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DIGITAL IMAGE COMPRESSION

S.Amir, Dip. Ing.

ABSTRACT

Due to the rapid growth in infoDnation handling
and transmission, there is a serious demand for more
efficient data compression schemes.

compression schemes address themselves to speech,
visual and alphanumeric coded data. This thesis is
concerned with the compression of visual data given in
the form of still or moving pictures. such data is highly
correlated spatially and in the context domain.

A detailed study of some existing data
compression systems is presented, in particular, the
performance of DPCM was analysed by computer simulation,
and the results examined both subjectively and
objectively. The adaptive form of the prediction encoder
is discussed and two new algorithms proposed, which
increase the definition of the compressed image and
reduce the overall mean square error.

Two novel systems are proposed for image
compression. The first is a bit plane image coding system
based on a hierarchic quadtree structure in a
transmission domain, using the Hadamard transform as a
kernel. Good compression has been achieved from this
scheme, particularly for images with low detail.

The second scheme uses a learning automata to
predict the probability distribution of the grey levels
of an image related to its spatial context and position.
An optimal reward/punishment function is proposed such
that the automata converges to its steady state within
4000 iterations • such a high speed of convergence
together with Huffman coding results in efficient
compression for images and is shown to be applicable to
other types of data. .

The performance and evaluation of all the
proposed .'systems have been tested by computer simulation
and the results presented both quantitavely and
qualitatively."The advantages and disadvantages of each
system are discussed and suggestions for improvement.
given.
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CHAPTER ONE

1 Image Data compression Techniques :Introduction and
Review

1.1 Introduction

'.,

with the continuing growth of modern communi-
cation technology, demands for image transmission and
storage is increasing rapidly.

Advances in computer technology for mass storage
and digital processing have paved the way for implement-
ing advanced data compression techniques to improve the
efficiency of transmission and storage of linages.

Image data compression is concerned with mini-
mization of the number of infoDnation carrying units used
to represent an linage.For digital linagetransmission and
storage, the conventional nethods is to use the pulse
code modulation (POl) technique. The continuous linage is
first sampled at Nyquist rate in the spatial domain to
produce an N x N array of discrete samples. sampling of a
band-limited image signal is the 'simplest and roost
dramatic form,s of data compression.

The samples thus obtained may have an infinite
number of amplitude leyels and hence may require infinite
bandwid th for transmiss ion. Therefore each image sample,
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talso called pel or pixel, must be represented by a finite
Knumber of levels 2 (where K is the number of bits per

sample) in order to transmit them over a digital channel.
Normally the number of quantization levels in PCM is 64
or 128 corrosponding to 6 or 7 bits respectively [1,2].

2Thus the PCM technique requires KN bits per. image. This
needs a large bandwidth for image transmission, or large
storage capacity in order to store the image for future
retrieval and analysis. There is also degradation in
subjective picture quality due to quantization errors
which becomes perceptible when K is reduced to six or
fewer bits per pixel. Therefore one needs an alternative
approach to solve this problem, i.e. to keep the number
of bits per pixel to a minimum, at the same time keeping
quantization errors within tolerable limits.

Normally an image source is very highly correla-
bed both spatially and temporally, there is a strong de-
pendency among the values of individual picture elements
(pixels). The dependency can be regarded as statistical
redundancy. Taking the pixel correlation into considera-
tion, will reduce the bits needed for representing each
pixel. Measurement of second and third-order amplitude
probabitity distribution and of auto-correlation func-
tions carried by Schieiber [3] and Kretzmer [4] indicated
an image entropy of two to three bits per sample. More-
over, if the images are to be viev.edby human observers,
then there is a psychoyisual redundancy, because of the
perceptual limitations of human vision.
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Hence, the objective of any efficient method of
image data compression is to remove the redundancy from
the image without much degradation in subjective picture
quality.

Picture quality does not depend on the compres-
sion method only, but also on the quantization strategy
employed wi th this method.

Two important classes of compression schemes that
make use of the statistical redundancy in the image are
the linear transform coding and linear predictive coding,
whereas the psychovisual redundancy can be exploited by
using an appropriate quantization technique. There are
other schemes, which lie more or less within the above
classes.

The remaining material of this chapter contains
five sections. The first four sections give a brief sur-

,',

vey of transform coding, predictive coding, hybrid co-
ding, and coding of non-stationary images. The final sec-
tion gives the outline of the reserch direction of this
thesis and underline the objective of this program of
research.

1.2 Transform Coding Technique

Altho~gh· the transform techniques were known a
long time ago, they were first used in image coding in
the late 1960's and ea~ly 1970's.

Initial concepts were based on Fourier transform
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(FT) by Andrews and Pratt [5,7] and by Anderson and Huang
[6], the Hadamard transforrn (HT) by Enomoto and Shibata
[8], by Pratt et. al. [9] and by Wood and Huang [10], the
Karhunen-Loeve transforrn (KLT) by Tasto and Wintz [11]
and by Habibi and Wintz [12] and Haar transforrnby Haar
[13]. Thereafter, a new tranforrnknown as Slant trans-
forrn,specialy designed for image coding was developed by
Enomoto and Shibata [14] for data of vector lengths of
four and eight. Pratt et.al. [15,16] developed a genera-
lized Slant transforrn algorithm for larger sizes.

Implicit in all transform coding procedures, the
image is divided into non-overlaping blocks called sub-
images, and the statistically dependent elements of each
block are linearly transforrned into a new set of desira-
bly independent coefficients using same unitary transforrn
matrices [17]. This transformation also results in compac-
tion of the image energy into fewer coefficients [18],
but, because of the orthogonality of the transforrnma-
trix, the block total energy in transform domain is equal
to that in pel domain (spatial domain) [19].

The coefficients with low energy or minimum var-
iance are discarded without seriously effecting the sta-
tistical information content of the output image

The remaining coefficients are quantized, coded
and transmitted to the receiver. At the receiver the code

.words are decoded 'and inverse transformed to give the
output image. The discatded coefficients are assumed to
be zero at the receiver.
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Fig 1.2.1 shows the block diagram of the trans-
mitter and ~~e receiver for transform tec~niques

Transmitter

Input Forward Sample Bit Quan- To the
trans- t- selec- I- assign- tizer I- Coder

image formation tion ment channel
data

Receiver

From the Inverse Output
Decoder Trans-

channel formation image data

Fig 1.2.1 Block diagram of transform coding

Apart from quantization error, wintz [18] and,
wintz and Kurtenbach [20] show that the mean-square error
of the resultant image is the sum of the variances of the
discarded coefficients.

,I,

The optimum transformation would be one that re-
sultsin statistically independent coefficients and mini-
mum mean-square error, but this requires knowledge of
higher order statistics of the image.·Although Shreiber
[3] measured a few third order statistics, only first and
second moment can be measured in detail. Furthermore,
even if higher order statistics were known, the problem
of determining' a reversible transformation that results

. in independent coeffients remains unsolved.
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1.2.1 Karhunen-Loeve Transform [KLT]

The best transform which is close to the optimum
is the Karhunen-Loeve transform (KLT) [21], which was
derived primarily for sampling an anologue signal. Brown
[22] showed that for second order processes, using the ex-
pansion of Karhunen-Loeve, minimizes the sampling error.

However the discrete KL-transform as developed by
Hotelling [23] can be used on an already digitized images
to obtain uncorrelated coefficients or samples.

Although KL-transform has been known for some
time, its use for the problem of information transmission
was made much later [24,25]. Kramer and Mathews [24]
applied KL transform for speech signals having assumed
Gaussian distribution. Huang and Schultheis [25]
developed an optimum block quantization algorithm for
assigning binary digits to transform coefficients.

Performance results were obtained by wintz and
Kurtenbach [20] for stationary Gaussian Markoff models,
by Pratt and Andrews [26] and by Habibi and Wintz [12]
for pictorial data.

Although the KL-transform is optimum, its use in
practice presents many problems. It requires statistical
knowledge of the image source and does not posses a fast
computational 'algorithm [27] and in many cases its

.covariance matrix is a singular [28]. Habibi and wintz
[12] have given a detail€d discussion of the two - dimens-
sional KL-transform and the difficulties associated with
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it. Jain [29,30] developed a fast KL- transform for fi-
nite first order Gauss-Markoff signals with known boun-
dary values and he showed that the assumption of known
boundary, replaces the non-periodic sine wave represen-
tation of KL-transform by a periodic sine wave and this
leads to fast transform via sine or Fourier transform
[31]. Also Haralic et al. [32] reported that under
isotropicity condition, a fast KL-transform exists, which
differs from the optimum KL by approximately 1%.

All these methods are only approximations and
only valid for data from stationary Markoff processes
with exponential correlation.

1.2.2 Discrete Fourier Transform (OFT)

Many simpler sub-optimum transforms have been
developed whose performance are very close to that of
KL-transform and are compatationafl.yeasier. One of then
is the discrete Fourier transform.

The development of the fast Fourier transform
algorithms [33,34] has led to the investigation of the
Fourier transform of image coding technique, even though,
the discrete Fourier transform has long been used for sig-
nal analysis PS],.

The concept of coding and transmitting of an im-
age using two-dimentional Fourier transform was introdu-.'
ced by Andrews and Pratt [5,7] and Anderson, and Huang
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[6,36]. Andrews and Pratt [5,7] used the Fourier trans-
form on complete image~, where Anderson and Huang [6,36]
divided the image in blocks of size 16 x 16 and used the
Fourier transform on the blocks. The drawback of the
Fourier transform is the complex arithmetic which it in-
volves.

1.2.3 Hadamard Transform (HT)

Other sub-optimum transform is the Hadamard
transform. This is the simplest to implement since the
Hadamard matrix consists of t lis , and, therefore only
additions and no multiplications are required. Bowyer
[37] displayed the similarity between the Hadamard matrix
and discrete Fourier transform.

Pratt et al [9] and Wood and Huang [lO} recog-
nized that the Hadamard transform could be utilized in
place of Fourier transform with a considerable decrease
in computational requirements. Pratt et. al. [9] trans-
formed the entire picture as a unit. Wood and Huang used
it on blocks of 4x4, 8x8, l6x16 and entire image. Habibi
and wintz [38] applied Hadamard transform on l6xl6 and
larger blocks.

- 8 -



1.2.4 Other Transforms

Other orthogonal transformation used in image
coding and have performance close to KL-transform are
Cosine transform [39,40], Haar transform [13,41], Slant
transform [14,15,16,42] and the discrete linear basis
(DLB) [43]. The CLB as developed by Haralic and Sharmugam
[43], offers a good trade-off between the complex KL-
-transform and simple Hadamard transforms. This transform
is very close to KL-transform for high compression rate
and much better than Hadamard transform for all
compression rates [43].

1.2.5 Block Size Consideration

Other consideration of the transform algorithms
"i is the block or subpicture size (n) [44].

Large blocks size reduces the correlation between
blocks (interblock correlation) and improves the mean-
square error performance, since the number of correla-
tions taken into account increases with n, [45]. However,
for implementational simplicity as well as to adapt to
the local changes in pfcture statistics and visual
fidelity, a smaller size is desirable.

On the other hand, if n is too small, correlation.
between picture elements are not taken into account. More-
over, if adaptive coding is used, the overhead informa-
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tion will increase, which results in a higher bit rate,
when the size is reduced [46].

The block size therefore, should be chosen
greater than but comparable to the interpixel correlation
distance, which defined as the distance at which inter-
pixel correlation becomes small enough to be assumed zero
[,47]•

Claire, et al.[48] showed that, if the block size
is chosen according to the conception above, then the
block mean-square error performance should be comparable
to the entire image transform.

However, most pictures contain significant cor-
relation between pixels for only about 20 adjacent sam-
ples [49], although this number is strongly dependent on
the amount of detail in the picture [l2,Fig.2]. Pratt
[45,Fig.23.2-4] has plotted the mean-square error of an
image having a Markoff process covariance, as a function
of block size for various transformations. The figure
shows that the improvment is not significant as sub-

picture size exceeds l6x16. In fact using blocks of
nxn = 8 x 8 does not significantly increase the error.
Furthermore it shows that discrete cosine transform (OCT)

has virtually the same energy compactness as the discrete
KL-transform.

Tasto 'and Wintz [46,Fig.7] illustrated the
relation between the bit rate with the block size, which
indicates that the bit ..rate will increase as the size
decreases.
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The optimum size appears to be 16 for one dimen-
sional blocks, and between 6 x 6 and 8 x 8 for two
dimensional blocks [46]. However the subjective quality
does not appear to improve with the size of the block
beyond 4 x 4 [18].

Tasto and wintz [50] showed that, even though a
two dimensional block yields better performance than a
one-dimensional block, the improvment is rather small -
,about 0.2 bit/pel. Sakrison and Algazi [51] analytical
result based on rate distortion considerations, shows,
that for a fixed distortion no more thana factor of 2 or
3 can be saved in the number of bits required for optimal
two-dimensional as opposed to line by line processing.

On the other hand Saghri [52]' showed·that, at
rates lower than I bit / pixel, the perfamance of an
adaptive transform coding will improve with larger block
size, and at higher bit rate the trend is reversed.

I,

The block transform decorrelates only the pixels
within the block and does not decorrelate pixels among
the blocks. Even if all pixels within the transform block
become decorrelated via the transformation, the pixels on
the border remain correlated with respect to pixels on
the borders of adjacent blocks. If the interblock corre-
lation is ignored, then the reconstructed images tend to
take on a smoo'th-blurred appearance with edge lines
(blocking effects) occuring between adjacent blocks,
particularly at high compression factor.

Haralick et. al. [53] designed a transform method
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for reducing the blocking-effect and called it" Annihi-
lation transform "• They reported that this method has
less blocking effect than the cosine transform at
compression of 10.

1.2.6 Sample Selection in Transfomrm Domain

The next step in transform coding is the selec-
tion of the coefficient to be transmitted. One method is
to evaluate the coefficients variances on a set of aver-
age pictures and then discard all coefficients whose
variances is lower than a certain value. Such scheme is
called "Zonal sampling " and it is a non-adaptive tech-
nique.

In most scenes of interest the energy in trans-
form domain tends to be clustered at the low spatial fre-

I quency coefficients [9] and most of the image energy is
contained in a few samples [54]. Normally the high spa-
tial frequency coefficients are discarded, which is equiv-
alent to low pass filtering.

Coding degradation can be large if the image con-
tains large amptitude of high frequency coefficients.

Landau and Slepian [28] fouridthat for 4 x 4
Hadamard transform, very little degradation is seen for
most pictures by discarding the coefficients 11,12,--,16.
Haralic et. al. [43] selected the first four Hadamard and
OLB transform coefficients with sequency (0,0)., (1,0),
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(0,1), (1,1), which have the most linageenergy.
Another sample selection method would be to first

evaluate all n coefficients and then retain only those
coefficients that exceed a preset threshold. This method
is called " threshold sampling "[ 55] and it is an adap-
tive technique that retains only those coefficients that
are large for a particular picture and block being proces-
sed. When threshold sampling is used, " book-keeping
information" must be transmitted, which specifies the
coefficients used.

1.2.7 Quantization of Transformed Coefficients

I.

After selection the coefficients which have to be

transmitted, each coefficient must be quantized and
coded.

One criteria for designing the quantizer is based
on minimizing the mean square error between the quantizer
input and output [56-59].

Panter and Dite [56] considered signals whose pro-
bability density is an even function and that, is zero
outside the interval (-v, v) which represent the range of
the quantizer input. They found that for opt imim perfor-
mance, output Ievef.s (reconstruction levels) should be
the midway between two adjacent decision levels.

Max [57] used differential calculus to derive the
relation between input and output levels for Gaussian
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signals.
Peaz and Glisson [58] used Max procedure to deter-

mine the optimum quantizer characteristics for Laplacian
and Gamma distributed signals.

Reo [59] gave approximated solution for a more
general case of probability distributions. Panter and
Dite [56] and Max [57] found that if the probability den-
sity funtion of the input signal is uniform, then a uni-
form quantizer (uniform spaced output levels) is optimum.
For other distributions the mean-square error can be
decreased by using non uniform quantizer with small spa-
cing in regions of higher probability and large spacing
in regions of lower probability. All references listed
above are dealing with single sample quantizer.

Quantization stratagies for minimizing the total
meansquare error of block of samples (random variables)
have been developed by Huang and Schultheiss [25], where
a knowlege of the variances is essential for the optimi-
zation.

The mean square error is minimum if a vector X
built from Gaussian random variables is transformed to
uncorrelated vector Y by an orthogonal apertor and Y is
quantized.

The best choice of 'the number of bi~s assigned to
each variable.is·that the quantization error is the same
for all variables.'This is possible if the bit assignment
is made propotional to .~e logarithms of their variances
[60]. This technique is called 11 block quanti.zation 11 and
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it is significantly more efficient than using the same
number of bits for all samples. Normally the number of
bits assigned to each variable is not an integer,
therefore a correcting process is necessary to assign an
integral number of bits to each sample, which leads to
deviation from optimality.

Mitrakos and Constantinides [61] presented a
recursive procedure for optimum block quantization, based
on dynamic programming, by means of which integer bit
assignment constraints are easily met.

Image subjective quality can be improved by
assigning more bits
variances and fewer
variances [12].

The subjective quality can also be improved by

to coefficients with the larger
to the coefficients with smaller

,I.

using quantizers with characteristics different from that
which minimize the mean square error.

Landau and Slepian [28] used Hadamard transfor-
mation with a 4x4 block. The number of quantization
levels they assigned to each of the first ten coef-
ficients (HI to HIO) was approximately proportional to
the variance of that coefficient, whereas the last six
coefficients (HII-H16) were dropped.

The first coefficient was quantized by a 64 -
levels uniform,quantizer. Coefficients H2 through HIO
were quantized with quantizers having a companding
characteristic given by ~,function of the form y=k x.

Tasto and Wintz [11] proposed an encoder using a
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6 x 6 adaptive Karhunen-Loeve transformation. They first
determined the number of coefficients that must be re-
tained, then by trial and error they determined the quan-
tizers characteristics for each coefficient, which result
in best picture quality

Mounts et al. [62] described a systematic pro-
cedure for designing of optimum quantizer for Hadamard
coefficients based on psychovisual criteria in the trans-
form domain. Based on subjective tests, they evaluated
the visibility funtion of quantization noise, then they
developed a design procedure to minimize the mean-square
subjective noise by replacing the coefficients visibility
function in place of the probability density function in
Max quantizer.

1.2.8 Adaptive Transform Coding

A nonadaptive algorithm is designed to be a fixed
coding algorithm operating identically for all images and
all image blocks. For a nonadaptive technique, the image
to be coded is assumed to be a stationary source. Images
for which the stationarity assumption is valid, a non-
adaptive coder could be an optimal coder.

Usually, images have varying statistical struc-
tures, both from image to image as well as from region to
.region within an image. Break inq the image up into blocks
of size n x n and calc~lating the mean and autocor-
relation function within each block yields means and auto

- 16 -



correlation functions which change from one block to
another. This fact reduces significantally the efficiency
of nonadaptive coding and it is the prime reason for the
development of adaptive techniques, which could subs-
tantially improve the coding performance.

It seems natural to adapt the quantization pro-
cedure from one block to another depending on the details
of the image in that block. For example areas with high
detail must be represented by more bits than areas with
low detail where fewer binary digits can be used or, for
areas with high detail, the number of coefficients to be

transmitted must be higher than for areas with low
detail. The adaptive procedure will therefore, depend
upon the activity within the block chosen.

Charles and wintz [63] suggested an adaptive KL
transform coding. They defined eight categories according
to the number of coefficient required to be transmitted

,I, (Table 1. 2. 8.1) .

