
DynaLog: An automated dynamic analysis framework

for characterizing Android applications
Mohammed K. Alzaylaee

1
, Suleiman Y. Yerima

1
 and Sakir Sezer

1

1
Centre for Secure Information Technologies (CSIT)

Queen’s University Belfast

Belfast, Northern Ireland

Email: {malzaylaee01, s.yerima, s.sezer}@qub.ac.uk

Abstract—Android is becoming ubiquitous and currently has

the largest share of the mobile OS market with billions of

application downloads from the official app market. It has also

become the platform most targeted by mobile malware that are

becoming more sophisticated to evade state-of-the-art detection

approaches. Many Android malware families employ obfuscation

techniques in order to avoid detection and this may defeat static

analysis based approaches. Dynamic analysis on the other hand

may be used to overcome this limitation. Hence in this paper we

propose DynaLog, a dynamic analysis based framework for

characterizing Android applications. The framework provides

the capability to analyse the behaviour of applications based on

an extensive number of dynamic features. It provides an

automated platform for mass analysis and characterization of

apps that is useful for quickly identifying and isolating malicious

applications. The DynaLog framework leverages existing open

source tools to extract and log high level behaviours, API calls,

and critical events that can be used to explore the characteristics

of an application, thus providing an extensible dynamic analysis

platform for detecting Android malware. DynaLog is evaluated

using real malware samples and clean applications

demonstrating its capabilities for effective analysis and detection

of malicious applications.

Keywords— Android; malware detection; dynamic analysis;

mobile security; malware analysis framework.

I. INTRODUCTION

Google’s Android operating system (OS) is increasingly
widespread within the context of the modern market. This is
due to the advent and rapid expansion of smartphones, with the
number of smartphones shipped in the 2000s and early 2010s
having tripled from 40 million to 120 million [1]. Android has
an estimated market share of 70-80%, and it is the most
popular operating system for smartphones and tablets. Since its
release in 2008, over 50 billion total app downloads have been
recorded [2]. In fact, it is expected that a shipment of one
billion Android devices will be delivered in 2017 [3].
However, the popularity and growth of the Android OS has
exposed it to the increasing threat of malware. In preparation
for this significant shipment of Android devices, cyber
criminals have expanded their activities. This has resulted in
active research and development concerning Android malware
in an effort to protect users.

The increased growth of the Android platform has
highlighted the growing need for effective solutions to address
the spread of mobile malware. The problem has worsened, due
to the rapid evolution of mobile malware and its ability to
avoid existing detection methods [4]. Furthermore, since the

summer of 2010, there has been a 400% increase in Android-
based malware. Moreover, the total number of Android
malware samples exceeded 5 million in 2014 [5]. Therefore,
there is a need to find new solutions to this growing problem,
since traditional signature-based antivirus solutions are not
effective especially against zero-day malware.

In recent years, several approaches have been investigated
to improve the detection of Android malware. Many of the
approaches have been based on static analysis while others
employ dynamic analysis. Static analysis tools/frameworks
such as Androguard [6], RiskRanker [7], APKinspector [8],
Comdroid [9], etc. have been proposed, but these are
vulnerable to the limitations of static analysis, i.e. detection
avoidance by sophisticated obfuscation techniques, run-time
loading of malicious payload etc. Several dynamic analysis
based tools and platforms have also been proposed such as
Taintdroid [10], Andromaly [11], Droidbox [12], DroidScope
[13] etc. Some of these tools have been developed for a limited
analysis scope. For example, Taintdroid, designed to detect
only data leakage from an application. Other platforms,
Droidbox for example, allow for dynamic analysis but only by
manual means and hence cannot provide automated mass
screening of apps without modification. Other dynamic
analysis tools are either closed source or can only be accessed
by submitting apps online for analysis, which can also limit
automated mass analysis of apps by researchers/analysts.

Hence in order to overcome the aforementioned limitations
we are motivated to design and develop a platform for
automated dynamic analysis of Android applications named
DynaLog. DynaLog is motivated by the need for the capability
to automatically analyse massive amounts of apps and extract
extensive characterization features that can enable us to gain
insight into the dynamic behaviours of the apps. Furthermore,
we want to be able to utilize these features to identify and
isolate those applications that might exhibit malicious
behaviour. In summary, the main contributions of this paper
are as follows:

 We present DynaLog, a dynamic analysis framework to
enable automated analysis of Android applications. DynaLog
is built upon existing open source tools thus providing an
extensible framework that enables a wide-ranging scope for
dynamic analysis of Android apps.

 The framework components and features are described in
detail. Furthermore, we discuss how existing open source
tools such as Droidbox have been leveraged to build
DynaLog and enable new app characterizing features that

do not exist in most currently available dynamic analysis
platforms.

 We present extensive experimental evaluation of DynaLog
using real malware samples and clean applications in order to
validate the framework and measure its capability to enable
identification of malicious behaviour through the extracted
behavioural features.

