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Design Economic Policies that do not Create Bumpy Recovery 

 

Jeffrey Yi-Lin Forrest, Yirong Ying, Zaiwu Gong, Qionghao Chen, 

Huachun Zhao, and Yingjie Yang 

 

This chapter studies how to make sure when the economic performance indicators approach 

some pre-determined target values due to the effect of adopted policies, the economy also 

develops reasonably well without experiencing much severe up and-down fluctuations. This 

problem of concern is resolved by addressing the corresponding problem of pole placement of 

the general control-theory model of the economic system. This chapter (1) discusses conditions 

under which the poles of a constant coefficient linear economic system can be arbitrarily placed, 

(2) provides a way to calculate the matrix of feedback gain that is useful in placing the poles by 

using the feedback control mechanism so that the resultant constant coefficient linear economic 

system possesses a good quality stability and fast response speed, and (3) investigates the 

problem of how to design state or output feedbacks (economic policies) so that the resultant 

closed-loop economic system will have the pre-determined poles. At the end, some open 

problems of great importance are posed for future research. This chapter relates the issue of 

economic policy making and the pole placement of the general control-theory model of the 

economic system. The results are expected to provide practically useful guidelines. 

 

1. Introduction 

Since the 1990s, with the economic integration and the financial market globalization, the 

frequency and contagion of financial crises have increased tremendously (Table 1). That has had 

profound impacts on the globalization and captured the attention of many governments and 

scholars from around the world. In particular, the global financial crisis, triggered by the U.S. 

subprime mortgage crisis in 2007, had shown a new feature that not only has a more complex 

transmission channel and effect but also makes it possible for a non-systemic risk of a single 

country or local region to become a global financial systemic risk along the path of financial 

globalization and economic integration. This feature created far more severe aftermath 

consequences than any of the previous financial crises and brings forward new challenges to the 

existing theories of financial crises and regulations. Therefore, it is necessary to reexamine the 

contagion problem of global financial crises and to consider building a supervision system for 

the outbreak of crises and consequent contagion. To this end, it is important for us to look for 

sufficient conditions of dynamic path controllability of economic systems, while this effort 

surely has great theoretical value for follow-up studies on the prevention of financial crises 

(Chen and Ying, 2012; 2014). 
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Table 1.  Several major financial crises since the 1990s 
TIME CRISIS NAME COUNTRY TYPE OF COUNTRY 

1990 Bank of Scandinavia Crisis Finland, Sweden and Norway Developed Economy 

1992 Japan’s Asset Price Bubble Crisis Japan Developed Economy 

1994 Mexico Economic Crisis Mexico Emerging Economy 

1997 Asian Financial Crisis Thailand Emerging Economy 

1998 Russian Financial Crisis Russia Emerging Economy 

1999 Brazil Financial Crisis Brazil Emerging Economy 

2001 Argentina Financial Crisis Argentina Emerging Economy 

2001 Dotcom Bubble Crisis America Developed Economy 

2007 Subprime Crisis America Developed Economy 

Resources: Chen and Ying, 2012 

 

In practical studies of the economy, we require to a certain degree not only the economic 

system to be controllable so that the controlled variable, such as the GDP, the inflation, etc., 

approaches the target value, but also the economic system performs reasonable well in its process 

of approaching the target value. To achieve this end, it involves addressing the problem of pole 

placement of general systems (Cobb, 1981; Kaczorek, 1985; Ogata, 1995; Ram, Mottershead and 

Tehrani, 2011; Kirk, 2012; Zubov, Mikrin and Misrikhanov, et.al, 2013).  

From (Yang, Ying, and Forrest, to appear), it follows that when the real parts of the 

eigenvalues of matrix A  are all negative, the economic system is asymptotically stable. 

Although the feedback control strategy that is designed by using Lyapunov method can help to 

materialize the goal of regulating the economy, the process for the performance of the economic 

system to approach the targeted values might still experience major fluctuations and might take a 

long time to actually reach the targets. This end has a lot to do with the eigenvalues of A  which 

are in fact the poles of the economic system. In particular, if the poles of the economic system, or 

the eigenvalues of matrix A , are located on the left half plane but near the imaginary axis, then 

in its process of approach the targeted values, the performance of the economy will suffer from 

severe up and down fluctuations. Such severe up-and-down fluctuations had been experienced 

during the process of dealing with the 1998 Russian financial crisis.  

In October 1997, a financial crisis broke out in Southeast Asia. And in the following ten 

months, Russia made unremitting efforts to survive. During the time period, Russia issued large 

amounts of national debts and sacrificed a lot of foreign exchange in the market, which 

drastically reduced Russian foreign exchange and gold reserves. Therefore, Russian government 

faced a dilemma: either continue to maintain the floating exchange rate policy of the “currency 

corridor” or support the bond market. Eventually Russian government decided to go with the 

former choice. However, the financial situation did not turn for the better; and ruble started to 

depreciate drastically.  

Facing the continuous occurrence of new turmoil in the financial market, Russian 

government introduced an economic grogram to stabilize the financial situation. However, the 

program did not gain enough investor confidence. On August 13, 1998, George Soros, a 

renowned international speculator, publically suggested for Russian government to depreciate 

ruble in the scale of 15% - 25%. On that day, the price index of 100 industrial company stocks, 

as calculated by Interfax, lost over 70% of its value and fell sharply to the level of about 26% of 

the value at the start of the year. At the same time, the tax collected during the month of July was 

only about 12 billion ruble, while the operational budget for each month was no less than 20 

billion ruble, showing a huge gap between the income and expense. Under the pressure of the 

internal and external difficulties, on August 17, the government launched three tough emergency 
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measures:  

 

 The first was to expand the floating range for the exchange rate of ruble while lowering 

the upper limit of the ruble’s exchange rate against the dollar to 9.5∶1. That in fact 

declared the depreciation of ruble against the dollar from 6.295 to 9.5, more than 50% 

depreciation. So, the market predicted based on this emergency measure that the 

exchange rate of ruble would continue to drop drastically. And indeed, in the next 10 

days, ruble fell to 20 – 21:1, which busted the stable exchange rate of the past three plus 

years.  

