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Abstract—This paper investigates the unknown pa-
rameter estimation problem for a class of stochas-
tic non-linear systems which are subjected to non-
Gaussian noises. Motivated by the iterative learn-
ing identification, an iterative learning estimation
algorithm has been presented with an entropy-based
performance criterion. Since the data sets from each
iteration are collected and stored in memory, the
entropy of the estimation error can be approximated
by kernel density estimation and the optimal vector-
valued estimated parameter can be obtained using
the gradient descent searching while the learning
rate is able to be selected properly to guarantee the
convergence of the presented algorithm. In order to
verify the effectiveness of this algorithm, one solution
to biological neural membrane potential interaction
characterization problem is given via a numerical
simulation using the presented algorithm.

I. INTRODUCTION
System identification is a significant research problem

in engineering and a lot of impressive results have been
obtained [1]. However, most of the existing results are
based on the linear systems or static systems. Motivated
by iterative learning control [2][3], many algorithms of
iterative learning identification have been presented [4].
Comparing to other identification algorithms, the itera-
tive learning approach uses more information for param-
eter estimation which comes from each iteration. In this
paper, this extra information can be used to overcome
the non-linear dynamics of the stochastic systems.

Basically, most of the dynamic systems can be de-
scribed by differential equations. As an example, the
following equation is given as a system model.

ẋ = f (x) + αg (x) (1)

where α is a real constant as the unknown parameter.
f and g are general non-linear functions of system state
x. Basically, we can transform this problem to a stabi-
lization problem where the estimated state can be stated
as

˙̂x = f (x̂) + α̂g (x̂) (2)
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In addition, the estimation error can be expressed as x̃ =
x − x̂ such that the dynamic of the estimation error is
formulated as follows:

˙̃x = f (x)− f (x̂) + αg (x)− α̂g (x̂) (3)

It shows that the optimal estimation can be achieve if
x̃ is stabilized. However, it is very difficult to search α̂
without any further assumption, for instance Lipschitz
condition.

Notice that even the simplest case is difficult to solve
following this approach, we have to develop a novel
approach. Motivated by the iterative learning identifi-
cation and stochastic distribution optimisation [5], we
can re-investigate this problem from the view of batch
because most of the modelling training is repeatable.
Meanwhile, the random noise affects the performance of
the estimation. Most of the existing results use Gaussian
distribution as an assumption, we are trying to release
this assumption which also forms the purpose of this
paper.

As a summery, a generalised format for piratical
systems with non-Gaussian noises are investigated. To
find out the unknown parameter in the model, an it-
erative learning algorithm has been developed under
the entropy-based performance criterion. As a practical
application, the biological neural membrane potential
interaction can be characterized using the presented
algorithm which validated the effectiveness of this al-
gorithm. Moreover, the convergence analysis and some
potential extensions are also illustrated in this paper.
In particular, the contributions of this paper can be
further summarised as follows: 1) a novel iterative learn-
ing algorithm is given for non-linear stochastic systems
subjected to non-Gaussian noises, 2) the convergence
of the algorithm has been analysed while the sufficient
conditions are obtained, and 3) the neural membrane
potential interaction can be characterised following the
presented algorithm.

The rest of this paper has been organized as follows:
Section II presents the essential preliminaries including
the system model formulation and the identification
objective. The iterative learning identification algorithm
and its convergence analysis are given in Section III and
Section IV, respectively. In Section V, a numerical sim-
ulation is given to verify the presented algorithm which
is based on the neural membrane potential interaction

CORE Metadata, citation and similar papers at core.ac.uk

Provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228192671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


characterisation application. Section VI presents some
potential extensions of this presented algorithm. Finally,
this paper is concluded by Section VII.

II. FORMULATION
Following the discussion in previous section, this paper

investigates a class of generalized non-Gaussian stochas-
tic non-linear systems which are expressed by the follow-
ing discrete-time model.

xk+1 = f (xk) + Θg (xk) + wk

yk = cTxk + vk (4)

where k denotes the sampling index. yk ∈ R, vk ∈ R,
xk ∈ Rn and wk ∈ Rn stand for the system output,
measurement noise, vector-valued system state and pro-
cess noise. f and g are general non-linear functions. Θ
denotes the unknown parametric matrix. Notice that the
distributions of the random noises wk and vk are non-
Gaussian and all the variables are with the appropriate
dimensions.

It is clear that the objective is to find out the unknown
parameter Θ if we have the measured data ȳ. Since the
estimated state is denoted as ŷ, then the estimation error
is stated as

ỹk = ȳk − ŷk, k = 1, 2 · · · kt (5)

where kt is pre-specified positive integer. Furthermore,
we can use d to stand for the iteration index, then the
data set for each batch can be descried as the following
vector with kt elements.