They have used a block of 6 x 6 data and by
sequentially scanning each line of the block, they have
converted it into a one dimentional vector X of m = 36
samples with zero mean, which makes the calculation
simpler. Each vector X is traosformed to a vector Y and

m 2the total enegy is calculated E = "t"" y.L. I.
1:1 N 2

Then find N such that r Y i ~ (l-A (X» E ,
" 1=1-

where A (X) is a quality criterion for X • Choose L from- .

Table 1.2.8.1 such that KL-1< N ~ KL •

- 17 -



Table 1.2.8.1 Category Assignment for Constant A

category (L) (KL)Nurnberof Coefficients
Transmitted for each Category

1 6

2 9

3 12

4 15
5 18
6 21

7

8

26
32

For example if N = 16, then L = 5 and the number
of the coefficient transmitted is 18.

The overhead information is 3 bits per block for
specifing the category. They reported a bit rate of 2.5
to 3 bit per picture element for A (X)= constant = 0.01.
For better subjective quality they used A(~)

_ n
= rJ. (X/Q)

instead of a constant A and different category assignment
table, where X is the average of a source vector ~ , Q is
the maximum grey level in the original picture and e< and
.n are parameters.· X/Q represents the normalized
(average) brightness of a block. This system will allow
more error in brighter areas than in darke~ areas. They
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have claimed that this system produced good quality at
1.4 bit / pel for = 0.5 and n = 2.

Tasto and wintz [11] proposed a different adapt-
ive KL-TransfoDm coding. Each block of 6x6 is converted
to one dimention block of 36 samples as above and is clas-
sified into one of three categories. Category I: blocks
containing a lot of detail, Category II: blocks contain-
ing little detail and darker than average and Category
III: blocks containing little detail and lighter than av-
erage. For each class a covariance matrix and the corre-
sponding set of eigen vectors are used to transform that
particular class. Each class has its own quantization pro-
cedure for block quantization of transformed data. The
overhead information required to be transmitted for
specifying the class, to which the given block belongs,
is 2 bits per block. A bandwidth reduction of 30 to 50
per cent have been reported over the non-adaptive KL
transform methoo. In both schemes the same uniform
quantizer, suggested by Hayes and Bobilin [64] was used
for all the coeffiecients.

Since the adaptive KL transform is so complex,
other deteDministic transfoDm like Fourier, Hadamard, dis-
crete cosine transfoDm (DTC) etc., have been tried along
with some adaptation in either ,quantization or sample se-
lection.

The simplest technique possibly, is to,transform
the blocks of data and ~~n select only those coeffi-
cients which are larger than a certain threshold. The tra
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nsform coefficients below the threshold are set equal to
zero at the receiver.

The number and the location of the coefficients,
above a fixed threshold, change fram one block to another
and, therefore, the system is adaptive. Dillard [65]
reported a system using this adaptive threshold
quantization technique with 4x4 Hadamard transform. The
dc-term and the largest coefficients along with their
adresses were transmitted. He reported a bit rate of
1.625 bit/pel without significant degradation by using
the dc-term and the two largest coefficients.

Two dimentional Fourier transform on a block of
l6x16 picture elements followed by an adaptive quantiza-
tion has been reported by Anderson and Huang [6]. The
standard deviation of the elements in each block was
first measured. The number (L) of the coefficients to be
coded from each block and the number of bits used for
quantizing the magnitude and phase of these coefficients
were made proportional to the standard diviation of the
picture elements in that block. Then amplitude, phase and
the position of the L transformed samples with the lar-
gest amplitude were transmitted. Good results were repor-
ted at 1.25 bits/pel.

Different adaptive transform codfng methods use
different measures for sample selection and quantization
In the transform domain. Besides using the standard
diviation of the block Of..picture elements, the most
frequently used measures are the variances of the trans-
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form coefficients, the sum of absolute values of the a-c.
coefficients and the a-c. energy of the transformed
coefficients. In a sense, all of them give a measure of.
the image activity and in fact the variances and the a-c.
energy of transformed samples are a measure of the ran-
domness of the image.

The sum of the absolute values of the a-c. co-
efficients in transform domain, refered to as the acti-
vity index [66], can be used to classify each block to
one of the M possible classes. Each class would used a
different sample selection and quantization procedure.

Claire [66] and Gimlett [67] have reconmended the
use of the activity index with four possible classes.
They use a combination of zonal and threshold sampling
for each class •

Chen and Smith [68] used fast computational dis-
crete cosine algorithms to calculate block of 16xl6

.r. picture elements, followed by adaptive coding technique
based on the image activity level. The transform blocks
are sorted into four classes according to the level of
image activity which is measured by the total a-c. energy
in each block. Within each activity class, coding bits
are allotted to individual transform elements according
to the variance matrix of the transformed data. More bits
are assigned to busy areas and higher level of activity
are preferred over lOwer levels. They reported good
picture quality at 1 bit/~~ and satisfactory quality at

·0.5 bit/pel for still pictures.
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Different authors [69,70] have used the Cosine

I,

transform with adaptive quantization and good results
have been reported compared with results obtained by
using uniform or Max- quantizers [70].

Instead of using the sum of the magnitudes of the
a-c. transform coefficients as a measure of image
activity, the variances of the coefficients may be used
to define spatial activity, which is then used for
adaptive sampling and quantization of the coefficients.

Tescher et al~ [71,72] have used the variances of
the transformed coefficients as an activity index for
adaptive bit assignment. They have taken a 256 x 256
picture and used a two-dimentional Fourier transform to
obtain the complex Fourier coefficients. The complex
coefficients are represented in term of their amplitude
and phase and the two are treated separately. The
variance of each amplitude components is estimated and

I, bit assignment is made in proportion to the logarithm of
its estimated variance.

In the sa~e way, the phase components are proces-
sed but it has been found in practice that the phase
components must be quantized more finely as the picture
is more sensitive to phase degradation than amplitude
degradation.

The phase component; is quantized using one more
bit -than has been: used' for the'correspond ing amplitude
component. The variance of ~e amplitude of individual
'coefficients is estimated using a predictor that combine
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the variances of a nlli~erof adjacent quantized samples
to predict the variance of a given coefficient.

This system requires prior knowledge of the esti-
mated value of the first variance to start the process.
An improvement of about 50% in reduction of the bit rate
over the non-adaptive systems was reported. They used
Fourier and Hadamard transformations with slinilar
results.

A slightly different approach has been suggested
by Tescher et. al.[73-751 to the problem of sample
selection. They divided the image into blocks of l6x16
picture elements and transformed it using OCT or Slant
transform. But instead of using usual scanning of line by
line to convert the transform coefficients to one- dimen-
sional set, they have used the scanning pattern shown in

fig. 1.2.8.1
They argue that such scanning pattern gives a

smoother decay in the size of the variance of the
transformed coefficients and that strong correlation
exists among adjacent coefficient variances, even though
the transformed coefficients are uncorrelated.

Next the variances of the one-dimensional data
sequence is estimated and bit assignment is made
proportional to the logarith~ of the estimated variances.
When the variance of a coefficient is so small that the
number of bits assigned to it falls below one bit, the
processor stops and all rewaining coefficients in that
block are set to zero at the receiver.
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Fig. 1.2.S.1. Ordering of the samples in frequency domain

ofaxS block.

The estimate of the variance for the nth.
2", transform coefficient <1n is

2 2 ~2ern = A10'n-1+(1-Al)Xn_1
,..

where Xn-1 is the quantized form of the (n-l)the
,I,

transformed sample and Al is a weighting factor which has
been taken as 0.75.

One procedure for estimating the first variance
. """2 2 2 2 X42 )/4 h '1S [75] U1 = (X1 + X2 + X3 + .were the X s are
the transform coefficients.

In addition to these techniques, a number of
adaptive rrethods have been devised that use a fixed
number of coefficients and a fixed number of quantizers
in each block. However a different normalizing constant
is used to normalize the coefficients in that block prior
to their quantization [76,77]. The normalizing constant
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must also be transmitted for each block.
A comparative study between different adaptive

schemes has been done by Nagan [78] using Cosine and
Hadamard transforms.

The transform techniques mentioned above are not
only used on still pictures, but also can be used on
moving pictures, where not only the redundancy in the
same frame (intraframe) is exploited but even so the
redundancy in successive frames. This is called
interframe transform coding. A study made by Roese [79]
has shown that this approach yields transform coders
whose performance greatly exceeds that of conventional
intrafrarnecoders. However, the main disadvantage of such
coders is the requirement of excessive storage when the

~ blocks are 16x16x16 (horizontal x vertical x temporal) or
more. Therefore interfrarnetransform coding uses smaller
blocks. Mounts et al. [62] used blocks of 2x2x2 with
•Hadamard transform coder. Natarajan and Ahmend [80]
applied Walsh-Hadamard transform (WHT) and the discrete
Cosine transform (OCT) on 4x4x4 blocks achieving one
bit/pel without motion degradation or other distortions.
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1.3 Predictive Coding Techniques.

The next class of efficient coding techniques
which makes use of the correlation between adjacent
signal values is the predictive coding.

In basic predictive coding systems the sample to
be coded is predicted (estimated) from previously coded
information that has been transmitted. The' difference
signal (error) between the actual value and its estlinate
is then computed and quantized into a set of discrete
amplitude levels. These levels are then represented as
binary words of fixed or variable wordlength and
transmitted. At the receiver, the code words are decoded
and added to the receiver prediction to reproduce the
reconstructed signal. Thus the predictive coder has three
basic components: 1) Predictor, 2) Quantizer, 3) Code
assigner. The most conmonly used predictive coders used

I in speech and image compression are the differential
pulse code modulation (DP(1) and delta modulation (DM).

1.3.1 The DPCM Coders.

DPCM system was first introduced by· CUtler [81].
His invention is based on transmitting the quantized
dif~erence between successive sample values rather than
the sample values themselves. Fig 1.3.1.1 shows the block
·diagram of a DPCM system.
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Fig 1.3.1.1 Block diagram Components of DPQ1 Compression.

Oliver [82] and Harrison [83] realized the
importance of linear prediction in feedback communi-

.t. cations systems and proposed that it be used to reduce
the redundancy, and therefore, lower the required poeer
in highly periodic signals such as television. Oliver

.r.

[82] explained how linear prediction could be used to
reduce the bandwidth required to transmit redundant
signals. Harrison [83] actually built a signal processing
system and applied it on image data and illustrated how
redundancy could be removed from those signals using
linear prediction. He extended the basics of DPCM system
by fooning the prediction from a linear cornnination of
previous pixels along' the same line and previous lines
(two. dimensional predictor). Later Elias [84] developed
the theory of prediction cod~pg which explained the use
of linear prediction in PCM systems. Graham [85]
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recognized that the theory of prediction could be

incorporated into the system described by Cutler. He
demonstrated by computer simulation the feasibility of
using 3-bit DPCM for the television transmission of still
black and white pictures.

O'Neal [86] has analysed DPCM for the transmission
of video signals. He concluded that previous-sample
feedback DPCM transmission system can provide a signal
to-quantizing noise ratio approximately 15 db. higher
than standard PCM, a signal encoded into DPCM is more
vulnerable to noise in the transmission channel (bit
error) than one encoded by PCM. He also demonstrated
that, if the horizontal correlation is equal to the
vertical correlation, then the improvement in signal to

" quantizing noise ratio, when vertical pixel is used in
addition to horizontal pixel, is small and it is about
1.9 db.

However subjective evaluation indicates that the
reproducing of vertical edges is significantly improved
due to two-dimensional prediction [87].

The efficiency of DPCM image data compression
depends on the order of the predictor n (number of
previous pixels used by the predictor), the values of the
predictor coefficients (ai), the quantization th~eshold
and the number of quantfzation levels. The order of the
predictor is detennined· by the data. In general, if a
data sequence is modeled as an nth. order Markoff
process, then an optimally designed nth. order predictor
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will cause the resulting prediction error sequence to be
uncorrelated [88]. Images are obviously not nth. order
Markoff processes, but experience with image data has
shown that it is possible to model the overall covariance
statistics of images by third-order Markoff processes
which leads to a third-order predictor [89]. Habibi [89]
computed the prediction mean square error (MSE) using
different numbers of previous picture elements. His
results show that if the predictor coefficients are
matched to the statistics of a picture, then for that
picture, the MSE decreases significantly by using up to
three picture elements, and fUrther decreases are rather
small by using more than three pixels.

If the prediction is well chosen, then the
difference signal (dm) will be small in most part of the
picture, thus the first order entropy H (dm) of the
difference is in general substantially smaller than the
entropy of the original input signal (Srn). Therefore a
code with variable word length (for instance a Huffman
code [90]) for coding the difference will reduce the bit
rate compared to FeM.

The best DP01-system design is that system which
minimizes a measure of the overall error between the
input and the output of the system. HOYJeverthis design
procedure is pr~veRted by the non-linear characteristic
of.the quantizer. Therefore the optimization problem is
solved by designing the ~inear predictor ignoring the
presence of the quantizer and then the quantizer is
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designed to match the amplitude distribution of the
difference signal. Bodycomb and Hadad [91] showed that if
the quantizer is replaced outside the feedback loop, then
the mean-square error (MSE) performance of the system for
a Gaussian-Markoff process is not better than the
performance of PCM-system. Geddes [92] shows that in such
system, if the difference signal (prediction error) is
quantized and transmitted directly, then the quantization
error will accumulate in the integrating filter at the
receiver producing gross streaking in the received
picture. Therefore the quantizer has to be included in
the prediction loop to make the transmitter and receiver
identical, which rneans that the transmitter and receiver
predictors will be operating from the same quantized
predicted values, thus minimizing the error between them
in the reconstruction process.

On the other hand replacing the quantizer in the
,I,

loop will change the distribution of the prediction error
(quantizer input) and makes the difference signal
correlated and the system is no longer optimum. But if
the number of quantizing levels is large, then including
the quantizer has very little effect on the amplitude
distribution of the difference signal. However, the
system is optimum only for that'input signal which the
system is designed for:

The coefficients for optimum predictor are found
by minimizing the mean-square error of the input image.
This leads to a set of linear equations which can be
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solved from knowledge of image autocorrelations. This
method for designing a two-dimensional predictor could
result in an unstable recursive filter [93J. This means,
while the prediction error is minimized (ignoring the
quantization effect), the reconstruction filter could be
unstable causing any transmission error to be amplified
greatly at the receiver. Pirsch [94] investigated the
stability conditions for DPCM coder of multidimensional
DPCM-systerns and sufficient stability conditions have
been derived both in the signal domain and transform
domain.

The main impairments in DPCM-systems are the
granular noise, slope overload and edge busyness [95J,
which are intrduced by the quantizer. The noise structure
in slope overload has been investigated by Protonotarias
[96]. Goldstein and Liu [97] who analysed the three types
of error and approximated equations have been obtained~

for each of them for Gaussian input.
Almost commercial quality pictures have been

obtained using 4 bit/pel DPCM coder [98,99], while
acceptable quality can be produced using 3 bit/pel [95].
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1.3.1.1 Adaptive DPCM Systems.

DPCM systems using a fixed optimized predictor
generate a well behaved stationary differential signal if
the original data is stationary. The stationary
differential signal can be encoded optimally using a
nonlinear quantizer matched to its statistics. However,
when the input signal is non-stationa~ and the predictor
parameters are fixed, a non-stationary difference signal
is the result. optimal encoding of the non-stationary
difference signal then requires a variable quantizer
which would change to accommodate the variation in the
difference signal.

In designing an adaptive DPCM system one must
either use a predictor with variable parameters such that
the parameters would change with the variation of the
input signal (adaptive prediction), thus generating am

stationary difference signal, or one can use a fixed
predictor with a variable quantizer (adaptive
quantzation) to accommodate the resultant non-stationary
difference signal, or using a combination of both.

1.3.1.1.1 DPCM Systems with Adaptive Quantizers

Let us assume a predictor which uses weighting of
adjacent samples either in th~ same line or a combination
of samples in the same line and the line just above it.
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Since the input signal is non-stationary, the difference
signal will also be non-stationary and therefore the
quantizer must be nonlinear and adaptive to match the
statistics of the difference signal. Ready and Spencer
[100] have suggested an adaptive signal encoder called
block-adaptive DPCM in which a block of M samples is
stored and each sample is predicted using two dimensional
fixed predictors. The errors are encoded by N possible
quantizers. For each quantizer the mean-square error for
the block is calculated at the transmitter. The quantizer
which gives the smallest distortion is used and the
quantized errors are transmitted. The system requires
(1092 N)/M binary digits per sample overhead infoDmation
for receiver synchronisation.

In fact, they used fixed quantizer and N different
pre-specified scaling factors to scale the difference
signal before the quantization. The quantizer output must
be rescaled by inverse factor prior to the predictor.
They used a block of 16 samples with four possible
scaling constants. They reported an linprovernentof 36%
reduction in bit rate over a similar nonadaptive system.
Brown [101] described DPCM system with guantizer Whose
quantizing range expands whenever the amplttude of the
input signal exceeds a predetermined threshold. In this
system the information that the quantizer has switched to
the expanded range is cornmunjcated to the decoder by the
transmission of an additional code word. ~his sliding
-scale direct-feedback PCM coder makes it possible to
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reduce the quantizing effects, such as the overload and
edge busyness. The drawback .of this system is that the
uniform output bit rate of DPCM coding is interrupted by
the insertion of the switching code words, thereby making
buffering necessary. Musmann [102,103] and Lueder [104]

proposed a DPCM coder in which the quantizer be switched
as a function of previously reconstructed picture
elements. This solution does not require switching
information to be communicated to the decoder and the
uniform output bit rate is maintained.

Cohen [105] and Kummerow [106,107] determined the
improvement in the signal-to-quantizing noise ratio of
video signals that can be achieved with a switched
quantizer. They reported an improvement by 3-4 db. over
the standard DPCM.

For better picture quality, quantizers should be
designed on the basis of psychovisual criteria [108-1131.

,',

Adaptive systems using these quantizers have been also
described [114-116].

Prasada et al. [114] have reported a procedure of
reassigning the input levels of .the quantizer to
different representative output levels in such a way as
to reduce the entropy of the quantized output. The
visibility of the resultant quantization noise is kept

.
below a certain specified threshold. They make use of the
spatial masking effect defined as a reduction in the
ability of a person to visually discriminate amplitude
errors which occur at or in the neighbourhood of
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significant spatial changes in the luminance. Another
adaptive quantization process has been described by
Prasada et al. [115] where the prediction error is
multiplied by a constant which depends upon the local
properties of the picture element surrounding the picture
element being coded. The constant is chosen to make the
visibility of the quantization noise approximately
uniform throughout the picture. With a two dimensional
predictor and this process, a good quality picture can be

achieved by using 8 or 10 quantizer levels.
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1.3.1.1.2 DPCM Systems with Adaptive Predictor.

Adaptive prediction systems for images were
proposed first by Graham [85] and later by Connor et al.
[87]. Both of these systems used intraframe switched
predictors which based their prediction on previous
pixels in the neighborhood of the pixel to be coded.
Zschunke [117] has suggested an adaptive contour
prediction technique. Here the information on contour
directions derived from neighbouring picture elements is
used to select a suitable prediction value for the actual
sample. Zschunke used estimated of the contour direction
from the previous picture elements for the contour
adaptive DPQ1 system. The location of contour points and
the contour gradients or area brightness levels are
required to be transmitted in Zschunke system. He also
used switched quantizer along with the adaptive
"
prediction. He reported that a bit rate of 3 bits/pel
gave acceptable results.

