

A COMPOSITIONAL FRAMEWORK

FOR DETERMINING PATTERN

APPLICABILITY

PhD Thesis

Hossam Hassan Hakeem

This thesis submitted in partial fulfillment of the

 requirements for the degree of Doctor of Philosophy

Software Technology Research Laboratory

Faculty of Technology

De Montfort University

United Kingdom, England

(2010)

 ii

Abstract

The notion of „pattern‟ originates in the work of Christopher Alexander

and, in recent years, patterns have become a popular part of software

development. A pattern is defined as a „three-part rule‟: a relationship

between a given context, a recurring system of forces peculiar to that

context, and a specific spatial configuration that permits resolution of these

forces. In essence, the „context‟ of a pattern is the whole system under

construction and its state in the construction process at the point at which

the pattern is being applied. The nature of the context, therefore, changes

at every step of the process and this has significant implications for how

patterns should be used. Specifically, applying each pattern changes the

context by changing the state of the system under construction and creates

both a new design problem and a new context for the next pattern to be

applied. The next picked pattern must have a certain criteria in order for it

to be applied successfully and this is will be determined by the

characteristics of the new context just created. The issue of composing

pattern sequences is therefore more temporal than it is static and structural

(as provided currently via pattern maps). The decision as to which one to

use is temporally constrained in the sense that the choice is made only at a

particular point in the construction process of some specific system, and

may well be determined, or at least further constrained, by the current state

of that system.

The fundamental research question that is addressed here is: how is

this dynamically changing context to be presented to guide pattern

applications?

 iii

In this thesis, a framework is presented to provide a systematic analysis

of composition of pattern applications in terms of the properties of their

context. Such an approach will reveal the ordering of patterns in space and

time dimensions. Examples of composition of pattern applications include:

 One pattern contains or generalises another smaller-scale pattern

(this will be called in thesis refinement) ;

 Two patterns are complementary, i.e., one pattern needs the other

to be applied before (Sequential Order);

 Two patterns solve different problems that overlap and coexist on

the same level (Parallel Order);

 Two patterns solve the same problem in alternative, but equally

valid ways (Choice in Order).

At the design phase, the framework provides mechanisms for analysing

the choice of composition to ensure the correctness of a design or to

compare between two different designs or to modify an existing design.

This framework describes a pattern's context via a pair of constraints,

known as Assumption and Commitment. In general, the Assumption is a

constraint placed on the context and the Commitment is what the solution

provided by the pattern commits to after the pattern's application. In

addition, the thesis provides a set of composition rules that can be applied

to aid in the analysis of the application of pattern sequences.

The approach is domain independent as it does not depend on the

nature of the catalogue from which the patterns originate. The work has

been evaluated using various existing patterns from Ian Graham‟s web

usability (WU) pattern bank and the User Interface (UI) patterns of Welie.

 iv

Declaration

I declare that the work described in this thesis is original work undertaken

by myself, between April 2006 and June 2010, for the degree of Doctor of

Philosophy, at the Software Technology Research Laboratory (STRL),

Faculty of Technology, De Montfort University, United Kingdom.

 v

Dedication

To the soul of my father, who has departed from this world, but never

forgotten. I know he would be delighted to witness my study for my PhD.

He sacrificed a lot for me to be what I am now. I owe everything I

achieved or I am going to achieve to him. He always encouraged us to

achieve our dreams, even if it was difficult for him that we would be away

from him for a long time.

To my mother, who went through a lot with my illness, she has done more

than words can express to take care of me, may Allah reward her. I hope

by having my PhD I can draw a smile on her face as this is the least I can

give her.

To my brother and friend Hateem without whom none of this was possible.

He is always proud of me and encourages me to be the best, as I always

am in his eyes.

To my brothers Assad, Thamer, Ibrahim and my sister thank you for all

your support and love.

To my daughter Lamar and my son Anmar, they have been the light at the

end of the tunnel. They are a gift from Allah. My research took a lot of

time which they deserved away from them. I hope they will appreciate this

work, which will help me give them a better life.

To my wife and best friend Hayfaa, without whose presence beside me in

times of difficulty and constant encouragement, sacrificing everything she

loves for me and for our children, it would be impossible for me to do my

research or face life's trials. As I promised this is my gift to you.

To all the people with special needs, keep your dreams alive & enjoy life.

 vi

Acknowledgements

First and foremost, I would like to thank Allah for all his blessings and

bounties.

My thanks to my first supervisor Dr. Antonio Cau for making the difficult

easy and for his continuous support during the hard times. Words are never

going to be enough to thank you.

I would like to thank Professor Zedan, STRL Technical Director, for his

helpful advice and considerate care.

I would like to thank Prof. Hongji Yang for his help and support.

Special thanks to Mrs Lindsey Trent and Mrs Lynn Ryan for being great

friends and for their non stop help and support all the time.

To my friend and my brother, Shawgi Aljilani you were always here for

me, you always encouraged and helped me, without you I would never be

able to see this day. No thanks will ever be enough.

To Prof. Mustafa Alidrisi and Prof. Abdulrahman Alyoubi your help,

support and believing in me has been invaluable.

To all my friends and the people who have helped me to get here.

 vii

Contents

List of Figures ………………………………………………….. ix

List of Tables………………………………………..………….. xii

List of Appendices……………………………………………… xiii

List of Acronyms……………………………………………….. xiv

List of Operators Rules………………………………………… xv

Chapter 1 Introduction 1

 1.1 Background …………………………………………….. 2

 1.2 Research Questions …………………………………….. 5

 1.3 Research and Validation Methods ……………...……… 5

 1.4 Success Criteria ………..………………………………. 6

 1.5 Thesis Structure ………………………………………... 7

Chapter 2 Patterns and Their Applicability 9

 2.1 Introduction …………………………………………...... 10

 2.2 Pattern Based Software Development ….……………… 10

 2.3 Architecture, Design and Code Patterns ………..……… 18

 2.4 Pattern Catalogues and Pattern Languages …………….. 22

 2.5 Pattern Description Formats …………………………… 28

 2.6 Pattern Application Process ……………………….…… 35

 2.7 Summary ……………………………………………….. 44

Chapter 3 Compositional Framework for Pattern

Applicability

46

 3.1 Introduction …………………………………………….. 47

 3.2 Characterising Context ………………………………… 47

 3.2.1 What is the Context …………………….….…….. 47

 3.2.2 The Need for Context …………………………… 51

 3.2.3 Capturing Context.. …………………..………….. 53

 3.2.3.1 Assumption / Commitment (Constraints). 53

 3.2.3.2 How can the Assumption/ Commitment

Constraints be Captured from the

Available Information Sources …………

54

 3.2.3.3 Example of Assumption/Commitment

Capture …………………………...……..

55

 3.3 The Framework ………………..……………………….. 56

 3.3.1 Stage 1: Use/Adapt Existing Patterns ……………. 58

 3.3.2 Stage 2: Divide and Conquer ……….………….… 59

 3.3.3 The Role of the Operators in the Framework ….… 62

 3.3.4 Example of the Use of the Framework…………… 63

 3.4 Summary ……..………………………………………… 66

Chapter 4 Operators 68

 4.1 The Role of the Operator at Problem/Solution Level…... 70

 4.2 Sequential Operator.….…………….………………...… 70

 4.2.1 Applying Patterns Sequentially in Certain Context. 71

 4.2.2 Algebraic Rules.………………...….………..…… 72

 4.2.3 Example.……………….....….……….…………... 74

 viii

 4.3 Choice Operator.…………………...…………...……... 76

 4.3.1 Choice of Applying Patterns in Certain Context…. 76

 4.3.2 Algebraic Rules.………………...….………..…… 78

 4.3.3 Example.………………...….……….……….…... 85

 4.4 Parallel Operator .……………….……….……..……..... 87

 4.4.1 Applying Patterns in Parallel in Certain Context…. 87

 4.4.2 Algebraic Rules.………………...….………..…… 88

 4.4.3 Example...………………...….……….…………... 91

 4.5 Summary ……………………………………………….. 92

Chapter 5 Case Studies 93

 5.1 Introduction to WU and Welie Patterns Collection…..… 94

 5.1.1 The Web Usability (WU)………………………… 94

 5.1.2 Welie Patterns Library for Interaction Design…… 98

 5.2 A Shopping Website Case Study ………………………. 99

 5.2.1 Introduction ……….………………………..……. 99

 5.2.2 The First Part of the Case Study ………………… 102

 5.2.3 The Second Part of the Case Study ……………… 120

 5.3 E-government Website Case Study ……………………. 128

 5.3.1 Introduction ……….………………………..……. 128

 5.3.2 The First Part of the Case Study ………………… 131

 5.3.3 The Second Part of the Case Study ……………… 146

 5.4 Summary …………………………………………….…. 152

Chapter 6 Conclusions 153

 6.1 Success Criteria Revisited ………………………...…… 154

 6.2 Comparison with Existing Related Work ……………… 155

 6.3 Contribution ……………………………………………. 157

 6.4 Limitations…………………………………………….... 160

 6.5 Future Work…………………………………………….. 161

References………………………………………………………. 162

 ix

List of Figures

2.1 Pattern map for „Small Memory Pattern Relationships‟……… 33

2.2 Pattern map for „A Presentation Pattern Language‟………….. 34

2.3 A Language for Half-Hidden Garden from Alexander.….…… 39

2.4 Illustration of the ambiguities in Diagram 1 (Getting started

on your site) from WU [45] in Boxes 2.4-1 and 2.4-2………...

42

2.5 Welie partial pattern language for web design “shopping” ….. 43

3.1 Illustrates the role of the Assumption and Commitment ……. 51

3.2 Illustrates the refinement condition need to be hold between

two patterns ………………………….…………….…………

57

3.3 Illustrates the use of part of a bigger pattern solution to solve

smaller problem …………………………………………….…

59

3.4 Illustrates the decomposition of the problem ………………… 60

3.5 Illustrates the decomposition of the problem and composition

of the solution …………………………………………....…...

62

3.6 Illustrates the decomposition of the problem and composition

of the solutions for the Shopping Cart Pattern ……………….

66

4.1 The Assumption and Commitment and the use of the

sequential operator ……………………………………………

71

4.2 Illustrate the first half of the sequential algebraic Rule 1…..… 72

4.3 Illustrate the second half of the sequential algebraic Rule 1….. 73

4.4 Illustration of the use of the sequential operator in the

application of the patterns in Box 4.4-1 from WU……………

75

4.5 The Assumption and Commitment and the use of the Choice

operator ………………………………………………...……

77

4.6 Illustrate the Choice algebraic Rule 2…………………………… 78

4.7 Illustrate the Choice algebraic Rule 3 ……………………..…. 79

 x

4.8 Illustrate the first half of the choice algebraic Rule 4………… 81

4.9 Illustrate the second half of the choice algebraic Rule 4 …….. 82

4.10 Illustrate the first half of the choice algebraic Rule 5………… 83

4.11 Illustrate the second half of the choice algebraic Rule 5……... 84

4.12 Illustration of the use of the choice operator in the application

of the patterns in Box 4.12-1 from WU ………………………

85

4.13 The Assumption and Commitment and the use of the parallel

operator………………………………………………………..

87

4.14 Illustrate the first half of the parallel algebraic Rule 6……...… 89

4.15 Illustrate the second half of the parallel algebraic Rule 6…...... 90

4.16 Illustration of the use of the parallel operator in the

application of the patterns in Box 4.16-1 from WU ………….

91

5.1 Diagram 1 (Getting started on your site) from WU…………. 96

5.2 Diagram 2 (Enhancing usability) from WU …...…………….. 97

5.3 Diagram 3 (Adding detail) from WU …...……………………. 97

5.4 Diagram 4 (Dealing with workflow and security) from WU … 98

5.5 The etidy website main page ……………………………….… 101

5.6 Illustrates the main patterns from two different pattern banks

used in the etidy website ………………………………..….…

102

5.7 The site type design patterns for an E-commerce website …… 104

5.8 The etidy website concrete design patterns…………………… 104

5.9 Illustrate the proposed patterns map used to build the etidy

website ………………………………………..………………

105

5.10 The basic patterns to start the design of an E-commerce site… 110

5.11 Illustrates the application of P4 and P5 in the etidy website…. 113

5.12 The patterns for the design of an E-commerce site ………...… 116

5.13 Illustrates the decomposition of the problem and composition

of the solutions for the Shopping Cart Pattern ………...…...…

118

5.14 Illustrates the new addition of two patterns to be used in the

etidy website ……………………………………..………..….

120

 xi

5.15 Illustrate the proposed patterns map used to build the new

etidy website …………………………………..……………..

121

5.16 Illustrates the decomposition of the problem and composition

of the solutions for the View pattern……………………….…

124

5.17 Illustrate the five steps used in checking the proposed patterns

map for the etidy website …………………………………..…

127

5.18 The Child Benefit website main page …...………………….... 129

5.19 The Child Benefit website form Page 1………………………. 130

5.20 Illustrates the main patterns used in the E-government website

for Child Benefit in the UK………………………………..….

131

5.21 The site type design patterns for an E-government website….. 132

5.22 The Child Benefit website concrete design patterns………….. 133

5.23 Illustrate the proposed patterns map used to build the Child

benefit website………………………………………………...

134

5.24 The basic patterns to start the design of an E-government

site……………………………………………………………..

139

5.25 Illustrates the application of P18 and P14 in the Child Benefit

website………………………………………………………...

141

5.26 Illustrates the application of P14 and P6 in the Child Benefit

website………………………………………………………...

143

5.27 The patterns for the design of an E-government site…………. 145

5.28 Illustrate the new proposed patterns of the design of the Child

Benefit website………………………………..……………….

147

5.29 Illustrates the concrete design of the View pattern…………… 149

5.30 Illustrate the new proposed patterns map used in the design of

the Child Benefit website………………………………..……

151

 xii

List of Tables

3.1 Problem/Solution of the used patterns from Welie ………….. 64

3.2 Assumption/Commitments pairs of the used patterns ……..… 64

4.1 Operators table……………………………………………….. 69

5.1 The problem/solution of the used patterns in the etidy website 107

5.2 The Assumption/Commitment of the used patterns in the

etidy website ……………………………….…….…………...

108

5.3 The problem/solution of the extra patterns for the etidy

website ……………….…..………………….…..……………

122

5.4 The Assumption/Commitment of the extra patterns for the

etidy website …………………………………………………

122

5.5 The problem/solution of the used patterns in the Child Benefit

website …………..…………………….…..………………….

136

5.6 The Assumption/Commitment of the used patterns in the

Child Benefit website ………………………………………...

137

5.7 The problem/solution of the added pattern to the Child

Benefit website ……………………………………………….

146

5.8 The Assumption/Commitment of the added pattern to the

Child Benefit website …………………………………….…..

146

 xiii

List of Appendices

Appendix A: WU patterns ………………………………………… 174

Appendix B: Welie patterns ………………………………………. 200

 xiv

List of Acronyms

A Assumption

APL A Pattern Language

C Commitment

EuroPLoP European Pattern Languages of

Programming

GoF Gang of Four

OOPSLA Object-Oriented Programming, Systems,

Languages, and Applications

OP Operator

OPc Composition Operator

OPd Decomposition Operator

P Pattern

PLoP Pattern Languages of Programming

PLoPD Pattern Languages of Program Design

UI User Interface

UML Unified Modeling Language

WU Web Usability

 xv

List of Operators Rules

Sequential.………………………………..…………………….. 72

Rule 1 ……………………………………………………... 72

Choice ……………………………………………...…………… 78

Rule 2 ……………………………………………………... 78

Rule 3 ……………………………………………………... 79

Rule 4 ……………………………………………………... 80

Rule 5 ……………………………………………………... 83

Parallel ……………………………..………………………….. 88

Rule 6 ……………………………………………………... 88

 1

Chapter 1

Introduction

Objectives:

 The motivation behind patterns and pattern languages

 To identify and articulate the research questions

 To demonstrate the research and validation methods and highlight the

success criteria of this research

CHAPTER 1 : INTRODUCTION

 2

1.1 Background

The notion of „pattern‟ and „pattern language‟ originates in the work of

Christopher Alexander [1, 2], an architect who proposed the use of

collections of architectural patterns to address deficiencies in modern

building design. In later works, Alexander expanded the scope of his rather

interesting concept of patterns to a broader design context [30].

In recent years, patterns have become popular in software development

[3, 18, 23, 40, 42, 44, 65, 78]. From an original concern with generic

design patterns, the systems-building communities have subsequently

evolved analysis patterns [18, 40, 53], process patterns [8, 9],

organisational patterns [27, 28, 29, 48], architectural patterns [1] and web

usability patterns [44, 45], to name but a few. Patterns have increasingly

been referred to as open standards, most recently, in The Open Group

Architecture Framework, edition 9, for example [85].

A pattern is defined as a „three-part rule‟: a relationship between a

given context, a recurring system of forces peculiar to that context, and a

specific spatial configuration that permits resolution of these forces. In his

most recent work, Alexander [4, 5, 6, 7], says very little about patterns per

se. Rather he talks about the quality of „wholeness‟ in successful natural

organisms and formations and in „good design‟. Wholeness comes from

the organization of mutually-related centres in harmony with each other,

[63]. This raises the question as to whether this shift in emphasis in

Alexander‟s thinking requires a change in the Pattern movement‟s

understanding of the definition of a pattern. If Kavanagh, [63] is right,

there certainly seems to be a shift in emphasis from a pattern implying a

structure to implying the process by which the structure is constructed. In

retrospect, however, this might not be such a big shift after all. Coplien

CHAPTER 1 : INTRODUCTION

 3

has, in the past, already argued that a pattern is both a „thing‟ and the set of

instructions by which that thing can be created [25]. It is, therefore,

reasonable from the point of view of this study to consider the three-part

rule to be the established definition of a pattern and it is therefore the one

that will be used for the purpose of the research. Having said that, it is

interesting to note an evolution of the definition in which the notion of

„context‟ has become more and more important. Software patterns

originated as a two-part rule in which context was ignored (at least as part

of the definition of a pattern), and was subsequently replaced by the three-

part definition. In essence, the „context‟ of a pattern is the whole system

under construction and its state in the construction process at the point at

which the pattern is being applied. A pattern is thus a phenomenon, a rule

creating that phenomenon and the specification of the time at which that

phenomenon must occur. “It is both a process and a thing; both a

description of a thing which is alive, and a description of the process

which will generate that thing” [26]. The description of the “thing” lies in

the realm of problem specification, whilst the process of “generating the

thing” is the concern of its derivation or implementation. The nature of the

context changes at every step of the process and this has significant

implications for how patterns should be used.

Specifically, applying each pattern changes the context by changing

the state of the system under construction and creates both a new design

problem and a new context for the next pattern to be applied. The next

picked pattern must fulfil certain criteria in order for it to be applied

successfully and this will be determined by the characteristics of the new

context just created. The difficult question is: how is this dynamically

changing „context information‟ to be represented to guide the

developer/builder? This is indeed the fundamental research question that

this thesis is addressing.

CHAPTER 1 : INTRODUCTION

 4

In which order to apply patterns, plus adjacent patterns, is important to

the right use of a pattern language: but this is mostly determined by the

specific context supplied by the current state of the system in the building

process. This is mainly why the key problem of composing pattern is more

temporal and dynamic than it is static and structural. In so far as pattern

languages particular sequences are suggested, for example through a

patterns map, they can only refer to these structural relations, those that

can be inferred in advance independently of any specific system or

context. For example, a large pattern and a smaller pattern can be shown

to be reliant on each other in the sense that the smaller pattern always, or at

nearly always, refines the larger pattern. This sort of dependency implies

that the use of a smaller pattern should not come before the larger pattern.

However, current representations of patterns have no way of capturing or

presenting the detailed contextualization required for the actual

construction of a specific system. Very often, even in current maps a

pattern at one „level‟ may be connected to two or more patterns at the next

lower level. The decision as to which one to use is temporally constrained

in the sense that the choice is made only at a particular point in the

construction process of some specific system, and may well be determined,

or at least further constrained, by the current state of that system. Add to

this the further complication of multiple variants for the implementation of

any given pattern, and it can be seen that something considered as a set of

instructions to build something specific, then the current forms of Pattern

Languages are inadequate. They leave out entirely these dynamic aspects.

This will need more investigation because, as mentioned earlier, the key

problem of composing pattern languages is more temporal than structural.

Pattern sequences present one way of making logic of the popular notion

of compound patterns [77, 90]. From the perspective of pattern sequences,

compound patterns can be considered as an identifiable and general

sequence of patterns that can be considered as a whole with reference to

the problem it concentrates on and the design it accomplishes [54].

CHAPTER 1 : INTRODUCTION

 5

1.2 Research Questions

The thesis research context is the design of software engineering systems

using patterns. The scope of the research is in the analysis, verification and

modification of software system design. The research facilitates for the

software system designer the use and application of patterns.

The main aim of this research is:

To provide a framework for pattern applicability, within which the

patterns' applicability can be analysed compositionally. In particular:

1- Q1. How to facilitate the applicability of patterns?

2- Q2. How can designers be aided in the construction of pattern

sequences?

3- Q3. How can the applicability relationships between patterns be

described more rigorously?

1.3 Research and Validation Methods

The research methodology follows a typical software engineering

approach [43, 46, 55]. The approach has the following phases:

Phase 1: Critical Review of Literature

This has been achieved and reported in Chapter 2. The review

concentrated on patterns, pattern catalogues, pattern languages and

sequences. This results in the identification and articulation of the research

questions (see Section 1.2) which are considered by this work.

CHAPTER 1 : INTRODUCTION

 6

Phase 2: Establish Assumption/Commitment Framework

A framework is introduced to facilitate the applicability of patterns. The

framework is initially evaluated using some small case studies. The

framework is fully described in Chapter 3.

Phase 3: Establishment of Pattern Connectors

The framework requires a set of operators that are used during the

application process of patterns. These operations are Sequence, Choice and

Parallel. These operators and their role in the framework are discussed in

Chapters 4.

Phase 4: Evaluation

To investigate the usefulness of the framework two case studies are

conducted that use a set of patterns from Ian Graham's Web Usability

(WU) pattern bank and Welie‟s User Interface (UI) pattern bank.

1.4 Success Criteria

So how does one know whether the framework facilitates the applicability

of patterns during the system design? What are key elements in a particular

design?

The key design elements should include the following:

 The ability of the designer to apply patterns to solve a particular

problem.

 The ability of the designer to detect design errors.

 The ability of the designer to modify an existing design to enhance

the functionality of a system.

CHAPTER 1 : INTRODUCTION

 7

The case studies will be used to check whether the framework provide

these three elements to the designer.

1.5 Thesis Structure

The following describes the structure of the rest of the thesis:

Chapter 2: Patterns and Their Applicability

This chapter provides a critical review of the literature relevant to patterns,

catalogues, pattern languages, pattern sequences and the challenges posed

by the state of this literature.

Chapter 3: Compositional Framework for Pattern Applicability

This chapter gives an overview of the framework for the analysis of

pattern applicability. It introduces the constraints (via Assumption/

Commitment) that are imposed on the solution and its context.

Furthermore it discusses how these constraints influence the applicability

of patterns. The Assumption/Commitment informs/constrains the

applicability of the next pattern.

Chapter 4: Operators

The framework requires a set of operations that are used during the pattern

application process. This chapter will introduce them and their role in the

framework.

Chapter 5: Case studies

In this chapter two case studies are conducted using two set of patterns

(WU and UI). These case studies will be used to investigate the usefulness

of the framework, i.e., whether it provides the three key design elements to

the designer.

CHAPTER 1 : INTRODUCTION

 8

Chapter 6: Conclusions

This chapter summarises the present work‟s research. It highlights the

potential applicability of the contributions that have been made.

Furthermore a critical review of the contribution is given. Finally, the

possible research and development directions that are based on the

presented results are discussed.

 9

Chapter 2

Patterns and Their Applicability

Objectives:

 To present a critical review of the literature of patterns relevant to

the current study

 To examine the evolving understanding of „context‟

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 10

2.1 Introduction

The chapter begins with a brief explanation of the notion of a pattern and

its background, showing why people currently use patterns and what these

patterns consist of. This chapter will also explore some of the essential

aspects of pattern catalogues, pattern languages and pattern sequences, in

order to highlight some unclarities in current understanding and to draw

out the unfolding importance of the idea of „context‟.

In particular this chapter explores the concepts of:

 Patterns

 Architecture, Design and Code Patterns

 Pattern Catalogues

 Pattern Languages

 Patterns Description Format (a.k.a., „pattern template‟)

 Pattern Formalisation

2.2 Pattern Based Software Development

Patterns have - in the course of less than fifteen years - risen from

being the concern of a minority group within the object-oriented

programming community to a mainstream concern of a number of domains

within information sciences and software engineering. From an original

concern with generic design patterns, the systems-building communities

have subsequently evolved analysis patterns [18, 40, 53], process patterns

[8, 9], organisational patterns [27, 28, 29, 48], architectural patterns [1]

and web usability patterns [44, 45], to name but a few. Patterns have

increasingly been referred to as open standards, most recently, in The

Open Group Architecture Framework, edition 9, for example [85]. All of

this is testimony that patterns are increasingly a ‟mainstream‟ rather than

peripheral concern of the computer systems-building world.

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 11

Nevertheless this growth of interest has been uneven across domains

and, perhaps inevitably given its rapidity, resulted in an uneveness in

understanding as well. It is worth reviewing a brief history of „software

patterns‟ (the thesis will use this as an umbrella term covering all related

domains, and to distinguish them from patterns of the built environment)

movement.

Patterns do not originate in software. Christopher Alexander, widely

acknowledged as one of the foremost building and urban planning

architects of the previous century [37], first introduced the concept of

patterns. He studied mathematics and architecture at Cambridge University

and later obtained a Ph.D. in architecture from Harvard. His published

corpus, of more than one hundred articles and monographs, encapsulate

the development for which he is best known. He wrote several books on

patterns in urban planning and architecture [1, 2] in which he was the first

to note that certain types of problem call for the same types of solution,

types which he called „patterns‟ which, when combined (connected), form

„pattern languages‟. He made this observation regarding the creation of

towns and neighbourhoods, houses, gardens and rooms‟ in his own field of

architecture [1]. The characteristic of patterns is the idea “that you can use

this solution a million times over, without ever doing it the same way

twice" [1].

Since the mid-1990s (i.e., some twenty years after Alexander first

published his ideas on patterns), patterns and pattern languages have

spawned from architecture and building into the realm of computer

technology.

The first introduction to patterns for the software development

community came via a paper presented by Kent Beck and Ward

Cunningham in the ACM Object-Oriented Programming Systems,

Languages and Applications (OOPSLA) conference in 1987 [13]. In that

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 12

paper, they demonstrated the utility of patterns in designing applications

implemented in the Smalltalk programming language.

It was, however, another five years before the penetration of

Alexander‟s ideas took a qualitative step forward. The OOPSLA

conferences of 1992 and 1993 both held workshops on the creation of a

handbook of software architecture, hosted by Bruce Anderson and Peter

Coad. Coad reintroduced Alexander‟s ideas for discussion, and at the

second of these workshops managed to spark the interest of four people

who became widely known in the object-oriented community as „The

Gang of Four‟ - an affectionate collective name for the authors (Erich

Gamma, Richard Helm, Ralph Johnson and John Vlissides) of the highly

influential book, Design Patterns - elements of reusable object-oriented

software [42] which was first published on the web in 1994 and in print the

following year.

The Gang of Four (GoF) published some twenty three patterns in three

categories („creational„, „structural‟ and „behavioural„) that they had found

in a number of successful object-oriented frameworks and which seemed

therefore to be characteristic of good design. Their book was published in

what might be considered the embryonic period of object-oriented

development (1997 is generally identified as its year of „breakthrough‟ into

the computer systems industry) when the computer programming

community in particular was looking for evidence of best practice on

which it could construct a knowledge-base for the disciplines of object-

oriented design and construction.

The GOF book remains a best-seller fourteen years after its first print,

but the OOPSLA workshops triggered parallel developments of equal, or

perhaps even greater significance. A mountain retreat sponsored by Kent

Beck and Grady Booch in August 1993 in Colorado [9, 13], turned out to

be the first meeting of what became known as the Hillside Group. The

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 13

Hillside Group was formed from attendees at those OOPSLA workshops.

It was so-named because a dozen or so of them met on a hillside to

experiment with Alexander„s techniques to design a building. Many

became pattern authors who worked to lay down the foundations for the

format and use of design patterns in software, and to become the

facilitating organization of the worldwide Patterns Movement. The group

built on the work by Gamma and his colleagues, and on the patterns of

Alexander, and held the first Pattern Languages of Programming (PLoP)

conference in 1994. The proceedings of this conference were published in

the same year as Pattern Languages of Program Design (PLoPD), and may

be regarded as the starting point for a body of literature that is considered

to be ‟owned‟ by the Patterns Movement. There have been five volumes of

PLoPD published in subsequent years by Addison Wesley [23, 52, 68, 69,

89] and the Hillside Group uses the royalties to fund, amongst other things,

the conferences of the Patterns Movement world-wide, notably PLoP [60]

and EuroPLoP [61].

The format of these broadly follows the lines of the original PLoP. The

proceedings are not the text of papers which have been submitted to the

conference, but are the output of the conference after each pattern has been

through a Pattern Writers‟ Workshop. In a format suggested by Richard

Gabriel, a leading member of the original Hillside Group, and borrowed

from the widespread practice of poetry circles, pattern papers were peer-

reviewed by other pattern authors, and the strengths and weaknesses of the

patterns discussed with suggestions for change being made to the paper‟s

author. Patterns‟ papers which have gone through this process have a

reputation for undergoing one of the most stringent peer-reviews known in

either the academic or industrial worlds.

The Communications of the ACM‟s special issue on software patterns

was symptomatic of the object-oriented community‟s increasing espousal

of pattern languages in the early 1990s [82]. This community has used

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 14

them in the production and re-use of high quality programming constructs,

to the extent that there are now annual conferences, mailing lists, websites

[10, 51, 56, 57, 58, 59, 60, 61] and books [23, 42, 44, 52, 78] whose focus

is on the use of patterns in object-oriented software design. Since then,

literally hundreds of patterns have been published through the PLoP

conferences and thousands more (probably only a minority of which, it

should be said, have gone through the Pattern Writers‟ Workshops) have

been published in academic papers, professional series‟ books and on

websites.

The following extract, taken from the website of the software Patterns

Movement [57] which is hosted by Hillside, summarises what appears to

be the current consensus about patterns amongst software developers:

 “Patterns are the recurring solutions to the problems of design. People

learn patterns by seeing them and recall them when need be without a lot

of effort. Patterns link together in the mind so that one pattern leads to

another and another until familiar problems are solved. That is, patterns

form languages, not unlike natural languages, within which the human

mind can assemble correct and infinitely varied statements from a small

number of elements” [57].

An important challenge that the thesis concern with here is the process

by which one pattern is chosen to follow another until the problem is

resolved. The choice of a pattern depends on the context (or environment)

of the problem. The application of the pattern will result in a new context

which dictates the choice and selection of other patterns. The changes in

context represent dynamisms that characterises the choices and

applicability of patterns to solve a given problem. Such dynamism needs to

be studied and analyse so as to increase the successful choices and

applications of patterns.

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 15

However, it seems that the computing industry has still not completely

grasped Alexander‟s intentions. In a keynote speech to the 1996 OOPSLA

convention in San Jose, California that might have been anticipated as the

final fusion of the visions of architectural and software design Alexander

himself simultaneously praised the then infant Patterns Movement for its

creative use of the pattern form, but also criticized it for „missing the

point‟ [3]. Mary Lynn Manns in her doctoral thesis has drawn attention to

the fact that patterns and pattern languages have not been incorporated into

software development, as was expected even by the Patterns Movement let

alone by Alexander [66]. She does acknowledge that although the use of

patterns is often encouraged by managements, it is only to the extent of

supporting individuals to acquire private pattern knowledge, the domain of

advanced programmers or developers, rather than being accepted as a

universal culture of design. There seems, therefore, despite the widespread

adoption of patterns, to be some confusion about the essential idea of what

a pattern is that contributes in some way to a less than effective usage of

them in practice.

Software patterns have been described in a number of ways by figures

in the Patterns Movement. From a programming perspective, the GoF state

that “Patterns identify and specify abstractions that are above the level of

single classes and instances, or of components." [42]. Fowler, in his book

on analysis patterns [40] talks more generally of an “an idea that has been

useful in one practical context and will probably be useful in others.”

