−aux wrd ( c d r vecs ) ) ) ) ) )

; ; remove p a r t i c l e ’ n o t f o u n d from a l i s t o f v e c t o r s
; ; and n o t f o u n d S
( d e f i n e remno t s

( lambda ( l )
( i f ( n u l l ? l )

’ ( )
( i f ( v e c t o r ? ( c a r l ) )

( cons ( c a r l ) ( r emno t s ( c d r l ) ) )
( r emno t s ( c d r l ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; t r a n s f o r m l i s t o f v e c t o r s i n l i s t o f c o m p l i a n t v e c t o r s
( d e f i n e t r a n t r a n v e c s

( lambda ( l )
( i f ( n u l l ? l )

’ ( )
( cons ( t r a n t r a n v e c s 2 ( c a r l ) )

( t r a n t r a n v e c s ( c d r l ) ) ) ) ) )

; ; aux o f t r a n t r a n v e c s
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( d e f i n e t r a n t r a n v e c s 2
( lambda ( vec )

( l i s t−>v e c t o r
( l i s t ( ge tword vec )

( g e t p o s vec )
( g e t p o s s c o r e vec )
( g e t n e g s c o r e vec )
( g e t o b j s c o r e vec )
’ n o c s o r
’ nomaxd i s t
’ n o m i n d i s t
1 ) ) ) )

; ; Trans form l i s t o f v e c t o r s i n l i s t o f v e c t o r s and l a b e l
; ; ( v1 . . . vn ) −−−> ( ( v1 l a b e l ) . . . ( vN l a b e l ) )
( d e f i n e t r a n v e c k y x

( lambda ( l v e c s )
( i f ( n u l l ? l v e c s )

’ ( )
( cons ( l i s t ( c a r l v e c s ) ’ o b j )

( t r a n v e c k y x ( c d r l v e c s ) ) ) ) ) )

; ; Remove from l i s t v e c t o r s l a b l l e d as ’ de l ’
( d e f i n e r e m d e l c a s e s

( lambda ( l v e c s )
( cond

( ( n u l l ? l v e c s ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l v e c s ) ) ) ’ d e l )

( r e m d e l c a s e s ( c d r l v e c s ) ) )
( e l s e ( cons ( c a r l v e c s )

( r e m d e l c a s e s ( c d r l v e c s ) ) ) ) ) ) )

; ; t o d o s l a s l i s t a s ( v1 l a b e l ) sond de l a b e l =xxx
( d e f i n e t o d o s b u e n o s c h i c o s

( lambda ( l s xxx )
( cond

( ( n u l l ? l s ) # t )
( ( equal ? ( c a r ( c d r ( c a r l s ) ) ) xxx )

( t o d o s b u e n o s c h i c o s ( c d r l s ) xxx ) )
( e l s e # f ) ) ) )

; ; Remove from l i s t v e c t o r s l a b l l e d as ’ pos ’
( d e f i n e r e m p o s c a s e s

( lambda ( l v e c s )
( cond

( ( n u l l ? l v e c s ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l v e c s ) ) ) ’ pos )

( r e m p o s c a s e s ( c d r l v e c s ) ) )
( e l s e ( cons ( c a r l v e c s )

( r e m p o s c a s e s ( c d r l v e c s ) ) ) ) ) ) )

; ; Remove from l i s t v e c t o r s l a b l l e d as ’ neg ’
( d e f i n e r emnegcase s

( lambda ( l v e c s )
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( cond
( ( n u l l ? l v e c s ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l v e c s ) ) ) ’ neg )

( r emnegcase s ( c d r l v e c s ) ) )
( e l s e ( cons ( c a r l v e c s )

( r emnegcase s ( c d r l v e c s ) ) ) ) ) ) )

; ; Remove from l i s t v e c t o r s l a b l l e d as ’ obj ’
( d e f i n e r e m o b j c a s e s

( lambda ( l v e c s )
( cond

( ( n u l l ? l v e c s ) ’ ( ) )
( ( equal ? ( c a r ( c d r ( c a r l v e c s ) ) ) ’ o b j )

( r e m o b j c a s e s ( c d r l v e c s ) ) )
( e l s e ( cons ( c a r l v e c s )

( r e m o b j c a s e s ( c d r l v e c s ) ) ) ) ) ) )

;;=============================================================
; ;=== v a l i d a r r e s u l t a d o s de ” g e t y o u r b e a r i n g s ” ===
;;=============================================================
; ; r e t u r n l i s t o f number o f s e n t e n c e s f o r which
; ; t h e r e i s n o t even one word i n t h e l e x i c o n
( d e f i n e e n r o l l o

( lambda ( l s c t )
( cond

( ( n u l l ? l s ) ’ ( ) )
( ( atom ? ( c a r l s ) ) ( cons c t

( e n r o l l o ( c d r l s ) (+ c t 1 ) ) ) )
( e l s e ( e n r o l l o ( c d r l s ) (+ c t 1 ) ) ) ) ) )

; ; r e t o r n a # t s i una l i s t a r e p r e s e n t a n d o una
; ; o r a c i o n es un s i n g l e t o n
( d e f i n e e s s i n g l e t o n ?

( lambda ( l )
( i f (= ( l e n g t h l ) 1 ) # t # f ) ) )

; ; r e t o r n a l i s t a de numeros de o r a c i o n e s que son s i n g l e t o n s
( d e f i n e l o s s i n g l e t o n s

( lambda ( l s c t )
( i f ( n u l l ? l s )

’ ( )
( i f ( e s s i n g l e t o n ? ( c a r l s ) )

( cons c t ( l o s s i n g l e t o n s ( c d r l s ) (+ c t 1 ) ) )
( l o s s i n g l e t o n s ( c d r l s ) (+ c t 1 ) ) ) ) ) )

; ; por l o menos un v e c t o r
( d e f i n e p o r−u n v e c t o r

( lambda ( l s )
( cond
( ( n u l l ? l s ) ’ ( ) )
( ( por lomenosuno ? ( c a r l s ) ) ( p o r−u n v e c t o r ( c d r l s ) ) )
( e l s e ( cons ( c a r l s ) ( p o r−u n v e c t o r ( c d r l s ) ) ) ) ) ) )

; ; a u x i l i a r de p o r−u n v e c t o r
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( d e f i n e por lomenosuno ?
( lambda ( l )

( cond
( ( n u l l ? l ) # f )
( ( and

( p a i r ? ( c a r l ) )
( v e c t o r ? ( c a a r l ) )
( symbol ? ( c a r ( c d r ( c a r l ) ) ) ) ) # t )

( e l s e ( por lomenosuno ? ( c d r l ) ) ) ) ) )

;;===========================================================
; ;=== Take l i s t o f a t om ic words and make i t
; ; i n t o l i s t o f ( ( v1 l a b e l ) . . . ) ===
;;===========================================================
( d e f i n e c o n s t r u l i s t v e c

( lambda ( l s l a b e l )
( i f ( n u l l ? l s )

’ ( )
( cons ( c o n s t r u−a u x ( c a r l s ) l a b e l )

( c o n s t r u l i s t v e c ( c d r l s ) l a b e l ) ) ) ) )

; ; a u x i l i a r f u n c t i o n o f c o n s t r u l i s t v e c
( d e f i n e c o n s t r u−a u x

( lambda ( wrd l a b e l )
( l i s t ( l i s t−>v e c t o r

( l i s t wrd ’ n o p o s t a g ’ nonsc ’ nopsc ’ n oc ob j
’ n o c s o r ’ nomaxd i s t ’ n o m i n d i s t 3 ) ) l a b e l ) ) )

;;=================================
; ;==== Manage d u p l i c a t e s ==========
;;=================================
; ; remove d u p l i c a t e s from l i s t
( d e f i n e r e m o v e−d u p l i c a t e d− l a t

( lambda ( l s t )
( i f ( n u l l ? l s t )

’ ( )
( i f ( member ( c a r l s t ) ( c d r l s t ) )