Another adaptive system was described by Dinstein
and Garlow [118]. In this system each Line is partitioned
in M segments. The range of difference signal divided
into three regions, fine, medium and coarse and 3, 6, and
10 bit quatizers respectively were used. Both-horizontal
and vertical predictions'are applied to each segment. For
each 'segment the number of bits required to code the
quantizer outputs was calculated. The prediction that
yields the smallest bit rate for the segment under
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consideration is ~~en used for transmission. One extra
bit is transmitted wi~~ each segment to notify the
receiver of the prediction which has been used. The
reconstructed images at 3 bit/pel show no perceptible
degradation.

- 37 -



1.3.2 Delta Modulation Systems.

Delta modulation is based primar1y on the
invention by De Jager [119,120]. It is a simple type of
prediction quantization systems and is essentially a
one-digit differential pulse code modulation system.
Fig.l.3.2.l is the block diagram of a delta modulator.

Transmitter Receiver

Sow
;_Jass
filter -

Clock
Sampler

I I L:
l}_ _..,.... !- Channel !

ek

comparator

Integra-
ting
net',qork

Low out
pass tfilter pU

·11

Fig. 1.3.2.1 Block Diagram of a Delta Modulator.

In this class of systems, the sampling rate is
chosen to be many times the Nyquist rate for the input
signal. As a result, adjacent s&~ples become highly
correlated.

The primary limitations of DM are slope overload,
granularity noise and instability to channel errors.
Slope overload occurs whenever there is a large jump or
discontinuity in the signal to which the quantizer can
Iespond in several delta steps. Granularity noise is the
step1ike nature of the output when the input signal is
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almost constant.
The performance of the delta modulator can be

considerably improved by making it adaptive. The adaptive
Delta modulator (ADM) still remains a simple system even
with the additional complexity of adaptation to the
signal statistics. The adaptive strategy can be varied or
controlled to suit the signal statistics and therefore
substantial improvements are possible. In the ADM system
shown in fig. 1.3.2.2 each sample is compared with its
estimated value and the difference signal is either
positive or negative and sampled at the clock rate to
give ±l. The output of the comparator is multiplied by a
constant in the feedback loop and is used as an input to
an integrator. The output of the integrator is an
estimate of the next incoming signal value.

Sk Clock sampler

'"Sk
comparator

stepsize
generator

Transmitter

Fig. 1.3.2.2 Block diagram of an ADM Coder.

ADM systems have been designed both for speech
.[121] and video signals [1221.
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The most widely used approach is to change the
step size of the system according to signal variation.
Step size is increased if the polarity of the comparator
output remains the same for many clock pulses indicating
a high activity area. On the other hand, if the polarity
alternates indicating low activity area, then the step
size is kept the minimum.

1.3.2.1 Adaptive DM.

'/1

It was pointed out by Winkler [123,124] that the
bit pattern of the output of coder can be used for
detecting the presence of an edge. He made the step size
adaptive depending upon the number of "ones" and
"zeroes". Thus if the three pulses at the output are
successively of the same polarity, then the step size

$

with the third pulses is double that of the second pulse.
If two successive pulses differ in polarity, the step
size for the second pulse is half that of the first. The
step. size sequence is 1,1,2,4,8,••••,etc, for continuous
strings of 0 or 1, or half of the previous step size if
there is a change in polarity.

Bosworth and Candy [125]'carried out 'an extensive
subjective testing· programne in order to obtain a
weighting sequence which is acceptable to the observer.
They found that the sequence of 1,1,2,3,5,5•••5, with
sequence restarting at every change of code"polarity was
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the best. Since the first two steps are always 1,1 at the
beginning, all the flat areas with non-zero slopes will
be encoded using these step sizes. On an average,
therefore, 90% of a picture will be coded with the
smallest step size. An irrmediatereturn of the sequence
to the start whenever a change of polarity occurs, avoids
the use of large step size in flat areas following a step
edge.

Jayant [126] made a modification of the Winkler
weighting sequence by selecting multipliers P and Q for
increasing and decreasing the step size respectively. He
optimized the multipliers from the view point of the
granular noise, the slope overload and the problem of
stability. He concluded that P.Q=l for reasons of
stabili ty and P=1.5 for optimum performance. Thus if the
step size for the Kth. sample is.LlKthen

P b.. K-l if

lIP L:,. 1<_1 if

Where eJ( is the output of the comparator. Jayant
[126] has claimed an improvement of 10 db. for his system
over the nonadaptive DM for coding video signals.

A second approach, known as the Song delta
modulator [127] uses the step size of the past sample to
form a step size for the present sample. In this method
-the current step size is generated as
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for

for

Where D is a constant which is the minimum step
size of the system. In other words, if the previous step
size is smaller than twice the minimum step size, then
the current step size is 2D. On the other hand if the

is 1.5 times or 0.5 times ~ l<-i

past step size is greater than 20, then the new step size
depending upon the

history of the comparator output.
This weighting sequence was used for picture

coding by Scheinberg and Schilling [128] and they have
reported satisfactory results at 2 bit/pel. Schilling et
al. [129] have modified the Song algorithm to improve the

'/1

video coding at low bit rates. The algorithm employed is:

I6.KI.(e!(+ eK-l!2)

6.1<+1 = 2O.eK

. L150•el<

for D~ 16.Ki-1k 15D

for 16kl= D
for 16k[=15D

Instead of a generalized system with P and Q

multiplier, Habibi [130] suggested a simple step size
assignment technique based on the past three outputs of
the"comparator. For the eight possible combinations of
the three output bits, he bps assigned six step sizes of
±l, ±2 and ±.4.Ccmbinations of 110 and 101" are assigned
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the same step size of +1, and similarly 010 and 001 are
assigned -1. Performance of this scheme for coding of
monochromatic signals is satisfactory at rates of 2-3
bits/r;.el.

1.3.2.2 Two-Dimensional ADM.

Picture encoding using ADM can be improved
considerably as in the OCPM system, by r;.erformingan
estimate of the current sample based on the adjacent
samples in the same line and the line just above it. Lei
et al. [122] have described a two-dirnensionalADM and
have concluded that estimates based on the previous

~ horizontal and vertical ela~nts, give the best results.
They also proposed a system with look ahead facilities
like the one suggested by Cutler [131] where they take

~the effect of the picture element right to the vertical
element into account while estimating for the current
sample.
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1.4 Hybrid Coding

Each one of ~,e two coding methods discussed
previously (Transform and Predictive Coding) has
advantages and disadvantages. The transform coding
systems achieve superior coding performance at lower bit
rates; they distribute the coding degradation in a manner
less objectionable to a human viewer, and are less
vulnerable to channel noise. The demerits of them are
their complexity in tenn of both the storage of data and
number of operations required. Although the use of large
block sizes removes statistical redundancy quite
effectively, it has two distinct disadvantages: 1) it
requires storage of large amounts of data both at the
transmitter and at the receiver, and consequently

'/1

produces a delay in transmission, and 2) the accuracy
with which different regions of the image need to be

* coded may vary widely within the block, and this makes
adaptive coding (e.g. quantization) more difficult to
accomplish.

On the other hand, DCPM systems, when designed to
take- advantage of spatial correlation of the data,
achieve a better coding performance at higher bit rates,
the equipment complexity and the delay to the coding
operation is minimal, and the system does not require the
large memory needed'in the transform coding systems. The
limitation of these systems are the sensitivity to
picture statistics and the" propagation of the channel
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error on the transmitted picture. Thus the use of
combinations of the two coding methods implies the
advantages of both. This technique is called IIHybrid
Codingll•

,/1

The hybrid system as developed by Habibi [132]
exploits the correlation of the data in the horizontal
direction by taking a one-dimensional transform of each
line of the picture, then a bank of DPCM coders are
applied to each column of the transformed data. The DPCM
coders quantize the signal in the transform domain, where
they take advantage of the vertical correlation of the
transformed data to reduce the coding error.

Another version of the hybrid processing is the
application of small two-dimensional block or subimages
of size NxN and the DPCM is used on coefficients of
horizontally previous block.

The two-dimension transformation tends to
~ decorrelate the samples in each block, whereas the DPCM

exploits the interblock correlation. The transform coding
may be any of the KL, Hadamard, Slant, Fourier or Cosine
transforms.

Habibi [132] evaluated both theoretical and
experimantal results, which indicate that a hybrid system
employing a KL transformation, produces a better result
than the hybrid sy~tem.using any other transformation. He
al.so demonstrated the effect of channel error on the
performance of the hybrid systems and found that the

< inherent propagation error of the DPCM systems can be
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reduced considerably by using a value of 0.9 for all
prediction coefficients of the DPCM system. This is
because 0.9 is smaller than the optimum values of most of
the prediction coefficients and this causes a shorter
propagation of the channel error in the encoder. He
achieved good picture quality at 2 bit/pel and acceptable
quality at 1 bit/pel.

Ishii [133] showed that the bit rate performance
of hybrid systems using one transform element for
prediction, does not depend on the block size. He has
obtained an acceptable picture quality at 0.5 bit/pel. He
also examined the effect of the channel error and found
that the reconstructed image quality scarcely degrades

-4even at noisy channel of 10 error rate.
., Rao et al. [134] applied hybrid techniques,

where sample selection and variable bit allocation are
adapted. They compared the hybrid process with the
two-dim:nsional transform rrethodin terms of bit rate,
mean-square error, and computational complexity using
block of l6x16.

Netravali et al. [135] used a.small two-dimensio-
nal block and showed that, if transform coding other than
the optimum (i.e. KL) is used, correlation is still
present between coefficients of the same block, and
therefore, a bette~ predictor can be designed by using
no~ only the corresponding transform coefficients of the
previous block but, as well as coefficients of the
present block which are available to the r~ceiver. They
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showed that such a system was 25% more efficient in terms
of bits/pel for the same picture quality than predictor
which used the corresponding coefficient of the previous
block. Experimental and theoretical (Markoff process)
performances have been investigated by Roese et al. [136]
for transform coding using three-dimensional (interframe)
blocks, and hybrid coding employing two-dimensional
(intraframe) blocks followed by DPCM in temporal
direction. They showed that the hybrid coder is quite
efficient and does as well as a three-dimensional
transform coder which uses
Adaptive interframe hybrid
Impl.ementad [137,138].

four frames of storage.
coding has also been

,/1

1.5 Coding of Non-stationary Image Signals

Most techniques of image bandwidth reduction
incorporate a single source model for overall image
signal behaviour. wide-sense stationarity form the basic
assumption of many transform or. predictive coding
techniques, where the wide-sense stationary parameters
are the mean and autocorrelation function [139].

In general, picture signal is highly non-statio-
nary and the lo,cal.statistics vary considerably fram
region to region. Breaking the image up into blocks of
size nxn and calculating the mean and autocorrelation
function within each block, yields means and auto-
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correlation functions which change from block to block.
This fact reduces the efficiency of nonadaptive coding
techniques significantly. Hunt [140] proposed the use of
non-stationary statistical image model and discussed
prospects of transforming a non-stationary linagemodel
into a stationary one. Stricklard [141] developed a
transform for producing images with wide-sense
stationarity.

Another approach for treating non-stationary
linagesignal, is to consider the image signal as the
output of many sources each tuned at certain type of
statistics [142-144] and the sources are coded
separately. Yan and Sakrison [142] considered a two
components model in which the vertical edges (or the high
frecuency components) are
the rest (texture details)

treated as one component and
are treated as the other

component. They argue that if the edge information is
• substracted fram the picture signal, the rest of the
signal appears to be close to a Gaussian process and,
therefore can be efficiently coded by using one of the
earlier mentioned coding techniques.

Mitrakos and Constantinides [144] presented a
coding technique which provides a full control on the
distortion in the reconstructed picture and on the
transmission rate r~ired. They partitioned the picture
in ~o components. One represents the variation in the
local background (C-component) and is entropy coded. The
other which represents random variation in the ·texture (e
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-component) has approxlinatelya Gaussian distribution and
is transform coded.

Compared to ordinary transform coding, for the
same mean-square error this method offers several choices
in terms of the subjective quality of the receiver image.
However the complexity of the algorithm is increased
substantially compared to other adaptive transform coding
methods.

1. 6 Data compression: The \<ayforward.

Transform coding and predictive coding have been
extensively researched by many authors, who have found
that the performance can be improved by different
adaptive algorithms. Although transform coding is
considered to achieve the best compression and the

* distortion that arises from this technique is found to be
visually less objectionable than that for predictive
coding, the complexity of the comprtation makes it
unattractive for the majority of applications. Predictive
coding, though, gives high distortion and low tmmunity to
channel noise, however, its simplicity and relative ease
of implementation, make it the most popular coding
technique. Both c,odingschemes, due to their inherent
p~operties, are mainly used in picture and speech coding
coding and are not universal algorithms in the sense,
that they are not applicable to all kinds of data.
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Moreover, they are not noiseless algorithms, which means,
that the output data is always subject to error. Thus,
there is a need to unify the approach to the compression
of images, speech and other similar data. Such a scheme
is desirable, in order to meet the requirement of modern
data communication links. The objective of this work is
to introduce a coding system, which satisfies the above
requirements. The Thesis is divided into. six chapters.
After a brief review of image data compression in chapter
one, a detailed study of DPQ1 and its performance from
different aspects is discussed in chapter two. New
adaptive approaches for improving the performance of DPCM
systems are proposed and experimental results given in
chapters three and four. A novel procedure using a
hierarchic tree structured Hadamard transform is proposed
in chapter five. This coding algorithm is flexible in the
sense that it can be used for error-free coding if
desired or for high compression whenever some noise is
acceptable. An unified data compression strategy is
introduced in chapter six, based on the learning automata
and Huffman coding. This algorithm. is shown to be

universal and to satisfy the requirements of data links
using visual, audio, alphabetic and numeric data.
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CHAPI'ER 'TWO

2. Linear Predictive Quantizing System

2.1 Introduction

This chapter presents an analysis of differential
pulse code modulation (DPCM). An optimum system for three
pictures with different statistics was designed, and
simulated on a computer; its performance was investigated
for different types of predictor. The performance
measurement is based on the nean square error, the
density function and ~~e spatial distribution of the
differential signal. The design procedure is given in
Appendix I.

The quantizer characteristics are determined to
give, subjectively good picture quality and its mean
square error performance is compared with that of a Max
quantizer matched to the statistics of the differential
signal.

Of practical value is the non-optimum (unmatched)
systems. This system is also simulated and its
performance subjectively and objectively is evaluated.
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2.2 The Predictor

In DPCM image coding systems Fig.2.2.1, the
predictor uses ~~e statistical predictability between
pixels to form an estimate of each pixel as a linear
combination of previous pixels; where "previous pixels"
is a term that has direct meaning in the context of
top-to-bottom, left-to-right scanning, which imposes a
specific sequence on pixel occurence. Fig.2.2.2 shows
the elements location for interlaced case (T.V. signals)
and non-interlaced case (facsimile signals).,

The samples SI, S2, - - -,Sn need not be the IOOst
recently transmitted ones and they need not be in any
particular order. They are simply n ~~ples values which
have been transmitted in the past. Fig.2.2.2 shows some
sample values which can be used to form a reasonably good
estimate of (So). Such an estimate would be_,

,.
So = ao+a1S1+a2S2+a3S3+a4S4+aSS5+ --- + anSn (2.2.1)

for convenience, the signal mean is subtracted from the
signal, so the signal we deal with is zero mean.
Therefore the d-c term is eq. (2.2.1) will became zero and
the estimate is given as

,.
So = a1S1+a2S2+a3S3+a4S4+asS5+ --- + anSn (2.2.2)

where a's are chosen to satisfy eq. (I-21b Appendix).
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The number of previous pixels employed in ti1e
estimate operation, forms the predictor order. Predictor
using one pixel is called "first order predictor". A
"second order predictor" utilizes two pixels and an "nth.
order predictor" would employ n previous pixels.

The location of the previous pixels used by the
predictor, determines the predictor dimensionality.
Prediction using only pixels along the same line as the
pixel to be estLrnated is assigned as "one-dirnentional
prediction" whereas a "two-dimentional predictor" uses
pixels from the current line as well as from the previous
lines. Predictive coding using pixels from the current
frame is called "intra-frame predictive coding".

It is possible to extend the technique of
predictive coding to exploit also the correlation
existing between pixels of succesive frames as in T.V.
signals. This technique is called "Inter-frame predictive
coding". For scenes with low detail and small motion,
interframe prediction appears to be the best and can
achive a low bit rate (1 bit/pixel) [145]. The drawback
of interframe prediction is the large amount of frame
storage required.

A standard OCPM coder, which utilizes the
previous scanned pixel (SI) along an image line as the
basis of its prediction of So, is often·referred to as
"previous-sample feedback system", and according to the
definitions above, this is a one-dimensional, first order
predictor. The estimate is given as
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ASo = alSl (2.2.3)
where a1,according to eq. (I-2lb Appendix) should be

R0l/Rll = R01/cr2; the correlation between adjacent
sample points divided by the mean square value of the
input sequence. A second-order predictor would utilize
the two previously scanned pixels along a line (SI and
SS) (one-dimensional predictor), or perhaps the previous
pixel along the line (Sl) and the nearest pixel from the
previous line (S2) (two-dimentional predictor). A
third-order predictor might employ (Sl, S2, S3) (two-
dimensional predictor) as the basis for its prediction.
In this case

,.
So = a1S1+a2S2+a3S3 (2.2.4)

The pixel measurements that should be employed
for minimum coding error correspond to the pixel
neighbours with the highest statistical correlation to
the pixel to be est.imated, Habibi [90] shows that the
coding error reduction diminishes rapidly for more than
third-order prediction system.

The difference between the actual value (So) and
Aits estimate (So) is called the prediction error (do).

A-do = So-- So (2.2.5)

•The prediction error (do) is quantized to (do)
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and the quantized value is then added to the estimate
A •value So to produce a quantized version (So) of the input

(So)•
• i\ •So = So + do (2.2.6)
This sampled version is fedback to the predictor for
estimating the next sample.

The difference between the prediction error and
its quantized value is the quantization error (eo), by

•which the quantized version So differs from the input
value (So), thus

•eo = do - do
•So = So + eo

(2.2.7)
(2.2.8)

•It must be noted that the quantized prediction error (do)
is the quantity that is coded and transmitted. The DP01
systems achieve compression from the differencing step,
since the prediction error will have a much smaller
dynamic range than the original signal. The expression

22·
10 10g,OO'/O'd may be thought as the amount of redundancy
removed .from 2 2the signal, where (J' . and (id are the
variances of the input signal (So) and the difference
signal (do) respectively. The shape of the amplitude
density of the prediction error (quantizer input) is of
foremost importance in designing an optimum quantizer.
Fig.2.2.3 shows a ~1Pical amptitude density function of
the.prediction error, which is normally approximated by
Laplacian distribution.
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2.3 Quantization of Prediction Error

Any analogue quantity that is to be transmitted
over a digital channel must be represented as an integer
nurroer proportional to its amplitude. The conversion
process between analogue samples and discrete-valued
samples is called quantization which is always combined
with the error called quantization error. In the
predictive coding systems the analogue quantity, the
prediction error, is fed to an analogue-to-digital
converter (quantizer) to produce a digital format.

If the input to the quantizer in Fig.2.2.1 is do,
•then its output is do = do + eo, where eo is the

quantizing noise. Since the receiver foms the decoded
,.

output by adding do+eo to the estimate So , the
quantizing noise in the decoded output is also eo.
Minimizing the quantization noise in the decoded output,
therefore is equivalent to minimizing the RMS (root mean
square) value of noise corningout of ~e quantizer.

In DP01 systems, the subjective effect of a video
observer can be taken into account and the spectrum of
the noise is shaped accordingly. It is known that the.
eye is more tolerant of noise located at black-white
interfaces than in flat regions, where the perception is
high. Interfaces are characterized by large values of
difference signal and flat regions by small values. The
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quantizer, therefore, must have a fine structure for low
level difference signals (flat regions) and a coarse
structure for large difference signals (interfaces). This
can be accomplished through the use of a nonlinear
quantizer, whose characteristics are depicted in
Fig .2.3.1.