While both these statements are true, neither quite adds up to what might

be an acceptable definition of a pattern.

GoF quote selectively from Alexander, including the following

“Each pattern describes a problem which occurs over and over again

in our environment, and then describes the core of the solution to that

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 16

problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice”[42].

This has led to a widespread acceptance of the idea that a pattern is a

general solution to a recurring problem, in other words, it is a problem-

solution pair. However, this is too wide a definition to be useful, and the

second part of the quotation highlights the issue. In the GoF book, for

example, a number of variations of implementation are suggested for most

of the patterns, and the choice is not an arbitrary one. In most cases, the

choice depends upon the existing state of the system. The pattern gives a

general design approach to a problem, but more design work needs to be

done for this „solution‟ to be fit for purpose. This contrasts with, for

example, the notion of a software component which might also be seen to

fit the problem-solution couplet definition. Daniels defines a component as

an independent unit of deployment and reuse [21]. In other words, it is

context-free. A pattern‟s use, on the other hand, is context-specific. This is

not a theological difference, it has practical implications. In one widely

known example template collaborations in UML (i.e., visual design

„components‟) have been explicitly confused with patterns [14]. The

problem is that while template collaborations or indeed anything that could

rightfully be described as a component can be „plugged in‟ as-is to an

emerging solution a pattern clearly cannot. This understanding appears to

be crucial to the proper and productive use of patterns in design.

In fact, the Patterns Movement itself has been at pains to make the

distinction. Gabriel has reminded the Movement that for Alexander, "Each

pattern is a three-part rule, which expresses a relation between a certain

context, a problem, and a solution" [2]. For Alexander, in his publications

in the „seventies at least, the phenomenon „pattern‟ is a relationship

between a given context, a recurring system of forces peculiar to that

context, and a specific spatial configuration that permits resolution of these

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 17

forces. More recently, a study of his work by Maria Kavanagh claims to

find an evolution of this idea [63]. In his most recent work, The Nature of

Order [4,5,6,7], Alexander says very little about patterns per se. Rather he

talks about the quality of „wholeness‟ in successful natural organisms and

formations and in „good design‟. Wholeness comes from the organization

of mutually-related centres in harmony with each other, and Kavanagh

argues that the very strong implication of this is that patterns are “rules for

creating [these] centres” [63]. This raises the question as to whether this

shift in emphasis in Alexander‟s thinking requires a change in the Pattern

Movement‟s understanding of the definition of a pattern. If Kavanagh is

right, there certainly seems to be a shift in emphasis from a pattern

implying a structure to implying the process by which the structure is

constructed. In retrospect, however, this might not be such a big shift after

all. Coplien has, in the past, already argued that a pattern is both a „thing‟

and the set of instructions by which that thing can be created [25].

Certainly, in the four years since the Kavanagh thesis was published, no

discernible shift in the thinking of the Patterns Movement is noticeable. It

is, therefore, reasonable from the point of view of this study to consider

the three-part rule to be the established definition of a pattern and it is

therefore the one that will be used for the purpose of the research.

Having said that, it is interesting to note an evolution of the definition

in which the notion of „context‟ has become more and more important.

Software patterns originated as a two-part rule in which context was

ignored (at least as part of the definition of a pattern), and was

subsequently replaced, after some debate it must be said, by Gabriel‟s

three-part definition. Kavanagh - and by inference, Alexander - is now

giving even greater importance to context. Without going into the details

of her thesis the nub is that the „context„ of a pattern is the “whole” system

under construction and its state in the construction process at the point at

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 18

which the pattern is being applied. It is important to make it clear that

designing a system should not be taken in isolation.

A pattern is thus a phenomenon, a rule creating that phenomenon and

the specification of the time at which that phenomenon must occur. “It is

both a process and a thing; both a description of a thing which is alive, and

a description of the process which will generate that thing” [26]. The

description of the “thing” lies in the realm of problem specification, whilst

the process of “generating the thing” is the concern of its derivation or

implementation. Therefore the thesis do not need to change the basic,

three-part definition of a pattern but it should be noted, especially from the

perspective of this research, the enlarged importance of „context‟ within

that definition (i.e. The nature of the context changes at ever step of the

process): as it will be notice in the following sections of this chapter, and

in subsequent chapters, this has significant implications for how patterns

should be used.

2.3 Architecture, Design and Code Patterns

Because design patterns provide common solutions to recurring design

problems, they feature heavily in the design of complex systems using

object-oriented methods. Patterns enable designers to break a system down

into groups of cooperating objects without needing to find the relationships

between those objects. In fact, the unconscious employment of pattern in

the form of the reuse of class relationships and object collaborations in

design is extremely common. Such patterns have existed for some time;

the first, and probably still the best, pattern collection for common design

problems, the GoF‟s Design Patterns: Elements of Reusable Object-

Oriented Software, was published in 1995.

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 19

Design patterns make it much easier for designers to share their

designs by providing them with a common language, so that they can

simply refer to a particular design (e.g. Bridge Pattern) without having to

explain the elements of the class relationships involved. Design Patterns

set out the requirements: when a particular problem recurs in object-

oriented systems, a design pattern names a design that deals with this

problem, describes the circumstances which give rise to it, and explains it,

as well as describing the problem and its solution, when that solution

should be used, and the results when it is. It also provides programmers

with hints and tips as well as illustrations as to how to implement the

solution, which is a general arrangement of objects and classes that solve

the problem. Design patterns are tailored for a particular problem in its

context [42].

The GoF‟s book defines design patterns as "descriptions of

communicating objects and classes that are customised to solve a general

design problem in a particular context." It goes on:

A design pattern names, abstracts, and identifies the key aspects of a

common design structure that make it useful for creating a reusable

object-oriented design. The design pattern identifies the participating

classes and their instances, their roles and collaborations, and the

distribution of responsibilities. Each design pattern focuses on a

particular object-oriented design problem or issue. It describes when it

applies, whether or not in can be applied in view of other design

constraints, and the consequences and trade-offs of its use. Since we

must eventually implement our designs, a design pattern also provides

sample ... code to illustrate an implementation. Although design

patterns describe object-oriented designs, they are based on practical

solutions that have been implemented in mainstream object-oriented

programming languages ...[42].

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 20

Despite the fact that this description was intended to apply to object-

oriented design, with some slight modifications it could be used to

describe any software pattern. Because of the book‟s primacy in the

software development community, the term “design pattern” is more

widely used for any pattern that deals with matters relating to software

architecture, design or programming implementation. These conceptual

levels are sometimes classified into architectural patterns, design patterns

and idioms (or coding patterns). Pattern-oriented Software Architecture –

A System of Patterns (POSA1) [18] defines these thus:

1- Architectural Patterns

These define the basic organisational principles or schema for

software systems. They consist of a set of predefined subsystems

and indicate what functions these must perform, as well as

providing rules and guidelines regulating their interrelationships.

2- Design Patterns

These are mid-level, and consist of designs for refining a software

system‟s subsystems or components. They exemplify the concept

of pattern elaborated above, describing recurring structures

common to the interrelating components described in 1. These

structures can be used to solve design problems with reference to

their contexts.

3- Idioms (or coding patterns)

Operating at the lowest level of programming languages, idioms

use the features of particular languages to describe the means by

which specific elements of components and their relationships are

implemented.

These three types of pattern operate at different levels of abstraction

and detail. The first type deals with large scale components and a system‟s

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 21

general properties and procedures. Their implementation would affect a

software system‟s structure and organisation. Design patterns have no

effect on system structure; rather, they define micro-architectures inherent

in subsystems, their constituent elements and the interrelationships

between them. Idioms are specific to certain paradigms and languages, and

complete the lowest level of a component‟s structure and behaviour.

Design patterns initially attracted the attention of the software

community. Gamma et al [42], describe the object-oriented type of design

pattern. These are not the only kinds of pattern in software, however; they

appear in every aspect of software, including:

1- development organisation

2- software process

3- project planning

4- requirements engineering

5- software configuration

Organisational and other types of pattern are gaining in popularity over

design patterns. The following are just some of the possible categories into

which software patterns can fall [12]:

1- Design patterns: patterns in software engineering

2- Analysis patterns: patterns that describe recurring and reusable

analysis models

3- Organisation patterns: patterns that describe software process

design

4- Other domain-specific patterns

A conceptual pattern, tailored to a specific application domain, uses

concepts from that domain in its description. Design patterns use software

design constructs such as objects, classes, inheritance, aggregation and

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 22

reuse relationships, and programming patterns use programming language

constructs.

In [77] Reihle and Zullighoven give a somewhat different

classification of software patterns. They identify three types of software

pattern: conceptual, design and programming patterns. These are similar to

the types introduced by the authors of Pattern-oriented Software

Architecture – A System of Patterns (POSA1) [18].

These types deal with successively greater levels of detail. The first

type is based upon metaphors in specified application domains, the second

implements elements of the first, and the third deals with the last level of

detail using a stipulated implementation language.

Comparing the POSA1 and Reihle and Zullighoven definitions, some

similarities become apparent. What the latter calls programming patterns,

the former calls idioms. The POSA1 authors identify patterns by their

architectural scope, while the other two decide on the origin of their

language, from the problem or from the solution.

2.4 Pattern Catalogues and Pattern Languages

The GoF book contained, as mentioned previously, a collection of 23

discrete patterns which could, largely, be used stand alone. Many papers

published at the PLoP conferences contain just a single pattern. In fact, the

GoF book contained a graphic called a pattern map which joined some of

the patterns together with arrowed vectors and labelled the relationships.

Quite separately, they also produced a categorization of the 23 patterns

which classified them in two dimensions. Each pattern was classified as

either a „Creational„, „Structural‟ or „Behavioral‟ pattern and then also as a

„Class‟ pattern or as an „Object‟ pattern (The Adapter pattern, for example,

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 23

had variants of each of these last two divisions). Buschman et al., in a

taxonomy that has gained wide acceptance in the Patterns have classified

different kinds of pattern collections that acquire varying degrees of

structure and relations into pattern catalogues, pattern systems, and pattern

languages [18, 80]. The GoF book [42] is an example of a Pattern

Catalogue according to this classification which is described as follows:

A Pattern Catalogue is a collection of correlated patterns. They are

possibly only informally or loosely related or part of a group. It usually

subdivides the patterns into a small number of wide categories or groups

and may include some amount of cross referencing between patterns [18,

12]. As was just stated, the Design Patterns book is an example of a

patterns catalogue [42].

A System of Patterns is an interrelated set of associated patterns which

work together to maintain the creation and evolution of whole

architectures. Not only is it arranged into associated groups and subgroups

at various levels of granularity, it describes the many interdependencies

between the patterns and their groupings and how they may be used

together solve more compound problems. The patterns in a pattern system

should all be described in a dependable and standardized style and need to

cover a suitably broad base of problems and solutions to allow

considerable portions of whole finished architectures to be constructed

[18]. The next section of this chapter will discuss the significance of

„standardized styles‟.

According to Buschman et al., a pattern catalogue shows a degree of

arrangement and association to a pattern collection, but does not generally

go very much further than showing only the most apparently noticeable

relationships and structure. A pattern system adds loaded pattern relations,

profound structure, and uniformity to a pattern catalogue. A pattern system

can be considered as a coherent collection of patterns about a topic that is

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 24

usually, but not necessarily, very broad. The so-called POSA (Patterns of

Software Architecture) patterns of Buschman and his colleagues would

seem to fall in this category [18].

The final category to be discussed here is that of a Pattern Language.

In many ways it is the most challenging of these categories. Christopher

Alexander first presented patterns in a book called A Pattern Language

which contained 253 patterns for the built environment [1]. In a

companion volume, The Timeless Way of Building he makes it clear that,

from his perspective, a pattern can only exist in the context of a Pattern

Language [2]. It is clear then, that there is a big difference in the

conception of software patterns as held by the Patterns Movement and that

of Alexander himself, in that for Alexander‟ only one kind of pattern

collection exists - the Pattern Language. In contrast, the Patterns

Movement tolerates standalone patterns, pattern catalogues and pattern

systems as well. This may be part of the reason why Alexander claimed in

1996 that the software Patterns Movement had missed the point. A deeper

examination of the notion of Pattern Languages may give greater insights

as to the challenges posed in the Introduction to this thesis can be

addressed.

Pattern Languages are not formed all at once and this is may be the

most important difference between pattern languages and pattern systems.

They may develop from pattern systems through the process of piecemeal

growth (and a pattern system may, in turn, develop from a pattern

catalogue in a similar way). So just as pattern languages help to

increasingly grow complete architectures, pattern systems may serve to

increasingly grow into complete pattern languages.

Patterns may be designed to operate on their own or in a pattern group.

They can also be part of the next step, a pattern language. DeLano [32],

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 25

says that patterns are grouped by subject, and that because the groupings

are open, new patterns can be added to them. Incidentally, Kavanagh

creates a parallel concept of „focus‟ in her guidance as to how to use

patterns in construction [63]. More formalised pattern languages develop

from such groupings to become contextualised within specific domains

and wider subject areas. “Every pattern makes the most sense in the

context of the patterns it precedes and completes” [17, 18].

A deeper understanding of pattern languages can be obtained by

examining language as a general phenomenon. One definition of language

is “the communication of ideas by articulate sounds or words of agreed

meaning; the vocabulary peculiar to a nation, tribe or people; the

vocabulary appropriate to a particular science, profession etc” [20].

Natural languages are built up of words whose order, tense and number is

determined by grammar, which also decides punctuation and other such

matters. Far more complex, and therefore more productive, are the

syntactical principles that underlie those grammatical rules.

Syntax and the grammatical rules which apply to it differ greatly from

language to language. English, for example, differs from Mandarin

Chinese, not only in the grammar and syntax that determine the order of its

signifiers (words), but in its semiotic construction. Both languages have

their written signs denoting the signifiers (signs governed in turn by their

own rules), but in Mandarin, unlike English, this written notation also

determines the intonation with which the words are spoken, as does their

context.

Both, however, have the property common to all languages: the

principles and the rules to which they give rise can yield a theoretically

infinite number of statements of thought, called sentences [21]. The

expressive potential of a language thus comes from the way and the

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 26

context in which these signifiers are arranged in strings (sentences). “It is,

in other words, a generative system [emphasis added- HH] which allows

us to generate sentences that are appropriate to any given situation” [2].

Complex as this may be, a pattern language is even more so, according

to Alexander. Rather than words, the individual elements are patterns, each

of which has a structure detailing how it is itself composed of lesser

patterns, and all of which are governed by embedded rules determining

how they are created and their position relative to other patterns [2]. A

language is complete only when every individual pattern in that language

is also complete, and therefore new patterns must be invented, whenever

necessary, to fill out each pattern which is not complete. The structure of a

pattern language is created by the fact that individual patterns are not

isolated. A pattern language contains useful connective information that

helps to validate the patterns, and to apply them [62]. This important topic

of „connective information‟ will examine in the next section. Indeed it

turns out to be central to the whole argument of this thesis.

Generally, a pattern language is not a programming language; rather it

is a procedural document, with the purpose of guiding and informing the

designer. A pattern language includes rules and guidelines that explain

how and when to apply its patterns to solve a problem, insoluble by an

individual pattern. These rules and guidelines suggest the order and

granularity for applying each pattern in the language. A pattern language

could also be viewed both as a lexicon of patterns and a grammar. The

grammar defines how to weave patterns from a lexicon together into valid

software equivalents of sentences. Ideally, good pattern languages should

be generative, and capable of producing all possible sentences from a rich

and expressive pattern vocabulary.

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 27

There are many collections of software patterns that claim to be

languages. The following can be count Ward Cunnigham‟s CHECKS [31],

Meszaros and Doble‟s Pattern Language for Pattern Writing [70] and

GAMA – A Pattern Language for Computer Supported Dynamic

Collaboration by Schümmer [83], but none of these three at least declares

itself to be generative in the sense described above. Meszaros and Doble

offer this definition of a pattern language, and it seems to be one that fits

many languages that cover software patterns [70]:

“A pattern language defines a collection of patterns and the rules to

combine them into an architectural style. Pattern languages describe

software frameworks or families of related systems” [56].

Coplien, however, offers a definition with a different emphasis and one

that appears closer to Alexander‟s thinking [26]. The difference appears to

be a stronger implication of generativity together with an implication about

the completeness and comprehensiveness of the language:

“A pattern language is a structured collection of patterns that build on

each other to transform needs and constraints into an architecture”

[26].

The purpose of such languages is to capture patterns in their contexts,

and to establish the means of realising the wider implications of design

decisions. Applying each pattern changes the context by changing the state

of the system under construction and creates both a new design problem

and a new context for the next pattern to be applied. The next picked

pattern must have a certain criteria in order for it to be applied successfully

and this is will be determined by the characteristics of the new context just

created. The difficult question is: how is this dynamically changing

„connective information‟ to be presented to guide the developer/builder?

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 28

This is indeed the fundamental research question that this thesis is

addressing.

2.5 Pattern Description Formats

As been seen, the software community has collected patterns and „pattern

languages‟ in order to improve its utilisation of those practices which it

uses repeatedly, an endeavour based on the seminal work of Christopher

Alexander, who developed the concept in order to codify best practice in

the building industry in order to help create high quality structures.

 To be useful, patterns have to be accurate technically, but also

accessible by all the stakeholders in a project. Alexander makes clear that

pattern languages are shared by everyone with an interest in a design, not

merely its specialist „architects‟. The descriptions of patterns are pieces of

literature, and it is no accident that the publication process used by the

Patterns Movement draws so heavily on the experience of writers‟ and

poets‟ circles.

The GoF put across a collection of constructs that at the very least

should be there when describing a pattern; therefore the following can be

consider as notions that must be available in the form in any pattern

description:

 Pattern name - a common denominator of both GoF and Alexander.

Both of them bring up the importance, and the difficulty of finding an

evocative name for a pattern.

 Problem - an explanation of when to apply the pattern. There are two

parts to this explanation, namely the problem itself and the context in

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 29

which the given pattern applies. Both Alexander and GoF acknowledge

this essential difference.

 Solution - context, in software, is a description of the artefacts that

form the solution, context, in object-oriented, is describes the

composition of the solution through the interfaces, classes, packages,

etc. that may be play a part in resolving the given problem and context.

Still, the solution is not idiom or concrete - it describes the solution in

an abstract manner. The implementation may vary dependant on the

technical stage or variants of the context.

 Consequences - express the costs and compromises that accrue while

applying the pattern - and are the most important factors to be taking in

consideration when choosing different design solutions. Basically they

describe how that specified pattern may affect the non-functional

requirements of the system; e.g. portability, extendibility, flexibility,

complexity, performance.

While the GoF claim, probably correctly, that these elements are

common both to their own pattern descriptions and to Alexander‟s the

actual form (or template) used is very different. The Design Patterns book

describes 23 patterns in about 320 pages and for each has a heading with

twelve separate clauses: Name, Intent, Motivation, Applicability,

Structure, Participants, Collaborations, Consequences, Implementation,

Sample Code, Known Uses and Related Patterns. Allowing for discussion

in the front and end chapters, the average description is over ten pages

long. Alexander adopts a much more accessible, narrative style with each

pattern taking no more than a few pages to describe, occupying on average

less than half the column inches of a GoF pattern.

Historically, the software Patterns Movement has refused to mandate

any single format, recognising that different formats will suit different

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 30

audiences. Gamma [42] points out that it is of greater importance to

explore the space of design patterns than to formalise their description, but

much of the preparation of the PLoP conferences involves pattern authors

being „shepherded‟ by experienced authors to help them find an

appropriate format.

Currently, standard shepherding advice suggests that as well as the

essential components of problem and solution, a pattern template should

contain information on the oppositional factors (forces) involved in

causing the design problem, the context in which the pattern may be

employed, the reasoning behind the solution and the consequences of its

application. In particular, the description of the solution should

demonstrate how the forces previously described will be resolved in a way

favourable to the overall design. One popular format is the Coplien form

[24, 30], which typically fits on one page with the headings,

 Pattern Name

 Problem

 Context

 Forces

 Solution

 Resulting Context

 Rationale

 Related Patterns

While some commentators advance clear segmentation of the pattern,

so that users can find key components [70], others advocate a more liberal

procedure more akin to Alexander‟s prototype (e.g. Olson [74], Harrison

[49, 50, 51, 52]). A multiplicity of formats for software patterns has been

advocated in order to find the most advantageous one for each set of

circumstances [16], and during this investigation it has been discovered

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 31

that patterns have provided a means of capturing abstract concepts that are

otherwise difficult if not impossible to formulate [41].

One interesting insight is that while the Coplien form is considered the

easiest to write, the Alexandrian form is recognized as the easiest to read

and so there has been a recent trend towards narrative styles - the first

POSA patterns have been rewritten, for example [19]. It also appears to be

the case that shorter forms are enabled by systems of patterns and pattern

languages with much of the requirement for explanation being amortized

across the collection of patterns, while stand alone patterns seem to

demand lengthier templates.

A single recurring problem can be solved using a single pattern. There

is far greater potential, however, in developing the relationships between

them into pattern languages that provide the means of solving problems of

complexity a degree of magnitude greater [44, 72]. In order to illustrate

this, Alexander lists a sequence of ten patterns from A Pattern Language,

by which a farmhouse in the Bernese Oberland was built, and another

eight used to construct stone houses in the south of Italy [1, 2].

To enable this accumulation of patterns into languages that realise their

potential, individual patterns in a language need to document their

relationships with each other. The structure created by the sum of these

relationships demonstrates the order (the „syntax‟) in which patterns can be

applied in a variety of sequences to construct any number of complete

forms.

According to Alexander, "every pattern we define must be formulated

in the form of a rule which establishes a relationship between a context, a

system of forces which arises in that context, and a configuration, which

allows these forces to resolve themselves in that context" [2].

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 32

He recommends visual representation as illustrations. This is relatively

easy for the three-dimensional world of buildings, but as Fred Brooks Jr.

pointed out, software is intangible and difficult to visualize [16]. Many

patterns address the issue of the illustration of software patterns with UML

class and sequence diagrams (with the possible unwanted side effect of

their being confused with UML template collaborations as described

above). While for Alexander a sketch can show an incremental shift in the

design through the application of a pattern, no such option exists for

software developers. As part of the presentation of their pattern language,

many pattern authors include an overview of the patterns in the language,

often referred to as „roadmaps‟. Such maps illustrate the relationships

between the patterns in the language.

Figure 2.1 is an example map for Small Memory Pattern Relationships

by Noble and Weir [71], arrows indicate that if a pattern at the plain end is

used, the other pattern at the arrow end should also be considered to be

used next. They also show specialisations (triangles) and conflicts (crosses

on dotted arrows).

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 33

Figure 2.1: Pattern map for „Small Memory Pattern Relationships‟ [71]

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 34

Another example from other roadmap styles, this map included the

type of relationships between the patterns in the language. Figure 2.2

illustrate a pattern map for A Presentation Pattern Language [76], Reiβing

used different arrows on the pattern map to indicate whether one pattern

„may use‟ or „does use‟ another. As in many other software pattern

languages, this examples shows that the arrows on the pattern map

effectively contain the rules of the language and the grammar.

Figure 2.2: Pattern map for „A Presentation Pattern Language‟ [76]

Pattern maps seem to be a common feature of software pattern

languages and there is strong anecdotal evidence that in Patterns Writers‟

workshops they are favoured by reviewers [73].

However, Kavanagh has clearly demonstrated problems with such an

approach. She argues coherently that they present an overly static view of

the relationships between patterns which, when applied, are actually

dynamic. Simplistically, the overall process of building using a pattern

language can be characterize like this: problem 1 is addressed by pattern A

which, as a resulting context, creates problem 2 which can be addressed by

Pattern B which creates a new context and so on. Remembering that,

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 35

theoretically, a pattern can be implemented a million different ways

depending on context, and that context is essentially the current state of the

system being constructed, it is clear that pattern maps cannot give the

necessary guidance for the order of application of patterns. In fact both

Kavanagh [63] and Manns [66, 65, 64] before her have shown that the

centre of gravity for the Patterns Movement has so far been the production

of patterns (i.e., mining the expertise for the knowledge base that is

required) rather than their consumption (i.e., their use). The point they

make is easily illustrated by the fact that for all the PLoP conferences that

have taken place across the world, only one - in 1997 [11] - was focussed

on how patterns are used. The issues become clear when looking at pattern

sequences and how they might be put together.

2.6 Pattern Application Process

The writing of patterns is an issue which has been addressed more or less

successfully by the Patterns Movement over the last decade and a half, but

composing them into meaningful design sequences is a problem that has

drawn far less attention in the literature.

Pattern sequences can be seen to have always been an implicit part of

the concept of both pattern systems and pattern languages. Nevertheless a

rigorous and understandable notion of pattern sequences has been omitted

as an explicit part of the majority of pattern concept, and has only lately

been given this consideration. Pattern languages do not give a clear strong

notion of the order and sequences in which patterns should be applied

during the construction process.

Christopher Alexander‟s used the word sequence in his original pattern

writing A Pattern Language [1] and The Timeless Way of Building [2] but

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 36

its meaning is ambiguous regarding its role within the pattern idiom and is

not at all times obvious.

In A Pattern Language (APL) Alexander discusses the use of

sequences within a pattern language [1]. Instead of using a pattern map to

present the patterns in the pattern language, he uses a hierarchical

sequence of patterns as the grammar rules and the language is a sequence

of operators, where each pattern is an operator which changes space. Each

pattern in the sequence is affected by the pattern before it, and itself has an

overall change effect on the design as a whole. Also, those patterns which

come later in the sequence will fit into the design which has evolved so

far.

In The Timeless Way of Building [2], Alexander uses sequences with

the network of application patterns as his pattern language as authoritative

way of using patterns to generate a design. In fact, Alexander seems to use

sequences in two ways. Firstly, sequences are used as a way of introducing

the patterns in the language, where patterns sequence is a summary of the

language and also an index to the patterns. Secondly, sequences are used

as a means of building a system, where the patterns have the structure of a

network when it is used, and are always used as a sequence, i.e., one

pattern subsequent to another in a particular order.

In APL the strict style of sequences state that the patterns can only be

used in the order in which they appear in the catalogue, which tend to limit

the flow that should be apparent in any normal language, where a more

flexible set of grammatical rules determine the order in which words can

be reasonably and logically used.

In Mexico work on housing projects using APL recommended that

although structures can be built, this strict sequencing does not always

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 37

work, and the project was missing things that makes a building a „living

structure‟. The used sequence for creating a building as given in A

Timeless Way does not follow the order offered in A Pattern Language.

There is therefore a noticeable tension between the use of patterns in a

sequence for building on the one hand, and the sequence in which the

patterns illustrate a pattern language. It appears that sequences are

fundamental to the building of systems with patterns, but if used for

presenting and documenting the patterns in a language it may impose

inflexibility.

Alexander presented that buildings could be created using patterns in a

specific sequence. These buildings would demonstrate what he termed in

the seventies „the quality without a name (QWAN)‟ [2] and in his recent

work called „wholeness‟ [4, 5, 6, 7].

Pattern languages as they are currently depicted seem to present only

an ambiguous notion of the order in which patterns should be applied

during the construction process. Typically, in APL for example, the

patterns are presented in the language in order, with the larger patterns are

applied first before the smaller patterns, and more detailed constructional

patterns will follow later to embellish those bigger patterns. This order

forms a more or less direct sequence, based on the relations between the

„larger‟ patterns, which come before the „smaller‟ patterns. Where a

pattern map is used, larger patterns are mostly shown higher in the

language map than smaller patterns, and arrows run from larger to smaller

patterns to indicate the flow of the use of patterns.

Alexander explains that adjacent patterns need to be applied as close in

sequence as possible, but neither Alexander‟s theory nor language maps

specify what order adjacent patterns ought to be used. Furthermore, most

system designers using languages work only with the individual patterns

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 38

and language map, and may not even be familiar with Alexander‟s

underlying theory.

In which order to apply patterns, plus adjacent patterns, is important to

the right use of a pattern language: but, as have been established, this is

mostly determined by the specific context supplied by the current state of

the system in the building process. This is mainly why the key problem of

composing pattern sequences is more temporal and dynamic than it is

static and structural. In so far as pattern languages a particular sequence is

suggested, for example through a patterns map, they can only refer to these

structural relations, ones that can be inferred in advance independently of

any specific system or context. For example, a large pattern and a smaller

pattern can be shown to be reliant on each other in the sense that the

smaller pattern always, or at nearly always, refines the larger pattern. This

sort of dependency implies that the use of a smaller pattern should not

come before the larger pattern. However, current presentations of patterns

have no way of capturing or presenting the detailed contextualisation

required for the actual construction of a specific system. Very often, even

in current maps a pattern at one „level‟ may be connected to two or more

patterns at the next lower level. The decision as to which one to use is

temporally constrained in the sense that the choice is made only at a

particular point in the construction process of some specific system, and

may well be determined, or at least further constrained, by the current state

of that system. Add to this the further complication of multiple variants for

the implementation of any given pattern, and that can be considered as a

set of instructions to build something specific, then the current forms of

Pattern Languages are inadequate. They leave out entirely these dynamic

aspects. This will need more investigation because, as mentioned earlier,

the key problem of composing pattern languages is more temporal than

structural.

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 39

Some of the issues of the choice of which pattern to apply next can be

illustrated with an example offered by Alexander himself. Assume creating

a half-hidden garden using patterns from the Figure 2.3. as can be seen

from the map that Half-Hidden Garden is the first pattern. The application

of any of the other patterns which follow in the map may be the next

choice. Also the designer may choose not to start with Half-Hidden

Garden as the first pattern but start with Entrance Transition followed by

Private Terrace on the Street. The pattern language map does not specify

the order in which these patterns should be applied and that is because of

the reasons just discussed. But the actual sequence adopted is crucial to

successful design. The presence of Entrance Transition may affect the

location or application of the Private Terrace on the Street. Similarly, if

the Private Terrace on the Street is applied before Entrance Transition, a

different design emerges. Alternatively, the Private Terrace on the Street

may not exist at all. It is impossible to be specific about the sequence in

which to use the patterns without considering the emerging properties of

the specific system being built.

Figure 2.3: A Language for Half-Hidden Garden from Alexander [2]

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 40

If these difficulties in presenting sequences within a particular pattern

language were not enough, the picture is further complicated in the world

of software patterns in that any meaningful sequence of patterns for

construction of a specific system, or even subsystem, are likely to draw

upon different patterns, from different catalogues, systems and already

published pattern languages. The collected patterns are also likely to be

published in an arbitrary number of forms, as a result. Recently James O.

Coplien and his colleagues have been looking at the issue of composing

pattern sequences from different sources [75]. They discussed the

possibility of using sequences to combine general patterns with pattern

languages, as some pattern languages may possibly have similar patterns

or patterns that overlap. Their work also looks at the use of different

pattern from different sources to be used in sequences to compose

languages, but their study did not look at sequences in the use of a pattern

language [75].

Pattern sequences present one way of making logic of the popular

notion of compound patterns [77, 90]. From the perspective of pattern

sequences compound patterns can be considered as an identifiable and

general sequence of patterns that can be considered as a whole with

reference to the problem it concentrate on and the design it accomplish

[54].

Henney stated that:

“The definition of a language as a graph offers a simple and

powerful pictorial view of a pattern language's connections, but it

lacks some of the rules of combination necessary for understanding

the composition of pattern sequences. The process definition can be

considered to be like the grammar of a language” [54].

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 41

Henney [54] used some operators to compose patterns in a better way

in addition to the widely used now pattern languages graphs or maps. He

used the following symbols to represent his operators:

1- → to indicates the sequential composition,

2- | for alternation, and

3- □ for the completion in this improvised notation

4- ∅ for the starting state, and

5- →○ For optional sequential composition.

Also Zdun used pattern language grammar in his paper „Systematic

Pattern Selection Using Pattern Language Grammars and Design Space

Analysis‟ for providing an approach to better support the selection of

patterns and systematic design decisions based on patterns. He proposed a

two step approach where he formally document the grammar of a pattern

language and annotate it with the effects on quality goals. The idea was

that the pattern sequences of a pattern language can be driven from the

pattern language grammar [92].

