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DIGITAL IMAGE COMPRESSION

S.amir, Dip. Ing.

ABSTRACT

Due to the rapid growth in information handling
and transmission, there is a serious demand for more
efficient data compression schemes.

Compression schemes address themselves to speech,
visual and alphanumeric coded data. This thesis is
concerned with the compression of visual data given in
the form of still or moving pictures. Such data is highly
correlated spatially and in the context domain.

A detailed study of some existing data
compression systems is presented, in particular, the
performance of DPCM was analysed by computer simulation,
and the results examined both subjectively and
objectively. The adaptive form of the prediction encoder
- is discussed and two new algorithms proposed, which
increase the definition of the compressed image and
reduce the overall mean square error.

Two novel systems are proposed for image
compression. The first is a bit plane image coding system
based on a hierarchic quadtree structure in a
transmission domain, using the Hadamard transform as a
kernel. Good compression has been achieved from this
scheme, particularly for images with low detail.

The second scheme wuses a learning automata to

predict the probability distribution of the grey levels
of an image related to its spatial context and position.
An optimal reward/punishment function is proposed such
that the automata converges to its steady state within
4000 iterations . Such a high speed of convergence
together with Huffman codlng results in efficient
compression for images and is shown to be applicable to
other types of data.

The performance and evaluatlon of all the
proposed - systems have been tested by computer simulation
and the results presented both quantitavely and
qualitatively. The advantages and disadvantages of each

system are discussed and suggestions for improvement.
given. ' .
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1.1

CHAPTER ONE

Image Data Compression Techniques :Introduction and

Review

Introduction

With thé continuing growth of modern communi-
cation technology, demands for image transmission and
storage is increasing rapidly.

Advances in computer technology for mass storage
and digital processing have paved the way for implement-
ing advanced data compression techniques to improve the
efficiency of transmission and storage of images.

Image data compression is concerneé with mini-
mization of the number of infommation carrying units used
to represent an image, For digital image transmission and
storage, the conventional methods is to use the pulse
code modulation (PQM) technique. The continuous image is
first sampled at Nyquist rate in the spatial domain to
produce an N x N array of discrete samples. Sampling of a
band-limited image signal is the 'simplest and most
dramatic forms of data compression.

The samples thus obtained may have an infinite
nurber of amplitude levels and hence may require infinite

bandwidth for transmission. Therefore each image sample,



also called pel or pixel, must beArépregented by a finite
number of levels 2K (where K is the ﬁumber of bits per
sample) in order to transmit them over a digital channel.
Normally the number of quantization levels in PCM is 64
cr 128 éorrosponding to 6 or 7 bits respectively [1,2].
Thus the PCM technique requires KN2 bits per image. This
needs a large bandwidth for image transmission, or large
storage capacity in order to store the image‘for future
4retrieva1 and analysis. There is also degradation in
subjective picture quality due to quantization errors
which becomes perceptible when K is reduced to six or
fewer bits per pixel. Therefore one needs an alternative
approach to solve this problem, i.e. to keep the number
of bits per pixel to a minimum, at the same time keeping
quantization errors within tolerable limits.,

Normally an image source is very highly correla;
ted both spatially and temporally, there is a strong de-
pendency among the values of individual picture elements
(pixels). The dependency can be regarded as statistical
redundancy. Taking the pixel correlation into considera-
tion, will reduce the bits needed for representing each
pixel. Measurement of second and third-order amplitude
probabitity distribution and of auto-correlation func-
tions carried by Schieiber [3] and Kretzmer [4] indicated
an image entropy of two to three bits per sample. More-
over, if the images are to be viewed by human observers,
then there is a psychovisual redundancy,A because of the

perceptual limitations of human vision.
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Hence, the objective of‘aﬁy efficient method of
image data %compression is to remove the redundancy from
the image without much degradation in subjective picture
quality.

Picture quaiity does not depend on the comﬁres—
sion method only, but also on the qgantization strategy
employed with this method.

‘

Two important classes of compression schemes that

make use of the statistical redundancy in the image are

the linear transform coding and linear predictive coding,
whereas the psychovisual redundancy can be exploited by
using an appropriate quantization technique. There are
other schemes, which 1lie more or less within the above
classes,

The remaining material of this chapter contains
five sections. The first four sections give a brief sur-
vey of transform coding, predictive coding, hybrid co-
ding, and coding of non-stationary images. The final sec-
tion gives the outline of the reserch direction of this
thesis and underline the objective of this program of

research.

Transform Coding Technique

Although: the transform techniques were known a
long time ago, they were first used in image coding in
the late 1960's and early 1970's.

Initial concepts were based on Fourier transform



(FT) by Andrews and Pratt [5,7] and 5& Anderson and Huang
[6], the Hadamard trgnsform (HT) by Enomoto and Shibata
[8], by Pratt et. al. [9] and by Wood and Huang [10], the
Karhunen-Loeve transform (KLT) by Tasto and Wintz [11]
and by Habibi and Wintz [12] and Haar transform by Haar
[131. Thereafter, a new tranform known as Slant trans-
form, specialy designed for image coding was developed by
Enomoto and Shibata {14] for data of vector lengths of
four and eight. Pratt et.al. [15,16] developed a genera-
lized Slant transform algorithm for larger sizes.

Implicit in all transform coding précedures, the
image is divided into non-overlaping blocks called sub-
images, and the statistically dependent elements of each
block are linearly transformed into a new set of desira-
bly independent coefficients using some unitary transform
matrices [17]. This transformation aiso results in compac-
tion of the image energy into fewer coefficients [18],
but, because of the orthogonality of the transform ma-
trix, the block total energy in transform domain is equal
to that in pel domain (spatial domain) [19].

The coefficients with low energy or minimum var-
iance are discarded without seriously effecting the sta-
tistical information content of the output image

The remaining coefficients are quantized, coded
and transmitted to the receiver. At the receiver the code
.words are decoded ‘and inverse transformed to give the

output image, The discarded coefficients are assumed to

be zero at the receiver.



Fig 1.2.1 shows the block diagram of the trans-

mitter and the receiver for transform techniques

Transmitter
Input |Forward Sample| |[Bit Quan- To the
trans- |—iselec-}— assign-{-tizeri-{Coder}t——m——o
image |formation| [tion ment channel
data
Receiver
From the Inverse Output
Decoder Trans-
channel formation| image data

Fig 1.2.1 Block diagram of transform coding

Apart from quantization error, Wintz [18] and,
Wintz and Rurtenbach [20] show that the mean-square error
of the resultant image is the sum of the variances of the
discarded coefficients.

The optimum transformation would be one that re-
sultsin statistically independent coefficients and mini-
mum mean-square error, but this requires knowledge of
higher order statistics of the image. Although Shreiber
[3] measured a few third order statistics, only first and
second moment can be measured in detail. Furthermore,
even if higher order statistics were.known, the problem
of determining a reversible transformation that results

- in independent coeffients remains unsolved.
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Karhunen-Loeve Transform [KLT]

The best transform which is close to the optimum
is the Karhunen-Loeve transform (KLT) [21], which was
derived primarily for sampling an anologue signal. Brown
[22] showed that for second order processes, using the ex-
pansion of Karhunen-Loeve, minimizes the sampling error.

However the discrete KL-transform as developed by

Hotelling [23] can be used on an already digitized images

to obtain uncorrelated coefficients or samples.

Although KL-transform has been known for some
time, its use for the problem of information transmission
was made much later [24,25]. Kramer and Mathews [24]
applied KL transform for speech signals having assumed
Gaussian distribution. Huang and Schultheis [25]
developed an optimum block quantization algorithm for
assigning binary digits to transform coefficients.

Performance results were obtained by Wintz and
Kurtenbach [20] for stationary Gaussian Markoff models,
by Pratt and Andrews [26] and by Habibi and Wintz [12]
for pictorial data.

Although the KL-transform is optimum, its use in
practice presents many problems. It requires statistical
knowledge of the image source and doe§ not ‘posses a fast

computational -algorithm [27] and in many cases its

. covariance matrix is a singular [28]. Habibi and Wintz

[12] have given a detailed discussion of the two - dimens-

sional KL-transform and the difficulties associated with
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it. Jain [29,30] developed a fast'KL- transform for fi-
nite first order Gauss-Markoffe signals with known boun-
dary values and he’showed that the assumption of known
boundary, replaces the non-periodic sine wave represen-
tation of KL-transform by a periodic sine wave and this
leads to fast transform via sine or Fourier transform
[31]. Also Haralic et al. ([32] .reported that under

isotropicity condition, a fast KL-transform exists, which

differs from the optimum KL by approximétely 13,

All these methods are only approximations and
only valid for data from stationary Markoff processes

with exponential correlation.

. Discrete Fourier Transform (DFT)

Many simpler sub-pptimum transforms have been
developed whose performance are very close to that of
KL-transform and are computationally easier. One of them
is the discrete Fourier transform.

The development of the fast_ Fourier transform
algorithms [33,34] has led to the investigation of the

Fourier transform of image coding technique, even though,

the discrete Fourier transform has long been used for sig
nal analysis [35].

The concept of coding and transmitting of an im-
age using two-dinention§l Fourier transform was introdu-

ced by Andrews and Pratt [5,7] and Anderson and Huang
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[6,36]. Andrews and Pratt [5,7] used the Fourier trans-
férm on complete images, where Anderson and Huang [6,36]
divided the image in blocks of size 16 x 16 and used the
Fourier transform on the blocks. The drawback of the
Fourier transform is the complex arithmetic which it in-

volves,

Hadamard Transform (HT)

Other sub-optimum transform is ﬁhe Hadamard
transform. This is the simplest to implement since the
Hadamard matrix consists of + 1's , and, therefore only
additions and no multiplications are required. Bowyer
[37] displayed the similarity between the Hadamard maﬁrix
and discrete Fourier transform.

Pratt et al [3] and Wood and Huang [10] recog-
nized that the Hadamard transform could be utilized in
place of Fourier transform with a considerable decrease
in computational requirements. Pratt et. al., [9] trans-
formed the entire picture as a unit., Wood and Huang used
it on blocks of 4x4, 8x8, 16x16 and entire image. Habibi

and Wintz [38] applied ‘Hadamard transform on 16x16 and

larger blocks.



1.2.4 Other Transforms

Other orthogonal transformation used in image
coding and have performance close to KL~transform are
Cosine transform (39,40], Haar transform [13,41], Slént
transform [14,15,16,42] and the discrete linear basis
(DLB) [43]. The DLB as developed by Haralic and Shanmugam
[43], offers a good trade-off between the complex KL-

—transform and simple Hadamard transforms. This transform
is very close to KL-transform for high compression rate
and much better than Hadamard transform for all

compression rates [43].

1.2.5 Block Size Consideration

Other consideration of the transform algorithms
is the block or subpicture size (n) t44].

Large blocks size reduces the correlation between
blocks (interblock correlation) and improves the mean-~
square error performance, since the number of correla-
tions taken into account increases with n, [45]. However,
for implementational simplicity as well as to adapt to
the local changes in picture statistics and visual
fidelity, a smaller size is desirable.

On the other hand, if n is too small, correlation .
between picture elements are not taken into account. More-

over, if adaptive coding is used, the overhead informa-



tion will increase, which results in a higher bit rate,
when the size is reduced [46].

The block size therefore, should be chosen
greater than but comparable to the interpixel correlation
distance, which defined as the distance at which inter-
pixel correlation becomes small enough to be assumed zero
[471.

Claire, et al.[48] showed that, if the block size
~is  chosen according to the conception above, then the
block mean-square error performance should be comparable
to the entire image transform. |

However, most pictures contain significant cor-
relation between pixels for only about 20 adjacent sam—
ples [49], although this number is strongly dependent on
the amount of detail in the picture [12,Fig.2]. Pratt
[45,Fig.23.2-4] has plotted the mean-square error of an
image having a Markoff process covariance, as a function
of block size for various transformations. The figure
shows that the improvment is not significant as sub-
picture size exceeds 16x16. In fact using blocks of
nxn = 8 x 8 does not significantly increase the error.
Furthermore it shows that discrete cosine transform (DCT)
has virtually the same energy compactness as the discrete

KL~-transform,

Tasto 'and Wintz [46,Fig.7] illustrated the

relation between the bit rate with the block size, which

indicates that the bit. rate will increase as the size

decreases.

- 10 -



The optimum size appears to be 16 for one aimeni
sional blocks, and between 6 x 6 and 8 x 8 for twd
dimensional blocks [46]. However the subjective quality
does not appear to improve with the size of the block

"beyond 4 x 4 [18].

Tasto and Wintz [50] showed that, even though a
two dimensional block yields better performance than a
one-dimensional block, the improvment is rather small -
‘about 0.2 bit/pel. Sakrison and Algazi [51] analytical
result based on rate distortion considerations, shows,
that for a fixed distortion no more than a factor of 2 or
3 can be saved in the number of bits required for optimal
two-dimensional as opposed to line by line processing.

On the other hand Saghri [S2] showed that, at
rates lower than 1 bit / pixel, the perfomance of an
adaptive transform coding will improve with larger block
size, and at higher bit rate the trend is reversed.

The block 'transform decorrelates only the pixels
within the block and does not decorrelate pixels among
the blocks. Even if all pixels within the transform block
become decorrelated via the transformation, the pixels on
the border remain correlated with respect to pixels on
the borders of adjacent blocks, If the interblock corre-
lation is ignoréd, then the reconstrucéed images ténd to
take on a smoo%h—blﬁrred appearance with edge lines
(blocking effectsj occuring between adjacent blocks,

particularly at high compression factor.

Haralick et, al. [53] designed a transform method

- 11 -



1.2.6

for reducing the blocking-effect and called it " Aannihi-
lation transform ", The& reported that this method has

less blocking effect than the <cosine transform at

compression of 10,

Sample Selection in Transfomrm Domain

The next step in transform coding is the selec-

‘tion of the coefficient to be transmitted. One method is

to evaluate the coefficients variances on a set of aver-
age pictures and then discard all coefficients whose
variances is lower than a certain value. Such scheme is
called " Zonal Sampling " and it is a non-adaptive tech-
nique.

In most scenes of interest the energy in trans-
form domain tends to be clustered at the low spatial fre-
quency coefficients [9] and most of the image energy is
contained in a few samples [54]. Normally the high spa-
tial frequency coefficients are discarded, which is equiv-
alent to low pass filtering.

Coding degradation can be large if the image coh—
tains large amptitude of high frequency coefficients.

Landau and Slepian [28] found that for 4 x 4

Hadamard transform, very little degradation is seen for

most pictures by discarding the coefficients 11,12,-—,16.

Haralic et, al. [43] selgcted the first four Hadamard and

DLB transform coefficients with sequency (0,0), (1,0),

-12 -




1.2.7

(0,1), (1,1), which have the most image energy.

Another sample selection method would be to first
evaluate all n coefficients and then retain only those
coefficients that exceed a preset threshold. This method
is called " threshold sampling " [55] and it is an adap-
tive technique that retains only those coefficients that
are large for a particdlar picture and block being proces-
sed. When threshold sampling is used, " book-keeping

information™ must be transmitted, which specifies the

coefficients used.

Quantization of Transformed Coefficients

After selection the coefficients which have to be
transmitted, each coefficient must be quantized and
coded.

One criteria for designing the quantizer is based
on minimizing the mean square error between the quantizer
input and output [56-59].

Panter and Dite [56] considered signals whose pro-
bability density is an even functioﬁ and that, is zero
outside the interval (-v, v) which represent the range of
the quantizer input. They found that for optimum perfor-

mance, output levels (reconstruction levels) should be

the midway between two adjacent decision levels.

Max [57] used differential calculus to derive the

relation between input and output levels for Gaussian

- 13 -




signals.

Peaz and Glisson [58] used Max procedure to deter-
mine the optimum quantizer characteristics for Laplacian
and Gamma distributed signals.

Reo [59] gave approximated solution for a more
general case of probability distributions. Panter and
Dite [56] and Max [57] found that if the probability den-
sity funtion of the input signal is uniform, then a uni-
- form quantizer (uniform spaced output levels) is optimum.
For other distributions the mean-square error can be
decreased by using non uniform quantizer wifh small spa-
cing in regions of higher probability and large spacing
in regions of lower probability. All references listed
above are dealing with single sample quantizer.

Quantization stratagies for minimizing the total
meansquare error of block 65 samples (random variables)
have been developed by Huang and Schultheiss [25], where
a knowlege of the variances is essential for the optimi-
zation.

The mean square error is minimum if a vector X
built from Gaussian random variables is transformed to
uncorrelated vector Y by an orthogonal apertdr and Y is
quantized.

The best choice of the number of bits assigned to
each variable  is ‘that the quantization error is the same
. for all variables. This is possible if the bit assignment
is made propotional to the logarithms of their variances

[60]. This technique is called " block quantization " and

- 14 -



it is significantly more efficient than using the same
number of bits for all sa@ples. Normally the number of
bits assigned to each variable is not an integer,
therefore a correcting process is necessary to assign an
integral number of bits to each sample, which leads to
deviation from optimality.

Mitrakos and Constantinides [61] presented a
recursive procedure for optimum block quantization, based
on dynamic programming, by means of which integer bit
assignment constraints are easily met.

Image subjective quality can be improved by
assigning more bits to coefficients with the larger
variances and fewer to the coefficients with smaller
variances [12].

The subjective quality can also be improved by
using qﬁantizers with characteristics different from that
which minimize the mean square error.

Landau and Slepian [28] used Hadamard transfor-
mation with a 4x4 block. The number of quantization
levels they assigned to each of the first ten coef-
ficients (H1 to H10) was approximately proportional to
the variance of that coefficient, whereas the last six
coefficients (H1l-H16) were dropped.

The first coefficient was quantized by a 64 -
levels uniform quantizer. Coefficients H2 through HIO
were quantized with quantizers Thaving a companding
characteristic given by a function of the form y=k x .

Tasto and Wintz [11] proposed an encoder using a

- 15 -



1.2.8

6 x 6 adaptive Karhunen-Loeve transformation. They first
determined the number of coefficients that must be re-
tained, then by trial and error they determined the quan-
tizers characteristics for each coefficient, which result
in best picture quality

Mounts et al. [62] described a systematic pro-
cedure for designing of optimum quantizer for Hadamard

coefficients based on psychovisual criteria in the trans-

form domain. Based on subjective tests, they evaluated

the visibility funtion of quantization noise, then they
developed a design procedure to minimize the mean-square
subjective noise by replacing the coefficients visibility

function in place of the probability density function in

Max quantizer.

Adaptive Transform Coding

A nonadaptive algorithm is designed to be a fixed
coding algorithm operating identically for all images and
all image blocks. For a nonadaptive technique, the image
to be coded is assumed to be a stationary source. Images
for which the stationarity assumption is valid, a non-

adaptive coder could be an optimal coder.

Usually, images have varying statistical struc-

tures, both from image to image as well as from region to

-region within an image. Breaking the image up into blocks
of size n x n and calculating the mean and autocor-

‘relation function within each block yields means and auto

- 16 -



correlation functions which change from one block to
another. This fact reduces signi;‘_icantally the efficiency
of nonadaptive coding and it is the prime reason for the
development of adaptive techniques, which could subs-
tantially improve the coding performance.

