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ABSTRACT

The purpose of this feasibility study is to determine if the application of computational
intelligence can be used to analyse the apparently unrelated data sources (social media, grid
usage, traffic/transportation and weather) to produce credible predictions for water demand. For
this purpose the artificial neural networks were employed to demonstrate on datasets localised
to Leicester city in United Kingdom that viable predictions can be obtained with use of data
derived from the expanding Internet-of-Things ecosystem. The outcomes from the initial study
are promising as the water demand can be predicted with accuracy of 0.346 m3 in terms of root
mean square error.
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1 BACKGROUND

Cities are living organisms, 24h / 7day, with demands on resources and outputs. In particular,
drinking water is the most valuable asset hence it is crucial to monitor, control and manage this
resource. To do so water distribution system (WDS) operators need accurate water demand
forecast for controlling the production, storage and delivery of drinking water. Despite that
water is a key resource its management has not kept pace with modern urban life as demand
for clean water and loads on waste water no longer fit diurnal patterns; and they are impacted
by events that are outside the normal range of parameters that are taken account of in water
management. The diurnal variation in the population compositions of urban areas is usually
neglected in the traditional models of urban social structure, derived usually from standard
census data [1]. As the water usage is linked to human activity, the ability to monitor or
predict the population density fluctuations, and collective activity, can be used to provide
advance control data for water management systems; for both the delivery of clean water and
the removal of foul water.

This study, carried out within the scope of the Water Advisory Demand Evaluation and
Resource (WADER) project, aims to determine if it is feasible to predict water demand in urban
areas, particularly during severe weather events (excess rainfall and drought), by analysing e.g.
social media usage, transport and meteorological data. Nowadays, much of these data can
be derived from the emerging Internet-of-Things (IoT) ecosystem unleashing potential of data
mining techniques in numerous applications including more tailored and efficient delivery of
water to end users.

The WADER toolkit prediction engine uses computational intelligence (CI) techniques to
analyse a mix of data inputs to produce credible predictions for clean water demand in urban
areas. Especially, artificial neural networks, a subset of CI domain, are successfully used in the
short and long term water demand predictions studies due to their inherent ability to detect
patterns [2, 3, 4]; e.g. [2] reported that the artificial neural network (ANN) models for their



CCWI 2017 - Computing and Control for the Water Industry Sheffield 5th - 7th September 2017

short-term municipal water demand forecasting study consistently outperformed the regression
and time-series models.

The final WADER toolkit data inputs will be social media activity, gas and electricity
usage, combined with meteorological and traffic movement data. Such dataset should capture
population fluctuations and activity over a subsequent prediction period, thus providing inputs
to the water supply services on the future demand of fresh water supplies, and the subsequent
load on waste water and sewerage systems. The computes the predictions in an open-source
manner to support inter-operability; thus enabling the development of new applications.

Section 2 describes the WADER project concept, used approach, tools and built-in features.
Section 3 discusses results from a preliminary case study. Section 4 concludes this paper.

2 WATERADVISORYDEMAND EVALUATION AND
RESOURCE TOOLKIT

2.1 Concept

The concept of the WADER project is to use traditional data sources (temperature, water
and energy) that are augmented with social media and traffic flow data to deliver a more
accurate predictions for the delivery of clean water, and removal of foul water from out cities.
Social media usage data, coupled with electricity usage can indicate real-time fluctuations in
the population density [5]. Traffic congestion data can be used to predict near-future load
demand as people travel to work, home or places of recreation and commerce. Meteorological
data derived can be used to predict weather patterns that will result in rain-water impacting
on both water catchment areas, and drainage systems. These and other data sources will
be used as the inputs to the WADER toolkit. Computational intelligence is used to drive
WADER, with the CI system being trained using historical data, and predicted demand levels
if demand for clean and waste water being presented using real-time analysis of live data feeds.
The analysis of an aggregation of apparently unrelated data sources (social media, grid usage,
traffic/transportation and weather) is a unique concept, that can be achieved by the deployment
of computational intelligence.

2.2 Development and tools

The tool was created in the MATLAB software and employed capabilities its specialised tool-
boxes [6]. MATLAB provided means for development of graphical user interface (GUI), obtain-
ing data from online database and creation of the prediction models. The developed MATLAB
code interacts with the online database deployed with use of the Microsoft Azure technology
[7]. Database management system was set up to collect data from a number of different sources
including “live” data feeds e.g. from traffic flow observers.

