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Abstract

The nature of uncertainty cannot be generically defined as it is domain and context spe-

cific. With that being the case, there have been several proposed models, all of which have

their own associated benefits and shortcomings. From these models, it was decided that an

R-fuzzy approach would provide for the most ideal foundation from which to enhance and

expand upon. An R-fuzzy set can be seen as a relatively new model, one which itself is an

extension to fuzzy set theory. It makes use of a lower and upper approximation bounding

from rough set theory, which allows for the membership function of an R-fuzzy set to

be that of a rough set. An R-fuzzy approach provides the means for one to encapsulate

uncertain fuzzy membership values, based on a given abstract concept. If using the voting

method, any fuzzy membership value contained within the lower approximation can be

treated as an absolute truth. The fuzzy membership values which are contained within the

upper approximation, may be the result of a singleton, or the vast majority, but absolutely

not all. This thesis has brought about the creation of a significance measure, based on a

variation of Bayes’ theorem. One which enables the quantification of any contained fuzzy

membership value within an R-fuzzy set. Such is the pairing of the significance measure

and an R-fuzzy set, an intermediary bridge linking to that of a generalised type-2 fuzzy

set can be achieved. Simply by inferencing from the returned degrees of significance, one

is able to ascertain the true significance of any uncertain fuzzy membership value, relative

to other encapsulated uncertain values. As an extension to this enhancement, the thesis

has also brought about the novel introduction of grey analysis. By utilising the absolute

degree of grey incidence, it provides one with the means to measure and quantify the

metric spaces between sequences, generated based on the returned degrees of significance

for any given R-fuzzy set. As it will be shown, this framework is ideally suited to domains

where perceptions are being modelled, which may also contain several varying clusters of

cohorts based on any number of correlations. These clusters can then be compared and

contrasted to allow for a more detailed understanding of the abstractions being modelled.
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1

Thesis Background

“Uncertainty is a quality to be cherished, therefore - if not for it, who would

dare to undertake anything?”

– Villiers de L‘Isle-Adam

1.1 Introduction

Uncertainty by its very nature is uncertain in its description, the notion of a singular

form of general uncertainty is ill defined as it lacks contextualisation. The General Problem

Solver, a computer program created by Herbert A. Simon, J.C. Shaw and Allen Newell

in 1959, was the first attempt to create a universal problem solver (Newell et al., 1959).

While it could handle relatively simple problems such as the Towers of Hanoi, it found great

difficulty in providing solutions to problems that were difficult to formalise, and in turn,

it would often find itself lost in the exponential possible walkthroughs generated. Even

for simple problems, the exhaustive computational burden became problematic. However,

the context of knowing the domain space in which one would be investigating, allows

for a better suited approach. Problem spaces involving the proofs in the predicate logic

and Euclidean geometry problem spaces, were ideal domains for the applicability of the

General Problem Solver. In much the same way, understanding the environmental and

contextual domain of uncertainty; identifying the key facets will allow one to employ

a model which is better equipped. Uncertainty in its many guises may invoke certain

features, optimisation is one such particularisation, involving the use of specialised tools
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and techniques. There is also probability and its distribution, where a considerable amount

of research has been conducted on the focus on whether a clear event is likely to happen,

rather than a vague event’s existence (Feller, 1968). The commonly associated statistics

is yet another example of a specific specialisation, albeit from a more analytical point of

view, to describe, quantify and interpret the various forms of uncertainty that may be

prevalent (Chance and Rossman, 2006).

Understanding is key, however, the availability of information can itself lead to different

interpretations of a singular observation1. If the knowledge itself is subjective, finding

an indicative, crisp representation can prove challenging, especially if there are multiple

parties involved with varying degrees of confliction. The differences in subjective percep-

tion for a given observation can contain both a general consensus, and also individualised

specific interpretations. This is not an issue of who should one side with when presented

with differing perspectives, but rather, it is one with regards to understanding the un-

certainty as to why there is a difference to begin with. It is the quantification of this

perception based uncertainty that this thesis is concerned with. Making numerical sense

of uncertainty is challenging, but it provides a basis from which one can infer; decisions

can be made; classifications can be undertaken; trends discovered; events predicted.

From the initial beginnings of this thesis to its current incarnation, there have been

several adaptations and inclusions. The original thesis title and proposal was given as:

‘Emerging Uncertainty Models and Their Applications’

The main project objectives were to investigate the typical features of various uncer-

tainties, from which a survey would be completed and the models analysed, investigating

both the strengths and weaknesses. This would generate the candidates from which the

most prospective model(s) would be considered for further enhancement. It was relatively

early on at the beginning of the literature review, that the decision to make use of R-fuzzy

sets was decided upon. The notion of an R-fuzzy set was first proposed by Prof. Yingjie

Yang and Prof. Chris Hinde (Yang and Hinde, 2010). This new extension to fuzzy sets

provided one with a means to represent uncertain fuzzy membership values within a rough

1An observation in the context of this thesis is to be understood as being an observation of an abstract

concept.
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approximation bounding. Therefore, the membership set of an R-fuzzy set is itself a set,

from which a wider scope of uncertainty can be captured and inferenced.

One major problem that still continues to exist with relation to type-1 fuzzy sets, is

that of deriving a crisp membership function. This is problematic as the membership

function itself can be associated with varying degrees of vagueness and ambiguity. There

have been several extensions put forward to overcome this pitfall (Deschrijver and Kerre,

2003). Atanassov intuitionistic fuzzy sets (Atanassov, 1986), where a degree of membership

and degree of non-membership are presented. Shadowed sets (Pedrycz, 1998), where the

evaluation of a membership is scored as either (1), (0) or belonging to the shadowed region

[0, 1]. Interval-valued fuzzy sets (Sambuc, 1975), where the membership of an individual

element is characterised as an interval itself. Type-2 fuzzy sets (Zadeh, 1975a,b,c), where

the membership function itself is a type-1 fuzzy set. These new approaches involve the

use of intervals, multiple parameters and additional fuzzy sets to describe the uncertain

membership function values of fuzzy sets. However, there is still a problem, these new

extensions are not able to recognise or distinguish between different object values within

their shadow areas or intervals (Khuman et al., 2016a). The main reason for choosing

an R-fuzzy approach to provide the foundation for this thesis, is that it allows for the

possibility of multiple values to represent a crisp membership function.

The ongoing interest in type-2 fuzzy logic as a higher order form of fuzzy logic, has

received a lot of attention. The use of interval type-2 fuzzy logic and the generalised

approach of type-2 fuzzy logic has garnered much interest, particularly for its ability to

handle higher degrees of uncertainty. As a result, its application areas are varied, but

considerable work has been undertaken in clustering, classification and pattern recogni-

tion. A thorough and systematic review of type-2 fuzzy logic applications was undertaken

by Melin and Castillo (2014). A vast majority of current type-2 fuzzy applications are

concerned with interval type-2 fuzzy logic, which when compared to a generalised type-

2 fuzzy approach has considerably less computational overhead. Interval type-2 fuzzy

logic implies that every value in the secondary grade of membership be given a degree

of membership equal to 1, therefore, as no new aspects of uncertainty are captured, only

the footprint-of-uncertainty is used. It is widely agreed that a generalised approach will

indeed allow for better management and the handling of uncertainty, compared to that of

the interval type-2 approach. However, the problems associated to the complexities that
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one has to endure to make use of a generalised approach, is the reason why an interval

approach is often ultimately chosen.

R-fuzzy sets encapsulates uncertainty via the use of rough sets to approximate the un-

certain fuzzy membership values of a fuzzy set. By making use of the approximation

bounding from rough set theory, an R-fuzzy set provides the functionality to encapsu-

late membership values from an entire populous, all within a single set, no matter how

conflicting. The fundamental differences in what a rough set and fuzzy set capture, are

also reasons as to why the hybridised concept of an R-fuzzy set works so well. A rough

perspective is more concerned with ambiguity, a lack of information, whereas a fuzzy per-

spective is more concerned with vagueness, a lack of clear, sharp definable boundaries. As

a result there have been several hybridisations between fuzzy sets and rough sets to allow

for greater versatility in encapsulating uncertainty; Bodjanova (2007), Deng et al. (2007),

Dubois (1980), Dubois and Prade (1990), Huynh and Nakamori (2005), Jensen and Shen

(2008, 2009), Nanda and Majumdar (1992), Pawlak and Skowron (2007), Radzikowska and

Kerre (2002), Sun et al. (2014), Wu et al. (2003), Xu et al. (2012), Zeng et al. (2015), all of

which mainly incorporate the use of equivalence and similarity relations. The concept of

an R-fuzzy set, was the first to use rough approximations of uncertain fuzzy membership

values.

After reviewing some of the alternative approaches to uncertainty modelling, it became

apparent that an R-fuzzy set was indeed the best choice. Not only for its greater breadth

of encapsulation when compared to others, but also for its capacity for enhancement.

This coupled with the fact that Prof. Yang constituted one half of the supervisory team, it

made logical sense to extend his work of R-fuzzy sets. The contribution of the significance

measure and the adage of grey analysis, for further inspection of the returned degrees of

significance, provides for a framework which allows for the encapsulation of more complex

uncertainty, while also offering more insight and greater levels of inference.

This thesis makes several novel contributions and enhancements to the R-fuzzy concept,

in order to create a framework more capable of capturing a greater detail of uncertainty,

and equally to provide one the means of inferencing in greater resolution. While the

framework has been shown to work optimally within domains associated to perception

modelling, it is believed that the versatility of the framework will allow for its deployment
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The Research Over Time

Fuzzy theory

Grey theory

R-fuzzy

Rough theory

[6] [5]

[4]

[3] [1] [2] [7] [8] [9] [10]

Figure 1.1: The Research Pathway

in other areas. A visualisation, with an indicative timeline over the course of the research

is presented in Figure 1.1. The use of grey theory should not be seen as an afterthought, as

the investigation into this paradigm was encouraged from the early stages of the research.

The adage of grey methodologies has enhanced the overall resolution of detail one can

expect, both from the returned results and the provided metrics.

The numeric references imposed onto the figure are directly correlated to the academi-

cally recognised contributions of this thesis, as presented in the List of Publications.

Each publication used either a single paradigm or a combination of multiple concepts,

as indicated by the blue circles and intersecting vertical slices. For example, the work

associated to [4], is given as:

[4] A. S. Khuman, Yingjie Yang and R. John, ‘A Significance Measure for R-fuzzy Sets’,

Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on, Istanbul, 2015,

pp. 1-6.

A publication that proposed the notion of the significance measure, hence why the blue

circles are only concerned with Fuzzy theory, R-fuzzy and Rough theory time lines.

6
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1.2 Motivation

The motivation for the enhancement of R-fuzzy sets comes from the want to extend an

already impressive model for uncertainty encapsulation. However, it is rather surprising

that there has been a lack of implementation of R-fuzzy in real world applications. This

was another contributing factor to making it the basis of this thesis. If it can be shown and

demonstrated that the enhancements that this thesis puts forward, are not only feasible,

but intuitive and effective, then there should be no reason that the improved R-fuzzy

framework be utilised more applicably, with regards to handling the uncertainty associated

to perception based domains.

The newly proposed significance measure is able to quantify the importance of each

and every membership value contained within any generated R-fuzzy set. Not only can it

quantify, but it can also act as a validator for every contained uncertain fuzzy membership

value, contained within the fuzzy membership set Jx. If the membership value is contained

in the lower approximation, the returned degree of significance will always be a 1. If the

returned degree of significance is a 0, then that specific fuzzy membership value has been

disregarded as a viable representation. Any returned value within the interval [0,1] signifies

that the membership value has some importance, to some degree, relative to its descriptor.

According to Klir et al. (1997), there exists three kinds of general uncertainty. From an

empirical level, uncertainty is often associated with any type of measurement. Resolution

can be a cause for concern when involving exactness, 0.1 is different from 0.01 as it to

0.001, and so on. There are an infinite number of variations that exist simply between the

interval [0, 1]. From the cognitive level, uncertainty exists in the vagueness and ambiguity

associated with natural language. This was the basis for the published work when using

grey theory for the analysis of natural language processing, from which it was deemed

to be an affective adaptation to employ within the R-fuzzy framework (Khuman et al.,

2015b, 2016d). The meaning of a word from one individual to another may not be exact,

however, an overlap between understandings can act as common ground; an agreement to

the sentiment of the meaning of the word. At a social level, uncertainty can be used to

benefit an agenda, it is at this level the interaction between privacy, secrecy and propriety

occurs.
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There could be several root causes for the existence of uncertainty, the information asso-

ciated to the problem may be inherently noisy or incomplete, riddled with contradictions,

vague and ambiguous. These deficiencies may result in sub-faceted aspects of uncertainty;

uncertainty within uncertainty. From this, three states of uncertainty are given: Vague-

ness - associated to fuzzy with respect to the imprecise, vague boundaries of fuzzy sets.

Imprecision - with regards to non-specificity of the cardinalities of sets and their alterna-

tives. Discord - with regards to strife which expresses conflicts and contradictions of the

various sets of alternatives (Klir and Wierman, 1999; Klir et al., 1997).

The need for models to encapsulate higher complex uncertainties, is the same need that

makes a generalised type-2 fuzzy approach very enticing. Lessening the burden associated

to a generalised approach would allow for its global applicability to reach new heights. The

works of Wagner and Hagras (2010, 2013), Melin et al. (2014) and Mendel et al. (2009), are

several attempts to alleviate the burden of computational complexity. The R-fuzzy and

significance measure adaptation is yet another attempt to allow for a more efficient means

to cater for higher orders of complexities. As it will be shown, the approach allows for the

discrete values to be projected onto a continuous representation, allowing for robustness

when inquiring about values not necessarily encompassed within the original R-fuzzy set.

As such, there is a link to that of a general type-2 fuzzy set, one which will be later

described in this thesis. As an additional contribution of this thesis, is the creation of a

streamlined set for encapsulating the results of the significance measure. The original set

was created using the amplitude attributed to each triggered uncertain fuzzy membership

value, using a streamlined set allows for the same level of encapsulation with the minimal

use of parameters. These streamlined sets themselves are based on the triangular and

trapezoidal membership functions.

The ability to distinguish a membership value from one another allows for discernibility

to be ensured. There is no need to concern oneself with the loss of information, as would

be the case if an interval approach was adopted. An R-fuzzy and significance measure

pairing allows for greater detailed information to be inferred from, which allows for bet-

ter uncertainty management. This again is extended when making use of grey theory

techniques, with the specific incorporation of the absolute degree of grey incidence. This

allows for the metric spaces between perception clusters to be quantified, measuring the

shift in perception from one collection of observations to the next.
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1.3 Hypothesis

The following research hypothesis can be seen as the focus of this thesis:

‘As a traditional R-fuzzy approach has already been shown to be able to encompass a

greater breadth of uncertainty as compared to other uncertainty models; each and every

membership value encapsulated can be distinguished from other encapsulated values. How-

ever, the importance of the values of the upper approximation lacks any type of inspection

to determine how close they were deemed to be universally accepted. Additionally, R-fuzzy

sets generated from the same initial data cannot be compared against one another as it

does not cater for this functionality. With these short comings, the applicability of R-fuzzy

is somewhat limited, and would partially answer the question as to why it is not as utilised

as it should be. The creation of the significance measure provides a means to quantify

and establish the conditional probability of any membership value relative to its descrip-

tor. The thesis also explores the added benefit of employing grey analysis, via the notion

of sequence generation. The improvements to the standard R-fuzzy framework that this

thesis puts forward, allows for one to garner a greater amount of detail; detail which is of

more resolution. By extending the current R-fuzzy framework by the novel contributions

of this thesis such as the significance measure, the streamlined encapsulation concept, and

the likes of the R-fuzzy α-cut for additional post analysis, ultimately allows for the frame-

work to be enhanced. By providing one with a model that is more robust, versatile and

resolute, the R-fuzzy approach for uncertainty modelling may become more applicable and

favourable, when compared to other more established concepts.’

The short coming of the R-fuzzy concept was the motivation to provide it the means

to be more robust and versatile, all the while, allowing for an additional dimension of

complexity to be captured. Allowing for greater levels of detail to be contained, comes the

need for a more detailed form of inspection. The divergences between R-fuzzy sets based

on perception clusters can now be quantified, based on the metrics of returned sequences

generated using the significance measure. The use of grey methodologies to provide for

the analysis of sequences, as it will be shown, allows for a great deal of resolution.
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1.4 Attributed Thesis Contributions

The novel contributions attributed to this thesis allows for an approach that encapsulates

more detail, from which a greater level of analysis can be undertaken. This provides

additional functionality to the concept of R-fuzzy and its application with regards to

perception based uncertainty, which is inherently associated to subjective uncertainty.

Based on this additional dimension of uncertainty, came the need for a higher degree of

analysis. This was the reason of incorporating grey system theory, more specifically, the

use of the absolute degree of grey incidence. The literature review will provide a more

in-depth look at why grey theory was ultimately chosen for the analytical component of

the new R-fuzzy framework. It has the ability to quantify the metric deviation between

sequences of isolated clusters, allowing for the difference in perception between clusters

to be measured and quantified. If it can be seen that there is a trend, linear or not,

between perception as one propagates through clusters of cohorts, this in turn can aid

policy and decision making. Knowing how an observation may be perceived before it is

actually perceived, increases effectiveness, and streamlines efficiency.

The main contribution of this thesis is undoubtedly the significance measure, this allows

for the R-fuzzy methodology to be paired with grey analysis, without such a component

the introduction of grey analysis would not be possible. It is this enhanced R-fuzzy frame-

work that this thesis is primarily concerned with. The significance measure allows for the

detail and subjectivity encapsulated when using an R-fuzzy approach to be maintained

and translated to a sequence, so that it may then be analysed via the use of grey tech-

niques. The additional contributions of this thesis are with regards to the analysis and

post-analysis after the use of the enhanced R-fuzzy framework. The likes of the stream-

lined encapsulation approach for providing the minimal configuration needed to correctly

contain all relative and triggered uncertain fuzzy membership values. In addition, the the-

sis also describes the notion of an R-fuzzy α-cut that is essentially an α-cut but applied

in a R-fuzzy setting. This is closely linked to the idea of an R-fuzzy shadowed set, using

threshold values indicative of the most extreme precipices of inclusion and non-inclusion

to the R-fuzzy set. These additional contributions allow for one to employ less restrictive

means for analysis and understanding of the results.
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1.5 Experimentation

The various examples contained within this thesis used real subjects, of which the

majority were students belonging to taught modules that I myself am associated with.

Example 1 was taken from the original paper by Prof. Yingjie Yang and Prof. Chris

Hinde (Yang and Hinde, 2010) that first proposed the notion of an R-fuzzy set. This

would provide the foundation from which to extend and allow for conciseness throughout.

Example 2 uses Example 1 as the basis from which to expand upon by demonstrating

the use of the significance measure. Example 3 also expands upon Example 1, by

demonstrating the use of whitenisation on the same initial data.

Example 4 used a collection of students, friends and family members. The students

belonged to the taught module of Fuzzy Logic and Knowledge Based Systems. The friends

and family members were of varying ages and demographics, as too were the students. This

included a mix of both female and male participants. There was no strict selection criteria,

if they were willing to participate, they were allowed to. In much the same way, Example

5 also made use of students, friends and family members, of which the majority from

Example 4 participated.

As it will be shown, the experiments reveal a wealth of additional detail, from which

further experiments can be undertaken with specific requirements on inclusion and expec-

tation. As this thesis is concerned with perception based uncertainty, one would feel more

inclined to not be restrictive in terms of participation. The conclusion reached from the

experiments contained in this thesis can be used to provide the background knowledge in

the configuration of future experiments.

1.6 Thesis Structure

Chapter 2 provides one with a literature review and the background information

needed for understanding the successive content of this thesis. A considerable amount of

detail is given to the component parts that make up an R-fuzzy set; rough set approxima-

tions and fuzzy sets. Grey system theory and its foundational underpinnings, along with
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the absolute degree of grey incidence are also presented, highlighting the main ideology

and facets used to enhance the R-fuzzy framework.

Chapter 3 describes the novel contributions attributed to this thesis, it proposes the

notion of the significance measure, providing a full overview. The R-fuzzy and significance

measure pairing is also investigated, demonstrating the enhanced R-fuzzy framework. Also

demonstrated is the notion of a streamlined encapsulating set, one which is created using

the minimal number of parameter values. One could make use of this if simply consider-

ing only the R-fuzzy and significance measure combination, without the addition of grey

analysis. Such is the importance of the significance measure, it provides one with the

component needed so that grey analysis can be undertaken. The significance measure

acts as the facilitator, allowing for the output of an R-fuzzy set to be translated into a

sequence, such that it can be given as the input for the absolute degree of grey incidence.

Similarity and distance measures are also described, as too are the notions of an R-fuzzy

α-cut and an R-fuzzy shadowed set, to aide post result analysis.

Chapter 4 presents the empirical observations of the proposed framework, linking

together the use of an R-fuzzy foundation, the secondary grade membership that the

significance measure allows for, and the use of grey analysis for the quantification of the

metric spaces between sequences. The adage of worked examples better demonstrates

the applicability of the proposed framework. In addition, the link of an R-fuzzy and

significance measure pairing to that of fuzzy set theory is also discussed.

Chapter 5 puts forward a discussion and concluding summary of the research contained

within this thesis. A breakdown of what has been created and the contribution to the

knowledge base are also discussed, as too are the future enhancements that could be

adopted.
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2

Literature Review

“In these times I don’t, in a manner of speaking, know what I want; perhaps

I don’t want what I know and want what I don’t know.”

– Marsilio Ficino

2.1 Introduction

This thesis ultimately combines the concepts of R-fuzzy and grey theory, creating a

framework which is fundamentally R-fuzzy, while utilising grey analysis. The R-fuzzy ap-

proach itself is a hybridisation of fuzzy and rough set theory, the foundational literature

on both of these fields is put forward to allow one to understand the core component parts

of this new framework. As the R-fuzzy approach was decided upon relatively early on

in the research, this brought about the need to understand its constituent parts, hence

the ordering of this chapter. Section 2.2 introduces the notion of fuzzy, an established

paradigm with regards to uncertainty modelling, one which has garnered much attention.

The concept of fuzzy membership values and fuzzy sets are also described and also demon-

strated. Section 2.3 puts forward the preliminaries associated to rough set theory. As

R-fuzzy makes use of rough approximations, it is a vital construct of R-fuzzy and the

new proposed framework. Section 2.4 describes some of the variations and extensions of

fuzzy and rough which were also investigated in the initial stages of this research. Under-

standing the shortcomings that these alternative models have, allows for more credence to

be given to the choice of why an R-fuzzy approach was ultimately chosen. Section 2.5
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presents the concept of an R-fuzzy set, as was first proposed by Yang and Hinde (2010).

Section 2.6 presents the paradigm of grey theory, originally proposed by Ju-Long (1982).

Much like that of the fuzzy section, the concepts of grey numbers and sets are also de-

scribed. It is also in this section that the absolute degree of grey incidence is introduced;

the analysis component of the enhanced R-fuzzy framework. Section 2.7 remarks upon

the chapter, and the justification of deciding upon a predominately R-fuzzy direction.

The aforementioned sections set about providing one with a concrete understanding of the

framework that this thesis is underpinned by.

2.2 Fuzzy Theory

With the pursuit of precision and exactness, comes the need to cater for increased levels

of imprecision. This also implies additional costs, whether it be computational overhead,

a time critical aspect, or the like. The amount and the quality of information available

correlates directly with the amount of uncertainty involved. The more known regarding

the environment, the less uncertainty there is as the formalisation of a possible solution, or

solutions will be more certain. The amount of uncertainty will increase in relation to the

amount of, or lack of knowledge available. This highlights the nature of a knowledge-gap,

which can be understood as the level of understanding one may have, given the amount of

information available, contrasted against an ideal understanding. The more information

that is known regarding the abstraction, the smaller the scope of the uncertainty involved.

Conventional set theory makes use of Boolean logic (Boole, 1847, 1854), whereby an

object is categorised as absolutely belonging, or absolutely not belonging to an inspected

set (Cantor, 1895). The use of crisp boundaries applies an inherent level of strictness to

what the set can model, instances where only two outcomes are allowed, such as an integer

being either odd or even; such instances are easily handled using a classical approach.

However, there is an underlying need to encapsulate uncertainty that is associated to

vagueness when considering human based perception. Human nature and inferencing does

not work in such a precise and crisp manner, a humanistic approach needs to cater for

the existence of imprecision based uncertainty, along with vagueness. The understanding

of a set from a classical perspective is not a fitting synthesis for human intuition. The
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notion of mereology described by Lesniewski (1929), considered the idea of an object being

partially included in a set, this was the basis for the formulation of Max Black’s vague set

(Black, 1937), created in the 1930s.

The building blocks of any fuzzy implementation involves the use of fuzzy sets, first

proposed by Zadeh (1965). A fuzzy set can be seen as an extension of the ideology of a

vague set. From its inception fuzzy logic has been further expanded upon to establish itself

as a powerful paradigm for modelling uncertainty (Zadeh, 1973). As logic is associated

to propositions, fuzzy logic can be seen as the calculus of fuzzy propositions. Mathemat-

ical applications for precise reasoning will often need crisp understandings, however, this

becomes problematic when concepts such as natural language are involved. Linguistic

vernacular can be inherently vague, with a prevalent amount of ambiguity. Our daily ex-

istence will often be littered with varying degrees of uncertainty, further invoking various

aspects of specific uncertainties (Zadeh, 1999a).

“. . . the remarkable human capability to perform a wide variety of physical and

mental tasks without any measurements and any computations. Familiar exam-

ples of such tasks are parking a car; driving in heavy traffic; playing golf; un-

derstanding speech, and summarizing a story. Underlying this remarkable ability

is the brain’s crucial ability to manipulate perceptions, perceptions of size, dis-

tance, weight, speed, time, direction, smell, color, shape, force, likelihood, truth

and intent, amongst others.”