 The remainder of the paper is organized as follows. Section
II discusses the DynaLog framework. Section III presents
evaluation experiments and discussions of the results. Section
IV discusses related work while section V is the conclusion of
the paper.

II. DYNALOG FRAMEWORK

As mentioned earlier, DynaLog is motivated by the need for
automated analysis of massive amounts of apps using dynamic
analysis to help identify apps with malicious behaviour. Hence,
DynaLog is designed automatically to accept a large number of
apps, launch them serially in an emulator, log several dynamic
behaviours and extract these for further processing. DynaLog
has several components as shown in Figure 1. These include: a)
Emulator-based analysis sandbox b) APK instrumentation
module c) Behavior/features logging and extraction d)
Application trigger/exerciser e) Log parsing and processing
scripts.

A. Emulator-based analysis sandbox

Most dynamic analyses require a sandboxed environment to
run and analyse the applications under test. The DynaLog
framework utilizes DroidBox [12] an open source tool that can
be used to extract some high level behaviours and
characteristics by running the app on an Android device
emulator or Android Virtual Device (AVD). DroidBox extracts
these behaviours from the logs dumped by logcat while the
application is running on the AVD. It uses Androguard to
extract static meta-data relating to the app and also utilizes
Taintdroid for data leakage detection. Because DroidBox was
the first open source dynamic analysis sandbox, it has been
used as a building block for several dynamic analysis
frameworks such as Sandroid [14], MobileSandbox [15] and
Andrubis [16]. Table 1 shows the high level behaviours
(features) that are available with DroidBox.

DynaLog was developed within the Santoku Linux
environment because this Linux distribution is aimed at
providing tools and utilities for Android security analysis.
Santoku has the tools that DroidBox depends on to function
properly including the Android platform tools such as adb,
logcat, Android emulator images etc. Since DynaLog
framework obtains the DroidBox-based default features shown
in Table 1, from an emulator, it was necessary to enhance the
emulator image as much as possible by changing some of its
properties to bring it closer to a real device as possible (from
the viewpoint of an application under analysis). This is because
some malware are known to hide their malicious behaviour if
through fingerprinting, they discover that they are installed and
running in an emulator. The following have been applied to
enhance the DynaLog framework sandbox emulator:

TABLE I. DEFAULT DROIDBOX FEATURES INCORPORATED INTO

DYNALOG

 Because some applications can hide their malicious

behaviour when running in an emulator, modifications

were made to the IMEI, IMSI, Sim_Serial number,

and phone number. For example, the default emulator

IMEI number ‘000000000000000’, was changed to a

real IMEI number, ‘122XXX62XXX5532’ using a

hex editor to modify the property within the emulator

image.

 Contact information was added to the emulator’s
Android.contact using the push command, ‘$ adb
push contacts.vcf /sdcard/contacts.vcf’.

Even though DroidBox provides some features for
characterizing applications, it does not provide the ability to
log API calls. Android has hundreds of (Android and Java
based) API calls that can be traced when the app is running on
the emulator. Many of these API calls can be very helpful in
identifying malicious behaviour and also in providing better
characterization of applications in general. Also, the DroidBox
features do not provide information that is granular enough or
provides enough context for the behaviour. For example the
Recvaction feature does not break down the broadcast events
received. Also the Dexclass feature does not provide enough
context of the loaded class. These limitations would make it
more difficult to identify malware or malicious behaviour
effectively.

 Within the DynaLog framework new (granular) features
have been enabled by extracting lower level features from the
higher level Recvaction feature available in DroidBox. These
features are represented by dozens of events/actions called by
Intents within the application being analysed. In DynaLog we
provide the capability to log and extract these events which can
be used as features to characterize apps and potentially
distinguish malware from benign applications.

B. APK instrumentation module

As mentioned earlier, the open source DroidBox tool does not
have the capability to extract and log API calls which are
useful characteristics for dynamic analysis. Hence, we added
an instrumentation module to DynaLog in order to enable API
calls to be monitored, logged and extracted. The
instrumentation module leverages APIMonitor, an open source
tool that allows Android APKs to be instrumented using (smali

Feature Abbreviation Feature Description

Hashes Hashes for the analysed package

Opennet + Recvnet +

Sendnet
Connections made with particular networks

Accessedfiles + Fdaccess Reading and writing files

Servicestart Started services

Dexclass Loaded classes through DexClassLoader

Dataleaks
Information leaks via the network, file, and

SMS

Enfperm Circumvented permissions

Cryptousage
Cryptographic operations performed using

the Android API

Recvaction Listing broadcast receivers

Sendsms + Phonecalls Sent SMS and phone calls

and baksmali) assembler/disassembler tools. APIMonitor was
developed by Yang at GSoC 2012 [12]. Leveraging
APIMonitor allows DynaLog to be able to instrument an APK
to monitor any API call available within Android and/or Java
that developers can use to develop the apps. But since our main
goal is to detect malicious behaviour we will be mostly
interested in API calls that are commonly used by malware.