 The second was to delay the payments, which were due, of foreign debts, which were 

estimated to be around US$15 billion, for 90 days.  

 The third was to lengthen the repayment periods of domestic debts, making all national 

debts, totaling about US$20 billion, that would mature by December 31, 2099, become 

mid-term debts that would mature in the next 3, 4, or 5 years. And before finishing the 

change of maturities, the national debt market was closed for trading.  

 

As soon as these three measures were announced, they immediately caused public outcry, 

the stock market crashed and closed for trading, and the exchange rate of ruble plunged. 

Afterward, the central bank altogether declared that it would allow ruble to float freely. That 

caused the public to either run for ruble in order to exchange for the U.S. dollar or buy anxiously 

consumer goods. Along with the fall of ruble’s exchange rate, the stock market plummeted much 

further. As of the end of August 28, the price index of the 100 industrial company stocks, as 

calculated by Interfax, fell to US$15.92 billion, which represented a fall of 85% when compared 

to the level of US$103.356 billion reached at the start of the year. And then the market simply 

closed down, making the price index become worthless.  

Although all the responses adopted by Russian government helped to reduce the 

economic loss of the nation, they also created major obstacles for the recovery of the domestic 

economy.  

Firstly, half of the deposits of the domestic residents were lost. The prices of imported 

goods rose 2 to 3 times, which also made the prices of domestic goods go up drastically. In 

September, the consumer prices went up 40%, which was more than the 36% rise that occurred 

in February 1992, the highest since the start of the economic reform. People’s actual wages went 

down 13.8%, making nearly 1/3 of all the residents live under the poverty line. The overall 

economy dropped 5%, industry 5.2%, agriculture 10%, and foreign trade 16.1%.  

Secondly, a large number of commercial banks, especial those big banks, suffered heavy 

losses. The SBS agriculture bank, one of the seven financial giants, at the time held short-term 

national debts in the equivalent amount of US$1 billion, which became worthless instantly. It 

was estimated that about one half of the commercial banks were on the verge of bankruptcy.  

Thirdly, this Russian financial crisis spread over its national border and affected Europe, 

the United States, Latin America, becoming a global effect. Foreign investors lost about US$33 

billion in this huge financial storm, where American long term capital management firms (or 

hedge funds) lost about US$2.5 billion, George Soros’ Quantum Fund lost around US$2 billion, 

American Bankers Trust lost somewhere near US$0.49 billion. Germany was the largest creditor 

of Russia, which owed Germany 75 billion marks (about US$44.4 billion), most of which were 

government-guaranteed bank loans. So, any trouble that appeared on the Russian financial 

market affected the safety of German creditors, creating shocks on the German market. Then the 
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shock waves were spread over to the entire European financial market. For example, Frankfurt 

DAX index once fell over 3%, the CAC40 index of Paris stock market dropped 1.76%, 

Amsterdam stock market lowered 2%, Zurich stock market lost 1.6%, etc. For related details, 

please consult with (Dabrowski, 2012; Kenourgios and Padhi, 2012; Kenourgios, Samitas, and 

Paltalidis, 2011; Bisignano, Hunter, and Kaufman, 2012; Gluschenko, 2015; Razin and 

Rosefielde, 2011).  

Therefore, in the process of actually controlling the conflict of currencies, we need the 

adopted feedback control strategies to show desirable good qualities in order to reduce as much 

as possible the severe systemic fluctuations caused by the employed control strategies, such as 

the excessive chaos of the market caused by the measures adopted by Russian government to 

control the exchange rate. Additionally, when not all of the eigenvalues of matrix A  are located 

on the left half of the complex plane, the economic system is not asymptotically stable, and the 

feedback strategies designed by using Lyapunov method cannot make the performance of the 

economy approach the pre-determined targets. Hence, it is necessary for us to establish new 

methods not only to guarantee that the process for the performance of the economy (or the output 

of the economic system) to approach the pre-determined targets exhibits desirable qualities but 

also to make the performance of the economy actually approach the pre-determined targets by 

designing relatively good feedback control strategies, even if the economic system itself is not 

asymptotically stable. To this end, the design of such feedback control strategies is closely 

related to the poles of the economic system, which is known as a method for pole placement.  

Additionally, from the discussion in (Yang, Ying, and Forrest, to appear), it follows that 

state feedback affects the poles of any closed loop system; and that for certain open loop instable 

economic systems, we can design a feedback control so that the resultant closed loop system is 

stable.  

 Results in (Yang, Ying, and Forrest, to appear) indicate that the poles of the economic 

system determine the stability of the system. Additionally, some other properties of the economic 

system are also determined by the location of the poles. For example, the dynamic characteristics 

of the system are greatly influenced by the location of the poles of the closed loop system. This 

chapter discusses the problem of how to design feedback so that the resultant closed loop 

economic system will have the pre-determined poles, known as the problem of pole placement. 

In other words, the so-called pole placement is to place the poles of the closed loop system at 

desirable locations by using either state feedback or the output feedback. Because the 

performance of the economic system is closely related to the location of the system’s poles, it 

makes the problem of pole placement occupy an important position in the study of feedback 

economic policy design. Here, we need to solve two problems. First, we need to establish the 

conditions under which the poles can be relocated; and second, we need to determine the 

feedback gain matrix that plays an important role in the poles relocation.  

  This chapter is organized as follows: Section 2 discusses the problem of how to place the 

poles of the economic system by using either state feedback or output feedback, and the problem 

of how to determine the desirable locations for the poles. Section 3 outlines the need to study the 

placement of eigenvectors and so the problem of eigenstructure assignment. Then, the 

presentation of this work is concluded in Section 4.  