– L. A. Zadeh (1999)

2.2.1 A Crisp Set

The use of a classical set for the modelling of unclassical behaviour will often fall foul

when considering the vagueness of uncertainty. For example, the abstract concept of tall

cannot be universally defined, a single crisp value cannot be put forward as an indicative

representation that is agreed upon by all. What is tall to some may not be as tall to

others. Figure 2.1 provides a visualisation of what a typical crisp bounded set may look

like. The plot in the figure describes any person being 6
′

or taller as a validated member
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Figure 2.1: A Crisp Set

of the set Tall. However, using this precise and strict definition, it would neglect any

instance of anything less than 6
′
. It can be generally assumed that 6

′
is indeed tall, but

so too is 5
′
11
′′
, at least to some extent. The only association one can attribute to a value

is if it is included in the set Tall or not. The problem now becomes one of determining

the bounding of the set, to realistically encapsulate all common held assumptions of what

satisfies the notion of being tall. This echoes the sentiment of Sorites paradox, arising

from a vague predicate. A fuzzy perspective will allow for a more forgiving approach, one

which enables an object to have partial belongingness.

2.2.2 A Fuzzy Set

The most fundamental aspect of fuzzy set theory is its understanding of numbers. A

fuzzy number is ideal for describing linguistic phenomena, where an exact description of its

state is unknown. Fuzzy numbers were first introduced by Zadeh (1975a), for the purpose

of approximating real numbers which deal with uncertainty and imprecision associated

to quantities. It has great scope when approximating height, or weight and other such

uncertain abstractions. The apex of a fuzzy number will generally be the only point where

an object can be given a maximum degree of inclusion equal to 1. The varying degrees of
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Figure 2.2: A Fuzzy Set

membership for other objects will be indicative to their proximity to the apex. Fuzzy sets

extend the notion of fuzzy numbers to allow for more versatility. If one was to describe the

set Tall as seen in Figure 2.1, using a fuzzy approach, a possible visualisation may look like

the plot contained in Figure 2.2. In this plot, the inclusion of other possible values that

could be deemed as tall, values such as 5
′
11
′′

would also be included, but to a lesser degree

than 6
′
. Following this understanding, 5

′
10
′′

would also be a viable candidate for inclusion,

but to a lesser degree than 5
′
11
′′
, and so on. Using a fuzzy perspective for encapsulation,

one is able to relax the expected strictness one would associate with a crisp set. Not only

does a fuzzy set allow for this more harmonic understanding of uncertainty, but it also is

able to fall back to a classical interpretation if need be. The degree of belongingness may

be that of absolution, or absolutely not, in which case, a fuzzy set can replicate a crisp

set (Klir and Folger, 1988). In essence, the process of mapping a membership value to

an object is known as fuzzification. It is only when considering that an object may have

partial belongingness, does the strength and applicability of a fuzzy set become apparent.

Definition 1 (Fuzzy Set): Let U represent the universe and let A be a set in U(
A ⊆ U

)
. The fuzzy set A is a set of ordered pairs given by the following expression:

A =
{〈
x, µA(x)

〉 ∣∣∣ x ∈ U
}

(2.2.1)
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Figure 2.3: Multiple Fuzzy Sets

A fuzzy set on its own can only allow for a certain amount of functionality, the com-

bination of multiple fuzzy sets allows one to extensively model an abstract concept, that

would otherwise be very difficult to represent using a crisp understanding. As it is a set

of ordered pairs, the object x is associated to a degree of inclusion µA(x), the same x

may belong to more than one set, and as such may be attributed to multiple degrees of

inclusion. A fuzzy set goes against the traditional approach of classical set theory, by

allowing an object to belong to different sets by varying degrees of membership. Such is

the methodology of fuzzy sets, the law of the excluded middle and the law of contradic-

tion are ignored, these two prevalent laws would stop an object from belonging to more

than one set if a crisp perspective was used. Continuing with the notion of tall, Figure

2.3 demonstrates how using an additional fuzzy set, one can allow for a more humanistic

approach in understanding the significance of any given value. This plot contains an ad-

ditional set labelled Short. The value 6
′

in this instance can be seen to have an absolute

degree of association to the set Tall with a returned degree of membership of 1, and a

partial degree of inclusion to the set Short with a returned degree of membership of 0.14.

If one inspects the object value 7
′
, it can be seen to have absolute inclusion to the set Tall,

and complete non-inclusion to the set Short. This logical assumption that being 7
′

would

never be regarded as being Short can be easily catered for, as too can a plethora of other

abstract notions.
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Figure 2.4: A Triangular Membership Function

2.2.3 Membership Functions

A fuzzy set is defined by its membership function, it is what gives a fuzzy set its shape.

For example, the fuzzy set A will have a corresponding fuzzy membership function of µA,

this will determine the degree of membership equal to, or within the range of the interval

[0, 1], for each value x in the universe of discourse X. A fuzzy membership is defined as

follows:

µA(x) : X → [0, 1] (2.2.2)

There are several varying membership function types, but this thesis is concerned with

that of the triangular and trapezoidal membership functions, as seen in Figure 2.4 and

Figure 2.5, respectively.

Inspecting the plots, one can see that a certain amount of similarities exist between the

two. The only significant difference is that the trapezoidal function employs the use of a

plateau region, which essentially acts as an interval, as any object to fall within this region

will have an associated membership degree of absolute 1. The triangular membership as

the one presented in Figure 2.4 is symmetric, however, they do not need to be, they can

be skewed to better model abstraction.
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This thesis also puts forward a novel way of streamlining the creation of membership

functions for the encapsulation of the returned degrees of significance, for each generated

R-fuzzy set using the minimal number of parameters, as described in Section 3.3. This

used a combination of both triangular and trapezoidal membership functions as the basis

for encapsulating an entire abstract concept. The mathematical notation for the triangular

membership can be defined as follows:

µA(x) =



0 x ≤ a
x− a
b− a

a ≤ x ≤ b
c− x
c− b

b ≤ x ≤ c

0 c ≤ x

(2.2.3)

The mathematical notation for the trapezoidal membership can be defined in much the

same way, with the addition of the interval region, and is given as follows:

µA(x) =



0 x ≤ a
x− a
b− a

a ≤ x ≤ b

1 b ≤ x ≤ c
d− x
d− c

c ≤ x ≤ d

0 d ≤ x

(2.2.4)
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The understanding of fuzzy sets and the fuzzy membership functions that derive them,

is vital for the understanding of R-fuzzy sets. It is the uncertain, possible fuzzy mem-

bership values that are of concern, as there can be more than one which holds the same

amount of sentiment indicative of a populous. Modelling a single perspective with no

confliction is easily done as it is the only perspective to encapsulate. However, when more

than one subjective perspective is being modelled, there can be a multitude of varying

membership values that are agreed upon. The significance of these viable memberships

need to be quantified, which in part provides the motivation of this thesis. Understanding

the underlying significance of a membership value allows for one to better understand the

perception of the populous. Fuzzy sets and the understanding of how a fuzzy membership

value is obtained, is the main aspect of fuzzy theory that R-fuzzy is concerned with. This

thesis will now go onto introduce the notion of rough theory, it is the rough approximations

that allow for a rough set to be created, it is this rough set that provides the membership

function of an R-fuzzy set.

2.3 Rough Theory

Rough set theory was first proposed by Pawlak (1982), in essence, the concept of a rough

set deals with the synthesis of approximation with regards to the classificatory analysis of

a data set, by framing a given concept, via the use of a lower and upper approximation.

From the approximations, one is then able to construct a decision relative discernibility

matrix, from which the discernibility functions can then be used to create a set of minimal

reducts. These reducts describe the data in its most minimal form, without the loss of

information, detail or sentiment. A conventional rough approach is used not only for data

pruning, but also for the formulation of rules, to functionally map occurrences to the

associated relative outcomes. These rules, can then be used to allow for the classification

of novel, unseen data. Given the anticipation of contradiction, where a rule applies to

cases which have the same attributable inputs, but different outcomes. These instances

can be inferred from the strength, coverage and certainty values, to decide upon which

rule is better suited.
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The mathematical model used by rough theory was designed to be a new approach

in handling imprecise, imperfect knowledge. The traditional mathematical remit of set

theory stipulated that a set be clearly and exactly defined (Cantor, 1895). Philosophers

with mathematical backgrounds, such as Bertrand Russell, were intrigued by the notion of

a vague concept. A concept which allows for a set to partially include objects, or similarly,

to allow for non-explicitly inclusive membership of objects, belonging to a certain degree.

The classical ideology of set theory can lead to, in some instances contractions, as was

described by Russell (1996)1.

The standard rough model incorporates this notion of vagueness by using what is called

the boundary set. If a boundary set is empty, it can be understood that the set being

approximated is crisp. If the boundary set is non-empty, it can be implied that the set

is rough. The boundary set contains objects that cannot be categorised as belonging

unequivocally to any particular set. The theory assumes that there is a sufficient amount

of knowledge known about the universe; the objects contained within the data set, so as to

provide enough relative accuracy for categorisation. These objects are grouped together

with other like objects that have the same conditional attribute values. If an object

has the exact same properties as another object, the objects are indiscernible from one

another, this gives rise to the indiscernibility and equivalence class relations. The property

of indiscernibility plays heavily in the concept of rough theory. Indiscernibility and the

equivalence relations allow for the reduction of the data longitudinally, via the rows of the

data set.

Rough theory makes use of yet another data reduction technique, known as reducts. The

reducts allow for the reduction in dimensionality, latitudinally, by reducing the number of

conditional attributes. This is a means to discover the minimal number of conditional at-

tributes that still hold true for the equivalence relation classes. The reduction in attributes

correlates directly with a reduction of computational overhead, which is always beneficial

regardless of the context of deployment. By removing superfluous objects and attributes,

it allows for the approximation of the decision classes. Reducing the original data set

such that the equivalence relation classes are maintained by the new reduced data set,

will allow for greater effectiveness and overall efficiency (Lin and Cercone, 1996). Using

1The Principles of Mathematics republished via Norton
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Table 2.1: An Information System

Age LEMS

x1 16-30 50

x2 16-30 0

x3 31-45 1-25

x4 31-45 1-25

x5 46-60 26-49

x6 16-30 26-49

x7 46-60 26-49

the discernibility approach when finding the available subset of reducts, is acceptable for

relatively small data sets. However, as the data set becomes larger, the discernibility ap-

proach in finding the minimal subset of attribute reducts becomes an NP -hard problem as

stated by Komorowski et al. (1999). This in turn increases the associated computational

burden with regards to the extra processing of information.

Assuming that Λ =
(
U,A

)
is an information system, and that for any B ⊆ A there is

an associated equivalence relation of the form:

INDΛ

(
B
)

=
{

(x, x
′
) ∈ U × U

∣∣∣ ∀a ∈ B a(x) = a(x
′
)
}

(2.3.5)

INDΛ

(
B
)

is called the B-indiscernibility relation. If it can be shown that (x, x
′
) ∈

INDΛ

(
B
)
, then the objects x and x

′
are indiscernible from one another with regards to

the attributes from B. From the data contained in Table 2.1, which is with regards to

the Lower Extremity Motor Score (LEMS ) for varying age intervals, the indiscernibility

relations for the conditional attributes, for both singular and combinatorial, would be of

the following form:

IND
({

Age
})

=
{
{x1, x2, x6}, {x3, x4}, {x5, x7}

}
IND

({
LEMS

})
=
{
{x1}, {x2}, {x3, x4}, {x5, x6, x7}

}
IND

({
Age, LEMS

})
=
{
{x1}, {x2}, {x3, x4}, {x5, x7}, {x6}

}
If one inspects the indiscernibility relation for Age, one can see that there are three

partitions created on the universe. The set of objects {x1, x2, x6} creates one partition, the
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set of objects {x3, x4} creates another partition, and the final set of objects, {x5, x7} creates

the third partition. Using both conditional attributes, Age and LEMS for the discernibility

relation, ultimately creates five partitions of the universe. By simply inferring from any

indiscernibility relation, one is able to ascertain the objects which satisfy its conditional

belongingness.

2.3.1 Rough Approximations

Rough theory makes use of several approximations, of which provide the bounding

utilised by an R-fuzzy approach. Assuming that Λ =
(
U, A

)
is an information system,

and that B ⊆ A and X ⊆ U. Therefore B is a subset of the attributes and X is a subset

of the universe, and also the set to be approximated. X can be approximated with only

the information contained in B, by creating the lower and upper approximations of X.

Definition 2 (Approximations): Assume that Λ =
(
U, A

)
is an information system

and that B ⊆ A and X ⊆ U. One can approximate set X with the information contained

in B via a lower and upper approximation set.

The lower approximation is the set of all objects that absolutely belong to set X with

respect to B. It is the union of all equivalence classes in [x]B which are contained within

the target set X, and is given by the formal expression:

BX =
{
x
∣∣∣ [x]B ⊆ X

}
(2.3.6)

B(x) =
⋃
x∈U

{
B(x) : B(x) ⊆ X

}
The upper approximation is the set of all objects which can be classified as being possible

members of set X with respect to B. It is the union of all equivalence classes that have a

non-empty intersection with the target set X, and is given by the formal expression:

BX =
{
x
∣∣∣ [x]B ∩X 6= ∅

}
(2.3.7)

B(x) =
⋃
x∈U

{
B(x) : B(x) ∩X 6= ∅

}
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Table 2.2: A Decision System

Age LEMS Walk

x1 16-30 50 Yes

x2 16-30 0 No

x3 31-45 1-25 No

x4 31-45 1-25 Yes

x5 46-60 26-49 No

x6 16-30 26-49 Yes

x7 46-60 26-49 No

The boundary region is the set that contains all objects that cannot be decisively cat-

egorised as belonging to X with respect to B. It is defined by the difference between the

upper approximation Eq. (2.3.7) and the lower approximation Eq. (2.3.6), and is given by

the formal expression:

BN(X) = B(X)−B(X) (2.3.8)

Definition 3 (Rough Set): Assume that the pair, apr =
(
U, B

)
is an approximation

space on U and assume that U/B denotes the set of all equivalence classes over B. The

family of all definable sets in approximation space apr is denoted by def(apr). Given two

subsets A, A ∈ def(apr) with A ⊆ A, the pair
(
A,A

)
is called a rough set. If x ∈ A then

x ∈
(
A,A

)
. If x ∈ U−A then x /∈ A. If x ∈ A and x /∈ A then x has an unknown relation

to
(
A,A

)
. If the approximated set is crisp the boundary region of the set is empty, else

if the approximated set is rough the boundary region of the set is non-empty.

To better understand the notion of rough set approximations, consider the data in

Table 2.2, and notice the addition of the decision attribute Walk. A decision system,

similar to that of an information system, is any information system of the following form

Λ =
(
U, A ∪

{
d
})

, where d /∈ A is the decision attribute. If one was to approximate

the decision attribute Walk, it can be clearly seen that it cannot be crisply defined in a

classical sense. The objects x3 and x4 are contradictory, they have identical conditional

values, but have conflicting decision outcomes. As the concept of Walk cannot be defined

precisely, it is still possible to delineate the objects that definitely do belong to a particular
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classification, whether that is Walk = Yes, or Walk = No. The boundary set will include

the objects that are inbetween the two approximations, in this case, that would include

the objects x3 and x4. The very fact that the boundary set is non-empty, stipulates that

the set is indeed rough.

Using the notation given for rough set approximations in Definition 2, let X ={
x
∣∣Walk(x) = Yes

}
. It can be seen that to satisfy this set, X would have to contain the

objects x1, x4 and x6. However, according to the established indiscernibility relations, this

desired set cannot be created on the current known information. Using the conditional

attributes of both Age and LEMS, the following approximations can be garnered:

Using Eq. (2.3.6) to obtain the lower approximation, one is presented with the set

B(X) = {x1, x6}. The objects {x1, x6} can be understood as absolutely categorically be-

longing to the set Walk with absolute certainty. Using Eq. (2.3.7) to obtain the upper

approximation, one is presented with the set B(X) = {x1, x3, x4, x6}. Notice that the

objects from the lower approximation are also included, this is due to the fact that the

upper approximation includes all non-empty intersections of the target set. Therefore, it

is implied that every object from a lower approximation, will also be included in the upper

approximation. Also notice that even though object x4 has a classification of Yes, and ob-

ject x3 has a classification of No, they are both contained within the upper approximation.

This is due to the equivalence class relations. No matter which indiscernibility relation is

used, the objects x3 and x4 are always members of the same partition, hence the inclusion

of x3, it cannot be distinguished from x4 using only the conditional attributes. One cannot

pick one object whilst ignoring the other, all objects of the set have to be included.

Using Eq. (2.3.8) to obtain the boundary region, one is presented with the set BN(X) =

{x3, x4}. The boundary region will contain all objects that cannot be classified as belong-

ing, or not belonging. With respect to the established equivalence relations, they can be

described as being in limbo. The outside region, which includes all objects that do not

belong to the set X is presented as U⇔ B(X) = {x2, x5, x7}. A graphical representation

of these approximations can be seen in Figure 2.6, along with their associated contained

objects.
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Figure 2.6: Rough Approximations for the Set Walk

2.4 Uncertainty Variations and Extensions

While researching the constituent components of an R-fuzzy set, other uncertainty mod-

els were also investigated, many of which were extensions or variations of the typical type-1

fuzzy set. Also described in this section is the notion of fuzzy-rough and rough-fuzzy mod-

els, whereby the use of equivalence and similarity relations are used. These alternative

models are presented, concluding with a discussion as to why they were not ultimately

chosen to be the basis of the new proposed framework.

2.4.1 An Interval-Valued Fuzzy Set

One such variation of a fuzzy set is the concept of an interval-valued fuzzy set. The

membership of an individual object is characterised as belonging to an interval, rather

than a single value as one would expect. An interval approach does indeed allow for the

encapsulation of uncertain fuzzy membership values, by relatively simple means. However,

as the approach adopts the use of intervals, information can be lost, it is not able to

distinguish between values contained within its interval as it assumes unified distribution.
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Definition 4 (Interval-Valued Fuzzy Set): Let D[0, 1] be the set of all closed sub-

intervals from the interval [0, 1]. Where U is the universe of discourse, and x is an object

belonging to the universe x ∈ X. An interval-valued fuzzy set in U is given by set A, by

the following expression:

A =
{〈
x,MA(x)

〉 ∣∣∣ x ∈ U
}

(2.4.9)

With MA : U→ D[0, 1]

2.4.2 An Atanassov Intuitionistic Fuzzy Set

Similar to an interval-valued fuzzy approach, is that of an Atanassov intuitionistic fuzzy

set, whereby, a degree of membership and non-membership are given. The sum of both

memberships are generally less than or equal to 1. There have been extensions to this

standard interpretation, Despi et al. (2013) allowed for the sum of memberships to be

greater than 1, and for their differences to be either negative or positive. Much like that

of interval-valued fuzzy sets, Atanassov intuitionistic fuzzy sets even with use of additional

parameter values, will not be able to distinguish between values contained within its set.

Definition 5 (Atanassov Intuitionistic Fuzzy Set): Let U be a non-empty universe,

where A in U is given by the following expression:

A =
{〈
x, µA(x), vA(x)

〉 ∣∣∣ x ∈ U
}

(2.4.10)

Whereby µA stipulates the degree of membership of x with regards to A, and vA is the

degree of non-membership of x with regards to A.

µA : X →
[
0, 1
]

vA : X →
[
0, 1
]

(2.4.11)

2.4.3 A Type-2 Fuzzy Set

A type-2 fuzzy set is a logical extension to that of type-1, whereby the addition of a

secondary grade of membership is used. The secondary grade itself is a type-1 fuzzy mem-
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Figure 2.7: A Type-2 Fuzzy Set

bership, and provides a three-dimensional perspective, allowing for greater encapsulation

of uncertainty. A visualisation of a type-2 fuzzy set is given in Figure 2.7.

Definition 6 (Type-2 Fuzzy Set): A type-2 fuzzy set Ã is characterised by a type-2

membership function µÃ(x, u), where x ∈ U and u ∈ Jx ⊆ [0, 1]. A type-2 fuzzy set is

given by the formal expression:

Ã =
{〈

(x, u), µÃ(x, u)
〉 ∣∣∣ ∀x ∈ U, ∀u ∈ Jx ⊆ [0, 1]

}
(2.4.12)

In which µÃ : U× Jx → [0, 1]. Ã can also be expressed as:

Ã =

∫
∀x∈U

∫
∀u∈Jx⊆[0,1]

µÃ(x, u)/(x, u) (2.4.13)

Where
∫ ∫

denotes a union over all admissible x and u values. For discrete universes

of discourse,
∫

is replaced by that of
∑

. The above definition is that of a generalised

type-2 fuzzy set, as this is often too computationally exhaustive, an interval type-2 fuzzy

approach may instead be utilised. In which case, µÃ(x, u) in Eq. (2.4.12) is replaced with

µÃ(x, u) = 1. This implies that every object to be contained within the secondary grade

of membership is given an absolute degree of inclusion of 1. As no new information is con-

tained in the secondary grade of membership, the footprint-of-uncertainty is instead used
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which is described by its upper and lower membership functions, thus reducing the com-

putation needed to calculate each and every contained membership value of the secondary

grade.

µ

µ

1

1

0

0

[0,1]

0

1

Figure 2.8: A Shadowed Representation of a Fuzzy Set

2.4.4 A Shadowed Set

A shadowed set is a special case fuzzy set, it employs the use of unit intervals to replicate

areas of vagueness. As these regions are allocated to some regions of X, rather than the

entire space, it contrasts with that of a type-1 fuzzy set. In much the same way an α-cut

can create a crisp nesting of sets, a shadowed approach allows for an object to be associated
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to a clearly defined crisp area of the set. Therefore, a shadowed approach allows a type-1

fuzzy set to map an object x to 0, 1 or [0, 1]. A visualisation of a shadowed set is given in

Figure 2.8.

Definition 7 (Shadowed Set): Let U represent the universe and let A be a set in U(
A ⊆ U

)
. The fuzzy set A is a set of ordered pairs given by the following expression:

A =
{〈
x, µA(x)

〉 ∣∣∣ x ∈ U
}

(2.4.14)

The membership function of a shadowed set allows for an object to be declared as

absolutely belonging to the set, absolutely not belonging to the set, or belonging to the

set to some degree. The membership function is presented as follows:

µA(x) : X →
{

0, 1, [0, 1]
}

(2.4.15)

The shadowed set was created as a means to not be constricted by precise numerical

membership values. By allowing an object to be given a truth value of Yes, No, or

belonging to the interval [0, 1] which is indicative of the perceived uncertainty, allows for

less computational overhead. However, once an object is given inclusion to the uncertainty

interval, its significance is lost, an object cannot be distinguished once it is in the interval.

2.4.5 Fuzzy-Rough & Rough-Fuzzy

There have been several proposed hybridisations involving the use of fuzzy and rough

components. The concepts contained in; Bodjanova (2007), Deng et al. (2007), Dubois

(1980), Dubois and Prade (1990), Huynh and Nakamori (2005), Jensen and Shen (2008,

2009), Nanda and Majumdar (1992), Pawlak and Skowron (2007), Radzikowska and Kerre

(2002), Sun et al. (2014), Wu et al. (2003), Xu et al. (2012), Zeng et al. (2015), mainly

incorporate the use of equivalence and similarity relations. In much the same way that

equivalence classes as given in Eq. (2.3.5), are vital for rough set theory, fuzzy-equivalence

classes are vital to the concept of fuzzy-rough sets. A crisp equivalence class can be

extended by the introduction of a similarity relation, which allows for the quantification

of how similar two contained objects are to one another. For example, if S is a similarity
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relation on the universe and µS(x, y) = 0.1, then it can be understood that the objects x

and y are drastically different from one another. Equally, if the result was µS(x, y) = 0.8,

then both objects are indeed very similar. Expectedly, a value of 1 would indicate that they

are identical. By using an equivalence relation on U, one can incorporate the functionality

of lower and upper approximations from rough set theory to create the concept of a

rough-fuzzy set, extending the notion of classical set theory as stated by Dubois and

Prade (2012, 1990). Alternatively, a fuzzy similarity relation can be used to replace the

equivalence relation, the resulting concept is a deviation of rough set theory, referred to

as fuzzy-rough sets. In a rough-fuzzy configuration, only the decision attribute values are

fuzzy, whereas in a fuzzy-rough configuration, both conditional and decision values are

allowed to be fuzzy. Using a fuzzy similarity relation, the fuzzy equivalence class [x]S for

the objects that are classed as close to x, is defined as follows:

µ[x]S(y) = µS(x, y) (2.4.16)

2.4.6 A Fuzzy-Rough Set

The fuzzy B -lower and B -upper approximations as devised by Dubois and Prade (1990),

are defined as follows:

µBX(Fi) = inf x max
{

1− µFi(x), µX(x)
}
∀i (2.4.17)

µBX(Fi) = supx min
{
µFi(x), µX(x)

}
∀i (2.4.18)

The tuple
〈
BX,BX

〉
can be used to represent the fuzzy-rough set.

2.4.7 A Rough-Fuzzy Set

A Rough-fuzzy set is another possible configuration, and can be seen as a generalisation

of a rough set, derived from the approximation of a fuzzy set in a crisp approximation

space. Under this configuration only the decision attribute values are fuzzy and the con-

ditional values remain crisp. This is in contrast to the fuzzy-rough approach, where both
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conditional and decision attribute values may indeed be fuzzy. The lower and upper ap-

proximations represent the extent to which the objects belong to the set, and are defined

as follows:

µRX

(
[x]R

)
= inf

{
µX(x)

∣∣∣ x ∈ [x]R

}
(2.4.19)

µRX

(
[x]R

)
= sup

{
µX(x)

∣∣∣ x ∈ [x]R

}
(2.4.20)

Where µX(x) is the degree of membership to which the object x belongs to the fuzzy

equivalence classX, and each [x]R is a crisp equivalence class relation. The tuple
〈
RX,RX

〉
is called a rough-fuzzy set. This extends the classical rough set approach for both lower

and upper approximations as given in Eq. (2.3.6) and Eq. (2.3.7), and can be seen if the

µX(x) membership value returned is either 1 or 0. According to Dubois and Prade (2012,

1990), rough-fuzzy sets can be generalised to fuzzy-rough sets, where all the equivalence

classes may be fuzzy. This will then allow for both the conditional and decision attribute

values, to be represented as fuzzy, crisp, or a combination of the two.

The deployment of the two configurations is with regards to data sets that contain

decision attributes, so that attribute reduction can be undertaken. An R-fuzzy approach

is employed on perception based data, where each datum is a perception of a concept, two

very different domains, and as such, different concepts.