The created tool can be used to develop various topologies of ANN models. It includes a
sensitivity test feature to evaluate the importance or contribution of each of the input variable
on the prediction accuracy of the model, and also as a means of comparing our approach with
traditional methods of population and water prediction. The tool aims to provide predictions
for different time intervals, e.g. hourly, daily, monthly and yearly. Embedded within the
toolkit are variants of differential evolutionary and swarm intelligence optimisation algorithms
for optimising the meta-parameters of the CI models e.g. the number of neurons and weights
of ANN models.
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2.3 Computational intelligence engine

Prediction models based on artificial neural network and support vector machine framework
are used in this research for water demand prediction. ANN are massive parallel computing
systems composed of large number of simple processing elements (processors) with many inter-
connections operating in parallel. These elements are inspired by the structure and function of
biological nervous systems such as the brain [8]. The information processing units are called
neurons which are interconnected together via a synaptic weights, and working together in
parallel and unison to solve specific problems.

The activation functions play a vital role in ANNs, unfortunately optimum choice of ac-
tivation functions for each neuron in a given network are problem dependent and can not be
generalised. Due to the dynamic nonlinearity often associated with utilities consumption (e.g.
electricity and gas) and how they impact on water demand, coupled with random weather
variation, resulting from both artificial and natural sources, a fully connected multilayer per-
ceptron (MLP) ANN with two hidden layers was used in this study. The input layer was cast
into a high dimensional first hidden layer for proper features selection. In order to introduce a
nonlinear transformation into the network, nonlinear hyperbolic tangent functions are used as
the activation functions of the two hidden layers while a linear symmetric straight line is used
for the output activation function. Other activation functions were also used, but this combi-
nation gave better promising results. The hidden layers are used to learn the salient features
that characterizes the training data i.e. they serve as a features detector. The ANN is trained
by combining the global search advantages of multiple solution metaheuristics algorithms and
the local search advantages of single solution backpropagation algorithm (BPA) to further fine
tune the weights toward the global optimum. The empirical risk function to be minimized is
the mean square error (MSE).

A supervised batch training method was used with 60% of the data used for training the
ANN, 20% for validation and 20% for testing ANN [9]. In this study, the back propagation
algorithm is used as a local searcher, thus the learning rate was kept low at 0.01. Four ANN
topologies were examined: feed-forward, cascaded feed-forward, feed-forward with output feed-
back and layered recurrent ANN.

2.4 Optimisation

A hybrid algorithm consisting of population based metaheuristic algorithm variants and single
solution BPA is used to train the ANN model. The population based metaheuristics optimiza-
tion algorithms used are based on the differential evolution [10] and swarm intelligence [11, 12]
frameworks. The metaheuristic algorithms are used as global searchers to explore in detail the
search space for evolving the initial weights and biases of the ANN model; after which the
weights of the best candidate solution (model) are fine tuned using BPA towards the global
optimum to produce the final optimised model. The BPA is used as a local searcher to exploit
the region already explored by the metaheuristic, hence its learning rate and the momentum
are set at low values (0.01 and 0.008 respectively). Despite the use of momentum constant and
varying of the learning rate, BPA can easily be trapped in local optimum when solving multi-
modal problems, leading to premature convergence. To minimise this problem, the advantages
of population based metaheuristic optimization algorithms is combined with the advantages of
single solution BPA to evolve the weights of the ANN model.

Another challenge often encounter when designing ANN prediction models, is the choice of
the number of neurons in each layer for near optimum performance. In order to circumvent this
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problem, the number of neurons in each layer were also evolved using the same metaheuristics.
More details about the used optimisation algorithms and their settings can be found in [13].

2.5 Sensitivity test

The sensitivity analysis is feature of the WADER toolkit to test the contribution of each of the
input or combination of the inputs with reference to a particular model using seven error mea-
surements, i.e. MSE, root mean square error (RMSE), average absolute error (AAE), average
relative percentage error (ARPE), discrepancy, long time volume error and long time volume
percentage error. The feature aims to help in selecting the most relevant data for training and
prediction for different scenarios. The sensitivity test evaluates the effect of the autocorrelation
and cross-correlations of the inputs on the model prediction accuracy and generalisation. Since
different models created (trained) using the same data are likely to capture different trends
or patterns associated with the training data, to draw a conclusion on the significance of the
inputs, the sensitivity test has to be conducted using different topologies (models) for a given
number of times. The statistic of the error measurements can be used to evaluate the con-
tribution of the inputs. Different error measurements are used to enable customers select the
most appropriate inputs/models that best meet their target e.g. some customers may not be
interested in discrete time accuracy but rather in long time volume error and so forth. This is
particularly useful for selection of inputs from available data feeds; the sensitivity results may
allow the costumer to use a model with inputs from free-of-charge data feeds while retaining
accuracy and reducing the cost of the application. The error measurement to be used depend
on the impact of the error on the level (cost) of risk.