( r e m o v e−d u p l i c a t e d− l a t ( c d r l s t ) )
( cons ( c a r l s t )

( r e m o v e−d u p l i c a t e d− l a t ( c d r l s t ) ) ) ) ) ) )

; ; compare two l i s t and r e t u r n words i n bo th l i s t s
; ; i n p u t i s l1 , l 2 = ( ( v e c t o r l a b e l ) . . . ( v e c t o r l a b e l ) )
( d e f i n e m y i n t e r s e c t

( lambda ( l 1 l 2 )
( cond

( ( n u l l ? l 1 ) ’ ( ) )
( e l s e ( cons ( m y i n t e r s e c t− a u x ( c a r l 1 ) l 2 )

( m y i n t e r s e c t ( c d r l 1 ) l 2 ) ) ) ) ) )

; ; a u x i l i a r f u n c t i o n o f m y i n t e r s e c t
( d e f i n e m y i n t e r s e c t− a u x

( lambda ( l l 2 )
( i f

268



C.5. Support Code Appendix C. Scheme Code - SA Hybrid System Proof of Concept

( n u l l ? l 2 ) ’ ( )
( i f ( member spec i a l ( ge tword ( c a r l ) ) l 2 )

( cons l ( m y i n t e r s e c t− a u x l ( c d r l 2 ) ) )
’ none ) ) ) )

; ; member spec ia l : sa sa
( d e f i n e member spec i a l

( lambda ( wrd l s )
( cond

( ( n u l l ? l s ) # f )
( ( equal ? wrd ( ge tword ( c a a r l s ) ) ) # t )
( e l s e ( member spec i a l wrd ( c d r l s ) ) ) ) ) )

; ; c r e a r l i s t a de p a l a b r a s a p a r t i r de
; ; d i c c i o n a r i o− l i k e f i l e s l i k e atoms
; ; d e s p o j a r ( ( v1 l a b e l ) . . . ( v2 l a b e l ) )
; ; −−−> ( wrd1 wrd2 )
; ;
( d e f i n e d e s p o j a r

( lambda ( l s )
( i f ( n u l l ? l s )

’ ( )
( cons ( v e c t o r− r e f ( c a a r l s ) 0 )

( d e s p o j a r ( c d r l s ) ) ) ) ) )

; ; F u n c t i o n r e c i p r o c a de remove d u p l i c a t e s from l i s t
( d e f i n e r e m o v e−d u p l i c a t e d− l a t− r e c

( lambda ( l s t )
( i f ( n u l l ? l s t )

’ ( )
( i f ( not ( member ( c a r l s t ) ( c d r l s t ) ) )

( r e m o v e−d u p l i c a t e d− l a t− r e c ( c d r l s t ) )
( cons ( c a r l s t )

( r e m o v e−d u p l i c a t e d− l a t− r e c
( c d r l s t ) ) ) ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; O r e s t e s Appel
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; S t a r t module f o r I /O and s y n t a c t i c a l c h e c k i n g [ mi io . s s ]
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;;================================ S t a r t o f program ================
; ;
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−Globa l B i n d i n g s −−−−−−−−−−−−−−−−−−−−−−−−
( d e f i n e r e a d b u f f e r ’ ( ) )
; ;
; ;−−−−−−−−−−−−−−−−−−−−−−−−−− Begin I n p u t t r a c k −−−−−−−−−−−−−−−−−−−−−−
; ;
; ; READ a l l i n f o h e l d i n t h e f i l e c o n t a i n i n g t h e query
; ;
( d e f i n e r e a d− f i l e

( lambda ( name )
( l e t ( [ p ( o p e n− i n p u t− f i l e name ) ] )
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( s e t ! r e a d b u f f e r ( read p ) )
( c l o s e− i n p u t− p o r t p ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−− End i n p u t t r a c k −−−−−−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−Begin Outpu t t r a c k −−−−−−−−−−−−−−−−−−−−−
; ;
; ;
; ; W r i t e down t o a f i l e c a l l e d ”ChooseName”
; ; t h e i n f o r m a t i o n p r o c e s s e d
; ;
( d e f i n e d o w n t o− f i l e

( lambda ( v a l name )
( b e g i n

( l e t ( [ p ( o p e n−o u t p u t− f i l e name ) ] )
( w r i t e v a l p )
( c l o s e− o u t p u t− p o r t p ) )

( n e w l i n e )
( d i s p l a y ” W r i t i n g comple t ed . ” )
( n e w l i n e ) ) ) )

; ;
; ; v e r i f i e s i f a f i l e e x i s t s or n o t
; ;
( d e f i n e e x i s t f i l e ?

( lambda ( f )
( f i l e − e x i s t s ? f ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− End o u t p u t t r a c k −−−−−−−−−−−−−−−−−
; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− A u x i l i a r y t r a c k −−−−−−−−−−−−−−−−−−

; ;
; ; r e v e r s e a g i v e n l i s t ’ l ’
; ;
( d e f i n e r e v e r s e

( lambda ( l )
( cond

[ ( n u l l ? l ) ’ ( ) ]
[ e l s e ( snoc ( c a r l ) ( r e v e r s e ( c d r l ) ) ) ] ) ) )

; ;
; ; i n v e r s e o f CONS
; ;
( d e f i n e snoc

( lambda ( x l s )
( append l s ( l i s t x ) ) ) )

; ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− End a u x i l i a r y t r a c k −−−−−−
; ; Para l i s t a s = ( ( a num ) ( b num ) ( c num ) )
( d e f i n e e l e v a l >1

( lambda ( l i s t a )
( cond

( ( n u l l ? l i s t a ) ’ ( ) )
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((> ( c a r ( c d r ( c a r l i s t a ) ) ) 1 . 0 0 )
( b e g i n

( d i s p l a y ( c a r l i s t a ) )
( n e w l i n e )
( cons ( c a r l i s t a ) ( e l e v a l >1 ( c d r l i s t a ) ) ) ) )

( e l s e ( b e g i n
( d i s p l a y ( c a r l i s t a ) )
( e l e v a l >1 ( c d r l i s t a ) ) ) ) ) ) )

( d e f i n e m i r a r
( lambda ( l i s t a c o n t )

( cond
( ( n u l l ? l i s t a ) ( d i s p l a y c o n t ) )
( e l s e

( b e g i n
( d i s p l a y ( c a r l i s t a ) )
( n e w l i n e )
( m i r a r ( c d r l i s t a )

(+ c o n t 1 ) ) ) ) ) ) )

( d e f i n e g e t− d i s t a n c e s
( lambda ( lw or ds l d i s t s )

( cond
( ( n u l l ? l wo rd s ) ’ ( ) )
( e l s e ( cons ( sweepwords ( c a r lw or ds ) l d i s t s )

( g e t− d i s t a n c e s ( c d r lw ord s ) l d i s t s ) ) ) ) ) )

( d e f i n e sweepwords
( lambda ( word l d i s t s 1 )

( cond
( ( n u l l ? l d i s t s 1 ) ’ n o t f o u n d )
( ( equal ? word ( c a r ( c a r l d i s t s 1 ) ) )

( l i s t word ( c a r ( c d r ( c a r l d i s t s 1 ) ) ) ) )
( e l s e ( sweepwords word ( c d r l d i s t s 1 ) ) ) ) ) )

( d e f i n e a l l p a i r s ?
( lambda ( l i s t )

( cond
( ( n u l l ? l i s t ) # t )
( e l s e ( i f ( p a i r ? ( c a r l i s t ) )

( a l l p a i r s ? ( c d r l i s t ) )
# f ) ) ) ) )

( d e f i n e a t o m l i s t ?
( lambda ( l )

( cond
( ( n u l l ? l ) # t )
( e l s e ( i f ( atom ? ( c a r l ) )

( a t o m l i s t ? ( c d r l ) )
# f ) ) ) ) )

( d e f i n e coun twords
( lambda ( l 1 l 2 c o n t )

( cond
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( ( n u l l ? l 1 ) 0 )
( e l s e ( i f ( i s i n ? ( c a r l 1 ) l 2 )