-~ It seems natural to adapt the quantization pro-
cedure from one block to another depenaing on the details
of the image in that block. For example areas with high
detail must be represented by more bits than areas with
low detail where fewer binary digits can be used or, for
areas with high detail, the number of coefficients to be
transmitted must be higher than for areas with low
detail. The adaptive procedure will therefore, depend
upon the activity within the block chosen.

Charles and Wintz [63] suggested an adaptive KL
transform coding. They defined eight categories according
to the number of coefficient required to be transmitted
(Table 1.2.8.1).

They have used a block of 6 x 6 data and by
sequentially scanning each line of the block, they have
converted it into a one dimentional vector X of m=36
samples with 2zero mean, which makes the calculation
simpler. Each vector X is transformed to a vector Y and
the total enegy is calculated E = 2: Y

Then flnd N such that o 5E (1—A(X))E ,
where A (Y) is a quallty criterion fo£ x « Choose I, from

Table 1.2.8.1 such that KL—1< N KL .

-17 -



Table 1.2.8.1 Category Assignment for Constant A

Category (L) (K )Number of Coefficients

Transmitted for each Category

1 6

2 9

3 | 12
4 ' 15
5 18
6 21
7 26
8 32

For example if N =16, then L = 5 and the number
of the coefficient transmitted is 18,

The overhead information is 3 bits per block for
specifing the category. They reported a bit rate of 2.5
to 3 bit per picture element for A (X) = constant = 0.0l.
For better subjective quality they used AX) = 7S (E(-/Q)n
instead of a constant A and different category assignment
table, where X is the average of a source vector X,Q is
the maximum grey level in the original pictufe and & and
n are parameters. - -}-{/Q represents the normalized
(average) brightness of a block. This system will allow

more error in brighter areas than in darker areas. They

- 18 =~



4

have claimed that this system produced good quality at
1.4 bit / pel for = 0.5 and n = 2,

Tasto and Wintz [li] proposed a different adapt-
ive KL-Transform coding. Each block of 6x6 is converted
to one dimention block of 36 samples as above and is clas-
sified into one of three categories. Category I: blocks
containing a lot of detail, Category 1II: blocks contain-

ing little detail and darker than average and Category

III: blocks containing little detail and lighter than av-

erage. For each class a covariance matrix and the corre-

sponding set of eigen vectors are used to transform that

particular class. Each class has its own quantization pro-
cedure for block quantization of transformed data. The

overhead information required to be transmitted for

specifying the class, to which the given block belongs,

is 2 bits per block. A bandwidth ieduction of 30 to 50

per cent have been reported over the non-adaptive KL

transform method. In both schemes the same uniform
quantizer, suggested by Hayes and Bobilin [64] was used
for all the coeffiecients.

Since the adaptive KL transform is so complex,
other deterministic transform like Fourier, Hadamard, dis-
crete cosine transform (DTC) etc., have been tried along
with some adaptation in either quantization or sample se-
lection, |

The simplest technique possibly, is to.transform
the blocks of data and tﬁgn select only those coeffi-

cients which are larger than a certain threshold. The tra

- 19 -



nsform coefficients below the threshold are set equal to
zero at the receiver.

The number and the location of the coefficients,
above a fixed threshold, change from one block to another
and, therefore, the system is adaptive. Dillard [65]
reported a system using this adaptive threshold
quantization technique with 4x4 Hadamard transform. The
dc-term and the largest coefficients along with their

_adresses were transmitted., He reported a bit rate of
1.625 bit/pel without significant degradation by using
the dc~-term and the two largest coefficients. |

Two dimentional Fourier transform on a block of
16x16 picture elements followed by an adaptive quantiza-
tion has been reported by Anderson and Huang [6]. The
standard deviation of the elements in each block was
first meésured. The number (L) of the coefficients to be
coded from each block and the number of bits used for
quantizing the magnitude and phase of these coefficients
were made proportional to the standard diviation of the
picture elements in that block. Then amplitude, phase and
the position of the L transformed samples with the lar-
gest amplitude were transmitted, Good results were repor-
ted at 1.25 bits/pel.

Different adaptive transform coding methods use
different measures for sample selection and quantization
in the transform domain. Besides using the standard
diviation of the block of picture elements, the most

" frequently used measures are the variances of the trans-
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form coefficients, the sum of absolute values of the a-c.
coefficients and the a-c. energy of the transformed
cbefficients. In a sense, all of them give a measure of
the image activity and in fact the variances and the a-c.
energy of transfbrmed samples are a measure of the ran-
domness of the image.

The sum of the absolute values of the a-c. co-
efficients in transform domain, refered to as the acti-
~vity index [66], can be used to classify each block to
one of the M possible classes. Each class would used a
different sample selection and quantization proceaure.

Claire [66] and Gimlett [67] have recommended the
use of the activity index with four possible classes.
They use a combination of zonal and threshold sampling
for each class.

Chen and Smith [68] used fast computational dis-
crete cosine algorithms to calculate block of 16x16
picture elements, followed by adaptive coding technique
based on the image activity level. The transform blocks
are sbrted into four classes according to the level of
image activity which is measured by the total a-c. energy
in each block. Within each activity class, coding bits
are allotted to individual transform elements according
to the variance matrix of the transformed data. More bits
are assigned to busy areas and higher level of activity
are preferred over lower levels. They reported good

picture quality at 1 bit/pel and satisfactory quality at
"0.5 bit/pel for still pictures.
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Different authors [69,70] have used the Cosine

transform with. adaptive guantization and gbod results
have been reported compared with results obtained by
using uniform or Max- quantizers [70].

Instead of using the sum of the magnitudes of the
a-c. transform coefficients as a measure of image
activity, the variances of the coefficients may be used
to define spatial activity, which is then used for

adaptive sampling and quantization of the coefficients.,

Tescher et al. [71,72] have used the variances of
the transformed coefficients as an activity iﬁdex for
adaptive bit assignment. They have taken a 256 x 256
picture and used a two-dimentional Fourier transform to
obtain the complex Fourier cocefficients. The complex
coefficients are represented in term of their amplitude
and phase and the two are treated separately. The
variance of each amplitude components is estimated and
bit assignment is made in proportion to the logarithm of
its estimated variance.

In the same way, the phase components are proces-
sed but it has been found in practice that the phase
components must be quantized more finely as the picture
is more sensitive to phase degradation than amplitude
~ degradation,

The phase component is quantized using one more
bit -than has been used for the corresponding amplitude
component. The variance of the amplitude of individual

‘coefficients is estimated using a predictor that combine
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the variances of a number of adjacent quantized samples
to predict the va;iance of a given coefficient.

This system requires prior knowledge of the esti-
mated value of the first variance to start the process.
An improvement of about 50% in reduction of the bit rate
over the non—adaptiven systems was reported. They used
Fourier and Hadamard transformations with similar
results.

A slightly different approach has been suggested
by Tescher et. al.[73-75] to the problem of sample
selection. They divided the image into blocks of 16x16
picture elements and transformed it using DCT or Slant
transform. But instead of using usual scanning of line by
line to convert the transform cocefficients to one- dimen-
sional set, they have used tﬁe scanning pattern shown in
fig. 1.2.8.1

They argue that such scanning pattern gives a
smoother decay in the size of the variance of the
transformed coefficients and that strong correlation
exists among adjacent coefficient variances, even though
the transformed coefficients are uncorrelated.

Next the variances of the one-dimensional data
sequence is estimated and bit assigmment is made
proportional to the logarithm of the estimated variances.
When the variance of a coefficient is so small that the
nurber of bits assigned to it falls below one bit, the
processor stops and all remaining coefficients in that

block are set to zero at the receiver.
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Fig. 1.2.8.1. Ordering of the samples in frequency domain

of 8x8 block.

The estimate of the variance for the nth.
transform coefficient 032 is
o2 = ALG+ (1-alk2
where gn_1 is the quantized form of the (n-1)th.
mtransformed sample and Al is a weighting factor which has
been taken as #.75.

' One procedure for estimating the first variance
is [75] 0‘12=(x12'+ X22+ Xg + xﬁ )/4 . where the X's are
the transform coefficients.

In addition to these techniques, a number of
adaptivg methods have been devised that use a fixed
nurber of coefficients and a fixed number of quantizers
in each block. However a . different normalizing constant

is used to normalize the coefficients in that block prior

to their quantization [76,77]. The normalizing constant

- 24 -



g

must also be transmitted for each block,

A comparative study between different adaptive
schemes has been done by Nagan [78] using Cosine and
Hadamard transforms.

The transforh techniques mentioned above are not
only used on still pictures, but also can be used on
moving pictures, where not only the redundancy in the
same frame (intraframe) is exploited but even so the

redundancy in successive frames. This is called

. interframe transform coding. A study made by Roese {[79]

has shown that this approach yields transform coders
whose performance greatly exceeds that of conventional
intraframe coders. However, the main disadvantage of such
coders is the requirement of excessive storage when the
blocks are 16x16x16 (horizontal x vertical x temporal) or
more. Therefore interframe transform coding uses smaller
blocks. Mounts et al. [62] used blocks of 2x2x2 with
é%damard‘ transform coder. Natarajan and Ahmend [80]
applied Walsh-Hadamard transform (WHT) and the discrete
Cosine transform (DCT) on 4x4x4 blocks achieving one

bit/pel without motion degradation or other distortions.
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1.3

1.3.1

Predictive Coding Technigues.

The next class of “efficient coding techniques
which makes use of the correlation between adjacent
signal values ié the predictive coding.

In basic predictive coding systems the sample to
be coded is predicted (estimated) from préviously coded
information that has been transmitted. The difference
signal (error) between the actual value and iés estimate
is then computed and quantized into a set of discrete
amplitude levels. These levels are then represented as
binary words of fixed or variable wordleﬁgth and
transmitted. At the receiver, the code words are decoded
and added to the receiver prediction to reproduce the
;econstructed signal. Thus the predictive coder has three
basic components: 1) Predictor, 2) Quantizer, 3) Code
assigner. The most commonly used predictive coders used
in speech and image compression are the differential

pulse code modulation (DP(M) and delta modulation (DM).

The DPCM Coders.

DPCM system was first introduced by Cutler [81].
His invention is based on transmitting the quantized
difﬁerence between successive sample values rather than

the sample values themselves, Fig 1.3.1.1 shows the block

diagram of a DPQM system.
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nth. Order Predictor

Fig 1.3.1.1 Block diagram Components of DPCM Ccmpression.

Oliver ([82] and Harrison ([83] realized the
importance of linear prediction in feedback communi-
cations systems and proposed that it be used to reduce
the redundancy, and therefore, lower the required power
in highly periodic signals such as television. Oliver

‘h[82] explained how 1linear prediction could be used to
reduce the bandwidth required to transmit redundant
signals. Harrison [83] actually built a signal processing
system and applied it on image data and illustrated how
redundancy could be removed from those signals using
linear prediction., He extended the basics of DPCM system
by forming the prediction from a linear combination of
previous pixels along*' the same line and previous lines
(two . dimensional predictor). Later Elias [84] developed
the theory of prediction coding which explained the use

of linear prediction in PQM systems. Graham [85]
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recognized that the theory of prediction could be
incorporated into the system described by Cutler., He
demonstrated by computer simulafion the feasibility of
using 3-bit DPM for the television transmission of still
black and white pictures.

‘O'Neal [86] has analysed DPCM for the transmission
of video signals. He concluded that previous-sample
feedback DPCM transmission system can provide a signal

to-quantizing noise ratio approximately 15 db. higher
than standard PCM, a signal encoded into DPCM is more
vualnerable to noise in the transmission channel' (bit
error) than one encoded by PM. He also demonstrated
that, if the horizontal correlation is equal to the
vertical correlation, then the improvement in signal to
quantizing noise ratio, when vertical pixel is used in
addition to horizontal pixel, is small and it is about
1.9 db.
| However subjective evaluation indicates that the
reproducing of vertical edges is significantly improved
due to two-dimensional prediction [87].

The efficiency of DPM image data compression
depends on the order of the predictor n (number of
previous pixels used by the predictor), the values of the
predictor coefficients (ai), the quantization threshold
and the number of quantization 1levels. The order of the
predictor is determined by the data. In general, if a
data sequence is modeled as an nth. order Markoff

process, then an optimally designed nth. order predictor

- 28 —



will cause the resulting prediction error sequence to be
uncorrelated [88]. Images are obviously not nth. order
Markoff processes, but experience with image data has
shown that it is possible to model the overall covariance
statistics of images by third-order Markoff processes
which leads to a third-order predictor [89]. Habibi [89]
computed the prediction mean square error (MSE) using
different numbers of previous picture elements. His
results show that if the predictor coefficients are
matched to the statistics of a picture, then for that
picture, the MSE decreases significantly by using up to
three picture elements, and further decreases are rather
small by using more than three pixels.

If the prediction is well chosen, then the
difference signal (ém) will be small in most part of the
picture, thus fhe first order entropy H(dm) of the
difference is in general substantially smaller than the .
entropy of the original input signal (Sm). Therefore a
code with variable word length (for instance a Huffman
code [99]) for coding the difference will reduce the bit
rate compared to P(M.

| The best DPCM-system design is that system which
minimizes a measure of the overall error between the
input and the output of the system. However this design
procedure 1is prevented by the non-linear characteristic
of the quantizer. Therefore the optimization problem is
solved by designing the linear predictor ignoring the

presence of the quantizer and then the quantizer is
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designed to match the amplitude distribution of the
difference signal. Bodycomb and Hadad [91] showed that if
the quantizer is replaced outside the feedback loop, then
the mean-square error (MSE) performance of the system for
a Gaussian-Markoff process 1is not better than the
performance of PCM-system. Geddes [92] shows that in such
éystem, if the difference signal (prediction error) is

quantized and transmitted directly, then the quantization

~error will accumulate in the integrating filter at the

receiver producing gross streaking in the received
picture. Therefore the quantizer has to be included in
the prediction loop to make the transmitter and receiver
identical, which means that the transmitter and receiver
predictors will be operating from the same quantized
predicted values, thus minimizing the error between them
in the reconstruction process.

On the other hand replacing the quantizer in the
loop will change the distribution of the prediction error
(quantizer input) and makes the difference signal
correlated and the system is no longer optimum. But if
the number of quantizing 1levels is large, then including
the quantizer has very little effect on the amplitude
distribution of the difference signal. However, the
system is optimum only for that input signal which the
system is designed for.’

The coefficients  for optimum predictor are found
by minimizing the mean-square efrqr of the input image.

This leads to a set of linear equations which can be
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solved from knowledge of image autocorrelations. This
method for designing a two-dimensional predictor coula
result in an unstable recursive filter [93]. This means,
while the prediction error is minimized (ignoring the
quantization effect), the reconstruction filter could be
unstable causing any transmission error to be amplified
greatly at the receiver., Pirsch [94] investigated the

stability conditions for DPCM coder of multidimensional

_ DP(M-systems and sufficient stability conditions have

been derived both in the signal domain and transform
domain, |
The main impairments in DPCM—syétems are the
granular noise, slope overload and edge busyness [95],
which are intrduced by the quantizer. The noise structure
in slope overload has been investigated by Protonotarias
[96]. Goldstein and Liu [97] who analysed the three types
mof error and approximated equations have been obtained
for each of them for Gaussian input.
Almost commercial quality pictures have been
obtained using 4 bit/pel DPCM coder [98,99], while

acceptable quality can be produced using 3 bit/pel [95].
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1.3.1.1 Adaptive DPCM Systems.

DPCM systems using a fixed optimized predictor
generate a well behaved staticnary differential signal if
the original data is stationary. The stationary
differential signal can be encoded optimally using a
nonlinear quantizer matched to its statistics. However,
when the input signal is non-stationafy and the predictor
parameters are fixed, a non-stationary difference signal
is the result. Optimal encoding of the non-stationary
difference signal then requires a variable quantizer
which would change to accommodate the variation in the
difference signal.

In designing an adaptive DPCM system one must
either use a predictor with variable parameters such that
the parameters would change with the variation of thé

, input signal (adaptive prediction), thus generating a
stationary difference signal, or one can use a fixed
predictor with a variable quantizer (adaptive
quantzation) to accommodate the resultant non-stationary

difference signal, or using a combination of both.

L.3.1.1.1 DP(M Systems with AdaptiVé Quantizers

" Let us assume a predictor which uses weighting of
adjacent samples either in the same line or a combination

of samples in the same 1line and the line just above it.

- 32 -



Since the input signal is nog—stationary, the difference
signal will also be non-stationary and therefore the
quantizer must be nonlinear and adaptive to match the
statistics of the difference signal. Ready and Spencer
[160] have suggested an adaptive signal encoder called
block—adéptive DPQOM in which a block of M samples is

stored and each sample is predicted using two dimensional

fixed prediétors. The errors are encoded by N possible

quantizers, For each quantizer the mean—square'error for
the block is calculated at the transmitter. The quantizer
which gives the smallest distortion is used and the
quantized errors are transmitted. The system requires
(log2 N)/M binary digits per sample overhead information
for receiver synchronisation.

In fact, they used fixed quantizer and N different
pre-specified scaling factors to scale the difference
signal before the quantization. The quantizer output must
be rescaled by inverse factor prior to the predictor.,
They used a block of 16 samples with four possible
scaling constants. They reported an improvement of 36%
reduction in bit rate over a similar nonadaptive system.
Brown [101] described DP(M system with quantizer whose
quantizing range expands whenever the amplitude of the

input signal exceeds a predetermined threshold. In this

| system the information that the quantizer has switched to

the expanded range is communicated to the decoder by the
transmission of an additional code word. This sliding

-scale direct-feedback PQM coder makes it possible to
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reduce the quantizing effects, such as the overload and
edge busyness. The drawback .of this system is that the
uniform output bit rate of DPCM coding is interrupted by
the insertion of the switching code words, thereby making
buffering necessary. Musmann [192,103] and Lueder [104]
proposed a DPQM coder in which the quantizer be switched
as a function of 'previously reconstructed picture

elements, This solution does not require switching

information to be communicated to the decoder and the

uniform output bit rate is maintained.

Cohen [1¢5] and Kummerow [106,107] determined the
improvement in the signal-to-quantizing noise ratio of
video signals that can be achieved with a switched
quantizer. They reported an improvement bj 3-4 . over
the standard DPQM. |

For better picture quality, quantizers should be

designed on the basis of psychovisual criteria [168-113].

Adaptive systems using these quantizers have been also
described [114-116].

Prasada et al. [114] have reported a procedure of
reassigning the input levels of the quantizer to

different representative output levels in such a way as

to reduce the entropy of the quantized output. The

visibility of the resultant quantization néise is kept
below a certain specifiéd threshold. They make use of the
spatial masking effect défined as a reduction in the
ability of a person to visually discriminate amplitude

errors which occur at or in the neighbourhood of
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significant spatial changes in the luminance. Another
adaptive quantization process has been described by
Prasada et al. [115] where the prediction error is
multiplied by a constant which depends upon the 1local
properties of the picture element surrounding the picture
element being coded. The constant is chosen to make the
visibility of the quantization noise approximately

uniform throughout the picture. With a two dimensional

predictor and this process, a good quality picture can be

achieved by using 8 or 19 quantizer levels.
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1.3.1.1.2 DPCM Systems with Adaptive Predictor.