Another example, for the same issue as Alexander above, is from the

software pattern area. Taking any of Ian Graham's Web Usability (WU)

pattern language maps it is not clear which pattern to apply next and it is in

some cases very confusing to the designer or the user to figure out what

some of the arrows point to. In order to start building a website by using

Figure 2.4 (Getting started on your site) the sequence used in the diagram

demonstrates the following:

o P1(Establish the business objectives) will be used initially

o Then P2 (Business process model) follows

o Then P3 (Establish the use cases) follows

o Then there are several choices: P17 (Context-sensitive help)

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 42

or P11 (Classify your site) or P4 (Timeboxes) or P6 (Automated

testing).

o Questions that arise: From Pattern 3, should Pattern 4 (Timeboxes) be

used once or twice? It can be understood from the diagram in (Box

2.4-1) that P4 (arrow A) will be used, but (line B) is a line with no

arrowhead, so it cannot be determined whether P4 is to be used again

or whether the next pattern to be used is P6 (Automate testing), thus

skipping P5 (Gradual stiffening).

o Do lines B and C are point to P4 and P5 from P3, or do they come

from P4 and P5 to P6?

o From (Box 2.4-2) in the diagram it can also be seen that there is a

(line D) connecting P12 and the arrow from P3 to P17. But does this

line go from P3 to P12 or from P12 to P17? This makes it unclear as

to whether P12 will be used as one of the choices after P3.

o P6 is refined by P7, P8, P3 and P10 but the same type of arrow is

used (solid) as the sequential order.

Figure 2.4: Illustration of the ambiguities in Diagram 1 (Getting started

on your site) from WU [45] in Boxes 2.4-1 and 2.4-2

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 43

Welie and Veer also discussed the issue of structuring a collection of

patterns into pattern languages in Interaction Design and they proposed

that this language can be organized hierarchically, from high-level design

problems to low-level design problems [87]. They also stated in their paper

(Pattern Languages in Interaction Design: Structure and Organization)

that “the hierarchical nature of architectural patterns can also be

interpreted as a hierarchy of problems. The highest level problems are

broken up in smaller problems for which solutions appear to exist. They

just happen to map directly to a geometrical metaphor in architecture,

working from large areas to small areas. The important thing to understand

is that such a problem-hierarchy approach can be applied to other domains

as well” [87].

Figure 2.5 illustrate their partial pattern language for web design

centred on “shopping” [87].

Figure 2.5: Welie partial pattern language for web design “shopping”

[87]

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 44

2.7 Summary

The main points that can be drawn from the discussion above are as

follows:

 A pattern can be defined by a three-part rule: a general solution to a

recurring problem in a particular context.

 The perception of patterns within the software development

community has grown closer to Alexander‟s original conception over

time even though his own thought has developed further in the 35

years or so since he first wrote about patterns. The most critical aspect

of this evolving consensus has been a growing awareness of the

significance of „context‟.

 It is clear that when considering the use of sequences of patterns to be

used in construction, „context‟ presents a number of difficulties. In

particular pattern templates can at best capture only in very general

terms the type of context in which a given pattern might be considered.

This is a valuable and necessary component of a pattern‟s description,

but one which is insufficient as guidance as to what order patterns

might be used in a specific project, and what implementation variant

should be adopted.

 For such guidance the more dynamic and temporal aspects of context,

those that only emerge in the process of construction itself, must also

be captured and presented in some way. Currently the various ways in

which pattern languages are presented (for example, with arrowed

vectors on pattern maps, or alternatively in hierarchically composed

lists) only reflect the more structural („static‟) relationships between

patterns and not at all in an unambiguous way.

CHAPTER 2: PATTERNS AND THEIR APPLICABILITY

 45

These understandings will be taken forward into the subsequent

chapters of this thesis. Chapter 3 will focus on new ways of representing

the dynamic relationships implied by pattern sequences, and in Chapter 4

will present operators which more accurately reflect the static relationships

that are found commonly in currently published pattern languages. The

remainder of the thesis will seek to validate these innovations and

demonstrate their usefulness, before these conquests can be finally

summarize and suggest further research paths which they indicate.

 46

Chapter 3

Compositional Framework for

Pattern Applicability

Objectives:

 To give an overview of pattern context

 To define context with the help of Assumption/Commitment

 To Introduce a framework for analysis of pattern applicability

 To give examples to illustrate the framework

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 47

3.1 Introduction

This chapter gives an overview of the framework for the analysis of

pattern applicability. It introduces the concept of Assumption and

Commitment constraint pairs (A-C) as a mechanism for characterising

pattern context [33]. It also discusses how these constraints determine the

applicability of patterns, as they guide the decisions on the application of

subsequent patterns. The successful application of one pattern to solve a

problem within a given context, results in the generation of a new context

which needs to be understood before the application of another pattern.

Further, how to integrate a pattern into a partially existing design?

What kinds of patterns should be applied in which order? How to solve

problems that cannot be solved by a single pattern in isolation? Answering

such questions is important for being able to use patterns effectively. The

framework introduced in this chapter will help to answer these questions

thereby facilitating the applicability of patterns in system design.

3.2 Characterising Context

This section will discuss first the need for context in patterns by giving an

example of pattern context. Then various definitions of context in general

will be discussed and then of context as used within the pattern

community followed by the thesis definition. Some examples will be

given to illustrate the need for context.

3.2.1 What is the Context

This subsection will specifically discuss what context is and give general

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 48

definitions of context and why it is needed in the thesis and the definition

as used in this thesis plus a comparison with the other definitions.

Context is defined as the interrelated conditions in which something

exists or occurs [91]. This means that context is the mutual relationship

between the many conditions that obtain in a given actor‟s situation or the

occurrence of an event. In Software Engineering many definitions for

context have been conceived. Appleton sees it as tells how the problem

occurs / when the solution works [12]. In Artificial Intelligence Guha and

McCarthy, context appears as means of partitioning a knowledge base into

manageable sets or as logical construct that facilitates reasoning

activities [47, 67]. In Information Bases, Theodorakis et al for example,

context appears as a conceptual entity that describes a group of other

conceptual entities from a particular standpoint [84]. In Ubiquitous

Computing domain many definitions for context have been conceived. For

instance Dey, defines context as “the user’s emotional state, focus of

attention, location and orientation, date and time, objects, and people in

the user’s environment ” [34]. Context means situational information, or

as Dey and Abowd [35] state:

Context is any information that can be used to characterise the

situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an

application, including the user and application themselves.

Schilit and Theimer [81] refer to context as location, identities of

nearby people and objects, and changes to those objects. In a similar

definition, Brown defines context as location, identities of people in the

user's environment, the time of day, season, temperature etc. Brown

defines context as the elements of the user‟s environment that the user‟s

computer knows about [15]. For Ryan, context is the user‟s location,

environment, identity and time [79]. In computer science, context is the

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 49

circumstances under which a device is being used [39]. In Architectures

Alexander, context appears as a situation giving rise to a problem [1].

As seen in the previous paragraph the term “context” is burdened with

a vast selection of meanings depending on the purposes of the particular

application and/or on the research community perspective. However,

several definitions for context have been put here, serving different

purposes.

A definition for context with respect to patterns needs to make explicit

the relationships between context (environment) and the solution provided

by the pattern. This will make the application of a pattern within a certain

context easier for the system designer. Therefore the definition introduces

a pair of constraints: one is placed on the environment within which the

system that is being developed by using the patterns (called Assumption)

and the other is what the designed system will commit to (called

Commitment). Context in this thesis is thus defined as:

Context refers to all constraints under which the problem and its

solution seem to recur, and for which a solution is desirable.

Specifically, context is characterised by two elements. One describes the

Assumption on the context which describes the forces from the context

towards the solution whilst the other describes the Commitment of the

solution towards the context.

As can be seen from the above definition, there are two directional

types of forces:

Context → Solution

Solution → Context

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 50

In the current pattern description formats this direction is not made

explicit. The thesis will introduce the Assumption and Commitment

elements to characterise the context and to make this direction of forces

explicit.

In general, the Assumption is a constraint placed on the context and

the Commitment is a constraint placed on the solution. Consequently, if

the Assumption and Commitment are not both taken into consideration,

the system being developed by using that pattern might fail. Two

questions concern exactly what Assumptions are being made about the

Context, and what solution the pattern guarantees. It will be noted that

Assumption and Commitments are elements that constrain the use of the

pattern. In order for the pattern to work, the Assumption and Commitment

constraints should be satisfied. This means that not only the context in

which this pattern exists is important, but also both Assumption and

Commitment must be taken into consideration while developing the

system. Assumption and Commitment will be used to select the “right”

pattern in a given context.

Assumption and Commitment are the key elements of any sequence of

pattern applications. Patterns as such do not communicate which each

other but there is a possibility that patterns interact (interfere, cooperate)

with each other when they are applied in a sequence. Now the use of

Assumption and Commitment will lead to good interactions between

patterns.

Assumption and Commitment will also help in the way patterns are

applied in sequence and in analysing pattern applicability. The diagram

below is illustrating the role of the Assumption and Commitment in

characterising context.

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 51

Figure 3.1: Illustrates the role of the Assumption and Commitment

Several different formats for describing patterns are used in the pattern

community, none of which has achieved widespread acceptance (see

Chapter 2 section 2.5). However, there is broad agreement on the types of

elements that a pattern should contain. The different patterns formats all

have particular qualities to them, and any pattern‟s author will tend to pick

a format that works well with their preferences.

The thesis is not making any changes to those formats or suggesting a

new one, all what the thesis is proposing that what ever the type of pattern

format being used the context will be characterised with those two

elements Assumption and Commitment as explicit elements.

3.2.2 The Need for Context

Context plays a very important role in the course of interaction between

things (patterns, objects, people….etc) and its surrounding environment. It

decides whether the interaction can continue successfully.

Context is the environment or situation in which something exists or

occurs. People can recognize the contexts they are in and know what

Solution

Context

Assumption

Commitment

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 52

information is applicable to each context, and derive information from

each context. The human brain uses context to manage a huge amount of

information from many different situations, such as family, friends, work,

and society. Using context, people quickly translate what information is

appropriate in any given situation. While context is essential to human

mental function and for his decisions, it is not widely present for the

modern information technology infrastructure.

Patterns also need context, and who is adding context to the pattern is

the system designer when using them to design a system using patterns.

Context is part of some pattern description formats, but some pattern

writer like for example Welie [88] and Tidwell [86] do not describe the

context as part of their pattern description formats. Not knowing what is

context will make the application of the pattern not clear, i.e., in what

context should this pattern be used? For example, a pattern from

Alexander to build a garden can not be used as user interface to build a

website for E-commerce.

This example is from the WU patterns [45], the full pattern

descriptions are in Appendix A, shows that the context of a given pattern

can result in different solutions depending on the context. This pattern

Establish the business objectives is a pattern that can be used in different

context. As stated by Ian Graham “This pattern is one of several in this

language whose applicability is far wider than web design and could – no

should – be adopted usefully on non-web projects. It is a process pattern”.

The pattern description is as follow:

Pattern’s name: Establish the business objectives

Pattern’s description:

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 53

The problem this pattern wants to solve is to create a new website or

modify an existing one. This pattern is as fundamental to the success of

web projects as to others and because it is one of the patterns most often

ignored by web developers– to the ultimate detriment of their projects. It

is a process pattern. Business objectives allow teams to validate their use

case and business process models. How should they be discovered?

Assumption:

The Assumption for this pattern for any general usage in any domain is

that there are business objectives.

Commitment

For the application of this pattern in this web design context the specific

Commitment is a website that satisfies the business objectives. The

Commitment for this pattern for any general usage in any domain is that

the pattern will create a process that satisfied the business objectives.

So from the above pattern description it can be seen that when the

system designer uses this pattern in designing a website for E-commerce

the context of it is totally different from designing an E-government

website, in terms of the type of solutions they provide, i.e., service. Even

though both services are provided online through a website but the

services they are providing are different in their context.

3.2.3 Capturing Context

This subsection will discuss the characterisation of the context with the

two elements Assumption/Commitment.

 3.2.3.1 Assumption/Commitment (Constraints)

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 54

In this subsection two main questions arise when trying to capture the

context via the Assumption/Commitment constraints:

1- What do I need in order to apply the pattern?

 (The answer to this question is described in the Assumption)

2- What is the result of applying the pattern?

 (The answer to this question is described in the Commitment)

So in order to capture them the designer needs to start by answering

these two questions. The answer is embedded inside the pattern

description and the system under development, this will be shown in the

next subsection.

3.2.3.2 How can the Assumption/Commitment Constraints be

Captured from the Available Information Sources

The Assumption and Commitment are constraints placed on the context.

These constraints can come from many different sources and the system

designer, must consider the context in order to find the right pattern to

apply.

The Assumption can be identified from many sources and the main

ones are:

a. The pattern name

b. The problem descriptions

c. The solution descriptions

d. The information of the system under development

The Commitment can be identified from the solution provided by the

pattern and can be also identified from the problem it is solving.

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 55

a. The solution descriptions

b. The problem description

c. The information of the system under development

3.2.3.3 Example of Assumption/Commitment Capture

This example is from Welie pattern collection website [88], and the full

pattern descriptions are in Appendix B, to show how to extract the

Assumption/Commitment from the information available in the pattern

description format. Welie used a format which did not include the context

in the description of his patterns. The pattern information is as follow:

Pattern’s name: View

Pattern’s description:

The problem this pattern wants to solve is that the users need to manage a

collection of objects. A view usually is an overview of a set of objects, e.g.

email messages, orders, appointments, products, and images. Users need

to manage objects such as shopping orders, emails, bank accounts, stocks,

and so on.

Assumption:

There is a set of objects.

Commitment

Is the creation of an overview of objects that together is meaningful to

users and can be seen and navigated through very easily.

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 56

3.3 The Framework

How to solve problems that cannot be solved by a single pattern? What

kind of patterns should be applied in which order? Answering such

questions is important for being able to use patterns successfully.

Otherwise patterns are applied, but the resulting design will likely expose

unnecessary complexity. Even with the fact that every well-described

pattern provides information about its implementation, refinement and

combination with other patterns [42, 18]. But all this information is

pattern-specific. The application of patterns in general is not supported by

that information when building a real-world software system.

This framework is an approach for supporting the effective use of

patterns in software engineering to solve problems that have no specific

patterns that provide a solution. First a categorisation of patterns is

introduced that characterise the role that a pattern can play in the

framework. This characterisation is orthogonal to the other used types

(architectural patterns, design patterns and idioms or coding patterns)

which are introduced in Chapter 2. Although the terminology is the same

as used in WU [44, 45] the definition is however different. These patterns

are:

 Abstract pattern. This pattern is defined as the specification of a

problem which the system designer is trying to solve.

 Concrete pattern. This pattern is defined as any pattern available in

any pattern bank, i.e., any pattern which will solve a particular

problem.

Pattern refinement denotes the „implementation‟ of an abstract pattern

by a concrete pattern. Again since application of a pattern is context

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 57

dependent, refinement will be context dependent as well. Refinement is

represented as a dashed line (see Figure 3.2). So a concrete pattern

„implements‟ an abstract pattern in a certain context if the following two

conditions hold:

1. The Assumption of the Abstract pattern (A) implies the

Assumption of the Concrete pattern (Ax).

 A implies Ax

2. The Commitment of the Concrete pattern (Cx) implies the

Commitment of the Abstract pattern (C).

 Cx implies C

So intuitively refinement of patterns in certain context means that an

abstract pattern can be replaced by a concrete pattern if and only if those

conditions hold.

Figure 3.2: Illustrates the refinement condition need to be hold

between two patterns

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 58

This framework would not only provide solutions to specific design

problems, but it will also provide a process of how to apply patterns,

which will help in the process of applying them: when, how, and in which

order. The framework consists of two stages described in the following

subsections.

In this framework a pattern is presented as a problem/solution pair

together with an Assumption/Commitment pair (Prob, Sol, A, C). The

system designer starts with an abstract pattern (Prob, Sol, A, C) that is a

specification of the system to be built, i.e., Prob is the specification and

Sol is the solution the designer is constructing to solve Prob within a

context described by the Assumption /Commitment pair (A, C).

3.3.1 Stage 1: Use/Adapt Existing Patterns

Firstly the designer will look for a concrete pattern to solve the problem

Prob. If there is a pattern in a particular pattern bank that solves this

problem then the designer will use it. This pattern must solve the whole

problem.

Secondly, if there is no pattern in a particular pattern bank that solves the

problem Prob the designer has to search for a solution and the designer

will have the following 2 options:

A. To search for a concrete pattern that solves a bigger problem. In this

case there is a concrete pattern P (Prob_p, Sol_p, Ap, Cp) such that

Prob is contained in Prob_p because then pattern P will provide a

solution Sol_p for it. So if Prob is contained in Prob_p, i.e., Prob is

smaller than Prob_p, and Sol_p is a solution for Prob_p then

obviously Sol_p is also a solution for the smaller Prob. Since also the

context need to match then the following conditions need to hold:

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 59

 A implies Ap (because of refinement)

 Cp implies C (because of refinement)

In that case Sol_P provides a solution for problem Prob in the context

described by A and C. Figure 3.3 illustrates this relation.

Figure 3.3: Illustrates the use of part of a bigger pattern solution to

solve smaller problem

B. To invent a new concrete pattern. This new pattern needs to be

examined and used over and over again to become an accepted pattern.

If none of the above is appropriate or no solution is found using Stage

1 then the system designer proceeds to Stage 2.

3.3.2 Stage 2: Divide and Conquer

If the designer faces a problem where there exists no concrete pattern in

any bank to solve that particular problem then the designer has to

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 60

decompose this problem into sub-problems and find concrete patterns that

will provide a solution for these sub-problems. The rationale is that for a

complex system, there may not be an existing concrete pattern that can be

used directly to solve this big problem.

The stages of Divide and Conquer are as follows:

Stage I: Decompose the Problem into Sub-problems (Divide)

If there are no concrete patterns available for solving a specific problem

directly then the designer decomposes the big/complex problem using

operator OPd into smaller sub-problems.

The context described by A and C remain the same for these sub-

problems. Figure 3.4 shows a problem decomposition into two sub-

problems using operator OPd.

Figure 3.4: Illustrates the decomposition of the problem

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 61

Stage II: Compose the Solutions for the Sub-problems (Conquer)

After decomposing the problem the focus is now on how to compose the

solutions of the sub-problems to form the solution to the problem Prob.

Instead of looking for patterns that will solve Prob the designer needs to

find patterns that will solve the sub-problems.

If the designer finds concrete patterns P1 and P2 that will provide

solutions Sol_1 and Sol_2 for respectively Prob_1 and Prob_2 then Sol_1

OPc Sol_2 will provide a solution for the original problem Prob.

Sol_1 OPc Sol_2 will only provide a solution for problem Prob if the

context of patterns P1 and P2 matches that of the abstract pattern. If the

operator OPd and OPc are the sequential operator then the matching of

context is expressed as follows:

 A implies A1 (because of refinement)

 C2 implies C (because of refinement)

 C1 implies A2 (because of sequential application/composition)

In Chapter 4 the matching of context with respect to various operators,

i.e., Sequential, Choice and Parallel will be discussed.

From Figure 3.5 it can be seen that the problem is decomposed into

sub-problems and then the concrete patterns solving those sub-problems

can be composed to solve the original problem, i.e., the designer performs

the following steps:

 (Prob, Sol, A, C)

 (Prob_1 OPd Prob_2, Sol, A, C)

 (Prob_1 OPd Prob_2, Sol_1 OPc Sol_2, A, C)

 (Prob_1, Sol_1, A1, C1) OP (Prob_2, Sol_2, A2, C2)

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 62

So composing two concrete patterns applications denotes first the

decomposition of the problem Prob and then the composition of the

solutions for the sub-problems.

Figure 3.5: Illustrates the decomposition of the problem and

composition of the solution

The Ax and Cx stand for the Assumption and commitment of the

composed patterns.

3.3.3 The Role of the Operators in the Framework

When using the framework to solve a problem the operators play two

roles:

1- To decompose the problem into sub-problems:

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 63

Figure 3.5 above shows that the problem Prob is decomposed into two

sub-problems (Prob_1 and Prob_2) using operator OPd. The operator

OPd could be for example sequence.

2- To compose the sub-solutions to form a solution:

The sub-problems created in Stage 2 I might have concrete patterns that

provide a solution to those sub-problems. These sub-solutions need to be

composed together using operator OPc to form a solution for the overall

problem Prob. Again this operator could be for example sequence.

In general the operator OPd for decomposition matches the one for

composition OPc. An example where this is not the case is when the OPd

is the Parallel operator and the OPc could be in sequence. In this case the

designer opted to provide a sequential solution for a parallel problem.

3.3.4 Example of the Use of the Framework

This example uses design patterns from the Welie pattern collection

website [88] and the full patterns descriptions are in Appendix B. although

the framework can be applied using architectural patterns and idioms (or

coding patterns) the examples and the case studies in the thesis will only

consider design patterns. The example will show the design of a specific

part of a shopping website. What is the problem to be solved? The

problem is specified as follows:

The user wishes to buy items and wants to see those items listed before

check out. One of the most common patterns is the Shopping Cart pattern.

This Shopping Cart pattern can not be used as is because it is an abstract

pattern that requires the concrete pattern List Builder and Collector to

solve specific sub-problems. First the description of these 3 patterns will

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 64

be given and then the use of the framework to show the relationships

between the 3 patterns.

The next two tables summaries all the needed information about the

used design patterns in the example.

Pattern

name

Problem Solution

Pattern 7:

Shopping

Cart

Users want to buy a

product

Introduce a shopping cart where users can put

their products in before they actually

purchase them.

Pattern 8:

Collector

Users need to

temporarily gather a

set of items for later
use

Allow users to build their list of items by

selecting the items as they are viewing them.

Place a link to the collected items list on
every page in the site.

Pattern 9:

List Builder

The users need to build

up and manage a list of

items

Present the total list and provide editing

functionality next to it.

Table 3.1: Problem/Solution of the used patterns from Welie [88]

Pattern name Assumption Commitment

Pattern 7:

Shopping Cart

A collection of objects the user

can buy

List the objects the user wants

to buy.

Pattern 8:

Collector

There are objects that the user

can select.

Set of objects selected by the

user.

Pattern 9: List

Builder

There is a set of objects

selected by the user

To list the objects in the set
selected by the user in a

particular order.

Table 3.2: Assumption/Commitments pairs of the used patterns

The framework is used to solve the Shopping Cart problem:

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 65

Stage 1: there is no concrete pattern in the system designer‟s pattern bank

that can solve this problem and there is also no bigger concrete pattern that

will provide a solution. Then the next stage in the framework is applied.

Stage 2: will have the following steps:

I - to decompose this problem into sub-problems (Divide). The Shopping

Cart pattern problem can not be solved by applying only one pattern. The

Shopping Cart problem is decomposed into two sub-problems: the

Collector and List Builder. The decomposition is done using the sequential

operator.

II - to compose the solutions of the sub-problems Collector and List

Builder (Conquer). Since the sub-problems of both patterns are

representing part of the solution for the problem of the Shopping Cart

pattern the sequential composition of the solutions of Collector and List

Builder patterns will solve the Shopping Cart problem.

The Collector and List Builder patterns need to be applied in the right

context. The Assumption and Commitment of each patterns is listed in

Table 3.2. Since the operator OPd and OPc are both the sequential

operator the matching of context is expressed as follows:

In circle 1: A7 implies A8 (because of refinement)

In circle 2: C8 implies A9

In circle 3: C9 implies C7 (because of refinement)

Where

A7 is the Assumption of the Shopping Cart pattern

A8 is the Assumption of the Collector pattern

A9 is the Assumption of the List Builder pattern

C7 is the Commitment of the Shopping Cart pattern

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 66

C8 is the Commitment of the Collector pattern

C9 is the Commitment of the List Builder pattern

So the system designer needs to check those three conditions. In this

case the three conditions trivially hold.

Figure 3.6 illustrates the relation between the three patterns.

Figure 3.6: Illustrates the decomposition of the problem and

composition of the solutions for the Shopping Cart pattern

3.4 Summary

This chapter started with discussing the various definitions of context and

then introduced the thesis definition of context. The context in the thesis is

CHAPTER 3: COMPOSITIONAL FRAMEWORK FOR PATTERN APPLICABILITY

 67

characterised via Assumption and Commitment constraints which will

facilitate the way of applying patterns. The ways of capturing context from

the available information sources were also introduced. Then the chapter

outlined the framework within which pattern application can be studied

and analysed. A categorisation orthogonal to the existing one was

introduced reflecting the role that pattern plays during the design of the

system. They are the Abstract and Concrete patterns. Some of the patterns

can be Abstract in one context and they can be Concrete in another context

and Chapter 5 will illustrate this.

The framework also provided a process of applying patterns and the

stages the designer will be able to use in solving a problem. They are two

stages. Stage 1: Use/Adapt Existing Patterns. Stage 2: Divide and

Conquer. Stage 2 will allow the designer to divide the problem into sub-

problems and compose their solutions to solve the main problem. This

framework uses three operators to help in decompose the problem into

sub-problems and compose solutions of sub-problems. These operators

also used to indicate the composition of patterns. These operators are the

Sequential, Choice and Parallel and their role is fully discussed in Chapter

4.

 68

Chapter 4

Operators

Objectives:

 To present the operators used in the framework

 To present the rules for these operators

 To give examples demonstrating the use of these operators

CHAPTER 4:OPERATORS

 69

The previous chapter introduced the key elements of the framework for

patterns analysis and applicability. The focus now turns to the operations

which will help in applying the framework. In order to do so it is

necessary to provide operators that will be used for:

1- Decomposition of problem into sub-problems.

2- Composition of solutions.

3- The indication of the order in which patterns are applied.

4- Making the use of the pattern maps more precise and clearer.

The operators are listed in the table below.

PURPOSE DESCRIPTIONS EXAMPLE NAME SYMBOL

Apply P1 and

then apply P2

Indicates the

sequence of the

act

P1 ; P2

Sequential

;

Apply at least

one P1 or P2

Indicates the

choice of the act

P1  P2 Choice 

Apply both P1

and P2 in any

sequence

This is a

combination of

the sequential

and the choice

operators. It is

used for ease of

writing.

P1  P2

Parallel



Table 4.1: Operators table

The operators are similar to the ones used in The Guarded Command

Language (GCL) by Edsger Dijkstra [36]. The following sections will

introduce each operator in more detail and provide rules for applying

patterns in certain order and context.

CHAPTER 4:OPERATORS

 70

4.1 The Role of the Operator at Problem/Solution Level

As mentioned in Chapter 3, the operators are used to:

1. Decompose the problem into sub-problems.

2. Compose the solutions of the sub-problems.

The Sequential, Choice and Parallel operators satisfy the following

Axioms, i.e., these axioms hold for the language used to describe

problem and solution.

Axioms for decomposition and composition

 Let Xi be a problem or solution (1 ≤ i ≤ 3)

X1; (X2; X3) = (X1; X2) ; X3 (; is associative)

X 1  X 1= X 1 (is idempotent)

X 1  X 2 = X 2  X 1 (is commutative)

X 1; (X 2  X 3) = (X 1; X 2)  (X 1; X 3) (; is distributes over )

X 1  (X 2  X 3) = (X 1  X 2)  X 3 (is associative)

X 1 X 2 = X 2 X 1 (is commutative)

In the following sections the operators are defined at pattern level,

i.e., patterns are applied in certain context using those operators. Above

axioms are then lifted to pattern level in form of rules.

4.2 Sequential Operator (;)

This is an operator that indicates the sequence of the act, and it is used to

show the flow or direction of usage of the patterns. P1 ; P2 means that

pattern P1 must be applied first and then pattern P2 is applied.

CHAPTER 4:OPERATORS

 71

4.2.1 Applying Patterns Sequentially in Certain Context

Assumption and Commitment constraints are used to allow the

Sequential application of patterns in a certain context (see Figure 4.1).

Figure 4.1: The Assumption and Commitment and the use of the

sequential operator

As seen in Chapter 3 patterns applied sequentially in certain context

needs to satisfy conditions. If P1 ; P2 then the Assumption of the P2

must be implied by the Commitment of P1. The matching of context is

expressed in Figure 4.1 by the red circles which means the following:

Let 1 ≤ i ≤ 2

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

Ci is the Commitment of concrete pattern Pi

CHAPTER 4:OPERATORS

 72

 In circle 1, A implies A1 (usually A is equal to A1)

 In circle 2, C2 implies C (usually C2 is equal to C)

 In circle 3, C1 implies A2

4.2.2 Algebraic Rules

These algebraic rules are used to show how certain rules will determine

the application order of the patterns.

The following are rules for the Sequential operator:

Rule 1

 P1; (P2; P3) = (P1; P2) ; P3

Applying P1 then P2 followed by P3 is the same as applying P1 followed

by P2 and then P3.

Figure 4.2 will demonstrate the first half of the algebraic Rule 1

which is P1; (P2; P3) and the role the Assumption and Commitment.

Figure 4.2: Illustrate the first half of the sequential algebraic Rule 1

CHAPTER 4:OPERATORS

 73

The matching of context is expressed in Figure 4.2 by the circles

which means the following:

Let 1 ≤ i ≤ 3

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

Ci is the Commitment of concrete pattern Pi

 In circle 1, A implies A1 (usually A is equal to A1)

 In circle 2, C1 implies A2

 In circle 3, A2 implies A2

 In circle 4, C2 implies A3

 In circle 5, C3 implies C3

 In circle 6, C3 implies C (usually C3 is equal to C)

Figure 4.3 will demonstrate the second half of the algebraic Rule 1

which is (P1; P2) ; P3 and the role the Assumption and Commitment.

Figure 4.3: Illustrate the second half of the sequential algebraic Rule

1

CHAPTER 4:OPERATORS

 74

The matching of context is expressed in Figure 4.3 by the circles

which means the following:

Let 1 ≤ i ≤ 3

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

Ci is the Commitment of concrete pattern Pi

 In circle 1, A implies A1 (usually A is equal to A1)

 In circle 2, A1 implies A1

 In circle 3, C1 implies A2

 In circle 4, C2 implies C2

 In circle 5, C2 implies A3

 In circle 6, C3 implies C (usually C3 is equal to C)

This will proves that both side of Rule 1 are equal.

4.2.3 Example

The example used in this section is from Ian Graham‟s (WU), which

appears in A Pattern Language for Web Usability [44], which is a

pattern language for designing and building websites. WU will be

discussed in detail in Chapter 5. The full patterns descriptions are in

Appendix A.

WU patterns, the diagram (Getting started on your site) will be

used to illustrate the use of the Sequential operator in applying patterns

by using some of the patterns in Figure 4.4:

CHAPTER 4:OPERATORS

 75

Figure 4.4: Illustration of the use of the sequential operator in the

application of the patterns in Box 4.4-1 from WU [45]

In order for this application to happen the Assumption and

Commitment condition of the sequential operator rule must be met (the

Commitment of the first applied pattern is the same as the Assumption

of the next pattern).

The chosen patterns from Figure 4.4 are:

P1 (Establish the business objectives), P2 (Business process model) and

P3 (Establish the use cases), which need to be applied in the sequence

(P1; P2; P3) shown in the diagram above. This will consequently

illustrate the sequential operator. The conditions of the sequential

operator rule are satisfied:

P1; P2; P3

Box 4.4-1

CHAPTER 4:OPERATORS

 76

The Assumption A2 of P2 is the same as the Commitment C1 of P1.

The Assumption A3 of P3 is the same as the Commitment C2 of P2.

Where the Assumption and Commitment are as follows:

P1 (Establish the business objectives)

A1: there are business objectives.

C1: List of chosen business objectives.

P2 (Business process model)

A2: list of chosen business objectives.

C2: list of business process corresponding to the business objectives.

P3 (Establish the use cases)

A3: list of chosen business process.

C3: list of use cases corresponding to the business process.

4.3 Choice Operator ()

This is an operator that indicates a choice between more than one

possibility. This operator is used to show that any pattern or patterns that

meet a need for the usage of the patterns can be used. It also means that

the designer have the choice to pick at least one pattern, but more than

one can be picked.

4.3.1 Choice of Applying Patterns in Certain Context

Assumption and Commitment constraints are used to allow the choice of

patterns in certain context (see Figure 4.5).

CHAPTER 4:OPERATORS

 77

Figure 4.5: The Assumption and Commitment and the use of the

Choice operator

If P1  P2 is applied in a certain context then the following

conditions need to be satisfied:

 The Assumption „A1 or A2’ must be implied by the Assumption A

and „C1 or C2’ must imply the Commitment C. The matching of context

is expressed in Figure 4.5 by the red circles which means the following:

Let 1 ≤ i ≤ 2

 A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

In circle 1, A implies (A1 or A2)

CHAPTER 4:OPERATORS

 78

In circle 2, (C1 or C2) implies C

4.3.2 Algebraic Rules

These algebraic rules are used to show how certain rules will be used in

the application order of the patterns.