Different types of degradation can be seen due to
improper design of the quantizer of a DPCM coder. These
are referred to as granular noise, edge busyness and
slope overload as shown in Fig. 2.3.2.

If the inner levels (for small magnitudes of
difference signal) of the quantizer are too coarse, then
the flat areas are coarsely quantized and have the
appearance of random noise added to the picture (granular
noise). On the other hand overload noise occurs when the
signal to be quantized is outside the range of the
,quantizer. When the prediction error (d) is near a
decision level (di), any fluctation (source noise and
granular noise) makes the quantizer output oscillate

• •between (di) and di+1 and may change from line to line or
frame to frame, giving the appearance of a busy edge.

Quantizers can be designed on a statistical basis
or by using certain psychovisual measures.

Experimental results indicate that for most
typical pictures the probability density function of the
difference signal is a two sided exponential [86]. For
s~ch a function it is possible to perform non-linear
quantization by a companding operation [146], in which
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the non-linear probability function p(d) of the error
is first nonlinearly transformed to uniform density
followed by uniform quantizer, then an inverse non-linear
transformation is applied on the quantizer output•

•
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2.4 Fidelity Measures

Techniques commonly employed for image data
compression result in some degradation of the
reconstructed image. A widely used measure of
reconstructed image fidelity for N x N size images, is
the average mean-square error defined as

2 ~ ~ ~ ( •••.. )2ems=-L.:,..LE Sl,J- Sl,J
N·Ni=l j:1

(2.4.1)

•where {Si,j} and {Si,j} represent the N x N original and
reconstructed images, respectively. Experimentally, the
average mean-square error is often estimated by the
average sample mean-square error in the given image

", defined by

2 1 ~~ . . • .. )2 (2 4 2)erns=--"LL (Sl,J- Sl,J ••
N·N . 1 . 11= J:

Therefore two definition of the term "signal to noise
ratio" (SNR), that are used to the above error. These are
defined as

(1) SNR=1010~0( (Peak value of original data)2leJs) db
(2.4.3)

22
(2) SNR = 10 log10(<Jlerns) db (2.4.4)

2where er is the variance of the original data. Although
the second definition of SNR is more widely used as a
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measure of SNR in signal processing, the first definition
is more commonly in tmage coding field.

Several visual fidelity measures for images,
which have to be evaluated visually, have been suggested
[147] such as weighted mean square error of contrast.

We will use in our evaluation the definition in
eq. (2.4.3) for SNR measurement.

2.5 Experimental Procedure

The image world is classified in three classes,
1) images with large amount of detail; 2) tmages with
moderate detail and 3) images with small detail. Each
class is represented by a member, so a small ensemble of
three images is formed. The images are scanned to form
256 lines then each line is sampled uniformly to form 256
picture elements. Thus, each image forms an array of
256 x 256 pixels. The intensity of each picture element
is digitized to 7 binary digits (128 gray levels) and
stored on a magnetic disk. The images are shown in Fig.
2.5.1, where picture A is low detailed, B is moderate
detailed and picture C is high detailed.

For the pattern shown in Fig. 2.2.2b the.
correlations becNeen So and Sj for normalized picture
elements are listed in table 2.5.1.

In standard DPCM using the previous horizontal
pixel Sl, the first column has to be transmitted directly
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as the known conditions upon which the predictions are
based. For predictors using· the previous vertical pixel
S2, the first row has to be transmitted and for
predictors using SI, S2 and S3, the first column and the
first row have to be transmitted as the known condition.
In the system to be considered, a column of zeros has
been added before the first column for the predictor
making use of the previous horizontal pixel SI, a row of
zeros ahead of the first row for the predictor using S2
and a row and a column of zeros when using SI, S2 and S3
as the known conditions upon which the predictions are
based (Fig. 2.5.2). Since the d.c. teon does not contain
any information, the mean value is subtracted from each·
picture element to obtain an array of zero mean. The

~I

value of prediction weighting coefficients Ai for optimum
prediction are determined by calculating the covariance

~ matrix and solving this matrix for Ai. i, e,

RH R12 Rl3 - - - Rln Al Rol
R21 R22 R23 - R2n A2 Ro2
R31 R32 R33 - R3n A3 Ro3

x - = (2.5.1)

Rnl Rn2 Rn3 - - - Rnn An Ron

where Rij = E {Si.Sj} is the correlation between the ele-
ments Si and Sj with the equal.ity Rij = Rji. The matrix
abov~ represents the simultaneous linear equations of eq
(I-21b) in matrix form. Tab~~ 2.5.2 lists the weighting
coefficients for various predictors. All predictors shown

- 61 -



in the table for all three images were simulated on the
computer and the theoretical"and actual MS values of the
prediction error (without the quantizer) are calculated
and listed also in the table 2.5.2. For all predictors
the theoretical values agree well with the actual values
as can be seen from the table.

In order to determine how effective are the
predictors in removing the redundancy, the values of
20 10910 tr / 6'd are computed, where 62 and (jJ are the
variances of the original image and the prediction error
respectively. The table shows that the mean square
prediction error decreases significantly with increasing
order of predictor up to third order (two dimensional)
and further decreases using more than three pixels, are
rather small. The results agree well with Habibi's
conclusion [89]. This because SI, S2 and S3 or SI, S2 and

.. S4 provide almost all the information about So and once
these pixels have been used, there is little advantage in
using others. Canparing the MS value of predictors 3 and
4 with that of predictor 5, shows that the two-

dimensional predictor is superior to predictors using
only pixels on the same line or same column as the pixel
to be coded. Figs. 2.5.3 and 2.5.4 show the.histogram of
the prediction errors resulting from first order
predictor employing SI and third order predictor
employing SI, S2 and S3 respectively. In both cases, the
pensity functions can be approximated reasonably well by
a Laplacian function. The curves were found by rounding
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the error samples to the nearest integer values in the
range -127 to 127 and finding the number of samples for
each value. Also using predictors higher than third order
does not change significantly the shape of the amplitude
distribution of the prediction error. The error histogram
obtained using predictor 6 (third order) and 10 (seventh
order) for scene A is shown in Fig. 2.5.5. The equivalent
histogram for scene C is shown in Fig. 2.5.6.

To evalulate the effectiveness of predictors, it
is important to base the evaluation not only on the
prediction mean square error and the density funtion but
also on the spatial distribution of the error. Fig. 2.5.7
shows the prediction error of scene A for a first order
predictor using the horizontal pixel SI. This predictor
estimates the horizontal edges very well, as can be seen
at the top of the head and the face, but can not predict

'" the vertical and inclined edges (see the left and the
right side of the head and the shoulders). Here the black
shape is a large negative error which occurs at white to
black transitions and the white shape is a large positive
error which occures at black to white.transitions.

On the other hand, the first order predictor
using the vertical pixel S2 predicts the ~ertical edges
reasonably well but it produces
horizontal and inclined.edges (Fig.

a large error at
2.5.8). Using higher

order predictors which employ only pixels along the same
> line or the same column are not much better than first
order predictors above as illustrated in Figs. 2.5.9 and
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2.5.10.
The spatial distribution of the prediction error

can be improved by using two-dimensional predictors. Fig.
2.5.11 shows the error of scene A for two-dimensional
second order predictor using SI and S2. It is easy to
see that this predictor is better than the one -
dimensional predictors.
achieved by involving SI,
prediction of S0. Fig.

Further improvement can be
S2 and S3 (t~ird order) in the
2.5.12 demonstrates the error

spatial distribution of
predictor.

Here again, as in the MS error, the improvement
in the prediction error by using more than a third order

scene A of the third order

predictor is not significant, since SI, S2 and S3 provide
all the information about So. Fig. 2.5.13 shows the
prediction error of a seventh order predictor (predictor

" 10 table 2.5.2).
Figs. 2.5.14 and 2.5.15 illustrate the prediction

of third and seventh order predictors respectively of
scene B, and Figs. 2.5.16 and 2.5.17 of scene C.

The minimum value of predic~ion error coming out
of the subtractor is set to 0 and the maximum value to
127. All values between the minimum and max imum are then
linearly scaled and rounded to the nearest integer number
and displayed on the monitor.
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2.6 Determination of the Quantizer Characteristics

As mentioned earlier, the error in the
reconstructed image (assuming an error free chanel) is
the quantization error only. Most techniques use the MBE
as their criterion and try to minlinize it. Unfortunatly
the MBE does not match with the visual impact on the
human eye. There are many examples which show that a
picture with large MBE can be excellent in quality or
that a picture with small MSE is objectionable to human
eyes. In fact, a picture of good quality and a picture
with small MSE are two different things. Thus we will
base the quantizer design on the picture quality, where
the word "quality" means the subjective quality (Le.,
the quality according to subjective judgment made by
visual inspection). Nevertheless, smaller MSE is
desirable provided that the reconstructed picture is of a
good quality. Granular noise and slope overload are the
most annoying errors introduced by the quantizer.
Granular noise appeares as random noise added to the
picture. Loss of resolution is a result of the slope
overload. Since most important structures are located in
highly varying areas, any loss of resolution would
introduce very obvious degradation to the reconstructed
picture. However, the noise like errors are much more
tolerable. For the smooth areas, loss of resolution is

.hardly noticeable, but any noise - like errors will be

very obvious.
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Quantizer characteristics deter.mined by Max
procedure for minimum mean square quantizing error
produces in general large overload-effects and degrades
the edges. For small differences unnecessary close levels
are assigned.

A better quantizer is that, whose levels are
determined to reduce the edge degradation in highly
varying areas and at the same time keeping the noise in
the smooth area under the visual level. For a 3 bit,
quantizer and third order optimum predictor this design
starts by determining the two inner levels, adjusting
them untill the noise in the smooth areas is just
noticeable. Then the remaining levels are varied to
reduce the degradation in highly varying areas. Table
2.6.1 lists the 3 bit quantizer levels along with the Max
quantizer matched to the variance of the prediction
errors for a Laplacian distribution for all three images
of Fig. 2.5.1. The encoded pictures show less degradation
than with Max quantizers. Even so the signal peak squared
to quantizing noise ratios were better by 1-2 db.

Another way to see the quality of the reproduced
images is by displaying the difference between the
originals and the reproduced images. T~e error signal
shows that these quantizers have produced less error than
Max quantizers. Fig.. 2.6.1 shows the original, the
encoded image by Max guantizers along with the error
signal and the reproduced image by the design quantizer
along with its error signal for picture ~. Figs. 2.6.2
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and 2.6.3 show the same for scene Band C respectively.
Side by side comparision of the reconstructed

images with the originals shows that the reconstructed
images can be easily substituted for the original. A
third order predictor with Sl, S2 and S3 was used.

Also the 2 bit quantizers have produced
reasonable pictures without recognisable noise except in
scene C in which some noise was introduced in highly
varying areas but was not noticable except by side to
side comparision with the original at short' viewing
distance. Fig. 2.6.4 shows the reconstructed images with
2 bits quantizers, whose characteristics are listed in
table 2.6.2. Here the signal to quantization noise level
has been considerably improved compared with the Max
quantizer. The improvement was 4.6 db for picture A, 3 db
for picture Band 1.9 db for picture C. The quantizer
thus designed are optiumum. Table 2.6.3 illustrates the
resulting signal peak square to MS quantizing error (see
eq. (2.4.3) ) for three bits and two bits quantizers.

2.7 Unmatched Systems

The results ~onsidered so far are obtained by
measuring the correlation among several points in a
picture and then using these in designing the DPCM

. systems. That is, based on the statistics of the data, an
optimum predictor and an optimum non-linear quantizer are
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designed. changing the input data in general degrades the
performance of the DPCM system since the predictor and
the quantizer will no longer be optlinum.

Indeed, the performance of the unmatched systems
is of practical value since in practice the DPCM system
is designed based on some average statistics and will not
be optimum for each particular picture.

To evaluate the performance of unmatched systems
in encoding a picture, a second encoder must be designed
which is optimum for encoding that picture.' Then the
difference in performance of the optimum and non-optimum
will be.a measure of the sensitivity of an encoder to
unmatched statistics. We choose the system optimized for
encoding picture B to encode the pictures A and C. The '
reason for choosing system B is, because picture B is of
moderate detail and there is no high difference between
its statistics and the statistics of picture A (low
detail) or the statistics of picture C (high detail). The
reconstruced images are shown in Fig. 2.7.1, which show
no noticable degradation or noise. The signal to
quantization noise ratio is degraded,by 2.1 db for image
A, where no change in the SNR of image C.

When system A is used to encode piture C, some
degradation was not~cable. This is because the dynamic
range of the quantizer of system B is not large enough to
accomadate the large difference signal. The signal to
noise ratio was degraded by 3 db. On the other hand when
system C is used to encode picture A, noise was just
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visible in the smooth areas because the quantization
levels are too coarse. The reduction in the signal to
noise ratio was about 4 db.

2.8 Experimental Results

ill

Three pictures of different stastics were coded
using the DPCM system. Various orders of predictor have
been designed to match the statistics of the input data.
The prediction coefficients for optimum predictors are
listed in table 2.5.2 and all the predictors for all the
three pictures have been simulated on the computer , The
performance of the predictors with respect to the
prediction MSE is also tabulated on table 2.5.2. The
density functions of the prediction error for first and
third order for all pictures are shown in Figs. 2.5.3 and
2.5.4 and a comparison between third order and
seventh-order predictors for pictures A and C is shown in
Figs. 2.5.5 and 2.5.6. A display of the prediction error
is shown in Figs. 2.5.14 - 2.5.17.

Quantizers are prirnarlydesigned for subjective
quality of the reconstructed· images and the quantization
mean square error is considered as secondary outcome.

The practical' case of the unmatched system is
also simulated and the res~lts are shown in Figs. 2.7.1.
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2.9 Discussion and Conclusion

The three pictures used in the experiment can be
considered as a representative of the image world. The
statistics of the real time images will in general not
differ substantially from these three pictures. The
comparative performance of the differential PCM system
for various predictors shows that the prediction error in
respect of MS, shape of the density function and the
spatial distribution is linprovedwith the increase of the
predictor order up to third and further improvement is
rather small in using more pixels than three in the
prediction. This is because, three pixels like Sl, S2 and
S3 provide all the information about So.

The values of the MSE listed in table 2.5.2
support this result. Figs. 2.5.3 and 2.5.4 show the shape
of the density funtion of first and third order
predictors respectively. The functions at zero level are
more highly peaked for third order predictors than first
order. Figs.
the density

2.5.5 and 2.5.6 shows a comparison between
functions of third and seventh order

predictors, which shows that there is no gain in using a
higher order than third. Fig$. 2.5.7-2.5.17 display the
prediction error for various predictors. It is easy to
see the improvement in the appearence of the prediction
error from. first to second and third order predictor.
Higher order predictors using pixels along the same line
or on the same column are not much better than the first
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order predictor, since using horizontal pixels only does
not provide information about vertical edges and using
vertical pixels does not provide the information about
the horizontal edges. Two-dimensional predictors are
preferable to one-dimensional predictors.

Even though the quantizers were designed for
subjective quality, the quantization MSE has been reduced
compared with the Max quantizers. For the unmatched
statistics the performance of the DPCM does not
deteriorate significantly when using the system which was
optimized for a particular image, to encode a second
image with similar statistics to the first. This was
illustrated by using the system optimized for picture B
to encode pictures A and C. However if the input
statistics differ significantly fram the statistics for
which the system is designed, the reconstructed image
will be degraded. The codinq system optimized for picture
A is used to encode picture C and slope overload-effects
have been observed. When the system of picture C is used
to encode picture A, granular noise occurred.
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(a)

(c)

(b)

Fig.2.5.1 The original images
of 256x256 pixels and 128
gray levels, (a) low detail,
(b) moderate detail, (cl high
detail.
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using SI

Predictor
using S2

Predictor
using S1, S2
and S3

Fig.2.5.2 Adding zeroes as kno~m conditions.
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Table 2.5.1 Correlations be~deen So and Sj for the pattern
shown in Fig.2.2.2.

Picture A Picture B

ROI =0.9803 R01 =0.9892

R02 =0.9881 R02 =0.9730

R03 =0.9690 R03 =0.9646

.R04 =0.9681 R04 =0.9649

R05 =0.9531 R05 =0.9709

R06 =0.9432 R06 =0.9481

R07 =0.9415 R07 =0.9482

R08 =0.9695 R08 =0.9302

Ra9 =0.9514 R09 =0.9229

ROI0=0.9498 R010=0.9241

R011=0.9221 R011=@.9492

R012=(J.9134 R012=@.9484

R0l3=0.9112 ROI3=0.9287

R014=0.9274 RG14=0.9094
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Picture C

R01 =0.9837

R02 =0.9775

R03 =0.9644

R04 =0.9659

R05 =0.9534

R06 =0.9366

R07 =0.9389

R03 =0.9421

R09 =0.9312

R01G=13.9344

ROl1=0.9182

ROI2=0.9035

R013=O.9063

ROI4=0.9083
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Fig.2.5.7 Prediction error
of first order predictor
using Sl (Scene A)

Fig.2.5.9 Prediction error
of second order predictor
~sing SI and SS (Scene A)

Fig.2.5.8 Prediction error
of first order predictor
using S2 (Scene A)

Fig.2.5.10 Prediction error
of second order predictor
using S2 and S8 (Scene A)
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Fig.2.5.11 Prediction error
of two dimensional second
order predictor using Sl
and S2 (Scene A)

Fig.2.5.12 Prediction error
of two dimensional third
order predictor using Sl,S2
and S3 (Scene A)

Fig.2.5.13 Prediction error of two dimensional seventh order
predictor using"Sl; 82, S3, S4, S5, S6 and S8 (Scene A).
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Fig.2.5.14 Prediction error
of third order predictor
(Scene B)

Fig.2.5.1S Prediction error
of seventh order predictor
(Scene B)

Fig.2.5.16 Prediction error
of third order predictor
(Scene C)

Fig.2.5.17 Prediction error
of seventh order predictor
(Scene C)
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Table 2.6.1 8-level quantizer characteristics, (a) of picture
A, (b) of picture Band (c) of ?icture C.

(a) Deter.nined quantizer Hax. quantizer

Decision Recontructed Decision Recontructed
levels "levels levels levels

127.00 13.00 127.00 4.90
10.0'0 7.00 3.78 2.66
5.013 3.1313 1.99 1.32
2.00 1.00 0.84 13.37
0.130 0.013

(b) 127.130' 22.013 127.130 7.613
17.00 12.00 5.86 4.12
9.013 6.00 3.10 2.10
4.00 2.00 1.31 0.58
0.130 0.013

(c) 127.00 29.013 127.00 9.40
23.013 17.00 7.25 5.10
13.0'0 9.0'0 3.82 2.54
6.00 3.G0' 1.63 0'.71
0'.00' 0'.00'
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Table 2.6.2 4-Level quantizer characteristics.

Picture A Picture B Picture C

Decision Recons- Decision Recons- Decision Recons-
level tructed level trucred level tructed

level level level

127.0'0 8.00 127.00 13.0'0' 127.20 17.00
5.20 2.00 8.00 3.0'0 11.0'0 5.00
0.00 0'.00' 0.00

2Table 2.6.3 (Peak to peak) to ~B quantization noise (db) (see
Eq.2.43) •

Picture A Picture B Picture C

Deter- Max. Deter- t-1ax • Determ- Max.
mined quantizer mined quantizer mined quantizer
~an- quan- quan-
tizer tizer tizer

3 bits 47.7 45.8 44.5 42.5 42.5 41.5
2bits 41.6 37.0 38.4 35.4 36.9 35.0'
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(a)

(b)

Fig.2.6.l Third order
predictor and 3 bit quantizer
(a) original image, (b) and
(c) error signal and
reconstructed image using ~ax
quantizer, (d) and (e) error
signal and reconstructed
image using subjective
quantizer.