Adaptive prediction systems for images were
proposed first by Graham (85] and later by Connor et al.
[87]. Both of these systems used intraframe switched
predictors which based their prediction on previous
pixels in the neighborhood of the pixel to be coded.
Zschunke [117] has suggested an adaptive contour
prediction technique. Here the information on contour
directions derived from neighbouring picture elements is
used to select a suitable prediction value for the aétual
sample. Zschunke used estimated of the contour direction
from the previous picture elements for the contour
adaptive DPOM system. The location of contour points and
the contour gradients or area brightness levels are
required to be transmitted in Zschunke' system, He also
used . switched quantizer along with the adaptive
prediction. He reported that a bit rate of 3 bits/pel
gave acceptable results.

Another adaptive system was described by Dinstein
and Garlow [118]. In this system each line is partitioned
in M segments. The range of difference signal divided
into three regions, fine, medium and coarse and 3, 6, and
10 bit quatizers respectively were used. Both horizontal
and vertical predictions’ are applied to each segment. For
each “segment the number of bits required to code the
quantizer outputs was calculated. »The prediction that

yields the smallest bit rate for the segment under
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consideration 1is then used for transmission. One extra
bit is transmittéd with each segment to no;:ify the
receiver of the prediction which has been used. The
reconstructed images at 3 bit/pel show no perceptible

degradation.
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1.3.2 Dpelta Modulation Systems.

Delta modulation is based primarly on the
invention by De Jager [119,126]. It is a simple type of
prediction quantization systems and is essentially a
one-digit differential pulse code modulation system,

Fig.l.3.2.1 is the block diagram of a delta modulator.

Transmitter Receiver
Clock
Sampler
Low Sk ek , |Integra-{ [Low
— Dass rd :F- }=iChannel —'—ting —ipass
filter] - ! ' lnetwork filter
comparator
Integra-
ting net-
WO X

»

Fig. 1.3.2.1 Block Diagram of a Delta Modulator.

In this class of systems, the sampling rate is
chosen to be many times the Nyquist rate for the input
signai. As a result, adjacent samples become highly
correlated,

The primary limitations of DM are slope overload,
granularity noise and instabiiity to ch%ﬁnel~errors.
Slope overload occdrs wbenever there is a large jump or
disc;ntinuity in the signal to which the quantizer can

respond in several delta steps. Granularity noise is the

steplike nature of the output when the input signal is
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.almost constant.

| The performance of the delta modulator can be
considerably improved by making it adaptive. The adaptive
Delta modulator (ADM) still remains a simple system even
with the additionél complexity of adaptation to the
signal statistics. The adaptive strategy can be varied or
controlled to suit the signal statistics and therefore
substantial improvements are possible. In the ADM system
shown in fig, 1.3.2.2 each sample is compared with its
estimated value and the difference signal 1is either
positive or negative and sampled at the clock rate to
give +1. The output of the comparator is multiplied by a
constant in the feedback loop and is used as an input to
an integrator. The output of the integrator is an

estimate of the next incoming signal value.

'Sk Clock |sampler
-——.—-[:F‘\ €k
ol
~ '//’////ﬁf
Sk
comparator
+ | stepsize
. generator
Delay
Unit Transmitter

Fig. 1.3.2.2 Block diagram of an ADM Coder.

ADM systems have been designed both for speech

.{121] and video signals [122].
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The most widely used approach is_to change the
step size of the system according to signal variation.
Step size is increased if the polarity of the comparator
ocutput remains thevsame for many clock pulses indicating
a high activity area. On the other hand, if the polarity
alternates indicating low activity area, then the step

size is kept the minimum.

Adaptive DM,

It was pointed out by Winkler [123,124] that the
bit pattern of the output of coder can be used for
detecting the presence of an edge. He made the step size
adaptive depending upon the number of "ones" and
"zeroes"., Thus if the three pulses at the output are
successively of the same polarity, then the step size
with the third pulses is double that of the second pulse.
If two successive pulses differ in ‘polarity, the step
size for the second pulse is half that of the first. The
step . size sequence is 1,1,2,4,8,....,etc, for continuous
strings of @ or 1, or half of the previous step size if
there is a change in polarity.

Bosworth and Candy [125] -carried out "an extensive
subjective testing' programme in order to obtain a

weighting sequence which is acceptable to the observer.

They found that the sequence of 1,1,2,3,5,5...5, with

sequence restarting at every change of code polarity was
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the best. Since the first two steps are always 1,1 at the
beginning, all the flat areas with non—zeio slopes will
be encoded using these steé sizes. On an average,
therefore, 9¢% of a picture will be coded with the
smallest step size. An immediate return of the sequence
to the start whenever a change of polarity occurs, avoids
the use of large step size in flat areas following a step
edge.

Jayant [126] made a modification of the Winkler
weighting sequence by selecting multipliers P and Q for
increasing and decreasing the step size respectively. He
optimized the multipliers from the view point of the
granular noise, the slope overload and the problem of
stability., He concluded that P.Q=1 for reasons of

stability and P=1.5 for optimum performance. Thus if the

step size for the Kth. sample is Ak then

P Ax-1 if ex =ey-1

1/ Ny if ey ¥ey-q

Where eyx is the output of the comparator. Jayant

[126] has claimed an improvement of 1 db. for his system
over the nonadaptive DM for coding video signals.,

A second approach, known as the Song delta

medulator [127] uses the step size of the past sample to

form a step size for the presgnt sample., In this method

the current . step size is generated as
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where D is a constant which is the minimum step
size of the system. In other words, if the previous step
size is smaller than twice the minimum step size, then
the current step size is 2D. On the other hand if the
past sf:ep size is greater than 2D, then the new step size
is 1.5 times or 4.5 times D k-4 depending upon the
history of the comparator output.

This weighting sequence was used for picture
coding by Scheinberg and Schilling [128] and they have
reported satisfactory results at 2 bit/pel. Schilling et
al, [129] have modified the Song algorithm to improve the

video coding at low bit rates. The algorithm employed is:

1A (et egey/2) for D¢ | A xsilg 15D
Ax.(“: 2D.ey for EA.-I(,= D
|_L5D-ek for IAK[=1SD

Instead of a generalized systemb with P and Q
multiplier, Habibi [130] suggested a simple step size
assignmént technique based on the past three outputs of
the comparator. For the eight possible combinations of
the three output bits, he has assigned six step sizes of

tl, #2 and #4. Cawbinations of 116 and 191 are assigned
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the same step size of +1, and similarly @18 and 901 are
assigned -1. Performance of this scheme for coding of
monochromatic signals is satisfactory at rates of 2-3

bits/pel.

Two-Dimensional ADM.

Picture encoding using ADM can be improved
considerably as in the DCPM system, by performing an
estimate of the current sample based on the adjacent
samples in the same line and the line just above it. Lei
et al. ([122] have described a two-dimensional aDM and
have concluded that estimates based on the previous
horizontal and vertical elements, give the best results.
They also proposed a system with look ahead facilities
like the one suggested by Cutler [131] where they take
the effect of the picture element right to the vertical

element into account while estimating for the current

sample,
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1.4

Hybrid Coding

Each one of the two coding methods discussed
previously (Transform and Predictive Coding) has
advantages and disadvantages. The  transform coding
systems achieve superior coding performance at lower bit
rates; they distribute the coding degradation in a manner
less objectionable‘ to a human viewer, and are less
vulnerable to channel noise. The demerits of them are
their complexity in term of both the storage of data and
nutber of operations required. Although the use of large
block sizes removes statistical :edundancy' quite
effectively, it has two distinct disadvantages: 1) it
requires storage of large amounts of data both at the
transmitter and at the receiver, and consequently
produces a delay in transmission, and 2) the accuracy
with which different regions of the image need to be
coded may vary widely within the block, and this makes
adaptive coding (e.g. quantization) more difficult to
accomplish.

On the other hand, DCPM systems, when designed to
take advantage of spatial correlation of the data,
achieve a better coding performance at higher bit rates,
the equipment complexity and the delay to the coding
operation is minimal, and the system aoes not require the
large memory needed in the transform coding systems., The

limitation of these systems are the sensitivity to

picture statistics and the- propagation of the channel
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error on the transmitted picture. Thus the use of
combinatigns of the two coding nethods implies the
advantages of both. This te&hnique is called "“Hybrid
Coding”.

The hybrid system as developed by Habibi [132]
exploits the correlation of the data in the horizontal
direction by taking a one-dimensional transform of each
line of the picture, then a bank of DPM coders are
applied to each coiumn of the transformed data. The DPCM
coders quantize the signal in the transform domain, where
they take advantage of the vertical correlation of the
transformed data to reduce the coding error.

Another version of the hybrid processing is the
application of small two-dimensional block or subimages
of size NxN and the DPCM is used on coefficients of
horizontally previous block.

The two-dimension transformation tends to
decorrelate the samples in each block, whereas the DPCM
exploits the interblock correlation. The transform coding
may be any of the KL, Hadamard, Slant, Fourier or Cosine
transforms.

Habibi [132] evaluated both theoretical and
experimantal results, which indicate that a hybrid system
employing a KL transformation produces a better result
than the hybrid system using any other transformétion. He
also demonstrated the. effect of channel error on the

performance of the hybrid systems and found that the

" inherent propagation error of the DPM systems can be
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reduced considerably by using a value of @.9 for all
prediction coefficients of the DPQM sYstem. This is
because #.9 is smaller than tﬁe optimum values of most of
the prediction coefficients and this causes a shorter
propagation of the channel error in the encoder. He
achieved good picture quality at 2 bit/pel and acceptable
quality at 1 bit/pel.

Ishii [133] showed that the bit rate performance
of hybrid systems using one transform element for
prediction, does not depend on the block size. He has
obtained an acceptable picture quality at 6.5 bit/pel. He
also examined the effect of the channel error and found
that the reconstructed image quality scarcely degrades
even at noisy channel of 16‘4 error rate,

Raoc et al. [134] applied hybrid techniques,
where sample selection and variable bit ailocation are
adapted. They compared the hybrid process with the
two-dimensional transform method in terms of bit rate,
mean-square error, and compatational complexity using
block of 16x16.

Netravali et al. [135] used a small two-dimensio=-
nal block and showed that, if transform coding other than
the optimum (i.e, KL) is used, correlation is still
present between coefficients of the same block, and
therefore, a better predictor can be designed'by using
not only the corresponding transform coefficients of the

previous block but, as well as coefficients of the

-

" present block which are available to the receiver. They

- 46 -



2

1.5

showed that such a system was 25% more efficient in terms
of bits/pel for the same picture quality than predictor
which used the corresponding' coefficient of the previous
block. Experimental and theoretical (Markoff process)
performances have been investigated by Roese et al. [136]
for transform coding using three-dimensional (interframe)
blocks, and hybrid coding employing two-dimensional
(intraframe) blocks followed by DPM in temporal
direction. They showed that the hybrid coder is quite
efficient and does as well as a three-dimensional
transform coder which uses four frames of storage.
Adaptive interframe hybrid coding has also been

implemented [137,138].

Coding of Non-stationary Image Signals

Most techniques of image bandwidth reduction
incorporate a single source model for overall image
signal behaviour. Wide-sense stationarity form the basic
assumption of many transform or _ predictive coding
tecﬁniques, where the wide-sense stationary parameters
are the mean and autocorrelation function [139].

In general, picture signal is highly non-statio-
nary and the local. statistics vary considerably fram
region to region. Breaking the image up into blocks of
size nxn and calculating the mean énd autocorrelation

.

function within each block, yields means and auto-
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correlation functions which change from block to block.
This fact reduces the efficiency of nonédaptive coding
techniques significantly. Hunt- [140] proposed the use of
non-stationary statistical image model and discussed
prospects of transforming a non-stationary image model
into a stationary one. Stricklard [141] developed a
transform for producing images with wide-sense
stationarity.

Another approach for treating non-stationary
image signal, is to consider the image signal as the
output of many sources each tuned at certain type of
statistics [142~144] and the sources are coded
separately. Yan and Sakrison [142] considered a two

components model in which the vertical edges (or the high

frecuency components) are treated as one component and

the fest (texture details) are treated as the other
component. They argue that if the edge information is
substracted from the picture signal, the rest of the
signal appears to be close to a Gaussian process and,
therefore can be efficiently coded by using one of the
earlier mentioned coding techniques.

| Mitrakos and Constantinides [144] presented a
coding technique which provides a full control on the
distortion in the reconstructed picture and on the
transmission rate required. They partitioned the'picture
in two components. One represents the variation in the
local background (C-component) and 1is entropy coded. The

other which represents random variation in the -texture (e
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—component) has approximately a Gaussian distribution and
is transform coded. |

Compared to ordinafy transform coding, for the
same mean-square error this method offers several choices
in terms of the subjective quality of the receiver image.
However the complexity of the algorithm is increased
substantially compared to other adaptive transform coding

methods,

Data compression: The way forward.

Transform coding and predictive coding have been
extensively researched by many authors, who have found
that the performance can be improved by different
adaptive algorithms. Although transform coding is
considered to achieve the best compression and the
distortion that arises from this technique is found to be
visually less objectionable than that for predictive
coding, the complexity of the computation makes it
unattractive for the majority of applications. Predictive
coding, though, gives high distortion and low immunity to
channel noise, however, its simplicity and relative ease
of implementation, make it the most popular coding
technique. Both coding schemes, due to their inherent
properties, are mainly used in picture and speech coding
coding and are not universal algorithms in the sense,

-

that they are not applicable to all kinds of data.
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Moreover, they are not noiseless algorithms, which means,
that the output data is always subjecﬁ to error.:Thus,
there is a need to unify thé approach to the compression
of images, speech and other similar data. Such a scheme
is desirable, in order to meet the requirement of modern
data communication links. The objective of this work is
to introduce a coding system, which satisfies the above

requirements. The Thesis is divided into  six chapters.

After a brief review of image data compression in chapter

one, a detailed study of DPCM and its performance from
different aspects is discussed in chapter two. New
adaptive approaches for improving the performance of DPCM
systems are proposed and experimental results given in
chapters three and four. A novel procedure using a
hierarchic tree structured Hadamard transform is proposed
in chapter five. This coding algorithm is flexible in the
sense that it can be used for error-free coding if
desired or for high compression whenever some noise is
acceptable. An unified data compression strategy is
introduced in chapter six, based on the learning automata
and Huffman coding. This algorithm . is shown to be
universal and to satisfy the requirements of data links

using visual, audio, alphabetic and numeric data.
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2.1

CHAPTER TWO

Linear Predictive Quantizing System

Introduction

This chapter presents an.analysis of differential
pulse code modulatioﬁ (bPCM). An optimum system for three
pictures with different statistics was designed, and
simulated on a computer; its performance was investigated
for different types of predictor, The performance
measurement 1is based on the mean square error, the
density function and the spatial distribution of the
differential signal. The design procedure is given in
Appendix I.

The quantizer characteristics are determined to
give, subjectively good picture quality and its mean
square error performance is compared with that of a Max
quantizer matched to the statistics of the differential
signal.

Of practical value is the non-optimum (unmatched)
systems, This system 1is also simulated and its

performance subjectively and objectively is evaluated.
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The Predictor

In DPCM image' coding systems Fig.2.2.1, the
predictor uses the statistical predictability between
pixels to form an estimate of each pixel as a linear
combination of previous pixels; where "previous pixels"
is a term that has direct meaning in the context of
top-to-bottom, left-to-right scénnipg, which imposes a
specific sequencé on pixel occurence. Fig.2.2,.2 shows
the elements location for interlaced case (T.V. signals)
and non—interlaced case (facsimile signals).

The samples S1, S2, - - —,5n need not be the most
recently transmitted ones and they need not be in any
particular order. They are simply n samples values which
have been transmitted in the past. Fig.2.2.2 shows some
sample values which can be used to form a reasonably good
estimate of (So). Such an estimate would be

A

So = ao+atSl+a2S2+a3S3+aqS4+asS5+ ~—- + apSn (2.2.1)

‘for convenience, the signal mean is subtracted from the

signal, so the signal we deal with is =zero mean.
Therefore the d-c term is eq.(2.2.1) will become zero and
the estimate is given as

~
So = a{Sl+anS2+a3zS3+agS4+agS5+ —- + apSn (2.2.2)

-

where a's are chosen to satisfy eq. (I-21lb Appendix).
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The number of previous pixels employed in the
estimate operation, forms the predictor order. Predictor
using one pixel is called "first order predictor™. A
"second order predictor" utilizes two pixels and an "nth.
order predictor" would employ n previous pixels.,

The location of the previous pixels used by the
predictor, .determines the predictor dimensionality.
Prediction using only pixels along the same line as the
pixel to be estimated is assigned as "one-dimentional
prediction" whereas a "two-dimentional predictor" uses
pixels from the current line as well as from the previous
lines. Predictive coding using pixels from the current
frame is called "intra-frame predictive coding".

It is possible to extend the technique of
predictive coding to exploit also the correlation
existing between pixels of succesive frames as in T.V.
signals. This technique is called "Inter-frame predictive
coding". For scenes with low detail and small motion,
interframe prediction appears to be the best and can
achive a lqw bit rate (1 bit/pixel) [145]. The drawback
of interframe prediction is the large amount of frame
storage required,

A standard DCPM coder, which utilizes the
previous scanned pixel (S1) along an image line as the
basis of its predictioﬁ of So, is éften-referred to as
"previous-s;mple_feedback system™, and according to the
definitions abové, this is a one-dimensional, first order

predictor. The estimate is given as
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go = alsl : (2.2.3)
where aq,according to eq. (I-21b Appendix) should be
RAL/R11 = R(Zil/()‘2 ; the correlation between adjacent
sample points divided by the mean square value of the
input sequence. A second-order predictor would utilize
the two previously scanned pixels along a line (S1 and
S5) (one-dimensional predictor), or perhaps the previous
pixel along the line (S1) and the nearest pixel from the
previous 1line  (52) (two—-dimentional predictor). A
third-order predictor might employ (Sl; SZ, Sé) (two -
dimensional predictor) as the basis for its prediction.
In this case

A

So = a1S1l+azS2+a3s3 (2.2.4)

) The pixel measurements that should be employed
for minimum coding error correspond to the pixel
neighbours with the highest statistical correlation to
the pixel to be estimated. Habibi [90] shows that the
coding error reduction diminishes rapidly for more than
third-order prediction system,

The difference between the actual value (So) and

its estimate (So) is called the prediction error (do).
. .
do = So - So (2.2.5)

The prediction error (do) is quantized to (do)
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and the quantized value 1is then added to the estimate
value §o to produce a quantized version (éo) of the input
(So) .
S0 = 8o + do - (2.2.6)
This sampled version is fedback to the predictor for
estimating the next sample.