The following are rules for the choice operator:

Rule 2

 P1  P1= P1

A choice between the same pattern will result in applying the pattern

once.

Figure 4.6 will illustrate the algebraic Rule 2 and the role of the

Assumption and Commitment.

Figure 4.6: Illustrate the Choice algebraic Rule 2

The matching of context is expressed in Figure 4.6 by the red circles

which means the following:

CHAPTER 4:OPERATORS

 79

A1 is the Assumption of concrete pattern P1

C1 is the Commitment of concrete pattern P1

In circle 1, A implies A1

In circle 2, C implies C1

In circle 3, A implies A1

In circle 4, C implies C1

Rule 3

 P1  P2 = P2  P1

Order of choice is not relevant.

Figure 4.7 will illustrate the algebraic Rule 3 and the role of the

Assumption and Commitment.

Figure 4.7: Illustrate the Choice algebraic Rule 3

Figures 4.7 shows that for both side of the algebraic rule equation the

end result is the same. The matching of context is expressed in that

figure by the red circles which means the following:

CHAPTER 4:OPERATORS

 80

Let 1 ≤ i ≤ 2

 A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

In circle 1, A implies (A1 or A2)

In circle 2, (C1 or C2) implies C

In circle 3, A implies (A2 or A1)

In circle 4, (C2 or C1) implies C

This proves that both side of Rule 3 are equal.

Rule 4

 P1; (P2  P3) = (P1; P2)  (P1; P3)

Applying P1 in sequence (or followed by) with P2 or P3 is the same as

applying P1 followed by P2 or P1 followed by P3.

Figure 4.8 will demonstrate the first half of the algebraic Rule 4

which is P1; (P2  P3) and the role the Assumption and

Commitment.

CHAPTER 4:OPERATORS

 81

Figure 4.8: Illustrate the first half of the choice algebraic Rule 4

The matching of context is expressed in Figure 4.8 by the red circles

which means the following:

Let 1 ≤ i ≤ 3

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

In circle 1, A implies A1

In circle 2, C1 implies (A2 or A3)

In circle 3, (C2 or C3) implies C

Figure 4.9 will illustrate the second half of the algebraic Rule 4

which is (P1; P2)  (P1; P3) and the role the Assumption and

Commitment.

CHAPTER 4:OPERATORS

 82

Figure 4.9: Illustrate the second half of the choice algebraic Rule 4

Both figure 4.8 and 4.8 shows that for both side of the algebraic rule

the end result is the same. Rule 4 is expressed as follows:

Let 1 ≤ i ≤ 3

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

In circle 1, A implies A1

In circle 2, C1 implies A2

In circle 3, C1 implies A3

In circle 4, (C2 or C3) implies C

This proves that both side of Rule 4 are equal.

CHAPTER 4:OPERATORS

 83

Rule 5

 P1 (P2  P3) = (P1  P2)  P3

 The choice is associative.

Figure 4.10 will demonstrate the first half of the algebraic Rule 5

which is P1 (P2  P3) and the role of the Assumption and

Commitment.

Figure 4.10: Illustrate the first half of the choice algebraic Rule 5

The matching of context is expressed in Figure 4.10 by the red

circles which means the following:

Let 1 ≤ i ≤ 3

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

CHAPTER 4:OPERATORS

 84

In circle 1, A implies (A1 or A2 or A3)

In circle 2, (C1 or C2 or C3) implies C

Figure 4.11 will illustrate the second half of the algebraic Rule 5

which is (P1  P2)  P3 and the role the Assumption and

Commitment.

Figure 4.11: Illustrate the second half of the choice algebraic Rule 5

The matching of context is expressed in Figure 4.11 by the red

circles which means the following:

Let 1 ≤ i ≤ 3

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

In circle 1, A implies (A1 or A2 or A3)

In circle 2, (C1 or C2 or C3) implies C

CHAPTER 4:OPERATORS

 85

This proves that both side of Rule 5 are equal.

4.3.3 Example

The example will illustrate the use of the choice operator with the

Assumption and Commitment to guide the selection of the application of

the next pattern in the pattern map. WU patterns [45], The full patterns

descriptions are in Appendix A, the diagram (Dealing with workflow

and security) will be used to illustrate the application of the choice

operator in applying patterns by using some of the patterns in Figure

4.12:

Figure 4.12: Illustration of the use of the choice operator in the

application of the patterns in Box 4.12-1 from WU [45]

The use of choice operator will give the designer limited freedom in

choosing the next pattern(s) to be applied.

P25  P23  P24  P76

Box 4.12-1

CHAPTER 4:OPERATORS

 86

The chosen patterns from Figure 4.12 are:

Pattern 25 (Navigation bar), Pattern 23 (Breadcrumbs), P24 (Site logo at

top left) and P76 (Content is linked to navigation). At least one of them

needs to be applied. This will therefore illustrate the choice operator.

Where the Assumption and Commitment are as follows:

Pattern 25 (Navigation bar)

A25: there is a current webpage to be displayed.

C25: is navigation bar dependent on the location

Pattern 23 (Breadcrumbs)

A23: there is a current webpage to be displayed.

C23: to put breadcrumbs at this webpage.

P24 (Site logo at top left)

A24: there is a current webpage to be displayed.

C24: to put a logo at his webpage.

P76 (Content is linked to navigation)

A76: there is a current webpage to be displayed.

C76: link contents of current webpage to navigation.

As can be seen from the Assumption of the above patterns that they

are the same.

So the Assumption of P25  P23  P24  P76 is: there is a current

webpage to be displayed.

The Commitment of P25  P23  P24  P76 is at least one of the

Commitments of P25, P23, P24 and P76.

CHAPTER 4:OPERATORS

 87

4.4 Parallel Operator ()

This is an operator that indicates that two patterns can be applied

simultaneously. The choice here is in the order of applying which first

and which second. This operator is used to simplify the writing of

applying patterns in any order. P1P2 means that P1 and P2 can be

applied in any order, i.e., apply P1 first and then P2 or apply P2 first and

then P1. The parallel operators is defined as follows

P1P2 = P1 P2  P2 P1

Which mean there is a choice in the application order of these patterns.

4.4.1 Applying Patterns in Parallel in Certain Context

Assumption and commitment constraints are used to allow the parallel

operator of patterns in certain context (see Figure 4.13).

Figure 4.13: The Assumption and Commitment and the use of the

parallel operator

CHAPTER 4:OPERATORS

 88

The matching of context is expressed in Figure 4.13 by the red

circles which means the following:

Let 1 ≤ i ≤ 2

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

In circle 1, A implies (A1 and A2)

In circle 2, (C1 and C2) implies C

4.4.2 Algebraic Rules

The following is a rule for the parallel operator:

Rule 6

 P1P2 = P2 P1

 Applying P1 and P2 in parallel is the same as applying P2 and P1 in

parallel.

Where P1P2 = P1 P2  P2 P1

 And P2P1 = P2 P1  P1 P2

Figure 4.14 will illustrate the first half of the algebraic Rule 6 which

is P1P2 and the role the Assumption and Commitment.

CHAPTER 4:OPERATORS

 89

Figure 4.14: Illustrate the first half of the parallel algebraic Rule 6

The matching of context is expressed in Figure 4.14 by the red

circles which means the following:

Let 1 ≤ i ≤ 2

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

In circle 1, A implies (A1 or A2)

In circle 2, C1 implies A2

In circle 3, C2 implies A1

In circle 4, (C2 or C1) implies C

Figure 4.15 will illustrate the second half of the algebraic Rule 6

which is P2P1 and the role the Assumption and Commitment.

CHAPTER 4:OPERATORS

 90

Figure 4.15: Illustrate the second half of the parallel algebraic Rule 6

The matching of context is expressed in Figure 4.14 by the red

circles which means the following:

Let 1 ≤ i ≤ 2

A is the Assumption of abstract pattern

Ai is the Assumption of concrete pattern Pi

C is the Commitment of abstract pattern

 Ci is the Commitment of concrete pattern Pi

In circle 1, A implies (A1 or A2)

In circle 2, C2 implies A1

In circle 3, C1 implies A2

In circle 4, (C1 or C2) implies C

This proves that both side of Rule 6 are equal.

CHAPTER 4:OPERATORS

 91

4.4.3 Example

The same example as before, WU patterns [45], the full patterns

descriptions are in Appendix A, the diagram Adding detail will be used

to illustrate the application of the parallel operator.

Figure 4.16: Illustration of the use of the parallel operator in the

application of the patterns in Box 4.16-1 from WU [45]

The chosen patterns from Figure 4.16 are:

P12 (site map), P38 (KISS) can be applied in any order, i.e., in parallel.

The Assumption/Commitment of them are:

P12 (site map)

A12: there is a website structure

C12: is provide the user with a contextual overview of the site

CHAPTER 4:OPERATORS

 92

P38 (Kiss)

A38: there is a website structure

C38: simple site structure

The Assumption of P12 P38 is ‘A12 or A38’

The Commitment of P12 P38 is ‘C12 or C38’

4.5 Summary

This chapter introduced the decomposition and composition operators.

In order to decompose a problem into sub-problems and to compose

their solutions, a set of operators was defined: Sequential, Choice, and

Parallel. Their definition and meaning were illustrated and some

algebraic rules for using them with respect to the Assumption and

Commitment constraints. The method of writing them is described as an

algebraic expression. Examples were also given to demonstrate

Sequential, Choice, and Parallel operators.

 93

Chapter 5

Case Studies

Objectives:

 To use two case studies to explain how patterns should be applied

using the new approach

 To give detailed explanations of each case study

 To evaluate the use of the framework in the examined websites for

E-commerce and E-government

 Analysis and discussion

CHAPTER 5: CASE STUDIES

 94

5.1 Introduction to WU and Welie Patterns Collection

This chapter will analyse parts of the design of two existing websites using

the Assumption/Commitment framework.

The patterns used in the design are from WU and Welie [44, 45, 88],

the full patterns descriptions are in Appendix A and B, as a building guide

in the examination of the design of the two websites. The first case study

examines the design of an existing shopping website- etidy. The second

case study examines the design of an existing E-government website for

Child Benefits.

WU is a pattern language for designing and building usable websites.

The way this language is built will be noted in section 5.1.1.

Welie pattern library for interaction design is a collection of patterns

that can be help designer as reference or bank when designing websites.

The way this library is constructed will be noted in section 5.1.2.

5.1.1 The Web Usability (WU)

The Web Usability (WU) [44, 45] pattern language is used in the design of

the websites analysed in both case studies.

The language sprang from a workshop organised by Ian Graham at the

OT2001 conference in Oxford. In this workshop he suggested the names

and outlines of about 70 patterns with performances that were completed

and discussed by participants working in pairs. The language grew

organically in this manner, and in its final published form consists of a

network of 79 highly interconnected patterns, each of them divided into

CHAPTER 5: CASE STUDIES

 95

four sections that take the form of pattern maps. The four sections have

been labelled for the following functions:

 Getting started on your site (see Fig. 5.1)

 Enhancing usability (see Fig. 5.2)

 Adding detail (see Fig. 5.3)

 Dealing with workflow and security (see Fig. 5.4)

Some patterns in these maps appear in more than one section. In these

maps, the patterns are classified into abstract, concrete and terminal

patterns and are shown by their colour coding.

These sections broadly follow the order in which they might be dealt

with in an actual scenario, in a similar fashion to Alexander‟s APL.

Graham suggests that one should use an actual problem in order to fully

appreciate the workings of these patterns, and to begin with Pattern 1:

Establish the business objectives. One should then continue until one

reaches a terminal pattern. Particular design problems or kinds of site can

be handled using sublanguages. A sequence can be built using the

following questions:

• Is the pattern relevant?

• Can it be ignored?

• How does it apply in this case?

• What solution will it generate?

The completed sequence results in a preliminary list of patterns useful

for a particular problem. The next stage is to go through the list in order,

asking the same questions of each pattern and remembering to consider

CHAPTER 5: CASE STUDIES

 96

each pattern in its opening context in order to eliminate repetitions.

Finally, Graham says, there emerges a working subset of the pattern

language applicable to a particular problem.

The patterns in the WU pattern language are described as being of

three types: Abstract, Concrete and Terminal. Figures 5.1- 5.4. Shows the

WU pattern maps, which are divided into four diagrams.

Figure 5.1: Diagram 1(Getting started on your site) from WU [45]

CHAPTER 5: CASE STUDIES

 97

Figure 5.2: Diagram 2 (Enhancing usability) from WU [45]

Figure 5.3: Diagram 3(Adding detail) from WU [45]

CHAPTER 5: CASE STUDIES

 98

Figure 5.4: Diagram 4(Dealing with workflow and security) from WU

[45]

5.1.2 Welie Patterns Library for Interaction Design

Welie pattern library [88] for interaction design is a collection of

patterns or a pattern bank or as he stated “they are references or basic

'toolkit' ”. The website contains a lot of patterns as Welie called them

“best practices in Interaction Design patterns”. The patterns are listed in

meaningful groups which are divided into three main groups. These three

groups are divided into sub-groups containing a collection of patterns.

They are as follow:

1. User needs: list the Patterns that meet the user direct need.

They are divided into the following sub-groups:

CHAPTER 5: CASE STUDIES

 99

a. Navigating around (for example contains 25 patterns)

b. Basic interactions

c. Searching

d. Shopping

e. Dealing with data

f. Personalizing

g. Making choices

h. Giving input

i. Miscellaneous

2. Application needs: list the Patterns that help the designer and

the application to communicate better with the user direct need.

They are divided into the following sub-groups:

a. Drawing attention

b. Feedback

c. Simplifying interaction

3. Context of design: list the Patterns that deal with the context

of the design. They are divided into the following sub-groups:

a. Site types

b. Experiences

c. Page types

5.2 A Shopping Website Case Study

5.2.1 Introduction

The case study is examining the design of an existing shopping website

called etidy [38] (see Figure 5.5). This website sells only one product and

it is a necklace hanger. A closer examination of the website reveals that

CHAPTER 5: CASE STUDIES

 100

the designer used a selection of User Interface patterns (UI) patterns (see

Figure 5.5) for the design of the website. User Interface patterns, taken

from WU and Welie [44, 45, 88] are used in the design of many shopping

sites like Amazon, Ebay, Tesco …etc. The selected patterns are the

essential patterns needed to build a small shopping website.

The purpose of this case study is to evaluate the thesis findings, i.e.,

the evaluation of the Assumption /Commitment framework and the use of

the operators in the application of patterns to build a small shopping

website.

The case study will be divided into two parts. In the first part the

existing website will be examined. In the second part, the design of the

website is modified to examine the ability of the framework in supporting

any extension or modification in the form of adding or removing patterns.

CHAPTER 5: CASE STUDIES

 101

Figure 5.5: The etidy website main page [38]

CHAPTER 5: CASE STUDIES

 102

5.2.2 The First Part of the Case Study

The patterns used in the design of the etidy website [38] (see Figure 5.9)

are basic patterns and can be used to build any shopping website. The aim

here is to examine the use of the Assumption /Commitment framework in

applying those patterns and determined the order in which they can be

applied.

In this first part a total of 10 basic patterns are picked from WU and Welie

[44, 45, 88], the full patterns descriptions are in Appendix A and B. The

first four patterns are picked to determine the type of website to be built.

The rest of the patterns are selected to show the design of the basic

functionality of shopping website. Figure 5.6 show the two sets of

patterns.

1

2

3

Figure 5.6: Illustrates the main patterns from two different pattern

banks used in the etidy website

Because the original design of the website is unknown a design in the

form of pattern map is proposed. This design is represented as a pattern

map and illustrated in Figure 5.9. The proposed design is analysed using

the Assumption/Commitment framework. In the analysis the application

WU patterns

+

 Welie patterns

Establish the use

cases

Establish the
business objectives

Business process

model

Shopping View

Shopping Cart

E-commerce site

Purchase Process

Collector

List Builder

CHAPTER 5: CASE STUDIES

 103

order of the patterns is determined, i.e., what is needed (Assumption) in

order to apply a certain pattern and what is provided (Commitment) in

order to apply the next pattern.

For the simplicity the pattern map will be divided to two sections:

a. Section one: The Site Type Design (Abstract Patterns)

In this section the first 3 patterns can be used as a start to

design any type of business [45]. These patterns are applied

according to the context. The 4
th
 pattern determines the site

type and in this case an E-commerce site. The patterns in this

section are Abstract Patterns. They are illustrated in Figure

5.7.

b. Section two: The Site Concrete Design (Concrete Patterns)

In section one the type of site is determined. In section two a

concrete design of the site is given, i.e., a concrete design for

the abstract pattern E-commerce site is given. This is

illustrated in Figure 5.8.

CHAPTER 5: CASE STUDIES

 104

P4

E-commerce site

Figure 5.7: The site type design patterns for an E-commerce website

 Figure 5.8: The etidy website concrete design patterns

 Figure 5.9 illustrates the proposed patterns used in the etidy website.

P9

List Builder

P6

View

P5

Shopping

P10

Purchase Process

Order

Refinement

P3

Establish the use

cases

P1

Establish the
business objectives

P2

Business process

model

P8

Collector

P7

Shopping Cart

Order

CHAPTER 5: CASE STUDIES

 105

P4

E-commerce site

Figure 5.9: Illustrate the proposed patterns map used to build the etidy

website

P3

Establish the use

cases

P9

List Builder

P1

Establish the
business objectives

P6

View

P5

Shopping

P2

Business process

model

P10

Purchase Process

Order

Refinement

P8

Collector

P7

Shopping Cart

P

Shopping

Website

CHAPTER 5: CASE STUDIES

 106

The following tables summarise problem/solution and Assumption/

Commitment for each patter used in the first part of the case study.

The problem/Solution of the used patterns

Pattern

name

Source Problem Solution

Pattern 1:

Establish the

business

objectives

WU To create a new website or

modify an existing one

Hold a workshop involving

as many stakeholders as

possible.
Make sure that potential

users are represented by

marketing personnel or the

results of focus groups,

surveys, etc.

Find a good facilitator.

Agree a mission statement.

Find measures for each

objective.

Pattern 2:

Business

process model

WU To organise the content in a

way that supports several

navigation structures
simultaneously

An understanding of the

network of agents and

commitments that make up
the business must first be

gained.

The conversations that take

place at an appropriate

level of abstraction must be

specified, so that they

become stereotypes for

actual stories.

People must tell these

stories. Ensure that both

„before‟ and „after‟

business process models are
produced.

 Eliminate conversations

that do not correspond to

business objectives (or

discover the missed

objective).

Ensure that every objective

is supported by a

conversation.

Pattern 3:

Establish the

use cases

WU The site must serve at least

one significant business

purpose. For this reason we
must look at all the use cases

that we can predict users will

want to execute.

Extract the use cases from

the conversations in the

BUSINESS PROCESS
MODEL (2).

Record their

correspondences to the

business objectives.

Write post-conditions for

each use case.

Compare the vocabulary of

the post-conditions to the

type model.

Write use cases in

CHAPTER 5: CASE STUDIES

 107

stimulus–response form.
Convert the use cases into

the user training manual

and the test plan.

One stimulus/response pair

from the use case should

correspond to one step in

the workflow if the site

deals with workflows. If

not, do not constrain the

user‟s ability to perform

steps in any particular

sequence.
Ensure that you extract and

document a business object

type model from the use

case goals.

Pattern 4: E-

commerce Site
Welie User wants to shop for a

product.

Create a 'virtual' store

where visitors can browse,

choose and pay for all their

selections in one go.

Pattern 5:

Shopping

Welie Users want to look for

products of interest and

potentially purchase them

Create an online shopping

experience that matches

off-line shopping

experiences

Pattern 6:

View
Welie Users need to manage a

collection of objects

Create an overview of

objects that together is
meaningful to users

Pattern 7:

Shopping Cart
Welie Users want to buy a product Introduce a shopping cart

where users can put their

products in before they

actually purchase them.

Pattern 8:

Collector
Welie Users need to temporarily

gather a set of items for later

use

Allow users to build their

list of items by selecting the

items as they are viewing

them. Place a link to the

collected items list on every

page in the site.

Pattern 9: List

Builder
Welie The users need to build up

and manage a list of items

Present the total list and

provide editing

functionality next to it.

Pattern 10:

Purchase

Process

Welie Users want to purchase an

already selected product

Present users with the

purchase steps

Table 5.1: The problem/solution of the used patterns in the etidy website

CHAPTER 5: CASE STUDIES

 108

The Assumption/Commitment of the used patterns

Pattern

name

Source Assumption Commitment

Pattern 1:

Establish the

business

objectives

WU There are business

objectives.

List of chosen business

objectives.

Pattern 2:

Business

process model

WU List of chosen business

objectives.

List of business

processes corresponding

to the business

objectives.

Pattern 3:

Establish the

use cases

WU List of chosen business

processes.

List of use cases

corresponding to the

business processes.

Pattern 4: E-

commerce Site
Welie There is a shopping use

case for the E-commerce

process

Website that provides the
E-commerce process

shopping.

Pattern 5:

Shopping
Welie There are objects to buy

and there is a shopping use

case.

A website for buying

objects online.

Pattern 6:

View
Welie There is a set of objects.

Display the objects the

user can buy

Pattern 7:

Shopping Cart
Welie A collection of objects the

user can buy

List the objects the user

wants to buy.

Pattern 8:

Collector
Welie There are objects that the

user can select.

Set of objects selected by

the user.

Pattern 9: List

Builder
Welie There is a set of objects

selected by the user

To list the objects in the

set selected by the user in

a particular order.

Pattern 10:

Purchase

Process

Welie There are objects in the

shopping cart.

Buy the objects in the

shopping cart.

Table 5.2: The Assumption/Commitment of the used patterns in the etidy

website

The application of the proposed design in a certain context is checked

using the Assumption/Commitment framework. This is proved by

applying the framework for each pattern application.

The application steps of these patterns are:

Step Zero:

In this step the designer defines the problem, in this case the creation of a

shopping website to provide services to the user through the internet (see

CHAPTER 5: CASE STUDIES

 109

Figure 5.10).

Step one:

The first four Abstract patterns, P1: Establish the business objectives, P2:

Business process model, P3: Establish the use cases and P4: E-commerce

Site, need to be applied in the right context by using the Assumption and

Commitment of each patterns listed in Table 5.2. Since they are applied in

sequential order the operator is the sequential operator.

The designer will start by applying the following four patterns:

Pattern 1: Establish the business objectives

Pattern 2: Business process model

Pattern 3: Establish the use cases

Pattern 4: E-commerce Site

The framework is used to here aid the designer in solving the problem

of building shopping website and the framework stages will be applied as

follows:

Stage 1: there are no single concrete patterns in the designer‟s pattern

bank that can be applied to produce this website and solve this problem.

Also there is no bigger concrete pattern that will provide a solution to the

problem of building this website. Then the next stage in the framework is

applied.

Stage 2: will have the following steps:

I - to decompose this problem into sub-problems and find patterns for

these sub-problems (Divide). The shopping website problem can not be

solved by applying only one pattern. The shopping website problem is

decomposed into four sub-problems in this context: the Establish the

business objectives, Business process model, Establish the use cases and

CHAPTER 5: CASE STUDIES

 110

E-commerce Site. The decomposition is done using the sequential

operator.

II - to compose the solutions of the sub-problems Establish the business

objectives, Business process model, Establish the use cases and E-

commerce Site (Conquer). Since the sub-problems of those patterns are

representing part of the solution for the problem of the shopping website

problem the sequential composition of the solutions of four patterns will

solve the shopping website problem.

These four patterns need to be applied in the right context. Table 5.2

list the Assumption and Commitment of each patterns used. Figure 5.10

illustrates the relation between the Assumption/Commitment of these

patterns.

The Assumption of the shopping website (There are business

objectives) the Commitment of the shopping website (Website that provide

the E-commerce processes shopping).

Figure 5.10: The basic patterns to start the design of an E-commerce

site

CHAPTER 5: CASE STUDIES

 111

The operator used here is the sequential operator and the relation is

expressed as

P is refined by P1 P2 P3P4

The system designer needs to check the five following conditions to

make sure that the sequence of pattern can be applied for the shopping

website problem. In this case the five conditions trivially hold and the

matching of context is expressed as follows:

In circle 1: A implies A1 which means that

The Assumption of the shopping website (There are business objectives)

matches the Assumption of the Establish the business objectives pattern

(There are business objectives).

In circle 2: C1 implies A2 which means that

The Commitment of Establish the business objectives pattern (List of

chosen business objectives) matches the Assumption of the Business

process model pattern (List of chosen business objectives).

In circle 3: C2 implies A3 which means that

The Commitment of the Business process model pattern (List of business

processes corresponding to the business objectives) matches the

Assumption of the Establish the use cases pattern (List of chosen business

processes).

In circle 4: C3 implies A4 which means that

The Commitment of the Establish the use cases pattern (List of use cases

corresponding to the business processes) matches the Assumption of the

E-commerce Site pattern (There is a shopping use case for the E-

commerce process).

CHAPTER 5: CASE STUDIES

 112

In circle 5: C4 implies C which means that

The Commitment of the E-commerce Site pattern (Website that provides

the E-commerce process shopping) matches the Commitment of the

shopping website (Website that provides the E-commerce process

shopping).

Where

A is the Assumption of the shopping website problem

A1 is the Assumption of the Establish the business objectives pattern

A2 is the Assumption of the Business process model pattern

A3 is the Assumption of the Establish the use cases pattern

A4 is the Assumption of the E-commerce Site pattern

C is the Commitment of the shopping website problem

C1 is the Commitment of the Establish the business objectives pattern

C2 is the Commitment of the Business process model pattern

C3 is the Commitment of the Establish the use cases pattern

C4 is the Commitment of the E-commerce Site pattern

Figure 5.10 shows in order to replace the shopping website pattern by

a sequence of four basic patterns the designer needs only to check five

conditions.

Step Two:

For the following two patterns, P4: E-commerce site and P5: Shopping

need to be applied in the right context by using the Assumption and

Commitment of each patterns listed in Table 5.2.

The framework is now used to give a concrete design for pattern P4:

E-commerce.

CHAPTER 5: CASE STUDIES

 113

Stage 1: there is an abstract pattern in the designer‟s pattern bank that can

be used to solve this problem and it is P5: Shopping. Then the designer

will use it and there is no need for Stage 2.

Figure 5.11: Illustrates the application of P4 and P5 in the etidy website

The relation is expressed as

P4 is refined by P5

In this case the abstract pattern P4: E-commerce site is refined by the

concrete pattern P5: Shopping in a certain context. In this case the

condition trivially holds and the matching of context is expressed as

follows:

In circle 1: A4 implies A5 which means that

The Assumption of the Abstract pattern (A4) implies the Assumption of

the Concrete pattern (A5).

CHAPTER 5: CASE STUDIES

 114

The Assumption of the E-commerce Site pattern (There is a shopping use

case for the E-commerce process) matches the Assumption of the

Shopping pattern (There are objects to buy and there is a shopping use

case).

In circle 2: C5 implies C4 which means that

The Commitment of the Concrete pattern (C5) implies the Commitment of

the Abstract pattern (C4).

The Commitment of the Shopping pattern (A website for buying objects

online) matches the Commitment of the E-commerce site pattern (Website

that provides the E-commerce process shopping).

Where

A4 is the Assumption of the E-commerce site pattern

A5 is the Assumption of the Shopping pattern

C4 is the Commitment of the E-commerce site pattern

C5 is the Commitment of the Shopping pattern

So the system designer needs to check those two conditions. In this

case the two conditions trivially hold. So refinement holds between the

patterns.

Step Three:

In this step a concrete design is given for the abstract pattern P4: E-

commerce Site. This design will use the following four patterns, P5:

Shopping, P6: View, P7: Shopping Cart and P10: Purchase Process. Again

the framework is used to check the application of the patterns in the right

context.

CHAPTER 5: CASE STUDIES

 115

The framework is now used to give a concrete design for pattern P5:

Shopping.

Stage 1: there are no single concrete patterns in the designer‟s pattern

bank that can be used to solve the problem of P5. Also there is no bigger

concrete pattern that will provide a solution for this problem. Then the

next stage in the framework is applied.

Stage 2: will have the following steps:

I - to decompose this problem into sub-problems and find patterns for

these sub-problems (Divide). The shopping pattern problem is

decomposed into three sub-problems: the View, Shopping Cart and

Purchase Process. The decomposition is done using the sequential

operator.

II - to compose the solutions of the sub-problems View, Shopping Cart

and Purchase Process (Conquer). Since the sub-problems of those patterns

are representing part of the solution for the problem of the shopping

pattern problem the sequential composition of the solutions of three

patterns will solve the shopping pattern problem.

These four patterns need to be applied in the right context. Again the

Assumption and Commitment in Table 5.2 are used to check that the

application of the patterns matches the context. The necessary conditions

are illustrated in Figure 5.12.

CHAPTER 5: CASE STUDIES

 116

Figure 5.12: The patterns for the design of an E-commerce site

The operator used here is the sequential operator and the relation is

expressed as

P5 is refined by P6 P7 P10

The system designer needs to check the four following conditions to

make sure that the patterns are applied in the right context. In this case the

four conditions trivially hold and the matching of context is expressed as

follows:

In circle 1: A5 implies A6 which means that

The Assumption of the Shopping pattern (There are objects to buy and

there is a shopping use case) matches the Assumption of the View pattern

(There is a set of objects).

In circle 2: C6 implies A7 which means that

CHAPTER 5: CASE STUDIES

 117

The Commitment of the View pattern (Display the objects the user can

buy) matches the Assumption of the Shopping Cart pattern (A collection of

objects the user can buy).

In circle 3: C7 implies A10 which means that

The Commitment of the Shopping Cart pattern (List the objects the user

wants to buy) matches the Assumption of the Purchase Process pattern

(There are objects in the shopping cart).

In circle 4: C10 implies C5 which means that

The Commitment of the Purchase Process pattern (Buy the objects in the

shopping cart) matches the Commitment of the shopping pattern (A

website for buying objects online).

Where

A5 is the Assumption of the Shopping pattern

A6 is the Assumption of the View pattern

A7 is the Assumption of the Shopping Cart pattern

A10 is the Assumption of the Purchase Process pattern

C5 is the Commitment of the Shopping pattern

C6 is the Commitment of the View pattern

C7 is the Commitment of the Shopping Cart pattern

C10 is the Commitment of the Purchase Process pattern

Figure 5.12 shows that the concrete design uses three basic patterns

that need to be applied sequentially. It also shows the context in which

those patterns are applied.

Step Four:

As show in Chapter 3 a concrete design can be given to the Shopping Cart

CHAPTER 5: CASE STUDIES

 118

problem using Pattern P8: Collector and P9: List Builder. This is repeated

below for completeness.

Stage 1: there is no concrete pattern in the designer‟s pattern bank that can

solve this problem and there is also no bigger concrete pattern that will

provide a solution. Then the next stage in the framework is applied.

Stage 2: in this stage the Shopping Cart problem is decompose into two

sub-problems and the patterns to solve these sub-problems are the

Collector and List Builder. The composition of their solution here solved

the Shopping Cart problem.

The Collector and List Builder patterns need to be applied in the right

context. Table 5.2 lists the Assumption and Commitment of each patterns

used. Figure 5.13 illustrates the relations between these patterns.

Figure 5.13: Illustrates the decomposition of the problem and

composition of the solutions for the Shopping Cart pattern

CHAPTER 5: CASE STUDIES

 119

The operator used here is the sequential operator and the relation is

expressed as

P7 is refined by P8 P9

The system designer needs to check the three following conditions to

make sure that the patterns are applied in the right context. In this case the

three conditions trivially hold and the matching of context is expressed as

follows:

In circle 1: A7 implies A8 which means that

The Assumption of the Shopping Cart pattern (A collection of objects the

user can buy) matches the Assumption of the Collector pattern (There are

objects that the user can select).

 In circle 2: C8 implies A9 which means that

The Commitment of the Collector pattern (Set of objects selected by the

user) matches the Assumption of the List Builder pattern (There is a set of

objects selected by the user).

In circle 3: C9 implies C7 which means that

The Commitment of the List Builder pattern (To list the objects in the set

selected by the user in a particular order) matches the Commitment of the

shopping Cart pattern (List the objects the user wants to buy).