ỹd = [ỹ1, ỹ2, . . . , ỹkt
]T (6)

which can be further stated as

ỹd = ȳ − Cx̂d (7)

where

C =

 cT

. . .
cT


x̂d =

[
x̂Td,1, . . . , x̂

T
d,kt

]T (8)

In other words, the objective can be achieved if there
exist any positive integer kd such that d ≤ kd then
ỹd is bounded and close to zero vector. Notice that
the identification problem is investigated in this paper,
therefore, we can further assume that the investigated
system (4) is stable which leads to the bounded system
states and system output.

III. ITERATIVE LEARNING ESTIMATION
The structure of the algorithm is shown in Fig 1

which is the standard procedure of the iterative learning
strategy. To implement this algorithm, the performance
criterion should be selected firstly which is motivated by
[6]

Fig. 1. Block diagram of the presented iterative learning strategy.

Notice that the batch-based estimation error vector
is affected by non-Gaussian random noise vector, the
classical statistical tools such as variance, covariance, etc,
cannot be used to characterize the randomness. Thus the
entropy of the estimation error has to be considered here.

H (ỹd) = −logb
∫
Ωd

γ2
d (αd) dαd (9)

where H denotes the entropy operation, γd and αd stand
for the probability density function and random variate
of the data set of estimation error while Ωd is the
sampling space of this random variate.

Therefore, the complete performance criterion can be
selected as follows.

Jd = E
(
ỹTd ỹd

)
+H (ỹd) (10)

where E denotes the mean-value operation.
Equivalently, this performance criterion can be re-

stated using the concept of information potential [7] if
b is pre-specified as 0 < b < 1.

Jd = E
(
ỹTd ỹd

)
+
∫
Ωd

γ2
d (αd) dαd (11)

Moreover, the information potential can be approxi-
mated by the measured data combining the kernel den-
sity estimation [8], [9]. Then the performance criterion is
rewritten by

Jd = E
(
ỹTd ỹd

)
+ P (ỹd) (12)

where

P (ỹd) = 1
(nkt)2

nkt∑
i=1

nkt∑
j=1

Gσ (ỹd,i − ỹd,j)

2

(13)

while ỹd,i and ỹd,j denote any element in the estimation
error vector with i, j = 1, 2, · · · , nkt. Gσ is the probabil-
ity density function of Gaussian distribution.

Gσ (x) = 1√
2πσ

exp
(
− x2

2σ2

)
(14)



Once the value of the presented performance criterion
can be calculated for any d-th iteration, the estimated
parameter is updated by the following equation.

Θ̂d = Θ̂d−1 − ξd
∂Jd−1

∂Θ

∣∣∣∣
Θ=Θ̂d−1

(15)

where ξd denotes the learning rate for d-th interation.
For some specified situations, some elements of Θ are

zero or equal to other elements such as diagonal matrix,
symmetric matrix, etc. Then the vectorization operation
can be used to reduce the computational complexity in
(15).

Remark 1: The entropy is equivalent to variance if the
random noise obeys Gaussian distribution, therefore this
performance criterion can be considered as an extension
of the minimum variance criterion.

IV. CONVERGENCE
One important problem still remains after the iterative

learning law has been given which is the selection prob-
lem of the learning rate ξd. Using the similar approach in
[10] and [11], the convergence of the presented algorithm
is analysed with the proper ξd by the following theorem.

Theorem 1: The iterative learning estimation algo-
rithm (15) is convergent with the entropy-based perfor-
mance criterion (10) if there exists a learning rate matrix
such that the following two conditions hold.(

CTCM̄ − ȳTC
)(

∆d − ξd
∂Jd−1

∂Θ̂d−1
g
(
M̄
))

< 0

(16)
nkt∑
i,j=1

(ỹd,i − ỹd,j)C
(

∆max − ξd
∂Jd−1

∂Θ̂d−1
g
(
M̄
))

< 0

(17)

where

∆d = f
(
M̄
)
− f (x̂d−1) + Θ̂d−1

(
g
(
M̄
)
− g (x̂d−1)

)
∆max = f

(
M̄
)
− f (x̂d−1,max)
+ Θ̂d−1,max

(
g
(
M̄
)
− g (x̂d−1,max)

)
(18)

while max denotes the index number of the maximum
element in the vector ỹd. M̄ is the upper boundary of
estimated system states.

Proof: The following inequality holds for any d-th
iteration if the presented algorithm is convergent.