 The instrumentation process involves reverse engineering

the dex file using baksmali and inserting signatures that can be

used to monitor the presence of an API call’s class or methods

within the log of the emulator while the app is running. As

shown in Figure 1, the API calls instrumentation signatures

are provided as a ‘list’ to the APIMonitor tool, and DynaLog

automates the process of inserting the signatures to each

application to be analysed in the first step within the overall

analysis process shown in Figure 1. Examples of API call logs

that DynaLog can extract after instrumenting an app are

shown in Figure 2 below. The first one shows an API call that

that sends via SMS the message ‘532711’ to the destination

number ‘1782’. The second example shows another API call

to execute a process.

Fig. 2. API calls from an instrumented application

C. Behaviour logging and extraction

DynaLog implements capability to extract specific log entries

that correspond to monitored behaviours or API call

signatures. If the extracted log entry is a high level property

that could be further dissected into lower level features, the

extracted entry is further parsed to capture the lower level

features. Indeed, this is the case with the Recvaction log entry

provided by DroidBox.

D. Application trigger/exerciser

Android applications typically have a main application
launcher activity which is usually the first screen that users
interact with or see when an application is launched. As the
user interacts with the screens, several paths are traversed to
invoke its functionalities. With automated dynamic analysis,
code coverage is an issue because the apps have to be
artificially stimulated and it is often not possible to invoke all
the application’s paths during analysis. DroidBox includes
MonkeyRunner by default. MonkeyRunner is an application
exerciser that comes as one of the Android platform tools with
the Android SDK and is provided for automated testing of
applications. It sends random events such as ‘touch screens’,
‘swipes’, ‘presses’ etc. to an application under test. DroidBox
only invokes the main application launcher activity by default.
Thus, in order to improve code coverage for the DynaLog
framework, we included capability to invoke all the activities
and services that are present within an application. Presently
DynaLog also uses MonkeyRunner to exercise the applications
(with up to 3000 random events). In future we plan to
incorporate a more advanced exerciser to ensure greater
application path traversal.

E. Log parsing and processing

In DynaLog, extracted features are properly formatted into
readable output reports for each application being analysed
with the automated framework. This allows the features present
in each application to be overviewed at a glance or processed
further by a classification engine.

III. DYNALOG FRAMEWORK EVALUATION

In order to evaluate our proposed framework, we performed
several experiments to investigate its capabilities using both
benign applications and malware samples. We used 1226 real
malware samples from 49 families of the Malgenome Project
malware dataset. The families and their corresponding numbers
are shown in Table II. Furthermore, a set of 1000 internally
vetted benign APKs from McAfee Labs were utilized.
Therefore, a total of 2226 malware and benign applications
were used to conduct the experiments. Out of these, we were
able to analyse 970 malware samples and 970 benign samples
due to some of the applications not executing properly.

Fig. 1. DynaLog architecture

LAndroid / telephony /SmsManager;−> sendTextMessage (Ljava / lang / String ;=
1782 | Ljava / lang /String;= null| Ljava / lang / String;= 532711 | LAndroid /app/

Pending Intent ;= null | LAndroid /app/ Pending Intent ;= null)V

Ljava / lang /Runtime;−>exec ([Ljava / lang / String ;={ / data / data / org . zen

though t . flashrec / cache / asroot , / data / data / org.zenthought.flashrec / cache /

explXXXXXX, / data / data / org.zenthought.flashrec / cache / dump image , recovery

, /mnt/ sdcard / recovery −backup . img }) Ljava / lang / Process ;= Process [id=541]

A. Experiment 1: Evaluating high level behaviour features

As discussed in the previous section, DynaLog initially had
high level behaviour features shown in Table I, which are
obtained from the DroidBox component. In a preliminary
experiment we tested these high level features using 106
APKs—53 benign and 53 malicious—for three minutes each
by configuring DynaLog to enable only these default DroidBox
based features. The results are shown in Figure 3, and they
illustrate a lack of detailed information that can be used to
distinguish between malware and benign applications
effectively. Thus from this figure, it is clear that the high level
behaviours captured by the DroidBox properties are neither
extensive nor granular enough to provide good classification of
applications.

B. Experiment 2: Evaluating extended features and sandbox

enhancements within DynaLog

As mentioned before, DynaLog enables new granular features
by extracting further properties from the high level behaviour
properties that DroidBox provides. In particular, Recvaction is
used to extract several ‘events’ and ‘actions’ shown in Table

III. Figure 4 shows sample output from Recvaction. From this,
DynaLog can extract the BOOT_COMPLETED and
UMS_DISCONNECTED events for the application. These are
new features defined in DynaLog which other dynamic
analysis framework do not have.

Fig 3. Behaviour logs from 106 APKs using DynaLog configured to enable

only the default DroidBox features.