The difference between the prediction error and
its quantized value is the quantization error (eo), by

which the quantized version So differs from the input

value (So0), thus

do - do (2.2.7)

8

So + eo (2.2.8)

2}
(o]
]

It must be noted that the quantized prediction error (55)
is the quantity that is coded and transmitted. The DPCM
systems achieve compression from the differencing step,
since the prediction error will have a much smaller
dynamic range than the original signal. The expression
19 log100' 36: may be | thought as the amount of redundancy
removed ~from the signal, where @ 2. and 55 are the
variances of the input signal (So) and the difference
signal (do) respectively. The shape of the ‘amplitude
density of the prediction error (qﬁantizer input) is of
foremost importance in"designing an optimum quantizer.
Fig.2.2:3 shows a typical amptitude density function of
the prediction error, which iéhnormally approx imated by

Laplacian distribution.
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Quantization of Prediction Error

Any analogue quantity that is to be transmitted
over a digital channel must be represented as an integer
nurber proportional to its amplitude. The conversion
process between analogue samples and discrete-valued
samples is called quantization which is always combined
with the error called quantization error. In the
predictive coding systems the analogue quantity, the
prediction error, is fed to an analogue-to-digital
converter (quantizer) to produce a digital format.

1f the input to the quantizer in Fig.2.2.1 is do,
then its output is éo = do + eo, where eo 1is the
quantizing noise. Since the receiver forms the decoded
?utput by adding doteo to the estimate go , the
quantizing noise_ in the decoded output is also eo.
Minimizing the quantization noise in the decoded output,
therefore is equivalént to minimizing the RMS (root mean
square) - value of noise coming out of the quantizer.

In DPQM systems, the subjective effect of a video
observer can be taken into account and the spectrum of
the noise is shaped accordingly.v'It is knowﬁ that the
eye 1s more tolerant of noise located at black-white
interfaces than in.flat régions, where the perception is
high. Interfaces are characterized by large values of

difference signal and flat regions by small values. The
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quantizer, therefore, must have a fine structure for low
level difference signals (flat regions) and a coarse
structure for large difference signals (interfaces). This
can be accomplished through the use of a nonlinear
quantizer, whose characteristics are depicted in
Fig.2.3.1.

Different types of degradation can be seen due to
improper design of the quantizer of a DPCM coder. These
are ieferred to as granular noise, edge busyness and
slope overload as shown in Fig. 2.3.2.

If the inmner levels (for small magnitudes of
difference signal) of the quantizer are too coarse, then
the flat areas are coarsely quantized and have the
appearance of random noise added to the picture (granular
noise). On the other hand overload noise occurs when the
signal to be quantized 1is outside the range of the
quantizer. When the prediction error (d) is near a
decision level (di), any fluctation (source noise and
granular noise) makes the quantizer output oscillate
between (éi) and di+1l and may change from line to line or
frame to frame, giving the appearance of a busy edge.

Quantizers can be designed on a statistical basis
or by using certain psychovisual measures.

Experimental results indicate that for most
typical pictures the ;robability density function of the
differénce signal is a two sided exponential [86]. For
such a function it is possibié to perform non-linear

quantization by a companding operation [146], in which
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the non-linear probability function p(d) of the error
is first nonlineérly transformed to uniform density
followed by uniform quantizer, then an inverse non-linear

transformation is applied on the quantizer output.
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Fidelity Measures

Techniques commonly employed for image data
compression result in some degradation of @ the
reconstructed image. A widely wused nmeasure of
reconstructed image fidelity for N x N size images, is

the average mean-square error defined as

=—L>N: iE(Si 5= 8i,9) | (2.4.1)
NN 4= § ! ! T

where {Si,j} and {§i,j} represent the N x N original and
reconstructed images, respectively. Experimentally, the
average mean-square error is often estimated by the

average sample mean-square error in the given image

defined by
r LR L,
=§“‘ZZ (Si,j- Si,3) (2.4.2)
I:

Therefore two definition of the term "signal to noise
ratio" (SNR), that are used to the above error. These are

defined as

2
(1) SNR=1010gm((Peak value of original data) /an?s)db

(2.4.3)

2 2
(2) SNR = 10 10916(0'/@15) db (2.4.4)

2 .
ylzhered‘ is the variance of the original data. Although

the second definition of SNR is more widely used as a
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measure of SNR in signal processing, the first definition
is more commonly in image coding fieid.

Several visual fidelity measures for images,
which have to be evaluated visually, have been suggested
[147] such as weighted mean square error of contrast.

We will use in our evaluation the definition in

eq. (2.4.3) for SNR measurement.

Experimental Procedure

The image world is classified in three classes,
1) images with large amount of detail; 2) images with
moderate detail and 3) images with small detail., Each
class is represented by a member, so a small ensemble of
three images is formed. The images are scanned to form
256 lines then each line is sampled uniformly to form 256
picture elements. Thus, each image forms an array of
256 x 256 pixels. The intensity of each picture element
is digitized.to 7 binary digits (128 gray levels) and
stored on a magnetic disk. The images are shown in Fig.
2.5.1, where picture A 1is low detailed, B is moderate
detailed and picture C is high detailed. |
For the pattern shown in Fig. .2.2.2b the
correlations between So and Sj for normalized picture
elements are listed in téble 2.5.1.
In standaxrd DPCM using the previous horizontal

pixel S1, the first colum has to be transm@tted directly
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as the known conditions upon which the predictions are
based. For predictors using the previous vertical pixel
S2, the first row has to be transmitted and for
predictors using S1, S2 and S3, the first column and the
first row have to be transmitted as the known condition.
In the system to be considered, a column of zeros has
been added before the first columm for the predictor
making use of the previous horizontal pixel S1, a row of
zeros ahead of the first row for the predictor using S2
and a row and a colum of zeros when using S1, S2 and S3
as the known conditions upon which the predictions are
based (Fig. 2.5.2). Since the d.c. temm does not contain
any information, the mean value is subtracted from each -
picture element to obtain an array of zero mean. The
value of prediction weighting coefficients Ai for optimum
predictién are determined by calculating the covariance

matrix and solving this matrix for Ai. i, e,

R11 R12 RI3 - - - Rln al Rol
R21 R22 R23 - - - R2n A2 Ro2
R31 R32 R33 - - =~ R3n A3 Ro3
- X|=- |=1 - (2.5.1)
Rnl Rn2 Rn3 - - - Rmn An Lgon
L . T .

where Rij = E {Si.Sj} is the correlation between the ele-
ments Si and Sj with the equality Rij = Rji. The matrix
above represents the simultaneous linear equations of eq
(I—Zib) in matrix form. Table 2.5.2 lists the weighting

coefficients for various predictors. All predictors shown

- 61 -



A

in the table for all three images were simulated on the
computer and the theoretical and actual MS values of the
prediction error (without the quantizer) are calculated
and listed also in the table 2.5.2. For all predictors
the theoretical values agree well with the actual values
as can be seen from the table.

In order to determine how effective are the
predictors in removing the redundancy, the values of
20 log, 6 / Oy are computed, where 62 and Gdz are the
variances of the original image and the prediction error
respectively. The table shows that the mean square
prediction error decreases significantly with increasing
order of predictor up to third order (two dimensional)
and further decreases using more than three pixels, are
rather small. The results agree well with Habibi's
conclusion [89]. This because S1, S2 and S3 or S1, S2 and
S4 provide almost all the information about So and once
these pixels have been uéed, there is little advantage in
using others. Ccmparing the MS value of p:edictors 3 and
4 with that of predictor 5, shows that the two-
dimensional predictor is superior to predictors using
only pixels on the same line or same colum as the pixel
to be coded. Figs. 2.5.3 and 2.5.4 show the histogram of
the prediction errors resulting from first order
predictor employi;g S1 and third order predictor
emplgying S1, 82 and S3 respectively. In both cases, the
density functions can be appfoximated reasonably well by

a Laplacian function. The curves were found by rounding
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the error samples to the nearest integer values in the
range -127 to 127 and finding the numbef of samples for
each value. Also using predictors higher than third order
does not change significantly the shape of the amplitude
distribution of the prediction error. The error histogram
obtained using predictor 6 (third order) and 14 (seventh
order) for scene A is shown in Fig. 2.5.5. The equivalent
histogram for scene C is shown in Fig. 2.5.6.

To evalulate the effectiveness of predictors, it
is important to base the evaluation not only on the
prediction mean square error and the density funtion but
also on the spatial distribution of the error. Fig. 2.5.7
shows the prediction error of scene A for a first order
predictor using the horizontal‘pixel S1. This predictor
estimates the horizontal edges very well, as can be seen
at the top of the head and thé face, but can not predict
the vertical and inclined edges (see the left and the
right side of the head and the shoulders). Here the black
shape is a large negative error which occurs at white to
black transitibns and the white shape is a large positive
error which occures at black to white transitions.

On the other hand, vthe first order predictor
using the vertical pixel S2 predicts- the vertical edges
reasonably well but‘ it produces a large error at
horizontal and inciined.edges (Fig. 2.5.8). Using higher

order predictors which employ only pixels along the same

. line or the same colum are not much better than first

order predictors above as illustrated in Figs. 2.5.9 and
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2.5.10.

The spatial distribution of the prediction érror
can be improved by using two-dimensional predictors. Fig.
2.5.11 shows the error of scene A for two-dimensional
second order predictor using S1 and 82, It is easy to
see that this predictor is better than the one -
dimensional predictors, Further hnpfovement can be
achieved by involving S1, S2 and S3 (third order) in the
prediction of S@. Fig. 2.5.12 demonstrates the error
spatial distribution of scene A of the third order
predictor.

Here again, as in the MS error, the improvement
in the prediction error by using more than a third order
predictor is not significant, since S1, S2 and S3 provide
all the information about So. Fig. 2.5.13 shows the
prediction error of a seventh‘order predictor (predictor
10 table 2.5.2).

Figs. 2.5.14 and 2.5.15 illustrate the prediction
of third and seventh order predictors respectively of
scene B, and Figs. 2.5.16 and 2.5.17 of scene C.

The minimum value of prediction error coming out
of the subtractor is set to @ and the maximum value to
127. All values between the minimum and maximum are then
linearly scaled and rpunded to‘fhe nearest integer number

and displayed on the monitor,

- 64 -



A

2.6

Determination of the Quantizer Characteristics

As mentioned earlier, the error in the
reconstructed image (assuming an error free chanel) is
the quantization error only. Most techniques use the MSE
as their criterion and try to minimize it. Unfortunatly
the MSE does not match with the visuai impact on the
human eye. There are many examples which show that a
picture with large MSE can be excellent in quality or
that a picture with small MSE is objectionable to human
eyes. In fact, a picture of good quality ana a picture
with small MSE are two different things. Thus we will
base the quantizer design on the picture quality, where
the word "quality" means the subjective quality (i.e.,
the quality according to subjective judgment made by
visual inspection). Nevertheless, smaller MSE is
desirable provided that the reconstructed picture is of a
good quality. Granular noise and slope overload are the
most annoying errors introduced by the quantizer.
Granular noise .appeares as random noise added to the
picture. Loss of resolution is a Fesult of Ehe slope
overload, Since most important structures are located in
highly varying areas, any loss of resolution would
introduce very obvious degradaéion to the reconstructed
picture. However, “the noise like errors are much more

tolerable. For the smooth areas, loss of resolution is

_hardly noticeable, but any noise - like errors will be

very obvious.
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Quantizer characteristics determined by Max
procedure  for minlmum mean square quantizing error
produces in general large overload-effects and degrades
the edges. For small differences unnecessary close levels
are assigned.

A better quantizer is that, whose levels are
determined to reduce the edge degradation in highly
varying areas and at the same time keeping the noise in
the smooth area under the Qisual level. For a 3 bit,
quantizer and third order optimum predictor this design
starts by determining the two inner levels, adjusting
them untill the noise in the smooth areas is just
noticeable. Then the remaining levels are varied to
reduce the degradation in highly varying areas. Table
2.6.1 lists the 3 bit quantizer levels along with the Max
quantizer matched to the variance of the prediction
errors for a Laplacian distiibution for all three images
of Fig. 2.5.1. The encoded pictures show less degradation
than with Max qgantizers. Even so the signal peak squared
to quantizing noise ratios were better by 1-2 db.

Another way to see the quality of the reproduced
images is by displaying the difference between the
originals and the reproduced images. The error signal
shows that these quagtizers have produced less error than
Max quantizers. “Figt 2.6.1 shows the original, the

encoded image by Max quantizers along with the error

signal and the reproduced image by the design quantizer

along with its error signal for picture A. Figs. 2.6.2
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2.7

and 2.6.3 show the same for scene B and C respectively.

-Side by side coﬁparision of the reconstructed
images with the originals shows that the reconstructed
images can be easily substituted for the original. A
third order predictor with S1, S2 and S3 was used.

Also the 2 bit quantizers have produced
reasonable pictures without recognisable noise except in
scene C in which some noise was introduced in highly
varying areas but was not noticable except by side to
side comparision with the original at short viewing
distance, Fig. 2.6.4 shows the reconstructed images with
2 bits quantizers, whose characteristics are listed in
table 2.6.2. Here the signal to quantization noise level
has been considerably improved compared with the Max
quantizer. The improvement was 4.6 ¢b for picture a, 3 db
for picture B and 1.9 d for picture C. The quantizer
thus designed are optiumum. Table 2.6.3 illustrates the
resulting signal peak square to MS quantizing error (see

eq. (2.4.3) ) for three bits and two bits quantizers.

Urmatched Systems

The results considered so far are oEtained by
measuring the correlation among several points in a
picture and then using these in designing the DPOM
systems. That is, based on the statistics of the data, an

optimum predictor and an optimum non-linear quantizer are
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designed. Changing the input data in general degrades the
performance of the DPCM s&stem since the predictor and
the quantizer will no longer be optimum.

Indeed, the performance of the ummatched systems
is of practical value since in practice the DPCM system

is designed based on some average statistics and will not
be optimum for each particular picture.

To evaluate the performance of unmatched systems
iﬁ encoding a picture, a second encoder must be designed
which is optimum for encoding that picture.” Then the
difference in performance of the optimum and non-optimum
will be. a measure of the sensitivity of an encoder to
urmatched statistics. We choose the system optimized for
encoding picture B to encode the pictures A aﬁd C. The °
reason for choosing system B is, because picture B is of
moderate detail and there is no high difference bétween

its statistics and the statistics of picture A (low
detail) or the statistics of picture C (high detail). The
lreconstruced images are shown in Fig. 2.7.1, which show
no noticable degradation or noise. The signal to
qﬁantization noise ratio is degraded by 2.1 & for image
A, where no change in the SNR of image C.

When system A is used to encode piture C, some
degradation was poticable. This 1is because fhe dynamic
range of the quantizer of system B is not large enough to
accomadate the large difference signal. The signal to

noise ratio was degraded by 3 db. On the other hand when

system C is used to encode picture A, noise was just
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visible in the smooth areas because the quantization
levels are too coarse. The reduction in the signal to

noise ratio was about 4 .

Experimental Results

Three pictures of different stastics were coded
using the DPCM system. Various orders of predictor have
been designed to match the statistics of the ihput data.
The prediction coefficients for optimum predictors are
listed in table 2.,5.2 and all the predictors for all the
three pictures have been simulated on the computer. The
performance of the predictors with respect to the
prediction MSE is also tabu‘lated. on table 2.5.2. The
density functions of the prediction error for first and
fhird order for all pictures are shown in Figs. 2.5.3 and
2.5.4 and a comparison between  third order and
seventh-order predictors for pictures A and C is shown in
Figs. 2.5.5 and 2.5.6. A display of the prediction error
is shown in Figs. 2.5.14 - 2.5.17.

Quantizers are primarly designed for subjective
quality of the reconstructed -images and the qpantization
mean square error is considered as secondary outcome.

. The practical” case of the ummatched system is

also simulated and the results are shown in Figs. 2.7.1.

- 69 -



At

Discussion and Conclusion

The three pictures used in the experiment can be
considered as a representative of the image world. The
statistics of the real time images will in general not
differ substantially from these three pictures. The
comparative performance of the differential PCM system
for various predictors shows that the prediction error in
respect of MS, shape of the density function and the
spatial distribution is improved with the increase of the
predictor order up to third and further improvement is
rather small_ in using more pixels than three in the
orediction, This is because, three pixels like S1, S2 and
S3 provide all the information about So. ’

The values of the MSE listed in table 2,5.2
support this result, Figs. 2.5.3 and 2.5.4 show the shape
of the density funtion of first and third order
predictors respectively. The functions at zero level are
more highly peaked for third order predictors than first
order. Figs. 2.5.5 and 2.5.6 shows a comparison between
the density functions of third and seventh order
predictors, which shows that there is no gain in using a
higher order than third., Figs. 2.5.7-2.5:17 display the
prediction error far various predictors. It is easy to
see the improvement in. the appearence of the prediction
error from. first to second and third order predictor.
Higher order predictors using pixels along the same line

or on the same column are not much better than the first
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order predictor, since using horizonfal pixels only does
not provide information ébout vertical edges and using
vertical pixels does not provide the information about
the horizontal edges. Two-dimensional predictors are
preferable to one-dimensional predictors.

Even though the quantizers were designed for
subjective quality, the quantization MSE has been reduced
compared with the Max quantizers. For the unmatched
statistics the performance of the DPM does not
deteriorate significantly when using the system which was
optimized for a particular image, to encode a second
image with similar statistics to the first. This was
illustrated by using the system optimized for picture B
to encode pictures A and C. However if fhe input
statistics differ significantly fram the statistics for
which the system is designed, the reconstructed image
will be degraded. The coding system optimized for picture
A is used to encode picture C and slope overload-effects
have been cbserved. When the system of picture C is used

to encode picture A, granular noise occurred.
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Fig.2.2.2 Location of picture elements, (a) interlaced, (b)
non-interlaced.
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Fig,2.2.3 A typical histogram of differential signal (prediction
error).,
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(c)

(o)

Fig.2.5.1 The original images
of 256x256 pixels and 128
gray levels , (a) low detail,
(b) moderate detail, (c) high
detail.
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Fig.2.5.2 AGding zeroes as known conditions.
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Table 2.5.1 Correlations between So and Sj for the pattern
shown in Fig.2.2.2.

Picture A

ﬁﬁl =0 ,9803
RO2 =@.9881
‘ RE3 =0.9699
.R24 =0.9681
RO5 =6,9531
RO6 =3,9432
RO7 =0G,9415
RE8 =0.9695
RO9 =9.9514
ROLG=0.9498
RO11=3.9221
RI12=0,9134
RO13=0.9112

R214=9,9274

Picture B

ROl =3,9892
RO2 =0,9730
RO3 =0,9646
RG4 =0,9649
RO5 =8,97@9
RO6 =0,9481
RE7 =0.948¢
RE8 =0,9302

RU9 =¢,9229

RO10=0.9241

RO11=0,9492
RO12=0,9434
RE13=¢,9287

RO14=0,9094
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Picture C

ROL =0.9837
RE2 =0.9775
RE3 =7.9644
RO4 =0.9659
ROS =0.9534
RO6 =0,9366
RO7 =0.,9389
RO3 =0.9421
RE9 =0.9312
RO16=0. 9344
RO11=.9182
RO12=0,9935
RO13=0.90663

RO14=0,9083
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Frequency of oceurrence.
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Fig.2.5.4 Histogram of prediction error. (third order predictor)
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Fig.2.5.5 Histogram of prediction error of .the third and
seventh order predictors for scene A.
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Fig.2.5.6 Histogram of prediction error of the third and
seventh order predictors for scene C.
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Fig.2.5.7 Prediction error Fig.2.5.8 Prediction error
of first order predictor of first order predictor
using S1 (Scene a) using S2 (Scene A)

Fig.2.5.9 Prediction error Fig.2.5.12 Prediction error
of second order precdictor of second order predictor
using S1 and S5 (Scene A) using S2 and S8 (Scene A)
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Fig.2.5.11 Prediction error Fig.2.5.12 Prediction error

of two dimensional second of two dimensional third
order predictor using Sl orcder predictor using S1,S2
and S2 (Scene A) and S3 (Scene A)

Fig.2.5.13 Prediction error of two dimensional seventh order
predictor using S1, S2, S3, S4, S5, S6 and S8 (Scene A).