 

 

2.  Pole Placement 
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2.1. Pole Placement by Using State Feedback 

 

First of all, let us look at the following problem: For what kind of economic system can 

we arbitrarily place its poles? Because the locations of the poles determine some of the very 

important properties of the economic system, the ability to arbitrarily relocate these points means 

the capability to alter at one’s will some of these important characteristics of the economy 

through using feedback. Hence the ability to relocate the poles should be closely related to the 

controllability of the economic system. Based on this reasoning, we will address this problem by 

using the form of controllable systemic structures.  

Assume that an economy can be written as a constant coefficient linear system, which 

takes the following structural form and is (
1 1
,A B ) controllable.  

 

1 12 1

2
0 0

c

c

NcNc

dx

xA A Bdt
u

xAdx

dt

 
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       
     
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          (1) 

 1 2

c

Nc

x
y C C

x

 
  

 
            (2) 

 

Evidently, the set of poles of this system is 
1 2

( ) ( )A A  . By using the following feedback  

 

  c

c Nc

Nc

x
u r Kx r K K

x

 
     

 
 

 

where  c Nc
K K K  , we obtain the following closed loop system: 

 

1 1 12 1 1

2
0 0

c

cc Nc

NcNc

dx

xA B K A B K Bdt
r

xAdx

dt

 
        

       
     

  

 

 

whose set of poles is 
1 1 2

( ) ( )
c

A B K A   .  

From the discussion in (Yang, Ying, and Forrest, to appear), it follows that 
2

( )A
 
should 

stay the same with the applied feedback. Therefore, it means that if the economic system in equ. 

(1) is not completely controllable, then we cannot arbitrarily relocate the system’s poles by using 

feedback. Because linear transformations do not change a system’s controllability and poles, this 

conclusion holds true generally for general constant coefficient linear systems. On the other 

hand, if a constant coefficient linear system is completely controllable, can the system’s poles be 

arbitrarily placed? The answer is yes. So, we have the following important result.  

 

Theorem 1. A sufficient and necessary condition for an economic system ( ,A B ) to arbitrarily 
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place its poles is that the system is completely ( ,A B ) controllable.  

 

 Assume that A  is not a stable matrix. If there is K  such that the matrix A BK  of the 

resultant closed loop system as obtained from using the feedback u r Kx   is a stable matrix, 

then we say that the original economy is capable of being stable.  

 

Theorem 2. A sufficient and necessary condition for an economic system to be capable of being 

stable is that all elements in 
2

( )A
 
is of negative real parts.  

 

 This result is also a natural consequence of the previous discussions. The problem of 

finding K such that A BK is stable is referred to as the problem of stabilization.  

In the following, let us look at the specific details of how to place the poles of a 

controllable economic system. First, let us look at the case of economy which involves only a 

single performance index and a single indicator.  

Assume that the systemic representation of the economy is  

 

dx
Ax bu

dt
              (3) 

 

which is controllable and written in the canonical form so that we have  

 

0 1 1

0 1 0 0

0 0 1 0 0

0 0 1

n

A

a a a


 
 
 
 
 
 
    

L L

L

K L

L L L

, 

0

0

1

b

 
 
 
 
 
 

M
. 

 

The characteristic polynomial of this system is  

 
1

1 1 0
| |

n n

n
sI A s a s a s a




     L  

 

Under the effect of the feedback 
1

[ , , ]
n

u kx r k k x r   L , we obtain the following closed loop 

system  

 

( )
dx

A bk x br
dt

    

 

where 

 



7 
 

0 1 1 2 1

0 1 0 0

0 0 1 0 0

0 0 1

n n

A bk

a k a k a k


 
 
 
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 
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L
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The characteristic polynomial of the resultant closed loop system is  

 
1

1 1 2 0 1
| ( ) | ( ) ( ) ( )

n n

n n
sI A bk s a k s a k s a k




         L       (4) 

 

Assume that we like to place the poles of the system at n  given locations on the complex 

plane: 
1 2
, , ,

n
  L . From these n  points, we can calculate the characteristic polynomial  

 
1

1 2 1 1 0
( )( ) ( )

n n

n n
s s s s s s     


       L L       (5) 

 

If we assume that when there is one complex number in the list of the pre-determined 

poles 
1 2
, , ,

n
  L , its conjugate needs also appear in the list, then all the coefficients 

i


 
in the 

previous equation are real numbers. By comparing equs. (4) and (5), we know that in order to 

materialize the required poles for the closed loop, we only need to select appropriate 
1 2
, , ,

n
k k kL

 
such that  

 

0 0 1

1 1 2

1 1n n n

a k

a k

a k






 

 


 


  

M
 

 

That is, the following vector will satisfy our need.   

 

0 0 1 1 1 1
[ , , , ]

n n
k a a a  

 
   L                       (6) 

 

For the general controllable economic system in equ. (3) with a single performance 

indicator, we first transform it into the canonical form and then place its poles. To this end, we 

use the following transformation:  

 

'x Tx  
1

1n

q

qA
T

qA





 
 
 
 
 
 

M
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where 1
[0,0, ,1]q U


 L  and 1 1

[ , , , ]
n

U b Ab A b
 

 L . This transformation changes the original 

system in equ. (3) into  

 

1 1'
'

dx
T ATx T bu

dt

 
   

 

Because 1
[0,0, ,1] [ , , , ]

n
qU qb qAb qA b


 L L , we have 

  
2 1

0, 0, , 0, 1
n n

qb qAb qA b qA b
 

   L  

 

That implies  

 

1

1

0

0

1
n

qb

qAb
T b

qA b





   
   
    
   
   
   

M

M
. 

 

Next we show that 
1

T AT


 is of our desired form. That is, we show   

 

1
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0 0 1

n
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a a a




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         (7) 

 

Because the characteristic polynomial of A  is  

 
1

1 1 0
| |
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


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we have  

 

1

1
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2
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So, equ. (7) is proven. 