2.4.8 An Overview

The problem of having to use excessive precision to describe increasingly imprecise phe-

nomena has seen the creation of several variations, extensions and alternative approaches

to try to overcome this dilemma. To some extent these alternatives such as; interval-

valued fuzzy sets, Atanassov intuitionistic fuzzy sets, shadowed sets and type-2 fuzzy sets,

do offer viable solutions but not wholeheartedly, as several questions still remain. The

likes of interval-valued fuzzy sets, Atanassov intuitionistic fuzzy sets and shadowed sets,

all allow for the means of encapsulating the uncertainty involved concerning the member-

ship values of a fuzzy set. However, an interval-valued fuzzy set implies that the values

contained within its interval are equally distributed. This is an unrealistic assumption for
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perception-based domains, as a specific subjective interpretation may not be shared with

all concerned. As it will be seen, a unified distribution is not always the case, conflicting

observations may exist. Other drawbacks may involve a value losing its inherent meaning

if placed within an interval or shadowed region, as once placed in such a container, its

uniqueness is dismissed, as it can no longer be distinguished from.

Perception based perspectives may not follow a universal interpretation, individuals

may give varying results based on the same initial observations. These differences and

similarities in their perceptions should all be taken into consideration. With this being the

case, a single fuzzy membership value may not always be an ideal choice when representing

a descriptive object, doing so would skew the underlying intent of the perceptions involved.

The general consensus and the individual perceptions need to be taken into account. A

type-2 fuzzy approach extends into the third dimension by using a type-1 fuzzy set to

replace the use of crisp membership values. Nevertheless, the secondary membership

function itself would still be using crisp values, as a result we are faced with the same

initial problem. However, the higher levels of type-n one could implement, the closer one

gets to precision and an agreed upon model, but not without consequence, the burden of

complexity and computation becomes too costly.

The type-2 fuzzy set as presented in Definition 6 is the general interpretation, the

simplified version is that of the interval type-2 fuzzy set. The use of the footprint-of-

uncertainty reduces the computation to that of levels more forgiving. An interval type-2

fuzzy set makes use of interval mathematics, therefore making it easier to understand and

compute compared to that of the generalised version. The review conducted by Melin and

Castillo (2014), concisely inspected type-2 fuzzy logic applications in the areas mainly

involving clustering, classification and pattern recognition, with the vast majority of them

involving interval type-2 fuzzy logic.

There are indeed some interesting methods that exist for constructing interval-valued

fuzzy sets. The work undertaken by Bustince Sola et al. (2015), shows that an interval-

valued fuzzy set is a particular case of an interval type-2 fuzzy set. As such, both concepts

should be treated differently from one another. The sentiment of Sola’s paper is echoed

by Mendel et al. (2016), reinforcing the perspective that they should indeed be treated

differently.
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As the membership of an R-fuzzy set itself is a set which contains discrete data, there

is no loss of detail, unlike that of an interval valued fuzzy set approach (Yang and Hinde,

2010; Khuman et al., 2015a, 2016a). Once an object has entered the interval, there is

no sense of how close to the bound of that interval it is; extremely pessimistic or overtly

optimistic, the interval assumes generality and uniformed distribution. As the membership

set of an R-fuzzy set is a rough set, the contents of which are crisply defined possible fuzzy

membership values, that have an affinity to the descriptor it is being modelled for, no loss

of information is suffered. Therefore, one can then quantify the distribution of that R-fuzzy

set, ergo the proposed significance measure, which will be presented in Chapter 3.

An R-fuzzy approach offers a new perspective on uncertainty modelling, one which

maintains all granules of information concerning its objects of uncertain fuzzy membership

values. The substance of the following section was adapted from the research publications

attributed to this thesis.

2.5 R-fuzzy Theory

The R-fuzzy concept is yet another proposal for encapsulating uncertainty, one which

frames its fuzzy membership values via the approximations defined in Definition 2. The

work undertaken by Yang and Hinde (2010) first put forward the notion of an R-fuzzy

set, the capital ‘R’ distinguishes it from r-fuzzy, which was proposed by Li et al. (1996),

yet another approach to encapsulate uncertainty. The membership value of an element of

an R-fuzzy set is represented as a rough set. R-fuzzy sets are an extension of fuzzy set

theory that allows for the uncertain fuzzy membership value to be encapsulated within

the bounds of an upper and lower rough approximation. If using the voting method, the

lower bound would contain the membership values agreed upon by all in the populous,

whereas the upper bound would contain membership values agreed upon by at least one

member.

Definition 8 (R-fuzzy Set): Let the pair apr =
(
Jx, B

)
be an approximation space

on a set of values Jx = {v1, v2, . . . , vn} ⊆ [0, 1], and let Jx/B denote the set of all equiv-

alence classes of B. Let
(
MA(x),MA(x)

)
be a rough set in apr. An R-fuzzy set A is
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characterised by a rough set as its membership function
(
MA(x),MA(x)

)
, where x ∈ U,

given by the formal expression:

A =
{〈
x,
(
MA(x),MA(x)

)〉 ∣∣∣ ∀x ∈ U,MA(x) ⊆MA(x) ⊆ Jx
}

(2.5.21)

2.5.1 R-fuzzy Approximations

Similar to type-2 fuzzy sets and interval-valued fuzzy, an R-fuzzy set describes its mem-

bership using a set itself, which are values that satisfy the membership descriptor. If a

membership value has an affinity to the descriptor, then it is included within the R-fuzzy

set. For each xi ∈ U, there is an associated membership description d (xi) which describes

the belongingness of the object xi to the set A ⊆ U. Given that C is the set of available

evaluation criteria, each value v ∈ Jx is evaluated by cj ∈ C to determine if it is described

by the membership description for xi with respect to A. The result of the evaluation

is given by a simple YES or NO. Understandably, evaluations which return a YES are

accepted while evaluations which return a NO are ignored.

v

(
d(xi),cj

)
−−−−−−→ YES or v

(
d(xi),cj

)
−−−−−−→ NO

For each pair
(

(xi), cj

)
where xi ∈ U and cj ∈ C, a set Mcj(xi) ⊆ Jx is created, given

by the formal expression:

Mcj(xi) =
{
v
∣∣∣ v ∈ Jx, v (d(xi),cj

)
−−−−−−→ YES

}
(2.5.22)

The notation used for the approximations of R-fuzzy sets are semantically the same

as those presented in Definition 2, however, they differ in their notation. The lower

approximation of the rough set M(xi) for the membership function described by d(xi) is

given by:

M(xi) =
⋂
j

Mcj(xi) (2.5.23)

The upper approximation of the rough set M(xi) for the membership function described

by d(xi) is given by:

M(xi) =
⋃
j

Mcj(xi) (2.5.24)
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Therefore the rough set approximating the membership d(xi) for xi is given as:

M(xi) =

⋂
j

Mcj(xi),
⋃
j

Mcj(xi)

 (2.5.25)

For any given d(xi), it can be easily understood that the R-fuzzy set M(xi) depends

wholly on Jx. For the same d(xi), assume Ma(xi) and Mb(xi) are two R-fuzzy memberships

constructed for A ⊆ U from Jax and Jbx using the same criteria set C. Ma(xi) and Mb(xi)

may be different if Jax 6= Jbx. If for the same criteria set C, Ma(xi) = Mb(xi) holds if

Jax = Jbx. In addition to Jx, a change in the criteria set C will bring a change and result

in a different M(xi). Considering, v
(d(xi),cj)
−−−−−−→ YES, it is perfectly possible for a different

criteria set C to produce an entirely different Mcj(xi) and hence an entirely different

M(xi). Which alludes to the fact that an R-fuzzy set A ⊆ U can only be created if Jx and

the criteria set C are known.

An individual may have a unique perception which differs from another individual about

the same observation. This different set of perceptions is an example of the criteria set

C, where each individual will have their own criteria cj ∈ C. An R-fuzzy set approach

allows for a multitude of different perceptions of an observation to be encapsulated and

collected. The membership of an object in an R-fuzzy set is defined as a rough set, hence

its operational result is defined by a pair of definable sets for the rough approximation of

its membership.

2.5.2 An R-fuzzy Example

Example 1: Assume that F =
{
f1, f2, . . . , f10

}
is a set containing 10 flights, whose

noise levels, given in decibel (dB) were recorded at a particular airport, and are given as

N =
{

10, 20, 30, 50, 40, 70, 20, 80, 30, 60
}

. The collected decibel levels are presented

in Table 2.3. Each noise Ni value corresponds to flight Fi, for example flight f4 has a

recorded value of 50(dB), whereas f5 has a value of 40(dB), and so on. Assume that set

C =
{
p1, p2, . . . , p6

}
represents 6 individuals at the same location, all of whom gave their

perceived perception of the noise levels for each of the 10 flights. These values have been

collected and are presented in Table 2.4.
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Table 2.3: Recorded Noise of Flights

# f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

dB 10 20 30 50 40 70 20 80 30 60

Table 2.4: The Collected Subjective Perceptions of Individuals

# f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

p1 NN NN NN AC AC BN NN VN NN BN

p2 NN NN AC AC AC BN NN VN AC BN

p3 NN AC AC BN AC VN AC VN AC BN

p4 NN NN NN AC AC BN NN VN NN BN

p5 NN AC AC AC AC BN AC VN AC BN

p6 NN NN AC AC AC VN NN VN AC BN

The abbreviated terms contained within the table can be understood as meaning:

NN → Not Noisy AC → Acceptable BN → A Bit Noisy VN → Very Noisy

To construct a fuzzy set, one takes the values contained in N, and then inserts them

into a simple linear function given as follows:

µ(fi) =
li − lmin

lmax − lmin
(2.5.26)

Where li is reference to the noise level of flight fi and lmax and lmin provide the normal-

ising scope and are the maximum and minimum values contained in N . After completion,

one is presented with a fuzzy set containing precise fuzzy membership values for each of

the 10 flights:

µ(f1) = 0.00 µ(f2) = 0.14 µ(f3) = 0.29 µ(f4) = 0.57 µ(f5) = 0.43

µ(f6) = 0.86 µ(f7) = 0.14 µ(f8) = 1.00 µ(f9) = 0.29 µ(f10) = 0.71

It is not always possible to know the exact noise level of a particular flight, nor do people

need to know the exact levels in their communication (Yang and Hinde, 2010). An R-fuzzy

approach provides an answer to the question, how to express a fuzzy membership function

if the exact noise level is unknown or not given? If for example, we know that flight f11 has
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an associated abstract description of being AC, how can this be encapsulated using fuzzy

membership values? A standard fuzzy type-1 approach would assign it a precise value,

but this does not fully appreciate the differences in perception individuals may have for

a given flight, as can be seen from Table 2.4. A particular flight can be perceived in a

multitude of ways; what is acceptable to some may not be acceptable to all. Rather than

neglecting to include a particular response as it may go against the grain of common held

interpretations, it would be more ideal to encapsulate all involved perceptions.

Once the fuzzy membership values have been established, based on the recorded noise

levels and the linear function given in Eq. (2.5.26), the fuzzy membership set derived is

given as follows:

Jx =
{

0.00, 0.14, 0.29, 0.57, 0.43, 0.86, 0.14, 1.00, 0.29, 0.71
}

If it is known that f11 is AC, the descriptor can be set to d(f11) = AC , where its

membership has to satisfy this description. The evaluation criterion is decided by each

individual from set C. Each value v ∈ Jx is evaluated against pj ∈ C to conclude if it fits

with the description given for d(f11) and for f11 ∈ U, using:

v

(
d(xi),cj

)
−−−−−−→ YES

For each pi ∈ C there is a corresponding row in Table 2.4, for the columns where there

is a match with the descriptor given for d(f11), its corresponding flights will provide the

membership values in accordance to their noise levels. Using the description of AC for

flight f11 and the values provided by the individuals in set C, a subset of values can be

constructed, Mpj(f11) ⊆ Jx. For example, inspecting p1, one can see that flights f4 and

f5 are the only flights that satisfy the descriptor d(f11) = AC . As a result, we take the

corresponding membership values from Jx for f4 and f5, which gives a subset of values,

Mp1(f11) = {0.57, 0.43}. For p2, the descriptor is satisfied by flights f3, f4, f5 and f9. This

results in subset Mp2(f11) = {0.29, 0.57, 0.43}, where instances of duplication are ignored.

This process is repeated for all objects of set C, the results of which are given as follows:

Mp1(f11) = {0.57, 0.43} Mp2(f11) = {0.29, 0.57, 0.43} Mp3(f11) = {0.14, 0.29, 0.43}

Mp4(f11) = {0.57, 0.43} Mp5(f11) = {0.14, 0.29, 0.57, 0.43} Mp6(f11) = {0.29, 0.57, 0.43}
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Once the subsets have been computed and collected Mpj(f11), one can now apply the

notion of approximations. Starting with the lower approximation and using Eq. (2.5.23),

one can inspect each subset to find any membership value that occurs in each and every

subset. As a result {0.43} is the only membership value that satisfies this requirement,

therefore it is the only value to be contained in the lower approximation of the rough

set. If no such membership value existed, whereby it was not included in all generated

subsets, then the resulting rough set would contain an empty lower approximation. The

upper approximation Eq. (2.5.24), contains values that have been considered to be valid

with relation to the descriptor. This essentially means that all instances contained within

the subsets are placed into the upper approximation, where the duplications are removed

{0.14, 0.29, 0.43, 0.57}. One will notice that the lower approximation value of {0.43} is

also contained, this is understandable as Eq. (2.5.21) clearly states that MA(x) ⊆MA(x).

Any value contained in the lower approximation will also be contained within the upper

approximation. The actual rough set approximating the uncertain membership for d(f11)

is constructed using Eq. (2.5.25), therefore we are presented with:

M
(
f11

)
=
(
{0.43}, {0.14, 0.29, 0.43, 0.57}

)
This result alludes to the fact that the membership value 0.43 is agreed upon by all

and that its corresponding flights are AC, as it is the only value to be contained within

the lower approximation. Also, the flights associated with 0.14, 0.29 and 0.57 are also

considered as AC by some, but absolutely not all.

If one was to use a traditional type-1 fuzzy approach to define an appropriate member-

ship for f11 when described as AC, the average may be taken to represent it, in which case

the returned value would be:

µ
(
f11

)
=

1

17

∑
x∈U

µ(x)/x = 0.40

This is the summation of each membership value contained in all the generated subsets

Mpj

(
f11

)
∈ Jx. Inspecting the value 0.40, it is slightly less than the accepted and more

reasonable 0.43, and considerably less than the 0.57, which was agreed upon by 5 of the 6

individuals in the criteria set.

If one was to apply the notion of interval-valued fuzzy sets, where the scope would be the

most pessimistic lower bound and optimistic upper bound [0.14,0.57], it is not possible to
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tell which values were agreed upon unanimously. Simply inspecting the values themselves,

one can see that a significantly large area of distribution is given. The value of 0.14 was

only agreed upon by 2 of the 6 individuals, but as an interval approach does not concern

itself with the significance of captured values, it will treat any value as a viable candidate

with equal weighting. This same problem is shared with Atanassov intuitionistic fuzzy

sets, a value once contained in the interval loses its uniqueness. This harkens back to the

initial problem of there being no distinction between the values contained within interval

regions or shadow areas, the value itself loses its individuality. With regards to type-2

fuzzy sets the example is too small, such that a reliable membership distribution cannot

be created, which gives additional credence for the concept of an R-fuzzy and significance

measure pairing. If the shadowed set was to be used, the values for f11 would be placed in

the unknown region. One can see that in this instance, an R-fuzzy set is an ideal concept

to use, maintaining uniqueness for all viable membership values.

R-fuzzy sets allow for a greater breadth of uncertainty encapsulation, as compared to

the other alternative uncertainty models, the R-fuzzy approach is the most well equipped.

This thesis will now go onto to describe grey theory, from which the analysis component

is utilised for the new proposed framework.

2.6 Grey Theory

Grey theory is yet another approach for handling uncertainty, which was first initiated

in the 1980s by Ju-Long (1982). The paradigm places particular emphasis on domains

associated with small samples and poor information, where the information may be par-

tially known and partially unknown, a common trait of uncertain systems (Liu et al.,

2012). The term grey can be interpreted as a halfway house between a black system and

a white system. Where in a black system absolutely nothing is known, whereas in a white

system absolutely everything is known. The purpose of which is to garner an informed

and accurate conclusion based on what little, uncertain information is available. This is

generally achieved through the processes of generating, excavating and extracting mean-

ingful content. In doing so, the system’s operational behaviours and its laws governing its

evolution can be accurately described and acutely monitored (Liu and Forrest, 2010).
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While undertaking the literature review, it was advised that one should consider inves-

tigating the concept of grey theory to see if it was viable for the incorporation into the

overall research. The initial stages of the investigation lead to the publication of an im-

proved method for grey model forecasting, presented in Khuman et al. (2013). Although

not primarily concerned with the main research output of this thesis, the domain of grey

forecasting provided the insight into the various facets of the paradigm, one of which was

grey analysis and by proxy, the absolute degree of grey incidence. As progression through

the literature developed, so too did the understanding of the concept. It became appar-

ent that there was a relationship to that of probability theory, in particular, the theory

of imprecise probability (Walley, 2000), which has more of an association to grey theory

than traditional precise probability.

Imprecise probability can be seen as a generalisation of probability theory, where its

main application is with regards to vague, partially known systems, two major character-

istic traits shared by grey theory. With this being the case, identifying a unique probabil-

ity distribution will often be difficult. The main ethos of imprecise probability is to take

what little available, partial information one has, and make efforts to represent it more

accurately, which is very closely aligned to the mantra of grey. The use of interval repre-

sentation to capture the imprecise probability, and the use of grey numbers to represent

an interval of unknown content, are very similar. However, the lower and upper bounds of

a grey interval are replaced with lower and upper probabilities, or more generally, lower

and upper expectations (Weichselberger, 2000; Williams, 2007). If the lower probability

is equal to the upper probability then precise probability is known, therefore a traditional

perspective can be adhered to, which differs from a grey perspective, as one may not know

all about the information involved. However, if more information is presented to a grey

system, whereby the knowledge of the information reduces the scope of the bounding of

the interval, steps are made towards a more probabilistic interpretation. Only when the

scope of the bound and the value of all possible outcomes are known does one have the

equivalence of a true probabilistic precise interpretation. However, in this instance the

grey number would be regarded as a white number, as there are no unknown granules of

information.

Continuing with the notion of probability there is also the theory of possibility Zadeh

(1999b); Dubois and Prade (2012), an alternative mathematical theory to probability.
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Table 2.5: A Digestive Summary Between Grey, Fuzzy & Prob. Statistics

Criteria Grey Fuzzy Prob. Statistics

Research Objects Poor Information Cognitive Uncertainty Stochastic

Basic Sets Grey Sets Fuzzy Sets Cantor Sets

Methods Information Coverage Function of Affiliation Probability Distribution

Procedures Sequence Operator Cut Set Frequency Distribution

Data Requirement Any Distribution Known Membership Typical Distribution

Emphasis Intention Extension Intention

Objective Laws of Reality Cognitive Expression Historical Laws

Characteristics Small Sample Experience Large Sample

Possibility theory was first put forward by Zadeh in 1978 as an extension to his work on

fuzzy, which distinguished itself from probability. Enhancements to the theory by Dubois

and Prade have evolved it further still. Whereas probability theory uses a single value

to describe how likely an event is to occur, possibility theory makes use of two measures;

the possibility and the necessity of an event. The subsets of the universe are measurable,

and the resulting distribution of possibility is a function. This allows for the beliefs of an

event to be described by a number and a bit.

Dubois and Prade (2012); Hllermeier (2014), have shown fuzzy sets to be possibility

distributions under certain considerations, that present the degree of plausibility for each

object in the set. A grey set could also be described using possibility distributions, if that

grey set was interpreted as a white set. The theory of evidence, also known as the theory of

belief functions and the Dempster-Shafer theory, proposed by Shafer et al. (1976); Shafer

(1982, 1990), is another framework for dealing with and understanding uncertainty. There

already exists logical connections between the theory of evidence to that of probability,

possibility and imprecise probability theory, therefore so too is there a relationship with

grey theory. The theory allows for the combination of evidence from different sources to

arrive at a degree of belief, given by the belief function. As it is a way of representing

epistemic plausibility (Couso and Dubois, 2014; Couso et al., 2014), it too can be said that

fuzzy has strong links to probability theory. One can describe the probability of a fuzzy

event, and equally, the fuzziness of a probability value. Grey and fuzzy are foundationally

different from one another, a combination of certain aspects from each theory will allow
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for a greater amount of uncertainty to be captured. There exists a relationship between

grey and possibility theory, only under certain considerations. For example when a grey

set is interpreted as a white set described using white numbers. A digestive summary

between grey, fuzzy and prob. statistic theory can be seen in Table 2.5.

The perspective that fuzzy adopts contrasts with that of a grey perspective, therefore

the hybridisation between the two allows for greater swathes of uncertainty to be captured.

A fuzzy perspective is with regards to a clear intention with an unclear extension. A grey

perspective is a polar opposite, an unclear intention with a clear extension. The progressive

review of grey systems lead to the publication of a divergence paper Khuman et al. (2014).

This highlighted some of the intrinsic differences that exist between fuzzy and grey. The

publication was mainly concerned itself with the foundational elements such as numbers

and sets, and as such, this thesis will now describe those core elements of grey theory to

better provide an more in-depth understanding.

2.6.1 Grey Numbers

Much like that of fuzzy set theory, grey theory also makes use of sets and numbers. A

grey set makes use of grey numbers g±, and considers the characteristic function values

of a grey set as grey numbers. There are several classes of grey numbers that the reader

should be made aware of: The lower limit grey number g± ∈
[
g−,∞

)
. The upper limit

−∞ ∞+

g−= g+

White Number

−∞ ∞+

g− g+

Grey Number

−∞ ∞+
Black Number

−∞← g− g− →∞+

Figure 2.9: A White, Grey & Black Number
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grey number g± ∈
(−∞, g+

]
. An interval grey number g± ∈

[
g−, g+

]
. A black number

g± ∈
(−∞,∞+

)
. Finally, a white number: g± ∈

[
g−, g+

] ∧
g− = g+. With the aforemen-

tioned classes one can interpret what is meant by white, black and grey. A white number

is absolutely known and has an associated exact value. A black number is absolutely

unknown, both in its exactness and the range in which it is to be found. A grey number

is a halfway house between the two, where an exact value is unknown but the bounds of

its range in which it is to be found is known. A visualisation of the various grey number

interpretations is presented in Figure 2.9.

Definition 9 (Grey Number): A grey number is a number with an unknown value,

but contained within a known bound. The formal expression is given as follows:

g± ∈
[
g−, g+

]
=
{

g−≤ t ≤ g+
}

(2.6.27)

Where g± is the grey number, t is the information, and g− and g+ are the lower and

upper limits of the bound, respectively.

It’s noteworthy to mention that grey numbers could be discrete if the candidate values

are finite. For example, if a number can only be one value among the values it contains;

2, 4, 6, 8, 10, it would be given as a set: g± ∈ {2, 4, 6, 8, 10}. This has a close relationship to

the epistemic interpretation of a set, both from the conjunctive and disjunctive perspective

(Couso and Dubois, 2014). It can be interpreted from the conjunctive perspective as a

piece of precise information, such as the range of ages for a collection of children. But it

can be also interpreted from the disjunctive viewpoint as a collection of possible values for

a particular number x, according to our incomplete information about it; we know that

x belongs to the set, and nothing else. A candidate value inside the conjunctive set is a

value that could be the correct value, any value not contained in the set is unequivocally

incorrect. As a result its characteristic function could be interpreted as a possibility

distribution function, as described by Zadeh (1999b).

Clearly defined membership or characteristic function values are needed when using

fuzzy sets (Deschrijver and Kerre, 2003). When information may be partial or incomplete,

finding a clearly defined number can prove difficult. How to define a crisp membership

value becomes a problem. As was remarked by Yang and Hinde (2010), for epistemic

uncertainty, an interval representation infers that any value within the interval may be a
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possible value. However, one may know that the possible value can only be one of a finite

number of values within the interval. As a result, an interval representation is not useful.

An extension to the standard grey number is that of the generalised grey number presented

in Yang (2007); Yang and John (2012a,b); Yang et al. (2014). Where the allowance of both

discrete and continuous values are perfectly acceptable. The notation that follows uses

closed brackets, but it should be understood that both closed and open intervals are

perfectly acceptable.

Definition 10 (Generalised Grey Number): Let g± ∈ R be an unknown real number

within a union set of closed or open intervals, presented as follows:

g± ∈
n⋃
i=1

[
a−i , a

+
i

]
(2.6.28)

Where i = 1, 2, . . . , n and n is an integer value and 0 < n < ∞, a−i , a
+
i ∈ R and

a+
i−1 ≤ a

−
i ≤ a

+
i ≤ a

−
i+1. For any interval

[
a−i , a

+
i

]
⊆
⋃n
i=1

[
a−i , a

+
i

]
, pi is the probability for

g± ∈
[
a−i , a

+
i

]
. If the following two conditions hold true: pi > 0 and

∑n
i pi = 1. If so, g± is

a generalised grey number, g−= infa−i ∈g±a
−
i and g+ = supa+i ∈g±a

+
i are respectively referred

to as the lower and upper limits of the grey number g±. Based on this interpretation, it

is impossible for there to be more than one number that is the underlying white number,

contained within its candidate set.

The well-known notion of basic mass assignment from the theory of evidence Shafer et al.

(1976), has similarities to the generalised grey number. As a basic mass assignment is a

mapping m defined on the power set of a universe U, assigning a non-negative mass to each

set. The collection of focal sets is the collection of those sets with strictly positive masses,

{A1, . . . , An}, such that m(Ai) = pi > 0. The sum of the masses associated to the focal

sets is an absolute 1. The notion of the generalised grey number is formally the same as the

notion of the basic mass assignment. In particular, under the epistemic perspective, the

generalisation of the conjunctive view of sets, fuzzy sets can be understood as a particular

mass assignments where the focal sets are nested. In this case, the associated plausibility

measure is, in particular, a possibility measure.