Fig.2.5.14 Prediction error Fig.2.5.15 Prediction error
of third order predictor of seventh order predictor
(Scene B) (Scene B)

Fig.2.5.16 Prediction errer Fig.2.5.17 Prediction error
of third order predictor of seventh order predictor
(Scene C) (Scene C)
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Table 2.6.1 8-level cquantizer characteristics, (a) of picture
A, (b) of picture B and (c) of wicture C.

(a) Determined quantizer Max. quantizer

Decision Recontructed Decision Recontructed

levels ~levels levels levels
127.69 13,00 127.09 4,99
10.29 7.09 3.78 2.66
S5.90 3.00 1.99 1.32
2.20 1.00 g.84 8.37

.09 .99
(b)y 127,00 22.00 127.60 7.68
17.99 12.09 5.86 4,12
9.00 6.99 3.19 2.19
4.00 2.09 1.31 .58

g.09 7.00
(c) 127.020 29.00 127.90¢ 9.40
23.00 17.90 7.25 5.10
13.00 9.80 3.82 2.54
6.99 3.00 1.63 g.71

g.00 ' .00
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Table 2.6.2 4-Level quantizer characteristics.

Picture A Picture B Picture C
Decision Recons- Decision Recons- Decision Recons-
level tructed level trucred level tructed

level level level

127.00 8.99 127.0¢ 13.09 127,900 17.09
5.90 2,29 8.00 3.09 11.09 - 5.00
2.00 g.90 g.00

2
Table 2.6.3 (Peak to peak) to MS quantization noise (db) (see

Eq.2.43).
Picture A Picture B Picture C
Deter- Max. Deter- Max. Determ- Max.
mined quantizer mined <cuantizer mined guantizer
duan- quan- guan-
tizer tizer tizer
3 bits 47.7 45.8 44.5 42.5 42,5 41.5
2bits 41.6 37.9 - 38,4 35.4 36.9 35.9



Fig.2.6.1 Third order
predictor and 3 bit quantizer
(a) original image, (b) and
(c) error signal and
reconstructed image using Max
quantizer, (d) and (e) error
signal and reconstructed
image using subjective
quantizer.




Fig.2.6.2 Third order
oredictor and 3 bit quantizer
(2) original image, (b) and
(c) error sicnal and
reconstructed image using Max
cuantizer, (&) and (e) error
signal and reccnstruct

image using subjective
quantizer.




Fig.2.6.3 Third order
oredictor and 3 bit cuantizer
(a) original image, (b) and
(c) error signal and
reconstructed image using Max
quantizer, (d) and (e) error
signal and reconstructed
image using subjective
cuantizer.

(d) (e)

Sl



(e) (f)

Fig.2.6.4 Third order predictor and 2 bit quantizer. (a), (C)
and (€) original images, (b), (d) and (£f) reconstructed images

“ O



(c) (d)

Fig.2.7.1 Reconstructed images for unmatched system (a) and
(c) criginal images, (b) and (c) the reconstructed images
using the system optimized for coding the picture B.



3.1

CHAPTER THREE

Differential PCM with Asvmmetrical Quantizer
Characteristics

Introduction

With the aim of reducing granular noise and slope
overload noise, a new coding system is proposed in this
chapter. This system is adaptive quantization with
backward estimation, in which the quantizer
chaiacteristics are shifted to one side or another,
depending on the quantizer output given by the previous

horizontal and vertical pixels. After presenting the

" principle of adaptive quantization and a brief review of

some related systems, the motivation for the proposed
system is demonstrated by comparing the response of the
fixed quantization system with that of the adaptive
quantizer for rectangular and sloped edges. Then the
principal of the system is described.

Improvement in the quantization noise level for
the proposed system“ is shown by computer simulation, and

compared to the non-adaptive system performance.
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3.2

Principle of the Adaptive Quantization Systems

It was 1illustrated in the 1last chapter that
unmatched DPC/ systems normaly degrade the reconstructed
images. This is because, pictures usually have varying
statistical structures, both from image to image and from
region to region within an image. Even though a system
may be designed to be optimally matched to the overall
structural properties of a given image, it would often
not be optimal for subimages due to local variations
within the image.

Thus, one would expect to improve coding
efficiency by adapting the coding strategy to satisfy the
requirments above. If the predictor parameters are fixed,
the guantizer must continually adapt to changes of signal
statistics. This is called "adaptive quantization". The
basic idea of adaptive quantization is to let the step
size (or in general the quantizer levels and ranges) vary
to match the variance of the input signal. An alternative
point of view is to consider fixed quantizer
characteristics preceded by a time varying gain which
tends to keep constant the varying gain which tends to
keep constant the variénce of thé quantizer input. In the
first case the stepu sige should follow increases and

decreases of the variance of the input. In systems with

.nonuniform quantizaticn, this would imply that the

quantization levels and ranges would be scaled linearly

to match the variance of the signal. In the case of



varying gain, which is applicéble without modification to
both uniform and nonuniform quantizers, the gain changes
inversely with changes in the variance of the input to
keep the variance of the quantizer input relatively
constant. In either case, it is necessary to obtain an
estimate of the time varying amplitude properties of the
input signal for control of the quantizer.

There are two classes of adaptation, depending on
the estimation technique. In one class, the amplitude or
variance of the input is estimated from the input itself
and the system is called "DP(M with forward adaptive
quantization" Since the quantizer input (difference
signal dn) is proportional to the input signal, it is
reasonable to control the step size or the gain from dn
or as depicted in Fig. 3.2.1, from the input Sn.

In the other class of adaptive quantizer, the
step size or gain is adapted on the basis of the output
of the quantizer én, or equivalently, on the basis of the
output code words Cn (Fig. 3.2.2). This is called "DPCM
with backward adaptive quantization".

In forward adaptation, it will be necessary to
send side information about the gain or the .step size to
allow the receivernto,decode the signal. In the backward
adap?ation, all necessary information is contained in the

transmitted sequence.

. Jayant [148] discussed a backward adaptive

quantization system for speech and picture signals. For

every new input sample, the system adapts. the step size



based on the previous step size and previous quantizer
output. In other words, the present step sizé is given by
the previous step size multiplied by a factor, which
depends on the code word magnitude of the quantizer
output.

Zetterberg et al.[149] used the Jayant system to
adapt the gain instead of step size. Here, for every new
input sample, the system controls the gain, which is
given by the last available gain muliplied by a factor
that depends on the previous quantizer output. Zetterberg
extended the algorithm to tWo dimension by applying the
above rule both horizontally and vertically. He also
described an adaptive system with forward gain
estimation. In this system the image is divided into
blocks and for each block the gain is estimated from the

“block elements. Here, overhead information about the gain
must be transmitted. To reduce the overhead information
the gain is classified into four intervals and to each
interval, a prespecified gain is assigned, which required
additional information of 2 bits per block.

Mussmann [103] presented a switched quantizer
with forward estimation which does not require side
information and has constant code word length. Thé.system
used not one quantizer as in standard DPCM but several
diffe;ent quantizers froﬁ which, for every new sample,
one is chosen for quantizing *the different signal, To
explain this coding algorithm, let So in Fig. 2.2.2 of

chapter two be the amplitude of the next picture element

-
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to be quantized and coded. The previous elements S1, S2,
53, 5S4 and S5 are known to the tranémitter and receiver,
and each may take any of K possible values (K is the
nurber of grey-levels). Any special combination of
previous elements, say| s1-s4| will form what is called
the "control quantity". To each value of the control
quantity is assigned a quantizer, which is in general the
best for quantizing the prediction error of So associated
with that control quantity. Because the number of values
that the control quantity can take, is large, the control
quantity is divided into limited ranges and so the number
of quantizers is reduced.
Another system proposed by Limb [15¢] is based on
sign prediction. Here a nine level quantizer with a mid
zero value is used, and the algorithm is based on the
.fact that the probability of having an outside level
preceded by a . level of the opposite sign, is small.
Consequently, the sign of an outer level can be predicted
fairly accurately by assuming that it has the same sign
as the preceding sample. This means that the same code
word is assigned to both outer levels. The polarity is
extracted from the previous code word. If the prediction
is wrong, then the nextlbest level is assigned.

As mentioneé earlier, the major problems in
prediétive coding for image signals are granular noise
qccurring in flat areas of inéénsity variations and slope
overload noise occurring at outlines. In DPCM systems

with a fixed quantizer, if the dynamic range of the



quantizer is made small, ie. a quantizer with fine
structure, then the granulér noise is reduced but the
slope overload is increased. If the dynamic range is
large, the overload noise is decreased at the cost of
increased granular noise. To reduce both kinds of noise,
the system must be adaptive. Some adaptive quantization
systems have been reviewed in the introduction.

A new coding system is investigated, in which the
system switches between different quantizers, depending
on the quantization levels occupied by the previous
horizontal and vertical samples. To understand the
motivation for developing the system, an overview of the
response of fixed quantizer system to outlines is
necessary. Then the system is described and its
performance will be evaluated subjectively and

“objectively.

3.3 Response of Fixed Quantizer System to Outlines

We consider systems with a third order predictor
employing the pixels S1, S2 and S3 of the pattern in Fig.
2.2.2 and assume tha§ the next pixel is estimated by
So = SL + (52-53)/2 ‘. (3.3.1)
and, moreover that a 3 bit quantizer with positive and
negative maximum quantization *1ev1es equal to + 20 is

used. Fig. 3.3.1la shows the response of the fixed

quantizer system to a spatial waveform with horizontal
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3.4

and vertical edges, in which the intensity of all
elements in the righthand lower portion bounded by Athe
line is 0 and that.of all other elements is 127, Here, we
are concerned with the overload charateristic but not the
quantization error, and hence we can assume that pixels
whose prediction error may be coded by quantization
levels other than the maximum are reproduced without
noise. The figure shows that the response of the
non-adaptive system to rectangular outlines results in
high error and edge blurring. Fig. 3.3.2a shows the
equivalent response for a sloping edge, which exhibits

similar characteristics.

System Description

The system .is edge adaptive and makes use of the
fact that the probability of having an outer level
followed by outer level of opposite sign is small, Thié
fact can be exploited to assign more levels on one side
than the other side. If an outer level of,say, positive
sign is encountered, then, for coding the next pixel, a
quantizer with, for example, six positive levels and two
negative levels is used. On the other hand, if a negative
outer level is produced, then a quantizer with six
negative levels and two positive levels is employed in
coding the next pixel.‘This will cause the error to decay

rapidly and reduce the overload noise. The system
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initially employs a swnmetrical quantizer which is
responsible for coaing flat areas and, when a& outer
level is reconstructed, the system switches to the
positive or negative asymmetric quantizer to code the
following pixel, depending on the sign of’ the outer
level, Fig. 3.4.1 shows some of the possibilities fpr
arranging the quantizer characteristics. The asymmetric
quantizer is called six of eight quantizer, which means
that 6 levels of 8 are used to reduce the overload noise.
When the output level of the 6 of 8 mode is below
(for positive quantizer) or above (for negative
quantizer) a prespecified threshold, the system return to
the normal mode for coding the next pixzel.
The system can be extended to two dimensional
adaptive quantization, where the quantizer output levels
“for both horizontal and vertical pixels have to be
considered.

We define states as

Symmetric Quantizer level State
positive extremum +1
negative extremum . ~ 1
intermediate levels . g
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Asymmetric quantizers Positive Negative

> threshold +1 0
= threshold . +1 -1
< threshold: ] -1

nine combinations can result from the horizontal
and vertical states, as shown in Fig. 3.4.2. These
combinations are grouped into sets, each of whiéh
determines the quantizer that 1is to be used to code the
pixel under consideration (So) as indicated in Fig.
3.4.2,

For example, if So is the pixel to be coded and
the joint state of the horizontal and vertical pixels is
(0,0), (~1,1) or (1,-1), then the system operates in

‘nornal mode (symmetrical quantizer) to code the pixel So.
If the joint state is (1,0), (0,1) or (1,1), then the
system employs the positive quantizer. On the other hand,
if the joint state is (-1,0), (0,-1]) or (-1,-1) the
negatiQe quantizer is used to code the pixel So.

The system, as with all systems using backward
estimation, does not require overhead information to be
communicated to the recejver about the quantizer. used.
The iqformation can be extracted from the transmitted

sequence,
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3.5

Consideration of the Quantizers

The determmination of the quantizer
characteristics is of major importance for successful
operation of the system., We first consider the value of
the maximum level (Lmax) in Fig. 3.4.1. The value of Lmax
should be small in order to detect transitions as soon as
possible. However, a small value of Lmax will increase
the probability of an outside level being followed by an
outside level of the opposite sign, which can lead to a
large error. To explain this, let us assume that Lmax is
equal to 3. Differences of about 3 will be recoded as
transition and give rise to the system switching to the
positive quantizer to code the following pixel. In this

quantizer a large number of levels are assigned to

‘positive differences and few levels to negative

difference. Since in this case, the probability is high
that the next pixel will create a large negative
differential signal and only a few levels are avialable
to codé this signal, a large error may result. On the
other hand, larger value of Lmax, mean that the levels
are coarsely spacéd for coding smooth areas and granular
noise will be introduced. In fact, the value ofA Lmax,

depends on the picture content, but a good choice proved

Ih

to be Lmax = 10% of the total signal range.

- Some aspects must be considered when determining
the levels of the asymmetrical quantizers; firstly not to

shift all levels to one side but to leave few on the
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3.6

other side for the case that the sign of the differential
signal may change from one pixel to th; next; secondly a
reasonable number of levels must be assigned to code
small differences for the case when the differential
signal changes from large to small value and finally the
remaining levels must cover a large range for coding
large differences. Some of the possible assignments which
satisfy the above requirements are shown in Fig. 3.4.1.
Following this strategy, the responsé of the
adaptive system is shown in Figs. 3.3.1b and 3.3.2b, for
the rectangular and sloped edges. It is easy to see that
the error pattern decays more rapidly than that of
non-adaptive system. The maximum level (Lmax) of the
symmetric quantizer was set to 15 and the levels Ln = -Lp
of the asymmetric quantizers were set to 40. The level
‘assignment of Fig. 3.4.1b was used, in which three levels
of each asymmetric quantizer cover the range of the
symmetric quantizer. The threshold, which defines a

transition was set equal to Lmax,

Simulation Results and Discussion

The proposed DPQM system was simulated on a
computer for coding the pictures of Fig. 2.5.1 in chapter
two, and its performance was investigated using fhe 8 of
8, 7 of 8 and 6 of 8 quantizers. Two possibilities of

quantization levels assignment for the 6 of 8 quantizer,
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and the signal to quantizatibn noise performance are
shown in table 3.6.1. |

The last column represents the signal to
quantization noise ratio and gain, against the fixed
optimum system. for picture A, B and C respectively.

To evaluate the success of the system, its
performance is compared with that of the fixed
quantization system discussed in chapter two. The
reconstructed images of the 8 of 8 and 7 of.8 adaptive
systems show subjective improvement, though the mean
square quantization error was not improved. Better
subjective quality of the output images and objective
improvement have been achieved with the system using the
6 of 8 quantizer (version I). Fig. 3.6.1 shows the
reconstructed images obtained with the 6 of 8 adaptive
quantizer and nonadaptive systems. The improvement in
signal to noise ratio for picture (A) is about 1.5 db,
which is mainly due to slope overload reduction and less
granular noise. This is because the symmetrical
quantizer, responsible for coding smooth areas has the
same characteristics as the optimal quantizer designed
for picture (A) in chapter two. However, the improvements
of 2.3 & for picture (B) and 2.7 d for picture C are
better than for picture (A). Since with the adaptive
quantizer, larger differences can be coded and small
differences more finely quant;zed than in the system with
a fixed quantizer, the improvement is caused again by the

reduction of slope overload and granular_ noise. Fig.

- 1@3 -



3.6.2 shows the reconstructed-'images of the adaptive and
nonadaptive system for picture (B)E and Fig. 3.6.3 for
picture (C), whefe the threshold was set equal to Lmax.
It is not difficult to see the inprovement in edge
reproduction on all images.

The reconstructed images of the adaptive system
using the version II quantizer showed the same quality as
that of the version I quantizer. The signal to noise
ratio has been slightly deteriorate. The sfstem discussed
so far, <employs optimum prediction coefficients
calculated for each image.

More important is to evaluate the performance of

‘the system when using a non-optimum predictor. The
system; was simulated for the cases where the prediction
coefficients of picture (A), calculated in chapter two,
are used to reconstruct picture (C) and the prediction
coefficients of picture (C) are used to code picture (a).
In contrast to the fixed system, the reconstructed images |
illustrated in Fig, 3.6.4. Show no noticable degradation
over fhe whole image, which indicates that the system is
still matched to the local variations; because of the
adaptivity of the quantization. However, the signal to
noise ratio was degraded, but it is still comparable with

that of fixed optimum system,
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(a) fixed quantization, (b) variable quantization.
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(a)
]
So
1
(b)
1
-1
()
-1
So

1
-1
So
1
g
So
-1
g
So

So

So

Fig.3.4.2 Joint states of the horizontal and vertical pixels.
(a) transfer to symmetrical quantizer., (b) transfer to
asymmetrical quantizer for positive edges, (c) transfer to
asymmetrical quantizer for negative edges.

-

Table 3.6.1 6 of 8 quantizer characteristics and its signal

to noise ratio.

Quantizers Quantization levels S/
Version I .

Symmetric | -13 =7 -1 1 3 7 13 49.2, 1.5

Negative -49 =33 -21 -13 -6 -2 2 6 46.8, 2.3

Positive -6 =2 6 13 21 33 49 45.2, 2.7
-13 -7 -1 1 3 7 13 49,2, 1.5
-64 =47 =33 -22 =13 -6 2 6 46.8, 2.1
-6 -2 6 13 22 33 47 64 45,2, 2.3
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(a) (b)

Fig.3.6.1 The reconstructed images, (a) using optimum
non-adaptive system, (b) using adaptive quantization
system with optimum predictor.

(a) : (b)

Fig.3.6.2 The reconstructed images, (a) using optimum
non-adaptive system, (b) using adaptive quantization
system with optimum predictor.



(a) (b)

Fig.3.6.3 The reconstructed images, (a) using optimum
non-adaptive system, (b) using adaptive quantization
system with optimum predictor.

AR
P e s e
s 1

(a) ’ (b)

Fig.3.6.4 The reconstructed images using adaptive
quantization system with unmatched predictors.