(c)

(d) (e)
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(a)

(b)

(d)

Fis.2.6.2 Third order
?redictor and 3 bit quantizer
(a) original i~age, (b) and
(c) error sisnal and
reconstructed irnaqe using ~·;ax
qJantizer, (d) and (e) error
signal and reconstructed
image using subjective
quantizer.

(c)

"'tf!.'!l~~

~

(e)
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(a)

(b)

fig.2.6.3 Third 6rder
predictor and 3 bit quantizer
(a) original i~age, (b) and
(c) error signal and
reconst ruc ted image using ~~ax
quantizer, (d) and (e) error
signal and reconstructed
irrage using subjective
quantizer.

(c)

(d) (e)
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(a) (b)

ill

(c)

(el

(d)

(f)

Fig.2.6.4 Third order ?recictor and 2 bit quanti?er. (a), (Cl
and (e) original images, (b)" (d) and (f) reconstructed images
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(a)

.. (c)

(b)

(d)

Fig .2. 7.1 Reconstructed iraaqes for unmatched system (a) and
(c) original images, (b) and (c) the reconstructed images
using the systB~ optinized for coding the picture B.

91 -
)



CF!APTER THREE

3 Differential PCM with AsvrnmetricalQuantizer
Characteristics

3.1 Introduction

with the aim of reducing granular noise and slope
overload noise, a new coding system is proposed in this
chapter. This system is adaptive quantization with
backward estimation, in which the quantizer
characteristics are shifted to one side or another,
depending on the quantizer output given by the previous
horizontal and vertical pixels. After presenting the

"principle of adaptive quantization and a brief review of
some related systems, t.hemotivation for the proposed
systa~ is demonstrated by comparing the response of the
fixed quantization system with that of the adaptive
quantizer for rectangular and sloped edges. Then ~~e
principal of the system is described.

Improvement in the quantization noise level for
the proposed system is,shown by computer simulation, and
compared to the non-adaptive system performance.
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3.2 Principle of the Adaptive Quantization Systems

It was illustrated in the last chapter that
unmatched DPC1 systems normaly degrade the reconstructed
linages.This is because, pictures usually have varying
statistical structures, both from image to image and from
region to region within an image. Even though a systa~
may be designed to be optimally matched to the overall
structural properties of a given image, it would often
not be optimal for subimages due to local variations
within the image.

Thus, one would expect to Improve coding
efficiency by adapting the coding strategy to satisfy the
requirments above. If the predictor parameters are fixed,
the quantizer must continually adapt to changes of signal

A statistics. This is called "adaptive quant iaat.ion", The
basic idea of adaptive quantization is to let the step
size (or in general the quantizer levels and ranges) vary
to match the variance of the input signal. An alternative
point of view is to consider fixed quantizer
characteristics preceded by a time varying gain which
tends to keep constant the varying gain wh~ch tends to
keep constant the variance of the quantizer input. In the
first case the step size should follow increases and
decreases of the variance of the input. In systems with

.
.nonuniform quantization, this would linply that the
quantization levels and ranges would be scaled linearly
to match the variance of the signal. In the.case of
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varying gain, which is applicable without modification to
both uniform and nonuniform quantizers, the gain changes
inversely with changes in the variance of the input to
keep the variance of the quantizer input relatively
constant. In either case, it is necessary to obtain an
estimate of the time varying amplitude properties of the
input signal for control of the quantizer.

There are two classes of adaptation, depending on
the estimation technique. In one class, the amplitude or
variance of the input is estimated from the input itself
and the system is called "DPQ1 with forward adaptive
quantization" Since the quantizer input (difference
signal dn) is proportional to the input signal, it is
reasonable to control the step size or the gain from dn

or as depicted in Fig. 3.2.1, from the input Sn.
In the other class of adaptive quantizer, the

step size or gain is adapted on the basis of ~~e output
•of the quantizer dn, or equivalently, on the basis of the

output code words Cn (Fig. 3.2.2). This is called "DPCM
with backward adaptive quantization".

In forward adaptation, it will be necessary to
send side information about the, gain or the .srep size to
allow the receiver to ,decode the signal. In the backward
adaptation, all necessary information is contained in the
transmitted sequence.

Jayant [148] discussed a backward adaptive
quantization system for speech and picture signals. For
every new input sample, the system adapts-the step size

'- 94 -



based on the previous step size and previous guantizer
output. In other words, the present step size is given by
the previous step size multiplied by a factor, which
depends on the code word magnitude of ~~e guantizer
output.

Zetterberg et al.[149] used the Jayant system to
adapt the gain instead of step size. Here, for every new
input sample, the system controls the gain, which is
given by the last available gain muliplied by a factor
that depends on the previous guantizer output. Zetterberg
extended the algorithm to two dimension by applying the
above rule both horizontally and vertically. He also
described an adaptive system with forward gain
estimation. In this system the image is divided into
blocks and for each block the gain is estimated from the

~block elements. Here, overhead infonmation about the gain
must be transmitted. TO reduce the overhead information
the gain is classified into four intervals and to each
interval, a prespecified gain is assigned, which required
additional information of 2 bits per block.

Mussmann [103] presented a switched guantizer
with forward estimation which does not require side
information and has constant code word length. The system
used not one guantizer as.in standard DPQ1 but several
different guantizers from which, for every new sample,
one is chosen for quantizing the different signal. To
explain this coding algorithm, let So in Fig. 2.2.2 of
chapter two be the amplitude of the next picture element
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to be quantized and coded. The previous elements SI, S2,

S3, S4 and SS are knownto the transmitter and receiver,

and each may take any of K possible values (K is the

number of grey-levels). Any special combination of

previous elements, say 1Sl-S41 will form what is called

the "control quantity". To each value of the control

quantity is assigned a quantizer, which is in general the

best for quantizing the prediction error of So associated

with that control quantity. Because the numberof values

that the control quantity can take, is large, the control

quantity is divided into limited ranges and so the number

of quantizers is reduced.

Another system proposed by Limb [15~]is based on

sign prediction. Here a nine level quantizer with a mid

zero value is used, and the algorithm is based on the

#fact that the probability of having an outside level

preceded by a level of the opposite sign, is small.

Consequently, the sign of an outer level can be predicted

fairly accurately by assuming that it has the same sign

as the preceding sample. This means that the same code

word is assigned to both outer levels. The polarity is

extracted from the previous code word. If th~ prediction

is wrong, then the next best level is assigned.

As m:ntioned earl ier , the major problems in

predictive coding for image signals are granular noise

QCcurring in flat areas of intensity variations and slope

overload noise occurring at outlines. In DPCMsystems

with a fixed quantizer, if the dynamic range of the
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quantizer is made small, i.e. a quantizer with fine
structure, then the granular noise is reduced but the
slope overload is increased. If the dynamic range is
large, the overload noise is decreased at the cost of
increased granular noise. To reduce both kinds of noise,
the system must be adaptive. Sane adaptive quantization
systems have been reviewed in the introduction.

A new coding system is investigated, in which the
system switches between different quantizers, depending
on the quantization levels occupied by the previous
horizontal and vertical samples. To understand the
motivation for developing the system, an overview of the
response of fixed quantizer system to outlines is
necessary. Then the system is described and its
perfor.mance will be evaluated subjectively and
·objectively.

3.3 Response of Fixed Quantizer System to Outlines

we consider systems with a third order predictor
employing the pixels SI, S2 and S3,of the pattern in Fig.
2.2.2 and assume that th~ next pixel is estimated by
,..
So = SI + (S2-S3)/2 (3.3.1)
and, moreover that a 3 bit quantizer with positive and
negative maximum quantization levles equal to ± 20 is
used. Fig. 3.3.la shows the response of the fixed
quantizer system to a spatial waveform with horizontal
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and vertical edges, in which the intensity of all
elements in the righthand lower portion bounded by the
line is 0 and that of all other elements is 127. Here, we
are concerned with the overload charateristic but not the
quantization error, and hence we can assume that pixels
whose prediction error may be coded by quantization
levels other than the maximum are reproduced without
noise. The figure shows that the response of the
non-adaptive system to rectangular outlines results in
high error and edge blurring. Fig. 3.3.2a shows the
equivalent response for a sloping edge, which exhibits
similar characteristics.

3.4 System Description

The system is edge adaptive and makes use of the
fact that the probability of having an outer level
followed by outer level of opposite sign is small. This
fact can be exploited to assign more levels on one side
than the other side.' If an outer level of,say, positive
sign is encountered, then, for coding the next pixel, a
quantizer with, for exarspl.e, six positive levels and two
neqative levels is used. On the other hand, if a negative
outer level is produced, then a quantizer with six
negative levels and two positive levels is employed in
coding the next pixel. This will cause the error to decay
rapidly and reduce the overload noise. The system
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initially employs a symmetrical quantizer which is
responsible for coding flat areas and, when an outer
level is reconstructed, the system switches to the
positive or negative asymmetric quantizer to code the
following pixel, depending on the sign of the outer
level. Fig. 3.4.1 shows some of the possibilities for
arranging the quantizer characteristics. The asymmetric
quantizer is called six of eight quantizer, which means
that 6 levels of 8 are used to reduce the overload noise.

When the output level of the 6 of 8 mode is below
(for positive quantizer) or above (for negative
quantizer) a prespecified threshold, the system return to
the normal mode for coding the next pixel.

The system can be extended to two dimensional
adaptive quantization, where the quantizer output levels
~for both horizontal and vertical pixels have to be
considered•
We define states as

Symmetric Quantizer level State

positive extremum
negative extremum
intermediate levels

+ 1
- 1

~
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Asymmetric guantizers positive Negative

> threshold +1
= threshold +1
< threshold· 0

o

-1

-1

nine combinations can result from the horizontal
and vertical states, as shown in Fig. 3.4.2. These
combinations are grouped into sets, each of which
determines the quantizer that is to be used to code the
pixel under consideration (So) as indicated in Fig.
3.4.2.

For example, if So is the pixel to be coded and
the joint state of the horizontal and vertical pixels is
(0,0), (-1,1) or (1,-1), then the system operates in

6nornal mode (symmetrical quantizer) to code the pixel So.
If the joint state is (1,0), (0,1) or (1,1), then the
system employs the pasitive quantizer. On the other hand,
if the joint state is (-1,0), (0,-1) or (-1,-1) the
negative quantizer is used to code the pixel So.

The system, as with all systems using backward
estimation, does not require overhead information to be

communicated to the receiver about the quantizer used.
The information can be extracted from the transmitted
sequence.
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3.5 Consideration of the Quantizers

The deteonination of the quantizer
characteristics is of major linportance for successful
operation of the system. We first consider the value of
the maximum level (Lrnax)in Fig. 3.4.1. The value of Lmax

should be small in order to detect transitions as soon as
possible. However, a small value of Lmax will increase
the probability of an outside level being followed by an
outside level of the opposite sign, which can lead to a
large error. To explain this, let us assume that trnax is
equal to 3. Differences of about 3 will be recoded as
transition and give rise to the system switching to the
positive quantizer to code the following pixel. In this
quantizer a large number of levels are assigned to
~positive differences and few levels to negative
difference. Since in this case, the probability is high
that the next pixel will create a large negative
differential signal and only a few levels are avialable
to code this signal, a large error may result. On the
other hand, larger value of Lrnax,mean that the levels
are coarsely spaced for coding smooth areas and granular
noise will be Introduced, In fact, the value of LrnaX,

depends on the picture content, but a good choice proved
to be Lrnax = 10% of the total signal range.

Same aspects must be considered when determining
the levels of the asymmetrical quantizers; firstly not to
shift all levels to one side but to leave few on the
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other side for the case that the sign of the differential
signal may change from one pixel to the next; secondly a
reasonable number of levels must be assigned to code
small differences for the case when the differential
signal changes from large to small value and finally the
remaining levels must cover a large range for coding
large differences. Some of the possible assignments which
satisfy the above requirements are shown in Fig. 3.4.1.

Following this strategy, the response of the
adaptive system is shown in Figs. 3.3.1b and 3.3.2b, for
the rectangular and sloped edges. It is easy to see that
the error pattern decays more rapidly than that of
non-adaptive system. The maximum level (Lmax) of the
syrrmetricquantizer was set to 15 and the levels Ln = -Lp
of the asymmetric quantizers were set to 40. The level
;assignment of Fig. 3.4.1b was used, in which three levels
of each asymmetric quantizer cover the range of the
symmetric quantizer. The threshold, which defines a
transition was set equal to Lmax.

3.6 Simulation Results and Discussion

The proposed DPCM system was simulated on a
computer for coding the pictures of Fig. 2.5.1 in chapter
two, and its performance was investigated using the 8 of
8, 7 of 8 and 6 of 8 quantizers. Two possibilities of
quantization levels assignment for the 6 o~ 8 quantizer,
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and the signal to quantization noise performance are
shown in table 3.6.1.

The last column represents the signal to
quantization noise ratio and gain, against the fixed
optimum system. for picture A, B and C respectively.

To evaluate the success of the system, its
performance is compared with that of the fixed
quantization system discussed in chapter two. The
reconstructed images of the 8 of 8 and 7 of 8 adaptive
systems show subjective improvement, though the mean
square quantization error was not improved. Better
subjective quality of the output bnages and objective
improvement have been achieved with the system using the
6 of 8 quantizer (version I). Fig. 3.6.1 shows the
reconstructed images obtained with the 6 of 8 adaptive

'"quantizer and nonadaptive systems. The improvement in
signal to noise ratio for picture (A) is about 1.5 db,
which is mainly due to slope overload reduction and less
granular noise. This is because the symmetrical
quantizer, responsible for coding smooth areas has the
same characteristics as the optimal quantizer designed
for picture (A) in chapter two. However, the tmprovements
of 2.3 db for picture (~) and 2.7 db for picture Care
better than for picture. (A). Since with the adaptive
quantizer, larger differences can be coded and small
differences more finely quantized than in the system with
a fixed quantizer, the improvement is caused again by the
reduction of slope overload and granular. noise. Fig•
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3.6.2 shows the reconstructed images of the adaptive and
nonadaptive system for picture (8) and Fig. 3.6.3 for
picture (C), where the threshold was set equa.lto tmax ,
It is not difficult to see the inprovement in edge
reproduction on allirnages.

The reconstructed images of the adaptive system
using the version II quantizer showed the same quality as
that of the version I quantizer. The signal to noise
ratio has been slightly deteriorate. The system discussed
so far, employs optimum prediction coefficients
calculated for each image.

More important is to evaluate the performance of
the system when using a non-optimum predictor. The
system; was simulated for the cases where the prediction
coefficients of picture (A), calculated in chapter two,

~ are used to reconstruct picture (C) and the prediction
coefficients of picture (C) are used to code picture (A).
In contrast to the fixed system, the reconstructed images
illustrated in Fig. 3.6.4. Show no noticable degradation
over the whole image, which indicates that the system is
still matched to the local variat~ons, because of the
adaptivity of the quantization •. Hov.ever, the signal to
noise ratio was degradep, but it is still comparable with
that of fixed optimum system.
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(b) DPCM System with adaptive gain Gn.

Fig 3.2.1. ADPCM System with forward adaptive quantization
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(b) DPCM System with adaptive gain Gn.

Fig 3.2.2. ADPCM System with backward adaptive quantization
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127 127 127 127 127 127 127 127 127

127 10'7 87 67 47 27 7 0' 0'
127 97 67 37 7 0' 0' 0' 0'

127 92 57 22 0' 0' 0' 0' 0'

127 89 51 13 0' 0 0' 0 0 (a)

127 88 49 10 0 0 0' 0' 0'

127 87 47 7 0' 0' 0' 0 0'

127 87 47 7 0' 0' 0' 0' 0'

127 87 47 7 0' 0 0' 0' 0'

127 127 127 127 127 127 127 127 127
127 112 82 42 2 0' 0' 0' 0'

127 79 24 0' 0' 0' 0' 0 0'

127 63 0' 0' 0 0' 0' 0 0'

127 55 0' 0' 0' 0' 0' 0' 0' (b)

127 51 0' 0' 0' 0' 0' 0' 0'

127 49 0' 0' 0' 0' 0' 0' 0'

127 48 0' 0' 0' 0 0' 0' 0'

127 47 0' 0' 0' 0' 0' 0' 0'

,..
Fig.3 ..3.1 Response of the prediction system So=Sl+(S2-S3)/2,
(a) fixed quantization, (b) v~riab1e quantization •
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127 127 127 127 127 127 127 127 127

127 87 67 47 27 7 G 0

77 47 17 0 0 0 0 0

77 42 7 0 0 0 0 0 0

77 42 4 0 0 0 0 0 0 0 (a)

77 42 4 0 0 0 0 0 0 0 0

77 42 4 0 0 " 0 " " " " "
77 42 4 " " " " " " " " " "
42 4 " " 0 " " 0 " e " 0 "

127 127 127 127 127 127 127 127 127

82 42 2 " " " 0

64 4 0 " " 0 0 0

64 0 0 0 0 0 " " 0

64 " " " 0 " 0 0 " 0 (b)

64 0 " " 0 0 0 " " " 0

64 0 0 0 0 " 0 " 0 0 0 0

64 0 0 0 0 0 0 0 " 0 0 0 0

0 0 " " 0 " 0 0 0 0 .0 0 0

Fig.3.3.2 Response of the prediction system to sloped edges
,.
S0=Sl+(S2-S3)/2, (a) fixed quantization, (b) variable

quantization.
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(a)

-l~ So l~ So

(b) 1 l~ U~ 1 9 ~

~So So ~So

(c) _l~ 0 ~ -l~
So So So

Fig.3.4.2 Joint states of the horizontal and vertical pixels.
(a) transfer to symmetrical quantizer. (b) transfer to
asymmetrical quantizer for positive edges, (c) transfer to
asymmetrical quantizer for negative edges.

Table 3.6.1 6 of 8 quantizer characteristics and its signal
to noise ratio.

Quantizers Quantization levels SIN

Version I
Symrnetric -13 -7 -3 -1 1 3 7 13 49.2, 1.5
Negative -49 -33 -21 -13 -6 :-2 2 6 46.8, 2.3
positive -6 -2 2 6 13 21 33 49 45.2, 2.7

.. .
-13 -7 -3 -1 1 3 7 13 49.2, 1.5

" -64 -47 -33 -22 -13 -6 2 6 46.8, 2.1
-6 -2 6 13 22 33 47 64 45.2, 2.3

~
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(a) (b)

Fig.3.6.1 The reconstructed images, (a) using optimum
non-adaptive sjstem, (b) using adaptive quantization
system with optimum predictor.~I

(a) (b)

Fig.3.6.2 The reconstructed images, (a) using optimum
non-adaptive system, (b) using adaptive quantization
system with optimum predictor.



(a) (b)

Fig.3.6.3 The reconstructed linages, (a) using optimum
non-adaptive system, (b) using adaptive quantization
system with optimum predictor.

(a) (b)

Fig.3.6.4 The reconstructed linages using adaptive
quantization system with unmatched predictors.



CHAPTER FOUR

4 Adaptive Prediction System

4.1 Introduction

In this chapter a new adaptive linear predictor
is presented to improve the prformance of the
differential pulse code modulation (DPCM) applied to
image compression.

In this system, each point is tested to see if it
is an edge point, and accordingly the pixels employed in
the prediction are updated to minimize the error be~~een

A the predicted and the true value and thus reducing the
quantization noise. The test is based on observing
certain characteristics of already transmitted
neighbouring elerrents. The procedure of the proposed
predictor will be illustrated after introducing some of
the adaptive predictors.