The generalised grey number is particularly important as it allows for the inclusion of

both discrete and continuous data to be contained in the candidate set. The very fact that
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both open and closed intervals may be included means that gaps, or hesitations may also

be included, which would otherwise not be the case if using a standard interval represen-

tation. As grey systems are associated with partially known, incomplete information, grey

numbers are associated to partially known numbers. Therefore, intervals can be consid-

ered a special case of grey numbers, where the bounds of the number are known, but not

its exact position within the bound. However, the candidate of a partial known number

could be selected from a finite set of numbers, or a set of intervals, as stated by Yang and

John (2012a).

The epistemic disjunctive interpretation is more vivid when considering the generalised

grey number, as there can only be one underlying white, correct, value from the candidate

set. As grey systems are closely related to incomplete and partially known systems, so

too is the perspective of epistemic disjointness (Couso and Dubois, 2014). However, with

regards to the interval grey number, a conjunctive perspective may still be prevalent, but

as there can only be one underlying white number, a disjoint interpretation is ultimately

the final perspective when describing grey numbers.

Much like a fuzzy membership function value, a grey number g± can also be attributed

to a membership like value. In this instance the value is referred to as the degree of

greyness. The degree of greyness depends only on the two limits of the grey number and

has nothing to do with the cardinality of its candidate set. The degree of greyness of a

grey number measures the significance of uncertainty in a grey number.

Definition 11 (Degree of Greyness): Quantifies the significance of the unknown grey

number to the interval containing the information. The formal expression is given as:

g◦(g±) = f(g−, g+) (2.6.29)

Where f is a function to determine the significance of the grey interval to the grey

number g±. Let D = [dmin, dmax] be the domain of values represented by a grey number

g± ∈ [g−, g+]. We then have dmin ≤ g−, g+ ≤ dmax. The degree of greyness can then be

obtained using the following expression:

f(g−, g+) =
|g+ − g−|
|dmax − dmin|

(2.6.30)
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As this is a measure for greyness of a grey number g±, the value returned can be

understood as meaning either a white number: g◦ = 0 ⇔ g− = g+. A grey number :

g◦ ∈
(

0, 1
)
⇔
{

g− ≤ g± ≤ g+
}

. Or a black number : g◦ = 1⇔ g− = dmin
∧

g+ = dmax.

2.6.2 Grey Sets

Similar to that of a fuzzy set, there is also the notion of sets from a grey perspective.

Understandably, if the degree of greyness is 0 then no uncertainty exists, meaning that

the value is white, absolutely known and crisp. If the degree of greyness is 1, absolute

uncertainty exists and therefore deemed a black number. Any real value returned that

falls in the range [0, 1] is a grey number. In the same way a fuzzy set is an extension to

the idea of a fuzzy number, a grey set is an extension to the idea of a grey number. The

notion of grey sets themselves could also be described as either being; white, black or grey.

Definition 12 (White Set): For a set A ⊆ U, if the characteristic function value for

all objects xi with respect to A can be expressed as crisp white numbers, belonging to

v ∈ [0, 1]. Where χA : U→ [0, 1]. If so, then set A can be assumed to be a white set.

Definition 13 (Black Set): For a set A ⊆ U, if the characteristic function value for

all objects xi with respect to A can only be expressed as black numbers, then set A can

be assumed to be a black set.

Definition 14 (Grey Set): For a set A ⊆ U, if the characteristic function value for

all objects xi with respect to A can be expressed by grey numbers, g±A ∈
⋃n
i=1

[
a−1 , a

+
1

]
∈

D [0, 1]±. Where D [0, 1]± is the set of all grey numbers within the interval [0, 1], and

χA : U→ [0, 1]±. If so, then set A can be assumed to be a grey set.

Similar to the expression of a fuzzy set as defined in Definition 1, the objects consti-

tuting the set are presented with their associated grey numbers, as ordered pairs:

A =
{〈
x, g±A(x)

〉 ∣∣∣ x ∈ U
}

The characteristic function in this instance is a general expression, one which does not

exclude any relevant criteria in defining a set. Therefore, it can be replaced by a probability
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function, membership function, possibility function and so on (Yang and John, 2012b).

The degree of greyness for an object belonging to a set can also be calculated, much like

Definition 11, which presented the degree of greyness of the grey number with relation

to its interval. The greyness measure for an object in relation to its set is presented as

follows:

Definition 15 (Degree of Greyness for an Object): Assume that U is a finite universe

of discourse and x ∈ U. For a set A ⊆ U, the characteristic function value of object x

with regards to A is g◦A(x) ∈ D[0, 1]±. The degree of greyness for an object is given by

the following expression:

g◦A(x) =
∣∣∣g+ − g−

∣∣∣ (2.6.31)

Based on the degree of greyness for an object, the degree of greyness for a set can also

be computed, which is presented as follows:

Definition 16 (Degree of Greyness for a Set): Assume U is a finite universe of

discourse, A is a grey set such that A ⊆ U. Each xi object is with regards to the grey

set A, xi ∈ U = i = 1, 2, . . . , n, where n represents the cardinality of U. The degree of

greyness of a set is given by the following expression:

g◦A =

∑n
i=1 g◦A(xi)

n
(2.6.32)

2.6.3 Grey Analysis

Grey theory has been widely applied to analysis, modelling, forecasting, decision making

and control. New hybrid approaches have since been developed such as; grey hydrology,

grey geology and grey regional economics (Liu et al., 2012). The first furore for grey sys-

tems was mainly associated with agriculture, ecology, economy, environmental sciences,

financial, management, material sciences, and the like. The introduction of the weakening

and strengthening operators for grey sequencing were introduced relatively early on in

the creation of the theory. These were created to alleviate the uncontrollable shockwaves
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of interference that the data may contain, which would skew the raw intent and the un-

derlying meaning. In addition, the creation of the generalised degrees of grey incidence

were put forward; the absolute degree, the relative degree and the synthetic degree. Each

one taking a particular perspective when analysing the correlation and similarity of the

geometrical patterns of the sequence curves. Therefore, allowing for a better and more

detailed quantification between characteristic sequences and possible behavioural impact

factors. Allowing one to ascertain which factors, triggered what changes in the character-

istic sequence of the system. Understanding which behavioural factors, and how much of

a significance such behavioural factors have in shaping the geometric curve of the char-

acteristic sequence, allows one to better understand the intricacy of the overall model.

It is this absolute degree of grey incidence that this thesis adopts for the analysis of the

results returned from the R-fuzzy set and significance measure pairing. The use of a tradi-

tional grey analysis approach with an un-traditional application, as it will be shown, has

provided for additional functionality and versatility with regards the R-fuzzy framework.

The fundamental aspects of grey theory involves the use of grey numbers and grey sets,

and as such provides one the basis from which to extend and implement. Apart of the

repertoire of grey theory is the concept of grey relational analysis. The traditional degree of

grey incidence provides the basis for all variances of the degree of incidence Γ = [γij ], where

each entry in the ith row of the matrix is the degree of grey incidence for the corresponding

characteristic sequence Yi, and relevant behavioural factors X1, X2, . . . , Xm. Each entry

for the jth column is reference to the degrees of grey incidence for the characteristic

sequences Y1, Y2, . . . , Yn and behavioural factors Xm. The notion of the absolute degree

of grey incidence is one such variation.

It is the absolute degree of grey incidence that this thesis adopts for the analysis of the

results, when using an R-fuzzy and significance measure pairing. Grey relational analy-

sis in general has no special requirements regarding data distribution, and has relatively

simple associated computation. There have been several proposed novel variations of the

degree of grey incidence (Liu et al., 2011b,a). Although this thesis adopts the traditional

notion of grey incidence, it is employed in an un-traditional way, as will be seen in Chap-

ter 3. Before the decision was made to adopt the absolute degree of grey incidence into

the R-fuzzy framework, the concept was first implemented with regards to natural lan-

guage processing, presented in Khuman et al. (2015b, 2016d). In the attributed published
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works, it was shown that the concept of grey incidence could be utilised to measure the

metric spaces of the sequence curves for an optimal string, against input strings. With

no adjustment in the configuration, only a change in the domain of execution, the same

ethos of analysis can be applied to perception based domains.

2.6.4 Absolute Degree of Grey Incidence

The traditional degree of grey incidence provides the basis for all variances of the degree

of incidence; Γ = [γij ], where each entry in the ith row of the matrix is the degree of grey

incidence for the corresponding characteristic sequence Yi, and relevant behavioural factors

X1, X2, . . . , Xm. Each entry for the jth column is reference to the degrees of grey incidence

for the characteristic sequences Y1, Y2, . . . , Yn and behavioural factors Xm. The absolute

degree of grey incidence A = [εij ]n×m, is defined as follows:

Definition 17 (Absolute Degree of Grey Incidence): Assume that Xi and Xj ∈ U

are two non-negative time series sequences of the same magnitude, that are defined as the

sum of the distances between two consecutive time points, whose zero starting points have

already been computed. The absolute degree of grey incidence can be given as:

εij =
1 + |si|+ |sj |

1 + |si|+ |sj |+ |si − sj |
(2.6.33)

Where the comparable sequences are given as:

∣∣∣si∣∣∣ =
∣∣∣ n−1∑
k=2

x
(0)
i (k) +

1

2
x

(0)
i (n)

∣∣∣
∣∣∣sj∣∣∣ =

∣∣∣ n−1∑
k=2

x
(0)
j (k) +

1

2
x

(0)
j (n)

∣∣∣
Such that: ∣∣∣si − sj∣∣∣ =

∣∣∣ n−1∑
k=2

(
x

(0)
i (k)− x(0)

j (k)
)

+
1

2

(
x

(0)
i (n)− x(0)

j (n)
)∣∣∣
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2.6.5 Relative Degree of Grey Incidence

The relative degree of grey incidence is obtained in much the same way, however, the

sequences X
′
i and X

′
j are the initial images of Xi and Xj , defined as follows:

Definition 18 (Relative Degree of Grey Incidence): Using the initial images of Xi

and Xj , from which the zero images are then derived, the relative degree of grey incidence

B = [rij ]n×m, is given as follows:

rij =
1 + |śi|+ |śj |

1 + |śi|+ |śj |+ |śi − śj |
(2.6.34)

Where the initial sequences are given as:

X
′(0)
i =

(
x
′(0)
i (1), x

′(0)
i (2), . . . , x

′(0)
i (n)

)
=

(
x

(0)
i (1)

x
(0)
i (1)

,
x

(0)
i (2)

x
(0)
i (1)

, . . . ,
x

(0)
i (n)

x
(0)
i (1)

)

X
′(0)
j =

(
x
′(0)
j (1), x

′(0)
j (2), . . . , x

′(0)
j (n)

)
=

(
x

(0)
j (1)

x
(0)
j (1)

,
x

(0)
j (2)

x
(0)
j (1)

, . . . ,
x

(0)
j (n)

x
(0)
j (1)

)

Therefore, the comparable sequences are given as:

∣∣∣s′i∣∣∣ =
∣∣∣ n−1∑
k=2

x
′(0)
i (k) +

1

2
x
′(0)
i (n)

∣∣∣
∣∣∣s′j∣∣∣ =

∣∣∣ n−1∑
k=2

x
′(0)
j (k) +

1

2
x
′(0)
j (n)

∣∣∣
Such that: ∣∣∣s′i − s′j∣∣∣ =

∣∣∣ n−1∑
k=2

(
x
′(0)
i (k)− x

′(0)
j (k)

)
+

1

2

(
x
′(0)
i (n)− x

′(0)
j (n)

)∣∣∣

2.6.6 Synthetic Degree of Grey Incidence

The synthetic degree of grey incidence is an amalgamation of both absolute and relative

degrees of incidence, which is associated with the overall closeness between sequences.

The value given for θ is typically set to 0.5, as this allows for equal measure of absolute
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and relative to be incorporated. If a higher value is chosen for θ, more emphasis is placed

on the relationship between absolute quantities. If a smaller value is chosen, then more

emphasis is placed on the relative rates of change between sequences of a system. It is

given as follows:

Definition 19 (Synthetic Degree of Grey Incidence): Assuming that both absolute

and relative degrees of grey incidence have already been computed, the synthetic degree

of grey incidence is calculated as follows:

pij = θεij + (1− θ)rij (2.6.35)

Each variance of incidence takes a different perspective when inspecting the relationships

between characteristics and behaviours. Based on the matrix of grey incidence Γ, if there

exists k and i ∈ {1, 2, . . . , n} which satisfies γki ≥ γij , one can infer that the grey system’s

characteristic Yk is more favourable than the system’s characteristic Yi, denoted as Yk � Yi.

If for any i = {1, 2, . . . , n} with i 6= k, there will always be Yk � Yi, which indicates that Yk

is the most favourable characteristic in the system. If there exists l and j ∈ {1, 2, . . . ,m}

satisfying γil ≥ γij , for i = {1, 2, . . . , n}, then it can be understood that the behavioural

factor Xl is more favourable than Xj , denoted as Xl � Xj . If for any j = {1, 2, . . . ,m},

j 6= l, one will always have Xl � Xj . Therefore Xl is the most favourable factor in the

system. In the context of human based perception, the absolute degree of grey incidence

was ultimately chosen. The entire sequence needs to be compared to its contemporary

from the summated discretised points. If a synthetic degree of grey incidence was to be

used, then θ would have to be set to 1, which would mean that it was acting exactly as

you would expect the absolute degree of grey incidence to behave.

2.7 Closing Remarks

Chapter 2 has provided the background into the concepts that will constitute the

new proposed framework. Understanding the notion of fuzzy sets, fuzzy membership

values and rough approximations, provides one with the core components needed to fully

understand an R-fuzzy approach. Example 1 demonstrated the capability of an R-fuzzy
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set, whereby a membership was defined for an unknown flight, using the criteria set and

the descriptor that described it. This thesis itself takes the foundational understanding

of R-fuzzy sets, but applies it in a more generalised adaptation. Instead of creating an

R-fuzzy set for unknown observations, the R-fuzzy sets created from hereon are generated

for the descriptors that constitute the known observations of the criteria set C. As it

will be shown in the successive examples, R-fuzzy sets based on what is known, to infer

on membership values of unknowns, provides for a high level of detail, especially when

considering continuous representation.

Also described was the paradigm of grey theory from its foundational understanding of

numbers and sets, and its relationship to that of probability theory. To understand its

perspective on uncertainty is to understand its perspective on analysis. The understanding

of the absolute degree of grey incidence is paramount, as it is this aspect that provides the

new framework the functionality of better inferring to a higher level of detail. Adapting it

from its traditional deployment, and executing it in a novel way, will allow for the original

R-fuzzy framework to be enhanced.
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3

Novel Contributions

“It is in the admission of ignorance and the admission of uncertainty that

there is a hope for the continuous motion of human beings in some direction

that doesn’t get confined, permanently blocked, as it has so many times before

in various periods in the history of man.”

– Richard P. Feynman

3.1 Introduction

The List of Publications documents the peer-reviewed and academically recognised

works attributed to the research throughout its duration. However, not all of the pub-

lications are directly related to the thesis with regards to the proposed new framework.

The work regarding an improved grey model for forecasting Khuman et al. (2013), al-

though provided the initial insight into grey theory, does not play heavily in the main

contributions of this thesis. One of the first incarnations of the research was to develop

a framework that utilised a grey model of the first order (GM(1,1)), which used a single

input sequence. A GM(1,1) grey model was used to forecast the perceived perceptions

of differing age clusters. From the initial testing it was proved that such a framework

was not very effective, as one condition of the GM(1,1) is to have monotonic data. This

cannot always be guaranteed, nor is it a realistic expectation, especially when involving

cohorts of different age groups regarding varying perceptions. Nonetheless, the initial use
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of sequencing provided one with a foundation from which to explore further. This chapter

is structured as follows, highlighting the novel contributions that are directly related to

this thesis, and connected to the hypothesis.

Section 3.2 proposes the significance measure, the intermediary component to allow

for the information collected using an R-fuzzy approach, to be analysed using grey analy-

sis. Without the significance measure the degree of grey incidence would not be able to be

implemented, as there would be no sequence to be acted upon. Section 3.3 puts forward

the streamlined encapsulation approach, for providing the minimal configuration needed

to correctly contain all relative and triggered uncertain fuzzy membership values. Sec-

tion 3.4 describes and demonstrates the enhanced R-fuzzy framework. Bridging together

the additional uncertainty encapsulation capabilities of the standard R-fuzzy approach,

along with the analysis that grey sequencing allows for. As it will be shown, the enhanced

framework provides for an additional dimension of complexity to be inferenced from. Sec-

tion 3.5 discusses the similarity and distance measure that one could make use of when

considering the enhanced R-fuzzy framework. Section 3.6 describes the notion of an

R-fuzzy α-cut for post processing of the returned results, providing a more humanistic

interpretation. Such is the subjective nature of perception, an unexpected response can

impact upon the containment of a membership value. The significance measure in this

respect can stipulate where one could implement the use of α-cuts to either reduce or in-

crease the degree of significance for problematic membership values. In addition, Section

3.6.1 describes how when using an α-cut, one can replicate a shadowed set approach,

whereby the three possible areas indicate three-valued logic. Section 3.7 remarks upon

the chapter, and summarises on the contributions of this thesis.

As one can see from Definition 8, the membership function of an R-fuzzy set is a

rough set of contained viable uncertain fuzzy membership values. What is not clear is

the strength associated to each of these captured memberships, ergo the creation of the

significance measure, introduced in Khuman et al. (2015a, 2016a). Section 3.2 will now

go on to describe the concept of the significance measure more precisely, demonstrating it

through a worked example.
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3.2 The Significance Measure

The significance measure is the main contribution from this thesis, and as such it is

paramount to the overall new proposed framework. It can be seen as a logical enhancement

to that of a traditional R-fuzzy set. It can also act as the facilitator that allows for

a sequence to be generated so that grey analysis can be undertaken. The significance

measure itself is based on and takes its inspiration from the certainty factor employed

by traditional rough set theory, which itself is based on a variation of Bayes’ theorem

(Pawlak, 1998). Rough set theory allows one to employ the use of strength, certainty and

coverage factors, each one providing an insight into a particular rule or fact. As they are

associated with decision systems indicative of Table 2.2, and rule induction, as such they

cannot be translated over to R-fuzzy sets without modification. With every decision rule

A →x D there is an associated certainty factor of the decision rule, where A is the rule,

D is the decision, and supp is a frequency count. The certainty factor presented from a

rough set perspective is given as follows:

cerx

(
A,D

)
=
|A(x) ∩D(x)|
|A(x)|

(3.2.1)

It can be viewed as a conditional probability that y belongs to D(x) given that y

belongs to A(x), symbolically πx(D|A). If cerx(A,D) = 1, then A →x D will be referred

to as a certain decision rule, if 0 < cerx(A,D) < 1 the decision rule will be referred to

as an uncertain decision rule. To allow for the use of a certainty factor in an R-fuzzy

context, one has to remove the notion of rules, induction of rules or quantification of rules.

Therefore making the new significance measure relative to the subset of all values based

on Mpj(x) ⊆ Jx.

Definition 20 (Significance Measure): Using the same notations presented in Def-

inition 8 that described an R-fuzzy set, assume that an R-fuzzy set M(xi) has already

been created, and that a membership set of values Jx and a criteria set C are known.

Given that the total number of subsets generated for a given R-fuzzy set is given by |N |,

and that Sv is the number of subsets that contain the specified membership value being

inspected. As each value v ∈ Jx is evaluated by cj ∈ C, the significance measure therefore

counts the number of instances that v occurred over |N |, given by the formal expression:

γĀ{v} =
Sv
|N |

(3.2.2)
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The significance measure expresses the conditional probability that v ∈ Jx belongs to

the R-fuzzy set M(xi), given by its descriptor d(xi). The value returned will be presented

as a standard fraction, where the denominator |N | represents the cardinality of the total

number of generated subsets. The numerator Sv is indicative of the number of instances

that the inspected membership value v ∈ Jx occurred. As |N | provides the scope of the

domain in terms of magnitude, Sv will never exceed |N |. In essence providing a normalised

output which in turn can be translated into any real value, where γĀ{v} : Jx → [0, 1] is

the membership function, much like that of Eq. (2.2.2).

3.2.1 Validation

If the value returned by γĀ{v} = 1, then that particular membership value has been

agreed upon by all in the criteria set C. As a result one will know that it absolutely

belongs to the lower approximation, as for it to be included the entire populous must

agree:

MA =
{
γĀ{v} = 1

∣∣∣ v ∈ Jx ⊆ [0, 1]
}

(3.2.3)

Much like before how a lower approximation is a subset of the upper approximation,

any membership value with a significance degree of γĀ{v} = 1, will also be included

within the upper approximation. If γĀ{v} = 0, it can be concluded that absolutely no one

perceived that particular membership value to satisfy the descriptor. If 0 < γĀ{v} < 1,

then that particular membership value has some significance to some degree relative to

the descriptor d(xi). As a result, this particular value will knowingly be contained within

the upper approximation:

MA =
{
γĀ{v} > 0

∣∣∣ v ∈ Jx ⊆ [0, 1]
}

(3.2.4)

These interpretations echo the sentiments of fuzzy set theory as presented in Defi-

nition 1, whereby an element can be described by its membership function such that

it returns any real number in the range [0, 1]. Except instead of representing the be-

longingness of an object to a particular set, the significance degree returns the measure

of significance, with relation to its descriptor d(xi), based on its conditional probability

of distribution. Eq. (3.2.2) can be rewritten so that the collected significance degrees

60



constitute a set, given by the following expression:

Ā =
{〈
v, γĀ{v}

〉 ∣∣∣ v ∈ Jx ⊆ [0, 1]
}

(3.2.5)

Where Ā is a set describing the distribution of a specified descriptor d(x), for which

the generated R-fuzzy set was created for. It must be understood that fuzzy sets are not

concerned with probability, merely the degree of belongingness (Drakopoulos, 1995). As

the newly derived significance measure itself is based on Eq. (3.2.1), then the significance is

associated with the conditional probability of distribution. The significance measure will

in affect validate any value contained in the lower approximation as γĀ{v} = 1, as this is

considered as an absolute truth agreed upon by all. Whereas γĀ{v} = 0, will validate that

the inspected membership value was not considered significant to any degree by anyone.

The greater the returned value for γĀ{v} the greater its significance with regards to the

descriptor that the R-fuzzy set is being modelled for. Understanding the significance of any

inspected membership value, can be used to understand the perception of the populous

that it was generated from. R-fuzzy sets allow for every conceivable perception to be

incorporated, that includes all possible outliers. The associated degrees of significance

will quantify just how important or unimportant a membership value truly is, based on

the perceptions collected.

3.2.2 Intended Use

Considering Example 1, the use of the R-fuzzy approach was to provide one with a

membership value for flight f11, which did not have an associated noise level, only the

notion of it being AC. Based on the collected perceptions in the criteria set C for all

observers, a final generated R-fuzzy set was created for f11, given as:

M
(
f11

)
=
(
{0.43}, {0.14, 0.29, 0.43, 0.57}

)
This result implied that 0.43 be an indicative representative of AC, as it was the only

value contained within the lower approximation. The values contained in the upper ap-

proximation were indicative of AC to some unknown degree. The originally intended use

of the significance measure was not necessarily meant to explicitly define R-fuzzy sets for
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unknown flights, but rather to quantify the predefined descriptors to represent the entire

criteria set C. The noise flight example provided an R-fuzzy set, although based on all col-

lected perceptions of C, it was used to describe f11, a single unknown instance of a flight.

The significance measure itself can be used in conjunction with any generated R-fuzzy set,

however, it is best utilised when the generated R-fuzzy sets are modelling the descriptors

for the entire populous. Given that the prerequisite for an R-fuzzy approach is to have a

populated criteria set of descriptors, and a valid fuzzy membership set Jx, adjusting the

traditional use of the R-fuzzy approach so that the generated sets themselves are indicative

for the whole of C, rather than an unknown instance, pays dividends. It would be more

fruitful if the R-fuzzy sets generated were based on the descriptors for the entire collected

population. The significance measure when applied to these universal R-fuzzy sets of C,

allows for the entire universe of discourse to be encapsulated and modelled. The fuzzy

membership values constituting Jx, provide the discretised points on the universe, as they

remain the same for all computed R-fuzzy sets, a complete comprehensive understanding

of the perceptions of all involved is the result. The returned degrees of significance pro-

vide the amplitude from which one can use to create a continuous representation for the

entire populous of C. This in turn can then be used to be inferred from when considering

observations where only the descriptors are given. This will allow for the same resultant

sentiment of Example 1 to be maintained, with the adage that the enhanced framework

is more thorough and exhaustive.

3.2.3 A Significance Measure Example

Example 2: Referring back to Example 1, it would be meaningful if one was able to

obtain the importance of the membership values contained within the upper approxima-

tion. By using Eq. (3.2.2), we are able to provide a means of quantification which in turn

provides a significance coefficient equal to or within the range of [0, 1]. The higher the

significance, the more individuals that agreed to it being an indicative representation for

their subjective perception. The newly derived significance measure is relatively simple, in

that it is a statistical method for counting the significance of a particular membership in

relation to Jx and its descriptor. For each membership value contained in Jx, one simply
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Jx

1

0.83

0.67

γ

0.33

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

AC

Figure 3.1: A Discrete Visualisation for AC

counts the number of occurrences each instance occurred for each of the subsets created

for Mpj for a given descriptor. One can obtain the following significance coefficient values

for each of the membership values contained in Jx, the results are given as follows:

γ AC{0.00} =
0

6
= 0.00 γ AC{0.14} =

2

6
=

1

3
= 0.33

γ AC{0.29} =
4

6
=

2

3
= 0.67 γ AC{0.43} =

6

6
= 1.00

γ AC{0.57} =
5

6
= 0.83 γ AC{0.71} =

0

6
= 0.00

γ AC{0.86} =
0

6
= 0.00 γ AC{1.00} =

0

6
= 0.00

A visualisation for when the descriptor is set to AC, based on its returned degrees of

significance for the values contained in the membership set Jx, is presented in Figure 3.1.

The membership value 0.43 returns a degree of significance of γ AC{0.43} = 1, echoing the

fact that it was agreed upon by all. Figure 3.1 does indeed indicate and also validates that

the membership value 0.43 was included within the lower approximation. For any value

to score a significance of 1 satisfies the requirement given by Eq. (3.2.3). The membership

value of 0.57 returns a degree of significance of γ AC{0.57} = 0.83, a relatively high score.