4.1

CHAPTER FOUR

Adaptive Prediction System

Introduction

In this chapter a new adaptive linear predictor
is presented to improve the prformance of the
differential pulse code modulation (DPM) applied to
image compression.

In this system, each point is tested to see if it
is an edge point, and accordingly the pixels employed in

the prediction are updated to minimize the error between

 the predicted and the true value and thus reducing the

quantization noise. The test is based on observing
certain characteristics of already transmitted
neighbouring elements. The procedure of the proposed
predictor will be illustrated after introducing some of
the adaptive predictors.

Performance measurement, based on the error
histogram, the mean  square of the prediction efror, the
quantization mean square error and the subjective quality

of the reconstructed images, 1is demonstrated by computer

-

-simulation.
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4,2

The Adaptive Predictor

Another approach for improving the performance of
DP(M systems is by adapting the predictor to match the
statistics of the input signals.

Analogous to adaptive quantizers, adaptive
predictors can be classified as forward or backwards
adaptive., For the forward adaptive predictors, the
information is extracted from the input signal, while for
backward adaptive predictors, the information is taken
from the quantizer output.

Various adaptive prediction systems have been
proposed in the literature, which either, continuously
update the prediction coefficients or switch between
several predictors. Gibson [151] described an adaptive
predictor for speech signals, in which the preéiction
coefficients are continuously determined at the
transmitter and . the receiver, based on the past signal
estimate and quantizer output.

| Adaptive image predictors typically use switched
prediction, where both transmitter and receiver have a
bank of M possible predictors and adaption consists in
switching to one of these predictors, such that.each one
of them will give small- prediction error. Examples of

this type of approach are the predictors used by Graham

" [85] and Conner [87] , in which either the previous line

or the previous element is used for the prediction, and

the switching is done by the surrounding line and element
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4.3

differences as shown in Fig.4.2.1.

Another variation [152] in adaptive prediction is
to use a weighed sum of several predictors, whose weights
are switched from element to element depending on certain
properties of already transmitted neighbouring pixels. As
an example, assume that the pixel A (Fig.4.2.1) is
already transmitted. The prediction error of A for each
predictor in a set of predictors is then evaluated and
the predictor that gives the least prediction error is
used for the prediction of "X". The same calculation can
be performed at the receiver and therefore, the predictor
switching information does not need to be transmitted.

We present a new adaptive predictor, in which the
prediction coefficients and the position of the pixels
used for the prediction are fixed, but the pixel values
are overweighted or underweighted; depending on the pixel
under consideration, whether it 1is a point of black to
white or of white to black transition. The detection of a
transition and the pixel updating are based on already

transmitted - neighbouring elements, and therefore the

system does not need overhead information.

System Procedure.

In this section we demonstrate on an example the
predictibility of the edge points using the standard DPCM

predictors. Then we describe the edge. detection and
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updating procedures with the improvement that may be
achieved by using the adaptive system.

Fig.4.3.1 shows 'four possible edges which are
most frequently encountered in real life pictures. The
pixel values denoted by "@" represent black and those by
"g" represent white intensities.

| Let us use three pixels: the horizontal, vertical
and diagonal for the prediction and assume that the
prediction coefficients are 1, 1 and -1 respectively.

The predicted value for the nonadaptive predictor
of the horizontal and vertical edge points P1-P8 in
Figs.4.3.la and 4.3.1b is close to the true value, which
means a small prediction error. For example, the error of

P2 is defined
e2=p2-(P1+P12-P11)

In Fig.4.3.1c the points P11-P27 can be predicted
very well, whereas the errors associated with the points
Pl, P3, P6 and P7 have large positive values. The error

of P3, for example, is given by

e3=p3- (P15+P17-P14)

Also the prediction of the points P4, P7 and P10
produce a large positive error. Following the same

procedure, the prediction of the points P5, P8 and P10 in

Fig.4.3.1lc results in a large positive error, whereas the
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prediction of the points Pl6, P20, P24 and P27 will
produce a large negative error.

The system predictibility may be improved (i.e.
prediction error reduced), if the pixel to be coded, is
examined to determine, whether it is an edge point and if
the edge is increasing or decreasing grey level. When the
pixel under consideration appears to be an edge point,
then the pixel used for the prediction are altered so
that the edge becomes smooth.

To explain this algorithm, let Pl in Fig.4.3.2 be
the pixel to be coded, we calculate the followiﬁg means:

(a)

Ml=(P2+P5+P6)/3
M2= (P3+P4+P8+P9+P10) /5 4.3.1
or

(b) Ml=(P2+P5+P6+P7) /4

M2=(P3+P4+P8+P3+P10+P11+P7) /7 4.3.2

According to certain conditions we define state

as:

Condition State
(1) | M1-M2| >LI

M1-M2 <@ decreasing grey level edge.
(2) ML-M2>LT

M1-M2 >0 . increasing grey level edge.
(3) | ML-M5] LI No edge.
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Where LI is a positive threshold and | | means
the absolute value.

For updating the pixels P2, PS5 and P6 used for
predictiocn of the pixel Pl, we adopt one of the following

two strategies:

Strategy I
(i)  IM1I-M2{>LI Pi=minimum (Pi,Ml1)
M1-M2<3
(ii) |ML-M2|>LI Pi=maximum (Pi,M1)
M1-M2>0
(iii) |Mi-m2lgor Pi=Pi
Strategy II
(i)  Im-m2l>Lr P=average value of pels Pj,P3j<Ml
M1-M2<3 Pi=minimm (Pi,P)
(ii) |mMi-m2l>LI P=average value of pels Pj,Pid>ML
CMI-M2>@0 . Pi=maximum (Pi,P)
(iii) |Mi-M2lgrr Pi=pi
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where Pi and Pi are the old and new values respectively
of the pixels P2, PS5 and ‘P6 shown in Fig.4.3.2. Pj are
the pixels determining Ml.

Applying the procedure above using eg.4.3.1 for
the mean values and strategy I, for example, the edge
points P1-P8 in Figs.4.3.la and 4.3.1b can be predicted
with very small error.

The pixels Pl, P3, P6 and P7 in Fig.4.3.lc aré
still subject to large prediction error, because these
edges can not be detected with the above method, However
the pixels P4, P7 and P10 can now be predicted leading to
small error. Likewise, the pixels P5, P8, Plg, P2¢, P24
and P27 in Fig.4.3.1d, which were not reliably
predictable for the nonadaptive predictor, may be
predicted accurately using the adaptive system. Even
though pixel P6 can be detected as an edge point, the
edge is not smooothed by the updating procedure and
therefore, the error is large.

Nevertheless, when using the formula in eq.4.3.2,
all the edge points mentioned above are proved to be good
predictors, except the pixels Pl in Fig.4.3.1lc and P6 in

Fig.4.3.1d.
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4.4

Simulation Results and Discussion,

The choice of the-operator size i.e. the size of
the area occupied by the pixels used for the edge
detection, is of major importance. On one side, the size
should be large to detect transition of any shape. On the
other hand, when the size is large, more than one
transition may be included, which may lead to the failure
of the edge detection procedure., It seems from this
logic, that the size in Fig.4.3.2 1is a reasonable
compromise,

The choice of the threshold (LI) is another
factor in the system design. Small values of the
threshold enable the system to detect the transition as
efficiently as possible, however, small threshold values
are sensitive to noise. A'good choice of threshold (LI)
proved to be about 5-15% of the dynamic range of the
original signal.

The following four systems were simulated on the
computer:

(1) ML and M2 as in eq.4.3.1 with strategy I for the
updating.

(2) M2 and M2 as in eq.4.3.1 with strategy II for the
updating.

(3) ML and M2 as in eqg.4.3.2 with strategy I for the
updating.

(4) ML and M2 as in eq.4.3.2 with strategy II for the

updating.
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Each system was tested using different threshold
values but the 8% threshol@ has proved to be the best. To
reduce the propagation of quantization error, the
prediction coefficients have been chosen slightly
different from unity. The same prediction coefficients
for all systems were used and equal to $.96, 9.9 and -0.9
for horizontal, vertical and diagonal pixels
respectivaly.

The aim in using the adaptive predictors is to
reduce the mean error between the predicted and true
values and thus reducing the quantization noisé. Indeed
all the systems have improved the mean square error.
Systems (1) and (2) achieved a reduction of about 6%
compared with that of nonadaptive predictors. The
reduction achieved with systems (3) and (4) was about 9%.
From the results obtainea for the prediction mean square
error and the density function, the updating strategy II
has shown no improvement over the strategy I. Therefore
wa shall discuss the results of system (1) and (3).

A comparison between the error density functions
of third order nonadaptive and adaptive predictors for
picture "A" of Fig.4.4.1 is shown in Fig.4.4.2. The
figure shows that the density function of adaptive
predictors is more highly peaked at zero’level and less
at the tails than: that of the nonadaptive predictors.
Equivalent results have been obtained for the pictures
"B" and “C".

To evaluate the effect of the adaptive predictors
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on the quantization noise, the signal peak squaraed to
quantization mean square error ratio was determined.
Table 4.4.1 shows the improvement in the signal to noise
ratio when using adaptive instead of nonadaptive
predictors.

Since the predictors are mainly designed to
improve the predictibility of the edge points, the gain
in the signal to noise ratio is expected to be higher for
signals with more transition contents than for signals
with few transitions. Indeed, the values listed ih the
table support this claim, where the gain for picture "C"
is higher than for picture "B" and this 1is higher than
that for picture "a". Furthermore, we recognize that the
performance of system (3) is better than that of system
(1). This was expected, since system (3) can better
detect the edges.

In section 4.3 we demonstrated thé response of
the adaptive systems to outlines without taking the
quantizer effect in consideration. In fact the quantizer
will degrade the system detection of the sloped and
rgctangular edges.

Consider the waveform in Fig.4.4.3 with rectan-
gular edge where "g" and "X" represent black and white
intensities respectively. Since the pixel Pl can not be
detected, its estimated value will differ substantially
from the true value, resulting in a large quantization
error and the pixel is reconstructed as white intensity.

This has the effect that P2 can not be detected and will
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be wrongly reconstructed, which in turn hinders the
detection of P3, Even more, the falsification of these
pixels will prevent detecting P4 and PS5 which leads to
bad rendition of the pixels. The error extention depends
on the value of the quantizer maximum level for a fixed
threshold. The larger the maximum level, the sooner the
edge can be detected. This is another reason that the
gain for picture "C" is better than that for picture "B"
and "A", since the maximum level of the quantizer for
picture "C" is larger than that for "B" or "A". The 8
level quantizer designed in chapter two for each picture
was used,

Although the improvement of the quantization
noise was not significant, some subjective improvement,
in particular in high detail areas, was noticeable, but
unfortunately it was nét as expected. Although the
horizontal and vertical edges may be reproduced with
small degradation by using nonadaptive predictors, the
rendition of these edges has shown to be improved with
the adaptive predictors.

Figs.4.4.4 and 4.4.5 show the reconstructed
images of system (1) and (3) respectively, which show the

superiority of system (3).
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Present line A, IF IBcl ¢ la<cl
B, otherwise

x> £0
K X

Previous line

Fig.4.2.1. Illustration of the adaptive predictor used by
Graham {85] and Conner ([87]}.

xP15 xPlé xPl7 xPl8 Xpl5 xPll |oPl oPS
xP1l xPl2 xPl3 xPl4 XPl6 xPl2 |{oP2 oP6
o oPl oP2 oP3 oP4 xPl7 xP13 |oP3  oP7
o oPS oP6 oP7 0P8 xP18 xPl4 |oP4 oP8

(a) (b)

o 0 o oPll oPl2 oPl3 oPl4

—————
o oPl5 oPl6 oPl7 oPl8] xPl xP2

oP19 oP2¢ oP21 oP22| xP3 xP4 xP5

P23 oP24 ©OP25| XP6 xP7 xP8 X

oP26 o©oP27) xP9 xPlO x X X

(c)

oPll oPl2 oPl3 oPl4 oPl5 o o

xPl xP2 | oPl6 oPl7 oP18 oP19 o

xP3 xP4 xP5S | oP2d oP21 oP22 o©P23

X xP6 XP7 xP8| oP24 o0P25 oP26
X X xP9 xP9 xP1G{ oP27 o
(4Q)

s

Fig.4.3.l”Four possible edges.
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xP8 %P9 xP13 xP11
xP4 xP5 xP6 xP7

xP3 xP2 xP1

Fig.4.3.2 The pixels used for detecting the edges, Pl is the
pixel to be coded, P2-Pll are the previous pixels.

wni
o

llcl'

Fig.4.4.1 The original pictures.
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Frequency of occurrence

Non adaptive system

————— Adaptive system (1)

x10

424.0

122.5

—a———a—  Acdaptive system (3)

Fig.4.4.2 Histogram of the pfédiction error,
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Table 4.4.1 The 1n the signal to noise ratio (SNR) of the
adaptive predictors over the optimum non-adaptive predictors,

Pictures
HAN "B" Ilcll
System (1) 3.5 9.9 1.1
System (3) 8.7 1.0 1.2
3 J J 3 g
g g 2 g 0]
9 g %Pl xP2 xP3
g g xp4 xP5 xP5
2 7] X27 XP8 xP9

- Fig.4.4.3 waveform with rectangular edge, where "J" and "x"
represent black and white intensities respectively.
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(a) (b)

(c)

Fig.4.4.5 a-c. The recontructed images of the adaptive
predictor (3).
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5.1

CHAPTER FIVE

The Hierarchic Hadamard Transform

Summary

A coding method based on a hierarchic quadtree
structure in a transform domain is demonstrated. The
n-bit picture is partitioned into L two level pictures
called bit plane, so that the original picture is
completely described by the set of L bit planes. Each bit
plane of NxN elements is Hadamard transformed and the
position and the sign of the largest coefficient above a
given threshold is transmitted. If there is no
coefficient larger than the threshold, then the NxN
transformed data is inversed transformed to four arrays
of (N/2xN/2) samples and the process repeated, At the

receiver, the received coefficient information is assumed

. to relate to the maximum possible coefficient value and

the transform is reconstructed. The information needed
to be communicated to the receiver about each array
consists of prefixed bit to indicate a further inverse
transformation or:a presence of a coefficien£ above the
threshold. In the case of the presence of a coefficient
above the threshold, an aqqitional code word whose length

depends on the array size is necessary to code the
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coefficient position.
The algorithm was applied for two cases, (1) the
bit planes are obtained with the L-bit pure binary code,

(2) the bit planes are obtained with the L-bit Gray code.

Introduction

A bandwidth reduction of multilevel picture can
be achieved by run-length coding the bit state transition
in each bit plane. However, simulation tests indicate
that the bandwidth reduction obtainable is usually much
less than 2:1 [153,154].

Transform coding technique has been used with
success in coding multilevel images to achieve high
compression factor. However, its applicability to two
levels fascimile picture has been proved to be limited
[155]. Nevertheless its use in the compression of bit
planes obtained from multilevel picture has not been
examined, In this chapter, the feasibility of employing
the transform coding technique on the bit planes for
coﬁpressing multilevel images is investigated. The
Hadamard transform and its fast algorithm are first
reviewed. A heirarchic quadtree Hadamard transform coding
is then introduced. Finally, a computer éxperiment
peFformed on three picture samples is described and

simulation results are discussed.
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5.2.1

Discrete Linear Transformations and the Hadamard

Transform

The one dimensional transform is related to cne
dimensional image array. For an image array f(x) of size
N, the transformation in series form is expressed as [54]

N-1
F(u)= > £(x).h(u,x)

X=0
where F(u) is the transform of £(x), h(u,x) is the
transform kernel, and u assumes values in the range
/o R e

The two dimensional transform of NxN image array
f(x,y) results in an NxN transform array and is given by
the equation

n-1 N-1
Flu,v)= S 5:0 £(x,y) h(x,y,4,v)
X=0 u=

fOI u,V=G,l,........,N—l

The kernel of the Hadamard transform is separable

and symmetric i.e.

separable h(X,y,u,v)=h(x,u).h(y,v)

symmetric  h(x,y)=h(y,v)

-

where h(x,y,u,v) is the two dimensional kernel and h(x,u)
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is the one dimensional kernel. A separable two
dimensional transformation can be computed in two steps.
First, a one dimensicnal éransform is taken along each
colum and next a second one is performed along each row.

The one dimensional Hadamard kernel is defined as:

n-1

z

_ b3 (x).bj (4)
1=
h(x,u)=1/N.(-1)

n . . . .
for N=2 . The sumation in the exponent is performed in

modulo 2 arithmetic and bj(z) is the k-th bit in the
binary representation of Z.

The separabie and symmetric properties of the
kernel leads to a matrix representation of the Hadamard
transform i.e.

§=

—

£H

where f is an NxN matrix of the image array, H is an NxN
symmetrical transform matrix generated from the one
dimensional Hadamard kernel (h(x,u)), and F is an NxN
matrix of the. transformed image array. The Hadamard

‘matrix of order 2 is given by:
H(2)=14/2

where the matrix of order 4 is defined as
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11 1 1]
1-1 1-1

H(4)=1/2 . |1 1-1-1

| 1-1-1 1

A more convenient definition exists for Hadamard
matrix in a recurrence form. If H(N) represents a matrix
of order N, then the matrix of order 2N (H(2N)) is

defined:

HON)  H)

H(2N)=14/2

HO)  -H )

The Hadamard matrix is a real symmetric wunitry
matrix possessing the following properties:
(1) HOO=H' @)
(i) Hl=a" m)

(ii1)  HE) .H' ®)=HN) .g’l (N)=H (N) .H(N)=L

where §T(N) and ﬂfi(N) are the transpose and inverse of
ﬂ(ﬁ) respectively, and I is the unity matrix.

The foregoing representation is called the
"Natural ordered Hadamard matrix", Another representation
exists for the Hadamard matrix in "Ordered form"™ in which
the sequence of each row is larger than the preceding

row, where "sequency" is defined as the number of sign

changes along each row of Hadamard matrix.

- 132 -



5.2.2

The Fast Hadamard Transform

In common with the Fourier transform, a fast
algorithm exists for the Hadamard transform [156]. This
reduces the number of arithmetic operations for a two
dimensional transform from the N4 down to 2N210qﬁu), a
saving of 99.7 percent for a 64x64 array. The operations
needed are addition and substraction whereas the fast
Fourier transform needs complex multiplication and
addition.

The calculations are performed in stages
illustrated by the simple example in Fig.5.2.2.1. The
signal graph is wused to pictorially represent the
sequence of operations. Computation proceeds from left to
right for the forward, or right to left for the inverse
transform. The numerical value represented by a node on
the graph 1is added (continuous line) or substracted
(broken line) from the nodes to which it is connected.

The highly structured nature of the signal graph
reflects the recurrence matrix definition of the Hadamard
kernel., It also indicates that the computation should
occur in a well structured way, which is the case for
radix 2 transform, there will be n stages in signal graph
for 2n data elements. A radix 4 algorithm would have n/2
stages in the signal graph, each node corresponding to

four arithmetic operations. This is useful- for a two
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dimensional transform, as the signal graph then reflects
the symmetry of the square data array.