Jd − Jd−1 ≤ 0 (19)

which leads to the following two inequalities if we sub-
stitute (12) and (13) into inequality (19):

ỹTd ỹd − ỹTd−1ỹd−1 < 0 (20)

and

P (ỹd)− P (ỹd−1) < 0 (21)

Notice that inequality (20) can be restated by

∂ỹTd ỹd
∂d

< 0 (22)

Since the estimation error is expressed by Eq. (7),
inequality (22) can be restated by

∂ỹTd ỹd
∂d

= ∂(ȳ − Cx̂d)T (ȳ − Cx̂d)
∂d

=
∂
(
ȳT ȳ − 2ȳTCx̂d + x̂TdC

TCx̂d
)

∂d

= 2
(
CTCx̂d − ȳTC

) ∂x̂d
∂d

< 0 (23)

As a result, we can obtain
∂x̂d
∂d

= x̂d − x̂d−1

=
(
f (x̂d)− f (x̂d−1)− Θ̂d−1g (x̂d−1) + Θ̂dg (x̂d)

)
= ∆d − ξd

∂Jd−1

∂Θ̂d−1
g (x̂d) (24)

Substituting (24) into (23), the condition (16) can be
obtained.

Similarly, inequality (21) can also be expressed by
∂P (ỹd)
∂d

< 0 (25)

Using the kernel density estimation (13), inequality
(25) can be further expressed as

∂P (ỹd)
∂d

= ∂

∂d

1
(nkt)2

nkt∑
i=1

nkt∑
j=1

Gσ (ỹd,i − ỹd,j)

2

= 2
(nkt)2

nkt∑
i=1

nkt∑
j=1

Gσ (ỹd,i − ỹd,j)
∂Gσ (ỹd,i − ỹd,j)

∂d


(26)

Notice that the kernel function is selected as Gaussian
distribution (14), we can have the following equation.
∂Gσ (ỹd,i − ỹd,j)

∂d
= ỹd,j − ỹd,i√

2πσ3

× exp
(
ỹd,j − ỹd,i

2σ2

)
∂ (ỹd,i − ỹd,j)

∂d
(27)

Next, there always exists a real positive number M
makes the following inequality holds.
∂ (ỹd,i − ỹd,j)

∂d
<
∂ỹd,max

∂d
− ∂ỹd,min

∂d
< M

∂ỹd,max

∂d
(28)

Moreover, similar to (24), we obtain
∂ỹd,max

∂d
= ∂ (ȳmax − Cx̂d,max)

∂d
= −C ∂x̂d,max

∂d
(29)

where
∂x̂d,max

∂d
= ∆max − ξd

∂Jd−1

∂Θ̂d−1
g (x̂d,max) (30)



Since Gaussian distribution and natural exponential
function are positive function, therefore the inequalities
above result in the following inequality.

nkt∑
i,j=1

(ỹd,i − ỹd,j)C
(

∆max − ξd
∂Jd−1

∂Θ̂d−1
g (x̂d,max)

)
< 0

(31)

When d = 1, the initial values of the estimated
parameters are bounded while the maximum element of
the estimated parameters can be found. The learning
rate can be confirmed while the performance criterion
will decrease and the estimated parameters will go close
to the true values. For each iteration d = 2, 3, · · · ,
the estimation boundary will become smaller than the
initial boundary which means that the x̂d,max is bounded.
Denoting the maximum value of the upper boundary of
x̂d,max as a real positive vector M̄ , then the conditions
(16) and (17) are implementable while the proof is
completed combining the inequalities as the conditions
of the theorem.

In the end, the procedure of the presented algorithm
can be summarized by the following flow chart.

Fig. 2. Flow chart of the presented iterative learning strategy.

Remark 2: Notice that (16) and (17) in Theorem 1 are
posterior conditions, therefore the estimated parameter
would not be updated if the collected data cannot satisfy
this posterior condition for any iteration.

V. ONE APPLICATION IN BIOLOGICAL
NEURAL SYSTEMS

As a typical biological system, the mechanism descrip-
tion of membrane potential generation for nerve fibre is
modelled by Hodgkin-Huxley equation [12]. This model
can be used to describe the individual response of the
axon. Moreover, the extended Hodgkin-Huxley equation
[13], [14], [15] is developed to describe the multi-axon
behaviour where the mutual coupling factor matrix is
introduced into the model to characterized the neural
interaction. As a numerical example, the model is given
for two coupled axons as follows.

cm1

∂Vm1

∂t
= −

∑
Iion1 − g12 (Vm1 − Vm2)

cm2

∂Vm2

∂t
= −

∑
Iion2 − g12 (Vm2 − Vm1) (32)

where the current of the ionic channels can be further
stated by

INa = m3 (Vm, t)h (Vm, t) ḡNa (Vm − VNa)
IKa = n4 (Vm, t) ḡKa (Vm − VKa)
Ileak = ḡleak (Vm − Vleak) (33)

while the parameters are given in [12]. In particular,
the initial value of the membrane potential is −60V m,
cm = 0.01, VNa = 55.17, VKa = −72.14, Vleak = −49.42,
gNa,max = 1.2, gKa,max = 0.36, gleak,max = 0.03.