Fig. 4. Sample of the output from ‘recvsaction’

The other set of extended features available from DynaLog
are the API call traces. These are from the instrumentation
module described in the previous section. An extensive API
signature list has been included to track API calls that are
likely to be found in malware applications. This signature list
includes those for Telephony Manager API through which the
following DynaLog features can be tracked: ‘device_ID’,
‘subscriber_ID’, ‘lineNumber’, ‘SimSerialNumber’, and
‘SimOperatorNumber’. These features are crucial for detecting
malicious applications.

 Figure 5 illustrates the impact of granular properties (i.e.
events) when both benign and malware samples were tested on
the extended features of DynaLog. It can be seen that some of
the features allow for better separation of malware from benign
applications. ‘PHONE_STATE’ and ‘BOOT_COMPLETED’
were observed more frequently with the malware samples.
60% of the malware samples listened for the
BOOT_COMPLETED event, whereas only 15% of the benign

0

10

20

30

40

50

60

n
o
.

o
f

sa
m

p
le

s

Benign Malicious

TABLE II. MALWARE FAMILIES USED AND THEIR NUMBERS

Family
No. of

samples
Family

No. of

samples

DroidKungFu3 309 GPSSMSSpy 6

AnserverBot 187 HippoSMS 4

BaseBridge 122 GingerMaster 4

DroidKungFu4 96 DroidKungFuSapp 3

Geinimi 69 TapSnake 2

Pjapps 58 Crusewin 2

KMin 52 Nickyspy 2

GoldDream 47 RogueLemon 2

DroidDreamLight 46 SMSReplicator 1

DroidKungFu1 34 Walkinwat 1

DroidKungFu2 30 Endofday 1

ADRD 22 GGTracker 1

YZHC 22 GamblerSMS 1

DroidDream 16 Lovetrap 1

jSMSHider 16 Zitmo 1

Zsone 12 CoinPirate 1

zHash 11 DogWars 1

Plankton 11 NickyBot 1

SndApps 10 DroidCoupon 1

BgServ 9 DroidDeluxe 1

RogueSPPush 9 Spitmo 1

Gone60 9 DroidKungFuUpdate 1

Asroot 8 FakeNetflix 1

BeanBot 8 Jifake 1

FakePlayer 6

TABLE III. ANDROID EVENTS AND ACTIONS RELATED TO MALWARE [4]

Event Abbreviation Event Abbreviation Event Abbreviation

BOOT_COMPLETED
BOOT (Boot

Completed)

SMS_RECEIVED

WAP_PUSH_RECEIVED
SMS (SMS/MMS) ACTION_MAIN

MAIN (Main

Activity)

PHONE_STATE

NEW_OUTGOING_CALL

CALL

(Phone Events)

UMS_CONNECTED

UMS_DISCONNECTED
USB (USB Storage)

CONNECTIVITY_CHANGE

PICK_WIFI_WORK
NET (Network)

PACKAGE_ADDED

PACKAGE_REMOVED

PACKAGE_CHANGED

PACKAGE_REPLACED

PACKAGE_RESTARTED

PACKAGE_INSTALL

PKG (Package)

ACTION_POWER_CONNECTED

ACTION_POWER_DISCONNECTED

BATTERY_LOW

BATTERY_OKAY

BATTERY_CHANGED_ACTION

BATT

(Power/Battery)

USER_PRESENT

INPUT_METHOD_CHANGED

SIG_STR

SIM_FULL

SYS (System

Events)

"recvsaction": {

"com.google.ssearch.Receiver": "Android.intent.action.BOOT_COMPLETED"

"com.Android.view.custom.BaseABroadcastReceiver":

"Android.intent.action.UMS_DISCONNECTED"

},

samples that were tested did. Even though ‘PHONE_STATE’
was used by almost half of the benign samples, over 90% of
the malware samples logged this event.

 In order to investigate the impact of the sandbox
enhancements implemented to make the emulator seem more
realistic to applications, we employed 31 samples from the
DroidKungFu1 family. The results are shown in Table IV.
We observed that for some features such as DeviceId,
SubscriberId, RuntimeExec, SimSerialNumber,
getLineNumber there was a marked difference in the results
observed before enhancement and after enhancement.

 Fig. 5. Events observed from the extended feature set of DynaLog

 These results of table IV confirm observations made in
previous work such as [17]-[21] about the limitations of
dynamic analysis and illustrates the necessity to incorporate
more realistic properties into emulator environments when
attempting to detect malware.

C. Results of malware and benign samples comparison

In this section we present the results of comparing benign

applications to malware applications using the DynaLog

framework. In this experiment the available features from the

feature sets: high level behaviour, granular events, API calls,

were all enabled. Table V shows the results obtained for 44

features from DynaLog.