Therefore, we have transformed the original single input controllable system in equ. (3) 

into the canonical form and we can now arbitrarily place the poles according to equ. (6). In the 

previous equations we have used the following:  

 
1

0 1 1

n n

n
A a I a A a A




    L  

 

So, based on equ. (6) we obtain the feedback 'u kx r  . By returning back to the original 

coordinate system x  we produce  

 

 rKxrxkTu 
1             (8) 

 

That is what we wanted, where K = kT
-1

.  

 

Example 1. Assume that the control-theory model of an economic system is given as follows:  

 

1 1 0 1

1 1 0 0

0 1 3 0

dx
x u

dt

   
   

  
   
      

 

 

Find a state feedback such that the resultant closed loop system has the following poles: 1, 

2+3i, and 23i.  

 

Solution. Step 1: let us compute the characteristic polynomial of the given model:  

 
3 2

| | 3 2 6sI A s s s     .  

 

Step 2: Calculate the required characteristic polynomial 

 
3 2

( 1)( 2 3 )( 2 3 ) 5 17 13s s i s i s s s          

 

From equ. (6), it follows that  

 

0 0 1 1 2 2
[ , , ] [ 7, 19, 8]k a a a          . 

 

For returning to the original coordinate system, we compute 
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1 1 2

0 1 0

0 0 1

U

 
 


 
  

, 1
[0 01] [0 01]q U


  , 1

2

0 0 1

0 1 3

1 2 9

q

T qA

qA



   
   

    
     

.  

 

So, we have the follow desired feedback:  

 

 1
8 35 136u kT x r x r


       .  

 

Because when we represent an economy by using a control-theory model, the model most 

likely contains many variables. That is, such a control-theory model would generally be high 

dimensional. So, in the following let us investigate the problem of pole placement for an 

economy with multiple economic policy factors as the system’s input.  

Assume that the multiple input control-theory model of the economy is  

 

dx
Ax Bu

dt
             (9) 

 

We will provide a method to first solve for a state feedback to convert a multiple input 

controllable system into a single input controllable system, and then to employ the developed 

method to place the poles of the single input system to place the poles of  the original multiple 

input system. In particular, we have the following details.  

Assume that  1 2 m
B b b b L . Because the system in equ. (9) is ( , )A B  controllable, 

the rank of 1n
U B AB A B

   M M L M
 
is n . Next, we re-arrange column vectors of U  as 

follows:  

 
1 1 1

1 1 1 2 2 2
{ ; ; ; }

n n n

m m m
b Ab A b b Ab A b b Ab A b

  
L L L L  

 

From these n m  columns, we select from left to right all the linearly independent vectors and 

obtain the following matrix:  

 
1 2 11 1

1 1 1 2 2 2
[ ; ; ; ]m

m m m
Q b Ab A b b Ab A b b Ab A b

   
 L L L L    (10) 

 

Let 

 

 
𝑆 = [0 ⋯ 0   𝑒2     ;  0 ⋯ 0           𝑒3        ;  ⋯ ;  0 ⋯ 0            𝑒𝑚       ;  0 ⋯ 0            0; ]

                        ↑                                ↑                                           ↑                                   ↑    
 𝜇1𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 (𝜇1 + 𝜇2)𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 (𝜇1 + ⋯ + 𝜇𝑚−1)𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛  𝑛𝑡ℎ𝑐𝑜𝑙𝑢𝑚𝑛  

 (11) 

 

where 
i

e
 
is the ith column of the 𝑚 × 𝑚 identity matrix.  

It can be shown that the matrix 1
K̂ SQ


  constructed by employing these previous 

matrices Q  and S   can help convert the original system into a single input controllable system.  
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Lemma 1. Assume that 
1

0b  . Then under the effect of the feedback 1ˆu Kx v SQ x v


    , the 

closed loop system  

 

1 1
ˆ( )

dx
A BK x b v

dt
    

 

is controllable, where 
1

v
 
stands for the first component of v .  

 

Proof. From the definition of K̂ , we have K̂Q S . That is,  

 
1 2 11 1

1 1 1 2 2 2

2 3

ˆ [ ; ; ; ]

[0 0 ; 0 0 ; ; 0 0 0]

m

m m m

m

K b Ab A b b Ab A b b Ab A b

e e e

   



L L L L

L L L L
 

 

So, we obtain the following series of equations:  

 
1 1

2 2

1 1

2 1

1 1 1 1 2

2 1

2 2 2 2 3

2 1

1 1 1 1

2 1

ˆ ˆ ˆ ˆ0, 0, , 0, ;

ˆ ˆ ˆ ˆ0, 0, , 0, ;

ˆ ˆ ˆ ˆ0, 0, , 0, ;

ˆ ˆ ˆ ˆ0 , 0 , , 0, 0]

m m

m m

m m m m m

m m m m

Kb KAb KA b KA b e

Kb KAb KA b KA b e

Kb KAb KA b KA b e

Kb KAb KA b KA b

 

 

 

 

 

 

 

 

   

 

   

   

   

   

L

L

M

L

L

 

 

Let ˆA A BK  . In the following, we show the 
1

( , )A b
 
controllability. We successively compute 

the matrix series of the 
1

( , )A b
 
controllability:  

 

1 1 1 1 1
ˆ ˆ( )Ab A BK b Ab BKb Ab     ， 

L ， 

1 1 1 11 2 2 1

1 1 1 1
ˆ( ) ( )A b A A b A BK A b A b

      
    ， 

1 1 1 1 11 1 1

1 1 1 1 1
ˆ ˆ( ) ( )A b A A b A BK A b A b BKA b

      
      

 