Performance measurement, based on the error
histogram, the mean square of the prediction error, the
quantization mean square error and the subjective quality
of the reconstructed images, is demonstrated by computer
'simulation.
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4.2 The Adaotive Predictor

Another approach for nnproving the performance of
DP01 systems is by adapting the predictor to match the
statistics of the input signals.

Analogous to adaptive quantizers, adaptive
predictors can be classified as forward or backwards
adaptive. For the forward adaptive predictors, the
information is extracted from the input signal, while for
backward adaptive predictors, the information is taken
from the quantizer output.

Various adaptive prediction systems have been
proposed in the literature, which either, continuously
update the prediction coefficients or switch be~Neen
several predictors. Gibson [151] described an adaptive
predictor for speech signals, in which the prediction
coefficients are continuously determined at the
transmitter and. the receiver, based on the past signal
estimate and quantizer output.

Adaptive image predictors typically use switched
prediction, where both transmitte~ and receiver have a
bank of M possible predictors .andadaption consists in
switching to one o~ these predictors, such that each one
of them will give small· prediction error. Examples of
this type of approach are the predictors used by Graham

. [85] and Conner [87] ,in which either the previous line
or the previous element is used for the prediction, and
the switching is done by the surrounding line and element
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differences as shown in Fig.4.2.1.
Another variation [152] in adaptive prediction is

to use a weighed swm of several predictors, whose weights
are switched from element to element depending on certain
properties of already transmitted neighbouring pixels. As
an example, assume that the pixel A (Fig.4.2.l) is
already transmitted. The prediction error of A for each
predictor in a set of predictors is then evaluated and
the predictor that gives the least prediction error is
used for the prediction of "X". The same calculation can
be performed at the receiver and therefore, the predictor
switching information does not need to be transmitted.

We present a new adaptive predictor, in which the
prediction coefficients and the position of the pixels
used for the prediction are fixed, but the pixel values
are ovenveighted or underweiqhted, depending on the pixel
under consideration, whether it is a point of black to
white or of white to black transition. The detection of a
transition and the pixel updating are based on already
transmitted· neighbouring elements, and therefore the
system does not need overhead information.

4.3 SystB~ Procedure.

In this section we demonstrate on an example the
predictibility of the ~ge points using the standard DPCM
predictors. Then we describe the edge. detection and
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updating procedures with the improvement that may be

achieved by using the adaptive system.
Fig.4.3.1 shows four possible edges which are

most frequently encountered in real life pictures. The
pixel values denoted by "0" represent black and those by
"X" represent white intensities.

Let us use ~'ree pixels: the horizontal, vertical
and diagonal for the prediction and assume that the
prediction coefficients are 1, 1 and -1 respectively.

The predicted value for the nonadaptive predictor
of the horizontal and vertical edge points PI-P8 in
Figs.4.3.1a and 4.3.1b is close to the true value, which
means a small prediction error. For example, the error of
P2 is defined

e2=P2-(Pl+P12-Pll)

In Fig.4.3.1c the points PIl-P27 can be predicted
very well, whereas the errors associated with the points
PI, P3, p6 and P7 have large positive values. The error
of P3, for example, is given by

e3=P3-(P15+P17-P14)

Also th~ prediction of the points P4, P7 and P10
produce a large positive error. Following the same
procedure, the prediction ~of the points PS, P8 and p10 in
Fig.4.3.1c results in a large positive erro~, whereas the
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prediction of the points P16, P20, P24 and P27 will
produce a large negative error.

The system predictibility may be improved (i.e.
prediction error reduced), if the pixel to be coded, is
examined to determine, whether it is an edge point and if
the edge is increasing or decreasing grey level. When the
pixel under consideration appears to be an edge point,
then the pixel used for the prediction are altered so
that the edge becomes sroooth.

To explain this algori~~, let PI in Fig.4.3.2 be

the pixel to be coded, we calculate the following means:
(a)

Ml=(P2+P5+P6)/3
M2=(P3+P4+P8+P9+P10)/5 4.3.1

'" or
(b) Ml=(P2+P5+P6+P7)/4

M2=(P3+P4+P8+P9+P10+Pll+P7)/7 4.3.2

According to certain conditions we define state
as:

Condition
(I) I Ml-M21>LI

MI-M2 <0

State

decreasing grey level edge.

(2) IMl-t12I>LI
MI-M2 >0 increasing grey level edge.

(3) IMI-M51~LI No edge.
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Where LI is a positive threshold and I means
the absolute value.

For updating the pixels P2, PS and P6 used for
prediction of the pixel PI, we adopt one of the following
two strategies:

Strategy I

(i) IMI-M21>LI fi=minimum (Pi,Ml)
Ml-M2<0

(ii) !Ml-M21>LI
Ml-M2>0

pi=maximum (Pi,MI)

(iii) !Ml-M2!~I Pi=Pi

Strategy II

(i) I MI-M2! >LI
MI-M2<0

P=average value of pels Pj,Pj<Ml
Pi=minimum (Pi,P)

(ii) IMI-M2I>LI
Ml-M2>0

P=average value of'pels Pj,Pj>MI
Pi:rnaximum (Pi,P)

(iii) IMI-M21~LI Pi=pi- "
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where pi and pi are the old and new values respectively
of the pixels P2, PS and P6 shown in Fig.4.3.2. pj are
the pixels deteonining MI.

Applying the procedure above using eq.4.3.1 for
the mean values and strategy I, for example, the edge
points PI-P8 in Figs.4.3.la and 4.3.lb can be predicted
with very small error.

The pixels PI, P3, P6 and P7 in Fig.4.3.lc are
still subject to large prediction error, because these
edges can not be detected with the above method. However
the pixels P4, P7 and pl0 can now be predicted leading to
small error. Likewise, the pixels PS, P8, P10, P20, P24
and P27 in Fig.4.3.ld, which were not reliably
predictable for the nonadaptive predictor, may be
predicted accurately using the adaptive system. Even
though pixel p6 can be detected as an edge point, the
edge is not srrooothed by the updating procedure and
therefore, the error is large.

Nevertheless, when using the formula in eq.4.3.2,
all the edge points mentioned above are proved to be good
predictors, except the pixels PI in Fig.4.3.1c and P6 in
Fig.4.3.ld.
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The choice of the operator size i.e. the size of
the area occupied by the pixels used for the edge
detection, is of major linportance. On one side, the size
should be large to detect transition of any shape. On the
other hand, when the size is large, more than one
transition may be included, which may lead to the failure
of the edge detection procedure. It seems from this
logic, that the size in Fig.4.3.2 is a reasonable
compromise.

The choice of the threshold (LI) is another

4.4 Simulation Results and Discussion.

factor in the systam design. Small values of the

>/1

threshold enable the system to detect the transition as
efficiently as possible, however, small threshold values
are sensitive to noise. A good choice of threshold (LI)
proved to be about 5-15% of the dynamic range of the
original signal.

The following four systems were simulated on the
ccmprter e

(1) Ml and M2 as in eq.4.3.l with strategy I for the

(2)

updating.
M2 and M2 as in eq.4.3.1 with strategy II for the
updating.
Ml and ~ as in eq.4.3.2 with strategy I for the
updating.
Ml and M2 as in eq:4.3.2 with strategy II for the
updating.

(3 )

(4 )
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Each system was tested using different threshold
values but the 8% threshold has proved to be the best. To
reduce t~e propagation of quantization error, the
prediction coefficients have been chosen slightly
different from unity. The same prediction coefficients
for all systems were used and equal to 0.96, 0.9 and -0.9
for horizontal, vertical and diagonal pixels
respectivaly.

The aim in using the adaptive predictors is to
reduce the rreanerror between the predicted and true
values and thus reducing the quantization noise. Indeed
all the systems have improved the mean square error.
Systems (1) and (2) achieved a reduction of about 6%
compared with that of nonadaptive predictors. The
reduction achieved with systems (3) and (4) was about 9%.
From the results obtained for the prediction mean square
error and the density function, the updating strategy II
has shown no improvement over the strategy I. Therefore
wa shall discuss the results of system (I) and (3).

A comparison between the error density functions
of third order nonadaptive and adaptive predictors for
picture "A" of Fig.4.4.l is shown in Fig.4.4.2. The
figure shows that the density function of adaptive
predictors is more highly peaked at zero"level and less
at the tails than' that of t~e nonadaptive predictors.
E~ivalent results have been obtained for the pictures
"B" and "C".

To evaluate the effect of the adaptive predictors
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on the quantization noise, the signal peak squared to
quantization mean square error ratio was determined.
Table 4.4.1 shows the improvement in the signal to noise
ratio when using adaptive instead of nonadaptive
predictors.

Since the predictors are mainly designed to
improve the predictibility of the edge points, the gain
in the signal to noise ratio is expected to be higher for
signals with more transition contents than for signals
with few transitions. Indeed, the values listed in the
table support this claim, where the gain for picture "C"
is higher than for picture "B" and this is higher than
that for picture "A". Furthermore, we recognize that the
performance of system (3) is better than that of system
(1). This was expected, since system (3) can better
detect the edges.

In section 4.3 we demonstrated the response of
the adaptive systems to outlines without taking the
quantizer effect in consideration. In fact the quantizer
will degrade the system detection of the sloped and
rectangular edges.

Consider the waveform in Fig.4.4.3 with rectan-
gular edge where "0" and "X" represent black and white
intensities respectively. Since the pixel PI can not be
detected, its estimated value will differ substantially
from the true value, resulting in a large quantization
error and the pixel is r~constructed as white intensity.
This has the effect that P2 can not be detected and will
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~I

be wrongly reconstructed, which in turn hinders the
detection of P3. Even more, the falsification of these
pixels will prevent detecting P4 and PS which leads to
bad rendition of the pixels. The error extention depends
on the value of the quantizer maximum level for a fixed
threshold. The larger the maximum level, the sooner the
edge can be detected. This is another reason that the
gain for picture "c" is better than that for picture "B"
and "A", since the maximum level of the quantizer for
picture "c" is larger than that for "B" or "A". The 8
level quantizer designed in chapter two for each picture
was used.

Although the improvement of the quantization
noise was not significant, some subjective improvement,
in particular in high detail areas, was noticeable, but
unfortunately it was not as expected. Although the
horizontal and vertical edges may be reproduced with
small degradation by using nonadaptive predictors, the
rendition of these edges has shown to be linprovedwi~~
the adaptive predictors.

Figs.4.4.4 and 4.4.S show the reconstructed
images of system (I) and (3) respectively, which show the
superiority of system (3).
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C 8 Present line X= ( A, IF 10-<::1 ~ IA-<:: 1
A X Previous line 8, otherwise

Fig.4.2.1. Illustration of the adaptive predictor used by
Graham [85] and Conner [87].

x xP1S xP16 xP17 xP18 XplS xPU oPl oPS
x xpU xp12 xP13 xP14 xP16 xP12 oP2 op6
0 oPl oP2 oP3 oP4 xP17 xP13 oP3 oP7
0 oPS oP6 oP7 oP8 xP18 xP14 oP4 oP8

(a) (b)

0 0 0 oPll oP12 oP13 oP14
0 oP1S oP16 xPl xP2
oP19 oP20 xP4 xP5
oP23 oP24 xP7 xP8 x

,fl

oP26 oP27 xP10 x x x

(c)

oPU oP12 oP13 oP14 oP1S 0 0

xP1 xP2 oP17 oP1a oP19 0

xP3 xP4 oP21 oP22 oP23
x xP6 xp7 oP25 oP26
x x xP9 xP9 oP27 0

(d)

Fig.4.3.1 Four EXlssib1eedges.
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xP8 xp9 xP10 xPll

xP4 xP5 xP6 xp7

xP3 xP2 xPl

Fig.4.3.2 The ~ixels used for detecting the edges, pI is 1:.'1e
~ixel to be coded, P2-Pll are the previous pixels.

1(/

"A" "s"

ne"

Fig.4.4.1 The original pictures.
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~on adartive syste~

Ada~tive system (1)
xl03

24.0

22.S

21.0

19.5
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16.S

IS.0

13.S

III 12.0u
Q
III
114 10.SI-<
:::l
(J
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0 9.04-4
0

>.u 7.5
Q
III
:::l
e- 6.0
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I-<
~

4.S

a Q-- Adaptive system (3)
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f \
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I'.1
(1,1

~

".1l'
I

~8 ~7 ~6 -S -4 -3 -2 -1 o 6782 345

~
.Fig.4.4.2 Histogram of the prediction error.
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Table 4.4.1 The In the signal to noise ratio (SNR) of the
adaptive predictors over t.'e.optimum non-adaptive predictors,

Pictures

"A" "Q" II,...."
'-

System (1) 0.5 0.9 1.1
System (3) 0.7 1.13 1.2

e a 0' "1 0

G e 0 (.! 0fJ

(1 0 xpl xP2 xP3
0 e xP4 xP5 xP6

~I

0 '.2 x?7 xP8 xP9

• Fig.4.4.3 Waveform with rectangular edge, where "0''' and "x"
represent black and white intensities respectively.
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(a) (b)

/II

(c)

Fig. 4.4.4 a-c. 'I'he recont ruc ted i:::ac;es of the adaptive
predictor (1).
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(a) (b)

(c)

Fig.4.4.5 a-c. The recontructec"ir.ages of G,e aO?9tive
predictor (3).
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CH.xu>TER FIVE

5 The Hierarchic Hadamard Transform

5.1 Sumnary

A coding method based on a hierarchic quadtree
structure in a transform domain is demonstrated. The

n-bit picture is partitioned into L two level pictures
called bit plane, so that the original picture is
completely described by the set of L bit planes. Each bit
olane of NxN elements is Hadamard transformed and the
"

position and the sign of the largest coefficient above a
given threshold is transmitted. If there is no
coefficient larger than the threshold, then the NxN
transformed data is inversed transformed to four arrays
of (N/2xN/2) samples and the process repeated. At the
receiver, the received coefficient information is assumed
to relate to the maximum possible coefficient value and
the transform is reconstructed. The information needed
to be communicated to the receiver about each array
consists of prefixed bit to indicate a further inverse
transformation 0 r: a presence of a coefficient above the
threshold. In the case of the presence of a coefficient
above the G,reshold, an a~ditiona1 code word whose length
depends on the array size is necessary. to code the
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coefficient position.
The algorithm was applied for two cases, (1) the

bit planes are obtained with the L-bit pure binary code,
(2) the bit planes are obtained with the L-bit Gray code.

5.2 Introduction

A bandwidth reduction of multilevel picture can
be achieved by run-length coding the bit state transition
in each bit plane. However, simulation tests indicate
that the bandwidth reduction obtainable is usually much
less than 2:1 [153,154].

Transform coding technique has been used with
success in coding multilevel images to achieve high
compression factor. However, its applicability to two
levels fascimile picture has been proved to be limited
[155]. Nevertheless its use in the compression of bit
planes obtained from multilevel picture has not been
examined. In this chapter, the feasibility of employing
the transform coding technique on .the bit planes for
compressing multilevel images is investigated. The
Hadamard transform and its fast algorithm are first
reviewed. A heirarchic quadtree Hadamard transform coding
is then introduced. Finally, a computer experiment
performed on three picture samples is described and
simulation results are discussed.
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5.2.1 Discrete Linear Transformations and the Hadamard
Transform

The one dimensional transform is related to one
dimensional image array. For an linagearray f(x) of size
N, the transformation in series form is expressed as [54]

N·1
F(u)= 2: f(x).h(u,x)

x=o

where F(u) is the transform of f(x), h(u,x)· is the
transform kernel, and u assumes values in the range
!3,l,•••••,N-l.

The two dimensional transform of NxN linagearray
f(x,y) results in an NxN transform array and is given by
the equation

N·t tH
F(u,v)= 2: 2: f(x,y).h(x,y,u,v)

X:O :1:0

for u,v=!3,l,••••••••,N-l

The kernel of the Hadamard transform is separable
and symmetric i.e.

separable h(x,y,u,v)=h(x,u) .h(y,v)
symmetric h(x,y)=h(y,v)

. where h(x,y,u,v) is the two dimensional kernel and h(x,u)

- 1313 -



is the one dimensional kernel. A separable two
dimensional transformation can be computed in two steps.
First, a one dimensional transform is taken along each
column and next a second one is performed along each row.
The one dimensional Hadamard kernel is defined as:

n-t
~ bi (x) .bi(u)
,:::0

h(x,u)=l/N. (-1)

nfor N=2 • The sumation in the exponent is performed in
modulo 2 arithJreticand bi (z) is the k-th bit in the
binary representation of Z •

The se?arabie and symmetric properties of the
kernel leads to a matrix representation of the Hadamard
transform i.e.

where f is an NxN matrix of the image array, l! is an NxN
symmetrical transform matrix generated from the one
dimensional Hadamard kernel (h(x,u)), and F is an NXN
matrix of the transformed image array. The Hadamard
matrix of order 2 is given by:

!:! (2)=1/12
1 -1

1 1

where the matrix of order 4 is defined as
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1 1 -1 -1!:!(4)=1/2 •
1 -1 1-1
1 1 1 1

1 -1 -1 1

A more convenient definition exists for Hadamard
matrix in a recurrence form. If lieN)represents a matrix
of order N, then the matrix of order 2N <!:! (2N» is
defined:

H (N) H (N)

!!(2N)=1/.[2

The Hadamard matrix is a real ~etric unitry
matrix possessing the following properties:
(i) H(N)=HT(N)- -
(ii) H-\N)=HT (N)- -

T -1H(N).H (N)=H(N).H (N)=H(N).H(N)=I- - - - - --(iii)

T -1where li (N) and li (N) are the transpose and inverse of
!:!(N) respectively, and £. is the unity matrix.

The foregoing representation is called the
"Natural ordered Hadamard matrix". Another' representation
exists for the Hadamard matrix in "Ordered form" in which
th~ sequence of each row is larger than the preceding
row, where "sequency" is defined as the number of sign
changes along each row of Hadamard matrix.
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5.2.2 The Fast Hadamard Transfonn

In common with the Fourier transform, a fast
algorithm exists for the Hadamard transform [156]. This
reduces the number of arithmetic operations for a two

4 2dirrensiona1 transform from the N down to 2N lo~(N), a
saving of 99.7 percent for a 64x64 array. The operations
needed are addition and substraction whereas the fast
Fourier transform needs complex multiplication and
addition.

The calculations are performed in stages
illustrated by the simple example in Fig.5.2.2.1. The
signal graph is used to pictorially represent t~e
sequence of operations. Computation proceeds from left to
right for the forward, or right to left for the inverse
transform. The numerical value represented by a node on
the graph is added (continuous line) or substracted
(broken line) from the nodes to which it is connected.

The highly structured nature.of the signal graph
reflects the recurrence matrix definition of the Hadamard
kernel. It also indicates that the computation should
occur in a well structured way, which is the case for
radix 2 transfonn" there will be n stages in signal graph

nfor 2 data elements. A radix 4 algorithm would have n/2
stages in the signal grap~, each node corresponding to
four arithmetic operations. This is useful- for a two
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dimensional transform, as the signal graph then reflects
the symmetry of the square data array.

The fast algorithm for the natural ordered
Hadamard transform may be derived from the recurrence
relation. Considering a one dimensional transform of row
vector x
X=H(n).x where x has 2" elements.