Table V shows that 905 APKs in malware samples logged

the ‘PHONE_STATE’ event. This was the feature most

observed within the malware samples. ‘servicestart’ ranked

second, and was called by 840 APKs. The collection of phone

information in order to send to a remote server is a

considerable concern, and malware often seeks to do so, as

shown by ‘getDeviceId’, ‘getSubscriberId’,

‘getSimSerialNumber’, NetworkOperator’, ‘Line1Number’,

and ‘getSimOperator’. The results in Table V illustrates the

capability of the features logged by DynaLog to characterize

applications and potentially separate malicious applications

from benign ones.

TABLE IV. SUBSET OF RESULTS FROM DROIDKUNGFU1 SAMPLES

Properties
Result before sandbox

enhancement

Result after sandbox

enhancement

getDeviceId

(TelephonyManager)
10 14

getSubsriberId

(TelephonyManager)
3 9

getSimSerialNumber
(TelephonyManager)

3 9

getLine1Number

(TelephonyManager)
1 8

Runtime.exec()

 (Excuting process)
1 10

TABLE V. COMPARISON RESULTS OF 970 BENIGN AND 970

MALWARE SAMPLES

Top Extracted Features Benign Malware
%

Benign

%

Malware

1 PHONE_STATE 537 905 55.36 93.29
2 servicestart 603 840 62.16 86.59

3 PackageManager 441 601 45.46 61.95

4
intent.BOOT_COMPLE

TED
150 534 15.46 55.05

5 Process 287 480 29.58 49.48

6 opennet 295 471 30.41 48.55
7 checkPermission 169 456 17.42 47.01
8 sendnet 250 421 25.77 43.40

9 recvnet 244 418 25.15 43.09

10 getInstance 279 417 28.76 42.98

11 deviceId 229 367 23.60 37.83

12 getMethod 256 358 26.39 36.90

13 parse 190 316 19.58 32.57

14 digest 221 288 22.78 29.69

15 dataleaks 147 282 15.15 29.07

16 getClass 120 226 12.37 23.29
17 SubscriberId 40 225 4.123 23.19

18 cryptousage 93 219 9.58 22.57

19 SimSerialNumber 13 212 1.34 21.85

20 lineNumber 33 190 3.40 19.58
21 start 176 176 18.14 18.14

22 NetworkOperator 44 171 4.53 17.62

23 UMSDISCONNECTED 0 154 0 15.87
24 ContentResolver 55 153 5.67 15.77
25 connect 50 105 5.15 10.82

26 getApplicationInfo 48 91 4.94 9.38

27 SimOperator 26 85 2.68 8.76
28 runtime.exec 40 70 4.12 7.21
29 initCipher 67 70 6.90 7.21

30 getInstance 57 70 5.87 7.21

31 SMSRECEIVED 7 69 0.72 7.11
32 SecretKey 46 64 4.74 6.59
33 SimCountryIso 22 44 2.26 4.53

34
NEW_OUTGOING_C

ALL
11 42 1.13 4.32

35
ACTION_POWER_CO

NNECTED
0 35 0 3.60

36 USER_PRESENT 22 31 2.26 3.195
37 SIG_STR 0 24 0 2.47
38 sendsms 0 18 0 1.85

39 getLastKnownLocation 12 17 1.23 1.75

40 openOrCreateDatabase 15 16 1.54 1.64
41 PACKAGE_INSTALL 1 15 0.103 1.546

42
WAP_PUSH_RECEIV

ED
3 7 0.309 0.721

43 phonecalls 0 6 0 0.618

44 SEND_MESSAGE 0 6 0 0.618

905

534

154
69 42 35 31 24 19 15 11 7 7 6

0

100

200

300

400

500

600

700

800

900

1000

n
o
.
o
f

sa
m

p
le

s

Benign Malware

D. Limitations of the DynaLog framework

DynaLog suffers from the same limitations that are well

documented for dynamic analysis [17] [22] [23]. Hence we

intend to continue to improve the framework to overcome these

limitations. For apps that fail to log any output for dynamic

analysis we may resort to static analysis based features in

future. Presently, DynaLog does not log output from native

code. Nevertheless, DynaLog incorporates API calls such as

system.LoadLibrary that can indicate when calls are being

made to native code libraries. DynaLog is designed to enable

extension of features, as such system call related features could

also be incorporated in future.

IV. RELATED WORKS

There are two fundamental practices in malware analysis: static
analysis, which involves examining malware without running
it; and dynamic analysis, which involves examining the
malware whilst it runs. Several tools and frameworks have
been proposed for detecting Android malware, and most of
these can be categorized in this way.