If 5 out of the 6 individuals agreed for this membership to be a suitable value for AC, then

one may be inclined to treat it as such. Inspecting the membership values that returned
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Jx

1
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γ

0.33
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Figure 3.2: A Possible Continuous Representation for AC

a significance of 0, those memberships were absolutely disregarded as being candidates to

represent the descriptor AC.

The projection of the histogram lines for the triggered membership values, provides what

could be a convex hull to form the parameters of a set. As was stated in Section 3.2,

the significance degree returns the significance of the membership value relative to its

descriptor based on the criteria set C. If one was to provide a set to encapsulate the

significance degree values, one has then inadvertently created the equivalence of a fuzzy

set as defined in Definition 1. Such is the equivalence, the returned degree of significance

is the degree of membership to the set representing the descriptor, if and only if the values

for the significance degree provide the values for the membership function parameters. A

more detailed explanation of this equivalence is provided in Section 4.7.1.

Figure 3.1 presents a discretised interpretation of the degree of significance for the

descriptor AC, whereas Figure 3.2 provides a possible continuous interpretation for the

descriptor AC. Inspecting the continuous plot, one can see that the plot shares similarities

to the trapezoidal membership function given in Eq. (2.2.4). One can easily infer from this

continuous representation that the significance degrees are also the degrees of membership,

akin to a fuzzy perspective. The parameters for the set were based on the returned degrees

of significance, hence why the lines intersect through the apex of the stick heights for the
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generated degrees of significance. This can be seen as an intuitive dot-to-dot, where the

joining of the apex of each triggered fuzzy membership value creates the shape of the

membership function.

Notice how Figure 3.2 utilises a trapezoidal-esque membership rather than the expected

triangular membership. This was done to show that variation is still allowed and the

choice for a trapezoidal was more in keeping with human perception. Using a triangular

membership would result in the membership value 0.42 not scoring a degree of 1 for its

significance, as would be the case for 0.44 and so forth. It would seem more likely and

indeed more plausible that a membership value of 0.42 and 0.44 would indeed be agreed

upon by all, especially if the triggered 0.43 was, as a result a trapezoidal membership was

chosen. However, this is only an assumption, as the membership value 0.42 was not a

discrete viable option according to the fuzzy membership set Jx.

At what point does one define the interval where any value would return a degree of 1?

This is open for debate and as such, an assumption is just an assumption, regardless of

how it is derived. Nonetheless, a logical assumption, indicative of human intuition is still

better than a wild stab in the dark.

The apex of the interval is given by the range [0.43, 0.55], a completely arbitrary as-

sumption, one which could be further enhanced by a human intuition. By utilising the

returned degrees of significance for the descriptor being used, one is able to construct a set

which returns the correct degrees of significance, and the equivalent degree of inclusion as

seen from a fuzzy perspective, only if the parameters of the set are formed from the apex

of the stick heights. The provided continuous representation was derived by simple means,

and as a result allows one to visualise a possible interpretation of how human perception

given by a descriptor, propagates through the membership values.
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Inspecting the significance of each of the membership values, one is able to apply a

linguistic assumption to describe each contained uncertain fuzzy value, such as:

γ AC{0.00} = 0.00→ Agreed upon by none

γ AC{0.14} = 0.33→ Agreed upon by a few

γ AC{0.29} = 0.67→ Agreed upon by the majority

γ AC{0.43} = 1.00→ Agreed upon by all

γ AC{0.57} = 0.83→ Agreed upon by the majority

γ AC{0.71} = 0.00→ Agreed upon by none

γ AC{0.86} = 0.00→ Agreed upon by none

γ AC{1.00} = 0.00→ Agreed upon by none

Using simple statements, one is able to easily ascertain the intent of any membership

value by referring to its description. The statements chosen were trivial, but further

consideration could be undertaken. This would further enhance the ability to understand

the significance of any membership value inspected.

If the descriptor for the example was changed to NN, the following subsets Mpj

(
NN
)
⊆ Jx

would be generated:

Mp1

(
NN
)

= {0.00, 0.14, 0.29} Mp2

(
NN
)

= {0.00, 0.14}

Mp3

(
NN
)

= {0.00} Mp4

(
NN
)

= {0.00, 0.14, 0.29}

Mp5

(
NN
)

= {0.00} Mp6

(
NN
)

= {0.00, 0.14}

This would create the following R-fuzzy set:

M
(
NN
)

=
(
{0.00}, {0.00, 0.14, 0.29}

)
This generated R-fuzzy set implies that the fuzzy membership value 0.00 is the only

membership value to have been agreed upon by all in the criteria set C. It also implies

that the values 0.14 and 0.29 were also agreed upon to some extent.
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Table 3.1: The Collected Degrees of Significance for Noise Perception

NN AC BN VN

Jx γ Jx γ Jx γ Jx γ

γ NN{0.00} = 1.00 γ AC{0.00} = 0.00 γ BN{0.00} = 0.00 γ VN{0.00} = 0.00

γ NN{0.14} = 0.67 γ AC{0.14} = 0.33 γ BN{0.14} = 0.00 γ VN{0.14} = 0.00

γ NN{0.29} = 0.33 γ AC{0.29} = 0.67 γ BN{0.29} = 0.00 γ VN{0.29} = 0.00

γ NN{0.43} = 0.00 γ AC{0.43} = 1.00 γ BN{0.43} = 0.00 γ VN{0.43} = 0.00

γ NN{0.57} = 0.00 γ AC{0.57} = 0.83 γ BN{0.57} = 0.17 γ VN{0.57} = 0.00

γ NN{0.71} = 0.00 γ AC{0.71} = 0.00 γ BN{0.71} = 1.00 γ VN{0.71} = 0.00

γ NN{0.86} = 0.00 γ AC{0.86} = 0.00 γ BN{0.86} = 0.67 γ VN{0.86} = 0.33

γ NN{1.00} = 0.00 γ AC{1.00} = 0.00 γ BN{1.00} = 0.00 γ VN{1.00} = 1.00

If the descriptor was changed to BN, the following subsets Mpj

(
BN
)
⊆ Jx would be

generated:

Mp1

(
BN
)

= {0.86, 0.71} Mp2

(
BN
)

= {0.86, 0.71}

Mp3

(
BN
)

= {0.57, 0.71} Mp4

(
BN
)

= {0.86, 0.71}

Mp5

(
BN
)

= {0.86, 0.71} Mp6

(
BN
)

= {0.71}

This would ultimately create the following R-fuzzy set:

M
(
BN
)

=
(
{0.71}, {0.57, 0.71, 0.86}

)
This generated R-fuzzy set implies that the fuzzy membership value 0.71 is the only

membership value to have been agreed upon by all in the criteria set C. It also implies

that the values 0.57 and 0.86 were also agreed upon to some extent.
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If the descriptor was changed to VN the following subsets Mpj

(
VN
)
⊆ Jx would be

generated:

Mp1

(
VN
)

= {1.00} Mp2

(
VN
)

= {1.00}

Mp3

(
VN
)

= {0.86, 1.00} Mp4

(
VN
)

= {1.00}

Mp5

(
VN
)

= {1.00} Mp6

(
VN
)

= {0.86, 1.00}

The resultant R-fuzzy set would be of the form:

M
(
VN
)

=
(
{1.00}, {0.86, 1.00}

)
This generated R-fuzzy set implies that the fuzzy membership value 1.00 is the only

membership value to have been agreed upon by all in the criteria set C. In much the same

way as the previously computed R-fuzzy sets, it also implies that the value 0.86 was also

agreed upon to some extent.

The associated degrees of significance for each generated R-fuzzy set, using Eq. (3.2.2),

have been computed and collected, and are presented in Table 3.1. If one inspects the table,

the clustering of triggered fuzzy membership values is apparent for each generated R-fuzzy

set. By that, where there is a membership value with a returned degree of significance

of 1, the fuzzy membership values either side of that, if applicable, are also triggered, to

some degree.

A discrete and continuous plot for NN is presented in Figure 3.3 and Figure 3.4, respec-

tively. As the R-fuzzy set NN is the left most set, it is logical to assume that it would

only be involved with the left most fuzzy membership values. With 0.00 being the only

value to score a 1 for its significance, the successive triggered membership values directly

to the right, taper off with lesser degrees of significance, as it clearly shown in the plots.

A discrete and continuous plot for BN is presented in Figure 3.5 and Figure 3.6, re-

spectively. Much like the previous plots, the stick heights of the triggered membership

functions values are intersected. The interval for the apex could be reduced or even exag-

gerated further, as too could the left and right most anchor points of the set.
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Figure 3.3: A Discrete Visualisation for NN

A discrete and continuous plot for VN is presented in Figure 3.7 and Figure 3.8, respec-

tively. Much like the plot for NN, the VN is the right most plot and would logically be asso-

ciated to the right most fuzzy membership values, which indeed it is. With the membership

value of 1.00 being the only membership to score a 1 for its significance, the membership

value directly to the left, 0.86, has a lesser degree of significance γ VN{0.86} = 0.33.

Jx

1

0.67

γ

0.33

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

NN

Figure 3.4: A Possible Continuous Visualisation for NN
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Figure 3.5: A Discrete Visualisation for BN

The addition of utilising the significance measure to inspect individual membership

values allows one to better appreciate and conserve the diversity of the perceptions being

collected. The values contained within Table 3.1 are the collective significance measures

for each of the specified descriptors. By placing the membership values contained in Jx

in ascending order, and so too the descriptors, starting with NN through to VN , one can

see how the collected human perception of criteria set C, propagates through from one

Jx

1

0.67

γ

0.17

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

BN

Figure 3.6: A Possible Continuous Visualisation for BN
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Figure 3.7: A Discrete Visualisation for VN

Jx

1

γ

0.33

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

VN

Figure 3.8: A Possible Continuous Visualisation for VN

descriptor to the next. This gives credence to the fact that the example collectively and

correctly, was able to provide a realistic assumption of the various descriptors based on

what was known. The degrees of significance can be used to construct customised sets,

such that the degree of significance is also the degree of membership to the descriptor the

set is being modelled for. Figures 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 all show how this

can be visualised.
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Figure 3.9: A Continuous Visualisation for NN, AC, BN & VN

The plot presented in Figure 3.9 shows the collective visualisation of sets based on all

the generated R-fuzzy sets. This provides a means to understand the entire collective

perceptions of all involved, for all descriptors, for the entire domain. As the plot shows,

each descriptor or perspective, does not follow uniformed symmetry. The sets themselves

are not equal to one another, especially with regards to area and distribution. This

synthesis of human perception is more probable and in keeping, than strict symmetrical

uniformed sets. Paying particular interest to the set representing the descriptor AC, one

can see that the membership value 0.14 has a degree of significance of γ AC{0.14} = 0.33.

The same membership value has a significance of γ NN{0.14} = 0.67 to the set describing

the descriptor NN. The fact that the sets themselves are constructed via the stick heights

of the triggered degrees of significance, allows one to establish an equivalence between a

fuzzy set and the generated significance set. Albeit, an equivalence in the returned value

and not the perspective the values are investigated from.

Example 2 has shown that the significance measure allows for a higher order of de-

tail to be inferred from. As an R-fuzzy set recognises and more importantly conserves

the diversity inherent in human perception, the returned degrees of significance provide

valuable information for airports and for people living within proximity. Conventional

models would not be able to, or find it very difficult to conserve such diversity. Ignoring

the importance of any relative membership value may lead to false noise exposure annoy-
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ance, which may cause even more problems for residents. An individual value is not lost

within an interval nor a shadowed area, it can be readily inspected and inferred from. The

various contained examples could be further enhanced in the aiding of diagnosing visual

impairments. Any human perception based environment becomes an applicable domain

for an R-fuzzy and significance measure coupling. Even with a small sample, a consensus

can still be achieved, providing a generalisation all the while still conserving each and

every specific perception. In reality an R-fuzzy approach can be applied to a minimum

of 1 observer, from which the significance degree can create telling sets to encapsulate

perceptions. Any number of additional observers and their perceptions can be integrated,

forever evolving the significance degree measures and the shape of the encapsulating sets

themselves.

In the case for Example 2, there is only one membership value for each generated R-

fuzzy set to score 1 for its significance. However, this may not always be the case, as it will

be shown in Chapter 4, a universal acceptance of a specific value may not always hold

true for all involved. Nor can it always be expected that successive membership values

be triggered, there may be a gap, in which case a single R-fuzzy set visualisation make

look like two or several disjoint membership functions. The significance measure itself

is purely objective and can only reiterate the significance of the distribution of each R-

fuzzy set. As the criteria set is populated by subjectiveness, there may indeed be instances

where expected interpretations are not met. Additionally, the variance between individual

observer responses may be rather large or incredibly small, as will be seen in Example

4. Assuming that perceptions collected are truthful, the significance measure provides a

metric. One which is not biased nor influenced by external subjectiveness; it does what it

does, on what it was presented with. The output of which can then be used as one sees

fit.

When considering that the R-fuzzy set computed in Example 1, was for a single un-

known flight, associated to the descriptor AC, one can see that Example 2 provides for

an enhanced amount of detail. Figure 3.9 provides a clear template based upon the per-

ceptions contained in the criteria set C. One can inspect the plot and now make informed

decisions based on unknown flights described by just their description. For example, in

much the same way that flight f11 was described as AC, assume that another unknown

flight was described using BN. In this case, referring to the plot in Figure 3.9, one may
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be inclined to provide a fuzzy membership value of 0.71, or give an interval of [0.70, 0.85],

as implied by the arbitrary plateau given for the BN. If the flight was partially described

as AC and BN by an even mix, then according to the plot, one may be inclined to give

a value halfway between the footprints of the two descriptors, which would be 0.625, or

simply an interval of [0.55, 0.70].

3.3 Streamlined Encapsulation

While investigating the concept of grey theory, the notion of the typical grey whiteni-

sation weight function was touched upon, as presented in Definition 21. One of the

publications attributed to this thesis Khuman et al. (2016b), involved the use of said

weight function for the configuration of the membership function, which encapsulates the

returned degrees of significance for any given R-fuzzy set. By using the whitenisation

weight function to plot the returned degree of significance, one is able to provide a more

specific, versatile heuristic, as compared to the arbitrary selection of points given in the

original paper which proposed the significance measure Khuman et al. (2013). Not only

are the significance degrees correctly intersected, the minimal number of parameter val-

ues are always used, instead of the various and arbitrary points that the original worked

adopted. Using grey techniques, the result is a high precision set for encapsulation, with

the minimal configuration of parameter values.

The use of whitenisation weight functions from grey theory provides for a heuristic

based approach that the original R-fuzzy and significance framework lacks. Much like the

original work, the whitenisation functions themselves are based on the returned degrees

of significance for each R-fuzzy set that has been modelled. However, unlike the origi-

nal arbitrary values decided for the function points, the grey approach provides a more

streamlined perspective. By using an iterative process of optimisation and a combination

of traditional triangular and trapezoidal membership functions, the encapsulated degrees

of significance are precisely modelled using less parameter overhead. There are several

types of whitenisation functions, but this research concerns itself only with the typical

whitenisation function with fixed starting points. These starting points will be indicative

of the starting and end points of the encapsulated candidate membership values contained
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within its R-fuzzy set. Rather than intersecting each apex height for each triggered mem-

bership value for a given set, the grey whitenisation function uses the minimum parameters

required to contain all membership values with their correct corresponding intersections,

to a high degree of resolution. The incorporation of a threshold value e to regulate the

error rate of each whitenisation configuration is used to secure preciseness.

3.3.1 Whitenisation

Definition 21 (Typical Weight Function of Whitenisation): Assume a continuous func-

tion with fixed end points, which are increasing on the left L(x) and decreasing on the

right R(x), this is described as a typical weight function of whitenisation.

f(x) =



L(x) =
x− x1

x2 − x1
, if x ∈

[
x1, x2

)
1, if x ∈

[
x2, x3

]
R(x) =

x4 − x
x4 − x3

, if x ∈
(
x3, x4

]
(3.3.6)

Eq. (3.3.6) describes the typical trapezoidal whitenisation function with fixed weights.

For this to be transformed into a triangular whitenisation weight function, one simply

replaces the interval at the apex [x2, x3], with a single value. The whitenisation function

itself can be seen to act exactly like that of a traditional fuzzy triangular, or trapezoidal

membership function, indicative of Eq. (2.2.3) and Eq. (2.2.4), respectively.

3.3.2 A Whitenisation Example

Example 3: Consider the original discrete plot for AC given in Figure 3.1, and also

consider the possible continuous representation given in Figure 3.2. Thus far, this thesis

has made use of arbitrary values to provide the convex hull of the encapsulated significance

values. One can instead make use of the whitenisation weight function to provide for
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Table 3.2: The Whitenisation of AC

Jx γ
Weight Function Error Weight Function Error Weight Function Error

[0, 0.43, 0.71] e [0, 0.43, 0.85] e [0, 0.43, 0.54, 0.71] e

0.00 0 0 0.0000 0 0.0000 0 0

0.14 0.33 0.3256 0.0044 0.3256 0.0044 0.3256 0.0044

0.29 0.67 0.6744 0.0044 0.6744 0.0044 0.6744 0.0044

0.43 1 1 0.0000 1 0 1 0

0.57 0.83 0.5 0.3300 0.6667 0.1633 0.8235 0.0065

0.71 0 0 0.0000 0.3333 0.3333 0 0

0.86 0 0 0.0000 0 0.0000 0 0

1.00 0 0 0.0000 0 0.0000 0 0

a continuous representation. We begin by structuring a triangular based whitenisation

function using the values given in the membership set Jx from the previous example.

Consider the R-fuzzy set AC given in Figure 3.2 and its associated degrees of significance,

as a result the initial left anchor point is at 0.00. It would not be viable to have the

left anchor point at 0.43, as this would indicate its returned degree of significance is 0.

As it is already known that the fuzzy membership value of 0.43 returned a significance

degree of 1, this can therefore act as the apex index. Once the membership value reaches

Jx

1

0.83

0.67

γ

0.33

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

AC

Figure 3.10: A Continuous Streamlined Representation for AC
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0.71, the significance degree returns a value of 0, so therefore this becomes the right

most anchor point. For this initial state, the parameter values are given as [0,0.43,0.71],

these are purely random, although within reason, given the constraints of the set. Using a

triangular membership characteristic function, similar to the one presented in Definition

21, one can cross check the degree of membership to the new membership set, to see if

it is the same as the returned degree of significance, the results of which are presented in

Table 3.2.

The first column contains the membership values which belong to the membership set

Jx. The second column presents the degrees of significance for each of the corresponding

membership values. The third column puts forward the returned degree of inclusion based

on the initial state of the parameter values chosen for the whitenisation weight function.

The membership values in Jx are in turn passed through to the weight function from which

the results are recorded. The fourth column calculates the error given by e, this is simply

the absolute difference between the degree of significance known to be true, against the

values returned by the whitenisation weight function. Generally speaking, the returned

error values will often be small, however, relative to the error threshold, this will determine

whether they need to be adjusted.

The main goal of the weight function is to encapsulate the returned degrees of signif-

icance such that they stay true to the original values, and that the error is as small as

possible. The error rate for this example has been set to e = 0.01, so if any value after

the absolute difference has been calculated has exceeded this threshold, the weight func-

tion parameters will need to be readjusted and recalculated accordingly. According to the

fourth column, the error value for the membership value 0.57, returned an error of 0.3300,

highlighted in red, this far exceeds the error threshold of 0.01.

The fifth column indicates a change in the parameter values for the weight function, as

such the new error values are presented in the sixth column. These new parameter values

have reduced the error for the membership value to 0.1633, still unacceptable according

to the threshold of 0.01. But more alarming, the membership value of 0.71 has now

also registered as a viable candidate, even though the returned degree of significance

was an absolute 0 for this membership value. This implies that another pass is needed.

Based on the proximity of the membership values to one another, a triangular based
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Table 3.3: The Whitenisation of NN

Jx γ
Weight Function Error

[0, 0, 0.43] e

0.00 1.0 1 0

0.14 0.67 0.6744 0.0044

0.29 0.33 0.3256 0.0044

0.43 0 0 0

0.57 0 0 0

0.71 0 0 0

0.86 0 0 0

1.00 0 0 0

whitenisation function will not be able to effectively encapsulate the membership values

according to their associated returned degrees of significance. Therefore, the seventh

column indicates that a trapezoidal membership function be used with the parameters

set at [0, 0.43, 0.54, 0.71]. With these new values the returned errors are below the error

threshold of e = 0.01, making this configuration the final configuration. The continuous

streamlined representation of AC is presented in Figure 3.10.

Jx
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Figure 3.11: A Continuous Streamlined Representation for NN
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Table 3.3 presents the whitenisation results for the R-fuzzy set NN, as it can be seen

the first initial and only configuration was satisfactory, none of the returned degrees of

significance exceeded the threshold value e = 0.01. The configuration of [0, 0, 0.43] also

implies that it was the triangular variation of the whitenisation weight function. As the

triangular representation has one less parameter value compared to that of the trapezoidal

function, of which a variation was given for the original encapsulated set Figure 3.4,

the final configuration is indeed more streamlined than the arbitrary setup. Figure 3.11

provides one with a visualisation of the streamlined encapsulating set for the NN R-fuzzy

set.

Table 3.4 presents the findings for the R-fuzzy set BN, unlike that of NN, several iter-

ations were needed to decide upon a final configuration. The initial state was indicative

of a triangular membership function with the parameters [0.43, 0.71, 1.00], however, this

incorrectly applied the corresponding degrees of significance for the fuzzy membership

values 0.57 and 0.86, although as its apex was at 0.71, this did return the correct value

for the membership value 0.71. The final configuration for the streamlined encapsulating

set BN can be seen in Figure 3.12

Table 3.5 presents the findings for the R-fuzzy set VN, much like that of AC and BN,

several iterations were needed before a final configuration satisfied the error threshold.

In addition, much like all the generated streamlined functions, with the exception of NN,

they all make use of a trapezoidal function for encapsulation. The final configuration for

the streamlined encapsulating set VN can be seen in Figure 3.13

Simply put, if a parameter value for the whitenisation function is not allowing for the

correct expected response, increase it, whether it be the left or right anchor points. If the

use of a triangular whitenisation function does not unequivocally encapsulate the returned

degrees of significance with the correct intersections, then make use of a trapezoidal func-

tion instead, and repeat the process. As was the case with the original work, using the

grey whitenisation weight functions has allowed for a continuous representation, where the

degrees of significance are also the degrees of membership, akin to a fuzzy perspective.

A continuous visualisation of Example 3 using the grey whitenisation method can be

seen in Figure 3.14. Comparing this new plot to that of Figure 3.9, one can see that the
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Table 3.4: The Whitenisation of BN

Jx γ
Weight Function Error Weight Function Error Weight Function Error

[0.43, 0.71, 1.00] e [0.54, 0.71, 1.00] e [0.54, 0.71, 0.80, 0.98] e

0.00 0 0 0.0000 0 0.0000 0 0.0000

0.14 0 0 0.0000 0 0.0000 0 0.0000

0.29 0 0 0.0000 0 0.0000 0 0.0000

0.43 0 0 0.0000 0 0.0000 0 0.0000

0.57 0.17 0.5 0.3300 0.1765 0.0065 0.1765 0.0065

0.71 1 1 0.0000 1 0.0000 1 0.0000

0.86 0.67 0.4828 0.1872 0.4828 0.1872 0.6667 0.0033

1.00 0 0 0.0000 0 0.0000 0 0.0000

membership functions given by the grey whitenisation functions, are smoother and use far

less parameters in their construction as compared to the arbitrary values that were used

in the original plot, all the while maintaining a high resolution of accuracy.

The use of grey whitenisation weight functions allows for a more simplistic membership

set using the minimal number of parameter points. It can indeed be argued that in fact the

whitenisation function in this context is simply an equivalent fuzzy triangular, or trape-

zoidal membership function. In which case, the same procedural steps can be undertaken

Jx
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0.67

γ
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0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

BN

Figure 3.12: A Continuous Streamlined Representation for BN
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Table 3.5: The Whitenisation of VN

Jx γ
Weight Function Error Weight Function Error Weight Function Error

[0.71, 1.00, 1.00] e [0.78, 1.00, 1.00] e [0.81, 0.96, 1.00, 1.00] e

0.00 0 0 0.0000 0 0.0000 0 0.0000

0.14 0 0 0.0000 0 0.0000 0 0.0000

0.29 0 0 0.0000 0 0.0000 0 0.0000

0.43 0 0 0.0000 0 0.0000 0 0.0000

0.57 0 0 0.0000 0 0.0065 0 0.0000

0.71 0 0 0.0000 0 0.0000 0 0.0000

0.86 0.33 0.5172 0.1872 0.3636 0.0336 0.3333 0.0033

1.00 1.00 1 0.0000 1 0.0000 1 0.0000

to create a streamlined function that correctly encapsulates all fuzzy membership values.

However, if the significance measure degrees for the computed R-fuzzy sets indicate that

the sets themselves are not defined as triangular or trapezoidal, then this approach will not

be ideally suited. This approach is more favourable with regards to perceptions that follow

a general rule of thumb, whereby the expected assumptions are the returned perceptions,

with a slight amount of variance.

Jx

1

0.67

γ

0.33

0.17

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

VN

Figure 3.13: A Continuous Streamlined Representation for VN
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Figure 3.14: A Continuous Streamlined Visualisation for NN, AC, BN & VN

3.4 The Enhanced R-fuzzy Framework

In this section the newly proposed framework for the quantification of perception based

uncertainty is described and demonstrated. The work contained in Khuman et al. (2016c)

first proposed the notion of using an R-fuzzy and significance measure pairing, in addition

to grey analysis. The contribution of the significance measure allows for a link, so that

R-fuzzy sets and grey analysis can be integrated into the same framework. For it is the

significance measure that provides the sequences that allow for the absolute degree of grey

incidence to be undertaken.

Using the concept of R-fuzzy sets, one is able to encapsulate a broader sense of uncer-

tainty, catering for both general and specific held subjective assumptions for any given

abstract concept. As it has been stated in Section 2.4.8, the various alternative ap-

proaches such as; interval-valued fuzzy sets, Atanassov intuitionistic fuzzy sets, shadowed

sets and type-2 fuzzy sets, all suffer from certain restrictions. Often an object value will

lose its uniqueness if contained within a set or shadowed region. An R-fuzzy approach can

absolutely ensure that each and every viable uncertain fuzzy membership value contained

within its rough set membership, will be distinguishable from other encapsulated values.