Based on how Q  is constructed, we know that 1

1
A b



 
is a linear combination of all the columns 

of Q  that are located to the left 
2

b . Let 2
b%

 
= 1

1
A b

 .Then we have  

 
1

1 2 2 2 2
A b b Be b b


   % %  

1 1

1 2 2 2 2 2 2
ˆ ˆ ˆ( )( )A b A BK b b Ab BKb Ab BKb

 
      % % %  

 

where 2
ˆ 0BKb  . Through detailed analysis it is not difficult to see that both 2

ˆBKb%
 
and 2

Ab%
 
are 
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linear combinations of the columns of Q  that are located to the left of 
2

Ab . Let 𝐴𝑏2̃ = 2
ˆBKb%

 
+ 

2
Ab%. Then we have  

 

𝐴̅𝜇1+1𝑏1 = 𝐴𝑏2 + 𝐴𝑏2̃ 
 

Similarly, we obtain  

 

1 2

1 3 3
A b b b

 
  % 

M 

𝐴̅𝑛−1𝑏1 = 𝐴𝜇𝑚−1𝑏𝑚 + 𝐴𝜇𝑚−1𝑏𝑚
̃  

 

Therefore,  

 

𝑟𝑎𝑛𝑘[𝑏1 𝐴̅𝑏1  ⋯ 𝐴̅𝑛−1𝑏1]

= 𝑟𝑎𝑛𝑘[𝑏1 𝐴𝑏1  ⋯ 𝐴𝜇1−1𝑏1;  𝑏2 + 𝑏2̃ 𝐴𝑏2 + 𝐴𝑏2̃ ⋯ 𝐴𝜇2−1𝑏2 + 𝐴𝜇2−1𝑏2
̃ ; ⋯ 𝑏𝑚

+ 𝑏𝑚̃ ⋯ 𝐴𝜇𝑚−1𝑏𝑚 + 𝐴𝜇𝑚−1𝑏𝑚
̃ ]

= 𝑟𝑎𝑛𝑘[𝑏1 𝐴𝑏1  ⋯ 𝐴𝜇1−1𝑏1;  𝑏2 𝐴𝑏2  ⋯ 𝐴𝜇2−1𝑏2;  ⋯ ; 𝑏𝑚 𝐴𝑏𝑚  ⋯ 𝐴𝜇𝑚−1𝑏𝑚] = 𝑛 
 

Therefore, we have obtained the 
1

( , )A b
 
controllability. QED  

By applying the result in Lemma 1, we can first compute K̂  in order to simplify the 

control-theory model of the economic system into a single-input controllable system, and then 

place the poles by using the method of pole placement established for single-input controllable 

systems.  

Assume that k̂  is the calculated matrix of feedback gain and makes the resultant single-

input system 
1

( , )A b
 
have the desirable poles. That is, 1

ˆA b k
 
has the following pre-determined 

poles 
1 2
, , ,

n
  L . Then, we can show that  

 

ˆ
ˆ ˆ

0

k
K K K

 
    

 
 

 

will also help to place the poles of the system ( , )A B onto 
1 2
, , ,

n
  L . In fact, it is ready to see 

that 

 

1 1
ˆ ˆˆ ˆ( )A B K K A BK b k A b k        

  

has 
1 2
, , ,

n
  L

 
as poles. So, K̂ K  is the desired matrix of feedback gain.  

 Summarizing what has been discussed above, we have the following particular 

computational steps for placing the poles of a multiple input controllable system:  

 

Step 1: Construct matrices Q  and S  according to equs. (10) and (11) and then compute 
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1
K̂ SQ


 ;  

Step 2: Calculate ˆA A BK   and its characteristic polynomial  

 

 1

1 1 0
| |

n n

n
sI A s a s a s a




     L ;  

 

Step 3: For given n  poles 
1 2
, , ,

n
  L , calculate the following polynomial:  

 
1

1 2 1 1 0
( )( ) ( )

n n

n n
s s s s a s a s a   


       L L  

 

and 
0 0 1 1 1 1

[ , , , ]
n n

k a a a  
 

   L ;  

Step 4: Compute 1
k kT


% , where  

 

1

1n

q

qA
T

qA





 
 
 
 
 
  

M
 

 

where q  is the last row of the inverse matrix of the controllability matrix U  of 
1

( , )A b .  

Step 5: Calculate  

 

ˆ
ˆ

0

k
K K

 
   

 
 

 

which is the desired matrix of feedback gain.  

 

Example 2. Assume that an given economy is written in the following analytic form:  

 

1 1 0 0 1 2

0 2 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

dx
x u

dt

   
   
    
   
   
   

 

 

Find the matrix K  of feedback gain so that the resultant closed loop system has poles 

1 2 3 4
1, 1, 2, 2            

 

Solution. Step 1: Let us construct the following matrix  
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1 2 2 2

1 2 0 0

0 1 0 2

0 1 0 0

Q

 
 
 
 
 
 

 and 
0 0 0 0

0 1 0 0
S

 
  
 

 

 

and the feedback matrix:  

 

1

0 1 0 2

0 0 0 1

0 0 0 0 0 0 0 01 1 1 1ˆ
0 1 0 0 0 0 0 12 2 2 2

1 1
0 0

2 2

K SQ


 
 
 

    
       

   
 
 


  

 

 

Step 2: Calculate  

 

1 1 0 2

0 2 0 0
ˆ

1 0 0 0

0 1 0 0

A A BK

 
 
   
 
 
 

 

 

and its characteristic polynomial  

 
4 3 2

| | 3 2sI A s s s    .  

 

Step 3: Calculate the desired polynomial 

 
4 3 2

( 1)( 1)( 2)( 2) 6 13 12 4s s s s s s s s          

 

so that we have [ 4, 12, 11, 9]k      . 