For the illustration of sensitivity analysis benefits the WADER toolkit was set up to use an
ANN model with two hidden layers. However, while the accuracy of ANN two-layer model is
sufficient for demonstration of sensitivity analysis feature, it is recommended that the actual
sensitivity analysis should use ANN models with more hidden layers.

The results from the sensitivity analysis are listed in Tables 1 and 2; Table 1 contains results
for models trained with a past water usage where models in Table 2 were trained with water
data. Comparing the results from the both tables it can be observed that for the ANN models
used in the sensitivity test (only two hidden layers) the models without use of water input
data would perform poorer. From Table 1 it may be concluded that the ANN model, which
inputs are time and gas, performs the best in terms of average MSE (0.67089), average RMSE
(0.8179) or average AAE (0.5528), while the ANN model, which inputs are time, temperature
and electricity performs the best in terms of average Vol Err (140). These results may be used
produce a model which meets requirements of a specific scenario. For example, if user is focused
on short-term prediction (hours) and high accuracy at discrete time intervals should use the
ANN model which inputs are time and gas only. In contrast, the user with focus on long-time
prediction (days, months) should use the ANN model with time, temperature and electricity
as it would achieve more accurate total volume prediction over the period of time. Further
suggestion is to develop a weighted metric, which would reflect user needs in trade-off between
the utilised error measurements.

When the inputs for the ANN are determined, the sensitivity test would enable selection
the best model amongst tested models. Note that values in Tables 1 and 2 are average for the
particular criteria. For example, from Table 1 one can choose the ANN model with time and
gas as aforementioned. Figure 1 illustrates performance of particular models from the test. In
this case (with time and gas inputs) five ANN models with different initial parameters were
evaluated.
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Table 1: The results from the sensitivity analysis carried out for the ANN model with use of the water input. MSE - mean square error (m6),
RMSE - root mean square error (m3), AAE - absolute average error (m3), ARPE - average relative percentage error, Vol Err - total volume
error (m3), Vol % Err - total volume percentage error, AMV - actual mean volume (m3/h), PMV - predicted mean volume (m3/h), ATV -
actual total volume, PTV - Predicted total volume, SD - standard deviation.

Inputs MSE RMSE AAE ARPE % Vol Err Vol % Err Discrepancy AMV PMV ATV PTV

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean Mean
T 0.7403 0.0927 0.8591 0.537 0.5863 0.0588 35.26 4.29 270 57.53 5.2 1.16 0.33 0.44 2.6 2.68 5213.6 5360.4
T, G 0.6708 0.0804 0.8179 0.047 0.5528 0.0468 33.22 4.6 198 136 3.85 2.63 0.51 0.17 2.58 2.65 5154.6 5300.4
T, Te 1.0107 0.4674 0.9856 0.221 0.6901 0.1917 46.18 22.9 297 337 5.74 6.53 0.83 0.81 2.58 2.67 5164 5356.4
T, E 0.7234 0.0628 0.8499 0.036 0.5858 0.0481 35.44 5.79 192 209 3.7 4.05 0.51 0.34 2.62 2.7 5232.1 5404.3
T, G, Te 0.7723 0.3001 0.8678 0.154 0.5986 0.1442 38 14.9 266 253 5.18 5.01 0.63 0.49 2.6 2.74 5206.6 5472.8
T, G, E 0.7801 0.0647 0.8827 0.036 0.6191 0.0442 36.98 3.34 205 115 3.96 2.22 0.72 0.8 2.6 2.63 5203 5260
T, Te, E 0.83 0.066 0.9105 0.036 0.6288 0.0356 36.23 3.22 140 144 2.69 2.75 0.45 0.39 2.61 2.56 5215 5123
T, G, Te, E 0.8119 0.0842 0.9 0.048 0.6558 0.0456 41.57 6.25 288 275 5.59 5.37 0.67 0.38 2.6 2.74 5190 5470

Inputs: time (T)(implies only time variables (i.e. Min, Hour, day(1-7), month(1-12) and year) are used as inputs without any utility), gas (G),
temperature (Te), electricity (E)

Table 2: The results from the sensitivity analysis carried out for the ANN model without use of the water input.