This guarantee of no loss of information regarding encapsulation was a major advantage
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over other alternative approaches. The introduction of the significance measure allows for

the quantification of contained membership values, and equally, the validation of values

not contained. Therefore, an additional level of detail can be garnered, all the while still

maintaining the uniqueness that a traditional R-fuzzy set allows for.

The introduction of grey theory for the analysis can only be possible if the absolute

degree of grey incidence is used on a sequence of data, indicative of a time series. If one

was to simply use an R-fuzzy set, the objects of said set would just be objects and would

not be able to be passed to the absolute degree of grey incidence, as it would not constitute

a sequence. With the addition of the significance measure, one is able to translate the

contained fuzzy membership values along with their correlated degrees of significance, such

that it becomes a sequence. The discretised points along the x-axis in this instance are

the contained membership values of Jx. The membership set of Jx will always be the same

for each generated R-fuzzy set. Therefore, if the data set contains clusters, one is able

to generate R-fuzzy subsets with the significance measure, such that it can be passed to

the absolute degree of grey incidence. After which, the metric divergences of comparable

sequences of computed R-fuzzy subsets can be quantified and collected.

As Example 4 will demonstrate, the enhanced R-fuzzy framework allows for one to

garner a great deal more information. Regardless of the amount of variance in the collected

perceptions, the sequences generated from the R-fuzzy and significance measure pairing,

retain the subjective nature of the populous. Nothing is diluted nor ignored, each and every

contained perception can be captured and maintained. It is precisely this aspect of the

standard R-fuzzy approach that made it a standout candidate from the various uncertainty

models that were surveyed. All subjectivity is collected from which an objective approach

can then be taken. The subjective nature of perception based uncertainty provides the

foundation from which to extract meaningful sentiment from. If such a foundation did not

accurately convey what it was collecting, then any inference from it would not be a true

reflection. An R-fuzzy approach ensures that no loss of information is suffered, as a result,

the objective nature of the analysis makes direct reference to a truthful representation of

the perceptions collected.
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3.4.1 An Enhanced R-fuzzy Example

Example 4: Assume that F =
{
f1, f2, . . . , f9

}
is a set containing 9 different colour

swatches based on the color red:

f1 → [204, 0, 0]→

f2 → [153, 0, 0]→

f3 → [255, 102, 102]→

f4 → [51, 0, 0]→

f5 → [255, 153, 153]→

f6 → [102, 0, 0]→

f7 → [255, 204, 204]→

f8 → [255, 0, 0]→

f9 → [255, 51, 51]→

The colours themselves are given by their [RGB] values, from which the average is

calculated and stored in N =
{

68, 51, 153, 17, 187, 34, 221, 85, 119
}

. Each average Ni value

will correspond to a specific colour swatch Fi. For example, the swatch associated with

f3 has a value of 153, f5 will be related to 187, and so on. Given that the criteria set

C =
{
p1, p2, . . . , p15

}
contains the perceptions of 15 individuals, all of whom gave their

own opinions based on the available descriptors and the swatches themselves. These values

have been collected, along with their ages and are presented in Table 3.6.

The descriptor terms contained within the table can be understood as meaning:

DR→ Dark Red R→ Red LR→ Light Red

Using the same linear function given in Eq. (2.5.26), which has been used for all the

contained examples, the resulting fuzzy membership set is given as:

Jx =
{

0.25, 0.17, 0.67, 0.00, 0.83, 0.08, 1.00, 0.33, 0.50
}
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Table 3.6: Human Perception Based on the Variations for the Colour Red

# Age f1 f2 f3 f4 f5 f6 f7 f8 f9

p1 20 R DR LR DR LR DR LR R LR

p2 30 R DR LR DR LR DR LR R R

p3 20 R DR LR DR LR DR LR R LR

p4 25 R DR LR DR LR DR LR R LR

p5 25 R DR LR DR LR DR LR R LR

p6 20 R DR LR DR LR DR LR R LR

p7 20 R DR LR DR LR DR LR R LR

p8 25 R DR LR DR LR DR LR R R

p9 25 R DR LR DR LR DR LR R R

p10 30 R DR LR DR LR DR LR R R

p11 20 R DR LR DR LR DR LR R LR

p12 25 R DR LR DR LR DR LR R LR

p13 30 R DR LR DR LR DR LR R R

p14 30 R DR LR DR LR DR LR R R

p15 30 R DR LR DR LR DR LR R R

Using Definition 8, the final generated R-fuzzy sets based on the collected subsets for

LR, R and DR, respectively, are given as:

DR =
({

0.00, 0.08, 0.17
}
,
{

0.00, 0.08, 0.17
})

R =
({

0.25, 0.33
}
,
{

0.25, 0.33, 0.50
})

LR =
({

0.67, 0.83, 1.00
}
,
{

0.50, 0.67, 0.83, 1.00
})

What’s striking when considering the perceptions contained within the table is the level

of exactness. For all observers from p1, . . . p15, for colour swatches f1, . . . f8, the exact

same level of responses were recorded. The colour swatch which divided opinion was that

of f9. As is the subjective nature of perception based uncertainty, one cannot simply

expect certain results. The expectant volatility was simply not there, however, what will

be shown, even from what little variance that does exist, a wealth of understanding can
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Table 3.7: The Degrees of Significance for Each of the Generated R-fuzzy Sets

DR R LR

Jx γ Jx γ Jx γ

γ DR{0.00} = 1.00 γ R{0.00} = 0.00 γ LR{0.00} = 0.00

γ DR{0.08} = 1.00 γ R{0.08} = 0.00 γ LR{0.08} = 0.00

γ DR{0.17} = 1.00 γ R{0.17} = 0.00 γ LR{0.17} = 0.00

γ DR{0.25} = 0.00 γ R{0.25} = 1.00 γ LR{0.25} = 0.00

γ DR{0.33} = 0.00 γ R{0.33} = 1.00 γ LR{0.33} = 0.00

γ DR{0.50} = 0.00 γ R{0.50} = 0.47 γ LR{0.50} = 0.53

γ DR{0.67} = 0.00 γ R{0.67} = 0.00 γ LR{0.67} = 1.00

γ DR{0.83} = 0.00 γ R{0.83} = 0.00 γ DR{0.83} = 1.00

γ DR{1.00} = 0.00 γ R{1.00} = 0.00 γ LR{1.00} = 1.00

Jx

1

0.53
0.47

0
0.00 0.08 0.17 0.25 0.33 0.50 0.67 0.83 1.00

DR R LR

Figure 3.15: A Continuous Visualisation for DR, R & LR

be garnered. By using Eq. (3.2.2), one is able to calculate the degree of significance for

each and every encapsulated fuzzy membership value from Jx. The returned degree of

significance for all generated R-fuzzy sets are presented in Table 3.7.
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Figure 3.15 collectively displays all the generated R-fuzzy sets for Example 4, along

with the degree of significance for each fuzzy membership value, in accordance to its

relative association to each R-fuzzy set. Referring back to Table 3.6, one will see that the

age of each individual was also collected. There are three ages of note: 20, 25 and 30, 5

from each criterion. As these are all from the same original criteria set C, the membership

set Jx will not change, this is guaranteed, one does not need to recalculate. The creation

of R-fuzzy subsets can now be undertaken, such that they represent the three individual

age groups collected. From this they can be compared with regards to the perspective

of each cluster to that of another, gaining a more detailed understanding of the concept

being modelled. Furthermore, as the membership set Jx does indeed remain the same, this

can be used as the sequence needed for the absolute degree of grey incidence component.

Table 3.8: The Degrees of Significance for Each of the Generated R-fuzzy Sets for the Age

Cluster 20 Year Olds

DR R LR

Jx γ Jx γ Jx γ

γ DR{0.00} = 1.00 γ R{0.00} = 0.00 γ LR{0.00} = 0.00

γ DR{0.08} = 1.00 γ R{0.08} = 0.00 γ LR{0.08} = 0.00

γ DR{0.17} = 1.00 γ R{0.17} = 0.00 γ LR{0.17} = 0.00

γ DR{0.25} = 0.00 γ R{0.25} = 1.00 γ LR{0.25} = 0.00

γ DR{0.33} = 0.00 γ R{0.33} = 1.00 γ LR{0.33} = 0.00

γ DR{0.50} = 0.00 γ R{0.50} = 0.00 γ LR{0.50} = 1.00

γ DR{0.67} = 0.00 γ R{0.67} = 0.00 γ LR{0.67} = 1.00

γ DR{0.83} = 0.00 γ R{0.83} = 0.00 γ LR{0.83} = 1.00

γ DR{1.00} = 0.00 γ R{1.00} = 0.00 γ LR{1.00} = 1.00

The membership values themselves act as the discretised points along the x-axis, whereas,

the varying significance degrees give the associated amplitude. For example, if one refers

to Table 3.8 which contains the data for the age cluster 20 year olds, the membership

value 0.50 for the R-fuzzy set LR, has a returned degree of significance of 1.00. The same
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membership value and R-fuzzy set for the age cluster 25 year olds in Table 3.9, returns a

degree of significance of 0.60. For the age cluster 30 year olds in Table 3.10, the returned

degree of significance for the same fuzzy membership value is 0.00.

Table 3.9: The Degrees of Significance for Each of the Generated R-fuzzy Sets for the Age

Cluster 25 Year Olds

DR R LR

Jx γ Jx γ Jx γ

γ DR{0.00} = 1.00 γ R{0.00} = 0.00 γ LR{0.00} = 0.00

γ DR{0.08} = 1.00 γ R{0.08} = 0.00 γ LR{0.08} = 0.00

γ DR{0.17} = 1.00 γ R{0.17} = 0.00 γ LR{0.17} = 0.00

γ DR{0.25} = 0.00 γ R{0.25} = 1.00 γ LR{0.25} = 0.00

γ DR{0.33} = 0.00 γ R{0.33} = 1.00 γ LR{0.33} = 0.00

γ DR{0.50} = 0.00 γ R{0.50} = 0.40 γ LR{0.50} = 0.60

γ DR{0.67} = 0.00 γ R{0.67} = 0.00 γ LR{0.67} = 1.00

γ DR{0.83} = 0.00 γ R{0.83} = 0.00 γ LR{0.83} = 1.00

γ DR{1.00} = 0.00 γ R{1.00} = 0.00 γ LR{1.00} = 1.00

Regardless of how small or large the difference between the returned degrees of signif-

icance for comparable fuzzy membership values, the fact that there can be a difference

should provide one the motivation to explore further. It is precisely this aspect of wanting

to investigate that warrants the use of grey analysis. Given the tiny amount of variance

that exists in Example 4, one would be forgiven to assume that not a lot of further

information could be garnered. However, as it will now be demonstrated when applying

the notion grey analysis, there is yet a wealth of understanding still to be obtained.

Given the fuzzy membership values of Jx and the correlated degrees of significance,

indicative of an R-fuzzy set, one can now make efforts to quantify the differences between

the metric spaces of comparable sequences. Figure 3.16 provides a visualisation of the

comparison between the R-fuzzy set and significance measure sequence generated for LR,
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Table 3.10: The Degrees of Significance for Each of the Generated R-fuzzy Sets for the

Age Cluster 30 Year Olds

DR R LR

Jx γ Jx γ Jx γ

γ DR{0.00} = 1.00 γ R{0.00} = 0.00 γ LR{0.00} = 0.00

γ DR{0.08} = 1.00 γ R{0.08} = 0.00 γ LR{0.08} = 0.00

γ DR{0.17} = 1.00 γ R{0.17} = 0.00 γ LR{0.17} = 0.00

γ DR{0.25} = 0.00 γ R{0.25} = 1.00 γ LR{0.25} = 0.00

γ DR{0.33} = 0.00 γ R{0.33} = 1.00 γ LR{0.33} = 0.00

γ DR{0.50} = 0.00 γ R{0.50} = 1.00 γ LR{0.50} = 0.00

γ DR{0.67} = 0.00 γ R{0.67} = 0.00 γ LR{0.67} = 1.00

γ DR{0.83} = 0.00 γ R{0.83} = 0.00 γ LR{0.83} = 1.00

γ DR{1.00} = 0.00 γ R{1.00} = 0.00 γ LR{1.00} = 1.00

with relation to the age cluster 20 year olds from Table 3.8, against the R-fuzzy set and

significance measure sequence generated for LR, with relation to the age cluster 25 year

Jx
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LR

LR(20yo)

LR(25yo)

Figure 3.16: The Comparability Between 20 and 25 Year Olds for LR
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olds from Table 3.9. The shaded area of the plot signifies the difference in the metric

spaces between the two sequences.

The greater the difference between sequences the smaller the returned absolute degree

of grey incidence, equally, the more similar the sequences, the greater the value. Using

Definition 17 one can now apply the absolute degree of grey incidence to quantify

the overall difference between the two sequences based on their metric spaces. As the

degree of grey incidence uses absolute values, the order in which the sequences are passed

through will not impact on the result. The sequence associated with LR for 20 year olds is

given as: si = {0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 1.00, 1.00, 1.00}. The sequence associated

with LR for 25 year olds is given as: sj = {0.00, 0.00, 0.00, 0.00, 0.00, 0.60, 1.00, 1.00, 1.00}.

Using Eq. (2.6.33), the returned result is ε(0.950). A very high scoring value, indicating

that the two sequences are indeed very similar. Referring back to Figure 3.16, it can

quite easily be inferred that the similarities are indeed there, the sequences score almost

exactly the same for their returned degrees of significance, except for one point. The fuzzy

membership value of Jx{0.50} differs between the two R-fuzzy sets for the two different

age clusters. Comparing the R-fuzzy sets and associated significance measure sequences

with that of differing age clusters, one can quantify the rate of change in perception as

one propagates through successive clusters.
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Figure 3.17: The Comparability Between 20 and 30 Year Olds for LR
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Figure 3.17 provides a visualisation of the comparison between the R-fuzzy set and

significance measure sequence generated for LR, with relation to age cluster for 20 year

olds, against the R-fuzzy set and significance measure sequence generated for LR, with

relation to the age cluster for 30 year olds from Table 3.10. In exactly the same way,

the sequences are compared using Eq. (2.6.33). In this case, the sequence associated with

LR for 30 year olds is given as: sj = {0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 1.00, 1.00}, and

the returned absolute degree of grey incidence is given as ε(0.875). Another high scoring

value but not as high as the comparison between the R-fuzzy set and significance measure

sequences computed for 20 and 25 year olds. Simply inspecting the plot, one can see that

the area of divergence is greater than the comparison between 20 and 25 year olds.
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Figure 3.18: The Comparability Between 25 and 30 Year Olds for LR

This comparing and contrasting is repeated for all clusters against all generated R-fuzzy

sets and significance measure sequences. Table 3.11 provides a summary of the collected

absolute degree of grey incidence values for all comparisons, against each of the three

age clusters. One can see that the age clusters of 20 and 25 share the closest correlated

perception for the concept LR, with an absolute degree of grey incidence value of ε(0.950).

The age clusters of 20 and 30 share the least correlated perception with an absolute degree

of grey incidence value of ε(0.875). The age clusters of 25 and 30 share an intermediary

correlation with a returned value of ε(0.916), the visualisation can be seen in Figure. 3.18.
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Table 3.11: A Comparable Summary of the Returned Absolute Degree of Grey Incidence

for LR, R & DR

LR 20yo 25yo 30yo R 20yo 25yo 30yo DR 20yo 25yo 30yo

20yo ε(1.00) ε(0.950) ε(0.875) 20yo ε(1.00) ε(0.931) ε(0.857) 20yo ε(1.00) ε(1.00) ε(1.00)

25yo - ε(1.00) ε(0.916) 25yo - ε(1.00) ε(0.914) 25yo - ε(1.00) ε(1.00)

30yo - - ε(1.00) 30yo - - ε(1.00) 30yo - - ε(1.00)

Applying the same level of inspection, one can see that the correlation for each R

significance measure sequence, between the age clusters of 20 and 25 year olds, is again

stronger than that of 20 and 30 year olds. With regards to the DR, it is logical to infer

that all clusters correlated exactly with one another. Simply inspecting Tables 3.8, 3.9 and

3.10, one can see that each significance measure sequence is absolutely the same, meaning,

for the notion of DR, all age clusters agreed upon the same fuzzy membership values. The

Figures 3.19, 3.20, 3.21, 3.22, 3.23 and 3.24 provide the visualisations for the remaining

combinatorial comparisons, between R-fuzzy sets and the significance measure sequences,

to that of varying age clusters.
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Figure 3.19: The Comparability Between 20 and 25 Year Olds for R
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Figure 3.20: The Comparability Between 20 and 30 Year Olds for R
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Figure 3.21: The Comparability Between 25 and 30 Year Olds for R

3.5 Similarity and Distance Measures

The enhanced R-fuzzy approach makes use of sequences for the comparison of com-

puted R-fuzzy subsets. The generated sequences related to this thesis are indicative of the

returned degrees of significance, for all membership values belonging to the fuzzy mem-

bership set Jx, which is the universe of discourse. However, there are indeed similarities
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Figure 3.22: The Comparability Between 20 and 25 Year Olds for DR
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Figure 3.23: The Comparability Between 20 and 30 Year Olds for DR

that exist with the sequences computed in relation to Example 4, to that of what one

would consider a type-1 fuzzy set. In Section 4.7.1, the relationship between that of the

significance measure when used in conjunction with an R-fuzzy set, to that of a type-1

fuzzy set is described. In which case, one would be able to treat two R-fuzzy sets accom-

panied with two significance measure sequences, as two type-1 fuzzy sets, and provide a

similarity index.
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Figure 3.24: The Comparability Between 25 and 30 Year Olds for DR

Many current similarity and distance measures, of which there are many, do not take

into consideration the direction of change between comparable fuzzy sets (McCulloch

et al., 2014). However, the rate of change in propagating fuzzy sets in the context of

perception modelling is not necessarily needed. The similarity measure in the context

of perception modelling is far more informative, as it is the similarity of the divergences

that are being computed. It can indeed be argued that instead of the absolute degree of

grey incidence, one could make use of a fuzzy similarity relation, comparing the returned

degrees of significance for each triggered membership value for each R-fuzzy set. Given the

functionality of the absolute degree of grey incidence, demonstrated in Example 4, it is

indeed a similarity measure. Instead of measuring the degree of membership of a fuzzy set,

the degree of significance of each fuzzy membership value is measured and summated. The

family that the absolute degree of grey incidence belongs to, has many other variations

(Liu and Lin, 2006), some of which where presented in Section 2.6.3. When considering

the examples presented in this thesis, it is more favourable to make use of an absolute

method, such as the one adopted.

Considering the well known Jaccard similarity measure, given as:

s(A,B) =

∑n
i=1 min

(
µA(xi), µB(xi)

)
∑n

i=1 max
(
µA(xi), µB(xi)

) (3.5.7)
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Where A and B are representative of two fuzzy sets, in this case two R-fuzzy sets,

where the significance measure degree for an object, is the degree of membership which

one would associate to an object of a fuzzy set. Applying the Jaccard similarity measure

to Example 4 would return the scores contained within Table 3.12. The values returned

by the Jaccard measure, generally agree to the sentiment returned by the absolute degree

of grey incidence, as the ranking order is maintained. However, inspecting the returned

metrics, one will see that the Jaccard method does not have the same resolution as the grey

method. What’s more, the values although agree with the grey approach, the difference

in the values themselves is varied.

Table 3.12: The Returned Jaccard Similarity Index For LR, R & DR

LR 20yo 25yo 30yo R 20yo 25yo 30yo DR 20yo 25yo 30yo

20yo ε(1.00) ε(0.900) ε(0.750) 20yo ε(1.00) ε(0.833) ε(0.667) 20yo ε(1.00) ε(1.00) ε(1.00)

25yo - ε(1.00) ε(0.833) 25yo - ε(1.00) ε(0.800) 25yo - ε(1.00) ε(1.00)

30yo - - ε(1.00) 30yo - - ε(1.00) 30yo - - ε(1.00)

Table 3.13 presents the absolute difference between the Jaccard similarity measure to

that of the absolute degree of grey incidence. The values although generally small, are

still different throughout. If one was to inspect the plots for Example 4 visually, they

would probably be inclined to agree with the values returned by the absolute degree of

grey incidence, to be a more humanistic interpretation of the results.

Table 3.13: The Absolute Difference Between the Grey and the Jaccard Measure

LR 20yo 25yo 30yo R 20yo 25yo 30yo DR 20yo 25yo 30yo

20yo ε(0.00) ε(0.05) ε(0.125) 20yo ε(0.00) ε(0.098) ε(0.190) 20yo ε(0.00) ε(0.00) ε(0.00)

25yo - ε(0.00) ε(0.083) 25yo - ε(0.00) ε(0.114) 25yo - ε(0.00) ε(0.00)

30yo - - ε(0.00) 30yo - - ε(0.00) 30yo - - ε(0.00)

A distance measure in the context of this thesis would not be an ideal approach to

use, as the distance measure provides a value of distance between two differing R-fuzzy

sets. The premise of this thesis is to compare the geometric patterns generated from like

R-fuzzy sets based on varying permutations of clusters. For example, the significance
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sequence generated for LR with relation to 20 year olds, was compared to that of LR with

relation to 25 year olds. This provided one with a metric that indicated the strength of

how a particular cluster for a given abstract notion, compared to that of a different cluster,

with regard to the same abstract notion. As the computed R-fuzzy subsets are themselves

generated from the same original criteria set, it is completely possible to compare different

R-fuzzy sets, such as LR to that of DR, as they are all based on the same universe of

discourse. However, this would not prove to be helpful, as the comparison between different

R-fuzzy sets does not provide an insight into the sub-clusters contained within the criteria.

Nor are we interested in the shift from one R-fuzzy set to the next, we are simply concerned

with the difference of the same R-fuzzy sets for different clusters.

3.6 An R-fuzzy α-Cut

Once the significance measure has been applied to the contained fuzzy membership

values of an R-fuzzy set, one could then use what would be equivalent to an α-cut to

provide horizontal slices. An α-cut from a fuzzy perspective can be seen as nested sets of

non-fuzzy crisp sets, whose degree of memberships within the set are equal to or greater

than α. The α-cut is defined as:

Aα =
{
x
∣∣∣ µA(x) ≥ α

}
(3.6.8)

As the intended α-cut will be applied on an R-fuzzy and significance pairing, the α-

cut can instead be defined as the following, using the same notation that defined the

significance measure:

Āα =
{
v
∣∣∣ γĀ{v} ≥ α} (3.6.9)

Where the α-cut of the R-fuzzy set Ā is comprised of the possible degrees of significance

that can be computed given the criteria set. Assuming that the criteria set C is of a

fixed size for all generated R-fuzzy sets associated to it, a change in C would impact on

successively computed R-fuzzy sets. Therefore, given that the same number of observers

in C remains the same, this will ensure that the same increments of significance can be

adhered to. Referring back to Examples 1, 2 and 3, which were all based on the same
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original criteria set, all involving the use of 6 individuals. With that being the case, only

the following possible degrees of significance can be registered:

0

6
= γ{0}, 1

6
= γ{0.17}, 2

6
= γ{0.33}, 3

6
= γ{0.50}, 4

6
= γ{0.67}, 5

6
= γ{0.83}, 6

6
= γ{1}

As the generated subsets that constitute an R-fuzzy are indicative of the cardinality

of the number of observers contained in C, so too is the expected possible degrees of

significance that can be produced. With the exception of 0.50, all the possible values were

triggered in some way.

Consider the extremes 0 and 1 for the returned degrees of significance, to obtain a

significance of 1, all in the populace must agree, therefore, one should take the possible

degree of significance of 0.83, as the extreme for the highest grade before absolute inclusion.

Also, one should consider 0.17 as the other extreme, as a value of 0 indicates absolute non-

inclusion. Therefore, 0.17 can be seen as the lowest possible grade before exclusion from

the R-fuzzy set. Given the possible instances of significance, one can create an α-cut

with a horizontal slice at each instance. In much the same way that each α-cut signifies

the strength of significance, one could be interested in the extremes, 0.17 and 0.83. As

the membership of an R-fuzzy set is a rough set with an accompanying lower and upper

approximation, the membership values associated to the lowest extreme α-cut could be

resigned to non-inclusion. Whereas the membership values assigned to the highest extreme

α-cut could be elevated to the lower approximation, which is an absolute agreement and

inclusion.

Figure 3.25 shows the highest and lowest extreme α-cuts at 0.83 and 0.17, respectively,

with regards to Example 2. The plot itself indicates that only the membership value

of 0.57 scored a returned degree of significance of 0.83 with relation to the R-fuzzy set

AC, and a degree of significance of 0.17 with relation to the R-fuzzy set BN , hence why

these two R-fuzzy sets are more visible. To return a degree of significance of 0.17, only

a single observer would have had to agree to its sentiment. If one refers back to Table

2.4, one can see that observer at p3 gave their perception of f4, which was associated

to 50dB, which was presented as µ(f4) = 0.57, as being BN, the reason why 0.57 was

triggered. The same observer was the reason why the value 0.57 was not unanimously

98



Jx

1

0.83

0.67

γ

0.33

0.17

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00
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Figure 3.25: α-Cut Representation

agreed upon as being completely indicative of AC, hence why 0.57 scored a degree of

significance of 0.83. If one was to question the validity of a particular observer or set of

observers, one may be inclined to instead make use of the α-cuts, to either promote or

demote the significance value for a particular fuzzy membership value. In this case, the

impact of changing the degree of significance will change the shape of the membership of

Jx

1

0.83

0.67

γ

0.33

0.17

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

VNBNACNN

Figure 3.26: A Possible Readjusted Visualisation for AC & BN
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the encapsulated set. Figure 3.26 provides one with a possible visualisation of the adjusted

encapsulation for both AC and BN. One can see from the plot the membership value 0.57

now returns a degree of significance of absolute 1 with regards to AC, and a returned

degree of significance of absolute 0 with relation to BN. All other remaining membership

values and their associated scores remain the same, as do the unaltered R-fuzzy sets NN

and VN. This process can be repeated for any instances where the returned degrees of

significance encroach onto that of the extremes indicated by the α-cuts.