 

Step 4: Calculate 

 

1 1

1 1 1

1 1
[0 0 1][ ] 0 0

2 2

n
q b Ab A b

   
   

 
L L , 
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1

1

1 1
0 0

2 2

1 1
0 0

2 2

1 1
0 1

2 2

1 1
0 1

2 2

n

q

qA
T

qA





 
 

  
   
      
  
   
 
 
 

M
,  

 

and 1
[ 16,7, 2, 18]k kT


    % . 

Step 5: Calculate  

 

ˆ 0 0 0 0 16 7 2 18 16 7 2 18
ˆ

0 0 0 1 0 0 0 0 0 0 0 10

k
K K

            
           

      
.  

 

As of this point in our presentation, we have concluded our discussion on the complete 

controllability of economic systems that can be modeled by using constant coefficient linear 

control systems. We provided a method to arbitrarily place all the poles of a closed loop system 

by using state feedback so that the proof of Theorem 1 is finished.  

 In the discussions above, among the conditions of controllability we mainly employed 

that the rank of the matrix 1
[ ]

n
U B AB A B


 L  is n . As for the following constant coefficient 

linear economic system of discrete time 

 

( 1) ( ) ( )x k Ax k Bu k    

 

this particular condition is equivalent to that of complete reachability. So, for discrete economic 

systems, we have the following result:  

 

Theorem 3. A sufficient and necessary condition for a constant coefficient linear economic 

system ( , )A B  of discrete time to arbitrarily place its poles through using state feedback is that is 

completely reachable.  

 

 For economic systems of discrete time, Theorem 2 also holds true. And, the afore-

described computational scheme for placing poles is also applicable to constant coefficient linear 

economic systems of discrete time. All the relevant details are omitted here. In the following, let 

us look at a much simplified method for placing poles, which can greatly reduce the amount of 

computations.  

 

 

2.2. An Improvement on How to Place Poles 

 

 In step 4 of placing the poles, we needed to calculate the last row q  of the inverse of the 

controllability matrix of 
1

( , )A b . In Example 2 we found that q  is equal to the last row of 1
Q

 . 
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This discovery is not a coincidence. In fact, it is a common phenomenon. To this end, we have 

the following result.  

 

Lemma 2. The last row of the inverse of the controllability matrix U  of the system 
1

( , )A b
 
is 

equal to the last row of the inverse of the matrix Q  as constructed according to equ. (10).  

 

To show this result, we only need to prove that the determinants of U  and Q  are the 

same and the corresponding cofactors of the ith row and nth column are also the same. All the 

details are omitted here.  

By applying this lemma and the derivations in (Wang, 1985), we have the following 

simplified scheme for placing poles.  

 

Step 1: Construct matrices Q  and S  according to equs. (10) and (11) and then calculate 
1

K̂ SQ


  and denote the last row of 1
Q



 as q .  

Step 2: Assume that the desired poles are 
1 2
, , ,

h
  L , 

1 1 2 2
, , ,

l l
a b i a b i a b i  L , 2h l n  . 

Calculate  

 
2 2 2 2 2 2

1 1 1 1
ˆ ( ) ( )[ 2 ( )] [ 2 ( )]

h l l l
k q A I A I A a A a b A a A a b          L L  

Step 3: The following is what is desired:  

 

ˆ
ˆ

0

k
K K

 
   

 
.  

 

This simplified scheme omits many of the operational steps, such as computing the 

inverse of the controllability matrix, the characteristic polynomial of A , and the desired 

characteristic polynomial,  when compared to the previous scheme. When the magnitude of n  is 

large, the amount of reduced computation becomes noticeable.  

 

Example 3. Let us still look at the same problem of pole placement as discussed in Example 2.  

 

Solution. Step 1, which is the same as before, produces  

 

0 0 0 0
ˆ

0 0 0 1
K

 
  
 

 

 

and  

 

1 1
0 0

2 2
q

 
  
 

.  

 

Step 2:    
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 
1 1ˆ 0 0 ( )( )( 2 )( 2 ) 16 7 2 18
2 2

k A I A I A I A I
 

           
 

.  

 

Step 3:  

 

ˆ 16 7 2 18
ˆ

0 0 0 10

k
K K

     
     

  

 

 

 

2.3. Pole Placement through Output Feedback 

 

 When some of the states of the economic system cannot be used as feedback, such as the 

performance of the underground economy, we can consider using output feedback to place the 

poles. From comparing equs. (4) and (5) in (Yang, Ying, and Forrest, to appear), it follows that 

this is equivalent to replacing 
0

K
 
by KC  within the closed loop system. Let 

s
K

 
stand for the 

gain matrix of state feedback, and 
0

K
 
the gain matrix of output feedback. When 

0s
K K C , that 

is, when we solve for 
0

K
 
from 

0s
K K C , we can use the output feedback to arbitrarily place the 

poles of the controllable economic system. From the knowledge of algebra, it follows that that 

end is only possible when T

S
K

 
belongs to span( )

T
C . So, generally speaking, it means that not all 

poles can be arbitrarily placed; and how many poles of a closed loop system can be arbitrarily 

placed through output feedback becomes an important question. (Zheng, 1990) has surveyed the 

results obtained along this research line and provided two computational schemes on how to 

place 1m r   poles through using output feedback, where m  is the dimension of the control 

vector, and r  the dimension of the output vector. So, it can be seen that when 1m r n   , the 

economic system of concern can arbitrarily place all of its poles through using output feedback.  

In the following, let us look at a computational scheme on how to arbitrarily place 

1m r   poles of a controllable economic system ( , , )C A B  by applying output feedback. For all 

the technical details of the reasoning behind this scheme, please consult with (Zheng, 1990).  

 

Step 1: The particular way to place 1m   poles 
1 1
, ,

m
 


L

 
by solving for the matrix 

1 1 1 1

1 1 1 1 1
[ ] [ ]

T

m r
K q k q q k k  L L

 
is given below.  