A. Android Static Analysis

Several static analysis approaches and techniques have been
proposed in the literature. Androguard [6] is a static analysis
tool that can disassemble and decompile Android applications.
ComDroid [9] is another static analysis tool for Android
applications that detects vulnerabilities in communication.
APKInspector [8] is a powerful GUI tool based on static
analysis that can display a control-flow graph, application
meta-data, Java source code, Dalvik bytecode, etc. Yerima et
al. [24] presented an approach to detecting Android malware
based on Bayesian classification models, using 58 features—
including API calls, system commands, and intents—to
classify Android applications as ‘malicious’ or ‘benign’.
Further study was done on the framework by adding features
driven from permissions in order to study the impact of
Bayesian-based classification [25]. Yerima et al. [26] also
proposed parallel classifiers for the features extracted from
Android applications, and compared multiple parallel
classification combinations in order to improve the detection
rate.

 Although static analysis frameworks provide valuable
insight into Android application behaviour, there are several
limitations to static analysis, including a vulnerability to
sophisticated detection-avoidance techniques and update
attacks. Some malware apply sophisticated techniques, such as
obfuscation and polymorphic techniques that make it difficult
to detect [27].

B. Android Dynamic Analysis

a) Machine-learning frameworks

Shabtai et al. [11] provide a dynamic analysis framework
called Andromaly, which applies several different machine-
learning algorithms to classify Android applications. However,
they evaluated their techniques with four self-written malware
applications, and it is unclear how they measured the detection
performance.

MADAM, a multi-level anomaly detector for Android
malware [28], is similar to Andromaly. MADAM monitors 13
features at the kernel level and the user level. A machine-
learning algorithm was used to classify the applications.
However, they tested the framework on only 2 malware
samples with 50 benign samples. Therefore, their results are
limited to a small dataset. Crowdroid [29] is a machine-
learning framework based on a system called Strace.
Crowdroid tests in the cloud, and in this way it differs from
MADAM and Andromaly, both of which perform testing
within the device. Furthermore, the evaluation was done using
only two self-written malware samples.

b) Open-source frameworks

TaintDroid is a revised version of the Android OS (version 2.1)
that was introduced by Enck et al. in October, 2010 [10]. This
platform is able to monitor tainted data during runtime in order
to identify private-information leaks. TaintDroid was
implemented based on the Dalvik virtual machine. A number
of studies [11], [30], [31], [32] have used TaintDroid for
Android malware detection. The drawback to this platform is
that it can only detect data leakage, whereas other malicious
runtime behaviour can evade it, as demonstrated by Scrubdroid
[33]. TaintDroid has been introduced into other dynamic
analysis platforms, such as DroidBox and AppsPlayground
[34], for data-leakage detection.

Lantz developed DroidBox at the Google Summer of Code
(GSoC) in 2011 [12]. The platform employs an integrated
system, containing TaintDroid with a modification of
Android’s core libraries. Moreover, DroidBox provides a
visual illustration of the analysis results, and it installs
automatically and runs as an Android Virtual Device (AVD).
DroidBox is the first open-source dynamic analysis platform
for Android. Therefore, it has been employed as a base system
by various dynamic analysis platforms, such as Andrubis [16],
Mobile-Sandbox [15], and SandDroid [14]. Furthermore,
DroidBox only considers a limited set of behaviour, and it is
restricted to one kernel version. DroidScope [13] is a wide-
ranging dynamic binary-control mechanism for Android based
on virtual machine (VM) analysis. It was introduced in August,
2012, as a modification of Dalvik’s ‘traces’, and it is attached
to an emulator .

c) Online services

Google introduced Bouncer in February, 2012 [35]. Bouncer is
a dynamic analysis platform that is used to scan submitted apps
for potentially malicious behaviour. During Summercon in
June, 2012, Oberheide and Miller presented their research
regarding Bouncer [36]. They concluded that Bouncer could
easily be evaded by malware applications.

Andrubis is another dynamic analysis platform for Android
applications, introduced in June, 2012, by the International
Secure Systems Lab [16]. This framework was the first
publicly online platform for dynamic analysis of Android
applications. However, the code is not publicly available.
Moreover, Andrubis cannot be used for large-scale analysis.
Therefore, only a few applications can be uploaded at a time.

CopperDroid was presented by Reina et al. in April, 2013
[17]. The operating system for this platform is similar to that of

DroidScope—i.e. both use VMI to track system call
information regarding analysed applications. The application
also allows its users to use an online portal to submit
applications for analysis. Tracedroid is another free online
analysis service that analyses applications using dynamic and
static analysis [37].

Like some of the existing dynamic analysis frameworks
such as MobileSandbox, DynaLog uses the open source
DroidBox as one of its building blocks. However, it introduces
new granular features (i.e. events/actions). DynaLog is also an
extensible framework that enables automated mass dynamic
analysis of Android applications.