The use of α-cuts to allow for post result adjustment, provides one the means to apply

subjectiveness to the overall returned results. If a single, or small amounts of observers

contained in C, gave their perceptions which greatly conflicted against that of the general

consensus, then one may be inclined to shift the significance accordingly. However, this

raises an interesting question, assuming that the perceptions of those involved are genuine,

therefore certain returned perceptions, no matter how outlandish may be indicative of

underlying conditions. Colour blindness could be identified as too could varying degrees

of deafness or hard of hearing. The application of perception based modelling is vast, its

subjective nature makes it a challenging domain in which to engage. The use of an R-fuzzy

approach coupled with the significance measure provides one with a framework in which

to explore such domains, and return a high level of detail.

3.6.1 An R-fuzzy Shadowed Set

By using the perspective of α-cuts to be indicative of extreme bounds, whereby one is

presented with three criteria; non-inclusion (0), total acceptance (1) and upper approxi-

mation inclusion to a varying degree [0, 1], one has replicated a shadow set approach as

presented in Definition 7. Where possible membership values in the extremes are given

either as a 1 or 0, and the values in the shadow region simply belong to the interval [0, 1].

This new R-fuzzy shadowed set can be given by the following expression:

Ā =
{〈
v, γĀ(v)

〉 ∣∣∣ v ∈ U
}

(3.6.10)

Where its membership function is indicative of the three contained regions:

γĀ(v) : V →
{

0, 1, [0, 1]
}

(3.6.11)
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One could argue the point, why would you go to the effort of calculating the significance

for each of the contained fuzzy membership values if you are not going to use them? Given

certain based perception domains, this would be beneficial, knowing what membership

values would be deemed acceptable may be all the information one needs rather than

the exact degree of its significance. In particular, one would be more concerned with the

values that were on the precipice of totally being agreed upon by all. Simply using the

idea of α-cuts having their horizontal slices at the varying possible degrees of significance,

would provide one with a great deal of detail regarding the domain the R-fuzzy set was

modelled for. This undoubtedly allows for better uncertainty management, a goal of higher

uncertainty based approaches (Zadeh, 1983; Brashers, 2001).

3.7 Closing Remarks

Chapter 3 has described and demonstrated the main contributions of this thesis.

The pairing of the R-fuzzy approach with that of the significance measure, allows for

a greater level of detail to be inferred from. The adaptation from the traditional use

of an R-fuzzy set to provide an indication for an unknown observation, as presented

in Example 1, compared to the more detailed approach as described in Example 2,

shows that an R-fuzzy approach when paired with the significance measure, allows for

a universal encapsulation of the criteria set C. This configuration provides for a more

informative approach, from which a greater amount of information can be inferenced

from. The significance measure caters for not only a discretised understanding, but it

also allows for a continuous representation, allowing one to infer the significance of unseen

fuzzy membership values.

The addition of the streamlined concept provided the means to generate encapsulating

sets for the returned degrees of significance, using the most minimal parameter values. The

whitenisation functions were able to provide for a high precision set which adhered to the

correctly captured and triggered membership values. Such an approach concentrates on a

purely objective perspective and does not take into account a subjective understanding.

For example, the plateau regions for instances when a trapezoidal membership function

was used, did not extend past the triggered membership values. The streamlined approach
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does away with arbitrary assumptions, and presents the set as computed based on the

returned degrees of significance, a more derivable approach.

With regards to the enhanced R-fuzzy framework as demonstrated in Example 4, the

enhanced streamlined sets are not needed, as the returned degrees of significance provides

the index points needed for the sequences. The enhanced proposal allows for each member

of the fuzzy set Jx, to act as the discretised point along the x-axis. The returned degrees

of significance therefore act as the y co-ordinates, connecting the points creates a sequence

indicative of its R-fuzzy set. If the data contains clusters, then R-fuzzy subsets can be

computed on the same initial fuzzy membership set Jx. In which case, this caters for the

functionality to be able to compare and contrast any permutation of R-fuzzy sets and

significance measure sequences, to that of conditional attributes.

As Example 4 made use of real test subjects with regards to their perceptions, it is

noteworthy to mention that it is plausible that the same experiment could be repeated on

the same population, with different results being collected. When modelling perceptions,

one is simply taking a snapshot of that very moment, collecting the perceptions of indi-

viduals that may or may not have been influenced by their surroundings, mood, time of

the day and so on. This does warrant further investigation into how best to record and

collect the data, but as is the nature of perception, it is fundamentally subjective to the

individual.
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4

Empirical Observations

“Il n’est pas certain que tout soit incertain.” - Translation: “It is not certain

that everything is uncertain.”

– Blaise Pascal

4.1 Introduction

This chapter will take on an empirical perspective and provide one with observations

regarding varying aspects of the R-fuzzy and the significance measure pairing. The previ-

ous examples contained within this thesis have all indicated that a universal value can be

agreed upon, however this may not always be the case. Confliction; where contrasting per-

spective based on the same initial observation can reduce the significance of any contained

value, such that a single value cannot be used to indicate the subjectiveness of a given

concept. The addition of extra descriptors allows observers more choice in relaying their

perceptions, which impacts on the likelihood of membership values attaining absoluteness.

The previous examples have also implied the distribution of each computed R-fuzzy set

be neatly contained, as Example 5 will show, disjoint areas of distribution can occur.

Nonetheless, the enhanced R-fuzzy approach can still be undertaken to return a metric,

indicative of the divergence between geometric patterns of the sequences obtained using

the significance measure.
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Section 4.2 describes the restrictions that face a non-enhanced R-fuzzy approach,

this ultimately provided the rationale for the work contained in this thesis. Section

4.3 provides an insight when considering how confliction can impact upon the returned

degrees of significance. Section 4.4 looks into the impact the number of descriptors

can have on the distribution and significance scores for the contained fuzzy membership

values. Section 4.5 explains the use of thresholds to better articulate on a given concept.

Section 4.6 provides an example of disjoint distribution and how it can be captured and

inferred from, using the enhanced approach. Section 4.7 describes the relationship that

an R-fuzzy and significance measure pairing has to that of traditional fuzzy set theory.

Finally, Section 4.8 concludes the chapter with closing remarks.

4.2 R-fuzzy Restrictions

Consider Definition 8 and Section 2.5.1, which gave the definition for an R-fuzzy

set, and described its approximations, respectively. The traditional R-fuzzy approach

when compared to other uncertainty models, such as those contained in Section 2.4,

has clear advantages. Its ability to retain uniqueness for all captured object values, with

the addition of a greater breadth of uncertainty encapsulation, is the reason why it was

decided upon to provide for the foundation of this thesis. However, an R-fuzzy set without

the use of the significance measure does have restrictions. Consider a criteria set C of 10,

20 or 50 individuals, regardless of size the same vulnerability exists. Contained within C

are their correlated collected perceptions. As it has been stipulated in Definition 8, the

lower approximation is associated to absoluteness, for any value contained would have to

be agreed upon by all in C. Depending on the concept being modelled, a specific value to

represent a specific descriptor may be universally agreed upon. However, if 1 out of 10, 1

out of 20, or 1 out of 50, if a single individual disregarded a specific value to be indicative

of their subjectiveness, then that uncertain fuzzy membership value will be blocked from

belonging to the lower approximation. As a result, the general consensus, regardless of

how strongly agreed with, will not have at least a single value to act as its representative.

The same problematic sentiment is prevalent with regards to the upper approximation.

A single vote from any individual from any size criteria set C, can allow for any instance of
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an uncertain fuzzy membership value to be contained within the upper approximation. As

an upper approximation contains all values with at least a single voter, all the way up to the

entire criteria set minus one, C−1, depending on the size of C, this scope can be relatively

small or extremely drastic. This was the motivation for the creation of the significance

measure, to allow for one to be able to provide a metric for the contained membership

values of any computed R-fuzzy set. As it has already been shown, the significance degree

for any value belonging to the lower approximation will score an absolute 1, whereas any

value belonging to the upper approximation will score any real value within the interval

[0, 1]. Any membership value not included in the computed R-fuzzy set will score a value

of 0.

With this understanding of the vulnerability with regards to an R-fuzzy set, the signif-

icance measure simply allows for each and every uncertain fuzzy membership value to be

quantified. The same original problem of voter subjectiveness can still occur, however the

significance measure can indicate which values can be treated differently if need be. This

gave rise to the notion of an R-fuzzy α-cut, which will now be described.

4.3 Confliction

One of the benefits of utilising an R-fuzzy approach with regards to how it has been

described in this thesis, is that it can be deployed on data sets of varying size. The pre-

vious examples, with regard to the cardinality of the criteria set C have been relatively

small. However, an R-fuzzy set can be created with just a single observer. In this in-

stance, as there are no other observers to conflict with, any response given by a single

individual, regardless of how outlandish, will always be given as absoluteness. By that,

any returned membership value for any generated descriptor will always be contained in

the lower approximation, by proxy, the upper approximation too. The visualisation of

such an instance could take the form of an interval, or in keeping with a more humanistic

interpretation, something similar to the continuous representation on the plots from the

previous examples. Consider the following R-fuzzy set:

M =
({

0.25, 0.33, 0.50
}
,
{

0.25, 0.33, 0.50
})
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The membership values themselves are not important, but consider how one could pro-

vide for a continuous visualisation for such an R-fuzzy set, where there would be no need

to implement the significance measure, as the only values contained in the set, are given

an absolute degree of significance of 1. If considering a strict interval representation, a

visualisation could look like the one presented in Figure 4.1.

Jx

1

γ

0
0.00

0.08
0.17

0.25
0.33 0.50 0.67 0.83 1.00

M

Figure 4.1: A Strict Interval Visualisation for M

Jx

1

γ

0
0.00

0.08
0.17

0.25
0.33 0.50 0.67 0.83 1.00

M

Figure 4.2: Another Possible Visualisation for M
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One may be inclined to instead represent the R-fuzzy set more in keeping with how they

have been implemented in this thesis, as such, the plot contained in Figure 4.2 provides

a possible visualisation of this. Now consider that an additional observer has been added

to the criteria set, and there is a level of confliction such that the returned R-fuzzy set is

now given as follows:

M =
({

0.25, 0.33
}
,
{

0.25, 0.33, 0.50
})

The returned degree of significance for the contained R-fuzzy are given as:

γ M{0.00} =
0

2
= 0.00 γ M{0.08} =

0

2
= 0.00 γ M{0.17} =

0

2
= 0.00

γ M{0.25} =
6

2
= 1.00 γ M{0.33} =

2

2
= 1.00 γ M{0.50} =

1

2
= 0.50

γ M{0.67} =
0

2
= 0.00 γ M{0.83} =

0

2
= 0.00 γ M{1.00} =

0

2
= 0.00

As a result of this additional observer, the possible returned degrees of significance have

also been impacted upon, as now one can anticipate a possible returned degree of 0.50,

not just absolute 1 or 0. The shape of the encapsulated set of the significance values is

also impacted upon, as such, a possible visualisation may be indicative of that of Figure

4.3.
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M

Figure 4.3: A Possible Visualisation for M With Included Confliction
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It stands to reason that a confliction of interest can only impact upon a membership

value by demoting its significance. The addition of a third observer, when considering

the membership value 0.50, would either return a significance degree of γM̄{0.50} = 0.33,

or γM̄{0.50} = 0.67, but as confliction is still prevalent, the membership value will never

return a degree of significance equal to 1, nor 0. This is the same case when considering

criteria sets that contain a larger number of observers. The more subjectiveness involved

the more likely confliction will arise, as such, the shape of the encapsulating set will have

to change accordingly. As it was shown in Example 4, there may indeed be cases where

the variation contained within the criteria set is minimal. It is perfectly plausible that

the collected perceptions of a populous may indeed be identical. The dichotomy of a little

variation to that of a huge amount, is the subjective nature of perception based uncertainty.

The responses of those collected may follow a norm, however they may not. Regardless, an

R-fuzzy approach is able to capture the general consensus and equally the slight nuances

prevalent. The significance measure is able to provide a numeric quantitative value to its

importance, with no loss of information.

4.4 Descriptors

The procedural steps involved when considering an R-fuzzy approach require that the

descriptors already be decided upon. The various examples contained in this thesis have

all involved the use of at least 3 descriptors. Some logical consideration should be applied

to the number of descriptors one should employ, having too few will not allow for a

comprehensive overview, equally, having too many may reduce the significance of contained

membership values. Given that a continuous visualisation of Example 4 was presented

in Figure 3.15, assume that the perception of the same individuals were collected, but this

time they were given two additional descriptors to choose from. Very Dark Red (VDR)

and Very Light Red (VLR) along with DR, R and LR provides for a total of 5 descriptors.

Modelling the returned degrees of significance for this resulted in the plot contained in

Figure 4.4. One can see from the plot that the number of descriptors given as a choice,

greatly impacts upon the significance a membership value can score. Having too few

descriptors does not convey the concept being modelled in any great detail. Having too
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many descriptors reduces the likelihood of generating high scoring membership values.

The trade-off between generalisation and increased resolution, can be seen as more of an

art than an exact science, although common sense should be used.
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0.00 0.08 0.17 0.25 0.33 0.50 0.67 0.83 1.00

VDR DR R LR VLR

Figure 4.4: A Possible Continuous Visualisation for VDR, DR, R, LR & VLR

With the addition of the two extra descriptors to choose from, the distribution of DR and

LR are noticeably impacted upon. The distribution of R is affected to some degree, but as

it is predominately based in the middle, it is only altered slightly. The membership value

of 0.83 scored a significance of absolute 1 with regards to LR in the original plot Figure

3.15, whereas in the new plot the membership value has a significance of γLR{0.83} = 0.30

and γVLR{0.83} = 0.70. As the additional descriptors are the new left and right most

extremes, the old extremes are DR and LR are not as prominent. The membership values

that scored highly in the original plot are reduced by this addition of extra choice.

As it has been seen throughout this thesis, the majority of the plots themselves are based

on possible configurations, which are arbitrary and subjective. If one was to employ more

derivable means, one would most likely do away with the notion of plateau regions, and

instead simply connect-the-dots for each uncertain fuzzy membership value, along with its

returned degree of significance. In which case, a derivable plot based on Figure 4.4, would

look exactly like that of Figure 4.5. Here, one can see that there are no arbitrarily defined

plateau regions, instead the plot for each of the contained R-fuzzy sets, is purely based on
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Figure 4.5: A Derivable Continuous Visualisation for VDR, DR, R, LR & VLR

the significance measure values for each triggered fuzzy membership.

4.5 Thresholds

When using the significance measure to create a continuous representation, from which

an entire abstract concept can be modelled and rendered as seen in Figures 3.9, 3.14 and

3.26. This can be used as the basis from which to infer from, using varying membership

values not necessarily included from the original example. It provides one with a reference

point, where a membership value might fall when speculating with regards to an unknown

membership. For example, the R-fuzzy set generated for AC when using the significance

measure, presented in Figure 3.2, contained the fuzzy membership value 0.43 in its lower

approximation, hence why it has an absolute value of 1 for its significance. The value

0.57 was contained within the upper approximation with a significance of 0.83, the most

extreme α-cut. If one was to speculate on what the returned result would be for the

membership value of 0.44, a membership not included in the original fuzzy membership

set Jx, one would be inclined to score it an absolute 1. One would also be inclined to give

a score of 1 to the membership value of 0.45, however these are arbitrary assumptions

as one can only assume this would be the case. It would be logical to assume that any
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membership value greater than 0.50 would need to lose its degree of significance gradually,

as the known membership value of 0.57 returned a degree of significance of 0.83.

R-fuzzy sets could be used more intuitively if say, one wanted to know which membership

values surpassed a particular threshold of acceptance. Assume Φ(v) > 80, where Φ is

representative of a subset of membership values which evaluate to true based on the

condition of exceeding a significance degree measure of 80. As this would include all

absolute lower approximation values, if such existed, it would also include membership

values that were incredibly close to being included within the lower approximation. The

fuzzy membership value 0.57 returned a degree of significance of 0.83, with regard to the R-

fuzzy set AC, according to Examples 2 and 3. This would exceed the threshold of Φ(v) >

80, and as a result would be treated as a lower approximation. Providing a threshold

would alleviate the problem of allowing an outlier to stop a particular membership value

from agreeing to the general consensus. The threshold value itself could be derived from

subjective means, more relative to the notion being modelled.

In much the same way α-cuts provide crisp cut off points, the use of thresholds such as Φ,

allows for post result adjustment. To be able to ascertain which values exceeded a thresh-

old, one will be able to identify the membership values that were of greater importance

relative to a particular R-fuzzy set.

4.6 Disjoint Distribution

As indicated by previous examples, if such a membership value exists to describe a

particular descriptor, such that all collected perceptions agree, then the registered mem-

bership values either side will often also be triggered to some degree. Examples 2, 3 and

4, have all indicated that neighbouring membership values are also triggered, as the up-

per approximation in all instances has more than one contained value. With that being

the case one would assume that there would be no contained voids between triggered

memberships, however, that may not always be true. From the previous examples, the

propagation from one generated R-fuzzy set to the next, tends to overlap, this implies that

shared instances of membership values to more than one R-fuzzy set exist. This follows a
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very harmonic understanding of shifting from one descriptor to the next. Once the overall

concept has been visualised, the various R-fuzzy sets based upon their returned degrees of

significance, simply provide a reference of how the populous perceived the concept being

modelled. Understandably, certain perceptions will involve less subjective variation than

others. In which case, conformity will more likely be achieved, such that a value can be

used indicatively for a given descriptor.

It is quite possible, and completely plausible to have instances where disjoint distribution

occurs, in which case a single membership value or a range of values for a particular R-fuzzy

set may be ignored, as they were not voted to be indicative of any perception collected.

When dealing with subjectiveness, one cannot simply imply that their perception is wrong,

as the R-fuzzy set and significance approach is purely objective, based on the collected

subjectiveness of the criteria set C. The enhanced R-fuzzy approach will still allow for a

sequence to be generated, as the value 0 is still a viable score for the returned degree of

significance, and as such it can be collected.

A disjoint distribution for a particular R-fuzzy set will often also be contained within

generated R-fuzzy subsets based on the same criteria set. Therefore, when comparisons

between sequences using the absolute degree of grey incidence is undertaken, the similari-

ties will be relatively high. However, the subtlety of the divergences is the motivation for

the enhanced R-fuzzy framework. If there does exist a difference in perception from con-

tained clusters, then quantify and provide a metric. This numeric index will be indicative

of how severe or similar a cluster of cohorts is, with regards to their subjectiveness given

any modelled concept.
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4.6.1 A Disjoint Enhanced R-fuzzy Example

Example 5: Assume that F =
{
f1, f2, . . . , f9

}
is a set containing 9 different colour

swatches based on the color blue:

f1 → [25, 25, 112]→

f2 → [204, 204, 255]→

f3 → [42, 82, 190]→

f4 → [0, 51, 153]→

f5 → [0, 0, 128]→

f6 → [0, 0, 255]→

f7 → [40, 146, 172]→

f8 → [0, 128, 255]→

f9 → [36, 186, 255]→

In much the same way as seen in Example 4, the enhanced R-fuzzy framework example,

Example 5 investigates the collected perception of 20 individuals, with regards to the

colour blue. As the criteria has increased to 20, so too does the chances of disjoint

distribution. The more individuals to give their perception, the more likely confliction

may arise. These collected perceptions are presented in Table 4.1. Notice the inclusion of

the Sex attribute, of which C contains 15 males and 5 females.

The descriptor terms contained within the table can be understood as meaning:

DB → Dark Blue B → Blue LB → Light Blue

Using the same linear function given in Eq. (2.5.26), which has been used for all the

contained examples, the resulting fuzzy membership set is given as:

Jx =
{

0.06, 1.00, 0.35, 0.14, 0.00, 0.24, 0.43, 0.48, 0.65
}
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Table 4.1: Human Perception Based on the Variations for the Colour Blue

# Sex f1 f2 f3 f4 f5 f6 f7 f8 f9

p1 M DB LB LB DB DB B LB LB B

p2 F DB LB LB B DB B LB LB LB

p3 M DB LB LB DB DB B LB LB LB

p4 M DB LB B DB DB B LB LB LB

p5 M DB LB B DB DB B LB LB LB

p6 M DB LB B DB DB B DB LB LB

p7 F DB LB B DB DB B LB B LB

p8 F DB LB DB DB DB B DB LB LB

p9 M DB LB B B DB B LB LB LB

p10 M DB LB B DB DB B LB LB LB

p11 M DB LB B DB DB B LB LB LB

p12 M DB LB B B DB B LB B LB

p13 M DB LB B B DB B LB B LB

p14 M DB LB DB DB DB B LB LB LB

p15 M DB LB DB DB DB B LB LB LB

p16 F DB LB DB DB DB B LB B LB

p17 F DB LB B B DB B LB LB LB

p18 M DB LB DB DB DB B LB B LB

p19 M DB LB DB DB DB B LB LB LB

p20 M DB LB B B DB B LB LB LB

Using Definition 8, the final generated R-fuzzy sets based on the collected subsets for

LB, B and DB, respectively, are given as:

DB =
({

0.00, 0.06
}
,
{

0.00, 0.06, 0.14, 0.35, 0.43
})

B =
({

0.24
}
,
{

0.14, 0.24, 0.35, 0.48, 0.65
})

LB =
({

1.00
}
,
{

0.35, 0.43, 0.48, 0.65, 1.00
})

115



Table 4.2: The Degrees of Significance for Each of the Generated R-fuzzy Sets

DB B LB

Jx γ Jx γ Jx γ

γ DB{0.00} = 1.00 γ B{0.00} = 0.00 γ LB{0.00} = 0.00

γ DB{0.06} = 1.00 γ B{0.06} = 0.00 γ LB{0.06} = 0.00

γ DB{0.14} = 0.70 γ B{0.14} = 0.30 γ LB{0.14} = 0.00

γ DB{0.24} = 0.00 γ B{0.24} = 1.00 γ LB{0.24} = 0.00

γ DB{0.35} = 0.30 γ B{0.35} = 0.55 γ LB{0.35} = 0.15

γ DB{0.43} = 0.10 γ B{0.43} = 0.00 γ LR{0.43} = 0.90

γ DB{0.48} = 0.00 γ B{0.48} = 0.25 γ LB{0.48} = 0.75

γ DB{0.65} = 0.00 γ B{0.65} = 0.05 γ LB{0.65} = 0.95

γ DB{1.00} = 0.00 γ B{1.00} = 0.00 γ DB{1.00} = 1.00

By using Eq. (3.2.2), one is able to calculate the degree of significance for each and every

encapsulated fuzzy membership value, from Jx that has an affinity to its descriptor. The

returned degree of significance for all generated R-fuzzy sets are presented in Table 4.2.

If one inspects the returned degrees of significance contained in Table 4.2, one can see

where certain membership values have not been registered nor triggered. Not only that,

but consider the R-fuzzy set LB, and notice how the returned degree of significance for the

membership value γ LB{0.35} = 0.15, this increases for γ LB{0.43} = 0.90, but then drops

for γ LB{0.48} = 0.75, to then rise again for γ LB{0.65} = 0.95, to finally γ LB{1.00} = 1.00.

All the previous examples have not shown that the returned degrees of significance can

fluctuate. Generally speaking the values increase to a point of absolute inclusion, to then

gradually decrease to non-inclusion. Nonetheless, the fluctuations are completely accept-

able, as the significance measure merely objectively quantifies the collected subjective

perceptions of any criteria set.

Figure 4.6 provides one with a possible continuous representation of the generated R-

fuzzy sets and the returned degrees of significance. As one can see, the plot differs greatly
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Figure 4.6: A Possible Continuous Visualisation for DB, V & LB

from previous plots, nonetheless, the returned degrees of significance are correctly classified

based on what was presented in Table 4.2. Given that γ DB{0.24} = 0.00, there exists an

area of disjointness between 0.14 and 0.35. As this is a possible visualisation, DB has the

left most part of the set end at 0.20, and restarts for the right most part of the set at

0.30. The R-fuzzy set B was constructed in much the same way, the disjointness itself was

declared using arbitrary values which covered the void correctly. The R-fuzzy set LB has

considerable variance throughout its duration, as can be seen in its fluctuations, it does

not however have an area of disjointness. All three generated R-fuzzy sets do have at least

one value which returned a significance degree of 1, so even with the extra members for

the criteria set, there is still a value that exists indicative of the collective perception held.

In much the same way that the plot contained in Figure 4.5 is the derivable plot for

Figure 4.4, the plot contained in Figure 4.7 is the derivable plot for Figure 4.6. Regardless

of which plot one draws their attention to, the sentiment of what the visualisation is

conveying is maintained, whether it be through a subjective, arbitrary configuration, or a

repeatable, derivable configuration for the contained R-fuzzy sets. If one was to implement

the use of plateaus, the start and the end points of distribution will be purely subjective

and arbitrary. If a more precise and derivable plot is needed, one which is more stricter
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Figure 4.7: A Derivable Continuous Visualisation for DB, V & LB

in terms of membership value coverage, than the means of connecting-the-dots should be

chosen, as this can be exactly replicated by third parties assuming it is configured on the

same initial data set.

As the data contained in Table 4.2 contains a Sex attribute, one can generate 2 sub-

sets with relation to male and female. This in, much the same way as demonstrated in

Example 4, allows for one to create R-fuzzy subsets, from which the returned degrees

of significance can be used to generate the comparable sequences needed, for the absolute

degree of grey incidence. Regardless of how the encapsulation of the returned degrees of

significance look, it still provides a valid sequence for comparisons to be undertaken, as

any generated subset will be indicative of the overall R-fuzzy sets generated from it, along

with disjointness and all.