The fast algorithm for the natural ordered
Hadamard transform may be derived from the recurrence
relation. Considering a one dimensional transform of row
vector x
X= (n) .x where X has 2n elements,

The matrices may be represented in partitional

form as
Xa H(n~1) H(n-1){ Ixa
Xb H(n-1) H(n-1){ |xb

where §§=§(n-l).§a+§(n—l).§p

=Ya + Yb
and §b=§(n-l).§a—§(n—l).§b

= Ya - ¥b

Ya and Yb are the Hadamard transforms of the two
partitioned sections of Xx.

Thus a transform of a sequence of length 2n may be
represented as a linear combination of the transforms of
the two subsequences of length 2™ | The same will be
true of each subsequence, the process cbntinuing until
eventually the  subsequence length is one. This
corresponds directly to a radix 2 for Hadamard transform,
eéch reduction in subsequence length corresponding to a

change in level on the signal graph for the. algorithm.
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An algorithm for computing the radix 2 transform
can be simply derived from the signal graph. Fig.5.2.2.2
illustrates the terms used in the algorithm. The LEVEL
refers to the stage in the signal graph, level "g"
corresponding to the initial data. The nodes fall
naturally into GROUPS, which increase in size as the
transform proceds. A BUTTERFLY consists of a pair of
result nodes derived fram the same source nodes as in the

figure below.

result

nodes

A computational "Butterfly"

Natural Hadamard transform; (radix 2, 2n samples)

for level = 1 ton
for group = 1 to max group
for butterfly = 1 to max butﬁerfly
compute 1 pair of nodes
continue
continue
continue

end

The naturally ordered fdrward transform has
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symmetric stages, and the forward algorithm can therefore
be applied with no change. |

Of particular intereét for image processing, is
the two dimensional transform. It may be implemented
using radix 2 or radix 4 fast algorithm. A radix 4
transform, extends the concept of the radix 2 transform
into two dimensions. Fig.5.2.2.3 shows the signal graph
for this algorithm. Each node on the graph now
corresponds to four arithmetic operations.

A partial transform [156] of two dimensional
(fig.5.2.2.4) provides a hierarchy transforms of size 2
(L=level), each of which is computed from the results of

the previous 4 transforms which make up the same area.

5.2.3 The Hierarchic Hadamard Transform

The central concept 1is that the fast transform
algorithm is ordered such that each stage of the fast
algorithm can produce a set of sub-image transforms.
Fig.5.2.3.1 shows a representation of the whole set of
transforms for a 4x4 image. The hierarchic nature of the
transform set can clearly be seen, and the relation to
the quadtree structure is also evident,

It is thus possible to process the iﬁage in
block§ from 1x1 to NxN pixels, and to extract a range of
features (e.g. the largest cogfficient in absolute value

above a threshold) at any stage. A considerable degree of
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freedom is available in the way in which this can be
achieved. Processing may start £rom the pixel level and
move to global transformé, begin by transforming the
whole image and move towards the pixel level, or even
start at an intermediate level and move either way. Clark
[156], developed the hierarchic Hadamard transform and
applied it to the extraction of features from grey level

images.

Experimental Procedure

In constant word length PCM coding of an image,
the code words may be conceptually organized into planes

called bit planes. It has been found that in most natural

' images the most significant bit planes seldom change,

while the least significant bit planes fluctuate almost
randomly.

Each - bit plane say Qf NxN pixels is transformed
into Hadamard domain, and the absolute value of the
transformed array are examined fo; a coefficient above
the threshold. If there is one coefficient or more above
the threshold, then the transformed array is coded using
one bit to indicate the presence of .a coefficient
exceeding the threshold, 2logs; (N) bits for the position
of the largest coefficient and another bit for its sign.
Thé value of the coefficient is set at the receiver equal

-

to the maximum value that may result. In the case of no
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coefficient above the threshold, a one bit code word is
used to notify an inverse transform of the NxN array to
4x (N/2xN/2) arrays and each one is tested again.

To make easy the implementation of the transform,
only integer calculations are performed. This is possible
if the data in the forward transfofm are not scaled,
while they are scaled by 1/R at each inverse transform
stage, where R is the radix. In all systems, radix 4 fast
Hadamard transform with the signal flow graph shown in
Fig.5.2.2.3 was used. The pixel value af the bit plane is
either "g" or "1". The value "@" is converted to."-1" for
the transform, and therefore the maximum value possible
of a coefficient is eqdal to the number of the pixels in
the array.

The probability of having a coefficient with a
maximum value, decreases with increasing array size.
Thus, instead of applying the hierarchic transform
discussed in section 5.2.3 to the entire bit plane of
256x256 elements, we divide it into subarrays of 32x32
and for each one the hierarchic transform is used.

The bits required to code a whole array of NxN
are 2+21og,N, which means a compression of Nz/(2+210g2N).
For all arrays 1larger than 2x2, a compression is
possible. For the arrays of 2x2 no compression is
possible because cod%ng the individual pixels will result
in the same bit nﬁmber. as with coding the whole array.
Thérefore, only the coefficient representing the mean is

examined for the 2x2 arrayé.
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5.4

Finally we introduce the term "distortion factor™
(K) or "error pixels" to indicate thevmaximum nurber of
the pixel allowed to be reconstructed incorrectly. For
example, an 8x8 array with say four error pixel
(distortion factor K=4) means that the array may be
reconstructed with four wrong pixels. In fact a high
distortion factor corresponds to low threshold value and
low distortion factor corresponds to high threshold. We
will use the term "threshold" or "distortion factor"
whenever it is convenient.

The relation between the threshold (TH) and the
distortion factor (K) of an NxN array is defined:

2
TH=N -2.K

Simulation Results and Discussion.

The brightness of the pixels of the pictures
shown in Fig.5.4.1 is represented by a 7 bit binary code
words. The corresponding bit planes of pictures "A" and
"B" are shown in Figs.5.4.2 and 5.4.3 respectively, where
blaék corresponds to "@" and white corresponds to "1".
Although the most significant bit plane (h) is very
simple and suitable for the hierarchic quadtree coding,
the complexity (thg high frequency content) inéreases as
the significance of the bit plane decreases. The least

significant bit plane is very "noisy" and is unsuitable

-

- for information preserving coding. The compression may be
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obtained in coding the three or four most significant bit
planes, will be partly lost with the oﬁhers.

The average bit rate of information preserving
coding of picture "A" was 4.8 bit/pel, which means a
saving of 2.2 bit/pel. In fact, the bit rate of the four
nmost significant bit planes was 1.5 bit/pel. The bit rate
of the first three least significant bitg is therefore
3.3 bit/pel which is by @.3 bit/pel more than the direct
coding of the pixels. The bit rate of information losless
coding of picture "B" and "C" are 5.6 and 6.4 bit/pel
respectively. The frequency occurance of the coded arrays
of picture "A" for all 7 bit planes is listed in table
5.4.1.

A better compression may be achieved by using the
threshold coding. The choice of the threshold depends on
the bit plane and the array size. Since error produced
from the most significant bits has noticeable effect on
the reconstructed image quality, a high threshold is
desirable to avoid the errors. On the other hand, a high
threshold may reduce the compression., However, as the bit
planes seldom change, high threshqld or even errorless
coding will achieve a reasonable compression.

For the least significant bit planes, which
fluctuate randomly, a low threshold is required to
achieve reasonable compression. Another point of view for
getting better compression, is to use a high distortion

factor for larger arrays, in particular for the least

-

significant bit planes. This on the other hand may cause
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that a number of adjacent pixels be incorrectly
recontructed, which has more noticeéble effect than
randomly distributed pixels‘on the whole bit plane. Since
errors in the least significant bit planes are randomly
distributed and their effect on the quality of the
reconstructed image is therefore small, a high distortion
factor in general will hardly affect the image quality.
Fig.5.4.4 shows the output images using the distortion
factors listed in tables 5.4.2-5.4.4. No distortion of
any kind was noticeable.

The bit rate of picture "A" is 3.7 bit/pel which
means a compression ratio of 2. The bit rates of pictures
"B" and "C" are 4.6 and 5.4 bit/pel. The threshold coding
has improved the bit rate performance by nearly 1 bit/pel
for all images, compared with the errorless coding.

If instead of pure binary coding, an 7 bit Gray
code is used for representing the brightness of pels, the
pattern of the bit plares change considerably. The bit
planes obtained with the Gray coded version of pictures
"a" and "B" are shown in Figs.5.4.7.and 5.4.8
respectively, where the areas of equal brightness are
seeﬁ to be larger. The bit rate of error-less coding has
been improved by 1 bit/pel compared with the equivalent
case using the pure binary code. The distribution of the
coded arrays of pigtu;e "A" is shown in table' 5.4.5 .
Also the threshold coding has raduced the bit rate by 1
bit/pel compared with the equivalent case of pure binary

< case. The output images are shown in Figs.5.4.7.

- 141 -



&

Thresholds (distortion factors) and the coded arrays are
listed in tables 4.4.6-4.4.8. A compression ratio of 3
was achieved for picture "A". Table 5.4.9 summarise the

obtained results.
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Fig.5.2.2.3 Signal flow graph for a (4x4) point naturally
ordered radix 4 Hadamard transform.
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(c) (d)

cont.
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Fig.5.4.2 Bit representation of the image brightness. (pure
binary code); (a) criginal image; (b) lst bit plane (least
significant bit); (c) 2nd. bit plane; (d) 3rd. bit plane; (e)

4th. bit plane; (£) Sth. bit plane; (g) 6th. bit plane; (h)
7th. bit plane (most significant.
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(9) (h)

Fig.5.4.3 Bit representation of the image brightness (pure
binary code); (a) original image; (b) lst. bit plane; (c)
2rd. bit olane; (d) 3rd. bit plane; (e) 4th. bit plane; (f)
5th. bit plane; (g) 6th. bit pvlane; (h) 7th. bit plane (most
significant.
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(b)

(c)

Fig.5.4.4. Reconstructed images of the hierarchic Hadamard
transform coding using vure binary code with distortion
factors (a) as in table 5.4.2; (b) as in table 5.4.3;

(c) as
in table 5.4.4. .
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(c) (d)

cont.
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(<) (h)

Fig.5.4.5 Bit representation of the image brightness (Gray
code); (a) original image; (b) lst. bit plane; (c) 2nd. bit
olane; (¢) 3rd. bit-plane; (e) 4th. bit plane; (£f) 5th. bit
plane; (g) 6th. bit plane; (h) 7th. bit plane (most

significant.)
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(9) (h)

Fig.5.4.6 Bit representation of the image brightness. (Gray
code); (a) original image; (b) lst bit plane (least
significant bit); (c) 2nd. bit plane; (d) 3rd. bit plane; (e)
4th. bit plane; (f) Sth. bit plane; (g) 6th. bit plane; (h)
7th. bit plane (most significant).

- 156 -



(a) (b)

(c)

Fig.5.4.7. Reconstructed images of the hierarchic Hadamard
transform coding using Gray code with distortion factors (a)

as in table 5.4.2; (b) as in table 5.4.3; (c) as in table
5.4.4.
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Table 5.4.1 The
picture "A" for
Coce) .

lst. bit plane

(the least )
(significant )

" 2rd. bit plane

3rd. bit plane

4th, bit plane

5th. bit olane

6th. bit plane

7th. bit plane

{the most )
(significant )

frequency cccurrence of coded arrays of
losless information coding (Pure Binary

Array
size

32x32
16x16
8x8
4x4
2x2

32x32
16x16
8x3
4x4
2x2

32x32
16x16
8x8
4x4
2x2

32x32
1616
8x3
4x4d
2%x2

32x32
16x16
3x8
424
2x2

32x32
16x16
8x8
44
2x2

32x32
16x16
848
4x4
2%2

Distortion
factor (K)
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Frequency of
coded arrays

291
716
2362

13
48
206
634
1674

36
51
126
262
522



Table 5.4.2 The frequency occurrence of coded arrays of
picture "A" for reduced information coding (Pure Binary
Code),

Array Distortion Frequency of

size factor (K) coded arrays
1st. bit plane 32x32 128 )
16x16 64 2
(the least ) 8x8 1g g
(significant ) 4x4 3 1411
2x2 1 7041
" 2nd. bit plane 32x32 128 @
16x16 54 22
8x8 16 , 35
4x4 2 528
2x2 1 ;8443
3rd. bit plane 32x32 32 4
1516 8 16
ox8 2 89
4x4 1 727
2x2 1 7365
4th. bit plare 32x32 g 1
16x16 g 23
8x3 g 139
4x4 g 789
2x2 ¢ 4083
S5th. bit plane - 32x32 9 11
16x16 g 47
3x8 g 201
4x4 g 716
2x2 /] 2352
€th. bit plane 32x32 g 18
1ex1s g 48
8x%3 @ 206
4x4 ] 634
2x2 g 1674
7th. bit plane 32x32 2 16
16x16 3 51
(the most ) 3x8 ] 126
(significant ) dx4 7 252
2x2 ) 522
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1st.

(the

bit plane

least )
)

(significant

- 2rd.

3rd.

4t‘h.

6tn.

(the

bit plane

bit plane

bit plane

bit plane

bit plane

bit glane

most )

(sigqificant )

frequency occurrence of
reduced information cod

Array
size

32x32
16x16
8x8
4x4
212

32x32
16x16
8x8
4x4
2x2

22x32
1l6x1€
8x%8
414
2%x2

32x32
16x16
8%3
LYY
2x2

32x22
16x15
3x8
4x4
2x2

32x32
16x16
8x3
4x4
2%x2

32x32
16x16
8x8
4x4
2x2

iug

Distortion
factor (K)

256
64
16

3
1

128
64
19

3
1

64
16

4
2
1

D& S S BN s B » RN SIS R SR ]

(>R B P I o
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Srequency of
coded arrays

o)

1388
7933

0 W

1485
6657

62
978
7863

11
152
741

4797

27
176
916

3369

46
222
869

2431

25
53
144
439
1124



Table 5.4.4 The frequency cccurrenca of coded arrays of
educed information coding (Pure Binary

picture "C"

Coce) .

1st.

bit plane

(the least )
(significant )

2.

3rd.

4tn..

5th.

‘7th.

(the

bit plane

bit plane

bit plane

pit plane

bit plane

bit plane

rost )

(Significant )

for

Array
size

32x32
16x16
8x8
4x4
2%x2

32%32
16x16
8x8
4x4
2x2

32%32
15x16
8x8
4ix4
2x2

32x32
16x16
8x8
4x4
2%2

32x32
16x16
3x8
4x4
2%2

32x32
16x16
8x8
4x4
2x%2

32x32
16x16
8x8
4x4
2x2

Distortion
factor (K)
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256
96
16

3
1

128
8¢
19

3
1

64
16
4
2
1

L am\ue Qo (2 oS B I

Frequency of
coded arrays

1439
6664

1455
6813

18
683
9223

36
517
4779

15
131
832

4521

18
208
1g2@2
3953

12
67
190
682
1886



Table 5.4.5 The frequency occurrence of cocded arrays of
picture "A" for losless information coding (Pure Gray Coce).

Array Distortion Frequency of
size factor (K) coded arrays

lst. bit plane 32x32 g g
16x16 g 3

({the least ) 8x3 0 aJ
(significant ) 4x4 7} 71
2x2 ) 4363

. 2rd. bit plane 32x32 a 0
16x16 g 1

8x8 2 59

4xz4 g 656

2x2 ] 4974

3rd. bit plane 32x32 2 4
16x16 g 45

8x8 0 168

4x4 g 687

2x2 o 3189

4th. bit plane 32x32 9 8
16x1¢e g 24

3x8 a 145

4x4 a 821

212 g 3461

Sth. bit plane 32x32 g 19
16x16 @ 53

3x8 ) 215

4x4 g 553

2x2 7 1459

6th. .bit plane 22x32 @ 19
16x16 ] 59

8x8 g 210

axd ¢ 563

2x2 6 1252

7th. bit plane 32x32 6, 36
~ l6xl6 . G 51
(the most ) 8xe 3 126
(significant ) 4x4 G 262
: 2x2 0 522
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Taple 5.4.6
picture "a"

1st.

tn -3

bit plane

(the least )
(significant )

- 2rd.

3rd.

4th.

Sth.

6th.

7th.

bit plane

bit plane

bit plane

bit plane

bit plane

bit plane

(the most )
(significant )

he

frequency cccurrence of ceded arrays of
reduced information coding (Cray Code).

Array
size

32x32
16x16
3x8
4x4
2x2

32x32
16x16
8x8
4x4
2x2

32x32
16x16
8x8
4z4
2x2

32x32
16x16
8x3
4x4
2%x2

32x32
1616
8x8
4x4
2x2

32x32
16x16
8x38
4x4
2x2

22x32
16x16
8x8
dx4
2%x2
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Distortion
factor (X)

128
64
19

3
1

128
64
10

2
1

3

[ B i B B 0 QW [N Qe B oo B = =) DN

3% B I8 R o R

Frequency of
coded arrays

29
35
1487
5538

8@
53
515
4751

14
41
118
690
4976

24
145
821

3461

1o
53
215
553
1439

1¢
59
2139
563
1252

36
51
126
262
522



Table 5.4.7 The frequency occcurrence of coded arrays of
nicture "B" for reduced information coding (Gray Code).

Array Distortion Frequency of

size factor (K) coded arrays
1st. bit plane 32x32 256 g
- 16x16 64 5
(the least ) 8x8 19 7
(significant ) 4x4 3 1484
2x2 1 6535
2rd, bit plane 32x32 128 g
' 16x16 64 49
3x8 16 37
4x4 3 1718
2x2 1 3963
3rd. bit plare 32x32 32 3
16x1€ 8 7
ax8 2 112
4x4 1 1291
2x2 1 3959
4th, bit plane 32x32 g 3
16x16 g 26
8x3 ] 159
4x4 g 914
2x2 g 3822
5th, bit plane 32x22 g 12
11616 ] 47
8x8 2 189
4x4 g 823
2x2 %] 2179
6th. bit plane 32x32 g 19
16x16 ] 64
2x8 ] 229
4x4 g 752
2x%2 g 1682
7th. bit plane 32x32 a 25
16x16 o] 53
(Significant ) 4x4 g 499
- 2x2 g 1124
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Table 5.4.8 The fregquency cccurrence of coded arrays of
sicture "C" for reduced information coding (Gray Code).