( coun twords ( ( c d r l 2 ) l 2
(+ c o n t 1 ) ) )

( coun twords ( c d r l 2 )
l 2 c o n t ) ) ) ) ) )

( d e f i n e i s i n ?
( lambda ( word l 2 )

( cond
( ( n u l l ? l 2 ) # f )
( e l s e ( i f ( equal ? word ( c a r l 2 ) )

# t
( i s i n ? word ( c d r l 2 ) ) ) ) ) ) )

( d e f i n e remove−not founds
( lambda ( l )

( cond
( ( n u l l ? l ) ’ ( ) )
( ( equal ? ( c a r l ) ’ n o t f o u n d )

( remove−not founds ( c d r l ) ) )
( e l s e ( cons ( c a r l )

( remove−not founds ( c d r l ) ) ) ) ) ) )

; ; o j o
( d e f i n e ( b u i l d− l i s t name )

( l e t ( ( p o r t ( o p e n− i n p u t− f i l e name ) ) )
( b u i l d− l i s t− h e l p e r p o r t 1 )
( c l o s e− i n p u t− p o r t p o r t )
’ done ) )

( d e f i n e ( b u i l d− l i s t− h e l p e r p o r t c o n t a ) ; ; 1 s t v e r s i o n
( l e t ( ( s t u f f ( g e t− l i n e p o r t ) ) )

( i f ( e o f−o b j e c t ? s t u f f )
’ done
( b e g i n ( d i s p l a y s t u f f )

( n e w l i n e )
( s e t ! pupu ( snoc

( l i s t c o n t a s t u f f ) pupu ) )
( b u i l d− l i s t− h e l p e r p o r t

(+ c o n t a 1 ) ) ) ) ) )

C.6 Dictionary-building Code

;;===========================================
;;========= g e n e r a t e d i c t s NEG/ POS words ====
;;===========================================
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code /

s o r c a l c . s s ” )
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code /

s o r c a l c v 2 . s s ” )
( load ” / Use r s / o r e s t e s a p p e l / Desktop / SchemeLibra ry / Code /

s o r c a l c v 3 . s s ” )
; ;

272



C.6. Dictionary-building Code Appendix C. Scheme Code - SA Hybrid System Proof of Concept

( d e f i n e gend ic t−main
( lambda ( )

( c o r r i− d i c t ) ) )
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Appendix D

Data Preparation & Processing

The following text is based on the assumption that the programming language Python (https://www.python.

org/) is available, as well as the NLTK [25] toolkit for Natural Languages (http://www.nltk.org/).

Prof. Christopher Potts, Associate Professor of Linguistics, Director of CSLI at Stanford University, De-

partment of Linguistics http://web.stanford.edu/˜cgpotts/, has produced code and documentation for

a number of manipulations using WordNet (http://wordnet.princeton.edu/ [83, 147] and SentiWordNet

(http://sentiwordnet.isti.cnr.it/) [79, 80]. The following is Prof. Potts link for complete details of the

code and additional explanations http://compprag.christopherpotts.net/wordnet.html and for infor-

mation about the teaching activities of Prof. Potts http://web.stanford.edu/˜cgpotts/teaching.html.

Prof. Potts have written a Python interface to SentiWordNet. By placing this in the same directory as one’s

SentiWordNet source file (restricted link) and then entering the following commands, like follows:

python > f romsentiwordnetimportS entiWordNetCorpusReader,S entiS ynset

python > swn f ilename = ‘S entiWordNet 3.0.0 20100705.txt′

python > swn = S entiWordNetCorpusReader(swn f ilename)

it is possible to access SentiWordNet to extract critical information resident there. Below a sample of the

SentiWorldNet interface written by Prof. Potts.

Our thought process in order to build our Opinion Lexicon, was to used as a base the Lexicons (Positive

and Negative) produced by Prof. Bing Liu (REF) and enrich it with synsets data held in SentiWordNet with

scores for positive and/or negative meanings for a number of existing words. Here is the structure of a Synset

(SentiSynset) in SentiWordNet:

POS ID PosScore NegScore SynsetTerms Gloss...
a 00001740 0.125 0 able#1 (usually followed by ‘to’) having the ...

POS can take five possible values:

a = Adjective

n = Noun

v = Verb

r = Adverb
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s = Adjective Satellite

The output of the SentiWordNet Viewer written by Prof. Potts has the following format:

Word.PoS.NoOfSynonyms.PositiveScore.NegativeScore
snowmobile.n.01 0.0 0.0

fortunate.s.02 0.875 0.0

temperature.n.02 0.0 0.25

summer.n.02 0.0 0.0

whirring.s.01 0.0 0.0 ...

This format needs to be transformed into something friendlier to manipulate. As such, this is the process

we followed:

1. Print to a file all polarity-augmented Synsets (sets of cognitive synonyms, each expressing a distinct con-

cept) in WordNet 3.0 (http://wordnet.princeton.edu) that are currently available in SentiWordNet

3.0 (http://sentiwordnet.isti.cnr.it) and build a list

2. Transform the above (Step 1 outcome)into a type list of vectors in the Scheme Programming Language

(http://en.wikipedia.org/wiki/Scheme_(programming_language)) [73].

3. Generate a list of words with positive meanings starting with Prof. Bing Liu et al. work. According to

Bing Liu “this list was compiled over many years starting from our first paper (Minqing Hu and Bing

Liu. ‘Mining and summarizing customer reviews.’” [102].

4. Generate a list of words with negative meanings starting with Prof. Bin Liu et al. work [102].

5. Using the list from Step 2 as a source, manipulate the lists from Step 3 and Step 4, replacing in them the

words existing in the list from Step 2 with their respective SentiSynsets

6. Obtain an Opinion Lexicon that for pragmatic and computational purposes will encompass two lists of

vectors, each representing a SentiSynset. One list for positive meanings and another one for negative

meanings.

D.1 SentiWordNet Interface

# ! / u s r / b i n / env py t ho n

”””
I n t e r f a c e t o Sen t iWordNe t u s i n g t h e NLTK WordNet c l a s s e s .

−−−C h r i s P o t t s
”””

import r e
import os
import s y s
import c od ec s
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t r y :
from n l t k . c o r p u s import wordne t a s wn

e xc ep t I m p o r t E r r o r :
s y s . s t d e r r . w r i t e ( ” Couldn ’ t f i n d an NLTK i n s t a l l a t i o n . \ n ” )
s y s . e x i t ( 2 )

# #####################################################################

c l a s s Sent iWordNetCorpusReader :
def i n i t ( s e l f , f i l e n a m e ) :

”””
Argument :
f i l e n a m e −− t h e name o f t h e t e x t f i l e c o n t a i n i n g t h e

Sen t iWordNe t d a t a b a s e
”””
s e l f . f i l e n a m e = f i l e n a m e
s e l f . db = {}
s e l f . p a r s e s r c f i l e ( )

def p a r s e s r c f i l e ( s e l f ) :
l i n e s = c o de cs . open ( s e l f . f i l e n a m e , ” r ” , ” u t f 8 ” ) . r e a d ( ) . s p l i t l i n e s ( )
l i n e s = f i l t e r ( ( lambda x : not r e . s e a r c h ( r ” ˆ\ s ∗# ” , x ) ) , l i n e s )
f o r i , l i n e in enumerate ( l i n e s ) :

f i e l d s = r e . s p l i t ( r ”\ t +” , l i n e )
f i e l d s = map ( unicode . s t r i p , f i e l d s )
t r y :

pos , o f f s e t , p o s s c o r e , n e g s c o r e , s y n s e t t e r m s , g l o s s = f i e l d s
e xc ep t :

s y s . s t d e r r . w r i t e ( ” Line %s f o r m a t t e d i n c o r r e c t l y : %s \n ” % ( i , l i n e ) )
i f pos and o f f s e t :

o f f s e t = i n t ( o f f s e t )
s e l f . db [ ( pos , o f f s e t ) ] = ( f l o a t ( p o s s c o r e ) , f l o a t ( n e g s c o r e ) )