The matrices may be represented in partitional
form as

li(n-l)Xa
=

!:!(n-l) lj,(n-l)!bXb-

where Xa=H(n-l).xa+H(n-l).xb- - - - -
= Ya + Yb- -

and Xb=H(n-l).xa-H(n-l).xb- - - - -
= Ya - Yb- -
Ya and Yb are the Hadamard transforms of the two- -

partitioned sections of ~.
nThus a transform of a sequence of length 2 may be

represented as a linear combination of the transforms of
the two subsequences of "-1length 2 • The same will be

true of each subsequence, the process cOntinuing until
eventually the, subsequence length is one. This
corresponds directly to a radix 2 for Hadamard transform,
each reduction in subsequ~nce length corresponding to a
change in level on the signal graph for the.algorithm.
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An algorithm for computing the radix 2 transform
can be simply derived fram the signal graph. Fig.5.2.2.2
illustrates the terms used in the algorithm. The LEVEL
refers to the stage in the signal graph, level "0"
corresponding to the initial data. The nodes fall
naturally into GROUPS, which increase in size as the
transform proceds. A BUTTERFLY consists of a pair of
result nodes derived fran the same source nodes as in the
figure below.

-+-

result
nodes

A computatrionak "Butterfly"

Natural Hadamard transform; (radix 2, 2n samples)

for level = 1 to n
for group = 1 to max group

for butterfly = 1 to max butterfly
compute 1 pair of nodes

continue
continue

continue
end

The naturally ordered forward transform has
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symmetric stages, and the forward algorithm can therefore
be applied with no change.

Of particular interest for linageprocessing, is
the two dimensional transform. It may be implemented
using radix 2 or radix 4 fast algorithm. A radix 4
transform, extends the concept of the radix 2 transform
into bNO dimensions. Fig.5.2.2.3 shows the signal graph
for this algorithm. Each node on the graph now
corresponds to four arithmetic operations.

A partial transform [156] of two dimensional
L(fig.5.2.2.4) provides a hierarchy transforms of size 2

(L=level), each of which is computed fram the results of
the previous 4 transforms which make up the same area.

5.2.3 The Hierarchic Hadamard Transform

The central concept
algorithm is ordered such

is that the fast transform
that each stage of the fast

algorithm can produce a set of sUb-nnage transforms.
Fig.5.2.3.l shows a representation of the whole set of
transforms for a 4x4 image. The hierarchic nature of the
transform set can clearly be seen, and the relation to
the quadtree structure is also evident.

It is thus possible to process the image in
blocks fram lxl to NxN pixels, and to extract a range of
features (e.g. the largest coefficient in absolute value
above a threshold) at any stage. A considerable degree of
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freedom is available in the way in whic."1this can be

achieved. Processing may start from the pixel level and
move to global transforms, begin by transforming the
whole image and move towards the pixel level, or even
start at an intermediate level and move either way. Clark
[156], developed the hierarchic Hadamard transform and
applied it to the extraction of features from grey level
images.

5.3 EXperimental Procedure

In constant word length PCM coding of an linage,
the code words may be conceptually organized into planes
called bit planes. It has been found that in most natural
images ~,e most significant bit planes seldam change,
while the least significant bit planes fluctuate almost
randomly.

Each bit plane say of NxN pixels is transformed
into Hadamard domain, and the absolute value of the
transformed array are examined for a coefficient above
the threshold. If there is one coefficient or more above
the ~'reshold, then the transformed array is coded using
one bit to indicate the presence of .a coefficient
exceeding the threshol.d, 2log 2 (N) bits for the position
of the largest coefficient and another bit for its sign.
The value of the coefficient is set at the receiver equal
to the maximum value that may result. In the case of no
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coefficient above the threshold, a one bit code word is
used to notify an inverse transform of the NxN array to
4x(Nj2xN/2) arrays and each one is tested again.

To make easy the implementation of the transform,
only integer calculations are performed. This is possible
if the data in the forward transform are not scaled,
while they are scaled by l/R at each inverse transform
stage, where R is the radix. In all systems, radix 4 fast
Hadamard transform with the signal flow graph shown in
Fig.S.2.2.3 was used. The pixel value af the bit plane is
either "0" or "1". The value "0" is converted to 11_1" for
the transform, and therefore the maximum value possible
of a coefficient is equal to the number of the pixels in
the array.

The probability of having a coefficient with a
maximum value, decreases with increasing array size.
Thus, instead of applying the hierarchic transform
discussed in section 5.2.3 to the entire bit plane of
2S6x2S6 elements, we divide it into subarrays of 32x32
and for each one the hierarchic transform is used.

The bits required to code a whole array of NxN
are 2+2Iog2N, which means a compression of N2/{2+2Iog2N).
For all arrays larger than 2x2, a compression is
possible. For the arrays of 2x2 no ~ompression is
possible because cod~ng the individual pixels will result
in the s~~ bit number as with coding the whole array.
Therefore, only the coefficient representing the mean is
examined for the 2x2 arrays.
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Finally we introduce the term "distortion factor"
(K) or "error pixels" to indicate the maximum number of
the pixel allowed to be reconstructed incorrectly. For
example, an 8x8 array with say four error pixel
(distortion factor K=4) means that the array may be
reconstructed with four wrong pixels. In fact a high
distortion factor corresponds to low threshold value and
low distortion factor corresponds to high threshold. We
will use the term "threshold" or "distortion factor"
whenever it is convenient.

The relation between the threshold (TH)'and the
distortion factor (K) of an NxN array is defined:

2TH=N -2.K

5.4 Simulation Results and Discussion.

The brightness of the pixels of the pictures
shown in Fig.5.4.l is represented by a 7 bit binary code
words. The corresponding bit planes of pictures "A" and
"B" are shown in Figs.5.4.2 and 5.4.3 respectively, where
black corresponds to "0" and white corresponds to "1".
Although the most significant bit plane (h) is very
simple and suitable for the hierarchic quadtree coding,
the complexity (the l;lighfzequency content) increases as
the significance of the bit plane decreases. The least
significant bit plane is very "noisy" and is unsuitable
for information preserving coding. The compression may be
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obtained in coding the three or four most significant bit
planes, will be partly lost with the others.

The average bit rate of information preserving
coding of picture "A" was 4.8 bit/r:el, which means a
saving of 2.2 bit/pel. In fact, the bit rate of the four
most significant bit planes was 1.5 bit/pel. The bit rate
of the first three least significant bits is therefore
3.3 bit/pel which is by 0.3 bit/pel more than the direct
coding of ~~e pixels. The bit rate of information losless
coding of picture "B" and "c" are 5.6 and 6.4 bit/pel
respectively. The frequency occurance of the coded arrays
of picture "A" for all 7 bit planes is listed in table
5.4.1.

A better compression may be achieved by using the
threshold coding. The choice of the threshold depends on
the bit plane and the array size. Since error produced
from the most significant bits has noticeable effect on
the reconstructed image quality, a high threshold is
desirable to avoid the errors. On the other hand, a high
threshold may reduce the compress ion. How:ver, as the bit
planes seldom change, high threshold or even errorless
coding will achieve a reasonable compression.

For the least significant bit planes, which
fluctuate randomly, a low threshold is required to
achieve reasonable co~pression. Another point of view for
getting better compression, is to use a high distortion
factor for larger arrays, in particular for the least

. significant bit planes. This on the other ~and may cause
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that a n~7ber of adjacent pixels be incorrectly
recontructed, which has more noticeable effect than
randomly distributed pixels on the whole bit plane. Since
errors in the least significant bit planes are randomly
distributed and their effect on the quality of the
reconstructed image is therefore small, a high distortion
factor in general will hardly affect the image quality.
Fig.5.4.4 shows the output images using the distortion
factors listed in tables 5.4.2-5.4.4. No distortion of
any kind was noticeable.

The bit rate of picture "A" is 3.7 bit/pel which
means a compression ratio of 2. The bit rates of pictures
"B" and "c" are 4.6 and 5.4 bit/pel. The threshold coding
has improved the bit rate performance by nearly 1 bit/pel
for all images, compared with the errorless coding.

If instead of pure binary coding, an 7 bit Gray
code is used for representing the brightness of pels, the
pattern of the bit planes change considerably. The bit
planes obtained with the Gray coded version of pictures
"A" and liB" are shown in Figs.5.4.7.and 5.4.8
respectively, where the areas of equal brightness are
seen to be larger. The bit rate of error-less coding has
been improved by 1 bit/pel compared with the equivalent
case using the pure binary code, The distribution of the
coded arrays of picture "A" is shown in table 5.4.5
Also the threshold coding has reduced the bit rate by 1
bit/pel compared with the equivalent case of pure binary
case. The output images are shown in Figs~5.4.7.
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Thresholds (distortion factors) and the coded arrays are
listed in tables 4.4.6-4.4.8. A compression ratio of 3
was achieved for picture "A". Table 5.4.9 surrmari.se the
obtained results.
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Data
terms

Transform
coefficients

Fig.5.2.2.1 Signal ~aph for naturally ordered Hadamard
transform.

addition
di~€Ction of forward travel

substraction - - •
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Fig.5,2.2.2 Signal flow graph for a 16 point naturally
ordered Hadamard transform.
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Fig:S.2.2.3 Signal flow graph for a (4x4) point naturally
ordered radix 4 Hadamard transform.
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Fig.5.2.3.1 A Heirarchic set of Hadamard transfoons
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Figure 5.2.2.4 Two dimensional partial transform
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Fig. 5.4.1
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7 bit brightness and

256x256 elements.
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(e)

(g)

(f)

(h)

Fig.5.4.2 Bit representation of the image brightness. (pure
binary code); (a) original image; (b) 1st bit" plane (least
significant bi t); (c) 2nd. bi t plane; (d) 3rd. hit plane; (e)
4th. :::it plane; (f) ";5th~bit plane; (g) 61:..,. bit plane; (h)
7th. bit plane (ffiOStsignificant.
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(e)

III

(g)

(f)

(h)

Fig.5.4.3 Bit representation of the image brightness (pure
binary code); (a) original irrage; (b) 1st. bit plane; (cl
2nd. bit olane; (0) 3rd. bit plane; (e) 4th. bit plane; (f)
5th. bit plane; (g) '6th. bit plane; (h) 7th. bit plane (most
significant.
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(a) (b)

(c)

Fig.5.4.4. Reconstructed L,~ges of the hiera~chic Hadamard
transform coding using 9ure binary code with distortion
factors (a) as in table 5.4.2; (b) as in table 5.4.3; (c) as
in table 5.4.4.
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(e)

(g)

(f)

(h)

Fig.5.4.S Bit representation of L~e ir.~ge brightness (Gray
code); (a) original i:nage; (b) 1st. bit plane; (c) 2nd. bit
plane; (c) 3rd. bit "plane; (e) 4th. bit plane; (f) 5th. bit
plane; (g) 6th. bit plane; (h) 7th. bit plane (most
significant. )
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(e)

(g)

(f)

(h)

Fig .5.4. 6 Bit representation ot' the imagebrightness. (Gray
code); (a) original i~ge; (b) 1st bit plane (least
significant bit); "(c) 2nd. bit plane; (d) 3rd. bit plane; (e)
4th. bit plane; (f) 5th. bit plane; (g) 6th. bit plane; (h)
7th·. bit plane (most significant) •
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(a)
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n

(b)

/II

(c)

Fig.5.4.7. Reconstructed linagesof the hierarchic Hadamard
transform coding using Gray code with distortion factors (a)
as in table 5.4.2; (b) as in table 5.4.3; (c) as in table
5.4.4.
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Table 5.4.1 The frequency occurrence of coded arrays of
picture "1\" for losless information coding (Pure s inary
Code) •

Array Distortion Frequency ,of
size factor (K) coded arrays

1st. bit plane 32x32 0 0
16x16 0 e

(the least 8x8 0 0
(significant 4x4 0 3

2x2 0 2318

2nd. bit plane 32x32 0 (3

16x16 0 ~
8xS " 0
4x4 " 84
2x2 0 4229

3rd. bit plane 32x32 0 0
l6x16 0 2

8x8 (3 84
4x4 0 677
2x2 0 4681

4th. bit plane 32x32 0 1
l6x16 0 23

8x8 0 139
4x4 0 789
2x2 0 4083

5th. bit _?lane 32x32 e 11
16x16 0 47

3x8 {J 201
4x4 0 716
2:<2 0 2362

6th. bit plane 32x32 0 18
l6x16 0 48

8x8 0 206
4x4 0 634
2x2 0 1674

7th. bit plane 32x32 0 36
16x16 0 51

(the most 8x8 0 126
(significant ) 4x4 G 262

2x2 0 522
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Table 5.4.2 The frequency occurrence of coded arrays of
picture "A" for reduced information coding (Pure Binary
Code) •

Array Distortion Frequency of
size factor (R) coded arrays

1st. bit plane 32x32 128 0
16x16 64 (3

(the least 8x8 10 0
(significant 4x4 3 1411

2x2 1 7041
2nd. bi t plane 32x32 128 0

16x16 64 22
8x8 10 35
4x4 2 528
2x2 1 8443

3rd. bit plane 32x32 32 4
16x16 8 16

8x8 2 89
4x4 1 727
2x2 1 7365

4th. bit plane 32x32 0 1
16x16 0 23

8x8 0 139
4x4 0 789
2x2 0 4083

5th. bit plane 32x32 c 1116x16 0 47
3x8 e 201
4x4 e 716
2x2 IJ 2352

6 th , bit plane 32x32 e 1816x16 0' 48
8x3 " 206
4x4 0 6342x2 0 1674

.7th , bi t plane 32x32 0 3616x16 0 51(the most 8x8 0 126(significant 4x4 0 2622v'1 ;J 522.....
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Table 5.4.3 T~e frequency occurrence of c~ded arrays of
picture "B" far reduced info~ation cading (Pure Binary
Code).

Arr ay Distortion ~requency of
size factor (K) coded arrays

1st. bit plane 32x32 256 0
16x16 64 ,.,

o
(the least 8x8 HJ 4
(significant 4:<4 3 1385

2:<2 1 7003

2nd. bit plane 32x32 128 9
16x16 64 3

8x8 10 8
4x4 3 1485
2x2 1 6657

3rd. bit plane 32x32 64 (3

16x16 16 4
8x8 4 62
4:<4 2 978
2x2 1 7863

4 th , bit :_J1ane 32:<32 rs 'JiJ

16:<16 0 11
8x8 0 vn
4x4 g i41
2:{2 0 4707

5th. bit plane 32x32 10 5
16x16 0 27

8x8 0 176
4x4 0 916
2x2 0 3369

6th. bit plane 32x32 0 7
16x16 ,. 46II)

8x8 (3 222
4x4 0 869
2x2 13 2431

7 th, bi t plane 32x32 0 25
16x16 0 58

(the rrost 8x8 (3 144
(significant 4x4 0 499

2x2 0 1124
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Table 5.4.4 The frequency OC~Jrrence of coded arrays of
picture "c" for reduced information coding (Pure Binary
Code) •

Array Distortion Frequency of
size factor (K) coded arrays

1st. bit plane 32x32 256 0
16x16 96 4

(the least 8x8 16 3
(significant 4x4 3 1439

2x2 1 6664

200. bit plane 32x32 128 0
16x16 80 2

8x8 10 0
4x4 3 1455
2x2 1 6813

3rd. bit plane 32x32 64 0
15x16 16 13

8x8 4 10
4x4 2 683
2x2 1 9238

4t.'. bit plane 32x32 !iJ 0'
16x16 0 1

8x8 0 36
4x4 (3 517
2x2 0 4779

5 th , bi t plane 32:<32 (3 1
16x16 (3 15

8x8 (3 131
4x4 0 832
2x2 " 4521

6th. bit plane 32x32 (3 2
16x16 (3 18

8x8 0 208
4x4 0 1002
2x2 9 3953

7 tn, bi t plane 32:<32 0 12
16x16 0 67

(the most 8x8 0 190
{Significant 4x4 (J 682

2x2 0 1886
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Table 5.4.5 The f:requencyoccurrence of coced arrays of
picture "A" for losless information coding (Pure Gray Code) •

Array Distortion Frequency of
size factor (K) coded arrays

1st. bit plane 32x32 0 o
16x16 " 3

(the least 8xa e a
(significant 4x4 0 71

2x2 0 4363
2nd. bit plane 32x32 e G

16x16 " 1
8x8 e 59
4x4 c 656
2x2 o 4974

3rd. bit plane 32x32 " 4
16x16 0 45

8x8 0 168
4x4 0 687
2x2 e 3189

4th. bit plane 32x32 0 8
l6x16 G 24

8x8 G 145
4x4 '3 821
2::2 13 3461

5th. bit plane 32x32 13 19
16;.:16 0 53

8x8 0 215
4x4 0 553
2x2 (3 1459

6th. .bi t plane 32x32 e 19
16x16 e 59

8x8 0 210
4x4 " 563
2x2 " 1252

7th. bit plane 32x32 e 3616x16 e 51
(the most 8x2 " 126
(significant 4x4 e 262

2x2 0 522

- 162 -



Table 5.4.6 The frequency occurrence of coded arrays of
picture ",;" for reduced inforx~tion coding (Gray Code) •

Array Distortion Frequency of
size factor (K) coded arrays

1st. bit plane 32x32 128 0
16x16 64 29

{the least 8x8 10 35
{signif kant 4x4 3 1487

2x2 1 5538

2nd. bit plane 32x32 128 6
16x16 64 80

8x8 la 63
4x4 2 515
2x2 1 4751

3rd. bit plane 32x32 32 14
16x16 8 41

8x8 2 118
4x4 1 690'
2x2 1 4376

4th. hit plane 32x32 ('J 8'()

l6x16 a 24
8x8 0 145
4x4 0 821
2x2 0 3461

5th. bit ?lane 32x32 0 19
l6x16 a 53

8x8 0 215
.4x4 e 553
2x2 e 1459

6t.'. bit plane 32x32 o 19
16x16 a 59

8x8 a 213
4x4 0 563
2x2 e 1252

7th. bit plane 32x32 0 36
l6x16 0 51

(the rrost 8x'8 a 126
(significant 4x4 " 262

2x2 0 522
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Table 5.4.7 The frequency cc~rrence of coded arrays of
;?icture "3" for reduced infor.nation coding (Gray Code) •

Array Distortion Frequency of
size factor (K) coded arrays

1st. bit plane 32x32 256 0'
16x16 64 5

(the least 8x8 10' 7
(significant 4x4 3 1484

2x2 1 6535

2nd. bit plane 32x32 128 IIJ
16x16 64 49

8x8 10' 37
4x4 3 1718
2x2 1 30'63

3rd. bit plane 32x32 32 3
16x16 8 7

3x8 2 112
4x4 1 1001
2x2 1 5959

4t.'i.bit plane 32:<32 0' 3
16:<16 0 26

8x8 0' 150
4x4 0' 914
2x2 0' 3822

5th. bit plane 32x32 0 12
'16x16 0' 47

8x8 0' 189
4x4 0' 823
2x2 0' 2179

6th. bit plane 32:<32 0' 10
16x16 0' 64

8x8 0' 229
4x4 0' 752
2x2 0' 1682

7th. bit plane 32x32 0 25
16x16 0' 58

(the :nest 8x8 IJ 144
(Significant 4x4 G 499

2x2 0' 1124
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Table 5.4.8 The f~equency occ~r~ence of coded arrays of
:;:icture"e" for reduced info~ation coding (Gray Code) •

Array Distortion Frequencj of
size factor (K) coded arrays

1st. bit plane 32x32 256 0
16x16 96 14

(the least 8x8 16 8
(significant 4x4 3 1398

2x2 1 6288

2nd. bit plane 32x32 128 0
16x16 80 34

8:<8 10 9
4x4 3 1397
2x2 1 5641

3rd. bit plane 32x32 64 2
16x16 16 6

8x8 4 55
4x4 2 1164
2:<2 1 7035

4 th , bit plane 32x32 (1 '2
16x16 3 5

8x8 0 117
4:<4 0 874
2:<2 e 4969

5th. bit plane 32x32 (3 6
16x16 {;3 41

8x8 {;3 217
4x4 ((] 963
2x2 " 2755

6th. bit plane 32x32 0 4
16x15 0 44

8x8 " 273
4x4 0 692
2x2 0 2504

7t..'1.bit plane 32x32 G 12
16x16 0 67

(t.'1emost 8x8 e 190
(significant 4x4 0 682

2x2 " 1886
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Table 5.4.9 Bit rate of the different systems

Pictures Code Information Bit/pixel
Coding

A Pure binary error-less 4.8

B Pure binary error-less 5.6

C Pure binary error-less 6.4

A Pure binary reduced 3.7
(as in table)
(5.4.2 )

B Pure binary reduced 4.3
(as in table)
(5.4.3 )

C Pure binary reduced 5.1
(as in table)
(5.4.4 )

A Gray code error-less 3.8

B Gray code error-less 4.7

C Gray code error-less 5.4

A Gray code reduced 2.65
(as in table)
(5.4.6 )

B Gray code reduced 3.5
(as in table)
(5.4.7 )

C Gray code reduced 4.1
(as in table)
(5.4.8 )
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CHAPI'ERSIX

6. Learning Automata and Data Compression

6.1 Introduction

In 1961 Tsetlin [157] presented a paper on the
behavior of fixed structure automata operating in a
random environment. Since L~at time, there r~ve been many
developments in the general area of the learning automata
and the subject has been studied in great detail. A
survey article which appeared in 1974 [158], covered most
of the basic rasults in the field, re-examined sane of
the theoretical questions and suggested potential areas
where the results could be applied.