Array Distortion Frequency of

size factor (X) coded arrays
1st. bit plane 32x32 256 g
© 16x16 9% 14
(the least ) 8x8 16 8
(significant ) 4x4 3 1398
2x2 1 6288
2rd. bit plane 32x32 128 g
' 16x16 89 34
gx8 18 9
4x4 3 . 1397
2x2 1 5641
3rd. bit plane 32x32 , 64 2
16x16 16 6
3x8 4 36
4x4 2 1164
2x2 1 7935
4th. bit plane 32x32 3 3
16x16 3 5
8x8 g 117
dx4 g 874
2x2 ¢ 4969
Sth. bit plane 32x32 g 6
16x16 g "
8x8 g 217
4xé 0 963
2x2 9 2755
6th. bit plane 32x32 3 4
. 16x15 [ 44
8x8 U] 273
4x4 0 692
2x2 7 2504
7th, bit nlane 32x32 e 12
} . 16x16 g 67
(the most ) 8x3 g 199G
(significant ) 4x4 3 682
2x2 0 1886
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Table 5.4.9 Bit rate

-

Pictures Code
A Pure
B Pure
C Pure
A Pure
B Pure
c Pure
A Gray
B Gray
c Gray
A ’ Gray
B Cray
cC Gray

of the different systems

binary

binary

binary

binary

binary

binary

code

code

code

code

code
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Information
Coding

error-less

error-less
error-less
reduced

(as in table)
(5.4.2 )
reduced

(as in table)
{(5.4.3 )
reduced

{(as in table)
(5.4.4 )
error-less
error-less
error-less
reduced

(as in table)
(5.4.6 )
reduced

(as in table)
(5.4.7 )
reduced

(as in table)
(5.4.8 )

Bit/pixel

4.8

5.6

6.4

3.7

4.3

5.1

3.8

4.7

5.4

3.5

4.1



6.1

CHAPTER SIX

Learning Autcmata and Data Compression

Introduction

In 1961 Tsetlin [157] presented a paper én the
behavior of fixed structure automata operating in a
random environment. Since that time, there have been many
developments in the general area of the learning automata
and the subject has been studied in great detail. a
survey article which appeared in 1974 [158], covered most
of the basic rasults in the field, re-examined some of
the theoretical questions and suggested potential areas
where the results could be applied,

In this paper, a novel approach to image data
compression is proposed which uses a stochastic learning
automata (SLA) to predict the conditional probability
distribution of the adjacent pixels. These conditicnal
probabilities are used to code the grey ievel-values
ﬁsing a Huffman coder. The proposed system achieves a
good - compression without any degradation in the
compressed image.

In Section Two of this chapter,- the basic
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6.2

6.2.1

concepts of stochastic learning automata and the
currently used definitions are briefly outlined. The
third section describes the strategy of the proposed
learning automata compression system. In the final
section, results of computer simulation are preseﬁted and

conclusions are drawn.

‘The basic concepts.

Varsharskii et al. [159] extended the earlf work
of Tseltin [157] to the case of stochastic automaton with
variable structure and proposed both linear and
non-linear schemes to update the structure of the
automaton. A special article on the learning automata
[16F] contains recent work in the field and references
[158,161] contain extensive bibliographies of
contributions to both deterministic and stochastic

learning automata models.

Automaton

The stochastic learning automaton (SLA) is
.defined as automaton that operates in a random environ-
ment -and updates its action probabilities in accordance
with the inputs received from the environment, so as to

improve its performance in some specific sense. It may be
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described by the quintuple {X,d, ,Fn,G} where X is the
input set, ${91,92,.....,8s} is the interval state set,
and o ={0¢) , St eueees Oty } With Is is the output or action
set, Fn and G are respectively the state transition and
the output functions and n is the discrete time instant.
In general, Fn and G are stochastic functions. If p(n) is
an s-vector of state probabilities at timé n, and U is an
updating scheme which prescribes rules for changing p(n)
at each stage or time instant n, then Fn can be replaced
by p(n) and U so that an SLA may be described by the
sixtuple {X,0,00p(n),U,G}. In fixed structure aufcmata Fn
is described by stochastic transition  matrices
corresponding to each input x€X. If these matrices
contain only the elements 0 or 1, the automaton is a
"fixed structure deterministic automaton". If the
elements lie in the interval (@,l], the autcmaton is a
"fixed structure stochastic autcmaton®™. In variable
structure learning automata, the transition matrices
corresponding to the various inputs are themselves
updated as the automaton operates in its enviromment. In
this case, the rule by which thisA updating is to be
performed depending on the response of the environment
has to be specified.

In a fixed structure automaton, the output
mapping G is generally assumed to be deterministic. G
partitions the state set § into r subsets
m{(i=l,2,...,r), such that the elements of each subset my

map into the same action ™x . When G is stochastic, a
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6.2.2

unique action need not correspond to a given state J.

Fig.6.2.1.1 1illustrates a closed loop structure
consisting of an SLA and a random environment., For each
automaton action & at stage n, the environment responds
with a random quantity x(n)|¢; which becomes the input
to the automaton for the following stage. The environment
is said to be stationary if the discrete time random
processes {x(m)¢&; ,n=1,2,.....} (i=1,2,....,r) are all
stationary.

The automaton-environment combination is called
i} a ©P-model if the environment's response (or
automaton's input) is either @ or 1, ii) a Q-model if it
takes a finite number of values in {#,1] and iii) an
s-model if it lies in [&,1]. Schemes developed for
p-models can in general be extended to Q and S models.
Many probabilistic search procedures that have been

reported [162] are similar to S-model schemes.

Environment

A random environment is defined by a finite set
of inputs Cl={Oq,Cq,.....,cyf}, an output set X={@,1} and
a set c={c;,C3see00sCr } oOf éenalty probabilities. The
ouput x(n)=0 at séagé n is called a favorable response
(success) and x(n)=1l an unfavorable response (failure).
c; is the probability of failure (penalty) when the input

is &
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6.2.3

c;=Pr[x(n)£ﬂd(n)=ai] RS Ry
In the simplest case the penalty probabilities

are constant but unknown and the envirorment is said to

be stationary.

Performance measure

To judge the effectiveness of the Ylearning
automaton, various performance measures can be set up.
These in turn depend on the prior information available
and the ultimate cbjective for which the automaton is
designed. An obviocus choice and one which has been used
almost exclusively in the literature is the average
expected penalty that the automaton receives from the
environment. An alternative choice may be the probability
with which the various actions are chosen in the limit.
The entropy corresponding to the action probabilities has
also been suggested [163] as a possible performance
measure.

The average penalty is defined as:

.
M(n)=E[x(n)| P(n)]= 37 p; (n)c;
(=1 .

- =<P(n) ,c>

where < , > denotes the inner product. If a simplex Sp is
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defined as:

.
sp={Plagp;<1, T~ p;=1}
=1

the action probabilities P ¢ Sp. If pi=l/r, the expected

penalty may be expressed as
r

Mo=1/r( >- c;)
iz1

if

c€=Min{ci}
i

the definitions of expediency, optimality

€ -optimality can be expressed in temms of c, and Mo,

if lim EM(n)1<Mo
n-=Cco

the learning automaton is said to be "expedient™.

if lim E[M(n)]=c,
N~ CO

and

it is said to be "optimal". The learning automaton is

said to "Z-optimal" if the parameters of the learning

algorithm can be chosen that:

- lim E[M(n)]<cp+E
n-=cs

©~

for any ¢ >@.

A learning automaton 1is said to be "absolutely
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6.2.4

expedient" if:
E[M(n+l)] P (n) ]<M(n)

for all P§ Spand c; £ (@,1) (i=1,2,...,r) [164].
Instead of the average penalty M(n), as mentioned

earlier, the entropy of the action probabilities can also

be chosen as a performance measure, If H(n) is defined

ass:

-
H(n)=-3_ p;(n)log p;(n)
i=1

and pi(ﬁ)=l/r PSS H(@)=1lcg ¢
The autcmaton, in this case, is said to learn if

the entropy decreases. The entropy is cbviously a minimum

if the automaton chooses any action with probability one.

The Reinforcement Schemes

The reinforcement schemes are classified in
linear and non-linear. The scheme is said to bé linear if
the updating procedure is -a linear function of the
probabilities p;(n) (1=1,2/4000sL) Other&ise is defined
as non-linear. Here we give only the 1linear scheme
presented by Narendra ét al. [165], which can be regarded

as the prototypes of all learning models.
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p;(n+l)=p; (n)+all-p; (n)]

p;,; (n+l)=(1-a)p; (n) : Cm=Cj  x(n)=0

p;(ntl)=(1-b)p; (n)

pi.; (ntl)=(b/r-1)+(1-b)p: (n) C(n)=C(f  ,x(n)=1
J¥! .

where @<a<l and #<b<l are constants called the reward and
penalty parameters respectively. x(n)=@ describes a
success where pzis increased and gsis decreased. x(n)=1
describes a failure where P; is decreased and B} is
increased, If b=a, the scheme is called a linear reward

-penalty (Lng) scheme, if b=@ it is a linear inaction

The terms success and failure denote the response
of the environment while reward, penalty and inaction
refer to the corrections made to the automaton. For
example, for the Lo_p model, a success from the
environment results in a reward to the automaton and a
failure in a penalty.

In the t4q4: scheme, when the autcmaton tries an
action C; and it results in a success, the probability
p;(n) is increased and all Pj (n) (j#i) are decreased
linearly. Similarly, if a failure results from action
G pi(n) is decreased while all P (n) (j#i) are
increased. In an [LR_I'scheme, while the probabilities are
updated exactly as. before for a success, all

probabilities are left uwichanged in the event of a

failure. For an Lp_;p scheme the decrease in pi(n) due to
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6.3

a failure is small compared to the increase in p; (n) due

to a success.

Compression strategy

The ocbjective 1is to compress a digital image of
NxN pixels, each pixel quantized to L grey levels. The
grey level value of the n-th. pixel, called pixel value,
is denoted by g(n), such that g(n)=9,1,...L-1. The
probability P(i)=P(g(n):g(n)=i), 1is called the pixel
probability.

The compression strategy is based on the
classical technique of variable 1length coding, which
assigns code word lengths on the basis of fixed
probability. Thus frequent pixel values are given shorter
code words than less common pixel values. The variable
length code is said to be optimum if the average code
word length is equal to the entropy of the image. Huffman
(901, suggestedl an algorithm for construction of an
optimum code, which is optimal in the sense that no other
prefixed code will achieve a lower average code word

length. As the code is based on the knowledge of the

pixel probabilities, the performance of the 'code is

dependent on the accuracy with which the probabilities
have been estimated, and on the adaption of the pixel
probabilities with time or space.

An illustration of the strategy of the prbposed
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compression algorithm is shown in Fig.6.3.l. The image
data is fed to stochastic learning automaton which
provides an estimated pixel value from the probability
distribution (pi:i=Gh1,.L-1)- The estimated value is fed
to a stochastic environment which responds by an error
function e(n) which is the difference between the actual
and estimated value. The difference signal is fed to the
automaton for updating the probability distribution.

The data compression system Fig.6.3.2 consists of
a transmitter and a receiver. At the n-th. stage, both
learning automata in the transmitter and receiver contain
the state probability vectors p;(n-1) | g(n-1);
i={9,1,....,L-1); g(n-1)=(9,1,....,L-1). The coder
generates the appropriate binary codeword C(n)
corresponding to the probability of the value g(n). The
decoder at the receiver will decode the received codeword
to g(n), according to the Huffman algorithm. Now both
automatons provide an estimate a(n) of the value g(n) and
calculate the difference e(n)=g(n)-g(n) for updating the
probabilities according to reinforcement scheme U. §(n)
is determined by a stochastic function G which employs a
pseudo-random generator. Generators in transmitter and
receiver are synchronised. Fig.6.3.3 _ shows the
configuration of the automatén—environment used in

compression systems.
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6.4

6.5

Reinforcement scheme of the compression system.

Both automatons use identical updating schemes U
for changing p (n-1):i=6,1l,.....,L-1). Although various
schemes have been studied, the most satisfactory
performance was obtained by using a Q-model Lp.p scheme,

This is described by:

P; (n+l)=P; (n)+B/C[C-ER]P; (n)
PJ:;(n+l)=gj(n)-B/C[C-ER][l—Rj(n)]
A

where ER=|g(n)—g(nﬂ and C and B are constants. Similar
reinforcement scheme has been widely stated in the
literature [158] and has shown to converge asymptotically
and therefore is said to be "optimal" or "f-optimal".
Shapiro and Narendra ([166] showed that the Lg.y scheme
is optimaly convergent and Viswanathan et al. [167]

showed that Lg.p is €-optimal.

Results and Conclusion

The scheme presented in the previous section was

tested using a 256x256 image with 16 grey levels. The

first order entropy and the conditional entropy were

computed and found to be 3.3 bit/pixel and 1.15 bit/pixel

respectively. Initially the probabilities of the grey

levels were set equally to 1/16 and the constant "C" to
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3. "B" is calculated so that the initial probability
reaches the maximum probability after 200-250 successive
maximum reward iterations. "B" was found to be 0.005. The
minimum probability was set equal to 0.003 and the
maximum=1.0-15x0.003=0.955. With these parameters, the
largest probability and its position of each probability
vector was determined each 208 successive iteractions.
The test showed that the position of the largest
probability of each vector does not change. Fig.6.4.1
‘shows a plot of the largest probability versus trial
number of one probability vector. Huffman codes have the
disadvantages that the source statistics must be known a
priori and that only stationary sources can be used. The
probability  distribution of the learning automaton
provides a source of information which allows the Huffman
algoiithm to be used in a readly adaptive manner to
overcome both of these difficulties.

) Using the learning automaton probability
distribution, thé average Huffman wordlength was found to
be 1.69 bit/pixel. The compression is without degradation
of the image.

The system has been re-examined using unequal
initial probabilitieé. In this case, it was found that
the average bit rate has been improved by 5.2 bit per
pixel.

. The disadvantage 6f this system is that the
number of grey levels must be low. For a large number of

gréy levels, the speed of convergence of the probability
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distribution will be slowed down considerably which

results in a poor compression ratio.

Conclusions.

It has been shown that a learning automaton may
be used successfully in an image data compression system.
The system uses a Q-model Lg.p updating scheme. Computer
simulations have been used to demonstrate the nature of
convergence and to compute the compression ratio.

Various linear and non-linear reinforcement
schemes have been simulated which result in very poor
compression ratios due to either the automaton failing to
converge, or the convergence process was too slow for
efficient compression. It should be noted that the
compression ratio improves significantly with the
increase of speed of convergence. The problem of speeding
up the convergence process was closely examined by using
the known S and' Q-model schemes. An updating function
was - proposed using this principle to achieve the best

compression ratio.
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APPENDIX I

Design of linear predictive image coders

It is conceivable to design the system to mini-
mize a measure of the overall error between the input and
the output of the coding system. However, the analysis of
such a system is inhibited by the non-linear characteris-
" tics of the quantizer, Therefore, the design procedure is
to design the predictor ignoring the presence of thevquan—
tizer. Then, the quantizer is designed to match the ampli-
tude distribution of the difference signal. On the other
hand, placing the quantizer inside the feedback loop will
alter the amplitude distribution of the difference signal
and the system is no longer optimum. But, when the number
of the quantization levels is large (38) the presence of
the quantizer inside the loop has very little effect on
the amplitude distribution of the difference signal and
thé system is nearly optimum. Since the predictor is
designed by ignoring the quantizer, the input to the
predicfﬁr is equal to the original input sequence.

Let {So} be a set of correlated signals with zero
mean E{So}=0 and the variance 0'2. An n-th. order predic-
tor estimates the next value So by §o from 4a linear
combination on the n-previously scanned sample values

Sl,Sz,.oc-.’Sn

» ' ’
S0=A1S1+A2S2+.......+ANSN= Aisi (I-1)
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If the mean of the signal is not equal to zero,
i.e. E{So}##, then a better estimate of So is possible if
a constant term is also used [168]. Thus:
n
A R .
So=RAO+AlS1+A252+.....+AnSn=Ao+ »  AiSi (I-2)
iz1
where the A's are prediction weighting constants.
We first design the predictor for the case
E{So}#d, and from it we deduce the solution for the case
E{So}=@. A difference signal or predictor is then defined
as:

n
do=So—§o=So-(Ao+§E: Aisi) (1-3)

i=1
In most designs, the prediction weighting constants are
chosen to minimize the mean,square.prediction error.
R n
D=E{do2 }=E{[So- (AO+Z AiSi)2] (I-4)
izt
The rational for this performance measure is that
the measure is tractable, correlates reasonably well with
subjective evaluation, and the quantizer error is
directly proportional to the mean square-prediction
error. Minimization of the nean—séuare prediétion‘error
cah be performed by‘taking the partial derivative of D
with respect to each weighting constant and setting the
result to zero. The differentiation with respect to Ao

results in:
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n

2
QE{[So- (Aot »_ AiSDI }- (I-5)
aD — i:‘l : g
OAo OAo
0D _-2E{So- (Ao+ Z Aisi) }=9 (I-6)
OAO~ N

=

which yields:

n .
E{So}=E{So}=E{ac+ > _Aisi} (1-7)
n =1
E{So}=Ro+ ZAiE{Si} (1-8)
izl

The differentiation with respect to each of the

remaining weighting value Aj, j=l....n, is:

n
2
3b QE{ [So- (Aot E Aisi)]} 3=1,...,n (I-9)
- {=4 -
oAy OAj =@

"
Op _-2E{[So-(Ao+p  AiSi)ISi}=@  3=1,...,n (I-10)
CAj f=4 ‘

which gives:

E{Sij}=Ao{Sj}+ ‘Z—_{AiE{SiSj} j=1,...,n (I-11)
E
Roj=Ao{Si}+ ) AiRij Jleeeen  (1-12)
=1
wheré
Roj=E{S0Sj} - | j=l....,n

is the correlation between the variables So and Sj, and:

Rij=E{sisj} o i,3=l....0n (I-13)
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is the correlation between the variables Si and Sj. The
optimum prediction coefficients ao,Al,A2....,An, are the

solution of the n+l algebraic equations

g
E{So}=ao+ ) Ai{Si) | (1-14a)
i=1
and
n
Roj=ao{Sj}+» AiRij j=lseeee,n (1-14D)
El

The mean squared value of then prediction error

is given by:
(o =E{(So—§of'}=E{S-§o)(So—§o)}
Od =E{(SO~§0)So}—E{(So-§o)go} | (1-15)

If the optimum predictor coefficients (ocbtained
from Eq.2.2.14) are used, then the prediction error is
uncorrelated with (orthogonal to) the past value (or any
combination of the past values) of the predictor input

(168, i.e.:
E{(So—go)go}=0 ‘ . (1-16)

and therefore, the minimum mean-square prediction error

is found to be:
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0‘3 =E { (50-§o) SO}=E{So2 }-E{S080} ~ (1-17)

n
=6-2-(A0+Z AiRoi) (I-18)
i=1

where szis the variancé of the input sequence {So}. The
error sequence {do} 1is less correlated and has smaller
variance than the signal sequence {So}. The use of linear
prediction has produced a sequence {do} from which the
-sequence {so} can be reconstructed. The variance 0'd2 of
the error sequence {do} is less than the variance of the
original sequence {so} by the amount shown in the
parenthesis in EQ.2.2.18. As n—»<0 then the sequence of
the error samples can always be made completely
uncorrelated. If {So} is an n-th. order Markov sequence,
then only n previous samples are enough for forming the
best estimate of So, so that the error sequence.will be
uncorrelated.

Now, if the input sequence {So} has zero mean,

E{So}=0 . (I-19)

then all the variables $1,S2,.....,Sn will have zero

mean:
E{Si}zg i=112'o.--o'n (I—zg)
and Eq. | .14 results in:
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Ao=0 ) (1-21a)

Roj=» AiRij 371,2000eeeem (1-21b)
i=1
The optimum values Al,....,An, are then found from
the n linear equations of Eg.(I-21b). The minimum

mean-square prediction error is given by:

2 2 h : . /
04 =0= Z AiRoj (1-22)
=1
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