def s e n t i s y n s e t ( s e l f , ∗ v a l s ) :
i f t u p l e ( v a l s ) in s e l f . db :

p o s s c o r e , n e g s c o r e = s e l f . db [ t u p l e ( v a l s ) ]
pos , o f f s e t = v a l s
s y n s e t = wn . s y n s e t f r o m p o s a n d o f f s e t ( pos , o f f s e t )
re turn S e n t i S y n s e t ( p o s s c o r e , n e g s c o r e , s y n s e t )

e l s e :
s y n s e t = wn . s y n s e t ( v a l s [ 0 ] )
pos = s y n s e t . pos
o f f s e t = s y n s e t . o f f s e t
i f ( pos , o f f s e t ) in s e l f . db :

p o s s c o r e , n e g s c o r e = s e l f . db [ ( pos , o f f s e t ) ]
re turn S e n t i S y n s e t ( p o s s c o r e , n e g s c o r e , s y n s e t )

e l s e :
re turn None

def s e n t i s y n s e t s ( s e l f , s t r i n g , pos=None ) :
s e n t i s = [ ]
s y n s e t l i s t = wn . s y n s e t s ( s t r i n g , pos )
f o r s y n s e t in s y n s e t l i s t :
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s e n t i s . append ( s e l f . s e n t i s y n s e t ( s y n s e t . name ) )
s e n t i s = f i l t e r ( lambda x : x , s e n t i s )
re turn s e n t i s

def a l l s e n t i s y n s e t s ( s e l f ) :
f o r key , f i e l d s in s e l f . db . i t e r i t e m s ( ) :

pos , o f f s e t = key
p o s s c o r e , n e g s c o r e = f i e l d s
s y n s e t = wn . s y n s e t f r o m p o s a n d o f f s e t ( pos , o f f s e t )
y i e l d S e n t i S y n s e t ( p o s s c o r e , n e g s c o r e , s y n s e t )

# #####################################################################

c l a s s S e n t i S y n s e t :
def i n i t ( s e l f , p o s s c o r e , n e g s c o r e , s y n s e t ) :

s e l f . p o s s c o r e = p o s s c o r e
s e l f . n e g s c o r e = n e g s c o r e
s e l f . o b j s c o r e = 1 . 0 − ( s e l f . p o s s c o r e + s e l f . n e g s c o r e )
s e l f . s y n s e t = s y n s e t

def s t r ( s e l f ) :
””” P r i n t s j u s t t h e Pos / Neg s c o r e s f o r now . ”””
s = ” ”
s += s e l f . s y n s e t . name + ”\ t ”
s += ” PosScore : %s \ t ” % s e l f . p o s s c o r e
s += ” NegScore : %s ” % s e l f . n e g s c o r e
re turn s

def r e p r ( s e l f ) :
re turn ” S e n t i ” + repr ( s e l f . s y n s e t )

# #####################################################################

i f n a m e == ” m a i n ” :
”””
I f run as

py th on s e n t i w o r d n e t . py

and t h e f i l e i s i n t h i s d i r e c t o r y , send a l l o f t h e S e n t i S y n S e t
name , p o s s c o r e , n e g s c o r e t r i o s t o s t a n d a r d o u t p u t .
”””
SWN FILENAME = ” Sen t iWordNet 3 . 0 . 0 20100705 . t x t ”
i f os . p a t h . e x i s t s (SWN FILENAME ) :

swn = Sent iWordNet (SWN FILENAME)
f o r s e n t i s y n s e t in swn . a l l s e n t i s y n s e t s ( ) :

p r i n t s e n t i s y n s e t . s y n s e t . name , s e n t i s y n s e t . p o s s c o r e ,
s e n t i s y n s e t . n e g s c o r e

D.2 NLP manipulations

The following Annex includes bits of code written in Python with the purpose of:

• Tagging sentences according to their grammatical type (nouns, verbs, adjectives, etc.)
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• Parsing the sentences in a proper fashion getting them ready for further analysis and processing

• Expanding contractions, like “I’ll” into “I will”, “she’s” into “she is”, etc., as explained in the code

The code provided below, written in Python is available through the book ‘Natural Language Processing with

Python’ by Bird [26] and the Perkins’ book [173], ‘Python Text Processing with NLTK 2.0 Cookbook’ that

provides interesting pieces of Python code oriented toward performing a variety of NLP tasks.

Note: this code has not be written by the author of this PhD Thesis, but produced and distributed by the

sources described in the previous paragraph. However, the modifications and adjustments required to generate

the products and outputs required for our research are 100% mine. Below, the aforementioned code.

import re , csv , yaml
from n l t k . c o r p u s import wordne t
from n l t k . m e t r i c s import e d i t d i s t a n c e

# #################################################
## R e p l a c i n g Words Matching Regu lar E x p r e s s i o n s ##
# #################################################

r e p l a c e m e n t p a t t e r n s = [
( r ’won\ ’ t ’ , ’ w i l l not ’ ) ,
( r ’WON\ ’T ’ , ’ w i l l n o t ’ ) ,
( r ’DON\ ’T ’ , ’ do not ’ ) ,
( r ’ don\ ’ t ’ , ’ do n o t ’ ) ,
( r ’ can \ ’ t ’ , ’ can not ’ ) ,
( r ’ Can\ ’ t ’ , ’ can n o t ’ ) ,
( r ’CAN\ ’T ’ , ’ can not ’ ) ,
( r ’ d idn \ ’ t ’ , ’ d i d n o t ’ ) ,
( r ’DIDN\ ’T ’ , ’ d i d not ’ ) ,
( r ’ d i d n t ’ , ’ d i d not ’ ) ,
( r ’DIDNT ’ , ’ d i d not ’ ) ,
( r ’ i \ ’ d ’ , ’ i would ’ ) ,
( r ’ i \ ’m’ , ’ i am ’ ) ,
( r ’ I \ ’m’ , ’ i am ’ ) ,
( r ’ a i n \ ’ t ’ , ’ i s not ’ ) ,
( r ’ (\w+)\ ’ l l ’ , ’\g<1> w i l l ’ ) ,
( r ’ (\w+) n\ ’ t ’ , ’\g<1> not ’ ) ,
( r ’ (\w+)\ ’ ve ’ , ’\g<1> have ’ ) ,
( r ’ (\w+ t )\ ’ s ’ , ’\g<1> i s ’ ) ,
( r ’ (\w+)\ ’ r e ’ , ’\g<1> a r e ’ ) ,
( r ’ (\w+)\ ’ d ’ , ’\g<1> would ’ ) ,
( r ’\ ’em ’ , ’ them ’ ) ,
( r ’ o l \ ’ ’ , ’ o l d ’ ) ,
( r ’ o l e \ ’ ’ , ’ o l d ’ ) ,
( r ’ c a n t ’ , ’ can n o t ’ ) ,
( r ’ t h e r e \ ’ s ’ , ’ t h e r e i s ’ ) ,
( r ’ t h e r e \ ’ r e ’ , ’ t h e r e a r e ’ ) ,
( r ’who\ ’ s ’ , ’who i s ’ ) ,
( r ’ h e r e \ ’ s ’ , ’ h e r e i s ’ ) ,
( r ’ where\ ’ s ’ , ’ where i s ’ ) ,
( r ’ he\ ’ s ’ , ’ he i s ’ ) ,
( r ’ she \ ’ s ’ , ’ she i s ’ ) ,
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( r ’ i s n \ ’ t ’ , ’ i s n o t ’ ) ,
( r ’ a r e n \ ’ t ’ , ’ a r e not ’ ) ,
( r ’ (\w+)\ ’ ed ’ , ’\g<1>ed ’ ) ,
( r ’ (\w+)\ ’ d ’ , ’\g<1>d ’ ) ,
( r ’ (\w+)\ ’ s ’ , ’\g<1>s ’ ) ,
( r ’ (\w+)\ ’ n ’ , ’\g<1>n ’ ) ,
( r ’ (\w+)\ ’ ’ , ’\g<1> ’ ) ,
( r ’\ ’ (\w+) ’ , ’\g<1> ’ ) ,
( r ’\ ’ ’ , ’ ’ ) ,