In this paper, a novel approach to image data
compression is proposed which uses a stochastic learning
automata (SLA) to predict the conditional ?robability
distribution of the adjacent pixels. These conditional
probabilities are used to code the grey level values
using a Huffman coder. The proposed system achieves a
good .'compression without any degradation in the
compressed image.

In Section Two of this chapter,- L~e basic
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concepts of stochastic learning automata and the
currently used definitions ?re briefly outlined. The
third section describes the strategy of the proposed
learning automata compression system. In the final
section, results of computer simulation are presented and
conclusions are drawn.

6.2 The basic concepts.

Varsharskii et al. [159} extended the early work
of Tseltin [157] to the case of stochastic automaton with
variable structure and proposed both linear and
non-linear schemes to update the structure of ~1e
automaton. A special article on the learning automata
[160] contains recent work in the field and references
[158,161] contain extensive bibliographies of
contributions to both deterministic and stochastic
learning automata models.

6.2.1 Automaton

The stochastic learning automaton (SLA) is
defined as automaton that operates in a random environ-
ment-and updates its action probabilities in accordance
with the inputs received from the environment, so as to
improve its performance in some specific sense. It may be
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described by the quintuple {X,~,a ,Fn,G} where X is the
input set, ~{~1,~2,•••••,~~} is the interval state set,
and C< ={Ot, 'C(2' •••••• 'Or} with r~s is the output or action
set, Fn and G are respectively the state transition and
the output functions and n is the discrete time instant.
In general, Fn and G are stochastic functions. If pen) is
an s-vector of state probabilities at time n, and U is an
updating scheme which prescribes rules for changing pen)
at each stage or time instant n, then Fn can be replaced
by pen) and U so that an SLA may be described by the
sixtuple {x,~,a,p(n),U,G}. In fixed structure automata Fn

is described by stochastic transition matrices
corresponding to each input x € x. If these matrices
contain only the elements 0 or 1, the automaton is a
"fixed structure deterministic automaton". If the
elements lie in the interval [0,1], the automaton is a
"fixed structure stochastic automaton". In variable
structure learning automata, the transition matrices
corresponding to the various inputs are themselves
updated as the automaton operates in its environment. In
this case, the rule by which this updating is to be
performed depending on the response of the environment
has to be specified.

In a fixed structure automaton, the output
mapping G is generally assumed to be deterministic. G
pa~titions the state set ~ into r subsets
mi (i=1,2,•••,r), such that ~~e elements of each subset m~
map into the same action~~ • When G is stochastic, a
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unique action need not correspond to a given state ~.
Fig.6.2.l.l illustrates a closed loop structure

consisting of an SLA and a random environment. For each
automaton action ~i at stage n, the environment responds
with a random quantity x (n)](Xi which becomes the input
to the automaton for the following stage. The environment
is said to be stationary if the discrete time random
processes {x(n)lC:<j,n=1,2,•••••} (i=1,2,••••,r) are all
stationary.

The automaton-environment combination is called
i) a P-model if the environment's resp?nse (or

o or 1, ii) a Q-model if itautomaton's input) is either
takes a finite number of values in [0,1] and iii) an
S-model if it lies in [0,1]. Schemes developed for
P-rnodels can in general be extended to Q and S models.
Many probabilistic search procedures that have been
reported [162] are similar to S-model schemes.

6.2.2 Environment

A random environment is defined by a finite set
of inputs Cl ={C<1.,C~2' •• • •• ' O'r }, an output set X={0,1} and
a set c={C1'C2' ••••'cr} of penalty probabilities. The
ouput x(n)=0 at stage n is called a favorable response
(sUccess) and x(n)=l an unfavorable response (failure).
Cj is the probability of fa'ilure (penalty) when the input
is Cti
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In the simplest case the penalty probabilities
are constant but unknown and the environment is said to
be stationary.

6.2.3 Performance measure

To judge the effectiveness of the learning
automaton, various performance measures can be set up.
These in turn depend on the prior information available
and the ultimate objective for which the automaton is
designed. An obvious choice and one which has been used
almost exclusively in the literature is the average
expected penalty that the automaton receives fram the
environment. An alternative choice may be the probability
with which the various actions are chosen in the limit.
The entropy corresponding to the action probabilities has
also been suggested [163] as a possible performance
measure.

The average penalty is defined as:

r
M(n) =E [x (n)1 P (n)] =, E' Pi (n) ci

" =<P (n) ,C>

where < , > denotes the inner product. If a,simplex Sp is
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defined as:

r
Sp={pI0~Pi~1, 2:Pi=l}

i='!

the action probabilities P SSp. If Pj=l/r, the expected
penalty may be expressed as

r
Mo=l/r ( 2::: c i)

i=t
if

Ct=M~n{ci }
I

the definitions of expediency, optimality and
£-optimality can be expressed in terms of c< and Mo.

if lim E [11(n) ] <Mo
n-t;O

the learning automaton is said to be "expedient".

if lim E[M(n)]=ce
n-oo

it is said to be "optirral"• The learning automaton is
said to be "E -optimal" if the parameters of the learning
algorithm can be chosen that:

lim E[M(n)J~ce+E
n-cc.

for any t >0.
A learning automaton is said to be "absolutely
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expedient" if:

E[M(n+l)1P(n)]<M(n)

for all pS Sp and Cj t (0,1) (i=1,2,•••,r) [164].
Instead of the average penalty M(n), as mentioned

earlier, the entropy of the action probabilities ean also
be chosen as a performance rreasure. If H (n) is defined
as:

r
H (n)=-L P: (n)log Pi (n)

. I
1=1

and Pj(0)=1/r i=> H(0)=10g r

The automaton, in this ease, is said to learn if
the entropy decreases. The entropy is obviously a minL~um
if the automaton chooses any action wib~ probability one.

6.2.4 The Reinforcement Schemes

The reinforcement schemes are classified in
linear and non-linear. The scheme is said to be linear if
the updating procedure is a linear function of ~~e
probabilities Pi (n) (i=l,2,••••,r). Otherwise is defined
as non-linear. Here we give only the linear scheme
presented by Narendra et al. [165], which can be regarded
as the prototypes of all learning models.
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Pi (n+l)=Pj(n)+a[l-Pj(n)]
P ;~.(n+l)=(l-a)pi(n)
'.J.,.I v

O(n)=C(j ,x(n)=0

pi(n+l)=(l-b)Pl (n)
Pj;i (n+l)=(b/r-l)+(l-b)Pj(n) C«n) = cq ,x (n) =1

where 0<a<1 and 0<b<1 are constants called the reward and
penalty parameters respectively. x(n}=0 describes a
success where p.is increased and p;is decreased. x(n)=l

t ~

describes a failure where p.
I

is decreased and Pj is
increased. If b=a, the scheme is called a linear reward
-penalty (LR-P) scheme, if b=0 it is a linear inaction
(LT"' T).i"(-J.

The terms success and failure denote t~e response
of the environment while reward, penalty and inaction
refer to the corrections made to the autanaton. For
example, for the LR-P model, a success from the
environment results in a reward to the automaton and a
failure in a penalty.

In the LR-? scheme, when the automaton tries an
action o: and it results in a success, the probability
Pj(n} is increased and all Pj (n) (j*i) are decreased
linearly. Similarly, if a failure results from action
C< i ' Pi (n) is decreased while all Pj (n) (j:f:i)are.
increased. In an LlR-I scheme, while the probabilities are
updated exactly as before for a success, all
probabilities are left unchanged in the event of a
failure. For an LR-,P scheme the decrease in p·(n) due to

I
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a failure is small compared to the increase in Pj(n) due
to a success.

6.3 Compression strategy

The objective is to compress a digital ~ge of
NxN pixels, each pixel quantized to L grey levels. The
grey level value of the n-th. pixel, called pixel value,
is denoted by g (n), such that g (n)= 0 ,1,•••L-1 • The
probability P(i)=P(g(n):g(n)=i), is called the pixel
probability.

The compression strategy is based on the
classical technique of variable length coding, which
assigns code word lengths on the basis of fixed
probability. Thus frequent pixel values are given shorter
code words than less common pixel values. The variable
length code is said to be optimum if the average code
word length is equal to the entropy of the ~ge. Huffman
[90], suggested an algorithm for construction of an
optimum code, which is optimal in ~~e sense that no other
prefixed code will achieve a lower average code word
Lenqth , As the code is based on the knowledge of the
pixel probabilities, the performance of the· code is
dependent on the accuracy with which the probabilities
have been estimated, and on the adaption of the pixel
probabilities with time or space.

An illustration of the strategy of the proposed
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compression algori~~ is shown in Fig.6.3.l. The image
data is fed to stochastic learning automaton which
provides an estimated pixel value from the probability
distribution (p.:i=0,1,.L-1). The estimated value is fed

I

to a stochastic environment which responds by an error
function e(n) which is the difference between the actual
and estimated value. The difference signal is fed to the
automaton for updating the probability distribution.

The data compression system Fig.6.3.2 consists of
a transmitter and a receiver. At the n-th. stage, both
learning automata in the transmitter and receiver contain
the state probability vectors Pj(n-l) I g(n-l);
i={0,l,••••,L-l); g(n-l)=(0,l,••••,L-l). The coder
generates the appropriate binary codeword C (n)
corresponding to the probability of the value g(n). The
decoder at the receiver will decode the received codeword
to g(n), according to the Huffman algori~~. Now both
automatons provide an estimate g(n) of the value g(n) and

• Acalculate the dIfference e(n)=g(n)-g(n) for updating the
probabilities according to reinforcement scheme U. g(n)
is determined by a stochastic function G which employs a
pseudo-random generator. Generators in transmitter and
receiver are synchronised. Fig.6.3.3 shows the
configuration of the automaton-environment used in
compression systems.
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6.4 Reinforcement scheme of the compression system.

Both automatons use identical updating schemes U
for changing p (n-l):i=0,l,•••••,L-l). Although various
schemes have been studied, the most satisfactory
performance was obtained by using a Q-rnodelLR_P scheme.
This is described by:

Pi (n+L)=P i (n)+B/C [C-ER]Pi (n)
Pj; i(n+l)=PJ (n)-B/C [C-ER][l-Pj(n)]

where ER= Ig(n)-g(n)1 and C and B are constants. Similar
reinforcement scheme has been widely stated in the
literature [158] and has shown to converge asymptotically
and therefore is said to be "optimal" or" £-optimal".
Shapiro and Narendra [166] showed that the L k -I scheme
is optirnaly convergent and Viswanathan et al. [167]
showed that L~_? is £-optirnal.

6.5 Results and Conclusion

The scheme presented in the previous section was
tested using a 2S6x2S6 image with 16 grey levels. The.
first order entropY and the conditional entropy were
computed and found to be 3.3 bit/pixel and 1.15 bit/pixel
respectively. Initially the'probabilities of the grey
levels were set equally to 1/16 and the constant "C" to
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3. "B" is calculated so that the initial probability
reaches L~e maximum probability after 200-250 successive
maximum reward iterations. "B" was found to be 0.005. The
minimum probability was set equal to 0.003 and the
maximum=I.0-15x0.003=0.955. with these parameters, the
largest probability and its position of each probability
vector was determined each 200 successive iteractions.
The test showed that the position of the largest
probability of each vector does not change. Fig.6.4.l
shows a plot of the largest probability versus trial
number of one probability vector. Huffman codes have the
disadvantages that the source statistics must be known a
priori and that only stationary sources can be used. The
probability distribution of the learning automaton
provides a source of information which allows the Huffman
algorithm to be used in a readly adaptive manner to
overcame both of these difficulties.

using the learning automaton probability
distribution, the average Huffman wordlength was found to
be 1.69 bit/pixel. The compression is without degradation
of the.image.

The system has been re-examined using unequal
initial probabilities. In this case, it was found that
the average bit rate has been improved by 0.2 bit per
pixel.

The disadvantage of this system is that the
number of grey levels must be 'iow.For a large number of
grey levels, the speed of convergence of the probabili~1
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distribution will be slowed down considerably which
results in a poor compression ratio.

Conclusions.

It has been shown that a learning automaton may
be used successfully in an image data compression system.
The system uses a Q-model L~_p Updating scheme. Computer
simulations have been used to demonstrate the nature of
convergence and to compute the compression ratio.

Various linear and non-linear reinforcement
schemes have been simulated which result in very poor
compression ratios due to eiL~er the automaton failing to
converge, or the convergence process was too slow for
efficient compression. It should be noted that the
compression ratio improves significantly with the
increase of speed of convergence. The problem of speeding
up the convergence process
the known Sand Q-model

was closely examined by using
scha~s. An updating function

was· proposed using this principle to achieve the best
compression ratio.
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APPENDIX I

Design of linear predictive image coders

It is conceivable to design the system to mini-
mize a measure of the overall error between the input and
the output of the coding system. However, the analysis of
such a system is inhibited by the non-linear characteris-
tics of the quantizer. Therefore, the design procedure is
to design the predictor ignoring the presence of the quan-
tizer. Then, the quantizer is designed to match the ampli-
tude distribution of the difference signal. On the other
hand, placing the quantizer inside the feedback loop will
alter the amplitude distribution of the difference signal
and the system is no longer optimum. But, when the number
of the quantization levels is large (~8) the presence of
the quantizer inside the loop has very little effect on
the amplitude distribution of the difference signal and
the system is nearly optimum. Since the predictor is
designed by ignoring the quantizer, the input to the
predictor is equal to the original input sequence.

Let {So} be a set of correlated signals with zero
. 2mean E{So}=0 and the vanance a . An n-th. order predic-

,..
tor estimates the ne~t value So by So from a linear
combination on the n-previously scanned sample values
Sl,S2, •••••,Sn

,.
So=AIS1+A2S2+ •••••••+AnSn= AiSi (I-I)
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If the mean of the signal is not equal to zero,
i.e. E{So}t0, then a better estimate of So is possible if
a constant term is also used [168}. Thus:

n
'SO=AO+AlSl+A2S2+•••••+AnSn=Ao+L AiSi

1=1
(1-2)

where the A's are prediction weighting constants.
We first design the predictor for the case

E{So}t0, and fram it we deduce the solution for the case
E{So}=0. A difference signal or predictor is then defined
as:

n

do=So-So=So- (Ao+L Aisi)
1=1

(1-3)

In most designs, the prediction weighting constants are
chosen to minimize ~~e mean square prediction error.,

,. n 2

O=E{d02 }=E{[So-(Ao+L Aisi)]
1:1

(1-4)

The rational for this performance measure is that
the measure is tractable, correlates reasonably well with
subjective evaluation, and the quantizer error is
directly proportional to the mean square-prediction
error. Minimization of the mean-square prediction error

.
can be performed by taking the partial derivative of 0
with respect to each weighting constant and setting the
result to zero. The differentiation with respect to Ao
results in:
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~D
VAO =

n 2
c)E{[So- (Ao+L AiSi)] i

i=1 - (3
0Ao

(1-5 )

n
U D ::-2E{SO-(AO+L AiSi) h:0
DAo .i =1

(1-6)

which yields:
n

E{SO}=E{SO}=E{AO+ L AiSi}
n i=1

E{SO}=Ao+ ~ AiE{Si}
\ =1

The differentiation with respect to each of the

(1-7)

(1-8)

remaining weighting value Aj, j=l••••n, is:
n 2

0E{ [So- (AO+ ~ Aisi)] }OD _ ._,
- ::0

VAj - JAj

j=l,•••,n (1-9)

II

n
~=-2E{[SO-(AO+ ~ AiSi)]Sj}=0
QAj i=t

j=l, •••,n (1-10)

which gives:
n

E{SoSj}=Ao{Sj}+ L AiE{SiSj}
i= in

Roj=AO{Sj}+ L AiRij
i ::1

j=l,•••,n (1-11)

j=l••••,n (1-12)

where

Roj=E{SoSj} j=l ••••,n

is the correlation between the variables So and Sj, and:

Rij=E{SiSj} i,j=l ..... ,n (I-l3)
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is the correlation between the variables Si and Sj. The
optimum prediction coefficients AO,Al,A2 ••••,An, are the
solution of the n+l algebraic equations

n
E{So}=AO+ I:Ai{Si}

i=1
(I-14a)

and

n
Roj=AO{Sj}+~ AiRij

i=1
j=l, ••••,n (1-14b)

The mean squared value of then prediction error
is given by:

2 " 2 " "Cid =E{(So-So) }=E{S-So) (So-SO)}

2 " " "Old =E{(So-So)SO}-E{(SO-So)So} (I-IS)

If the optimum predictor coefficients (obtained
from Eq.2.2.14) are used, then the prediction error is
uncorrelated with (orthogonal to) the past value (or any
combination of the past values) of the predictor input
[1681, i.e.:

" 1\E{ (So-So)So}=0 (1-16)

and therefore, the minbnum mean-square prediction error
is found to be:
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2 ,.. 2 ,..
Cid =E{(So-So)So}=E{So }-E{SOSO} (I-l7)

2 n
= er - (Ao+I: .2I,.iRoi)

i= 1
(I-IS)

2where er is the variance of the input sequence {SO}. The
error sequence {do} is less correlated and has smaller
variance than the signal sequence {So}. The use of linear
prediction has produced a sequence {do} fram which the

2sequence {So} can be reconstructed. The variance O"d of
the error sequence {do} is less than the variance of the
original sequence {So} by the amount shown in the
parenthesis in Eq.2.2.lS. As n_oo then the sequence of
the error samples can always l::emade completely
uncorrelated. If {So} is an n-th. order Markov sequence,
then only n previous samples are enough for forming the
l::estestimate of So, so that the error sequence will l::e
uncorrelated.

Now, if the input sequence {So} has zero mean,
i.e.:

E{So}=0 (I-19)

then all the variables Sl,S2,•••••,Sn will have zero
mean:

E{Si}=0 i=1,2,•••••,n (I-20)

and Eq. I .14 results in:

- lS7 -



Ao=0 (1-2la)

and:

n
Roj=:L AiRij

i=1
j=1,2 ••••••• ,n n-zu»

The optimum values Al, •••• ,An, are then found from

the n linear equations of Eq. (I-2lb). The minimum

mean-square prediction error is given by:

2 2 n .
O"d = 0"-L AiRoj

i='l
(1-22)

"
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