Where

A7 is the Assumption of the Shopping Cart pattern

A8 is the Assumption of the Collector pattern

A9 is the Assumption of the List Builder pattern

C7 is the Commitment of the Shopping Cart pattern

C8 is the Commitment of the Collector pattern

C9 is the Commitment of the List Builder pattern

CHAPTER 5: CASE STUDIES

 120

Figure 5.13 shows that solving the shopping Cart problem needs more

than one pattern and this is depending on the context. In this case the

patterns are very basic showing the user what is inside the shopping cart.

The establishment of the shopping cart is not done through one specific

pattern but through the application of two patterns. The Assumption/

Commitment framework makes it easier for designer to decide which

pattern to apply next in the design.

5.2.3 The Second Part of the Case Study

The website design analysed in the first part of the case study is modified

so that the site can sell more than one product. The pattern map of the

modified design is in Figure 5.15. Two extra patterns are needed for the

design of the new website. The patterns used for the modified design are

shown in Figure 5.14.

Figure 5.14: Illustrates the new addition of two patterns to be used in

the etidy website

Figure 5.15 illustrates the new proposed patterns used in the etidy website.

WU patterns

+

 Welie patterns

Establish the use

cases

Establish the
business objectives

Business process

model

Shopping View

Shopping Cart

E-commerce site

Purchase Process

Collector

List Builder

Search Box

Breadcrumbs

CHAPTER 5: CASE STUDIES

 121

P4

E-commerce site

P7

Shopping Cart

 Figure 5.15: Illustrate the proposed patterns map used to build the new

etidy website

P3

Establish the use

cases

P9

Collector

P8

List Builder

P1

Establish the
business objectives

P5

Shopping

P2

Business process

model

P10

Purchase Process

Order

Refinement

P11

Search Box

P12

Breadcrumbs

P6

View (Old)

P6’

View (New)

P11

Search Box

P12

Breadcrumbs

P

Shopping

Website

CHAPTER 5: CASE STUDIES

 122

The following tables summarise problem/solution and Assumption/

Commitment for each extra pattern used in the second part of the case

study.

The problem/solution of the new patterns

Pattern name Source Problem Solution

Pattern 11:

Search Box

Welie The users need to find

an item or specific

information.

Offer a search

Pattern 12:

Breadcrumbs

Welie The users need to

know where they are

in a hierarchical

structure and navigate
back to higher levels in

the hierarchy

Show the hierarchical path

from the top level to the

current page and make each

step clickable

Table 5.3: The problem/solution of the extra patterns for the etidy

website

These patterns do not affect the objects!

The Assumption / Commitment of the new patterns

Pattern name Source Assumption Commitment

Pattern 11:

Search Box

Welie There are objects to

buy.

There are objects to buy.

Pattern 12:

Breadcrumbs

Welie There are objects to

buy.

There are objects to buy.

Table 5.4: The Assumption/Commitment of the extra patterns for the

etidy website

To support the selling of more than one product the designer of the

website adds a search box and breadcrumbs to help the shopper in

selecting the product to buy. The addition of these patterns means that P6:

View is changed into P6‟ View (New) to support this extra functionality.

The designer needs to check that those extra patterns are applied in the

right context. This is again checked using the framework.

CHAPTER 5: CASE STUDIES

 123

Step Five:

In this step the pattern P6: View is replaced by P6‟: View that provides a

solution with the required extra functionality. The concrete design for P6‟

uses the following patterns:

P6: View, P11: Search Box and P12: Breadcrumbs

Again the designer needs to check that the application of the patterns

happens in the right context using the framework.

Stage 1: there are no single concrete patterns in the designer‟s pattern

bank that can be used to solve this problem. Also there is no bigger

concrete pattern that will provide a solution for this problem. Then the

next stage in the framework is applied.

Stage 2: will have the following steps:

I - to decompose this problem into sub-problems and find patterns for

these sub-problems (Divide). The View problem is decomposed into three

sub-problems: the Search Box, Breadcrumbs and View. The

decomposition is done using the sequential and the choice operators.

II - to compose the solutions of the sub-problems Search Box,

Breadcrumbs and View (Conquer). Since the solutions to the sub-

problems are representing part of the solution for the problem of the New

View the composition of the solutions of Search Box, Breadcrumbs and

View patterns will solve the New View problem.

These four patterns need to be applied in the right context. Figure 5.16

shows the relations that need to hold between the Assumption and

Commitments of the patterns.

CHAPTER 5: CASE STUDIES

 124

Figure 5.16: Illustrates the decomposition of the problem and

composition of the solutions for the View pattern

The operator used here is the parallel operator and which is as

explained in Chapter 4 is a combination of the sequential and the choice

operator and the relation is expressed as

P6’ is refined by (P11 P12) P6 where

(P11 P12) P6 = (P11 P12 P6)  (P12 P11P6)

Which means there is a choice in the application order of these

patterns. So the system designer needs to check the five following

conditions so that the patterns are applied in the right context. In this case

the five conditions trivially hold and the matching of context is expressed

as follows:

In circle 1, A6’ implies (A11 or A12) which means that

CHAPTER 5: CASE STUDIES

 125

The Assumption of the New View pattern (There is a set of objects)

matches the Assumption of the Search Box pattern (There are objects to

buy) or the Bread-crumbs pattern (There are objects to buy).

In circle 2, C11 implies A12 which means that

The Commitment of the Search Box pattern (There are objects to buy)

matches the Assumption of the Breadcrumbs pattern (There are objects to

buy).

In circle 3, C12 implies A11 which means that

The Commitment of the Breadcrumbs pattern (There are objects to buy)

matches the Assumption of the Search Box pattern (There are objects to

buy).

In circle 4, (C12 or C11) implies A6 which means that

The Commitment of the Breadcrumbs pattern (There are objects to buy) or

the Commitment of the Search Box pattern (There are objects to buy)

matches the Assumption of the Old View pattern (There is a set of

objects).

In circle 5, C6 implies C6’ which means that

The Commitment of the Old View pattern (Display the objects the user

can buy) matches the Commitment of the New View pattern (Display the

objects the user can buy).

Where

A6 is the Assumption of the Old View pattern

A6’ is the Assumption of the New View pattern

A11 is the Assumption of the Search Box pattern

A12 is the Assumption of the Breadcrumbs pattern

C6 is the Commitment of the Old View pattern

CHAPTER 5: CASE STUDIES

 126

C6’ is the Commitment of the New View pattern

 C11 is the Commitment of the Search Box pattern

C12 is the Commitment of the Breadcrumbs pattern

Figure 5.16 shows that to build a website that sells more than one

product the designer needs to modify only a part of the design.

To conclude, the case study examined the etidy shopping website and

the aim was to illustrate the usability of the Assumption/Commitment

framework in determining the best ways to apply patterns with the regard

to the context before and after each single pattern application. It also

makes the use of the patterns maps more precise by clarifying the arrows

used in each stage of the map. The first part examined an existing website

and a proposed design for it. In the second part the design was modified to

build a website with extra functionality. The framework only needs to

check the changed part of the design.

Figure 5.17 illustrates the use of the Assumption/Commitment

framework in checking the application of the proposed design and the five

steps involved in checking the design.

CHAPTER 5: CASE STUDIES

 127

P4

E-commerce site

 Figure 5.17: Illustrate the five steps used in checking the proposed

patterns map for the etidy website

P3

Establish the use

cases

P9

Collector

P1

Establish the
business objectives

P7

Shopping Cart

P5

Shopping

P2

Business process

model

P10

Purchase Process

Order

Refinement

P11

Search Box

P12

Breadcrumbs

P6

View (Old)

P6’

View (New)

P11

Search Box

P12

Breadcrumbs

P

Shopping website
A

A1 C1

C

A5 C5

C10 A6’

‟

C9 A8

C6 A11

Or

A12

A7 C7 C6’ A6’

P8

List Builder

Step 1

Step 2

Step 4

Step 5

A4 C4

Step 3

CHAPTER 5: CASE STUDIES

 128

5.3 E-government Website Case Study

5.3.1 Introduction

The case study will examine an existing E-government website for Child

Benefit in the UK [22]. This website allows the user to fill an application

form for Child Benefit. A closer examination of the website reveals that

the designer used some patterns for the design of the website which can be

found in many E-government websites like the city councils, Tax…etc.

The selected patterns are User Interface patterns, taken from WU and

Welie [44, 45, 88] and are sufficient to build a small E-government

website. The examined website‟s main functionality is the gathering of

data via a form (see Figures 5.18 and 5.19).

The purpose of this case study is to evaluate the usefulness of the

framework Assumption/Commitment in detecting design errors.

The case study will be divided into two parts. In the first part the

existing website will be examined by proposing a design. It turns out that

this design is not right. This is determined by checking the design with the

framework. In the second part the faulty design is modified and again

checked by the framework.

CHAPTER 5: CASE STUDIES

 129

Figure 5.18: The Child Benefit website main page [22]

The main home page will take the user to the form page to be filled

and it is below

CHAPTER 5: CASE STUDIES

 130

Figure 5.19: The Child Benefit website form Page 1[22]

CHAPTER 5: CASE STUDIES

 131

5.3.2 The First Part of the Case Study

In this part the existing E-government website for Child Benefit in the UK

will be examined and a design is proposed for this website.

In this first part a total of 8 basic patterns are picked from WU and

Welie [44, 45, 88], the full patterns descriptions are in Appendix A and B.

They are illustrated in Figure 5.20. The first four abstract patterns are

picked to determine the type of the website to be built (see Figure 5.21).

The rest of the patterns are picked to design the Child Benefit website (see

Figure 5.22).

4

5

Figure 5.20: Illustrates the main patterns used in the E-government

website for Child Benefit in the UK

Because the original design of the website is unknown a design in the

form of a pattern map is proposed. This pattern map is illustrated in Figure

5.23. The proposed design is analysed using the Assumption/Commitment

framework. In the analysis the application order of the patterns is checked,

i.e., what is needed (Assumption) in order to apply a certain pattern and

what is provided (Commitment) in order to apply the next pattern.

For the simplicity the pattern map will be divided into two sections:

WU patterns

+

 Welie patterns

Establish the use

cases

Establish the
business objectives

Business process

model

Homepage View

Form

Web-Based

Application
Processing Page

CHAPTER 5: CASE STUDIES

 132

P18

Web-based

application

a. Section One: The Site Type Design (Abstract Patterns)

In this section the first 3 patterns can be used as a start to

design any type of business [45]. These patterns are applied

according to the context. The 4
th
 pattern determines the site

type and in this case a web-based application site. The patterns

in this section are Abstract Patterns. They are illustrated in

Figure 5.21.

b. Section Two: The Site Concrete Design (Concrete Patterns)

In section two a concrete design of the site is given, i.e., a

concrete design for the abstract pattern Web-based

Application is given. This is illustrated in Figure 5.22.

Figure 5.21: The site type design patterns for an E-government website

P3

Establish the use

cases

P2

Business process

model

P1

Establish the
business objectives

Order

CHAPTER 5: CASE STUDIES

 133

Figure 5.22: The Child Benefit website concrete design patterns

Figure 5.23 illustrates the proposed patterns used in the Child Benefit

website.

P14

Homepage

P15

Form

P17

Processing Page

Order

Refinement

P6

View

CHAPTER 5: CASE STUDIES

 134

Figure 5.23: Illustrate the proposed patterns map used to build the Child

Benefit website

P14

Homepage

Order

Refinement

P3

Establish the use

cases

P1

Establish the
business objectives

P2

Business process

model

P18

Web Based

Application

P6

View

P15

Form

P17

Processing Page

P

Government

website

CHAPTER 5: CASE STUDIES

 135

The following tables summarise the problem/solution and Assumption/

Commitment pair for each pattern used in the first part of the case study.

The problem/solution of the used patterns

Pattern

name

Source Problem Solution

Pattern 1:

Establish the

business

objectives

WU To create a new

website or modify an

existing one

-Hold a workshop involving as

many stakeholders as possible.

-Make sure that potential users are

represented by marketing personnel

or the results of focus groups,

surveys, etc.
-Find a good facilitator.

-Agree a mission statement.

-Find measures for each objective.

Pattern 2:

Business

process

model

WU To organise the

content in a way that

supports several

navigation structures

simultaneously

-An understanding of the network

of agents and commitments that

make up the business must first be

gained.

-The conversations that take place

at an appropriate level of

abstraction must be specified, so

that they become stereotypes for

actual stories.
-People must tell these stories.

-Ensure that both „before‟ and

„after‟ business process models are

produced.

-Eliminate conversations that do

not correspond to business

objectives (or discover the missed

objective).

-Ensure that every objective is

supported by a conversation.

Pattern 3:

Establish the

use cases

WU The site must serve

at least one

significant business
purpose. For this

reason we must look

at all the use cases

that we can predict

users will want to

execute.

-Extract the use cases from the

conversations in the BUSINESS

PROCESS MODEL (2).
-Record their correspondences to

the business objectives.

-Write post-conditions for each use

case.

-Compare the vocabulary of the

post-conditions to the type model.

-Write use cases in stimulus–

response form.

-Convert the use cases into the user

training manual and the test plan.

-One stimulus/response pair from
the use case should correspond to

one step in the workflow if the site

deals with workflows. If not, do not

constrain the user‟s ability to

perform steps in any particular

CHAPTER 5: CASE STUDIES

 136

sequence.
-Ensure that you extract and

document a business object type

model from the use case goals.

Pattern 18:

Web-based

Application

Welie Users need to

perform complex

tasks on a website

Structure the site around 'views'

and allow users to work inside

views.

Pattern 14:

Homepage
Welie Users need to

understand if they

are at the right place,

and if so, how they

can move on to

accomplish their task

at your site

Create a home-page that introduces

the site to users and that helps them

to get on their way on the site

Pattern 6:

View
Welie Users need to

manage a collection
of objects

Create an overview of objects that

together is meaningful to users

Pattern 15:

Form
Welie Users need to

provide personal

information and send

it to a service

provider

Offer users a form with the

necessary elements

Pattern 17:

Processing

Page

Welie Users need feedback

that their action is

being performed but

may take a while to

complete

Provide a feedback page with

animation

Table 5.5: The problem/solution of the used patterns in the Child

Benefit website

CHAPTER 5: CASE STUDIES

 137

The Assumption/Commitments of the used patterns

Pattern

name

Source Assumption Commitment

Pattern 1:

Establish the

business

objectives

WU There are business

objectives.

List of chosen business

objectives.

Pattern 2:

Business

process model

WU List of chosen business

objectives.

List of business

processes corresponding

to the chosen business

objectives.

Pattern 3:

Establish the

use cases

WU List of chosen business

processes.

List of use cases

corresponding to the

chosen business
processes.

Pattern 18:

Web-based

Application

Welie There is a use case for any

web-based application.

Website that provides

web-based application

for E-government child

benefit form service.

Pattern 14:

Homepage
Welie There is a web-based

application service.

A website that provides

the service.

Pattern 6:

View
Welie There is a data collection

service

A website that display

the data collection

service.

Pattern 15:

Form
Welie There is a data to be

collected.

To collect the necessary

data for the service.
Pattern 17:

Processing

Page

Welie All the necessary data in the

right format.
Provide the data

collection service.

Table 5.6: The Assumption/Commitment of the used patterns in the

Child Benefit website

The framework is used here to check the proposed design of a

government site for Child Benefit. The steps of design are as follows:

Step Zero:

This step is defining the problem the designer wants to solve and in this

case is creating an E-government website providing the child benefit

application service (see Figure 5.23).

Step One:

The patterns used in Section One (see Figure 5.23), P1: Establish the

business objectives, P2: Business process model, P3: Establish the use

CHAPTER 5: CASE STUDIES

 138

cases and P18: Web-based application, need to be applied in the right

context and this is done via conditions imposed on the Assumption and

Commitment of each patterns. The patterns are applied sequentially so the

corresponding conditions need to hold.

Again the framework is used to check this step of the design:

Stage 1: there are no single concrete patterns in the designer‟s pattern

bank that can be applied to produce this website and solve this problem.

Also there is no bigger concrete pattern will provide a solution for this

website problem. Then the next stage in the framework is applied.

Stage 2: will have the following steps:

I - to decompose this problem into sub-problems and find patterns that

provide solutions for these sub-problems (Divide). The government

website problem is decomposed into four sub-problems in this context: the

Establish the business objectives, Business process model, Establish the

use cases and Web-based application. The decomposition is done using

the sequential operator.

II - to compose the solutions of the sub-problems Establish the business

objectives, Business process model, Establish the use cases and Web-

based application (Conquer). Since the solutions of these sub-problems are

representing part of the solution for the government website problem the

sequential composition of these solutions will solve the government

website problem.

The application of these four patterns will provide a solution provided

the following conditions hold (see Figure 5.24).

CHAPTER 5: CASE STUDIES

 139

The Assumption of the government website (There are business

objectives) the Commitment of the government website (Website that

provide child benefit form service).

Figure 5.24: The basic patterns to start the design of an E-government

site

In this case the five conditions trivially hold and the matching of

context is expressed as follows:

In circle 1: A implies A1 which means that

The Assumption of the government website (There are business

objectives) matches the Assumption of the Establish the business

objectives pattern (There are business objectives).

In circle 2: C1 implies A2 which means that

CHAPTER 5: CASE STUDIES

 140

The Commitment of Establish the business objectives pattern (List of

chosen business objectives) matches the Assumption of the Business

process model pattern (List of chosen business objectives).

In circle 3: C2 implies A3 which means that

The Commitment of the Business process model pattern (List of business

processes corresponding to the business objectives) matches the

Assumption of the Establish the use cases pattern (List of chosen business

processes).

In circle 4: C3 implies A18 which means that

The Commitment of the Establish the use cases pattern (List of use cases

corresponding to the business processes) matches the Assumption of the

Web-based application pattern (There is a use case for any web-based

application).

In circle 5: C18 implies C which means that

The Commitment of the Web-based application pattern (Website that

provides web-based application for E-government child benefit form

service) matches the Commitment of the government website (Website

that provide child benefit application form service).

By applying those four patterns the website designer will determine

the type of website to be built. In this case a Web-based Application. In

the next step the designer designs a concrete web-based application.

Step Two:

The website designer again uses the framework to build a concrete web-

based application.

CHAPTER 5: CASE STUDIES

 141

This step is a refinement, i.e., the Homepage is a concrete design for

Web-based application. The framework is used to check this refinement:

Stage 1: there is a concrete pattern that will provide a solution for web-

based application and it is Homepage pattern.

Figure 5.25: Illustrates the application of P18 and P14 in the Child

Benefit website

In this case the abstract pattern P18: Web-based Application is refined

by the concrete pattern P14: Homepage in a certain context. The following

conditions should hold for this refinement:

In circle 1: A18 implies A14 which means that

The Assumption of the Abstract pattern (A18) implies the Assumption of

the Concrete pattern (A14).

CHAPTER 5: CASE STUDIES

 142

The Assumption of the Web-based Application pattern (There is a use

case for any web-based application) matches the Assumption of the

Homepage pattern (There is a web-based application service).

In circle 2: C14 implies C18 which means that

The Commitment of the Concrete pattern (C14) implies the Commitment

of the Abstract pattern (C18).

The Commitment of the Homepage pattern (A website that provides the

service) matches the Commitment of the Web-based Application pattern

(Website that provides web-based application for E-government child

benefit form service).

So the system designer needs to check those two conditions. In this

case the two conditions trivially hold. So refinement holds between the

patterns.

Step Three:

The website designer again uses the framework to build a concrete

Homepage.

This step is a refinement, i.e., the View is a concrete design for

Homepage. The framework is used to check this refinement:

Stage 1: there is a concrete pattern that will provide a solution for

Homepage and it is View pattern.

CHAPTER 5: CASE STUDIES

 143

Figure 5.26: Illustrates the application of P14 and P6 in the Child

Benefit website

In this case the abstract pattern P14: Homepage is refined by the

concrete pattern P6: View in a certain context. The following conditions

should hold for this refinement:

In circle 1: A14 implies A6 which means that

The Assumption of the Abstract pattern (A14) implies the Assumption of

the Concrete pattern (A6).

The Assumption of the Homepage pattern (There is a web-based

application service) matches the Assumption of the View pattern (There is

a data collection service).

In circle 2: C6 implies C14 which means that

The Commitment of the Concrete pattern (C6) implies the Commitment of

the Abstract pattern (C14).

CHAPTER 5: CASE STUDIES

 144

The Commitment of the View pattern (A website that displays the data

collection service) matches the Commitment of the Homepage pattern (A

website that provides the service).

So the system designer needs to check those two conditions. In this

case the two conditions trivially hold. So refinement holds between the

patterns.

Step Four:

The following two patterns will be used to design the View pattern. P15:

Form and P17: Processing Page and need to be applied in the right

context.

To check this step the refinement is used again:

Stage 1: there are no single concrete patterns in the designer‟s pattern

bank that can be applied to produce this government website and solve this

problem. Also there is no bigger concrete pattern that will provide a

solution for this problem. Then the next stage in the framework is applied.

Stage 2: will have the following steps:

I - to decompose this problem into sub-problems and find patterns for

these sub-problems (Divide). The View pattern problem is decomposed

into two sub-problems the Form and Processing Page. The decomposition

is done using the sequential operator.

II - to compose the solutions of the sub-problems Form and Processing

Page (Conquer). Since these solutions are representing part of the solution

for the problem of the View pattern the sequential composition of the

solutions of two patterns will solve the View pattern problem.

CHAPTER 5: CASE STUDIES

 145

The sequence of the two patterns forms a design for the View pattern

if the following conditions (see Figure 5.27) hold.

Figure 5.27: The patterns for the design of an E-government site

In this case the three conditions and the matching of context is

expressed as follows:

In circle 1: A6 implies A15

The Assumption of the View pattern (There is a data collection service)

matches the Assumption of the Form pattern (There is a data to be

collected).

In circle 2: C15 implies A17

The Commitment of the Form pattern (To collect the necessary data for

the service) should match the Assumption of the Processing Page pattern

(All the necessary data in the right format). This condition dose not holds

because the data collected by the form is not necessarily in the right

format.

CHAPTER 5: CASE STUDIES

 146

In circle 3: C17 implies C6

The Commitment of the Processing Page pattern (Provide the data

collection service) matches the Commitment of the View pattern (A

website that displays the data collection service).

So the framework has detected a design error. In the second part a

revised design is proposed. Again the framework is used to check this

design.

5.3.3 The Second Part of the Case Study

The design proposed in the first part is modified to ensure that the needed

data for the processing page is in the right format. For that the Constraint

Input pattern will be used. The following tables list the problem/solution

and Assumption/Commitment pair of this pattern.

The problem/solution of the used patterns

Pattern

name

Source Problem Solution

Pattern 16:

Constraint

Input

Welie The user needs to

supply the application
with data but may be

unfamiliar with which

data is required or what

syntax to use.

Only allow the user to enter data

in the correct syntax.

Table 5.7: The problem/solution of the added pattern to the Child

Benefit website

The Assumption / Commitments of the used patterns

Pattern

name

Source Assumption Commitment

Pattern 16:

Constraint

Input

Welie There is service data. There is service data in

the right format

Table 5.8: The Assumption/Commitment of the added pattern to the

Child Benefit website

CHAPTER 5: CASE STUDIES

 147

 Figure 5.28: Illustrate the new proposed patterns of the design of the

Child Benefit website

P14

Homepage

Order

Refinement

P3

Establish the use

cases

P1

Establish the
business objectives

P2

Business process

model

P18

Web Based

Application

P15

Form

P16

Constraint

Input

P17

Processing

Page

P6

View

P

Government

website

CHAPTER 5: CASE STUDIES

 148

Step Four:

The new design for the pattern P 6: View uses the following patterns, P15:

Form, P16: Constraint Input and P17: Processing Page.

The framework is again used to check this step:

Stage 1: there are no single concrete patterns in the designer‟s pattern

bank that can be used to solve this problem. Also there is no bigger

concrete pattern that will provide a solution for this problem. Then the

next stage in the framework is applied.

Stage 2: will have the following steps:

I - to decompose this problem into sub-problems and find patterns for

these sub-problems (Divide). The View problem is decomposed into four

sub-problems: Form, Constraint Input and Processing Page patterns. The

decomposition is done using the sequential operator.

II - to compose the solutions of the sub-problems Form, Constraint Input

and Processing Page (Conquer). Since the solutions of the sub-problems

of those patterns are representing part of the solution for the problem of

the View the composition of the solutions will solve the View problem.

The following conditions need to hold (see Figure 5.29).

CHAPTER 5: CASE STUDIES

 149

Figure 5.29: Illustrates the concrete design of the View pattern

In this case the four conditions trivially hold and the matching of

context is expressed as follows:

In circle 1: A6 implies A15 which means that

The Assumption of the View pattern (There is a data collection service)

matches the Assumption of the Form pattern (There is a data to be

collected). The refinement rule met.

In circle 2: C15 implies A16 which means that

The Commitment of the Form pattern (To collect the necessary data for

the service) matches the Assumption of the Constraint Input pattern

(There is service data).

In circle 3: C16 implies A17 which means that

CHAPTER 5: CASE STUDIES

 150

The Commitment of the Constraint Input pattern (There is service data in

the right format) matches the Assumption of the Processing Page pattern

(All the necessary data in the right format).

In circle 4: C17 implies C6 which means that

The Commitment of the Purchase Process pattern (Provide the data

collection service) matches the Commitment of the View pattern (A

website that displays the data collection service).

To conclude, the case study examined an E-government website

specifically the Child Benefit website and the aim was to illustrate the

usability of the Assumption/Commitment framework. The case study

illustrated how the Assumption/Commitment constraint helped the

designer in determining the best ways to apply patterns with the regard to

the context before and after each single pattern application. It also make

using the patterns map more precise and rigorous by translating what is the

arrows indicating in each stage of the map and where the refinement or the

order can be used. The first part examined the existing website and a

design was proposed. Checking the design using the Assumption/

Commitment framework revealed that the proposed design was wrong. In

the second part of the case study, the design was modified and checked

again. Figure 5.30 illustrate all the steps in the design of the Child Benefit

website used in the cases study.

CHAPTER 5: CASE STUDIES

 151

Figure 5.30: Illustrate the new proposed patterns map used in the design

of the Child Benefit website

P14

Homepage

Order

Refinement

P3

Establish the use

cases

P1

Establish the
business objectives

P2

Business process

model

P18

Web Based

Application

P16

Constraint

Input

P17

Processing Page

P

E-government

Website

A

A1 C1

C
Step 1

Step 1

A18 C18

Step 1

C14

C6

A14

A6

P15

Form

A15 C17

Step 2

Step 3

Step 4

P6

View

CHAPTER 5: CASE STUDIES

 152

5.4 Summary

This chapter discussed the analysis of the design of two websites. The

analysis used the Assumption/Commitment framework. The first case

study shows that the framework can be used to modify an existing design

while the second case study shows that the framework can detect and

correct design errors. The two case studies also show that by

distinguishing refinement from sequential application of patterns the

design process is much more concise.

153

Chapter 6

Conclusions

Objectives:

 To revisit the success criteria

 To compare the thesis finding with existing related work

 To highlight the contributions made by this research

 To discuss limitations in the framework

 To outline the possibilities for future research that will extend

these contributions

CHAPTER 6: CONCLUSIONS

154

6.1 Success Criteria Revisited

The thesis proposed a framework for pattern applicability, within which

patterns‟ applicability can be analysed compositionally. This framework

is therefore a part of the answer to the research questions of the thesis.

This is because the framework facilitates the applicability of patterns,

aids the designer in the construction of patterns sequences and describes

the applicability relationships between patterns more rigorously. In

Chapter 1 success criteria were formulated to measure the success of the

thesis to answer the research questions. The success criteria determine

whether the framework has key design elements. These key design

elements are:

 The ability of the designer to apply patterns to solve a particular

problem.

 The ability of the designer to detect design errors.

 The ability of the designer to modify an existing design to

enhance the functionality of a system.

As shown in Chapter 5 the framework gives the designer the ability

to solve a particular problem via a series of steps involving the

application of patterns. These steps are either the use or adaptation of

existing patterns or the decomposition of the problem into sub-problems

whose solutions when composed together will provide a solution to the

problem.

The framework also enables the designer to detect design errors, i.e.,

the conditions on the Assumption and Commitment constraints when a

particular pattern is applied do not hold. The second case study in

Chapter 5 illustrates the detection of design errors.

CHAPTER 6: CONCLUSIONS

155

The first case study in Chapter 5 shows how the designer can adapt

an existing design in order to incorporate new functionality. This is done

compositionally in the sense the designer only need to check the

conditions on the part that is modified, i.e., there is no need to check the

whole design again.

 6.2 Comparison with Existing Related Work

Chapter 2 discusses pattern maps, a common feature of software

pattern languages and there is strong anecdotal evidence that in Patterns

Writers‟ workshops they are favoured by reviewers [73]. However,

Kavanagh has clearly demonstrated problems with such an approach.

She argues coherently that they present an overly static view of the

relationships between patterns which, when applied, are actually

dynamic. Simplistically, the overall process of building using a pattern

language can be characterize like this: problem 1 is addressed by pattern

A which, as a resulting context, creates problem 2 which can be

addressed by Pattern B which creates a new context and so on.

Remembering that, theoretically, a pattern can be implemented a million

different ways depending on context, and that context is essentially the

current state of the system being constructed, it is clear that pattern maps

cannot give the necessary guidance for the order of application of

patterns. In fact both Kavanagh [63] and Manns [66, 65, 64] before her

have shown that the centre of gravity for the Patterns Movement has so

far been the production of patterns (i.e., mining the expertise for the

knowledge base that is required) rather than their consumption (i.e., their

use). The point they make is easily illustrated by the fact that for all the

PLoP conferences that have taken place across the world, only one - in

1997 [11] - was focussed on how patterns are used. The issues become

CHAPTER 6: CONCLUSIONS

156

clear when looking at pattern sequences and how they might be put

together.

Some as Noble and Weir [71], as an example used in their map for

Small Memory Pattern Relationships arrows to indicate that if a pattern

at the plain end is used, the other pattern at the arrow end should also be

considered to be used next. They also show specialisations (triangles)

and conflicts (crosses on dotted arrows).

In the other hand another example from other roadmap styles is a

pattern map for A Presentation Pattern Language by Reiβing [76]. He

used different arrows on the pattern map to indicate whether one pattern

„may use‟ or „does use‟ another. His map included the type of

relationships between the patterns in the language. As in many other

software pattern languages, Reiβing examples shows that the arrows on

the pattern map effectively contain the rules of the language and the

grammar.

Alexander uses solid lines in pattern maps to indicate the application

of the next pattern. As discussed in Chapter 2 maps are confusing for the

user of the maps. Taking any of Ian Graham's Web Usability (WU)

pattern language maps it is not clear which pattern to apply next and it is

in some cases very confusing to the designer or the user to figure out

what some of the arrows point to.

Finally Welie and Veer also discussed the issue of structuring a

collection of patterns into pattern languages in Interaction Design and

they proposed that this language can be organized hierarchically, from

high-level design problems to low-level design problems [87]. They also

used solid arrows only to illustrate this organization.

CHAPTER 6: CONCLUSIONS

157

None of the above mentioned representations of the relations

between patterns in those maps was clearly specifying the type of

relations and conditions on the context under which these relations

should hold. Now the thesis framework will remove these ambiguities

and confusion by introducing two types of arrows:

- Solid arrow indicating order

- Dashed arrow indicating refinement.

Furthermore maps contain context information in the form of

Assumption and Commitment labels to visualise the conditions under

which a relation between patterns hold.

 6.3 Contribution

The thesis made the following contributions:

 A framework is introduced within which context is characterised via

Assumption and Commitment constraints. These constraints help the

designer to choose the next pattern to be applied in the design of a

system by imposing conditions on these constraints.

 The framework allows the designer to select “different” patterns

application stages during the design. These two stages are:

o Stage 1: Use/Adapt Existing Patterns.

In this stage the designer will have two choices. The first one to

use a concrete pattern to solve the problem if there is any pattern

that will solve the whole problem in any pattern bank. The

second choice is used if the designer can‟t find any pattern in a

particular pattern bank that solves the problem. The framework

CHAPTER 6: CONCLUSIONS

158

gives the designer the choice to search for a solution and the

designer will have the following 2 options:

a. To search for a concrete pattern that solves a bigger

problem. Since also the context needs to match then the

following conditions need to hold:

 A implies Ap (because of refinement)

 Cp implies C (because of refinement)

b. Or to invent a new concrete pattern. This new pattern needs

to be examined and used over and over again to become an

accepted pattern.