]

c l a s s RegexpRep lace r ( o b j e c t ) :
””” R e p l a c e s r e g u l a r e x p r e s s i o n i n a t e x t .
>>> r e p l a c e r = RegexpRep lacer ( )
>>> r e p l a c e r . r e p l a c e (” can ’ t i s a c o n t r a c t i o n ”)
’ c an no t i s a c o n t r a c t i o n ’
>>> r e p l a c e r . r e p l a c e (” I s h o u l d ’ ve done t h a t t h i n g I d idn ’ t do ”)
’ I s h o u l d have done t h a t t h i n g I d i d n o t do ’
”””
def i n i t ( s e l f , p a t t e r n s = r e p l a c e m e n t p a t t e r n s ) :

s e l f . p a t t e r n s = [ ( r e . compi le ( r e g e x ) , r e p l ) f o r ( regex , r e p l ) in p a t t e r n s ]

def r e p l a c e ( s e l f , t e x t ) :
s = t e x t

f o r ( p a t t e r n , r e p l ) in s e l f . p a t t e r n s :
( s , c o u n t ) = r e . subn ( p a t t e r n , r e p l , s )

re turn s

# ###################################
## R e p l a c i n g R e p e a t i n g C h a r a c t e r s ##
# ###################################

c l a s s R e p e a t R e p l a c e r ( o b j e c t ) :
””” Removes r e p e a t i n g c h a r a c t e r s u n t i l a v a l i d word i s found .
>>> r e p l a c e r = R e p e a t R e p l a c e r ( )
>>> r e p l a c e r . r e p l a c e ( ’ l o o o o o v e ’ )
’ l o v e ’
>>> r e p l a c e r . r e p l a c e ( ’ oooooh ’ )
’ ooh ’
>>> r e p l a c e r . r e p l a c e ( ’ goose ’ )
’ goose ’
”””
def i n i t ( s e l f ) :

s e l f . r e p e a t r e g e x p = r e . compi le ( r ’ (\w∗ ) (\w)\2 (\w∗ ) ’ )
s e l f . r e p l = r ’ \1\2\3 ’

def r e p l a c e ( s e l f , word ) :
i f wordne t . s y n s e t s ( word ) :

re turn word

r e p l w o r d = s e l f . r e p e a t r e g e x p . sub ( s e l f . r e p l , word )
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i f r e p l w o r d != word :
re turn s e l f . r e p l a c e ( r e p l w o r d )

e l s e :
re turn r e p l w o r d

# #####################################
## S p e l l i n g C o r r e c t i o n w i t h Enchant ##
# #####################################

c l a s s S p e l l i n g R e p l a c e r ( o b j e c t ) :
””” R e p l a c e s m i s s p e l l e d words w i t h a l i k e l y s u g g e s t i o n based on s h o r t e s t
e d i t d i s t a n c e .
>>> r e p l a c e r = S p e l l i n g R e p l a c e r ( )
>>> r e p l a c e r . r e p l a c e ( ’ cookbok ’ )
’ cookbook ’
”””
def i n i t ( s e l f , d i c t n a m e = ’ en ’ , m a x d i s t = 2 ) :

s e l f . s p e l l d i c t = e n c h a n t . D i c t ( d i c t n a m e )
s e l f . m a x d i s t = m a x d i s t

def r e p l a c e ( s e l f , word ) :
i f s e l f . s p e l l d i c t . check ( word ) :

re turn word

s u g g e s t i o n s = s e l f . s p e l l d i c t . s u g g e s t ( word )

i f s u g g e s t i o n s and e d i t d i s t a n c e ( word , s u g g e s t i o n s [ 0 ] ) <= s e l f . m a x d i s t :
re turn s u g g e s t i o n s [ 0 ]

e l s e :
re turn word

c l a s s C u s t o m S p e l l i n g R e p l a c e r ( S p e l l i n g R e p l a c e r ) :
””” S p e l l i n g R e p l a c e r t h a t a l l o w s p a s s i n g a cus tom e n c h a n t d i c t i o n a r y , such
a DictWithPWL .
>>> d = e n c h a n t . DictWithPWL ( ’ en US ’ , ’ mywords . t x t ’ )
>>> r e p l a c e r = C u s t o m S p e l l i n g R e p l a c e r ( d )
>>> r e p l a c e r . r e p l a c e ( ’ n l t k ’ )
’ n l t k ’
”””
def i n i t ( s e l f , s p e l l d i c t , m a x d i s t = 2 ) :

s e l f . s p e l l d i c t = s p e l l d i c t
s e l f . m a x d i s t = m a x d i s t

# #######################
## R e p l a c i n g Synonyms ##
# #######################

c l a s s WordReplacer ( o b j e c t ) :
””” WordReplacer t h a t r e p l a c e s a g i v e n word w i t h a word from t h e word map ,
or i f t h e word i s n ’ t found , r e t u r n s t h e word as i s .
>>> r e p l a c e r = WordReplacer ({ ’ bday ’ : ’ b i r t h d a y ’} )
>>> r e p l a c e r . r e p l a c e ( ’ bday ’ )
’ b i r t h d a y ’
>>> r e p l a c e r . r e p l a c e ( ’ happy ’ )
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’ happy ’
”””
def i n i t ( s e l f , word map ) :

s e l f . word map = word map

def r e p l a c e ( s e l f , word ) :
re turn s e l f . word map . g e t ( word , word )

c l a s s CsvWordReplacer ( WordReplacer ) :
””” WordReplacer t h a t r e a d s word mappings from a c s v f i l e .
>>> r e p l a c e r = CsvWordReplacer ( ’ synonyms . c s v ’ )
>>> r e p l a c e r . r e p l a c e ( ’ bday ’ )
’ b i r t h d a y ’
>>> r e p l a c e r . r e p l a c e ( ’ happy ’ )
’ happy ’
”””
def i n i t ( s e l f , fname ) :

word map = {}

f o r l i n e in csv . r e a d e r ( open ( fname ) ) :
word , syn = l i n e
word map [ word ] = syn

super ( CsvWordReplacer , s e l f ) . i n i t ( word map )

c l a s s YamlWordReplacer ( WordReplacer ) :
””” WordReplacer t h a t r e a d s word mappings from a yaml f i l e .
>>> r e p l a c e r = YamlWordReplacer ( ’ synonyms . yaml ’ )
>>> r e p l a c e r . r e p l a c e ( ’ bday ’ )
’ b i r t h d a y ’
>>> r e p l a c e r . r e p l a c e ( ’ happy ’ )
’ happy ’
”””
def i n i t ( s e l f , fname ) :

word map = yaml . l o a d ( open ( fname ) )
super ( YamlWordReplacer , s e l f ) . i n i t ( word map )

# ######################################
## R e p l a c i n g N e g a t i o n s w i t h Antonyms ##
# ######################################

c l a s s AntonymReplacer ( o b j e c t ) :
def r e p l a c e ( s e l f , word , pos=None ) :