V. CONCLUSIONS

In this paper, we presented DynaLog a framework that enables

automated mass dynamic analysis of applications in order to

characterize them for analysis and potential detection of

malicious behaviour. DynaLog was built using existing open

source tools and motivated by the need for an automated

analysis platform since most existing frameworks are either

closed source or allow only intermittent submissions of

application online for analysis. DynaLog incorporates an

emulator-based analysis sandbox based on DroidBox and

implements an instrumentation module that allows API calls

signatures to be embedded in applications so as to log various

potentially malicious behaviour enabled through some API

classes and methods. We have performed several experiments

to evaluate the framework and the results presented in this

paper demonstrates its capabilities and effectiveness as a

platform that can be used for mass detection of sophisticated

Android malware. For future work we intend to develop and

couple classification engines that can utilize the extensive

features of DynaLog for accurate identification of malware

samples. Furthermore, we intend to enhance the framework to

improve its robustness against anti-analysis techniques

employed by some malware whilst also incorporating new

feature sets to improve the overall analysis and detection

capabilities.

ACKNOWLEDGMENT

We gratefully acknowledge the sponsorship of the PhD project

upon which some of this work is based, by Umm Al-Qura

University, Saudi Arabia, through the Saudi Arabian Cultural

Bureau in London, UK.

REFERENCES

[1] AppBrain. (n.d.). Retrieved June 3, 2015, from
http://www.appbrain.com/stats/number-of-android-apps

[2] Forrestercom. (2016). Forrestercom. Retrieved 25 February, 2016, from
http://blogs.forrester.com/satish_meena/15-06-22-
consumers_will_download_more_than_226_billion_apps_in_2015

[3] Canalys.com (2015). “Over 1 billion Android-based smart phones to
ship in 2017”. Retrieved February 14, 2016, from
http://www.canalys.com/newsroom/over-1-billion-android-based-smart-
phones-ship-2017#sthash.kOEGVtLD.dpuf.

[4] Zhou, Y., and Jiang, X. (2012, May). Dissecting android malware:
Characterization and evolution. In Security and Privacy (SP), 2012 IEEE
Symposium on (pp. 95-109). IEEE.

[5] Mcafee.com, (2015). “Infographic: McAfee Labs Threats Report —
November 2014 | McAfee.” Retrieved February 14, 2015, from

http://www.mcafee.com/nl/security-awareness/articles/mcafee-labs-
threats-report-q3-2014.aspx.

[6] BlackHat, Reverse Engineering with Androguard.
https://code.google.com/androguard.

[7] Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X. (2012).
RiskRanker: Scalable and Accurate Zero-day Android Malware
Detection. In Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services (New York, NY, USA),
MobiSys ’12, ACM, pp. 281–294.

[8] APKInspector (2013). https://github.com/honeynet/apkinspector/

[9] Chin, E., Felt, A. P., Greenwood K, and Wagner, D. (2011) “Analyzing
inter-application communication in Android,” Proc. 9th ACM
international conference on mobile systems, applications, and services
(MobiSys '11), New York, pp. 239-252.

[10] Enck, W., Gilbert, P., Chunn, B.-G., and Cox, L.P., Jung, J., McDaniel,
P., and Sheth, A. N. (2010). “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones,” in
Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[11] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss, Y. (2012).
“Andromaly”: A behavioral malware detection framework for android
devices. Journal of Intelligent Information Systems, 38(1), 161-190.

[12] DroidBox: An Android Application Sandbox for Dynamic Analysis.
https://code.google.com/p/droidbox/.

[13] Yan, L. K., and Yin, H. (2012, August). DroidScope: Seamlessly
reconstructing the OS and Dalvik Semantic Views for dynamic Android
Malware analysis. InUSENIX security symposium, pp. 569-584.

[14] Huwenjun. (2016). Xjtueducn. Retrieved 25 February, 2016, from
http://sanddroid.xjtu.edu.cn/

[15] Eder, T., Rodler, M., Vymazal, D., and Zeilinger, M. (2013, September).
Ananas-a framework for analyzing android applications. In Availability,
Reliability and Security (ARES), 2013 Eighth International Conference
on (pp. 711-719). IEEE.

[16] Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio,
Y., van der Veen, V., and Platzer, C. (2014). “Andrubis: Android
Malware Under The Magnifying Glass,” Vienna University of
Technology, Tech. Rep. TRISECLAB-0414-001.

[17] Reina, A., Fattori, A., and Cavallaro, L. (2013, April). A system call-
centric analysis and stimulation technique to automatically reconstruct
android malware behaviors. EuroSec.

[18] Rastogi, V., Chen, Y., and Enck, W. (2013). “AppsPlayground:
Automatic Security Analysis of Smartphone Applications,” in
Proceedings of the 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY).

[19] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
¨“Drebin: Efficient and Explainable Detection of Android Malware in
Your Pocket,” in Proceedings of the 20th Annual Network & Distributed
System Security Symposium (NDSS), 2014.

[20] S. Neuner, V. van der Veen, M. Lindorfer, M. Huber, G. Merzdovnik,
M. Mulazzani, and E. Weippl, “Enter Sandbox: Android Sandbox
Comparison,” in Proceedings of the 3rd IEEE Mobile Security
Technologies Workshop (MoST), 2014.