If none of the above is appropriate or no solution is found using

Stage 1 then the system designer proceeds to Stage 2.

o Stage 2: Divide and Conquer

In this stage the designer can use the Divide and Conquer

principle which consists of two stages:

- Stage I: Decompose the Problem into Sub-problems (Divide).

In this stage a problem is divided into sub-problems.

- Stage II: Compose the Solutions for the Sub-problems

(Conquer).

In this stage the composed solutions of these sub-problems will

provide a solution to the overall problem.

CHAPTER 6: CONCLUSIONS

159

 The framework uses the following operators for the Divide and

Conquer steps: Sequential, Choice and Parallel. These operators play

two roles:

1- To decompose the problem into sub-problems:

 The operator in this case will be called decomposition operator

(OPd).

2- To compose the sub-solutions to form a solution:

 The operator in this case will be called composition operator

(OPc).

In general the operator OPd for decomposition matches the one

for composition OPc. An example where this is not the case is when

the OPd is the Parallel operator and then the OPc could be in

sequence. In this case the designer opted to provide a sequential

solution for a parallel problem.

These operators provide a natural way of decomposing problems

and composing solutions. Furthermore, within the framework, the

designer is able to analyse the correct composition of the patterns

used, hence incorrect designs can be eliminated. Not only that but

these operators will also be used to indicate the order in which

patterns are applied. As a result of that these operators will make the

use of the pattern maps more precise and clearer.

 The thesis also provides rules that the designer can use to check

whether a pattern is applicable or not. Rules for all three operators

are given. Using these rules, a given design may be modified to

incorporate new system requirements.

CHAPTER 6: CONCLUSIONS

160

 The pattern maps have been enhanced to distinguish between the

steps of the framework, i.e., refinement (dashed line) and sequential

order (solid lines).

 The framework introduced in the thesis is type independent, i.e., it

can be used and applied to any pattern bank and will allow the

designer to analyse a design with the rules given in the thesis. Note

in the thesis the framework was using design pattern banks.

6.4 Limitations

Whilst the framework is a solution to the research questions of the thesis,

it forces the designer to follow strict rules in the choice of the application

of the next pattern in a design process. This strictness might not be

favoured by every system designer. The thesis has therefore made the

checking of the conditions as light as possible by imposing no

constraints on the language used to formulate the Assumption/

Commitment constraints. The system designer can still use the language

as used in the description of the pattern itself.

The number of operators might look very restrictive but Sequential

and Choice are the most primitive operators. With these two only one

can define more complicated operators like the Parallel operator. One

could even use them to define operations like those introduced by Kevlin

Henney [54].

Finally, the thesis is analysing system design and the application of

patterns and not doing any implementations. Furthermore only the

application of design patterns was investigated. However there seem to

CHAPTER 6: CONCLUSIONS

161

be no restrictions of the framework on the application of other types of

patterns.

6.5 Future Work

Further studies could develop a tool that automatically generates the

conditions that need to hold in order to apply the next pattern based on

the step the designer has chosen. This tool could be integrated in existing

design tools like Rational.

The tool could also automatically verify the conditions under which

patterns can be applied in a specific context. This tool will also have

pattern banks facility for different types of patterns (architectural

patterns, design patterns and idioms or coding patterns).

Even though the operators used in the framework are for the

application of design pattern more derived operators can be obtained that

cater for the application for other types of patterns.

Also these derived operators can be domain specific and for example

the architectural patterns need more specific operators for decomposition

and composition taking into account architectural constraints.

REFERENCES

162

References

[1] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl

King, I. & Angel, S. A. (1977). A Pattern Language. New York:

Oxford University Press.

[2] Alexander, C. (1979). The Timeless Way of Building. New York:

Oxford University Press.

[3] Alexander, C. (1996). keynote Speech (OOPSLA). ACM Conference

on Object-Oriented Programs, Systems, Languages and

Applications. San Jose, California.

[4] Alexander, C. (2001). The Phenomenon of Life. New York: Oxford

University Press.

[5] Alexander, C. (2002). The Process of Creating Life. Berkeley,

California: The Centre for Environmental Structure.

[6] Alexander, C. (2004). A Vision of a Living World. Berkeley,

California: The Centre for Environmental Structure.

[7] Alexander, C. (2004). The Luminous Ground. Berkeley, California:

The Centre for Environmental Structure.

[8] Ambler, S. (1998). Process Patterns: Building Large-scale Systems

Using Object Technology. Cambridge: Cambridge University

Press.

[9] Ambler, S. (1999). More Process Patterns: Delivering Large-Scale

Systems Using Objects. Cambridge: Cambridge University Press.

REFERENCES

163

[10] Anderson, F. (2006). A Collection of History Patterns. [Online].

Available from World Wide Web:

 http://hillside.net/plop/plop98/final_submissions/[Accessed

6/12/06].

[11] An International Conference on Using Patterns (UP). (1997).

Austin, Texas.

[12] Appleton, B. (2007). Patterns and Software: Essential Concepts

and Terminology. [Online]. Available from World Wide Web:

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

[Accessed 20/01/07].

[13] Beck, K. & Cunningham, W. (1987). Using Pattern Languages for

Object-Oriented Programs. [Online]. Available from World Wide

Web: http://c2.com/doc/oopsla87.html[Accessed 19/12/07].

[14] Booch, G., Rumbaugh, J. & Jacobson, I. (1997). Unified Modelling

Language User Guide. Addison-Wesley.

[15] Brown, P. J., Bovey, J. D. & Chen, X. (1997). Context-Aware

Applications: From the Laboratory to the Marketplace.

[16] Brooks, F. J. (1998). The Man-Month: and other Essays in Software

Engineering. Addison Wesley, Reading, MA.

[17] Buschmann, F. (1999). Patterns @ Work. In Proceedings of Object

Technology Conference, Oxford, England.

http://hillside.net/plop/plop98/final_submissions/
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
http://c2.com/doc/oopsla87.html

REFERENCES

164

[18] Buschmann, F., Meunier, R., Rohnert , H., Sommerlad, P. &

Staln, M. (1996). Pattern-oriented Software Architecture – A

System of Patterns. J. Wiley and Sons Ltd.

[19] Buschmann, F., Henney, K. & Schmidt, D. C. (2007). Pattern-

Oriented Software Architecture Volume 4: A Pattern Language for

Distributed Computing. John Wiley & Sons; Volume 4 edition.

[20] Cassell. (1997). The Cassell English Concise Dictionary. London:

Orion.

[21] Cheesman, J. & Daniels, J. (2000). UML Components: A Simple

Process for Specifying Component-Based Software. Wokingham,

England: Addison-Wesley.

[22] Child Benefit Information. (2010). [Online]. Available from World

Wide Web: http://www.child-benefit.org.uk/index.html [Accessed

10/01/10].

[23] Coplien, J.O. & Schmidt, D.C. (1995). Pattern Languages of

Program Design. Reading, MA.: Addison-Wesley.

[24] Coplien, J. O. (1996). Software Patterns. New York: SIGS

Publications.

[25] Coplien, J. O. (1998). C++ Idioms. In EuroPLoP 1998 Conference

Proceedings, Irsee, Germany: UVK.

[26] Coplein, J. O. (1998). The Patterns Handbook: Techniques,

Strategies, and Applications, chapter Software Design Patterns:

http://www.child-benefit.org.uk/index.html

REFERENCES

165

Common Questions and Answers, pages 311–320. Cambridge

University Press, New York, January.

[27] Coplien, J.O. & Harrison, N. (2004). Organisational Patterns.

Addison- Wesley.

[28] Coplien, J. O. & Harrison, N. (2004). Organisational Patterns:

Beyond Agility to Effectiveness. In OOPSLA '04 Conference

Proceedings, Vancouver, British Columbia, Canada.

[29] Coplien, J. O. & Harrison, N. (2004). Organisational Patterns of

Agile Software Development, Upper Saddle River, NJ: Pearson

Prentice Hall.

[30] Coplien, J. O. (2008). Fault-Tolerant Telecommunication System-

Pattern: Riding Over Transients. [Online]. Available from World

Wide Web: http://users.rcn.com/jcoplien/Patterns/PLoP95_

telecom.html [Accessed 19/2/08].

[31] Cunningham, W. (1995). The CHECKS Pattern Language of

Information Integrity. In J. O. Coplien and D. C. Schmidt (eds.)

Pattern Languages of Program Design. Reading, MA: Addison-

Wesley. pp.145.

[32] DeLano, D. (1998). Patterns Mining. In L. Rising (ed.) The Patterns

Handbook. Cambridge: Cambridge University Press. pp.87.

[33] De Roever, W., Hooman, J. & De Boer, F. (2001). Concurrency

Verification: Introduction to Compositional and Non-

Compositional Methods. Cambridge University Press.

http://users.rcn.com/jcoplien/Patterns/PLoP95_%20telecom.html
http://users.rcn.com/jcoplien/Patterns/PLoP95_%20telecom.html
http://users.rcn.com/jcoplien/Patterns/PLoP95_%20telecom.html

REFERENCES

166

[34] Dey, A. K. (1998). Context-aware Computing: The CyberDesk

Project., In the Proceedings of the AAAI 1998 Spring Symposium

on Intelligent Environments (AAAI Technical Report SS-98-02),

pp. 51-54, Palo Alto, CA, AAAI Press. March 23-25,

 http://www.cc.gatech.edu/fce/cyberdesk/pubs/AAAI98/AAAI98.html

[35] Dey, A.K., Abowd, G.D. & Wood, A. (1999). CyberDesk: A

Framework for Providing Self-Integrating Context-Aware Services.

Knowledge-Based Systems, 11.

[36] Dijkstra, E. W. (1975). Guarded Commands, Non-determinacy and

Formal Derivation of Programs. Communications of the ACM.

Volume 18, Issue 8: 453–457.

[37] Doug, Lea. (2007). Christopher Alexander: An Introduction for

Object-Oriented Designers. [Online]. Available from World Wide

Web: http://gee.cs.oswego.edu/dl/ca/ca/ca.html[Accessed 02/1/07].

[38] Etidy. (2006). The Home of the Necklace Hanger. [Online].

Available from World Wide Web: http://etidy.co.uk/ [Accessed

20/01/10].

[39] Fact-Archive. (2008). [Online]. Available from World Wide Web:

http://www.fact-archive.com/encyclopedia/Context[Accessed

20/09/08].

[40] Fowler, M.(1997). Analysis Patterns: Reusable Object Models.

Addison-Wesley.

http://www.cc.gatech.edu/fce/cyberdesk/pubs/AAAI98/AAAI98.html
http://gee.cs.oswego.edu/dl/ca/ca/ca.html
http://etidy.co.uk/
http://www.fact-archive.com/encyclopedia/Context

REFERENCES

167

[41] Gabriel, R. P. (1996). Patterns of Software: Tales from the Software

Community. New York: Oxford University Press.

[42] Gamma, E. Helm, R., Johnson, R. & Vlissides, J. (1995). Design

Patterns: Elements of Reusable Object-Oriented Software.

Reading, MA. Addison-Wesley.

[43] Glass, R.L., Ramesh, V. and Vessey, I. (2004). An Analysis of

Research in Computing Disciplines. Communications of the ACM,

June, 47, 6.

[44] Graham, I. (2002). A Pattern Language for Web Usability. London:

Pearson Education.

[45] Graham, I. (2007). A Pattern Language for Web Usability. [Online].

Available from World Wide Web:

http://www.trireme.com/WU/browse.htm [Accessed 22/02/07].

[46] Gregg, D. G., Kulkarni, U. R. and Vinzé, A. S. (2001).

Understanding the Philosophical Underpinnings of Software

Engineering Research in Information Systems. Information

Systems Frontiers, 3(2), pp. 169-183.

[47] Guha, R. (1991). Contexts: A formalization and Some Applications.

PhD thesis, Stanford University.

[48] Harrison, N. (1996). Organisational Patterns for Teams. In J. M.

Vlissides, J. O. Coplien and N. L. Kerth (eds.) Pattern Languages

of Program Design 2. Reading, MA.; Harlow: Addison-Wesley.

pp.345.

http://www.trireme.com/WU/browse.htm

REFERENCES

168

[49] Harrison, N. (1998). Potential Pattern Pitfalls, or How to Jump on

the Patterns Bandwagon Without the Wheels Coming Off. In L.

Rising (ed.) The Patterns Handbook. Cambridge, Cambridge

University Press.

[50] Harrison, N. (1998). Patterns for Logging Diagnostic Messages. In

R. C. Martin, D. Riehle and F. Buschmann (eds.) Pattern

Languages of Program Design 3. Reading, MA: Addison-Wesley.

pp.277.

[51] Harrison, N. & Coplien, J. (2001). Pattern Sequences. [Online].

Available from World Wide Web:

http://c2.com/cgibin/wiki?PatternSequences [Accessed 01/08/04].

[52] Harrison, N., Foote, B. and Rohnert, H. (2000). Pattern Languages

of Program Design 4. Reading, MA: Addison Wesley.

[53] Hay, D. C. (1995). Data Model Patterns, New York: Dorset House

Publishing.

[54] Henney, K. (2005). Context Encapsulation-three Stories, A

language, and some Sequences. Proceedings of the 10th European

Conference on Pattern Languages of Programs (EuroPLoP 2005),

Irsee, Germany, July 2005. Universitätsverlag Konstanz (UKV):

Konstanz.

[55] Hevner, A. R. and March, S. T. (2003). The Information System

Research Cycle. IEEE Computer, 36 (11), November, pp.111-113.

[56] Hillside. (2006). A Pattern Definition. [Online]. Available from

World Wide Web: http://hillside.net/patterns/definition.html

http://c2.com/cgibin/wiki?PatternSequences
http://hillside.net/patterns/definition.html

REFERENCES

169

 [Accessed 24/09/06].

[57] Hillside. (2007). Patterns Library. [Online]. Available from World

Wide Web: http://hillside.net/patterns [Accessed 24/03/07].

[58] Hillside. (2006). Proto Pattern Page. [Online]. Available from

World Wide Web: http://c2.com/cgi/wiki?ProtoPattern[Accessed

5/12/06].

[59] Hillside. (2007). Patterns Catalog. [Online]. Available from World

Wide Web: http://hillside.net/patterns/onlinepatterncatalog.htm

 [Accessed 20/05/07].

[60] Hillside. (2007). Pattern Languages of Programs Conferences.

[Online]. Available from World Wide Web:

http://hillside.net/conferences/plop.htm [Accessed 24/09/07].

[61] Hillside. (2007). European Conference on Pattern Languages of

Programs. [Online]. Available from World Wide Web:

http://hillside.net/conferences/europlop.htm [Accessed 20/08/07].

[62] Jackson, M. (2001). Problem Frames. Addison Wesley.

[63] Kavanagh, M. J. (2005). Foci and Centres in the Design and Use of

Pattern Languages. PhD Thesis, De Montfort University,

Leicester.

[64] Manns, M. L. (1999). Mining for Patterns. OT‟99 Conference.

Oxford, England, 29-31 March.

http://hillside.net/patterns
http://c2.com/cgi/wiki?ProtoPattern
http://hillside.net/patterns/onlinepatterncatalog.htm

REFERENCES

170

[65] Manns, M. L. (1999). Introducing Patterns into an Organization.

Conference on Object-Oriented Programming, Systems, Languages

and Applications. Denver, CO, 1-5 Nov.

[66] Manns, M. L. (2002). An Investigation into Factors Affecting the

Adoption and Diffusion of Software Patterns in Industry. PhD

Thesis, De Montfort University, Leicester.

[67] McCarthy, J. (1993). Notes on Formalisation Context. In Proc.

IJCAI-93, pp 555-560, Chambery, France.

[68] Manolescu, D., Völter, M., Noble, J. (2006). Pattern Languages of

Program Design 5. Reading, MA: Addison Wesley.

[69] Martin, R. C., Riehle, D. and Buschmann, F. (1998). Pattern

Languages of Program Design 3. Reading, MA.: Addison-Wesley.

[70] Meszaros, G. & Doble, J. (1998). A Pattern Language for Pattern

Writing. In R. Martin, D. Riehle and F. Buschmann (eds.) Pattern

Languages of Program Design 3. Reading, MA: Addison-Wesley.

pp. 529-574.

[71] Noble, J. & Weir, C. (2001). Small Memory Software: Patterns for

Systems with Limited Memory. Harlow: Addison-Wesley.

[72] O‟Callaghan, A. (1999). So You Think You Know about Patterns?

Application Development Advisor. 2(6), July/August 1999.

[73] O‟Callaghan, A. (2009). Personal communication with the author

19/08/09.

REFERENCES

171

[74] Olson, D. (2006). Patterns Article - Train Hard Fight Easy.

[Online]. Available from World Wide Web:

 http://c2.com/cgibin/wiki?TrainHardFightEas [Accessed 7/12/06].

[75] Porter, R., Coplien, J. & Winn, T. (2005). Sequences as a Basis for

Pattern Language Composition, Science of Computer

Programming, v.56 n.1-2, p.231-249, April.

[76] Reißing, R. (1998). A Presentation Pattern Language. In EuroPLoP

'98 Conference Proceedings, Irsee, Germany: UVK.

[77] Riehle, D. & Züllighoven, H. (1996). Understanding and Using

Patterns in Software Development. In: Karl Lieberherr/Roberto

Zicari (eds.): Theory and Practice of Object Systems, Special Issue

Patterns. Vol. 2, No. 1, 3-13.

[78] Rising, L. (1998). Design Patterns: Elements of Reusable

Architectures. In Rising (Ed.). The Patterns Handbook. UK:

Cambridge University Press.

[79] Ryan, N., Pascoe, J. & Morse, D. (1997). Enhanced Reality

Fieldwork: the Context-Aware Archaeological Assistant. Gaffney,

V., van Leusen, M., Exxon, S. (eds.) Computer Applications in

Archaeology.

[80] Salingaros, N. A. (2000). The Structure of Pattern Languages

.Architectural Research Quarterly 4: pp.149-161.

[81] Schilit, B. & Theimer, M. (1994). Disseminating Active Map

Information to Mobile Hosts. IEEE Network, 8(5) 22- 32.

http://c2.com/cgibin/wiki?TrainHardFightEas

REFERENCES

172

[82] Schmidt, D., Fayad, M. & Johnson, R. (1996). Special Issue on

Software Patterns. Communications of the ACM, Vol. 39, No. 10.

New York: ACM Press.

[83] Schümmer, T. (2003). GAMA: A Pattern Language for Computer

Supported Dynamic Collaboration. In EuroPLoP 2003 Conference

Proceedings 2003 Irsee, Germany.

[84] Theodorakis, M., Analyti, A., Constantopoulos, P. and Spyratos, N.

(1998). Context in Information Bases. In Proceedings of the 3
rd

International Conference on Cooperative Information Systems

(CoopIS‟98), New York City.

 [85] The Open Group. (2008). [Online]. Available from World Wide

Web: https://www.opengroup.org/togaf/ [Accessed 20/09/08].

[86] Tidwell, J. (2005). Designing Interfaces: Patterns for Effective

Interaction Design. O'Reilly Media.

[87] van Welie, M. & van der Veer, G. (2003). Pattern Languages in

Interaction Design: Structure and Organization. Proceedings of

Interact '03, Zürich, Switserland, M. Rauterberg, Wesson, Ed(s).

IOS Press, Amsterdam, The Netherlands, pp. 527-534, 2003.

[88] van Welie, M. (2010). Patterns in Interaction Design. [Online].

Available from World Wide Web: http://www.welie.com/

[Accessed 01/01/10].

 [89] Vlissides, J. M., Coplien, J. O. and Kerth, N. L. (1996). Pattern

Languages of Program Design 2. Reading, MA: Harlow: Addison-

Wesley.

https://www.opengroup.org/togaf/
http://www.welie.com/

REFERENCES

173

[90] Vlissides, J. (1998). Pattern Hatching: Design Patterns Applied.

Reading, MA: Addison-Wesley.

[91] Webster, M. (2007). Merriam-Webster's Collegiate Dictionary

[Online]. Available from World Wide Web: http://www.merriam-

webster.com/dictionary/context [Accessed 24/09/07].

[92] Zdun, U. (2007). Systematic Pattern Selection Using Pattern

Language Grammars and Design Space Analysis, Software:

Practice & Experience, Vol. 37, No. 9, p. 983-1016, Wiley, 2. July.

http://www.merriam-webster.com/dictionary/context
http://www.merriam-webster.com/dictionary/context

APPENDIX A: WU PATTERNS

174

Appendix A

These patterns are taking from the web usability WU website [45] and it

is used in Chapter 3, 4 and 5(No changes were made to the contents).

The link is http://www.trireme.com/WU/structure.htm

Pattern 1: Establish the business objectives

You are about to create a new website or modify an existing one. The

organization has a strategy, but there are possibly several stakeholders

with conflicting requirements. If you do not know what they are or how

to resolve these conflicts, you will almost certainly produce a site that is

unfit for use. However...

Many people think that writing down a few use cases for the site is

coextensive with understanding the requirements. Jackson (1998) has

amply demonstrated that this is not so and that specification and

requirements are quite different things. Furthermore, business objectives

are not the same as requirements. For example, the statements „we must

double our DVD sales‟ and „the site must make the DVDs more

prominent than books‟ are quite different, though related of course.

When you decide to use TIMEBOXES (4) to control iterative

development you can only negotiate sensibly on evolving requirements if

you have consensus on the things that will not change during the project.

Therefore

Hold a workshop involving as many stakeholders as possible. Make sure

that potential users are represented by marketing personnel or the results

of focus groups, surveys, etc. Find a good facilitator. Agree a mission

http://www.trireme.com/WU/structure.htm
http://www.trireme.com/WU/wup04.htm

APPENDIX A: WU PATTERNS

175

statement. Find measures for each objective. Agree a numerical rank

ordering of the priorities.

Each mission statement is now linked to several measurable and

prioritized business objectives. We can now begin to construct a

BUSINESS PROCESS MODEL (2) within the workshop and manage

the project beyond it using TIMEBOXES (4).

Discussion - forces - known uses

This pattern is one of several in this language whose applicability is far

wider than web design and could – no should – be adopted usefully on

non-web projects. We include it because it is as fundamental to the

success of web projects as to others and because it is, in our experience,

one of the patterns most often ignored by web developers– to the

ultimate detriment of their projects. It is a process pattern.

Business objectives allow teams to validate their use case and business

process models. How should they be discovered? Historically, system

requirements were captured from users during a series of interviews.

Systems analysts would interview individual users or, sometimes, small

groups of users, on an aspect of the required system. The results of these

interviews would be collected into a systems analysis report, which

would then be circulated for comments. Based on the comments

received, a revision would be issued for further comments, and so on.

Such reports were usually very large and often quite unreadable. It is

difficult to believe that anyone ever both read and understood them all.

One suspects that they were often signed in default of a full

understanding, rather than provoke a fruitless confrontation. Other

significant defects of this approach include the following.

http://www.trireme.com/WU/wup02.htm
http://www.trireme.com/WU/wup04.htm

APPENDIX A: WU PATTERNS

176

 Often different stakeholders and groups will present

contradictory opinions, which lead to contradictory

requirements specifications. These may be uncovered

later during use case modelling but are usually not noticed

until the site has gone live.

 The approach is inclined to inculcate an „us and them‟

attitude in the business and the developers. The business

people ask for features and state requirements. The

developers go away and produce something. What is

produced rarely matches the – perhaps unarticulated –

requirements exactly. Squabbling and finger-pointing

follow inexorably.

A facilitated joint requirements workshop can be run to address these

problems directly. Such a workshop will:

 ensure that all participants hear the contributions of others

at first hand, which eases the problem of arriving at

compromises where these are necessary;

 help developers gain a first-hand appreciation of the real

goals of the business, as opposed to a mediated set of

requirement statements;

 develop a shared ownership of the project between and

among developers and the business;

 reduce the elapsed time needed to establish the

requirements;

 establish the tempo of a rapid development process.

A workshop will focus on a particular process-oriented business area and

its mission. Agree and write the mission statement for the site on a flip

chart page and place where everyone can see it – and possibly amend it

as discussion proceeds. Next, the facilitator asks participants call out and

APPENDIX A: WU PATTERNS

177

discuss the specific objectives of this site. These are written on a flip

chart. Experience has taught that there are usually about 13 objectives,

either due to the fact that people run out of ideas after that much

discussion, that 13 objectives comfortably fills two flip chart pages or, as

a more remote possibility, reflecting some obscure law of nature yet to

be articulated by rational Man. No activity should be allowed to produce

a deliverable without it being tested. This principle is applied to the

objectives by seeking a measure for each objective. For example, if our

business is running an hotel and an objective is to provide a high quality

service then the measure might be a star rating system as provided by

many tourist boards or motoring organizations. Of course, there are cases

where a precise measure is elusive. Discussing the measures is an

important tool for clarifying, elucidating and completing the objectives

shared and understood by the group. The discussion of measures helps a

group think more clearly about the objectives and often leads to the

discovery of additional ones or the modification of those already

captured. Setting aside plenty of time for the discussion of the measures

is seldom a waste of time.

 The minimum requirement is that it must be possible to prioritize all the

objectives. A formal preference grid can be elicited by asking that each

pair of objectives be ranked against each other. In workshops, this is too

time consuming and a quicker, more subjective technique is needed. One

way to come quickly to the priorities is to allow participants to place

votes against each objective. We usually permit each person a number of

votes corresponding to about 66% of the number of objectives; e.g. 9

votes for 13 objectives. A good way to perform the voting is to give each

eligible participant a number of small, sticky, coloured paper disks, of

the sort that are sold in strips by most stationers. Then the rules of voting

are explained: „You may place all your stickers on one objective or

distribute them across several, evenly or unevenly according to the

APPENDIX A: WU PATTERNS

178

importance you place on the objectives. You need not use all your votes;

but you are not allowed to give – or sell – unused votes to other

participants.‟ Then everyone must come up to the flip charts all at once.

No hanging back to see what others do is permitted. This helps inject a

dynamic atmosphere into the proceedings and stops people waiting to

see what the boss does before voting.

Two rounds of voting should be done, under different interpretations,

and the results added to reach a final priority score for each objective. Of

course, two colours are then needed for the sticky disks. An example of

two possible interpretations that can be combined is:

1. Vote from your point of view as an individual.

2. Vote from a corporate viewpoint.

Another pair might be:

1. Vote from the supplier‟s viewpoint.

2. Vote from the customer‟s viewpoint.

The results often generate further useful discussion. Also one should

allow for re-prioritization at this point, if surprising results have

emerged. This is often due to overlap between objectives that is

highlighted by the priorities given.

An objective that cannot be measured and/or prioritized must be rejected

or, at least, consigned to a slightly modified mission statement. The

priorities are a key tool for project management since they determine

what must be implemented first from the point of view of the business

sponsor. Technical dependencies must also be allowed for, of course.

Often a discussion around these issues elicits new objectives, clarifies

existing ones or leads to their recombination or even placement in the

overall mission statement. Issues that cannot be resolved are recorded

APPENDIX A: WU PATTERNS

179

with the names of the people responsible for resolving them. Specific

assumptions and exclusions should also be recorded.

Priorities will be used to resolve conflicts later. They should be

numerical. The DSDM (Stapleton, 1997) MoSCoW ratings system will

not usually work for this – every stakeholder insists that his pet objective

is a Must Have.

Known uses

Detailed guidelines for organizing and running workshops can be found

in Graham (2001). The technique has been used successfully on

hundreds of projects around the world over ten years or so. About ten of

these were web design projects.

Pattern 2: Business process model **

You have ESTABLISHed THE BUSINESS OBJECTIVES (1) and

prioritized them in the first sessions of a joint requirements workshop.

You now need to understand the requirements and the business processes

involved, both as they are now and after the site goes live. You realize

that this is different from merely specifying the use cases for the site‟s

potential users, since many people involved (such as warehouse staff or

credit card authorizers) may never even see the site. However, you must

understand their needs and activities as well as those of users.

Therefore

http://www.trireme.com/WU/wup01.htm

APPENDIX A: WU PATTERNS

180

Understand first the network of agents and commitments that make up

the business. Specify the conversations that take place at an appropriate

level of abstraction, so that they are stereotypes for actual stories. Get

people to tell these stories. Ensure that you produce both „before‟ and

„after‟ business process models. Eliminate conversations that do not

correspond to business objectives (or discover the missed objective).

Ensure every objective is supported by a conversation.

 Now that you understand the before and after business models it is

necessary to specify the site, so we must first ESTABLISH THE USE

CASES (3) at the system boundary and divide them into groups to be

delivered in individual TIMEBOXES (4).

Discussion - forces - known uses

This is another process pattern of sweeping generality but too often

ignored by web developers.

The commonest misconception in computing is that understanding a

client‟s requirements is the same as specifying a system that will meet

those requirements. On such a premise one can then blithely state that

use case analysis is the only requirements modelling technique needed.

Jackson (1998) pours scorn on this idea, arguing that use cases are useful

for specifying systems but that they cannot describe requirements fully.

Use cases connect actors, which represent users adopting rôles, to

systems. Requirements, on the other hand, may be those of people and

organizations that never get anywhere near the system boundary. A

requirements document must be written in a language whose

designations concern things in the world in which the system is

embedded (including of course that system). Specifications need only

describe the interfaces of the system and therefore depend on different

http://www.trireme.com/WU/wup03.htm
http://www.trireme.com/WU/wup03.htm
http://www.trireme.com/WU/wup03.htm
http://www.trireme.com/WU/wup04.htm

APPENDIX A: WU PATTERNS

181

designations. The specification describes the interface of phenomena

shared between the world and the system; use cases may be used to

express these. The requirements model is a description over these and

other phenomena in the world; it depends on both the specification and

the world. He also states that „the customer is usually interested in

effects that are felt some distance from the machine‟.

Ignoring the non-user interactions can lead to us missing important re-

engineering opportunities. The model above depicts a rule-based order

processing and auto-pricing system, whose aim was to take orders from

customers electronically and price them automatically using various,

often complex, pricing engines via the corporate object request broker

(ORB). The problem was that some orders were too complex or too large

to admit of automatic handling. These had to be looked at by a salesman

who would of course have an interface with the „system‟. So far, so

good: a rule engine would screen „illegal‟ or „handle manually‟ orders.

The salesman would then apply his various spreadsheet and other

routines to such orders. But a further problem existed; some orders were

so complicated as to be beyond the skills of the salesman, who did not

have expertise in financial mathematics. For these orders, the salesman

had to go across the office and talk to a specialist trader. She did have

the requisite PhD in Financial Engineering. We also modelled non-use-

case conversations (depicted in yellow) and, as a result, when our

domain expert looked at the simulation we had built, she realized

immediately that if we gave the trader a screen we could radically

improve the workflow, and thereby customer service. Even this

relatively minor excursion away from the system boundary thus had a

big cash impact. In many web applications the importance of going

beyond the boundary will be greater still. Jackson‟s argument implies

that we need a specific technique for modelling business processes

distinct from, but compatible with, use case models of specifications.

APPENDIX A: WU PATTERNS

182

The alternative is to fall back on a veritable „Russian doll‟ of nested

models described in terms of „business use cases‟ (Jacobson et al., 1995):

an approach that is not only clumsy but fails to address the above

arguments.

Once the objectives are clearly stated with defined measures and

priorities we can construct our first object model: an object model of the

business area that we are dealing with. To do this we must understand

what a business (process) actually is. Most vendors of business process

modelling tools and techniques find it very difficult to answer the

question: „what is a business process?' Typically, they might answer that

a business is a set of processes connected by data flows, with timings for

each process and (possibly) allocations of process responsibility to

functional units. In other words, data flow diagrams enhanced with

timings or perhaps UML (Unified Modelling Language) activity

diagrams are all that is needed. What all these approaches have in

common is that they lack an adequate theory of what a business process

is. The theory behind this pattern is rooted in the science of Semiotics,

and the work of Winograd and Flores (1986) on workflow systems.

Rather than taking use cases as a starting point, we extract them from a

process model.

Both requirements engineering and business process re-engineering must

start with a model of the communications and contracts among the

participants in the business and the other stakeholders, customers,

suppliers and so on.

 Consider some business or enterprise. It could be an entire small

company, a division or department of a larger one or even a sole trader.