””” R e t u r n s t h e antonym o f a word , b u t o n l y i f t h e r e i s no a m b i g u i t y .
>>> r e p l a c e r = AntonymReplacer ( )
>>> r e p l a c e r . r e p l a c e ( ’ good ’ )
>>> r e p l a c e r . r e p l a c e ( ’ u g l i f y ’ )
’ b e a u t i f y ’
>>> r e p l a c e r . r e p l a c e ( ’ b e a u t i f y ’ )
’ u g l i f y ’
”””
antonyms = s e t ( )

f o r syn in wordne t . s y n s e t s ( word , pos=pos ) :
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f o r lemma in syn . lemmas :
f o r antonym in lemma . antonyms ( ) :

antonyms . add ( antonym . name )

i f l e n ( antonyms ) == 1 :
re turn antonyms . pop ( )

e l s e :
re turn None

def r e p l a c e n e g a t i o n s ( s e l f , s e n t ) :
””” Try t o r e p l a c e n e g a t i o n s w i t h antonyms i n t h e t o k e n i z e d s e n t e n c e .
>>> r e p l a c e r = AntonymReplacer ( )
>>> r e p l a c e r . r e p l a c e n e g a t i o n s ( [ ’ do ’ , ’ n o t ’ , ’ u g l i f y ’ , ’ our ’ , ’ code ’ ] )
[ ’ do ’ , ’ b e a u t i f y ’ , ’ our ’ , ’ code ’ ]
>>> r e p l a c e r . r e p l a c e n e g a t i o n s ( [ ’ good ’ , ’ i s ’ , ’ n o t ’ , ’ e v i l ’ ] )
[ ’ good ’ , ’ i s ’ , ’ n o t ’ , ’ e v i l ’ ]
”””
i , l = 0 , l e n ( s e n t )
words = [ ]

whi le i < l :
word = s e n t [ i ]

i f word == ’ n o t ’ and i +1 < l :
a n t = s e l f . r e p l a c e ( s e n t [ i + 1 ] )

i f a n t :
words . append ( a n t )
i += 2
c o n t in u e

words . append ( word )
i += 1

re turn words

c l a s s AntonymWordReplacer ( WordReplacer , AntonymReplacer ) :
””” AntonymReplacer t h a t u s e s a cus tom mapping i n s t e a d o f WordNet .
Order o f i n h e r i t a n c e i s v e r y i m p o r t a n t , t h i s c l a s s would n o t work i f
AntonymReplacer comes b e f o r e WordReplacer .
>>> r e p l a c e r = AntonymWordReplacer ({ ’ e v i l ’ : ’ good ’} )
>>> r e p l a c e r . r e p l a c e n e g a t i o n s ( [ ’ good ’ , ’ i s ’ , ’ n o t ’ , ’ e v i l ’ ] )
[ ’ good ’ , ’ i s ’ , ’ good ’]
”””
pass

i f n a m e == ’ m a i n ’ :
import d o c t e s t
d o c t e s t . t e s t m o d ( )

import n l t k
from n l t k . c o r p u s import brown
import io , os
import l o g g i n g
from r e p l a c e r s import RegexpRep lace r
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import r e

# c r e a t e o u t p u t f i l e
r o o t = r ’C:\ PyCode ’
o u t p u t f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ” b e t t e r t e x t 2 n d n e g . t x t ” ) , ’w’ )

# c r e a t i n g t e s t s e t
r o o t = r ’C:\ PyCode\ d a t a \neg ’ # r o o t f o r t e s t da ta
t x t = ”−−−−−−−−−−−−−−−−−−−−−−−−−−−Beg inn ing t a g g i n g p r o c e s s −−−−−−−−−−−−−−−”
p r i n t t x t

n e g f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ’ NEGtweet . t x t ’ ) , ’ r ’ )
n e g l i n e s = n e g f i l e . r e a d l i n e s ( )
c o n t a d o r = 1
f o r l i n e in n e g l i n e s :

t x t = ” S e n t e n c e No . : %s ”%c o n t a d o r
p r i n t t x t
t x t = ” O r i g i n a l s e n t e n c e : %s ”%l i n e
p r i n t t x t
r e p l a c e r = RegexpRep lace r ( )
o u t s t e p 1 = r e p l a c e r . r e p l a c e ( l i n e )
t x t = ” Rep laced s e n t e n c e : %s ”%o u t s t e p 1
p r i n t t x t
o u t p u t f i l e . w r i t e ( unicode ( o u t s t e p 1 ) )
c o n t a d o r = c o n t a d o r + 1

o u t p u t f i l e . f l u s h ( )
o u t p u t f i l e . c l o s e ( )

import n l t k
from n l t k . c o r p u s import brown
import io , os
import l o g g i n g
from r e p l a c e r s import RegexpRep lace r
import r e

# c r e a t e o u t p u t f i l e
r o o t = r ’C:\ PyCode ’
o u t p u t f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ” b e t t e r t e x t 2 n d p o s . t x t ” ) , ’w’ )

# c r e a t i n g t e s t s e t
r o o t = r ’C:\ PyCode\ d a t a \neg ’ # r o o t f o r t e s t da ta
t x t = ”−−−−−−−−−−−−−−−−−−−−−−−−−−−Beg inn ing t a g g i n g p r o c e s s −−−−−−−−−−−−−−−”
p r i n t t x t

n e g f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ’ NEGtweet . t x t ’ ) , ’ r ’ )
n e g l i n e s = n e g f i l e . r e a d l i n e s ( )
c o n t a d o r = 1
f o r l i n e in n e g l i n e s :

t x t = ” S e n t e n c e No . : %s ”%c o n t a d o r
p r i n t t x t
t x t = ” O r i g i n a l s e n t e n c e : %s ”%l i n e
p r i n t t x t
r e p l a c e r = RegexpRep lace r ( )
o u t s t e p 1 = r e p l a c e r . r e p l a c e ( l i n e )
t x t = ” Rep laced s e n t e n c e : %s ”%o u t s t e p 1
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p r i n t t x t
o u t p u t f i l e . w r i t e ( unicode ( o u t s t e p 1 ) )
c o n t a d o r = c o n t a d o r + 1

o u t p u t f i l e . f l u s h ( )
o u t p u t f i l e . c l o s e ( )

import n l t k
from n l t k . c o r p u s import brown
import io , os
import l o g g i n g
from r e p l a c e r s import RegexpRep lace r
import r e

# c r e a t e o u t p u t f i l e
r o o t = r ’C:\ PyCode ’
o u t p u t f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ” o u t p u t t a g g e d 2 n d n e g . t x t ” ) , ’w’ )

# t r a i n i n g t a g g e r s
b r o w n t a g g e d s e n t s =brown . t a g g e d s e n t s ( c a t e g o r i e s = ’ news ’ )
b r o w n s e n t s =brown . s e n t s ( c a t e g o r i e s = ’ news ’ )
u n i g r a m t a g g e r = n l t k . UnigramTagger ( b r o w n t a g g e d s e n t s )
b r o w n s e n t s =brown . s e n t s ( c a t e g o r i e s = ’ news ’ )
u n i g r a m t a g g e r = n l t k . UnigramTagger ( b r o w n t a g g e d s e n t s )

s i z e = i n t ( l e n ( b r o w n t a g g e d s e n t s ) )
p r i n t s i z e
t r a i n s e n t s = b r o w n t a g g e d s e n t s [ : s i z e ]
u n i g r a m t a g g e r = n l t k . UnigramTagger ( t r a i n s e n t s )
b i g r a m t a g g e r = n l t k . BigramTagger ( t r a i n s e n t s )
t 0 = n l t k . D e f a u l t T a g g e r ( ’NN’ )
t 1 = n l t k . UnigramTagger ( t r a i n s e n t s , b a c k o f f = t 0 )
t 2 = n l t k . BigramTagger ( t r a i n s e n t s , b a c k o f f = t 1 )
t 2 . e v a l u a t e ( t r a i n s e n t s )

# c r e a t i n g t e s t s e t
# r o o t = r ’C:\ PyCode\ da ta \ pos ’ # r o o t f o r t e s t da ta
t x t = ”−−−−−−−−−−−−−−−−−−−−−−−−−−−Beg inn ing t a g g i n g p r o c e s s −−−−−−−−−−−−−−−”
p r i n t t x t

c o m i l l a s = ’ ” ’
t x t c i = ” [ ”
t x t c d = ” ] ”
n e g f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ’ b e t t e r t e x t 2 n d n e g . t x t ’ ) , ’ r ’ )
n e g l i n e s = n e g f i l e . r e a d l i n e s ( )
c o n t a d o r = 1
o u t p u t f i l e . w r i t e ( unicode ( c o m i l l a s ) )
o u t p u t f i l e . w r i t e ( unicode ( t x t c i ) )

f o r l i n e in n e g l i n e s :
t x t = ” S e n t e n c e No . %s ”%c o n t a d o r
p r i n t t x t
t x t = ” O r i g i n a l s e n t e n c e : %s ”%l i n e
p r i n t t x t