Determine 
1

k
 
such that 

1
( , )A k C

 
is observable. And arbitrarily select one element of 

1
q

 
and the other 1m   elements of 

1
q

 
are determined based on 

1 1
, ,

m
 


L

 
as follows:  

 

1 0 1 0 1
( ) ( ) ( )p s p s k W s q   

 

where 
1
( )p s

 
stands for the characteristic polynomial of the closed loop economic system that is 

obtained from the output feedback with 
1

K  as the matrix of feedback gain. That is, we have  

 

1 1 1 1
( ) det( ) det( )p s sI A BK C sI A Bq k C       

0
( ) det( )p s sI A   
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0
( ) Adj( )W s C sI A B   

 

In particular, by solving the system of equations 

 

1 0 1 0 1
( ) ( ) ( ) , 1, , 1

i i i
p p k W q i m     L  

 

we obtain the other 1m   elements of 
1

q .  

 

Step 2: Solve for matrix 2 2 2 2 2

2 2 1 1
[ ] [ ]

T

m r
K q k q q k k  L L

 
so that under the effect of the output 

feedback with 
2

K
 
as the matrix of feedback gain the already placed 1m   poles will be 

maintained. And then we place the additional r  poles 
1 1

, , ,
m m m r
  

  
L . The particular details 

are given below:  

 Maintaining the already placed 1m   poles is materialized by appropriately selecting 
2

q , 

while placing the additional r  poles is done through selecting 
2

k . The specific method is to 

apply the following equation  

 

2 1 2 1 2
( ) ( ) ( )p s p s k W s q  ， 

 

where 
2 1 2
( ) det( )p s sI A BK C BK C   

 
and 

1 1
( ) Adj( )W s C sI A BK C B   .  

 In order to maintain 
1 1
, ,

m
 


L , we need 

2
( ) 0( 1, , 1)

i
p i m   L , which can be 

satisfied by 
2

0( 1, , 1)
i

w q i m  L , where 
i

w
 
is the only linearly independent row of 

1
( )W s . 

After having determined an arbitrary element of 
2

q , all other elements of 
2

q
 
are solved out of 

the equations 
2

0( 1, , 1)
i

w q i m  L . After 
2

q
 
is determined, we obtain 

2
k

 
from solving the 

following system of equations:  

 

2 1 2 1 2
( ) ( ) ( ) 0, , 1, , 1

i i i
p p k W q i m m m r        L  

 

Step 3: Let 
1 2

K K K  , which is exactly the matrix of output feedback gain useful for placing 

the 1m r   additional poles 
1 1
, ,

m r
 

 
L .  

 

 As a matter of fact, other than its advantages, using the method of placing poles to design 

macro-economic policies also suffers from some weaknesses. One advantage of the method is 

that the feedback mechanism is of good qualities, such as involving less fluctuations, etc.. 

However, the method suffers from the following major weaknesses:  

 

Weakness #1: When it is desirable for the performance of the economy to approach its target 

rapidly, where the fast speed could be reached in theory when all the eigenvalues are zero after 

placing the poles, the needed strength of policy interference might be very high. For example, 

during the time when the Russian government needed to react to the crisis in order to avoid its 

currency to depreciate quickly, they needed the support of a huge amount of U.S. dollars within a 

short moment of time. However, at that particular moment, the government did not have a means 

to satisfy that demand.  
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Weakness #2: Each theoretical model for the economic system is only an approximate 

description of the reality. So, as long as the estimate of the parameters of the model is not 

accurate, there is always an expected deviation between the model and the reality. When the 

parameters are not accurate or when the parameters change with time, the method of pole 

placement will not be able to guarantee that the regulated economic variables can still accurately 

track the pre-determined targets.  

 

 To overcome Weakness #1, we can design feedback control strategies by using different 

methods of pole placement after we first select the poles of desired qualities or other appropriate 

methods. To overcome Weakness #2, we can employ the design method of robust regulators.  

 

 

2.4．Determination of Pole Locations 

 

In the previous sections, we have studied the computational schemes on how to place 

poles. In the following, let us look at the problem of how to determine the expected poles of the 

closed loop. In other words, we like to know how to convert the expected performance indicators 

of the closed loop economic system into desired locations of the poles.   

One method is established on the premises that the pair of dominant poles determines the 

properties of the economic system, while other poles bear little influence on the system. To this 

end, assume that the transfer function of the second order economic system with dominant poles 

1 2
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is given as follows:  
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where 
n

w  stands for the natural frequency of economic cycles without any artificial interference, 

and   the artificial interference ratio. Then, 
1 2
,  ,   and 

n
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satisfy the following relationship:  
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To continue our discussion, let us look at the concept of overshoot or the maximum 

overshoot of systems. The so-called overshoot is defined as the difference between the maximum 

response of the system when it receives a step signal input and the system’s steady-state value 

divided by the steady-state value. The magnitude of the overshoot of a system represents the 

system’s ability to adjust itself and to react to occasional and sudden changes in the input. It 

indicates how much the system’s operation could withstand extraordinary shocks.  

 Most systems should have its overshoot capability. However, if a system does not have its 

appropriate overshoot, it is equivalent to say that the system does not have any ability to bear 

workload beyond its load. It is relatively easy for such a system to crash. Therefore, allowing the 

existence of a certain level overshoot in reality corresponds to some capability for the system to 

adjust itself along with the up-and-down waves and cycles of oscillation. Other than including 

the concept of overloading, the concept of overshoot also contains the requirement of returning 

to the steady state: Within the allowed ratio of the overshoot, even if an overload appears, it will 
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not lead to unexpected crashes or interruption of the system’s operation.  