A business process (or business area) is a network of communicating

agents. Flores (1997) refers to this as a network of commitments. An

agent is any entity in the world that can communicate; so it could

APPENDIX A: WU PATTERNS

183

represent a customer, regulator, employee, organizational unit, computer

system or even a mechanical device of a certain type, such as a clock.

Agents are autonomous and flexible. They respond to appropriate stimuli

and they can be proactive and exhibit a social aspect; i.e. communicate.

Typically agents exhibit some level of intelligence, human agents

certainly so but mechanical agents insofar as they can initiate and

respond to communication. This now begs the question of what it means

for two agents to communicate. Agents need not be site users; i.e. actors.

Agents – like actors – are to be thought of as adopting a rôle. This

„business‟ must communicate with the outside world to exist at all and, if

it does so, it must use some convention of signs and signals thereto. We

can call these signals between agents semiotic acts. They are carried by

some material substratum. They involve a number of semiotic levels

from data flows up to implicit social relationships . For example, the

substrate may consist of filled-in forms and the social context might be

that one assumes that no practical jokes are to be played. If the

substratum is verbal (or written) natural language then we can speak

instead of speech acts or conversations. These are the speech acts of

Austin (1962) and Searle (1969). Flores (1997) argues that business

conversations have a constant recurrent structure based on only five

primitive speech acts: assert, assess, declare, offer/promise and request.

Semiotic acts (or conversations as we wall call them from now on) can

be represented by messages, which are directed from the initiator

(source) of the communication to its recipient (target). By abus de

langage we can identify semiotic acts, or conversations, with their

representation as messages although strictly they are different; the same

semiotic act may be represented by many different messages. This

defines equivalence classes of messages and we can think of our actual

message as a generic representative of its class; many contracts may

express the same relationship so we choose one to represent its

equivalence class.

APPENDIX A: WU PATTERNS

184

A typical conversation is represented below where a typical external

customer agent places an order with some business. This message

includes the definition of the reply: {order accepted|out of stock|etc.}.

We, quite legitimately, use the UML use case symbol to represent the

conversation, but overload the UML actor symbol to represent agents.

Data flow in both directions along message links (via the request and

hand-over stages discussed below). This is why we have chosen to

terminate message links at the recipient end with a filled circle rather

than an arrowhead. The line segment is directed from the initiator of the

communication, not from the origin of the data.

We now begin to see that agents can be modelled as objects that pass

messages to each other. Clearly agents can also be classified into

different types as well.

We think of a business process as a network of related conversations

between agents, represented by messages. It is inconceivable in most

businesses that the message initiator does not wish to change the state of

the world in some way as a result of the communication. This desired

state of the world is the goal of the conversation and every conversation

(or message) has a goal or post-condition, even if it is often unstated: the

contract representing the conditions of satisfaction of the conversation.

 A goal is achieved by the performance of a task. The innovation here is

twofold. The tasks we perform can often be reduced to a few stereotypes:

typical tasks that act as pattern matching templates against which real

tasks can be evaluated and from which real tasks (or use cases) can be

generated. This prevents an explosion in the number of use cases.

In business, only serious, goal-oriented conversations are relevant and

therefore we can argue that each conversation has a sixfold structure as

follows:

APPENDIX A: WU PATTERNS

185

1. A triggering event: a world event that triggers the

interaction.

2. A goal: a world state desired by the initiator of the

conversation.

3. An offer or request, which contains the data necessary for

the recipient to evaluate the offer or request.

4. A negotiation, whereby the recipient determines whether

the goals are shared and the conditions of acceptance,

leading to either a contract being agreed or the offer

rejected. The contract formalizes the goal and provides

formal conditions for knowing when the goal has been

achieved satisfactorily.

5. A task that must be performed by the recipient of a

request to achieve the goal and satisfy the contract. This is

what is normally thought of as a use case when one of the

agents is an actor.

6. A handover of the product of the task and any associated

data, which checks that the conditions of satisfaction of

the goals have been met.

This structure accords generally with that of a conversation for action in

the terminology of Winograd and Flores (Flores, 1997; Winograd and

Flores, 1986). Note also that there is a symmetry of offers and requests,

so that we can replace every offer with an equivalent request by

swapping the initiator with the recipient. Flores presents the theory in

terms of a customer (our initiator) and a performer (our recipient) who

executes the primitive speech acts – shown in italics in what follows.

The customer assesses her concerns and asserts a request to the

performer (dually the performer makes an offer). A process of

negotiation then ensues, aimed at defining a contract that can be

promised by the performer and accepted by the customer. This, and other

APPENDIX A: WU PATTERNS

186

stages in the conversation, may involve recursion whereby subsidiary

conversations are engaged in. At the end of negotiation the contract

defines the conditions of customer satisfaction, and then some task must

be executed to fulfil their promise. Finally, the results of this work are

declared complete and handed over to the customer who should declare

satisfaction.

Consider the concrete example of buying a house. An initiator might say

„would you like to buy my house?‟ and the recipient would need to

know, and would negotiate on, the price. This negotiation could well

involve (recursively) subsidiary conversations between the recipient and

a mortgage provider and a building surveyor. If everything is agreed then

a contract will be agreed and signed (literally in this case). Now there is

work to do; in England it is called conveyancing. The work involves

searching local government records and land registry documents along

with many other – all fairly straightforward – tasks. So this is the place

where we might rely on a standard task script, as exemplified for

example by the words (or flowcharts) in a book on conveyancing.

Finally, when this task completes satisfactorily we can hand over the

keys and the contract is said to be completed.

Of course, in business process re-engineering, we are eager to capture

not just the messages that cross the business boundary, such as order

placement, but to model the communications among our customers,

suppliers, competitors, etc. This provides the opportunity to offer new

services to these players, perhaps taking over their internal operations –

for a fee of course.

Having analysed the business process in terms of conversations, we now

focus on the task performance segment of the conversation: the use case

if actors are involved. Before doing so let us remind ourselves of the

model sequence. We started with a mission grid leading to several

APPENDIX A: WU PATTERNS

187

processes. Each process has several objectives. Also, there is now a

network of conversations (messages). We should now ask two critically

important questions:

 Does every message support the achievement of at least

one objective?

 Is every objective supported by at least one message?

If the answer to either question is „no‟, then the model must be amended.

Either we have missed some conversations or we are modelling

conversations that do not contribute to the achievement of any stated

business objective. Of course, it is possible that we have missed an

important objective and, in that case, the users should be consulted to see

if the statement of objectives needs to be modified. If not, we have a

clear re-engineering opportunity: just stop doing the work that supports

no objective.

 Known uses

This technique has been used successfully on hundreds of projects

known to us around the world over ten years or so. About ten of these

were web design projects.

UML provides another notation for business process modelling: the

activity diagram. Our agent conversation diagrams offer a convenient

alternative to activity diagrams which makes all implementation

assumptions very explicit and, more importantly, in a way more readily

understandable by users; the activity notation is quite hard to remember,

understand and explain. Of course, there may be occasions when activity

diagrams are helpful. Martin and Odell (1998) give the following criteria

for deciding whether or not to use this kind of representation. Consider

using activity charts if:

APPENDIX A: WU PATTERNS

188

 an object has complex, significant state (use state charts);

 there is complex interaction between a few objects which

trigger state changes in each other – as often found in

real-time control systems;

 object behaviour is event driven and single threaded and

objects have only one state variable (note that business

processes are notoriously multi-threaded);

 the user culture supports their use – as in the telecoms

sector.

Avoid them if:

 there are several threads (as in a typical business process);

 there is complex interaction between large numbers of

objects;

 objects have several significant state variables.

Pattern 3: Establish the use cases

AKA: ESTABLISH THE USE CASE AND OBJECT MODELS; UNDERSTAND USERS’

TASKS FIRST;TASK-CENTRED INFORMATION ARCHITECTURE.

You have constructed a BUSINESS PROCESS MODEL (2) consisting

of agents and conversations. This was linked to the prioritized business

objectives established earlier in the workshop: ESTABLISH THE

BUSINESS OBJECTIVES (1).

The site must serve at least one significant business purpose. For this

reason we must look at all the use cases that we can predict users will

want to execute.

http://www.trireme.com/WU/wup02.htm
http://www.trireme.com/WU/wup01.htm
http://www.trireme.com/WU/wup01.htm
http://www.trireme.com/WU/wup01.htm

APPENDIX A: WU PATTERNS

189

Therefore

Extract the use cases from the conversations in the BUSINESS

PROCESS MODEL (2). Record their correspondences to the business

objectives. Write post-conditions for each use case. Compare the

vocabulary of the post-conditions to the type model. Write use cases in

stimulus–response form. Convert the use cases into the user training

manual and the test plan. Develop CONTEXT-SENSITIVE HELP (17)

from them. One stimulus/response pair from the use case should

correspond to one step in the workflow if the site deals with workflows.

If not, do not constrain the user‟s ability to perform steps in any

particular sequence. Ensure that you extract and document a business

object type model from the use case goals.

You must now CLASSIFY YOUR SITE (11). One reason is to establish

whether it must enforce workflows. Use a SITE MAP (12) and for

workflow sites CONTEXT-SENSITIVE HELP (17) to help the user

complete use cases accordingly to the constraints set by the organization

and the needs of the user. Use the use cases as the basis to AUTOMATE

TESTING (6).

Discussion - forces - known uses

This is another process pattern of sweeping generality often ignored by

web developers.

It is widely believed that establishing users‟ tasks and responsibilities is

a prerequisite for building any useful computer system. The vulgar term

for this is use case analysis. Other people talk of task analysis or usage-

centred design. Sometimes we need to organize these tasks into a

workflow ... BUT ... task-centric interfaces constrain the freedom of

http://www.trireme.com/WU/wup02.htm
http://www.trireme.com/WU/wup02.htm
http://www.trireme.com/WU/wup17.htm
http://www.trireme.com/WU/wup11.htm
http://www.trireme.com/WU/wup12.htm
http://www.trireme.com/WU/wup17.htm
http://www.trireme.com/WU/wup06.htm
http://www.trireme.com/WU/wup06.htm
http://www.trireme.com/WU/wup06.htm

APPENDIX A: WU PATTERNS

190

users and inhibit their creative use of sites. How do we balance these

forces?

During the construction of the business process model, we got people to

tell stories and produce storyboards. Now we focus on the stories that

concern people interacting directly with the site: users, maintenance

staff, content managers, and so on.

 How will users for example, react to our forcing them to complete

MANDATORY FIELDS (71); will they regard them as intrusive attacks

on their privacy or an unnecessary waste of their valuable time and

phone bill? How will they cope with a disabled BACK BUTTON (35)

should we decide to disable it? More generally, how do we assure the

user of a successful completion to her tasks in terms of navigating to

required content or completing a workflow transaction?

An answer to these questions is only possible if you really understand

who your users are and how they might interact with the site. The most

common way to gain such understanding is to identify the actors (users

adopting a rôle) that use the sites and the tasks they wish to carry out: the

use cases. This is not a tutorial on UML or object-oriented analysis but

we will pause to give a brief description of the technique. For a fuller

tutorial see any of (Graham, 2001; Cockburn, 2000; Fowler, 1997) there

is an extensive tutorial based on Graham‟s work at www.trireme.com.

Use case modelling

The technique starts with the „business use cases‟ discovered using

BUSINESS PROCESS MODEL (2). We now focus on the system

boundary and the actors that will use the site. For each of these we

enumerate and document the use cases. There are several possible styles

of doing this.

http://www.trireme.com/WU/wup71.htm
http://www.trireme.com/WU/wup35.htm
http://www.trireme.com/WU/wup02.htm

APPENDIX A: WU PATTERNS

191

Many people fill in templates, often based on those of Cockburn.

Richard Dué (private communication) recommends using a stimulus–

response format. We think that a use case is best specified by writing

pre- and post-conditions using a minimalist template having roughly the

following form.

1. Name and description

2. Actor(s)

3. Component use cases (if any)

4. Pre-conditions

5. Post-condition (goal)

6. Recoverable exception use cases

7. Fatal exception use cases

8. Comments

Note that we include non-functional requirements in the goal, so that it is

possible to state: „the user has submitted a valid order and received

confirmation in less than n seconds‟. As an example consider a web-

based postal lending library.

There will be a use case named Borrow whose goal might be written:

The MEMBER has been identified and a loan recorded for a BOOK.

The same book has been dispatched to the member within 8 hours and

the book is no longer in stock.

This example shows that the use case goals provide the vocabulary for

discussing the problem domain. Nouns (caps) suggest object types and

verbs (in italics) suggest associations and operations. Nothing is said

about how the goal is accomplished at this stage. We must now go on to

specify an object model that provides and ontology for the site.

APPENDIX A: WU PATTERNS

192

Object modelling

This is not the place for an exegesis on object modelling even though it

is an essential prerequisite to using the further patterns in this language.

The technique summarized above has its origins in Catalysis (D‟Souza

and Wills, 1999) and is summarized in (Graham, 2001). For a tutorial on

building use case and object models specifically in the context of web

design see (Cato, 2001).

Cato seems to regard building the use cases and building the object

model as separate patterns. We think these activities are too inextricably

linked to do this. Thus the first alternative name given above for this

pattern.

Establishing as many use cases as possible lets you think rationally about

subsequent design decisions that you will make. If the priorities are

carried over from the business process model, they will turn into a

valuable tool for managing projects using TIMEBOXES (4). They also

form a sound and invaluable basis for the testing patterns that we will

meet later.

Known uses

Use case modelling is a well-established technique for systems

development and is part of most mainstream methods for object-oriented

and component based development. This applies equally to object

modelling using UML as a notation.

Pattern 23: Breadcrumbs **

http://www.trireme.com/WU/wup04.htm

APPENDIX A: WU PATTERNS

193

You are trying to provide users with a SENSE OF LOCATION (15) and,

in particular, a clear CANONICAL LOCATION (21).

How can users see where they are relative to the site‟s home page, which

probably offers more navigation options then other pages?

Therefore

Do not rely solely on breadcrumbs for navigation unless you are very

short of space. Breadcrumbs should be complimented by a

NAVIGATION BAR (25) and/or other navigational devices. Some

navigation however may only be available from the home page, but

breadcrumbs need to go on every page.

Put breadcrumbs near the navigation bar and always at the top of the

page. Make it clear that they a secondary form of navigation, perhaps by

using a lighter or smaller fount. Highlight or embolden the current

location. Separate them with a > symbol or other pointer-like device.

Clarify their function by saying „you are here‟. Don‟t use them in place

of a well chosen page name.

Next DISPLAY THE OPTIONS (79) and use NAVIGATION BAR (25)

in parallel with this pattern. Put the SITE LOGO AT TOP LEFT (24).

Contributors and sources

Krug (2000), Nielsen (2000).

Discussion - forces - known uses

The site shown above uses breadcrumbs and a search box as its sole

navigation. This works well for a site consisting mostly of articles and

reviews and the site is well worth a visit if you are interested in usability.

http://www.trireme.com/WU/wup15.htm
http://www.trireme.com/WU/wup21.htm
http://www.trireme.com/WU/wup25.htm
http://www.trireme.com/WU/wup79.htm
http://www.trireme.com/WU/wup25.htm
http://www.trireme.com/WU/wup24.htm

APPENDIX A: WU PATTERNS

194

Breadcrumbs provide a depth-oriented navigation bar. They show you

how the current page is related to the home page.

Pattern 24: Site logo at top left **

You have developed a SITE MAP (12) but users visit sites other than

yours. Channel switching between different site layouts causes cognitive

dissonance and extra work. Therefore you FOLLOW STANDARDS

(36). Users need to know that they can always GO BACK TO A SAFE

PLACE (34) and may not be able to rely on the BACK BUTTON (35) to

do this. A prominent logo will also support a user‟s SENSE OF

LOCATION (15).

How do I know which site I am currently on? How do I know what will

happen when I click on the site logo. How can I always get back to the

site‟s home page?

Therefore

Follow the standard. Place you logo at the top left of every page.

Clicking on the logo always takes you home. No time is spent looking

around for the home button. Spend time thinking up a good tag line.

Fit the logo into the NAVIGATION BAR (25), within the home page‟s

THREE-REGION LAYOUT (26). Avoid making the user a PRISONER

OF WAR (37).

Discussion - forces - known uses

http://www.trireme.com/WU/wup12.htm
http://www.trireme.com/WU/wup36.htm
http://www.trireme.com/WU/wup34.htm
http://www.trireme.com/WU/wup34.htm
http://www.trireme.com/WU/wup34.htm
http://www.trireme.com/WU/wup35.htm
http://www.trireme.com/WU/wup15.htm
http://www.trireme.com/WU/wup15.htm
http://www.trireme.com/WU/wup15.htm
http://www.trireme.com/WU/wup25.htm
http://www.trireme.com/WU/wup26.htm
http://www.trireme.com/WU/wup37.htm
http://www.trireme.com/WU/wup37.htm
http://www.trireme.com/WU/wup37.htm

APPENDIX A: WU PATTERNS

195

Since most sites place their logo at the top left of every page and use it as

a link to their home page, users come to expect this. It is guaranteed to

be visible when a page loads and even when a user arrives from a search

engine she will know whose site she is on. Therefore follow the

standard. The logo on the home page can be larger than on other pages

and may have a tag line. The tag line needs to be chosen carefully

because it must differentiate and characterize you enterprise without

naming it. Among the best ones we‟ve seen we‟ll mention BabyCenter

who use the phrase „cradle and all‟, which seems to sum up what they

sell very well. The trouble is that thinking up such a phrase is very

difficult.

Pattern 25: Navigation bar **

You have created a SITE MAP (12) and want to make it accessible to the

user.

How can the number of clicks the user needs to make to get from one

section (or major section) of the site to another be reduced? How can we

ensure that the user knows her location relative to the site and relative to

the web as a whole?

Therefore

As in Figure 25.1, use colour to indicate current location and where the

user has been already. Try to FOLLOW STANDARDS (36) when doing

this.

Avoid using pull down menus for navigation. The user has to perform an

extra action to see what the options are, and the links don‟t change

colour when visited in these lists. Provide a bar on the home page – and

http://www.trireme.com/WU/wup12.htm
http://www.trireme.com/WU/wup36.htm

APPENDIX A: WU PATTERNS

196

possibly on other pages – that allows the user to jump to any section of

the site or at least the top three levels. Place it above the fold. Consider

the use of the tab metaphor if there a less than about 7 categories.

Next include BREADCRUMBS (23) and make sure that the are NO

FRAMES ON PUBLIC SITES (27). Embed the navigation bar in a

THREE-REGION LAYOUT (26). For large suites consider using

STRUCTURED MENUS (19).

Contributors and sources

Paul Dyson, Dave Sissons, Krug (2000), Nielsen (2000), Veen (2001)

Discussion - forces - known uses

A navigation bar lists either the top level structure of the site or the use

cases it offers. Many sites list the high level services down the left hand

side and the use cases across the top.

Highlight the current location in the navigation bar by changing its

colour, emboldening it or using an image or character that looks clearly

like a pointer. Preferably do at least two of these things.

Reinforce the idea that your navigation bars are to do with navigation by

using a unique colour background for navigation throughout the site.

Items that should go on the bar for all sites include:

 the site logo (which takes you home consistently);

 about the organization or company;

 privacy policy;

http://www.trireme.com/WU/wup23.htm
http://www.trireme.com/WU/wup27.htm
http://www.trireme.com/WU/wup27.htm
http://www.trireme.com/WU/wup27.htm
http://www.trireme.com/WU/wup26.htm
http://www.trireme.com/WU/wup19.htm
http://www.trireme.com/WU/wup25.htm##
http://www.trireme.com/WU/wup25.htm##
http://www.trireme.com/WU/wup25.htm##
http://www.trireme.com/WU/wup25.htm##

APPENDIX A: WU PATTERNS

197

 contact information.

For workflow or sales sites you should include:

 registration and log-in;

 checkout;

 shopping basket;

 account information.

Other possibilities include:

 downloadable items;

 site map;

 communities;

 frequently asked questions;

 news and press releases;

 jobs.

Structural links, which point to other parts of the site, should be

displayed consistently on each page to reinforce user understanding of

the navigation scheme. However, this takes up a lot of space and

sometimes a compromise solution is needed. The service navigation bar,

usually displayed left, shows the breadth of the site but occupies a lot of

valuable screen space. Therefore, consider placing it only on the home

page – only a click away via the site logo, which is on every page.

Index card tabs are a commonly-used metaphor on navigation bars, with

Amazon sites being the best known example as shown in the sensitizing

image of this pattern. Notice how colour is used to connect the current

navigation options to current tab. This works a lot better when there a

only a few options. As Amazon‟s product range has been extended the

usability of the sites seems to have degraded slightly. Also, at a glance

the All Products combo box on the German site doesn‟t seem to do

APPENDIX A: WU PATTERNS

198

anything but duplicate the tabs – or does it restrict the search somehow?

Here is something that could well confuse users – and confusing people

is bad. Amazon supplement this navigation with a vertical bar on the left

that contains deeper navigation options. Notice how the different

placement of the combo box makes its function much clearer.

Browsers change the link colours for sites that have already been visited.

This is helpful information and should not be overridden or hidden in

any way. Nielsen‟s studies indicated that the standard link colours should

be retained to maximize usability. If we FOLLOW STANDARDS (36)

then anything clickable will be underlined.

Figure 25.1 Show users clearly their current location and where they‟ve

been already. [Refer to book]

Pattern 76: Content is linked to navigation *

You are concerned with providing a SENSE OF LOCATION IN

WORKFLOW (75) through a sound navigation scheme, but your

development budget is limited.

Can I base the navigation scheme on a standard product and so save

development time?

Therefore

Link navigation to a model of users‟ domain knowledge. One page

implements one workflow step. Avoid shell architecture. This pattern is

terminal within this language.

http://www.trireme.com/WU/wup36.htm
http://www.trireme.com/WU/faqs.htm
http://www.trireme.com/WU/wup75.htm
http://www.trireme.com/WU/wup75.htm
http://www.trireme.com/WU/wup75.htm

APPENDIX A: WU PATTERNS

199

Contributors and sources

Richard Dué, Detlef Vollmann, Spool et al. (1999)

Discussion - forces - known uses

The study by Spool et al. (1999) showed that when users visited shell

sites they found it very hard to hard to use for searching for the

information they needed. Shell sites are those where a fixed organization

and navigation scheme is defined and content is then plugged into it.

Just as form and content are intertwine in art and nature so on the web.

The way you navigate depends deeply on the material you are navigating

and therefore the navigation scheme should reflect the exigencies of the

content as well as the use cases. Consider, for example, the different

ways that bibliographical, leisure and commercial sites are approached.

A tourist does arrive at a travel site with a conception of library-style

organization that he might have used in his day job – a librarian.

On workflow sites it is clear that the workflow itself should guide at least

some of the navigation.

APPENDIX B: WELIE PATTERNS

200

Appendix B

These patterns are taking from Welie website [88] and it is used in

Chapter 3 and 5 (No changes were made to the contents). The link is

http://www.welie.com/

E-Commerce Site pattern

http://www.welie.com/patterns/showPattern.php?patternID=commerce

Problem

User want to shop for a product.

Solution

Create a 'virtual' store where visitors can browse, choose and pay for all

their selections in one go.

From www.amazon.com

Use when

http://www.welie.com/
http://www.welie.com/patterns/showPattern.php?patternID=commerce
http://www.amazon.com/

APPENDIX B: WELIE PATTERNS

201

When visitors can buy products or services online. The number of

products can be bought is not very important, this pattern applies very

every basic online shopping site.

How

The basic e-commerce site is based around the same idea as a normal

shop; you search for the products and put them in you cart until you

decide to actually buy them. The main real difference is that people

cannot 'touch' the products before buying them. So for successful

commerce sites it is really important to make users 'feel good' about

buying the product. You need to make sure they know EXACTLY what

it is they are buying. use pictures or animations to show all relevant

aspects of the products. Sometimes, a 3D model that people can

manipulate can be a nice way to reach that 'touching the product' feeling

online.

An e-commerce site is based around the following components:

 A database with product description

 Client profiles for personalization and purchase processes

 Some sort of Shopping cart mechanism

The home-page | When users visit an e-commerce site, it must be clear

that products can be bought. This can be achieved by showing a

Shopping Cart, an icon for accessing the cart or a mini-cart, on the

home-page. Also list some categories of products that you sell. Use a

pay-off to give a reason why visitors should buy at your site and not any

other site.

An E-commerce site is based on the following principle; personal,

effective, and efficient. When people shop online, the following issues

are very important to take into account:

http://www.welie.com/patterns/showPattern.php?patternID=shopping-cart

APPENDIX B: WELIE PATTERNS

202

 People must be able to find a product they like

 People must be able to buy selected products

 Care about the privacy of customers

 Offer good services after the actual purchase: e.g. being able to

track the order or return purchased products

 Give people to shop at your site!

The Shopping Experience | The first part in the shopping experience is

getting people to buy something. If you are trying to sell something, you

need to put the products under the users' nose as much as you can

without overdoing it. Show what you have, what is popular/hot/new/ etc.

For example using various Hotlist. When they see products, make sure

they resemble the real thing as much as possible and let them 'virtually'

touch/use the product. Also allow for Product Comparison in order to

help people choose

When you allow for Login, visitors can be recognized for even better

suggestions. The site can offer recommendations based on previous

purchases or wish-lists.

Once people have found a product they want to buy, use the Shopping

Cart for dealing with the purchase process. Make sure your design is

clear and effective. You must show additional cost such as shipping

costs at all times and be flexible with things such as delivery addresses.

The second part of the shopping experience is about actually getting the

product you ordered and making sure the customers is happy with the

purchase. Offer the possibility to track the order and offer information

about what to do when something has gone wrong e.g. the wrong

product was delivered or the product was damaged.

http://www.welie.com/patterns/showPattern.php?patternID=hotlist
http://www.welie.com/patterns/showPattern.php?patternID=comparison
http://www.welie.com/patterns/showPattern.php?patternID=login
http://www.welie.com/patterns/showPattern.php?patternID=shopping-cart
http://www.welie.com/patterns/showPattern.php?patternID=shopping-cart
http://www.welie.com/patterns/showPattern.php?patternID=shopping-cart

APPENDIX B: WELIE PATTERNS

203

The third part concerns the creation of extra value so that people keep on

using the site and buy more products. Using personalization in the form

of recommendations is a nice way to suggest relevant products to

returning customers. Other possibilities are 'wish lists' or 'favorite

readings' that people can share with other visitors of the site.

Why

The basic ideas behind an e-commerce site is to mimic a normal shop.

The essentials are simple but getting the details right can be hard and

have a big impact on your success.

More Examples

This example from Esprit shows an interesting approach. User can shop

for clothes and once the arrive at a product they can see the item in

different colors, see the material from close-by (the zoom button) and

how it looks on a person (fitting button). Just as you would in a shop. It

also shows in the bottom of the screen how many items you have in your

cart and the total amount.

http://www.esprit-online-shop.com/index_uk.htm

APPENDIX B: WELIE PATTERNS

204

Shopping pattern

http://www.welie.com/patterns/showPattern.php?patternID=shoppi

ng

Problem

Users want to look for products of interest and potentially purchase them

Solution

Create an online shopping experience that matches off-line shopping

experiences

http://www.welie.com/patterns/showPattern.php?patternID=shopping
http://www.welie.com/patterns/showPattern.php?patternID=shopping

APPENDIX B: WELIE PATTERNS

205

From www.bn.com

Use when

You are building a web site where you sell products, typically an E-

commerce Site but it can also be a site with paid content. The sort of

products that you are trying to sell may vary a lot, ranging from books,

electronics, to holiday and clothes. Some products can be delivered

directly by downloading it and others will have to be delivered 'later' by

some logistical process. No matter what product you are trying to sell,

there are well known aspects to shopping that apply to all products and

to all ways of shopping.

How

Shopping involves several fundamental activities that apply to both

online and offline shopping activities. These activities needs to be

supported for each type of product and domain. How to do that best is

largely domain dependent, but some basic ideas can be defined:

- Discovering. People need to know what they can buy in the store, as

far as they don't already know it. Even if they have been in the store

before they need to be informed of new products that are for sale. Even if

there are no new products to sell, there may be products that should be

http://www.bn.com/
http://www.welie.com/patterns/showPattern.php?patternID=commerce
http://www.welie.com/patterns/showPattern.php?patternID=commerce

APPENDIX B: WELIE PATTERNS

206

brought under the users attention because of other reasons e.g. because

they are discounted, very popular etc. Use Hotlist.

- Browsing. Most people like to browse through the store for seeing

what they have and whether something attracts their attention. Browsing

is made easier when products are categorized in ways that customers

expect them to be. The categories allow them to browse in a specific

manner that is a bit more directed than no structure at all. Use structured

navigation such as a Double Tab Navigation with Breadcrumbs so that

people are fully aware of where they are and where they can go to.

- Comparing. Often people do not know exactly which product they

want. They may have several options that they want to compare using a

Product Comparison or Product Configurator.

- Trying. When people try a product they want to make sure it is the

right product for them. Trying is all about 'seeing' certain aspects of the

product. In many cases it is even possible to 'interact' with the product by

'virtually touching it', seeing close-ups, table of contents or a preview of

a part of the object. Sometimes it may also be possible to try the real

thing with some limitations on the use of it. In other words, create a

Virtual Product Display.

- Asking Opinions. Many shops have shop assistants that help

customers to find the right product for them. Online this is difficult to

achieve but one could create Product Advisor or collect

recommendations/ratings/comments of other people that bought the

product.

- Choosing. Choosing is not the same as buying. Customers may choose

several products and before they actually start buying, discard several of

http://www.welie.com/patterns/showPattern.php?patternID=hotlist
http://www.welie.com/patterns/showPattern.php?patternID=doubletab
http://www.welie.com/patterns/showPattern.php?patternID=crumbs
http://www.welie.com/patterns/showPattern.php?patternID=comparison
http://www.welie.com/patterns/showPattern.php?patternID=product-configurator
http://www.welie.com/patterns/showPattern.php?patternID=shopping##
http://www.welie.com/patterns/showPattern.php?patternID=product-advisor

APPENDIX B: WELIE PATTERNS

207

them at the last minute. Give them a place to keep products they may

want to buy such as a Shopping Cart or wish list

- Recommending. Many times when people shop they do not find

anything for themselves but they find something that might interest a

friend or relative. In that case they want to recommend it to others or

letting others know about the existence of the product. Use Send-a-

Friend Link or list of recommended products.

Besides finding a product people like, there are other factors that give

people greater satisfaction with their purchase:

 - Having struck a bargain

- The cheapest price

- A unique product

- The product comes with exceptional service

- The product is more durable

- The product is quickly delivered

Why

People know the off-line shopping experience very well. The essentials

of shopping should be taken into account for online shopping as well

since they have little to do with the medium itself. The goal is to find the

appropriate way to sell particular products in the web while paying

attention to all aspects of the shopping experience.

More Examples

The Gore-tex product advisor that helps people find the right product for

them:

http://www.welie.com/patterns/showPattern.php?patternID=shopping-cart
http://www.welie.com/patterns/showPattern.php?patternID=send-to-friend
http://www.welie.com/patterns/showPattern.php?patternID=send-to-friend
http://www.gore-tex.co.uk/advisor/index.cfm

APPENDIX B: WELIE PATTERNS

208

The 3D phone demo at Nokia allows people to 'touch' and 'play' with the

phone without physically holding it:

http://www.nokia.com/

APPENDIX B: WELIE PATTERNS

209

Purchase Process pattern

http://www.welie.com/patterns/showPattern.php?patternID=purchase-

process

Problem

Users want to purchase an already selected product

Solution

Present users with the purchase steps

From www.bn.com

Use when

The site allows purchasing of goods, typically a E-commerce Site but it

can also a site that happens to sell products as well such as a Museum

Site. A purchase can also be part of larger tasks such as a Booking.

How

http://www.welie.com/patterns/showPattern.php?patternID=purchase-process
http://www.welie.com/patterns/showPattern.php?patternID=purchase-process
http://www.bn.com/
http://www.welie.com/patterns/showPattern.php?patternID=commerce
http://www.welie.com/patterns/showPattern.php?patternID=museum
http://www.welie.com/patterns/showPattern.php?patternID=museum
http://www.welie.com/patterns/showPattern.php?patternID=museum
http://www.welie.com/patterns/showPattern.php?patternID=booking

APPENDIX B: WELIE PATTERNS

210

In order to purchase the products in the cart they need to select the

checkout action. The checkout is a five step Purchase Process with the

following tasks:

 Identify they client

 Select shipping address and special options

 Select payment method

 See overview of the entire order

 Confirm and place order

 Receive confirmation by email

The users can abort the checkout procedure at any step. When users retry

the checkout later, they start again at the first task. Consider a Wizard to

guide the user through these tasks while minimizing the number of web

pages used. However, a wizard is not always needed for just a purchase.