# u s i n g d e f a u l t t o k e n i z e r TreebankWordToken i ze r
words = n l t k . w o r d t o k e n i z e ( l i n e )
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t a g u e a d o = t 2 . t a g ( words )
t x t = ” Tagged s e n t e n c e : %s ”%t a g u e a d o
p r i n t t x t
t x t = ” ”
p r i n t t x t
o u t p u t f i l e . w r i t e ( unicode ( t a g u e a d o ) )
c o n t a d o r = c o n t a d o r + 1

o u t p u t f i l e . w r i t e ( unicode ( t x t c d ) )
o u t p u t f i l e . w r i t e ( unicode ( c o m i l l a s ) )

o u t p u t f i l e . f l u s h ( )
o u t p u t f i l e . c l o s e ( )
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Appendix E

Python Code for Naı̈ve Bayes (NB) & Maximum En-
tropy (ME) Classification Methods

The following Annex includes segments of code written in Python with the purpose of:

• Generating the classification of the test dataset using the Naı̈ve Bayes (NB) algorithm

• Generating the classification of the test dataset using the Maximum Entropy (ME) algorithm

The code provided below, written in Python is available through the book ‘Natural Language Processing with

Python’ by Bird [26] and the Perkins’ book [173], ‘Python Text Processing with NLTK 2.0 Cookbook’ that

provides interesting pieces of Python code oriented toward performing a variety of NLP tasks.

Note: this code has not be written by the author of this PhD Thesis, but written and distributed by the sources

described in the previous paragraph. However, the modifications and adjustments required to generate the prod-

ucts required for our research are 100% mine. Below, the aforementioned code.

from n l t k . c o r p u s import m o v i e r e v i e w s
import io , os
import n l t k
os . s y s . p a t h . append ( ’C:\ PyCode ’ ) # l o c a t i o n o f f e a t x mudule
import f e a t x
from n l t k . c l a s s i f y . u t i l import a c c u r a c y
# from f e a t x i m p o r t l a b e l f e a t s f r o m c o r p u s , s p l i t l a b e l f e a t s
import c o l l e c t i o n s
from n l t k . c o r p u s import s topwords , r e u t e r s
from n l t k . c o l l o c a t i o n s import B i g r a m C o l l o c a t i o n F i n d e r
from n l t k . m e t r i c s import BigramAssocMeasures
from n l t k . p r o b a b i l i t y import F r e q D i s t , C o n d i t i o n a l F r e q D i s t
import l o g g i n g

# c r e a t e o u t p u t f i l e
r o o t = r ’C:\ PyCode ’
o u t p u t f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ’ o u t p u t n b n e g s e c o n d . t x t ’ ) , ’w’ )

p r i n t m o v i e r e v i e w s . c a t e g o r i e s ( )
# t r a i n i n g c l a s s i f i e r
l f e a t s = f e a t x . l a b e l f e a t s f r o m c o r p u s ( m o v i e r e v i e w s )
# s p l i t l f e a t s r e t u r n i n g two l i s t s : one w i t h t h e f i r s t 75% o f t h e
# words and t h e sencond 25%
t r a i n f e a t s , t e s t f e a t s = f e a t x . s p l i t l a b e l f e a t s ( l f e a t s ) # d e f a u l t 0 . 7 5 (75%)
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p r i n t l e n ( t r a i n f e a t s ) # l e n g h t o f t h e 75% o f t h e l i s t
p r i n t l e n ( t e s t f e a t s ) # l e n g h t o f t h e 25% o f t h e l i s t

from n l t k . c l a s s i f y import N a i v e B a y e s C l a s s i f i e r
n b c l a s s i f i e r = N a i v e B a y e s C l a s s i f i e r . t r a i n ( t r a i n f e a t s )
p r i n t n b c l a s s i f i e r . l a b e l s ( )

# c r e a t i n g t e s t s e t
r o o t = r ’C:\ PyCode\ d a t a ’ # r o o t f o r t e s t da ta
# r e a d e r = n l t k . co r pu s . r e a d e r . p l a i n t e x t . P l a i n t e x t C o r p u s R e a d e r ( roo t , ’ . ∗ \ . t x t ’ ) # r e a d e r
t x t = ”−−−−−−−−−−−−−−−−−−−−−−−−−−−T e s t i n g NEGATIVE f i l e −−−−−−−−−−−−−−−”
p r i n t t x t
# o u t p u t f i l e . w r i t e ( u n i c o d e ( t x t + ”\n ” ) )

n e g f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ’ neg \\NEGtweet . t x t ’ ) , ’ r ’ )
n e g l i n e s = n e g f i l e . r e a d l i n e s ( )
c o n t a d o r = 0
# ========
f o r l i n e in n e g l i n e s :

t x t = ” P r o c e s s i n g s e n t e n c e : %s ”%l i n e
p r i n t t x t
o u t p u t f i l e . w r i t e ( unicode ( t x t ) )
words = n l t k . w o r d t o k e n i z e ( l i n e ) # u s i n g d e f a u l t t o k e n i z e r TreebankWordToken i ze r
n e g f e a t = f e a t x . b a g o f w o r d s ( words )
p r o b s = n b c l a s s i f i e r . p r o b c l a s s i f y ( n e g f e a t )
t x t = ” F e a t u r e s c l a s s i f i e d as : %s wi th prob = %s ”%( n b c l a s s i f i e r . c l a s s i f y ( n e g f e a t ) ,

p r o b s . p rob ( n b c l a s s i f i e r . c l a s s i f y ( n e g f e a t ) ) )
p r i n t t x t
o u t p u t f i l e . w r i t e ( unicode ( t x t + ”\n\n ” ) )

o u t p u t f i l e . f l u s h ( )
o u t p u t f i l e . c l o s e ( )

from n l t k . c o r p u s import m o v i e r e v i e w s
import io , os
import n l t k
os . s y s . p a t h . append ( ’C:\ PyCode ’ ) # l o c a t i o n o f f e a t x mudule
import f e a t x
from n l t k . c l a s s i f y . u t i l import a c c u r a c y
# from f e a t x i m p o r t l a b e l f e a t s f r o m c o r p u s , s p l i t l a b e l f e a t s
import c o l l e c t i o n s
from n l t k . c o r p u s import s topwords , r e u t e r s
from n l t k . c o l l o c a t i o n s import B i g r a m C o l l o c a t i o n F i n d e r
from n l t k . m e t r i c s import BigramAssocMeasures
from n l t k . p r o b a b i l i t y import F r e q D i s t , C o n d i t i o n a l F r e q D i s t
import l o g g i n g

# c r e a t e o u t p u t f i l e
r o o t = r ’C:\ PyCode ’
o u t p u t f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ’ ou tpu tmenegsecond . t x t ’ ) , ’w’ )

p r i n t m o v i e r e v i e w s . c a t e g o r i e s ( )
# t r a i n i n g c l a s s i f i e r
l f e a t s = f e a t x . l a b e l f e a t s f r o m c o r p u s ( m o v i e r e v i e w s )
# s p l i t l f e a t s r e t u r n i n g two l i s t s : one w i t h t h e f i r s t 75% o f t h e
# words and t h e sencond 25%
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t r a i n f e a t s , t e s t f e a t s = f e a t x . s p l i t l a b e l f e a t s ( l f e a t s ) # d e f a u l t 0 . 7 5 (75%)
p r i n t l e n ( t r a i n f e a t s ) # l e n g h t o f t h e 75% o f t h e l i s t
p r i n t l e n ( t e s t f e a t s ) # l e n g h t o f t h e 25% o f t h e l i s t

from n l t k . c l a s s i f y import M a x e n t C l a s s i f i e r
m e c l a s s i f i e r = M a x e n t C l a s s i f i e r . t r a i n ( t r a i n f e a t s , a l g o r i t h m = ’ g i s ’ , t r a c e =0 ,

m a x i t e r =3 , m i n l l d e l t a = 0 . 5 )
p r i n t m e c l a s s i f i e r . l a b e l s ( )

# c r e a t i n g t e s t s e t
r o o t = r ’C:\ PyCode\ d a t a ’ # r o o t f o r t e s t da ta
# r e a d e r = n l t k . co r pu s . r e a d e r . p l a i n t e x t . P l a i n t e x t C o r p u s R e a d e r ( roo t , ’ . ∗ \ . t x t ’ ) # r e a d e r
t x t = ”−−−−−−−−−−−−−−−−−−−−−−−−−−−T e s t i n g NEGATIVE f i l e −−−−−−−−−−−−−−−”
p r i n t t x t
# o u t p u t f i l e . w r i t e ( u n i c o d e ( t x t + ”\n ” ) )

n e g f i l e = i o . open ( os . p a t h . j o i n ( r o o t , ’ neg \\NEGtweet . t x t ’ ) , ’ r ’ )
n e g l i n e s = n e g f i l e . r e a d l i n e s ( )
c o n t a d o r = 0
f o r l i n e in n e g l i n e s :

c o n t a d o r = c o n t a d o r + 1
l v a c i o = [ ] # i n i t i a l i s e empty s e t
e l c e r o = 0
t x t = ” P r o c e s s i n g s e n t e n c e : %s ”%l i n e
p r i n t t x t

words = n l t k . w o r d t o k e n i z e ( l i n e ) # u s i n g d e f a u l t t o k e n i z e r TreebankWordToken i ze r
l v a c i o . append ( c o n t a d o r )
n e g f e a t = f e a t x . b a g o f w o r d s ( words )

p r o b s = m e c l a s s i f i e r . p r o b c l a s s i f y ( n e g f e a t )
# p r i n t words

t x t = ” F e a t u r e s c l a s s i f i e d as : %s wi th prob = %s ”%( m e c l a s s i f i e r . c l a s s i f y ( n e g f e a t ) ,
p r o b s . p rob ( m e c l a s s i f i e r . c l a s s i f y ( n e g f e a t ) ) )

l v a c i o . append ( p r o b s . p rob ( m e c l a s s i f i e r . c l a s s i f y ( n e g f e a t ) ) )
l v a c i o . append ( m e c l a s s i f i e r . c l a s s i f y ( n e g f e a t ) )
l v a c i o . append ( e l c e r o )

# p r i n t l v a c i o
p r i n t t x t

# o u t p u t f i l e . w r i t e ( u n i c o d e ( t x t + ”\n\n ” ) )
o u t p u t f i l e . w r i t e ( unicode ( l v a c i o ) ) # w r i t e t h e l i s t t o f i l e

o u t p u t f i l e . f l u s h ( )
o u t p u t f i l e . c l o s e ( )
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Appendix F

Samples of outputs of Syntactic Conversions Programs

The following Annex includes outputs of conversions of sentences in their initial formats to:

• List format

• PoS-tagged parse-tree

• Sub-sentences with replacement of lexicon terms available

• Final output to be analysed containing only relevant terms

The code utilised for these operations is part of the content provided in AnnexC.

F.1 Conversion process from string-raw data to analysis-ready data

1. Original Sentence:

(“the rock is destined to be the 21st century’s new conan and that he’s going to make a splash even greater than

arnold schwarzenegger , jean-claud van damme or steven segal . ”)

2. List Lisp/Scheme Format Sentence:

(the rock is destined to be the 21st century’s new conan and that he’s going to make a splash even greater than

arnold schwarzenegger , jean-claud van damme or steven segal .)

3. Converted into a tagged and parsed expression:

( (the AT) (rock NN) (is BEZ) (destined VBN) (to TO) (be BE)

(the AT) (1st OD) (century NN) (new JJ) (conan NN)

(and CC) (that CS) (he PPS) (is BEZ) (going VBG) (to TO)

(make VB) (a AT) (splash NN) (even RB) (greater JJR)

(than CS) (arnold NN) (schwarzenegger NN) (jean NN)

(claud NN) (van NN) (damme NN) (or CC) (steven NN)

(segal NN) (punto punto) )

Note: PoS labels, like AT, TO, VBG, etc., correspond to the PoS tags utilised in the code as per listed in

Appendix C, Section C.5.

4. Existing lexicon terms replaced in sentence:

(rock is destined be century (#(new s 0.0 0.0 1.0 nocsor nomaxdist nomindist 1) pos) conan is going make
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(#(splash v 0.0 0.0 1.0 nocsor nomaxdist nomindist 1 1) obj) (#(even r 0.125 0.0 0.875 nocsor nomaxdist no-

mindist 1 1) obj)

(#(greater a 0.5 0.25 0.25 nocsor nomaxdist nomindist 1 1) pos) arnold schwarzenegger jean claud van damme

steven segal)

5. Non-contributing terms are eliminated from the expression:

( (#(new s 0.0 0.0 1.0 nocsor nomaxdist nomindist 1 1) pos)

(#(splash v 0.0 0.0 1.0 nocsor nomaxdist nomindist 1 1) obj)

(#(even r 0.125 0.0 0.875 nocsor nomaxdist nomindist 1 1) obj)

(#(greater a 0.5 0.25 0.25 nocsor nomaxdist nomindist 1 1) pos) )

Note: in an optimised version of the sentiment lexicon the attributes nocsor, nomaxdist, nomindist are deleted

as described in Part IV, Chapter 17, Sub-section 17.1.3.

6. Non-contributing terms are eliminated from the expression (using updated Sentiment Lexicon struc-
ture in this instance):
( (#(new s 0.0 0.0 1.0 1 1) pos)

(#(splash v 0.0 0.0 1.0 1 1) obj)

(#(even r 0.125 0.0 0.875 1 1) obj)

(#(greater a 0.5 0.25 0.25 1 1) pos) )
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Appendix G

Examples of the application of Semantic Rules & Nega-
tion

The following Annex includes samples of outputs once the following operations are applied to some example

sentences:

• Semantic Rules

• Smart Negation

G.1 Semantic Rules - Examples

Example: It was a great night but the rain ruined it completely.

Sub-sentence 1: It was a great night.

Sub-sentence 2: the rain ruined completely.

Connecting Particle: but. Semantic rule R11HS C in Section 14.1.2, Table 14.1 will pick this sentence and will

get rid of the first sub-sentence, producing:

Final sentence: the rain ruined it completely.

In turn this resulting sentence will be analysed by the HSC algorithm and will end up being assigned a negative

connotation.

G.2 Smart Negation - Examples

A replace algorithm based on regular expressions contribute to breaking up particles like doesn’t, don’t, aren’t,

etc., into ‘does not’, ‘do not’ and ‘are not’, respectively (see Appendix D, Section D.2). Once the contraction

related to negations are expanded, the smart negation algorithm produces a syntactic version of the sentence

that reflects the scope of the negation, as explained in Chapter 14, Section 14.1.2.1.

Example: It was not a good movie.

The expanded version of the above sentence, including lexicon particles substitutions, would look like this:

( (was VB) (not NOT) (a AT) (good ADJ) (movie NOUN) )

Once simplified, it will turn into:
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( (was VB) (not NOT) (good ADJ) ), and as the proper lexicon terms are replaced and not contributing terms

are deleted, the following expression will be generated:

( #(good sa 0.9 0.1 0.0 1 1) pos) NEGATED )

The negation management module in HSC will realise that it is necessary to change the polarity label and

polarity scores in the particles in scope of the negation, which in the aforementioned example corresponds to

the word ‘good’. Hence, the resulting expression is:

( #(good sa 0.1 0.9 0.0 1 1) neg)

Notice that now the ‘polarity label = neg’ and ‘Positive Polarity Score = 0.1’ and ‘Negative Polarity Score

= 0.9’. As a consequence, when the sentiment from this sentence is extracted, the particle ‘good’ will have a

polarity label and a Negative Polarity Score carrying a negative connotation as as such, the sentence will be

classified as having a Negative Semantic Orientation.
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