Inputs MSE RMSE AAE ARPE % Vol Err Vol % E Discrepancy AMV PMV ATV PTV

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean Mean
T 2.113 0.0852 1.453 0.029 1.03 0.025 60.94 3.76 218 213 4.03 3.94 3.93 0.61 2.7 2.61 5413 5216
T, G 5.96 0.48 2.44 0.099 1.8 0.092 64.42 2.44 3330 363 61 6.71 6.91 0.44 2.71 1.04 5413 2082
T, Te 2.34 0.174 1.53 0.055 1.094 0.028 64.17 6.93 395 447 7.31 8.27 4.37 0.6 2.71 2.51 5413 5027
T, E 2.98 0.3221 1.73 0.092 1.298 0.0866 83.47 7.41 499 283 9.23 5.23 4.84 0.706 2.71 2.46 5413 4914
T, G, Te 5.92 1.2043 2.42 0.265 1.79 0.199 69.05 5.07 3011 964 55.63 17.8 7.38 0.968 2.71 1.2 5413 2402
T, G, E 5.5 1.247 2.33 0.271 1.776 0.258 78.99 30 2747 1096 50.76 20.3 6.76 0.96 2.71 2.13 5413 4254
T, Te, E 4.43 1.0415 2.09 0.243 1.599 0.214 93.3 15.93 1205 695 22.26 12.85 4.89 1.108 2.71 1.16 5413 4256
T, G, Te, E 5.71 1.1076 2.38 0.234 1.816 0.196 74.17 9.49 3097 648 57.22 11.99 6.91 0.77 2.71 1.16 5413 2315

Inputs: time (T)(implies only time variables (i.e. Min, Hour, day(1-7), month(1-12) and year) are used as inputs without any utility), gas (G),
temperature (Te), electricity (E)
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MSE: Mean: 0.671, STD: 0.080 ( Scale: 0.810)
RMSE: Mean: 0.818, STD: 0.048 (Scale: 0.900)
AAE: Mean: 0.553, STD: 0.047 (Scale: 0.630)
ARPE: Mean: 33.225%, STD: 4.603 (Scale: 38.290)
Vol Err: Mean: 198.680, STD: 136.117 (Scale: 365.629)
Vol % Err: Mean: 3.850, STD: 2.628 (Scale: 7.072)

Figure 1: Illustrating particular models performance for different random initialisation param-
eters. Note that the errors were normalised for clearer illustration. To retrieve actual value
one must use the scale values given in the legend.

Similar to the above analysis; if costumer is interested in small MSE and RMSE metrics it
is recommended to use model 3 (indicated by number 3 on horizontal axis), if costumer is more
interested in predicting more accurately total water volume over a period of time the model 2 is
recommended. It important to highlight that the sensitivity test is not a proof of the accuracy
of the final model. It is rather a mean of determining the most likely inputs to be used for the
design of the final model. It is therefore needful that the test should be conducted on wide array
of models including poor performance models in order to observe the impact of the inputs on
the prediction accuracy. The test will also help to determine the necessary inputs (those that
must be available) in addition to other inputs in order to obtain a given performance index.

3 PRELIMINARY RESULTS

To test the functionality of the developed tool along with appropriateness of the proposed ap-
proach, the data obtained from the SmartSpaces project website http://smartspaces.dmu.ac.uk
were utilised. The SmartSpaces project monitors the energy performance of a selection of pub-
lic buildings in Leicester, UK (university buildings, city council buildings, schools, libraries,
leisure centres and others). The data are collected at 30 min intervals and include ambient
temperature, electricity, gas and water usage (At this stage of the WADER project data from
traffic and social media were not yet available).

Performance of three different ANN models, depicted in Figure 2, demonstrate functionality
of the toolkit, which allows user to gradually improve the prediction model either by employing
additional data or the optimisation metaheuristic. The top plot illustrates the ANN model
prediction performance with no past water data input to the model. The middle plot depicts
the prediction model which includes the water usage. The model in the bottom plot had
the same initial parameters for training with the latter model but its number of neurons and
weights were subsequently optimised. The initial MSE error of 1.285 (top plot) was reduced
to 0.759 (bottom plot). With the data obtained from the SmartSpace project the toolkit is
able to obtain models with the prediction accuracy below 0.2 in terms of MSE as illustrated
in Figure 3. However, what was interesting is that models with no water feed can still predict
water usage fairly accurate (see top plot in Figure 2). This might be particularly useful in
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Figure 2: Performance of different ANN prediction models.

situations when the water data feeds are not available.
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Figure 3: Illustrating the accuracy of ANN prediction models.

4 CONCLUSIONS

The WADER project employs ANN-based models that uses learning of past usage, to predict
future water demand. In urban areas, the drinking water usage is closely associated with daily
population distribution, which can be monitored with use of electricity, gas, social media and
traffic to enhance water demand prediction. The preliminary study with only gas, electricity and
ambient temperature data demonstrated that water demand can be predicted with a sufficient
accuracy. Additional data sourced from social media and traffic could not only improve fidelity
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of the developed prediction models but also result in a different application of the WADER
toolkit; i.e. prediction of daily fluctuations in population density in urban areas.
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