The measured trans-membrane potential is formulated
by the following equation.

V̄m,k =
2∑
i=1

Vmi,k (34)

where k stands for the sampling index and Vmi,k is the
sampling of the membrane potentials in Eq.(32).

Based on the discretization operation, the membrane
potential can be represented by the following model.

Vm,k+1 = f (Vm,k) + Ξg (Vm,k) + wk

V̄m,k =
2∑
i=1

Vmi,k + vk (35)

where

Ξ =
[

0 g12
g12 0

]
(36)

while the measured trans-membrane potential can be
obtained with mutual coupling factor g12 = 0.001 which
can be treated as a benchmark data set. Basically, we
can obtain the data set and the mutual coupling factor
is unknown in practice. wk and vk denote the modelling
error including the non-Gaussian noises.

Following the presented algorithm, the results are
shown by the following figures while the initial value of
the mutual coupling factor is chosen as zero. Figure 3
shows that the response curves of these two axons. It has
been shown that there is a time difference between two



spikes, therefore, the measured membrane potential is
not in standard shape of membrane potential such as the
curve in Fig.4. Rearranging this curve as a benchmark
data set and selecting a proper learning rate ξd = 4e−10,
the performance of the algorithm is illustrated by Fig. 5
and Fig. 6 where the value of the performance criterion
decreases by the iterations. Particularly, the estimation
error curves are convergent to zero in Fig. 6. Using
the learning formula, the estimated coupling factor is
obtained recursively and the curve in Fig. 7 demonstrates
that the estimated coupling factor becomes closer and
closer to the true value. In the end, this simulation
shows that the presented iterative learning estimation
algorithm is effective to characterize the neural interac-
tion while the unknown mutual coupling factor can be
estimated properly.
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Fig. 3. The response of two coupled axons.
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Fig. 4. The measured membrane potential.

Notice that there exists a error around 4ms which
is very sensitive due to the depolarization. However,
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Fig. 5. The curve of the performance criterion.
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Fig. 6. The estimation error sets with various batch index.
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Fig. 7. The estimation of the mutual coupling factor.

the estimation will not be affected if the stimuli of the
membrane is not big enough to achieve action potential.



VI. DISCUSSIONS

In this paper, we assume that the unknown param-
eter is a real constant matrix which is time-invariant.
However, a lot of piratical systems are with time-varying
unknown parameter. Fortunately, this similar approach
can be adopted if another learning operation can be
added into the presented algorithm.

Θ̂d,k = Θ̂d,k−1 − ε
∂Jd,1:k−1

∂Θ

∣∣∣∣
Θ=Θ̂d,k=1

(37)

where Jd,1:k−1 denotes the subset of the estimation error
and ε > 0 is the pre-specified learning rate. In other
words, this iterative learning operation can be considered
as the inner loop of the presented algorithm.

Another potential extension is for the partial differen-
tial equation. Following the similar idea, the estimation
data set would be multi-dimensional rather than a vector
which implies that the estimation error is subjected
by multiple random variate. Therefore, the probability
density function γd in the performance criterion should
be replaced by the joint probability density function. The
performance of the iterative learning estimation would
be affected by the dependence of these random variates.
Moreover, this problem can be simplified if the partial
differential equation can be restated by the B-spline or
RBF neural network decoupling model[16], [17], [18].
Then the estimation objective is to minimize the weight
of the B-spline decoupling model using iterative learning
approach. Note that this framework can also be adopted
for industrial practical processes while the data learning
can be combined with the observer [19] and filter [20]
design to estimate the unmeasurable system variables.

VII. CONCLUSIONS

Parameter identification problem has been investi-
gated in this paper. Different from the existing results,
the stochastic non-linear systems are subjected to non-
Gaussian noises. Based on the formulation of the problem
description, the iterative learning algorithm is presented
to estimate the unknown parameter with the entropy-
based performance criterion. Furthermore, the conver-
gence of the presented algorithm is analysed. Due to
the fact that a lot of practical systems can be described
by the non-Gaussian stochastic non-linear systems, we
apply this algorithm to the biological neural system as a
validation. The neural interaction widely exists among
the axons, the time-invariant coupling factor matrix
is used to characterize the mutual couplings based on
the measured data. Following the presented algorithm,
the estimated coupling factor is very close to the true
value. Therefore, the simulation results illustrate the
correctness and effectiveness of the presented algorithm.
As a further discussion, the potential extensions of this
algorithm are also given in this paper which can be
considered as the future works particularly.
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