[21] Zhou, Y., Wang, Z., Zhou, W. and Jiang, X., (2012, February). Hey,
You, Get Off of My Market: Detecting Malicious Apps in Official and
Alternative Android Markets. In Proceedings of the 19th Annual
Symposium on Network and Distributed System Security (2012), NDSS
’12.

[22] V. M. Afonso, M. F. de Amorim, A. R. A. Gregio, G. B. Junquera, and ´
P. L. de Geus, “Identifying Android malware using dynamically
obtained features,” Journal of Computer Virology and Hacking
Techniques, 2014.

[23] W.-C. Wu and S.-H. Hung, “DroidDolphin: A Dynamic Android
Malware Detection Framework Using Big Data and Machine Learning,”
in Conference on Research in Adaptive and Convergent Systems
(RACS), 2014.

[24] Yerima, S. Y., Sezer, S., and McWilliams, G. (2014). Analysis of
Bayesian Classification-based Approaches for Android Malware

http://www.appbrain.com/stats/number-of-android-apps
http://blogs.forrester.com/satish_meena/15-06-22-consumers_will_download_more_than_226_billion_apps_in_2015
http://blogs.forrester.com/satish_meena/15-06-22-consumers_will_download_more_than_226_billion_apps_in_2015
http://www.canalys.com/newsroom/over-1-billion-android-based-smart-phones-ship-2017#sthash.kOEGVtLD.dpuf
http://www.canalys.com/newsroom/over-1-billion-android-based-smart-phones-ship-2017#sthash.kOEGVtLD.dpuf
http://www.mcafee.com/nl/security-awareness/articles/mcafee-labs-threats-report-q3-2014.aspx
http://www.mcafee.com/nl/security-awareness/articles/mcafee-labs-threats-report-q3-2014.aspx
https://code.google.com/androguard
https://github.com/honeynet/apkinspector/
https://code.google.com/p/droidbox/
http://sanddroid.xjtu.edu.cn/

Detection. Information Security, IET, 8 (July 2013), 25–36.
http://doi.org/10.1049/iet ifs.2013.0095

[25] Yerima, S. Y., Sezer, S., McWilliams, G., and Muttik, I. (2013) “A New
Android Malware Detection Approach Using Bayesian Classification”.
Proc. 27th IEEE int. Conf. on Advanced Inf. Networking and
Applications (AINA 2013), Barcelona, Spain.

[26] Yerima, S. Y., Sezer, S., and Muttik, I. (2015) "Android malware
detection: An eigenspace analysis approach", Science and Information
Conference (SAI), 2015, pp. 1236 - 1242

[27] Apvrille, A., and Strazzere, T. (2012). Reducing the window of
opportunity for Android malware Gotta catch’em all. Journal in
Computer Virology, 8(1), 61-71.

[28] Dini, G., Martinelli, F., Saracino, and A., Sgandurra, D. MADAM: a
Multi-Level Anomaly Detector for Android Malware.

[29] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. (2011). Crowdroid:
behavior-based malware detection system for android. In Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, SPSM ’11, pp. 15–26, New York, NY, USA. ACM.

[30] Kim, J., Yoon, Y., Yi, K., Shin, J., and Center, S. (2012). ScanDal:
Static analyzer for detecting privacy leaks in android applications.
MoST, 2012.

[31] Gibler, C., Crussell, J., Erickson, J., and Chen, H. (2012). Androidleaks:
Automatically detecting potential privacy leaks in android applications
on a large scale. In Proceedings of the 5th International Conference on
Trust and Trustworthy Computing, TRUST ’12, pp. 291–307, Vienna,
Austria.

[32] Chan, P. P., Hui, L. C., and Yiu, S. M. (2012, April). DroidChecker:
Analyzing Android Applications for Capability Leak. In Proceedings of
the 5th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WISEC), Apr. 2012.

[33] Sarwar, G., Mehani, O., Boreli, R., and Kaafar, M. A. (2013). “On the
Effectiveness of Dynamic Taint Analysis for Protecting Against Private
Information Leaks on Android based Devices,” in Proceedings of the
10th International Conference on Security and Cryptography
(SECRYPT).

[34] Rastogi, V., Chen, Y., and Enck, W. (2013). “AppsPlayground:
Automatic Security Analysis of Smartphone Applications,” in
Proceedings of the 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY).

[35] Lockheimer, H. (2012). Android and Security. Web. Retrieved February
14, 2016, from http://googlemobile.blogspot.nl/2012/02/android-and-
security.html.

[36] Oberheide, J. and Miller, C. (2012). Dissecting the Android Bouncer.
Retrieved February 14, 2016, from
https://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-
bouncer/

[37] Van Der Veen, V. (2013). Dynamic analysis of Android Malware.
Master’s thesis: VU University Amsterdam.

http://googlemobile.blogspot.nl/2012/02/android-and-security.html
http://googlemobile.blogspot.nl/2012/02/android-and-security.html
https://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
https://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/