Table 4.3 and Table 4.4, contain the returned degrees of significance relating to males

and females, respectively, all collected from Table 4.1. The plots contained in Figures 4.8,

4.9 and 4.10, show the comparable sequences computed from the returned degrees of

significance, for DB, B and LB.
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Table 4.3: The Degrees of Significance for Males

DB B LB

Jx γ Jx γ Jx γ

γ DB{0.00} = 1.00 γ B{0.00} = 0.00 γ LB{0.00} = 0.00

γ DB{0.06} = 1.00 γ B{0.06} = 0.00 γ LB{0.06} = 0.00

γ DB{0.14} = 0.73 γ B{0.14} = 0.27 γ LB{0.14} = 0.00

γ DB{0.24} = 0.00 γ B{0.24} = 1.00 γ LB{0.24} = 0.00

γ DB{0.35} = 0.27 γ B{0.35} = 0.60 γ LB{0.35} = 0.13

γ DB{0.43} = 0.07 γ B{0.43} = 0.00 γ LR{0.43} = 0.93

γ DB{0.48} = 0.00 γ B{0.48} = 0.20 γ LB{0.48} = 0.80

γ DB{0.65} = 0.00 γ B{0.65} = 0.07 γ LB{0.65} = 0.93

γ DB{1.00} = 0.00 γ B{1.00} = 0.00 γ LB{1.00} = 1.00
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LB(M)

LB(F)

Figure 4.8: The Comparability Between Males and Females for LB

Table 4.5 provides a summary of the collected absolute degree of grey incidence values

for all generated R-fuzzy sets and significance measure sequences, for each comparable

permutation, of which there are 3. Inspecting the table one can see that sequences gen-

119



Table 4.4: The Degrees of Significance for Females

DB B LB

Jx γ Jx γ Jx γ

γ DB{0.00} = 1.00 γ B{0.00} = 0.00 γ LB{0.00} = 0.00

γ DB{0.06} = 1.00 γ B{0.06} = 0.00 γ LB{0.06} = 0.00

γ DB{0.14} = 0.60 γ B{0.14} = 0.40 γ LB{0.14} = 0.00

γ DB{0.24} = 0.00 γ B{0.24} = 1.00 γ LB{0.24} = 0.00

γ DB{0.35} = 0.40 γ B{0.35} = 0.40 γ LB{0.35} = 0.20

γ DB{0.43} = 0.20 γ B{0.43} = 0.00 γ LR{0.43} = 0.80

γ DB{0.48} = 0.00 γ B{0.48} = 0.40 γ LB{0.48} = 0.60

γ DB{0.65} = 0.00 γ B{0.65} = 0.00 γ LB{0.65} = 1.00

γ DB{1.00} = 0.00 γ B{1.00} = 0.00 γ LB{1.00} = 1.00

erated for DB shared the most similarities with a returned metric of ε(0.968). This was

then followed by LB, with a metric of ε(0.940), therefore the greatest divergence exists for

B, with a metric of ε(0.841).

With the increase in observers contained within the criteria set, comes a greater chance

of disjointness. The sequences generated for Example 4 were relatively self-explanatory

and easily interpreted. The sequences generated for Example 5 are considerably more

volatile, as indicated by the plots. The sequences themselves often crisscross with one

another. This is not a problem, for the absolute degree of grey incidence uses the absolute

Table 4.5: A Comparable Summary of the Returned Absolute Degree of Grey Incidence

for LB, B & DB

LB M F B M F DB M F

M ε(1.00) ε(0.940) M ε(1.00) ε(0.841) M ε(1.00) ε(0.968)

F - ε(1.00) F - ε(1.00) F - ε(1.00)
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Figure 4.9: The Comparability Between Males and Females for B
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Figure 4.10: The Comparability Between Males and Females for DB

values for the area encapsulated between discretised points. As such, a reliable and detailed

metric can be returned from which an insight provides the perceived perceptions of males

and females. As there were 3 times more males as compared to females, the overall

similarities between sequences as indicated by the high returned metrics, would indicate

that with more females, the value would only increase slightly, if at all. The robustness

that the enhanced R-fuzzy approach has, allows for it to be executed on clusters with

uneven frequency, with relatively small amounts of data. This enables whatever mix is
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contained within the criteria set, to be able to be compared. As the comparisons are of

the same R-fuzzy descriptors, the general overall similarity will be prevalent, however, the

enhanced R-fuzzy approach is best utilised to provide a metric to the small divergences

that exist.

Although Example 4 and Example 5 are both based on the visual perception of

colour, one can see that there are noticeable differences in their visualisations. Example

4 presented the population with varying swatches of the colour red, whereas Example 5

considered variations of the colour blue. The red experiment compared and contrasted the

perceptions of the contained age groups; 20, 25 and 30, of which there was a total of 5 each,

making the population size 15. The blue experiment used 20 individuals, the majority of

which came from the red experiment, but this time only the sexes of the individuals were

compared and contrasted with; the population total was 20. The increase in observers

increases the possible likelihood of disjointness.

The red experiment followed a more general sense of conformity, as there were no areas

of disjointness. The blue experiment however, created areas of disjointness between the

generated R-fuzzy sets. Consider Figure 4.6, where the plot is indicative of all the collected

perceptions of Table 4.2. Paying particular interest to the R-fuzzy set DB, one can see that

the area of disjointness occurs between the fuzzy membership values of 0.14 and 0.35, the

fuzzy membership value of 0.24 returns a significance of 0. If one moves to the R-fuzzy set

B, the area of disjointness occurs between fuzzy membership values of 0.35 and 0.48, the

fuzzy membership value of 0.43 returns a significance of 0. What is particularly interesting

is that when the R-fuzzy set for DB is re-engaged, by that, the next time a fuzzy value

is triggered for DB, is at 0.35, the majority of the R-fuzzy set B is contained in the area

of its disjointness. Although DB does not continuously cover the triggered membership

values unlike that of the R-fuzzy sets for Example 4, they still have areas of distribution

that were agreed upon by some, hence why the significance values for memberships after

the area of disjointness are greater than 0.25.

Considering the possible plot of LB in Figure 4.6, one will notice an indent in the plateau

between the fuzzy membership values 0.48 and 0.65. This non-convex shape is in stark

contrast to the typical convex sets seen for the R-fuzzy sets from the previous examples.

This can be attributed to the re-engaged area of distribution related to the R-fuzzy set
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B, when it is re-engaged between the fuzzy membership values of 0.48 and 0.65. It echoes

the sentiment of an Atanassov intuitionistic fuzzy set as given in Definition 5, although

purely from a semantic point of view. The way the experiments were set up, did not allow

for an individual to choose a possible R-fuzzy set that would have been indicative of; I do

not agree with. They were essentially made to choose from an approved options list. This

undoubtedly effects the distribution of created R-fuzzy sets, as when individuals do not

cohesively agree with one another, the factions this causes will stop certain uncertain fuzzy

membership values from obtained a significance of absolute 1. For areas of disjointness,

it can be seen that when an R-fuzzy set is re-engaged, the second part to it, will most

likely be roughly the same area of distribution from the neighbouring R-fuzzy set, where

the values score significantly less.

4.7 Relationship to Fuzzy

R-fuzzy sets are different from traditional fuzzy sets, in that their membership val-

ues are expressed as a set rather than a value. However, there are overlaps with other

fuzzy variations under special considerations. In the original R-fuzzy paper by Yang and

Hinde (2010), the relationships between R-fuzzy and type-1 fuzzy sets, interval-valued

fuzzy sets and Atanassov intuitionistic fuzzy sets were given, with accompanying theo-

rems and proofs. This section will put forward the relationship that exists between that

of the significance measure defined in Definition 20, to that of a type-1 fuzzy set. Also

described is the relationship between an R-fuzzy set and significance measure pairing, to

that of a special condition type-2 fuzzy set. It was remarked by Yang and Hinde, that

if the distribution of a membership function could be modelled, it may then be used to

derive a fuzzy set, which would give rise to an equivalent type-2 fuzzy set. As it has been

shown in Section 3.2, the significance degree measure given in Eq. (3.2.2) does indeed

act as an equivalent fuzzy set, when describing its descriptor. Albeit, with regards to its

conditional probability of distribution.
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4.7.1 Relationship to a Type-1 Fuzzy Set

The significance measure described in Definition 20 is equivalent to a type-1 fuzzy

set, if it can be described in the same way as presented in Definition 1. Whereby its

membership function must satisfy the restriction imposed upon it, such that an object

is assigned a degree of inclusion either equalling or within the range of [0,1]. Also for

equivalence to be satisfied, the continuous set representation must be based upon the

apex stick heights of the returned degrees of significance for the triggered membership

values. From Definition 8 and Definition 20, assume that set A is a descriptor for a

particular R-fuzzy set. Given that a type-1 fuzzy set is a collection of ordered pairs. The

degree of significance for each membership value belonging to a particular R-fuzzy set is

quantified by its membership function γĀ{v} : Jx → [0, 1], such that it can be given by

the expression:

Ā =
{〈
v, γĀ{v}

〉 ∣∣∣ v ∈ Jx} (3.2.5 revisited)

Therefore, based on its descriptor the set will contain ordered pairs of membership values

and their associated degrees of significance. One can see this expressions is equivalent to

the notation given in Eq. (2.2.1):

A =
{〈
x, µA(x)

〉 ∣∣∣ x ∈ U
}

(2.2.1 revisited)

Where an object is provided with a degree of inclusion relative to the set being inspected.

Here we have v ∈ Jx which is the membership set of membership values instead of x ∈ U.

As Jx provides what essentially is the universe of discourse, the significance degree measure

does indeed act as an equivalent type-1 fuzzy set, when the set is representative of the

descriptor the R-fuzzy set was created for.

4.7.2 Relationship to a Type-2 Fuzzy Set

A type-2 fuzzy set as given in Definition 6, is a logical extension to that of a type-1

fuzzy set, whereby the addition of a secondary grade of membership is used. The secondary

grade itself is a type-1 fuzzy membership, and provides a three-dimensional perspective,
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allowing for greater encapsulation of uncertainty. The general type-2 fuzzy set is given as

follows:

Ã =
{〈

(x, u), µÃ(x, u)
〉 ∣∣∣ ∀x ∈ U,∀u ∈ Jx ⊆ [0, 1]

}
(2.4.12 revisited)

An R-fuzzy set A is equivalent to a special type-2 fuzzy set as presented in Definition

6, only when one considers the probability distribution of the significance degree measure

as a fuzzy membership, only then is an R-fuzzy set equivalent to a special condition type-2

fuzzy set with discrete secondary membership functions.

From Definition 6, we have (x, u) and µÃ(x, u), where (x, u) is indicative of an in-

tersection, and where µÃ(x, u) represents the amplitude, or stick height of objects for

said intersection. From Definition 8, an R-fuzzy set uses a rough set to describe its

membership, as a result we have (MA,MA), where the lower and upper approximations,

M and M , respectively, provide the bounds of the set being approximated, which is the

descriptor for set A. The degree of significance as presented in Definition 20, describes

the conditional distribution of triggered membership values for its descriptor, given by

Eq. (3.2.5). Where the collection of γĀ{x} provides the degree of significance of each and

every membership value that satisfied the descriptor. As µÃ(x, u) provides one with the

amplitude of objects over the footprint-of-uncertainty, Ā provides one with the degree of

significance for all triggered membership values satisfying the requirements given by the

descriptor. Both approaches make use of a set, which itself describes the distribution of

that set.

4.8 Closing Remarks

The strengths of the R-fuzzy and significance measure pairing, allows for the synthesis

of a type-2 fuzzy approach, as it has been shown in Section 4.7.2. Such is the connec-

tion, the dilemma of excessive precision is no longer such a burden. Type-2 fuzzy is often

associated with high computational overhead and complexity of representation, while us-

ing crisp values to describe its secondary membership function. As it has already been

stated, one may not know all regarding the problem, so securing exactness from which

one can base a foundation, could be seen as an unrealistic expectation. An R-fuzzy set
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on the other hand, allows one to model perception where exactness is not fulfilled. With

the addition of the significance measure, one is then able to model the distribution of the

encapsulated membership set, so to provide varying amplitude to the stick heights of the

captured viable fuzzy membership values. Using this method to get type-1 membership

values, R-fuzzy sets can setup an equivalent representation which would require a type-2

membership in a type-2 fuzzy set representation. Type-1 membership can be linked with

objective measurements, but type-2 membership is much more subjective and lacks a reli-

able methodology to set it up. There is no one definitive method to define the secondary

grade of membership of a type-2 fuzzy set. Therefore, the work contained in this thesis

presents a practical and an effective methodology to conduct the work requiring a type-2

representation. From this perspective, an R-fuzzy and significance measure approach al-

lows for an equivalency, an intermediary approach, to ascertain higher details of resolution

that a type-2 fuzzy approach could capture, without the burden of high computational

overhead and complexity of representation.

As previous examples have demonstrated, perception does not necessarily follow a strict

and stringent train of thought, an individual may hold a perception that goes against the

grain of the general consensus. An informative representation of a descriptive term should

satisfy not only the requirements of the imprecise representation, but also convey both

the common perceptions and individual subjectiveness. The very fact that an R-fuzzy

approach caters for this provided the relevance for deciding upon an R-fuzzy foundation

from which to expand upon.

The problem of having to use excessive precision to describe increasingly imprecise

phenomena has seen several approaches created to try to resolve this dilemma. To some

extent these new approaches do offer viable solutions but not wholeheartedly, as several

questions still remain. The likes of interval-valued fuzzy sets, Atanassov intuitionistic

fuzzy sets and shadowed sets, all allow for the means of encapsulating the uncertainty

involved concerning the membership values of a fuzzy set. However, an interval-valued

fuzzy set implies that the values contained within its interval are equally distributed,

this is an unrealistic assumption for perception based domains. The examples contained

within this thesis have shown that unified distribution is not always the case. Values

may have a different relationship with the membership values concerned, whereas others

may involve uncertainty. Other pitfalls are that a value can lose its inherent meaning if
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placed in shadowed regions or intervals, once placed in such a container, its uniqueness is

diminished.

As seen from the examples, one can see that perception based perspectives may not

follow a universal interpretation, individuals may give varying results based on the same

observations. These differences and similarities in their perceptions should all be taken

into account. With this being the case, a single fuzzy membership value cannot be used to

represent a descriptive object, doing so would skew the underlying intent of the perceptions

involved. The general consensus and the individual perceptions need to be taken into

consideration. A type-2 fuzzy approach extends into the third dimension by using a type-

1 fuzzy set to replace the use of crisp membership values. Nevertheless, the secondary

membership function itself would still be using crisp values, as a result, the same initial

problem still exists. However, the higher levels of type-n one could implement, the closer

one gets to precision and an agreed upon model, but not without consequence, the burden

of complexity and computation becomes too costly.

As the membership of an R-fuzzy set itself is a set which contains discrete data, there

is no loss of detail, unlike that of an interval valued fuzzy set approach. Once the interval

has been entered, there is no sense of how close to the bound of that interval the object

may be, extremely pessimistic or overtly optimistic. The interval assumes generality and

uniformed distribution throughout. As the membership set of an R-fuzzy set is a rough

set, the contents of which are crisply defined possible fuzzy membership values, that have

an affinity to the descriptor it is being modelled for, no loss of information is suffered.

Therefore, one can then quantify the distribution of that R-fuzzy set using the significance

measure.

The introduction of the absolute degree of grey incidence for the analysis component

is only applicable if one can generate a sequence. As the significance measure computes

the significance for all members of the membership set Jx, the returned values apply the

amplitude to the discretised points that constitute the universe of discourse. Assuming

that all the derived R-fuzzy sets are generated from the same criteria set C, the returned

degrees of significance does indeed create a sequence. As Examples 4 and 5 have shown,

if the data contains attributes which can create R-fuzzy subsets, one can compute the

metrics of divergence based on any number of combinatorial permutations.
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5

Conclusion

“I am absolutely uncertain about the uncertain amount of uncertainty in-

volved. . . ”

– Me

5.1 Introduction

This labour of love has documented the journey undertaken throughout the duration

of the research, this chapter concludes upon its findings. The foundational underpinnings

that constitute the main body of this work is that of the R-fuzzy concept, originally pro-

posed by Yang and Hinde (2010). The functional ability of R-fuzzy when compared to that

of other uncertainty modelling concepts, proved itself to be the best-suited candidate from

which to expand upon. To echo the sentiment of Section 2.4, the problems associated

with the use of increased amounts of precision to model ever increasing amounts of impre-

cise uncertainty, has seen the creation of several approaches. To varying degrees of success,

some of these alternatives do allow for the encapsulation of uncertainty from which one

can then further inference. The likes of interval-valued fuzzy sets, Atanassov intuitionistic

fuzzy sets and shadowed sets, all allow for the means of encapsulating the uncertainty

involved concerning the membership values of a fuzzy set. However, an interval-valued

fuzzy set implies that the values contained within its interval are equally and uniformly

distributed. This uniformed distribution is an unrealistic assumption to place when con-

sidering perception based uncertainty, the very uncertainty that this thesis is associated
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with. The variance of subjectiveness should be modelled as precisely as possible, allowing

for not only a general consensus, but catering for subjective nuances. As it has been

demonstrated in the examples, confliction can be prevalent, from an insignificant amount

to vast amounts of contradiction. Considering the variations of uncertainty models high-

lighted in this thesis, a value will lose its inherent meaning if placed within an interval or

shadowed region, as once placed in such a container, its uniqueness is dismissed, as it can

no longer be distinguished from.

Perception based uncertainty may not involve a universal interpretation of a given con-

cept. The humanistic nature of subjectiveness can be a cause for concern, especially when

attempting to define a crisp value indicative of a notion. These possible conflictions of

interest, regardless of how similar or dissimilar, should all be taken into consideration.

With this understanding, a singleton value, such a fuzzy membership value, may not al-

ways be an ideal choice when representing a descriptive object. Doing so, may provide a

value that is not truly representative of the populous it was garnered from. This dilemma

gives credence to notion of a type-2 fuzzy set, whereby its secondary grade of membership

is that of a type-1 fuzzy set. However, the secondary membership function itself would

still be using crisp values, harking back to the same problem. Nonetheless, the higher

levels of type-n one could implement, the closer one gets to precision and an agreed upon

model, but not without consequence, the burden of complexity and computation becomes

too costly.

5.2 The Significance Measure

As the membership function of an R-fuzzy set is a rough set, comprised of a lower and

upper approximation, no loss of information is suffered, all contained objects retain their

discernibility. Unlike the other investigated models, an object is not lost when contained

within its interval or shadowed region. The effectiveness of using an R-fuzzy approach,

coupled with that of the significance measure, as presented in Section 3.2, provides one

with the means for encapsulating fuzzy membership values, when precise memberships are

not known.
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The original deployment of an R-fuzzy set was to provide a set of values for an unknown

observation. With the introduction of the significance measure, the intended use as de-

scribed in Section 3.2.2, provided the means to quantify the significance for all generated

fuzzy membership values of Jx, relative to the associated descriptors the R-fuzzy sets were

being computed for. In doing so, one can now comprehensively model all the collected per-

ceptions contained in the criteria set C, from which to further query. With the continuous

representation that is now possible, provides for a more humanistic interpretation of the

perceptions collected. In addition it also provides the significance for values not necessar-

ily contained within the original membership set Jx. As Example 2 has demonstrated,

a complete and comprehensive understanding of the perception is produced, providing

one with additional insight into the abstraction being modelled. The significance measure

itself based on that of the standard rough certainty factor described in Eq. (3.2.1), from

which a relative significance measure can be derived, Eq. (3.2.2). One which is indicative

of Jx and the descriptor based on the rough membership set generated. Understanding the

importance of the membership values contained within the upper approximation allows

for a better understanding on the perception being modelled.

Given an R-fuzzy and significance measure pairing, there is indeed a relationship to

that of a generalised type-2 fuzzy set approach as described in Section 4.7.2. As the

membership of an R-fuzzy set itself is a set which contains discrete data, there is no loss

of detail, unlike that of an interval valued fuzzy set approach (Yang and Hinde, 2010;

Khuman et al., 2015a, 2016a). Once an object has entered the interval, there is no sense

of how close to the bound of that interval it is; extremely pessimistic or overtly optimistic,

the interval assumes generality and uniformed distribution. As the membership set of

an R-fuzzy set is a rough set, the contents of which are crisply defined possible fuzzy

membership values, that have an affinity to the descriptor it is being modelled for, no

loss of information is suffered. The significance measure provides the means to apply an

amplitude to the contained membership values. Understandably, it is not an absolute

equivalence, rather than see an R-fuzzy and significance measure equate to a generalised

type-2 fuzzy set, it is more understandable to see how certain conditional restrictions of a

type-2 fuzzy set relate to that of an R-fuzzy and significance measure pairing.

Uncertainty with regards to fuzzy membership values is a common problem in the

application of fuzzy sets, which has led to the concept of type-2 fuzzy sets. Type-2 fuzzy
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sets have a strong theoretical capacity in uncertainty representation (Zadeh, 1975a,b,c),

but its associated difficulty is with regards to its highly subjective type-2 membership.

In addition, its computational complexity limits its applicability and application domain.

By connecting R-fuzzy sets and type-2 fuzzy sets through the significance measure, a new

method to solve the challenge of type-2 fuzzy sets in applications, is the result. This

was done by replacing the subjective membership with a collection of objective type-1

membership values in an R-fuzzy set. In this way, the precision of type-2 fuzzy sets are

preserved but its difficulty in defining type-2 membership is removed. As there is no

absolute one method to define the secondary membership of a type-2 fuzzy set, it will be

interesting to see how the enhanced R-fuzzy framework can be utilised in this regard.

5.3 Streamlined Encapsulation

In addition to the creation of the significance measure, this thesis also introduced the

notion of streamlined encapsulation as presented in Section 3.3. The use of the grey

whitenisation function to provide an encapsulation of the returned degrees of significance,

for any computed R-fuzzy set, still allows for a continuous representation to be inferred

from. Unlike the original arbitrary values chosen for the left and right most footprints of

a set, or the magnitude of the unit interval at the apex of the trapezoidal memberships,

the streamlined approach provides for a high detailed encapsulating set using only the

minimal parameters required.

It can be argued that in the context of this research and the deployment of the whiteni-

sation weight function, it is indeed a typical triangular or trapezoidal membership. In

which case using the expected notation and the methodology of the streamlined approach,

would return the same results. The use of grey theory techniques was done to demon-

strate the effectiveness of marrying together the likes of grey, R-fuzzy and the significance

measure. The originally intended use of whitenisation from a purely grey perspective is

mainly with regards to clustering (Sifeng et al., 2011; Liu and Lin, 2006). Using a grey

whitenisation weight function allows for the classification of observations or objective in-

dices, into definable classes. As it has been shown, taking a current methodology and

adapting it in an unconventional manner, can provide for promising results.
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Comparing the streamlined results with that of arbitrary values decided upon for Ex-

ample 3, the whitenisation plot can be seen in Figure 3.14, whereas the arbitrary values

can be seen in Figure 3.9. The whitenisation approach does away, wherever possible, with

the use of a trapezoidal membership, unless absolutely required. However, it can be argued

that where a trapezoidal is favourable, the apex of its interval can be used to better model

humanistic understandings. The whitenisation approach, although streamlined, can be

seen as too stringent regarding the domain it is being modelled for. It becomes specific

on the criteria set it computed from, whereas the arbitrary configuration allows for more

of a generalisation. There may indeed be domains that would ideally suit the interest of

a streamlined methodology, this could be further investigated.

5.4 The Enhanced R-fuzzy Framework

The main contribution of this thesis is that of the enhanced R-fuzzy framework as

described in Section 3.4. In much the same with regards to the streamlined approach,

the use of grey techniques were integrated. Again, in much the same way, these techniques

where adapted from their expected use to that of an alternative. The enhanced R-fuzzy

approach utilises the heightened resolution and detail garnered when implementing the

significance measure. The application of grey analysis, specifically, the absolute degree of

grey incidence is then used to quantify the divergence between comparable R-fuzzy sets

for a given abstract concept. Even when only a tiny amount of variance is contained

within the criteria set, a wealth of knowledge can still be obtained, as was demonstrated

in Example 4. The use of the absolute degree of grey incidence allowed for one to further

inspect the change in perception as one propagated through each cluster. If changes did

occur, the corresponding significance measure sequence when compared to that of another,

would quantify the amount of difference between the metric spaces of the sequences. As

the sequences are all based on the degrees of significance for the same fuzzy membership

values in Jx, the magnitude for each sequence is guaranteed to be the same with the one

to be compared against.

Given that Example 4 compared the divergence in perception with regards to age

clusters, Example 5 compared the divergence in perception with regards to sex. In ad-
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dition, the perceptions collected in the criteria set contained a huge amount of variance,

which created disjoint areas of distribution. With disjoint areas of distribution, the en-

hanced framework can still be employed. Even if a discretised point scored a significance

of 0, it is still a valid score and can be compared against. The versatility and robustness

of the enhanced approach allows for it to be deployed on domains inherently associated

with great variance in perceptions. The use of R-fuzzy, the significance measure and the

absolute degree of grey incidence, allows for even greater levels of detail to be obtained

and inferred from. In this configuration, the approach provides a more detailed similarity

measure, the resolution of which may be favourable to some.

5.5 Future Work

The work contained in this thesis is predominantly theoretical, although the examples

use real world data, the concepts that this thesis puts forward would benefit immensely

from more real world applicability. As is the nature of perception based domains, the

application of the proposed framework will be investigated with other domain specific

environments. If it can be shown that such an approach is more effective than other

standards, this will provide additional credence to the R-fuzzy notion. With regards to

the structure of the R-fuzzy framework, the sensitivity of the result of R-fuzzy sets with

regards to the criteria set C and the domain Jx, may act as a restriction to its application

in some real world problem domains, where it might be hard to construct a comprehensive

C and Jx in the early stages of the inspection. On the other hand, there is no standard

framework to construct C and Jx for R-fuzzy sets at the moment.

Therefore, a number of related future research directions can be foreseen from this

research. A systematic investigation into the methodology to establish the criteria set C

and domain Jx needs to be carried out to establish a practical framework under different

application domains. The sensitivity of R-fuzzy sets on its associated C and Jx needs to

be further studied to identify a suitable strategy to minimise its impact on the results.

Although Section 4.7.2 described the relationship between R-fuzzy sets and type-2 fuzzy

sets, the relationship between R-fuzzy sets and type-n fuzzy sets can be further explored.

In addition to the higher precision for uncertain memberships, the application of R-fuzzy
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sets to group decision making is also an interesting research topic for further investigation.

The application domain of type-2 fuzzy, where either the general or interval interpretation

is used, would also be an ideal research interest. Type-2 fuzzy has an excellent capacity in

dealing with uncertainty, but the difficulty in defining its fuzzy sets of membership limits

its applicability. With the connections between R-fuzzy sets and the significance measure,

to that of type-2 fuzzy sets, a type-2 fuzzy problem can be converted to an R-fuzzy set

problem. In which case, R-fuzzy sets can be applied to solve problems where type-2

fuzzy sets are currently used, or where it would be preferable to use a type-2 approach.

Therefore a typical type-2 application domain, once converted to an R-fuzzy set, becomes

an application domain of an R-fuzzy approach.
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