 The global financial crisis, triggered by the U.S. subprime mortgage crisis in 2008, is a 

very good example on how the overshoot of the then-current financial system could not handle 

the severe volatility of the market. Because of the levering manipulation and excessive trading of 

the highly efficient and greatly leveraged financial derivatives with significant price effects of 

the U.S. credit market, the consequent risks were transferred and spread over into the rest of the 

world by the innovative credit risk tools. So, the initial risk of the U.S. capital market became a 

risk of the entire financial market of the world. At the same time, with the ever expansion of 

influence over the global market, the volatility of the risk got bigger and eventually made it 

difficult for the overshoot of the financial system to absorb and to meet the abnormal large-scale 

fluctuating demand. That eventually made the initial U.S. subprime mortgage crisis a global 

financial crisis.  

 As a matter of fact, within the socio-economic development, the evolution of most 

systems has their naturally attached allowance of overshoot. Because temporary deviations from 

the normality exist commonly in socio-economic systems, appropriately setting overshoots is 

practically meaningful. A basic requirement for socio-economic systems is to set their individual 

overshoots at the right levels. Hence, for the general economic operation, if one wishes to set the 

overshoot to a small value, it means that he/she expects relatively small fluctuations and relative 

low levels of risk for the process of development. In realistic economic operations, the economic 

system with slow response speed generally has small overshoot necessary for dealing with minor 

fluctuations; while for economic systems of high financial efficiency, the encountered overshoots 

are generally very large.  

 Now, to continue our previous discussion, the overshoot of the system is defined as 

follows:  
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and the system’s adjustment time, which is defined to be the time needed for the absolute 

difference between the output and stable value to be smaller than and equal to %  of the stable 

value:  
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When 0 0.9  , we can determine 
1 2
, 

 
based on ,

s
t

 
by using these equations.  

 Of course, practical problems of economic systems are far more complicated than what is 

just described. In such a case, after successfully determined the two dominant poles, other poles 

and zeros can also influence the properties of the economic system. So, the locations of complex 

poles need to be adjusted appropriately. Sometimes, repeated adjustments are needed before ideal 

locations can be determined.  

 Another method is to select poles by optimization with particular significance. For 

example, we can select poles through optimization by using the criterion of minimizing the 

integral of time and absolute error (ITAE):  
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0
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By employing this criterion, the characteristic polynomials of order 1 through 6 for 

systems of type 1 are given as follows:  
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Next, we use these polynomials as the characteristic polynomials of the desired closed 

loop systems in our design of the matrices of feedback gains. The value 
0

w
 
of these polynomials 

can be selected appropriately in order for the resultant closed loop system to satisfy some other 

necessary properties, such as certain requirement on the circulation of money throughout the 

economic system.  

(Shanhian and Hassul, 1992) provides a detailed procedure for calculating the 

characteristic polynomial by using this ITAE criterion.  

 

 

3. The Problem of Eigenstructure Assignment 

 

Other than the influence of the poles, the eigenvectors of the matrix A  of the control-

theory model of the economy also bear great effects on the time response of the performance of 

the economic system. Assume that A  has n  different eigenvalues 
1 2
, , ,

n
  L , and their 

corresponding eigenvectors are respectively 
1 2
, , ,

n
v v vL . Then, by using the following 

transformation  
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If we denote  
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So, the system’s output is given as follows:  
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That is, the performance output of the economic system is affected not only by the eigenvalues 

i


 
of the system matrix but also by the eigenvectors 

i
v . Therefore, a natural question of how to 

place the eigenvectors becomes clear.  

 The problem of how to place the poles of the closed loop economic system and the 

problem of how to place the corresponding eigenvectors together are known as the problem of 

eigenstructure assignment. As for how to specifically place eigenvectors, please consult with 

(Wang, 1985; D’Azzo and Houpia, 1981). 

 In this portion of the presentation we introduced a computational scheme on how to place 

poles and how to design observers. For other different schemes, please consult with (Zheng, 

1990; Jamshidi, Tarokh, and Shafai, 1992). What needs to be noticed is that for economic 

systems with multiple policy inputs and multiple performance indicators different schemes 

generally lead to different pole placements and different designs of observers. This end actually 

provides a theoretical explanation for why when facing an economic or financial emergency, 

there tend to be different policy tools available, although they might lead to totally different 

outcomes.  
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4. Conclusion 

 

The dynamic characteristics of the economic system depend on where the poles of the 

closed loop are located. When the poles of a closed loop economic system are placed at some 

pre-determined locations on the left half plane, we can make the economic system have not only 

certain desired dynamic characteristics but also an important degree of stability so that the 

system can withstand the shock of interference information of the environment on the 

performance of the economic system. Because of this reason, this chapter discusses the 

conditions under which the poles of a constant coefficient linear economic system can be 

arbitrarily placed, and provides a way to calculate the matrix of feedback gain that is useful in 

placing the poles by using the feedback control mechanism so that the resultant constant 

coefficient linear economic system possesses a good quality stability and fast response speed.  

As a matter of fact, the method, discussed in this chapter, mainly resolves the problem of 

regulating an economy through using feedback of the matrix’s elements of the closed loop 

system based on the eigenvalues of the closed loop. However, when a control-theory model is 

employed to model the actual economy, the parameters of the model are often affected by the 

outside environment so that it makes it difficult for the seemingly accurate placement of the 

poles to meet the requirements of the expected economic performance indices. Hence, 

considering the existence of many uncertain factors that influence the economy, a very important 

question for future research regarding the pole placement of an economic system is: How can we 

place the poles of the system within a pre-determined region such that it provides the needed 

possibility for designing practically useful economic policies, while it also makes the choice of 

poles have much greater freedom.  

Additionally, at the same time when considering how to place the poles, we should also 

think about the potential economic losses that could be associated with the adoption of relevant 

policies. In other words, a placement of poles is considered good, if it does not bear a lot of 

potential economic losses while it makes the stability of the economy more able to withstand 

adverse effects of the outside world. Therefore, we should consider combining the methods of 

optimal control and pole placement in order to make the matrix of feedback gain able to not only 

place the poles of the closed loop system at expected locations but also lead to the design of 

policies that could potentially result in optimal regulation consequences.  
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