Often sites ask for details that are not strictly necessary to process the

order. In many cases, all of the order information may easily fit on one

page and hence eliminating the need for a wizard.

Minimize navigation and non-relevant page elements

Since purchasing is a task that requires quite some focus, the standard

page layout during the purchase process has to be simplified. Sub-

navigation and contextual elements should not be shown. All distracting

elements should be removed.

User Login

Many sites require users to Login as the first step of the process. While

this is convenient for returning customers because all their personal data

can be re-used, it is not very nice for new users. New customers should

be allowed to purchase items without creating an account. At the end of

a purchase, users can be asked to Registration. Registration can then be

made very simple because all the basic data has already been captured

http://www.welie.com/patterns/showPattern.php?patternID=purchase-process
http://www.welie.com/patterns/showPattern.php?patternID=wizard
http://www.welie.com/patterns/showPattern.php?patternID=login
http://www.welie.com/patterns/showPattern.php?patternID=registration

APPENDIX B: WELIE PATTERNS

211

during the purchase process, only the username and password still needs

to be selected.

Confirmation by email

It is important to 'give' the users something that is easily accessible after

the browser has been closed. An email with the information about the

purchase is like a 'receipt' for users. It should contain an order number,

list of items in the order, all amount, shipping address, payment

information, date of placing order. It should also contain help for users

how to track they order, cancel it, or request assistance.

Why

First time customers or infrequent customers are best helped with a

Wizard that allows the to complete the purchase in small steps.

Returning customers usually use the same shipping address and same

credit-card. Therefore the process can be more efficiently done in only

one overview screen with a 'purchase' button.

More Examples

At Amazon, the wizard is not shown for frequent customers who's data

has been stored already. All information is shown in one screen while

still allowing users to change parameters:

APPENDIX B: WELIE PATTERNS

212

Shopping Cart pattern

http://www.welie.com/patterns/showPattern.php?patternID=shopping-

cart

Problem

Users want to buy a product

Solution

Introduce a shopping cart where users can put their products in before

they actually purchase them.

http://www.welie.com/patterns/showPattern.php?patternID=shopping-cart
http://www.welie.com/patterns/showPattern.php?patternID=shopping-cart

APPENDIX B: WELIE PATTERNS

213

From www.waterpikstore.com

Use when

A site where users can browse through products and buy them. Users are

not very frequent buyers and are possibly novices. For returning

customers, consider a ONE-CLICK SHOPPING system. Users may buy

more than one product. Users may want to select products now but pay

later. Users may decide to purchase somewhere else at any time

How

When users view a product description, they can choose to add it to their

shopping cart. After adding an item to their cart, the users are shown the

current contents of the cart. Users can inspect their cart contents at any

time using a link that is available on every page. A persistent mini-cart

could also be shown directly on the content pages. Basically the cart is a

Collector that is used to collect products.

The description of the cart contents typically includes the name of the

items, the quantity, availability and prices. Users can remove items from

their cart if they wish and change quantities. The description of the

goods is a link to the product details. Users always see the total costs of a

purchase, so including shipping costs if applicable. The users must also

http://www.waterpikstore.com/
http://www.welie.com/patterns/showPattern.php?patternID=favourites

APPENDIX B: WELIE PATTERNS

214

be informed of the payment options such as which credit cards are

accepted. From the cart page, the users can continue shopping or proceed

with the checkout procedure. The items stay in the cart for a certain

period of time, e.g. 90 days.

View wireframe

Why

The shopping cart is a very well known and international metaphor. This

pattern allows users to gather all products first and pay for them all at

once and whenever they want. By showing the total costs including

shipping the users know exactly what they will have to pay when they

decide to purchase. The checkout procedure using a Wizard helps users

to accomplish the actual purchase with all possible assistance.

More Examples

http://www.welie.com/patterns/wireframes/shopping.ppt
http://www.welie.com/patterns/wizard.html

APPENDIX B: WELIE PATTERNS

215

At amazon.com users can browse through many products and add them

to their shopping cart without any commitments. They can view the

contents of their cart with one click and proceed with the actual purchase

whenever they want. The option to view the contents of the cart is

available on every page.

Barnes and Noble show a mini-cart on every page so that users can

always see a brief overview of their cart contents.

At www.gap.com, shoppers find this "mini-cart" on every page. In fact,

they call it a "bag" and shop a small image of the bags you get when

shopping in a Gap store:

An inspection of the "bag" shows the following overview:

http://www.gap.com/

APPENDIX B: WELIE PATTERNS

216

At www.guess.com, they combined the number of items and the cart

icon, well a bag in this case...

Collector pattern

http://www.welie.com/patterns/showPattern.php?patternID=favourites

Problem

Users need to temporarily gather a set of items for later use

Solution

Allow users to build their list of items by selecting the items as they are

viewing them. Place a link to the collected items list on every page in the

site.

http://www.guess.com/
http://www.welie.com/patterns/showPattern.php?patternID=favourites

APPENDIX B: WELIE PATTERNS

217

From www.yahoo.com

Use when

In many sites users encounter 'objects' that they will later again read,

view, or use in general. For example, in a E-commerce Site users view

products which they will put in their Shopping Cart so that they may

purchase them or throw them out of the cart again. A 'wish list' is another

temporary storage for products. For other type of sites such as News Site

users may gather articles based on headlines and read the collected

articles afterwards. Often a 'favorites/bookmarks' list is part of a

Personalized 'My' Site. Collecting items can also be used for a Product

Comparison or any other situation where the task consists of 'collect and

take action on the collection'.

Users must be able to quickly access their 'collection' and independently

of the task at had. Users must be able to add items as they find them and

they must be able to manipulate their gathered items.

How

Place a link 'add/save to list/cart/clippings/...' on pages with items of

interest. Typically such a link is present on a Article Page or Product

Page. Provide some subtle feedback that the item has been added to the

set of items. For example, by showing the number of items in the set

being updated. Alternatively, show the updated list of items.

The set of items is accessible from any location in the site. It is hence

http://www.yahoo.com/
http://www.welie.com/patterns/showPattern.php?patternID=commerce
http://www.welie.com/patterns/showPattern.php?patternID=shopping-cart
http://www.welie.com/patterns/showPattern.php?patternID=news-site
http://www.welie.com/patterns/showPattern.php?patternID=my-site
http://www.welie.com/patterns/showPattern.php?patternID=comparison
http://www.welie.com/patterns/showPattern.php?patternID=comparison
http://www.welie.com/patterns/showPattern.php?patternID=comparison
http://www.welie.com/patterns/showPattern.php?patternID=article-page
http://www.welie.com/patterns/showPattern.php?patternID=product-page
http://www.welie.com/patterns/showPattern.php?patternID=product-page
http://www.welie.com/patterns/showPattern.php?patternID=product-page

APPENDIX B: WELIE PATTERNS

218

usually part of the Meta Navigation. Selecting the list shows the set

either on a new page or in an overlaid section. The list itself is just a very

basic View. Although the set of items is only intended to gather few

items, users need some basic functionality for deleting all or some items.

Provide functionality in the area of the list itself, for instance using

simplified List Builder pattern.

Why

Temporarily collecting items is something we do all the time in our daily

life. The collector provides a simple mechanism that allows for a small

number of items to be gathered for later use. By making it accessible on

every page it truly becomes a handy 'cart' to put stuff in.

More Examples

The International Herald Tribune site makes different use of a favourites

list. Here users can click on the icon next to an article to "clip" the

article. By going to the "clippings" section in the top bar, users can

manage their selected articles.

http://www.welie.com/patterns/showPattern.php?patternID=meta-navigation
http://www.welie.com/patterns/showPattern.php?patternID=view
http://www.welie.com/patterns/showPattern.php?patternID=list-builder

APPENDIX B: WELIE PATTERNS

219

At CNet, articles can be 'saved' and are directly accessible again in a pull

down list

APPENDIX B: WELIE PATTERNS

220

List Builder pattern

http://www.welie.com/patterns/showPattern.php?patternID=list-builder

Problem

The users need to build up and manage a list of items

Solution

Present the total list and provide editing functionality next to it.

From www.bol.com

Use when

Users have several items to manage. They may be confronted directly

with a long list or they may need to build up a new list. The list of items

is typically ordered and could be quite long. Users want to have a

complete overview of the list but the space to display it is limited. Users

need to perform operations on them and see the results. Certain

operations can be done on many items at the same time while other

operations can only be done on one item at a time.

How

http://www.welie.com/patterns/showPattern.php?patternID=list-builder
http://www.bol.com/

APPENDIX B: WELIE PATTERNS

221

The users first see the total of items in the list. If the list is empty it says

so, for example "no items added" or "empty". If all operations can be

performed at the same time, use a type A solution, otherwise use a type

B solution. If type A is chosen, provide the editing functionality below

the list. If the list is likely to become longer than 10 items the

functionality should be placed above the list. Type B solutions are

typical when the functionality contains an "Edit..." function where some

properties of the item can be changed.

When an item is added to the list, the view on the list shows the added

item by highlighting it, as feedback to the users that the operation has

been performed correctly. If necessary the list should "scroll" to the

position of the new item in the list.

Why

By showing the overview first the users always know what the current

status is. Editing functionality is then seen as "operations" on the current

list.

More Examples

This example from the Hotmail service shows a type A solution.

APPENDIX B: WELIE PATTERNS

222

View pattern

http://www.welie.com/patterns/showPattern.php?patternID=view

Problem

Users need to manage a collection of objects

Solution

Create an overview of objects that together is meaningful to users

From www.hotmail.com

Use when

http://www.welie.com/patterns/showPattern.php?patternID=view
http://www.hotmail.com/

APPENDIX B: WELIE PATTERNS

223

Typically used in a Web-based Application in which 'Views' are the

main elements. Users need to manage objects such as emails, bank

accounts, stocks, orders and so on.

How

A view usually is an overview of a set of objects, e.g. email messages,

orders, appointments, products, image, . When views are editable, they

may take the form of a List Builder or a list of thumbnails or a custom-

designed overview. Views usually contain 'abbreviated' description of

the objects themselves. These descriptions are usually clickable which

results in a detailed view of the object. Closing the detailed view takes

users back to the view itself. Views are typically placed in the Center

Stage of the page. When views are very large, some form of Paging or

Stepping can be used. Switching from one view to another is done using

the Main Navigation.

Typical behavior with forms consists of 'view-edit-return'. The user

selects an item in the view and edits the detailed description using a

Form and/or a Wizard. Once the editing is completed, the users is

presented with the view again.

http://www.welie.com/patterns/showPattern.php?patternID=application
http://www.welie.com/patterns/showPattern.php?patternID=list-builder
http://www.welie.com/patterns/showPattern.php?patternID=center-stage
http://www.welie.com/patterns/showPattern.php?patternID=center-stage
http://www.welie.com/patterns/showPattern.php?patternID=center-stage
http://www.welie.com/patterns/showPattern.php?patternID=paging
http://www.welie.com/patterns/showPattern.php?patternID=stepping
http://www.welie.com/patterns/showPattern.php?patternID=main-navigation
http://www.welie.com/patterns/showPattern.php?patternID=forms
http://www.welie.com/patterns/showPattern.php?patternID=wizard

APPENDIX B: WELIE PATTERNS

224

Why

A view is sort of a 'safe place' from which all kinds of 'management'

functionality can be used. It gives users the overview they need and it is

obvious how users can access the management functionality.

More Examples

At www.vodafone.nl can manage a collection of MMS-es. An overview

is given from which users can 'copy', 'move', 'view', or 'delete' MMS-es.

Search Box pattern

http://www.welie.com/patterns/showPattern.php?patternID=search

Problem

The users need to find an item or specific information.

http://www.vodafone.nl/
http://www.welie.com/patterns/showPattern.php?patternID=search

APPENDIX B: WELIE PATTERNS

225

Solution

Offer a search

From www.tucows.com

Use when

Any web site that already has primary navigation. User may want to

search for an item in a category. User might want to further specify a

query

How

* The search interface

Offer search functionality consisting of a search label, a keyword field, a

filter if applicable and a "go" button. Pressing the return key has the

same function as selecting the "go" button. Also provide Search Tips and

examples in a separate page. A link to that page is placed next to the

search functionality. The edit box for the search term is large enough to

accommodate 3 typical user queries (typically around 20 characters). If

the number of filters is more than 2, use a combobox for filter-selection,

otherwise a radiobutton.

Search -- editbox -- for/in -- filter -- Go button

or just... -- editbox -- Go button

* Presenting search results

The search results are presented on a new page with clear label

containing at least "Searchresults" or similar. The search function is

repeated in the top-part of the page with the entered keywords, so that

the users know what the keywords were.

http://www.tucows.com/
http://www.welie.com/patterns/showPattern.php?patternID=search-tips

APPENDIX B: WELIE PATTERNS

226

The number of "hits" is reported and the list of search results is

organized; sorted or rated with the best matches at the top. When there

are more than 10 results use a Paging mechanism. Each search result

shows a link to the item itself and a snippet of text to explain the item.

Preferably that would a summary or abstract but can also be the first

lines of text of the resulting item. The structure of a "result" typically

shows:

1. Page Title

2. Description

3. Categorisation

4. URL, Size, Date

* Keyword matching

If more than one search term is used the search engine must handle them

as follows: if no special separators are used (not including the space), the

search is interpreted as an OR function, the results that match both terms

are listed first. If special separators are used the search engine must be

able to handle more than one convention. For example, sometimes the

"AND/OR" separators are used but using a "+" or a "-", include and

exclude, must also be handled correctly. The engine must also be able to

handle spelling mistakes of at least one character.

Why

By using this setup the whole search becomes a sentence that reads like

the search query.

More Examples

In this example from tucows, the designers actually were able to make

http://www.welie.com/patterns/showPattern.php?patternID=paging

APPENDIX B: WELIE PATTERNS

227

the search read like a sentence. Users can "download software package X

for Win2000"....

Breadcrumbs pattern

http://www.welie.com/patterns/showPattern.php?patternID=crumbs

Problem

The users need to know where they are in a hierarchical structure and

navigate back to higher levels in the hierarchy

Solution

Show the hierarchical path from the top level to the current page and

make each step clickable

From www.macromedia.com

Use when

Sites with a large hierarchical information structure, typically more than

3 levels deep. Such sites are medium to large sized and include E-

commerce Site, catalogs, Portal Site, Corporate Site etc. The site has got

some type of Main Navigation that allows users to traverse the hierarchy.

Users may want to jump several steps back instead of following the

hierarchy. Users may be unfamiliar with the hierarchical structure of the

information.

How

http://www.welie.com/patterns/showPattern.php?patternID=crumbs
http://www.macromedia.com/
http://www.welie.com/patterns/showPattern.php?patternID=commerce
http://www.welie.com/patterns/showPattern.php?patternID=commerce
http://www.welie.com/patterns/showPattern.php?patternID=portals
http://www.welie.com/patterns/showPattern.php?patternID=corporate
http://www.welie.com/patterns/showPattern.php?patternID=main-navigation

APPENDIX B: WELIE PATTERNS

228

The path shows the location of the current page in the total information

structure. Each level of the hierarchy is labeled and functions as a link to

that level. The current page is marked in order to give the users feedback

about where they are now and should not be a link. Don't use the current

page name in the breadcrumb as the only way to show section title, add a

title anyway.

The path shows that a top-down path is traversed by using appropriate

separators such as > or \ that suggest a downward motion. If the path

becomes too long to fit in the designated place, some of the steps can be

replaced by an ellipsis e.g. "...". The path is placed in a separate "bar"

that preferably spans the entire width of the content area. It is placed

close to the content area, preferably above the content area but below the

page header.

Why

The bread crumbs show the users where they are and how the

information is structured. Because users see the way the hierarchy is

structured they can learn it more easily. By making each label a link, the

users can quickly browse up the hierarchy. They take up minimal space

on the page and leave most of the space for the real content.

Breadcrumbs are not for primary navigation and should always be used

together with a form of Main Navigation. Usability testing has shown

that breadcrumbs are never cause trouble and that at least some people

use them. So it is nearly always good to use them.

The name breadcrumb refers to the fairy-tale of Hansel and Gretel where

a breadcrumb trail is used to mark the places Hansel has been. If the

analogy were correct a breadcrumb should show the history of the users'

http://www.welie.com/patterns/showPattern.php?patternID=main-navigation

APPENDIX B: WELIE PATTERNS

229

actions rather than the position in the hierarchy. So the name

breadcrumb is actually wrong...

More Examples

This example is taken from Sun's web site and shows the use of bread

crumbs in product pages. The path from the top level is visible and the

users can go to any of the other higher level product categories.

This example from World66 combines a Fly-out Menu with a

breadcrumb....!!!

Implementation

Usually a CMS provides a standard component for creating

breadcrumbs. If you are not using a CMS but you have a database driven

site, you can easily write some custom code for it.

http://www.world66.com/asia/northeastasia/japan/tokyo/akihabara/shopping
http://www.welie.com/patterns/showPattern.php?patternID=fly-out-menu

APPENDIX B: WELIE PATTERNS

230

Form pattern

http://www.welie.com/patterns/showPattern.php?patternID=forms

Problem

Users need to provide personal information and send it to a service

provider

Solution

Offer users a form with the necessary elements

From www.iht.com

http://www.welie.com/patterns/showPattern.php?patternID=forms
http://www.iht.com/

APPENDIX B: WELIE PATTERNS

231

Use when

Users need to provide information. In many occasions, there can be a

need for users to give information via a site. For example, when Booking

a flight, using an Advanced Search, when doing a Registration on a site,

doing some online tax calculations, or simply to Login. Giving particular

information must be part of a user task or at least provide benefit for the

end users.

How

A form is essentially a collection of labels and input fields on a single

page. When designing forms, the following issues must be taken into

account.

Wording. Make sure that users understand what you are asking from

them. Realize that there are internationalization issues here, e.g. "state" is

only for US, "title" can be easily misinterpreted. Give examples to re-

enforce the meaning of the field. Put examples below or at the right of

the input field. Use prompts sparely, adding more text also increases the

chance that people won't read it. So keep any form of introduction text

short, no more than a couple of lines.

Grouping and ordering. Place elements in a logical ordering and group

fields that together describe an entity, e.g. name and address could form

"personal information".

http://www.welie.com/patterns/showPattern.php?patternID=booking
http://www.welie.com/patterns/showPattern.php?patternID=advanced-search
http://www.welie.com/patterns/showPattern.php?patternID=registration
http://www.welie.com/patterns/showPattern.php?patternID=login

APPENDIX B: WELIE PATTERNS

232

Basic Form Wireframe

Layout of label and input elements. Use grids, put the label left of the

element or above it there are sever space limitations. Right align the

label with the field so that label and field are always closely together.

Both the labels and input elements must be aligned using Grid-based

Layout. Design in one column only, avoid having multiple input

elements on the same line. Only do that if an entity is sensibly split up in

part for which you need separate input elements. The length of text input

fields must be determined by the information that needs to be supplied.

However, keep in mind that this can vary because of internationalization

issues as well. A surname in the US is usually quite short (one or two

words), but in Spain they use much longer surnames (three to six words

is not uncommon).

Mandatory and optional fields. In general making a distinction

between mandatory and optional fields is a bad idea. Users should never

have to fill in anything that is not required for the task at hand. However,

there are certainly exceptions where optional fields make sense. In such

cases it is important that it is clear to the user how filling in these fields

http://www.welie.com/patterns/showPattern.php?patternID=grid-based-layout
http://www.welie.com/patterns/showPattern.php?patternID=grid-based-layout

APPENDIX B: WELIE PATTERNS

233

will benefit them. For example, so that recommendations can be

improved or so that the service can be improved (supporting multiple

shipping addresses). If you have mandatory fields AND optional fields,

mark the mandatory fields with an asterisk "*". If the users submits the

form but not all mandatory fields have been filled in, show a popup that

says which fields (still) need to be filled in. Also add a privacy

statement....?

Using the right input element It is important to use the right input

element for a certain field. This depends on the number of options,

single/multiple choice, and the sort of information that is required. For

selecting elements from fixed sets use:

Single Choice from a fixed set: (e.g. number of guests,)

 less than 5 options: radio buttons

 5-10 options: a list box

 more than 10 options, listbox or editbox or a special control

Multiple Choice from a fixed set: checkboxes

Alternatively, use edit boxes and check afterwards if the input has been

interpreted correctly. For example www.ns.nl

Good defaults In order to speed up data entry, it is often good to use

appropriate default values. However, do not use default values for

sensitive fields such as "gender".

Preventing input errors Consider Constraint Input to make sure users

cannot provide invalid input. Otherwise, validate the data and give an

Input Error Message. Be aware that validation is not always 100 percent

http://www.ns.nl/
http://www.welie.com/patterns/showPattern.php?patternID=format
http://www.welie.com/patterns/showPattern.php?patternID=input-error

APPENDIX B: WELIE PATTERNS

234

waterproof, e.g. it is simply not possible to verify that an email address is

valid by checking it syntactically.

Keyboard navigation Filling in forms is tedious and it goes much faster

if you can use the keyboard to go from one field to the other. Make sure

that the TAB key can be used to do this and that the ENTER key is a

shortcut for "confirm", submit, save etc. When the page is loaded the

cursor should be already in the first field and it should have the focus so

that users can start typing straight away. Using the tab key users go to

the next item in the form, i.e. the element to the right or below the

current element.

Why

Filling in forms is error-prone and things must be made as clear as

possible for users. Using the right labels, widgets and defaults all

contribute to the successful completion of the form.

More Examples

APPENDIX B: WELIE PATTERNS

235

Constraint Input pattern

http://www.welie.com/patterns/showPattern.php?patternID=format

Problem

The user needs to supply the application with data but may be unfamiliar

with which data is required or what syntax to use.

Solution

Only allow the user to enter data in the correct syntax.

http://www.welie.com/patterns/showPattern.php?patternID=format

APPENDIX B: WELIE PATTERNS

236

From www.easycar.com

Use when

Any system where structured data must be entered. Data such as dates,

room numbers, social security numbers or serial numbers are usually

structured. The exact syntax used for such data may vary per country or

product. When the data is entered using an unexpected syntax, the data

cannot be used by the application. The user may be familiar with the data

but may not know the exact required syntax. The user strives for entry

speed but also wants it to be entered correctly. Cultural conventions

determine what the user expects the syntax to be. For example,

dd/mm/yy is usual in Europe while mm/dd/yy is used in the United

States.

How

Present the user with fields for each data element of the structure. Label

each field with the name of the data unit if there can be doubt about the

semantics of the field. The field does not allow incorrect data to be

entered. Avoid fields where users can type free text. Additionally,

explain the syntax with an example or a description of the format.

http://www.easycar.com/

APPENDIX B: WELIE PATTERNS

237

Provide sound defaults for required fields, fields that are not required

should be avoided or otherwise marked as optional. When optional fields

are used, the consequences for the user must be explained.

Why

The main idea is avoid entering incorrect data by not making it possible

to enter wrong data. By showing the required format the chances of

errors are reduced because the user is given complete knowledge.

However, because the user now has to give multiple data inputs instead

of one, more time is needed to enter the data. The solution reduces the

number or errors and increases satisfaction but the performance time

may go down.

More Examples

This snapshot is from the date selection at Expedia.com. Entering the

date is spit up in three input areas. Each of the input fields allows only

valid entries. Entering an invalid date becomes impossible.

APPENDIX B: WELIE PATTERNS

238

Processing Page pattern

http://www.welie.com/patterns/showPattern.php?patternID=processing-

page

Problem

Users need feedback that their action is being performed but may take a

while to complete

Solution

Provide a feedback page with animation

From www.british-airways.co.uk

Use when

You are designing a site where slow back-end systems are connected to.

Some requests to the back-end system may take 5 to 30 seconds to

complete and the users need some feedback telling them that their

http://www.welie.com/patterns/showPattern.php?patternID=processing-page
http://www.welie.com/patterns/showPattern.php?patternID=processing-page
http://www.british-airways.co.uk/

APPENDIX B: WELIE PATTERNS

239

request is being performed and that they'll have to wait a bit. Only use

this pattern when it is not possible to speed up the back-end processing

time. Typically, a Travel Site using this when flight-availability is being

looked-up. It also occurs frequently in a Web-based Application

How

Provide information about the reason for the slow response so that users

can have understanding of the problem. Also add an animation or real

progress feedback so that users get a sense of continuity or progress.

Why

Although it would be best to provide real progress feedback, this is often

not technically possible in a web environment. Providing this type of

feedback is the least that should be done for users who need to wait.

More Examples

http://www.welie.com/patterns/showPattern.php?patternID=travel-site
http://www.welie.com/patterns/showPattern.php?patternID=application

APPENDIX B: WELIE PATTERNS

240

Homepage pattern

http://www.welie.com/patterns/showPattern.php?patternID=homepage

Problem

Users need to understand if they are at the right place, and if so, how

they can move on to accomplish their task at your site

Solution

Create a home-page that introduces the site to users and that helps them

to get on their way on the site

From www.accenture.com

Use when

Every website has a home-page. It is like the front door of your house.

For most users, it will be the starting point for navigating through your

http://www.welie.com/patterns/showPattern.php?patternID=homepage
http://www.accenture.com/

APPENDIX B: WELIE PATTERNS

241

site. Typically, the home-page will be your most requested page of the

entire site.

How

The home-page is an important page, it is the front door of your site.

Users that found your site intentionally need feedback to confirm that

they are in the right place. For other users that don't know you very well,

you need to make clear who is behind the site and what there is to find.

The home-page is often packed with stuff, but although it is ok to

indicate what the site is about, putting a lot of stuff on the page is not

always good. When links are buried in a Christmas tree of page

elements, users will not notice it. The home-page must balance

navigation, branding, content, and promotion elements. Be careful not to

make your page too full, users can only notice a couple of things at a

time.

On a more conceptual level, the home-page has three functions:

Introduction The site must be introduced, both its purpose and identity.

Users must know almost immediately what the site is for and who is

behind it. This can be done in several ways. For example using a tag-line

or pay-off. A tag-line is a short "one-liner" that makes it clear what the

site or company is about. Identity can also be established using

photography or by showing the company's logo, If identity cannot be

established well visually, you can always add a short explanation.

Animation can also be used to literally show who you are and what you

do. For very well known brands, the introduction can be very short, just

a logo and nothing else, e.g. nike. For unknown brands or sites with a

highly specialistic purpose, a textual introduction is best. Another aspect

of establishing an identity is having an About Us reachable from the

Meta Navigation.

http://www.welie.com/patterns/showPattern.php?patternID=homepage##
http://www.welie.com/patterns/showPattern.php?patternID=meta-navigation

APPENDIX B: WELIE PATTERNS

242

Entrance . Users seldom find what they need on the home-page.

Therefore, the site's Main Navigation must be clearly shown. On the

home-page so that users know where to get started. Besides the usual

menu bar, you can also use special home-page navigation such as a

Doormat Navigation. Other important elements include a Search Box,

Login if needed and so on. For international site a Language Selector or

a Country Selector. Next to the navigation, a home-page often also

reveals so content from somewhere within the site. This can help to

make users understand what the site is about and in some cases even

Announcement On most sites, things happen and the site changes. The

home-page is to place to communicate what is new, what is going on,

new promotions and so on. Use a News Box for general news, or special

news blocks for things like Case Study.

Which exact elements are part of the home-page highly depends on the

site. It will be different for every single site out there. Other less

important issues in home-page design include having a proper title

defined, and a nice simple/guessable URL.

The home-page is a special page. It is therefore quite normal that it has a

slightly different layout than the other pages of the site. Nonetheless,

some level of consistency should be retained so that the home-page and

other pages clearly "belong" to the same site!

Why

The home-page is all about making a first impression.

More Examples

This example from www.nike.com is a good example of a very "empty"

page. The Nike brand is so strong that they don't need to spend much

http://www.welie.com/patterns/showPattern.php?patternID=main-navigation
http://www.welie.com/patterns/showPattern.php?patternID=doormat
http://www.welie.com/patterns/showPattern.php?patternID=search
http://www.welie.com/patterns/showPattern.php?patternID=login
http://www.welie.com/patterns/showPattern.php?patternID=language-selector
http://www.welie.com/patterns/showPattern.php?patternID=country-selector
http://www.welie.com/patterns/showPattern.php?patternID=shortcut
http://www.welie.com/patterns/showPattern.php?patternID=shortcut
http://www.welie.com/patterns/showPattern.php?patternID=shortcut
http://www.welie.com/patterns/showPattern.php?patternID=shortcut
http://www.welie.com/patterns/showPattern.php?patternID=shortcut
http://www.welie.com/patterns/showPattern.php?patternID=shortcut
http://www.welie.com/patterns/showPattern.php?patternID=case-study
http://www.nike.com/

APPENDIX B: WELIE PATTERNS

243

words to establish identity. The navigation is very clear and users easily

find their way.

Web-based Application pattern

http://welie.com/patterns/showPattern.php?patternID=application

Problem

Users need to perform complex tasks on a web site

Solution

Structure the site around 'views' and allow users to work inside views

http://welie.com/patterns/showPattern.php?patternID=application

APPENDIX B: WELIE PATTERNS

244

Microsoft Outlook Web Access

Use when

The site is for 'doing' things rather than finding information. Users can

perform complex tasks such as reading and writing emails, placing

orders, managing a bank-account. In most cases there are 'objects'

involved that belong to the users which the users need to create, change,

delete or update. A web-based application is an application that could

just as well be a normal application. It now just runs in a web browser.

How

Web-based applications are based on Views for showing the objects and

Form for changing them. The view provides a "safe" place where the

users always return to after doing something using a Form or Wizard.

The views are usually lists or tables that allow the display of information

to be controlled. For example, using a Table Sorter or Table Filter. When

tables are being used, consider Alternating Row Colors for making them

better scannable. In applications such as a Content Management System,

Tree controls are also widely used.

http://welie.com/patterns/showPattern.php?patternID=view
http://welie.com/patterns/showPattern.php?patternID=forms
http://welie.com/patterns/showPattern.php?patternID=forms
http://welie.com/patterns/showPattern.php?patternID=wizard
http://welie.com/patterns/showPattern.php?patternID=table-sorter
http://welie.com/patterns/showPattern.php?patternID=column-filter
http://welie.com/patterns/showPattern.php?patternID=zebra-table

APPENDIX B: WELIE PATTERNS

245

Web-based applications are often personal and therefore require users to

Login. The information shown and the functionality that is accessible

will depend on the user's identity or 'role'. That also means that not every

users will see the same views or data per view. In some cases, users can

use a demo account to see what the application looks like before

commencing Registration.

Since web-based applications can be quite complex there is often help

information or a Frequently Asked Questions (FAQ) as part of Meta

Navigation. Other elements in the meta navigation are often 'logout',

'home', 'feedback' and so on.

A web-based application usually has a simple navigation mechanism that

allows users to switch between views. A simple horizontal/vertical menu

or Double Tab Navigation will usually suffice. The views are labeled

based on the objects rather than the actions. The actions will be present

in the view itself. However, in practice, some actions such as "compose

email" are so important that they will be part of the navigation as well.

Why

Views contain the objects of interest and the view should therefore also

be label according to the objects rather than the actions. Structuring the

web-based application mainly on views makes it easy for users to

understand what they can do and how to interact with it.

More Examples

This is an example of a Dutch online banking application. A simple

horizontal menu with Fly-out Menu is used. The main actions are done

using Form such as this one:

http://welie.com/patterns/showPattern.php?patternID=login
http://welie.com/patterns/showPattern.php?patternID=registration
http://welie.com/patterns/showPattern.php?patternID=faq
http://welie.com/patterns/showPattern.php?patternID=meta-navigation
http://welie.com/patterns/showPattern.php?patternID=meta-navigation
http://welie.com/patterns/showPattern.php?patternID=meta-navigation
http://welie.com/patterns/showPattern.php?patternID=doubletab
http://welie.com/patterns/showPattern.php?patternID=fly-out-menu
http://welie.com/patterns/showPattern.php?patternID=forms

APPENDIX B: WELIE PATTERNS

246

This example is from OpenCMS, an open source CMS. It uses many

types of views that each show a different aspect of the website:

