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Abstract—The backup taken of a file systemmust be consistent, preserving data integrity across files in the file system.With file system

sizes getting very large, and with demand for continuous access to data, backup has to be takenwhen the file system is active (is online).

Arbitrarily taken online backupmay result in an inconsistent backup copy.We propose a scheme referred to asmutual serializability to

take a consistent backup of an active file system assuming that the file system supports transactions. The scheme extends the set of

conflicting operations to include read-read conflicts, and it is shown that if the backup transaction is mutually serializable with every other

transaction individually, a consistent backup copy is obtained. The user transactions continue to serialize within themselves using some

standard concurrency control protocol such as Strict 2PL.We put our scheme into a formal framework to prove its correctness, and the

formalization as well as the correctness proof are independent of the concurrency control protocol used to serialize user transactions.

The scheme has been implemented and experiments show that consistent online backup is possible with reasonable overhead.

Index Terms—Online backup, consistency, concurrency control, file system, transaction
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1 INTRODUCTION

FILE system backup, an important but often neglected
chapter of data management is facing a paradoxical situ-

ation. File system sizes have touched peta bytes and are pre-
dicted to grow further, and as a result, operations like
backup which need to access all the data, are taking very
long to complete [1], [2]. Longer backup time means longer
system downtime as traditional backup runs on an
unmounted file system to capture a consistent file system
image, using utilities like tar, dump etc. On the other hand,
the available “backup window” is shrinking with globaliza-
tion ushering in a round-the-clock business environment
requiring data to be available almost all the time. This has
now lead industry and academia to propose a number of
online backup (backup of an active file system) solutions
which perform backup on active file systems.

Arbitrarily taken online backup may destroy data integ-
rity in the backup-copy. Shumway [3] details inconsisten-
cies arising in the backup when file operations like move,
append, truncate, etc. run concurrent to the backup program.
Compromise on data integrity during online backup is
highlighted by the following example: local user and group
accounts on Linux are stored across three files that need to
be mutually consistent: /etc/passwd, /etc/shadow, and
/etc/group. Arbitrary interleaving of the online backup
program with the related updates to the three files may lead
the backup-copy to have an updated version of /etc/group
and versions of /etc/passwd and /etc/shadow before
they were updated [4], [5]. But this information on the

relationship among the files is not available to the file sys-
tem and it cannot therefore take into account such consis-
tency requirements. Existing online backup solutions [6],
[7], [8], [9], [10], [11], [12], [13], [14], while promising high
system availability cannot do much to ensure the consis-
tency of the data being backed up. This situation is currently
found acceptable as user programs do not assume consis-
tency preserving operations in file systems, and if consis-
tency of operations across multiple operations is required,
then systems like databases that support consistency are
used. However database management systems cannot effi-
ciently handle large units of variable sized data and there
are many applications that now need the sharing of such
data. The need for transaction support in file systems has
been argued by many researchers [5], [15]. The advent of
distributed storage syetems to handle large amounts of data
has brought the issues of replication consistency and trans-
action support to the forefront. BlobSeer [16] is a file system
supporting concurrency control to be used with Hadoop.
Similarly, Megastore is a system supporting replication and
concurrency control on top of BigTable [17]. Tango is a sys-
tem to implement metadata structures such as those pro-
vided by ZooKeeper [18] with transaction support [19].
Lynx is a distributed store providing transaction support
[20]. We feel that support for transactions in general pur-
pose file systems will become common in the near future to
meet these kinds of requirements. Our approach to a consis-
tent online backup solution therefore assumes a transac-
tional file system with transactions being utilized as the
mode for specifying consistency requirements. The broad
objective of the present research is to understand the prob-
lem and propose solutions of consistent online backup
through its theoretical and practical treatment. While we
focus on backup in traditional tree-structured file systems
with transaction support, the results can be easily extended
to specific systems supporting transactions directly, such as
Blobseer, Megastore, Tango and Lynx.
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To the best of our knowledge, no work has been done on
the theoretical aspects of consistent online backup of a file
system and in this paper we propose a formal framework for
modelling and analyzing the consistent online backup prob-
lem and its solution. The formalism for a consistent online
backup utilizes a flat file system model accessed through a
transactional interface with a transaction comprising of a
sequence of logically related file read and write operations.
A backup transaction comprises of a sequence of reads to every
file in the file system and it executes concurrently with other
user transactions. Serializability being the accepted notion of
correctness for concurrently executing transactions, a consis-
tent backup copy is read by serializing the backup transaction
with the user transactions. But, as the backup transaction
reads every file in the file system, making use of standard
concurrency control methods like two phase locking and
optimistic algorithms, proves to be extremely costly. Hence,
assuming user transactions serialize among themselves
using concurrency control methods like two-phase locking,
we propose and prove that a backup transaction reads a con-
sistent file system copy by keeping itself serialized with each
concurrently executing transaction separately (thus estab-
lishing a pair wise mutually serializable relationship). How-
ever, the set of conflicting operations that establishes a
mutually serializable relationship, differs from the traditional
set of conflicting operations as it includes read-read conflicts
in addition to the existing read-write, write-read and write-
write conflicts. We term this specialized concurrency control
mechanism asmutual serializability.

We then extend the file system model and show that the
concurrency control mechanism, mutual serializability,
proved for a flat file system model with read and write as the
only two operations can be applied to more general purpose
file systems like hierarchical file systems with operations
beyond the basic read and write, such as truncate, metadata
operations such as chmod and chown, as well as operations
that grow and shrink the file system such as creat() and
unlink(). Further, operations on directories, including moves
of entire sub-directories, are consistently handled by using
mutual serializability.

Section 2 presents a review of the existing online backup
solutions in both the file system and database areas, provid-
ing justification for our adopted transactional systemmodel.
Theory of the adopted system model and correctness proof
of the proposed concurrency control mechanism forms the
body of Section 3. With Section 4 briefly highlighting on the
implementation and evaluation of our proposed solution,
we conclude in Section 5.

2 RELATED WORK

Current online backup practices for file systems include a
copy-on-write based snapshot facility that creates a point-
in-time, read-only copy of the entire file system, which
then acts as the source for online backup. A snapshot facil-
ity is either provided within some modern file systems
[10], [12], [21] or in disk storage subsystems [6], [7]. The
windows volume shadow copy service (VSS) [22] is a facil-
ity to allow backup programs to create snapshots of a file
system. Another approach called the “split mirror” tech-
nique maintains a “mirror” of the primary file system,

which is periodically “split” to act as the source for backup
[6], [8], [14]. A third approach termed continuous data pro-
tection maintains a backup of every change made to the
data [8], [23]. Still other existing online file system backup
solutions operate by keeping track of open files and main-
tain consistency of groups of files that are possibly logi-
cally related by backing them up together. Such groups of
files are identified by monitoring modification frequencies
across open files [13].

Now, in order for the online backup process to read a
consistent state of the file system, there must be a way to
specify the consistency requirements of the applications
running on the file system. Current general purpose file sys-
tem interfaces provide weak semantics for specifying con-
sistency requirements. Hence, we see existing solutions [6],
[7], [8], [9], [10], [11], [12], [13], [14] only achieving weaker
levels of backup-copy consistency, that is, per file consis-
tency or in very specific cases, application level consistency
when aided by the applications themselves [24], [25] or
through heuristics [13].

Our approach to a consistent online backup solution
assumes a transactional file system [5], [26], [27], [28] with
transactions being utilized as the mode for specifying con-
sistency requirements.

Given a file system with transactions, the natural next
step would be to borrow online database backup solutions.
Today’s hot backup [29] solutions and its ancestor, the fuzzy
dump [30] facility, work by first backing up a “live” database
and then running the redo log offline on the backup copy to
establish its consistency. Similar approaches for file systems
will incur high performance cost (write latency) and is space
inefficient as each entry in the file system log would have to
record before and after images of possibly entire files.
Hence, we need to explore different approaches for achiev-
ing a consistent online backup copy of a file system.

Pu [31], suggested a scheme which considers the online
backup of a database by a global read operation (we refer to
it as a backup transaction) in the face of regular transactions
active on the database. According to the proposed scheme
the backup transaction “colours” entities black as it reads
them. A regular transaction is serialized with the backup
transaction if it accesses all black or all white entities. A reg-
ular transaction accessing both black and white entities is
not serialized and is aborted to ensure that the backup
transaction reads a consistent image of the database. The
method described by Pu [31] failed to consider dependen-
cies within user transactions while reading a consistent
copy of the entire database by keeping itself serialized with
the user transactions. The drawbacks in Pu’s approach were
identified and modified by Ammann et al. [32].

The scheme proposed by Pu [31] and modified by
Ammann et al. [32] lays the foundation of our approach. But
their scheme was designed for a database and it is assumed
that two phase locking is the concurrency control algorithm.
Our approach described in succeeding sections gives a
sounder theoretical basis for identifying conflicts and this
makes our approach independent of any particular concur-
rency control algorithm. Further, we consider a file system as
opposed to a database system, which brings forth issues
unique to a file system. For example, file systems cater to
many more operations besides reads, writes, deletes and
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insertions of entities, such as rename, move, copy etc. Files in
most popular file systems like the ext2 file system are
not accessed directly, but are accessed after performing a
“path lookup” operation. File system backup involves back-
ing up of the entire namespace information (directory con-
tents) along with the data which complicates online backup
as file system namespace is constantly changing even as the
backup process is traversing it. Moreover, file system backup
does not just involve the backup of data but includes backing
up of each file’s meta-data (such as inodes in ext2).

3 THEORETICAL ANALYSIS

In Section 3.1 we formally model the problem of capturing a
consistent backup by an online backup utility and use this
model to put forward the proposed solution and proof of its
correctness. In Section 3.2, we formally show that the mutual
serializability protocol for capturing a consistent online
backup can seamlessly be extended to more practical file
systems having multiple file types and file system interfaces
having operations beyond the basic read and write.

3.1 The Formal Model

To study the theoretical aspects of consistent online backup
of file systems, we consider a flat file system and a file system
interface that provides transactional semantics. The termi-
nology given below is standard and more formal definitions
can be found in [33]. A file system transaction consists of a
sequence of operations (each of which is assumed to be an
atomic action), and each operation accesses a file from a set
of file system entities called the access set of the transaction.
This sequence of operations is called a schedule of the trans-
action. The access set that we first consider consists of either
a read from a file or a write to a file.

When more than one transaction is active, we say that
these transactions execute concurrently. It is still assumed
that only one operation can execute at a time. So the opera-
tions of the concurrent transactions get interleaved in the
execution sequence. Such an interleaved sequence of opera-
tions is also called a schedule. Not all schedules ensure correct
operations, and so some concurrency control mechanism,
such as strict2PL, optimistic concurrency control etc. is used to
control the execution of operations of different transactions.

A concurrency control mechanism establishes the serializ-
ability of a schedule where serializability is the accepted
notion of correctness for concurrent executions. A schedule
of a set of concurrently executing transactions is serializable
if it is equivalent to a serial schedule of the same transac-
tions. A serial schedule is one where all the operations of a
transaction occur together with no actions of any other
transaction executing in between. It is some concatenation
of the individual schedules of each of the concurrently exe-
cuting transactions. Since each transaction is by itself
assumed to be correct, a sequence in which transactions exe-
cute one after the other will be correct. If the actual schedule
is equivalent to one such sequence of executions, then that
schedule will also be correct. A transaction is said to be seri-
alized with an already serializable schedule if the operations
of this transaction are interleaved with the serializable
schedule such that the resulting schedule is also serializable.
An operation could be similarly serialized with an already

serializable schedule. It must be noted that during actual
execution, it is not known what operations will occur in
future and so the goal of any concurrency control mecha-
nism is to serialize a new operation with the already serial-
izable schedule that has been executed so far. It may not be
possible to allow the execution of the new operation imme-
diately, and so it may be delayed, or one or more transac-
tions aborted. Two operations in a schedule are said to be
conflicting operations if they belong to different transactions,
act on the same file and both are not the read operation [33]
(so the conflicts can be read-write, write-read, or write-
write). Given a set of transactions, two schedules of the
same set is said to be equivalent if in both schedules all pairs
of conflicting operations occur in the same order.

An atomic action of a backup transaction is a read operation
to a file and the schedule of a backup transaction consists of a
sequence of read operations to every file in the file system,
where a read operation to each file appears at most once. An
online backup transaction runs concurrently with user
transactions. For an online backup transaction to read a con-
sistent file system state, it must be serialized with respect to
the concurrently executing user transactions. Now, the
backup transaction is rather unique as it reads every file in
the file system and treating it like any other transaction for
the purpose of concurrency control will lead to frequent
conflicts. Resolving these conflicts through a locking proto-
col may mean either the gradual delay of all concurrently
executing user transactions as the backup transaction pro-
ceeds to lock files one by one, or otherwise it may result in
repeated aborting and restarting of the backup transaction.
Similar problems will occur if optimistic concurrency con-
trol mechanisms are used. Hence, we are proposing a
backup transaction specific concurrency control mechanism
called mutual serializability that does not affect the overall
performance much.

Mutual serializability achieves an overall serializability of
backup and user transactions by keeping the backup trans-
action mutually serializable with every concurrent user trans-
action simultaneously, while the user transactions continue
to serialize among themselves using a standard concurrency
control protocol, like, strict2PL. A pair of transactions in a
schedule is said to be mutually serializable if on considering
the operations of only these two transactions we get a serial-
izable schedule.

The set of conflicting operations that establishes amutually
serializable relationship, differs from the traditional set of con-
flicting operations as it includes read-read conflicts in addi-
tion to the existing read-write, write-read and write-write
conflicts. The normal user transactions continue to maintain
serializability among themselves by following the traditional
definition of conflicting operationswhich includes only read-
write, write-read andwrite-write conflicts. As read-only user
transactions do not make any changes, they do not conflict
with the backup transaction. But since read-read conflicts are
also taken into account, an exception has to bemade for read-
only transactions and so by definition the backup transaction
and any read-only transaction aremutually consistent.

3.1.1 Basic Terminology

A file system F is a set of distinct files, ff1; f2; . . . ; fng. Let TS
tb be the set of distinct transactions concurrently
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accessing F where T¼ ft1; t2 . . . ; tmg is the set of user trans-
actions and tb is the backup transaction. A transaction
tx; x ¼ 1; 2; . . . ;m consists of a sequence of read and write
operations on files. A read operation on a file fi; i ¼
1; 2; . . . ; n is denoted by rxðfiÞ while a write operation is
denoted by wxðfiÞ. The backup transaction, tb backs up a file
fi 2 F using the read operation denoted by rbðfiÞ and tb
reads every file fi 2 F at most once.

Let axðfiÞ be a generic notation denoting either rxðfiÞ or
wxðfiÞ. A transaction is formally defined as a tuple :
tid ¼ fid; Fid;pidgwhere

� id is a positive integer and denotes a globally unique
transaction identity number.

� Fid is the set of files accessed by transaction tid (Fid 2
F). If tid ¼ tb then Fid ¼ F.

� pid denotes the execution schedule of tid. pid is a
sequence without repetition of 0 to jPid j elements,
over the set

P
id ¼ fridðfiÞ; widðfiÞj8fi 2 Fidg.

If tid ¼ tb then a schedule pb is a sequence without repetition
of jPb j elements, over the set

P
b ¼ frbðfiÞj8fi 2 Fg.

A transaction tid is defined to be a read-only transaction if
pid is a sequence without repetition of 0 to jPid j elements,
over the set

P
id ¼ fridðfiÞj8fi 2 Fidg.

Example. F ¼ ff1; f2; . . . f11g, T ¼ ft1; t2g. t1 ¼ f1; F1;p1g,
F1 ¼ ff4; f8; f11g and p1 ¼ r1ðf11Þ; r1ðf4Þ; w1ðf8Þ. t2 ¼ f2;
F2; p2g, F2 ¼ ff1; f4; f11g and p2 ¼ r2ðf1Þ; w2ðf11Þ; w2ðf4Þ.
tb ¼ fb; Fb;pbg, Fb ¼ F and pb ¼ rbðf1Þ; rbðf2Þ; . . . ; rbðf11Þ.
Let, pC be the execution schedule of the set of concur-

rently executing transactions, T. It must be noted here that
pC is possibly an interleaved schedule of the individual
schedules of set T. Formally, pC is a sequence of elements
containing every element in the schedules p1;p2; . . . ;pm

exactly once and such that:

� axðfiÞ < axðfjÞ in pC if and only if axðfiÞ < axðfjÞ in
px where, fi; fj 2 Fx and tx 2 T . Symbol “ < ” is used
to denote “precedes” in any schedule (above, axðfiÞ pre-
cedes axðfjÞ).

Each px, x ¼ 1; 2 � � m is said to be a participant schedule
of pC .

A pair of access operations axðfiÞ, ayðfjÞ 2 pC are said to
be conflicting if the following conditions are met:

� x 6¼ y

� fi ¼ fj
� <ax; ay> 2 f<rx; wy> , <wx; ry> , <wx;wy> g,
A schedule pC is a serialized (or serializable) schedule

if it is conflict equivalent to some serial schedule of the set
T. Formally, a schedule pC is a serialized schedule, if for
every pair of conflicting operations faxðfjÞ, ayðfjÞg in pC ,
either

� faxðfiÞ < ayðfiÞj8fi 2 ðFx \ FyÞg
OR

� fayðfiÞ < axðfiÞj8fi 2 ðFx \ FyÞg.
Let pCb denote the execution schedule of T

S
tb, which is

basically an interleaved schedule of pb and pC . Formally,
pCb is a sequence of elements containing every element in pb

and pC exactly once and such that:

� axðfiÞ < ayðfjÞ in pCb if and only if axðfiÞ < ayðfjÞ in
pC or pb where, fi; fj 2 F and tx; ty 2T

S
tb.

� pC is a serialized schedule.

3.1.2 Mutual Serializability

Given the formal model, we are primarily interested in an
execution schedule pCb that is serializable and a concurrency
control mechanism, that produces such a schedule. We pro-
pose a backup transaction specific concurrency control called
mutual serializability for serializing tb with respect to pC to
achieve a serialized pCb, while user transactions continue to
use standard concurrency control protocols to obtain serial-
izable pC . As discussed earlier it is infeasible for tb to use
such standard concurrency control mechanisms to serialize
pCb because of tb’s uniqueness in that it reads every file in the
file system. We define the termmutually serializable:

Mutually serializable. Let, concurrently executing transac-
tions tx; ty 2 ðT [ tbÞ access (read or write) the set of files
Fx; Fy 2 F respectively. Given, Fx \ Fy 6¼ ;, tx and ty are
mutually serializable if

� tx and ty are both read-only transactions

OR

� for every pair of access operations axðfiÞ; ayðfiÞ where
fi 2 ðFx \ FyÞ and

<ax; ay> 2 f<rx; ry> ; <rx; wy> ; <wx; ry> ,
<wx;wy> g, either

- faxðfiÞ < ayðfiÞj8fi 2 ðFx \ FyÞg
or

- fayðfiÞ < axðfiÞj8fi 2 ðFx \ FyÞg.
We see that while defining the mutually serializable rela-

tionship between concurrently executing transaction pairs,
the traditional set of conflicting operations is extended to
include read-read conflicts. By doing so, we observe that,
pCb can be serialized by keeping tb mutually serializable with
each tx 2 T simultaneously, giving rise to the protocol
mutual serializability. Not considering tx’s read (rxðfiÞ) to
a file fi 2 ðFx \ FbÞ while resolving conflicts with tb
sometimes leads to the violation of the protocol mutual seri-
alizability. For example, consider the following schedule,
pCb ¼ rbðf1Þ; w1ðf1Þ; r2ðf1Þ; w2ðf2Þ; rbðf2Þ of t1; t2 2 T and tb,
where we see that tb is mutually serializable with t1 and t2
simultaneously if we do not consider read-read conflicts,
but pCb is not a serialized schedule. But, mutual serializability
holds when considering both read and write access to a file
by tx to conflict with read access to the file by tb.

Since the definition of a conflict is different, we denote
precedence relationship in which the operations of the
backup transaction are involved as rb � ax or ax � rb and
hence also tb � tx.

We state and prove that we get serializable schedules by
using mutual serializability in Theorem 1, once we state and
show Lemma 1. The given proof uses a serialization testing
tool called serialization graph (SG) which is derived from the
schedule of a set of concurrent transactions. Given pCb is a
schedule over T

S
tb, the serialization graph, denoted by

SGðpCbÞ, is a directed graph whose nodes are the transac-
tions in T

S
tb and whose edges are all tx ! ty (x 6¼ y and
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tx; ty 2 T
S

tb) such that one of tx’s operations precedes and
conflicts with one of ty’s operations in pCb. Having defined a
serialization graph, a history pCb is serializable if and only if
its serialization graph (SGðpCbÞ) is acyclic [34]. If there is an
edge in SG of the form tx ! ty, then tx is said to precede ty
and the relationship is denoted as tx < ty. In case the
backup transaction is involved, the relationship is denoted
by tb � tx or tx � tb.

Lemma 1. Given that pCb is a schedule over T
S

tb, where
t1; t2; . . . ; tm are transactions in set T and tb the backup trans-
action, and given that tb is mutually serializable with every
ti 2 T, if in pCb, tb � t1 < t2 � � < tm, then tb � tm.

Proof. Since tb is mutually serializable with tm, then either
tb � tm or tm � tb. We need to show that only the former
relationship is possible, given the conditions of the
lemma. Let us consider the partial relationship tb �
t1 < t2.

Let t1, t2 access (read and write) the non-empty set of
files F1 and F2 respectively. As t1 < t2, ðF1

T
F2Þ 6¼ ;.

There must exist at least one file on which the operations
of t1 and t2 conflict. Without loss of generality, let this be
a single file f1.

So, a1ðf1Þ < a2ðf1Þ must be in the schedule, where
< a1; a2 >2 f<r1; w2> ; <w1; r2> ; <w1; w2> g. (1)

By definition, tb reads every file in the file system and
hence tb reads file f1. Also by mutual serializability, a read
by tb conflicts with any access (read or write) by a user
transaction to the same file.

Hence, given the relationship tb � t1, rbðf1Þ � a1ðf1Þ
must be in the schedule, where <rb; a1>2 f<rb; w1> ;
<rb; r1> g. (2)

From 2 we get rbðf1Þ � a1ðf1Þ. From 1 we get
a1ðf1Þ < a2ðf1Þ. Therefore, 1, 2 and the definition of
mutual serializability, rbðf1Þ � a2ðf1Þ holds. a2ðf1Þ �
rbðf1Þ cannot hold as tb reads every file at most once.

Thus, if tb � t1 < t2 then tb � t2. (3)
It can be easily seen that the same arguments can be

used to prove by induction that the lemma holds. tu
Theorem 1. Given that pC is a serialized schedule, pCb is seri-

alizable if ðtb; tx is mutually serializable j8tx 2 T ).

Proof. We use mathematical induction to show that SG(pCb)
is acyclic and hence pCb is a serialized schedule.

We proceedwith the knowledge that pC is a serialized
schedule and hence there cannot exist a cycle in SG(pCb)
involving only transactions from the set T.

Base case 1. Let us consider a single transaction say
t1 2 T and the backup transaction tb. Given that tb and t1
is mutually serializable, a cycle in SGðpCbÞ involving just
the two transactions tb and t1, is not possible.

Base case 2. Let us now consider any two transactions
ft1; t2g 2 T and tb.

For a cycle to hold, tb must be part of the cycle. There
is no cycle involving t1 and t2 as it is assumed that the
operations of t1 and t2 are interleaved to form a serializ-
able schedule.

Let there be a cycle, tb � t1 < t2 � tb.
Let t1, t2 access (read and write) the non-empty set

of files F1 and F2 respectively. As t1 < t2, then
ðF1

T
F2Þ 6¼ ;. There must exist at least one file on

which the operations of t1 and t2 conflict. Without
loss of generality, let this be a single file f1. So,
a1ðf1Þ < a2ðf1Þ must be in the schedule, where <a1;
a2> 2 f<r1; w2> , <w1; r2> ; <w1; w2> g.

Now, by the definition of tb, tb reads every file in F at
most once and it is also given that tb is mutually serializ-
ablewith all tx 2 T, Fb ¼ F.

Therefore, tb reads f1 exactly once and so rbðf1Þ occurs
only once in the schedule pCb. (4)

By definition of mutual serializability, since tb � t1, tb
reads f1 before t1, i.e., rbðf1Þ � a1ðf1Þ is part of the sched-
ule pCb.

Again by definition of mutual serializability, since
t2 � tb, tb reads f1 after t2 and so a2ðf1Þ � rbðf1Þ is part
of the schedule pCb.

But this implies, rbðf1Þ � a1ðf1Þ < a2ðf1Þ � rbðf1Þ is
part of the schedule pCb. But, this is not possible by 4
above.

Therefore, there cannot be any cycle involving any
two transactions and tb .

Induction hypothesis. Let there be m transactions,
t1; t2; . . . ; tm and the backup transaction tb. Let there be
no cycles present.

Induction step. Let there be mþ 1 transactions
t1; t2; . . . ; tm; tmþ1 and the backup transaction tb. For a
cycle to exist, due to the induction hypothesis, all trans-
actions must participate.

So, tb � t1 < t2 � � � < tm < tmþ1 � tb.
But by Lemma 1, tb � tm and so the cycle

tb � tm < tmþ1 � tb must also exist. But a cycle involv-
ing two transaction and tb is not possible as proved in the
base case.

Hence, there can be no cycle with mþ1transactions.
So, tb � t1 < t2 � � � < tm < tmþ1 � tb is not possible.

Thus, if ðtb; tx is mutually serializable j8tx 2 T ), pCb

will be a serialized schedule.
It may also be noted if read-read conflicts are not

taken into consideration in themutual serializability proto-
col, then a cycle is possible. Thus, if a1 ¼ r1, then it is no
longer necessary that rbðf1Þ � a1ðf1Þ and ?? is not vio-
lated. However, tb � t1 < t2 � tb may hold because
there may be some fi 2 F1 such that w1ðfiÞ is part of p1

(F1

T
F2 is still only f1) and so rbðfiÞ � w1ðfiÞ must hold

and so tb � t1 will hold. tu

The above restriction of extending the traditionally
defined set of conflicting operation to include read-read
conflicts while establishing the mutually serializable relation-
ship, gives us a sufficient condition for serializability of tb
with pC in pCb. Not considering read-read conflicts may still
result in a serialized schedule as can be seen from the fol-
lowing example: frbðf1Þ, rbðf2Þ, w1ðf1Þ, r2ðf2Þ, w2ðf3Þ,
rbðf3Þg. However, mutual serializability gives us a simple
way of ensuring serializability, and as we shall see, it ena-
bles us to handle other file operations easily.

Imposing read-read conflicts does not lead to any loss of
concurrency of running transactions as among these trans-
actions no such restrictions are imposed. They just may
have to “slow” down a little to accommodate the backup
transaction when it is running. This is a small price to pay
to obtain a consistent backup.
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3.1.3 A Read and Write Operation

Within a transaction a file can be read or written any num-
ber of times. Concurrency control protocols whether locking
or optimistic ensures the isolation of operations by a trans-
action on a file. Thus, even though a file may be updated
multiple number of times within a transaction, it is effec-
tively equivalent to a single update. This lead us to merge
multiple file accesses (read or write) into a single access
within a schedule in the formal model.

Similarly, a transaction has an isolated view of a file
from the moment a file is “locked” in case of locking pro-
tocols or “opened” in case of optimistic protocols. Hence a
schedule lists the order in which operations were success-
fully “locked” or “opened”.

3.2 Practical File Systems

Practical file systems are much more complex than the sim-
ple flat file systems of our model in Section 3.1, having mul-
tiple file types including regular files, directories, special
files etc., and file system interfaces have operations beyond
the read and write operations such as, link, unlink etc. as well
as file descriptor operations like updating ownership infor-
mation, file modification times etc. In addition, practical file
systems are not static as assumed in the flat file system
model but dynamic, allowing new files to be inserted and
existing files to be deleted. Moreover, files in most practical
file systems are organized to better reflect the real world
and for the ease of searching. This results in inter-file logical
relationships, such as the parent-child relationship of hier-
archical file systems.

In this section, we formally show that the proposed
mutual serializability scheme will continue to work when
considering dynamic file systems with multiple file types
exhibiting inter file logical relationships as seen in a hierar-
chical file system. We conjecture that the scheme will also
work for any file system currently in existence. We use
Linux terminology to describe file operations and entities.

3.2.1 Hierarchical File System

To extend the theory of consistent online backup of flat file
systems to practical file systems we consider hierarchical
file systems, for example, ext2fs. In general, regular files,
directories, symbolic links, and special files like pipes and sock-
ets make up the different types of files in a hierarchical file
system. For the purpose of backup, we restrict ourselves
with the backup of regular files and directories, both to be
simply addressed as file unless otherwise stated. In the case
of symbolic links there is no guarantee that a link exists or
has long been broken, and so we will treat symbolic links as
regular files and only store the link in the backup copy.
Thus, the hierarchical file system is essentially composed of
regular files and directories.

All regular files and directories are logically organized
into a multi-level hierarchy called a directory tree, with a
top directory called the root and denoted by a / (slash). Reg-
ular files always occupy leaves of the hierarchy. A directory
contains the names and identifiers of a group of files and
subdirectories. Every file has a unique identifier in a file sys-
tem, called an inode number in ext2fs, which allows access
to the file. The container directory is termed as the “parent”

and the contained regular files and subdirectories are
termed as “children” of the parent directory thus resulting
in a “parent ! child” relationship between a parent direc-
tory and its children files. Just as children are referenced
from parent directories through each child’s file identifier,
parents are referenced from each of their child sub-directo-
ries through its unique identifier. This identifier is stored in
the “..” entry of a directory in ext2fs. A regular file can be a
child to many directories, with a files inode storing the
number of parents.

A file in a hierarchical file system is accessed using its
pathname where a pathname is a sequence of names of files
where adjacent names are in a parent ! child relationship,
and the last name is the name of the file itself with respect
to its parent. Accessing a file essentially involves traversing
“parent ! child” relationships as indicated by the path-
name to finally locate the required file, by an operation
called the path lookup operation. In Section 3.2.2 and Sec-
tion 3.2.3, we assume that file pathnames have been
resolved and these resolved filenames are passed as argu-
ments to operations. File pathnames and the effect of path
lookup operation on the consistency of backup shall be dealt
with in more details in Section 3.2.5.

Each file has some data associated with it as well some
attributes. These attributes are stored in the inode corre-
sponding to the inode number of the file. Even though the
inode of a file and its data are usually stored as separate
entitities in a file system, they are not exposed as separate
entitities. So all operations on the inode of a file are consid-
ered as operations on the file.

A practical hierarchical file system is unlike the file system
model detailed in Section 3.1 as such file systems do not con-
sist of a fixed set of files throughout their lifetime. They are
dynamic with new files being inserted and existing ones
deleted. A hierarchical file system transaction accesses files
through a number of operations that keep the file system
static for example, link, rename etc., and those that grow or
shrink the file system for example, creat, unlink etc., each
accessing one or more files. We show that mutual serializabil-
ity holds true for hierarchical file systems also, by mapping
all file operations of hierarchical file systems to an equivalent
sequence of one or more read and write atomic file access
operations. Themappings are detailed in Section 3.2.3.

Coming to the operations that grow/shrink the file
system, though the mutual serializability protocol extends
normally for the file delete operations, it does not do so
for the operations that inserts new files. Extending the
file access operations of our model to include a file cre-
ate operation(denoted by creat_node) apart from the read
and write access operations and also extending the set of
conflicting operations to include the conflicts with the
creat_node operation, will ensure that the mutual serializ-
ability protocol remains applicable. This is formally
stated and proved in Section 3.2.4.

3.2.2 Hierarchical File System’s Formal Model

Formally, a Hierarchical File System Fh is a set of distinct
files, ff1; f2; . . . ; fn; d1; d2; . . . ; dpg where fi, i ¼ 1; 2; . . . ; n is a
regular file and dj, j ¼ 1; 2; . . . ; p is a directory. However,
now the number of files, n, and the number of directories, p,
can change over time as files and directories may be created
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and deleted in the system. Thus, Fh is the universe of all
files that may exist in the file system during its lifetime. Let
file be a common notation used for all types of files namely
a regular file or a directory. As stated above, in the present
model, symbolic links are also treated as regular files. Thus,
filek 2 Fh, k ¼ 1; 2; . . . ; nþ p.

It must be noted here that a file system entity filek is
made up of both data and its metadata, that is, the contents
of a regular file or directory together with its inode data.

As already stated, files in a hierarchical file system
exhibit an inter file hierarchical relationship also termed as
a parent ! child relationship. Let childðdjÞ be the set of
child files of the directory dj. Thus, if filek 2 childðdjÞ then
filek is a child of the parent directory dj.

Let Th
S

tb be the set of distinct transactions concur-
rently accessing Fh where Th ¼ ft1; t2 . . . ; tmg is the set of
user transactions and tb is the backup transaction. A transac-
tion tx; x ¼ 1; 2; . . . ;m accesses a file filek; k ¼ 1; 2; . . . ; nþ p
for reading denoted by rxðfilekÞ or writing denoted by
wxðfilekÞ. Both these operations are assumed to be atomic.

We must again remember here that within an atomic read
or write, either the metadata or data or both of filek may be
accessed and access to metadata and data are not consid-
ered separate operations.

The backup transaction, tb backs up a file filek 2 Fh using
the read operation denoted by rbðfilekÞ, where each file filek
is read at most once.

As before, let axðfilekÞ be a generic term denoting
rxðfilekÞ or wxðfilekÞ, such that tx 2 Th and filek 2 Fh.

A hierarchical file system transaction is formally mod-
elled as a tuple : tid ¼ fid; Fid;pidg

� id is a positive integer and denotes a globally unique
transaction identity number.

� Fid is the set of files accessed by transaction tid
(Fid 2 Fh). If tid ¼ tb then Fid ¼ Fh.

� pid denotes the execution schedule of tid. If tid 2 Th

then pid is a sequence without repetition of 0 to jPid j
elements, over the set

P
id ¼ fridðfiÞ; widðfiÞj 8fi 2

Fidg.
If tid ¼ tb then a schedule pb is a sequence without

repetition of jPb j elements, over the set
P

b ¼
frbðfilekÞj8filek 2 Fhbg. Where Fhb is a set of distinct
files such that Fhb ¼ Fh � ðFdelete [ FinsertedÞ. Where,
fFdelete is the set of files deleted by tij8ti 2 T; ti � tbg,
and fFinsert is the set of files created by tjj8tj 2
T; tb � tjg.

A transaction tid is defined to be a read-only trans-
action if pid is a sequence without repetition of 0 to
jPid j elements, over the set

P
id ¼ fridðfiÞj 8fi 2

Fidg.
Let, pCh be the serialized execution schedule of the set of

concurrently executing transactions Th, where pCh follows
the definition of pC .

Given pCh and pbh , pChbh denotes the execution schedule
of Th

S
tb, which is basically an interleaved schedule of pbh

and pCh and follows the given formal definition of pCb.
Consistent online backup of Fh. As stated by the proposed

mutual serializability protocol, by including read-read con-
flicts to the set of traditional conflicting operations which
comprises of read-write, write-read and write-write

conflicts, pChbh can be serialized and hence a consistent online
backup of Fh be obtained by keeping tb mutually serializable
with each tx 2 Th.

3.2.3 Mapping of Hierarchical File System Operations

Mappings for a few file system calls in Linux to an equiva-
lent sequence of read and write operations are given below.
Other system calls can be similarly mapped and hence have
not been explicitly given due to space limitations.

Now, hierarchical file system operations involve direc-
tory operations apart from regular file operations. It is easy
to see that an access to a regular file in a hierarchical file sys-
tem corresponds directly to an access of a file in our flat file
system model, but correspondence of an access operation to
a directory to an access operation to a file of our flat file sys-
tem model may not be so obvious. Directories are nothing
but special files with an internal structure more suitable for
insertion, deletion and searching for its child files and sub-
directories. Hence, an access operation to a directory maps
directly to an access operation to a file and no matter how
directory operations conflict within user transactions, with
respect to a backup transaction, any access to a directory by
a user transaction conflicts with the read access of the direc-
tory by the backup transaction.

We broadly divide the file system operations into two
categories, those that keep the data set fixed or static and
those that grow or shrink the data set. We begin by looking
at the read operation by the backup transaction.

The backup transaction’s read operation. A file is the unit of
backup in a file system. A file is made up of its data contents
and its associated attributes. The associated attributes of a
file is stored in a separate data structure called the inode.
The read of a file by the backup program involves the read of
the inode contents by a stat system call (which is mapped to
a read operation) and a read of the file’s data contents by the
read system call. The two reads to the same entity is merged
into a single read in our theoretical model as reasoned in
Section 3.1.3.

Operations maintaining a fixed data set. The read of a regu-
lar file and the write to a regular file, fi can trivially be
mapped to the read operation, rxðfiÞ and the write opera-
tion, wxðfiÞ respectively of our model. The operation trun-
cate of fi effects only fi with updates performed in its inode
and hence is mapped to a write operation, wxðfiÞ.

Reading of a directory (readdir) also maps directly to a
read operation to the directory which is nothing but a spe-
cially formatted file and hence is equivalent to the read of a
file of our flat file system model.

The link operation is used to create a new hard link to a
regular file fi from a directory dj1. As a result of a link,
updates are done in the inode and directory entry of dj1 and
the inode of fi. Hence, we model the mapping of link to
fwxðdj2Þ; wxðfiÞg. Directories already containing links to this
file are not affected.

For a rename/move operation, say a file filek is “moved”
from directory dold to dnew by tx. Of course dold may be the
same as dnew in cases where the name of the file is changed
rather then the entire path to the file. Now, rename/move
operation is effectively an unlink of filek from dold followed
by a link of filek to dnew. This is achieved by three write
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operations for a directory rename: write on dold to delete
entry of filek, write on dnew to create an entry for filek and a
write on filek where the “..” entry is modified (in case of
filek being a directory). For a regular file rename, in many
implementations neither the file nor its inode are changed.
But if the destination file exists, then the Posix standard
states that the old file is deleted. Without a change in access
time, a “new” file can become “older” as in some implemen-
tations, the st_ctime (creation time) file of the inode’s meta-
data is changed. Further since a file can only be accessed
through its name, and its name is getting changed, includ-
ing a write to the file in our mapping will take care of these
issues. The rename/move operation is hence mapped as
fðwxðdoldÞ; wxðfilekÞ; wxðdnewÞg.

Inode operations mostly deal with reading or modifying
file attributes like owner, size, count, modification time etc.
As already mentioned, read and write of a file’s metadata is a
read and write to the file itself as the file and its metadata are
considered as a single entity. Most inode operations can be
directly mapped to either a read or write of the file. For
example, chmod() is used to set file permissions and the
mapping of chmod() acting on a file filek is simply a write to
the file i.e., wxðfilekÞ. Similarly, stat() gets a files status and
fills a given buffer with the status information. stat() of a file
filek directly corresponds to the read of the inode informa-
tion and hence the file i.e., rxðfilekÞ.

Operations that grow/shrink the data set.Wenowmap opera-
tions that delete existing files and insert new files and look
into how the mutual serializability protocol extends to a
dynamic file system that grows and shrinks and allows an
online backup utility to capture a consistent file system state.

File deletion. Removal of a regular file, fi, via the unlinkðÞ
operation from a directory dj requires the deletion of the file
entry in the parent directory, dj and a decrement of the link
count in fi’s inode. The regular file deletion operation maps
as fwxðdjÞ; wxðfilekÞg. Similarly, removing a directory dj2
results in updating the parent directory dj1 by removing the
reference to dj2 and then removing dj2. Hence, mapping of
the directory removal operation, is fwxðdj1Þ; wxðdj2Þg. rmdir()
removes a directory only if it is an empty directory and this
fact is significant while considering path lookups, as dis-
cussed below. If any file system allows removal of a non-
empty directory, it has to specify that it will be done atom-
ically as otherwise our mapping will fail. From a user’s per-
spective too, this is reasonable, as a non-atomic directory
removal will make it difficult to handle sharing of files.

Let the deleted file (regular or directory) be referred to as
filek. Now, whether tx is serialized “before” tb and filek is
never copied to backup or tx is serialized “after” tb and filek
has been copied to backup, the mutual serializability protocol
will work correctly since filek is not accessed by any other
user transaction after its deletion by tx.

File creation. Creation of a file, filek (creatðfilek; djÞ for a
regular file and mkdirðfilek; djÞ for a directory) under a
directory dj requires an entry of the file name and its unique
identifier (inode number in this case) in the directory dj and
allocation of an inode and its initialization for the created
file filek. Let the corresponding mapping of file creation be
fwxðdjÞ; wxðfilekÞg.

Now, does mutual serializability extend naturally to sup-
port creation of files and hence a growing file system? The

answer is no as shown by the following example: As before,
symbol 00 < 00 is used to denote “precedes” in any schedule
for user transaction operations, and when the backup trans-
action is involved the symbol is “ �”. Say, tx � tb. So tb has
read dj before filek was created. Now, let there be another
transaction ty in pChbh which accesses the newly created
filek and another file filel, where filel has not been read by
tb. Since ty accesses filek which was created by tx, tx < ty
holds. As both filek and filel have not been read by tb,
mutual serializability between tb and ty should be ty � tb.
But, ty � tb cannot hold because tb will never read filek, as
it has been created “after” tb.

The following section considers the presence of file create
operations. We revisit the mutual serializability protocol and
modify it to handle file creates.

3.2.4 Enhanced Mutual Serializability

To extend the mutual serializability backup specific concur-
rency control protocol so that it efficiently handles insertion
of new files into a file system, we extend the set of atomic
operations accessing files in a file system to include an oper-
ation for creating a file, termed as creat node. creat node is
different from the file system call creat in that a creat
includes an update of the parent directory (dj here) and the
creation of a file filek. Thus, creat() is essentially fwxðdjÞ;
creat nodexðfilekÞg.

Formally, now axðfilekÞ is a generic term denoting
rxðfilekÞ,wxðfilekÞ or creat nodexðfilekÞ, such that tx 2 Th

and filek 2 Fh.
With the introduction of a new operation, the set of con-

flicting operations must be extended while continuing to
adhere with the definition of a conflict which states that two
operations conflict if they belong to different transactions,
act on the same file and both are not read operations [33].
Thus, the set of conflicting operations based on which user
transactions are serialized, now also includes, creat_node-
read, read-creat_node, creat_node-write and write-creat_node
conflicts. A read by tb conflicts with a creat_node operation of
a user transaction on the same file.

The mutual serializability definition now also needs modi-
fication. Again, we begin by redefining mutually serializable
with the only difference from its original definition being
the set of access operations which now includes creat_node.

Mutually Serializable. Let concurrently executing transac-
tions tx; ty 2 ðT [ tbÞ access (read, write or creat_node) the
set of files Fx; Fy 2 F respectively. Given, Fx \ Fy 6¼ ;, tx
and ty are mutually serializable if

� tx and ty are both read-only transactions

OR

� for every pair of access operations axðfilejÞ; ayðfilejÞ
where filej 2 ðFx \ FyÞ and <ax; ay>2 f<rx; ry> ,
<rx; wy> ,<wx; ry> , <wx;wy> ,

<creat nodex; ry> ; <rx, creat nodey> , <creat
nodex, wy> , <wx, creat nodey> g, either
- faxðfileiÞ < ayðfileiÞj8fi 2 ðFx \ FyÞ,

or

- fayðfileiÞ < axðfileiÞj8fi 2 ðFx \ FyÞ.
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We see that while defining the modified mutually serializ-
able relationship between concurrently executing transac-
tion pairs tx and ty, if tx � ty then the following sequence of
operations cannot occur: wxðfileiÞ � creat nodeyðfileiÞ and
rxðfileiÞ � creat nodeyðfileiÞ. Similarly if ty � tx, the fol-
lowing sequence of operations cannot occur: wyðfileiÞ �
creat nodexðfileiÞ and ryðfileiÞ � creat nodexðfileiÞ. It is
simply because, a file cannot be read or written into before
it is created. Given these basic definitions we observe that,
pChbh can be serialized by keeping tb mutually serializable
with each tx 2 Th simultaneously, provided there is no
ty 2 Th such that tb � ty and creat nodeyðfilekÞ in py if there
is a tx 2 Th such that tx reads or writes into filek and
tx � tb. Thus, this gives rise to a modified version of the
protocol mutual serializability. We state and prove the modi-
fied mutual serializability protocol in Theorem 2.

Theorem 2. Given pCh is a serializable schedule, pChbh is serializ-
able if 8tx 2 T the following hold:

1. tb, tx aremutually serializable and
2. if tx � tb, then there is no ty 2 T such that

a. tb � ty, and
b. there is a creat nodeyðfilekÞ in py, and

creat nodeyðfilekÞ < axðfilekÞ for some
axðfilekÞ in px where ax 2 {r, w}.

Proof. The proof of Theorem 2 is similar to the proof of The-
orem 1, once we show that Lemma 1 continues to hold
with the set of file access operations now including crea-
t_node and the set of conflicting operations extended to
include the conflicts with the creat_node access operation.
Hence, we only show here that the following statement
of Lemma 1 holds:

A: tb is mutually serializable with every ti 2 Th, if
tb � t1 < t2 < � � � < tm, then tb � tm.

Since tb is mutually serializable with tm, then either
tb � tm or tm � tb. We need to show that only the former
relationship is possible, given A. Let us consider the par-
tial relationship tb � t1 < t2.

Let t1 and t2 access (read,write or creat_node) the non-
empty set of files F1 and F2 respectively. As t1 < t2,
ðF1

T
F2Þ 6¼ ;. There must exist at least one file on which

the operations of t1 and t2 conflict. Without loss of gener-
ality, let this be a single file f1.

So, a1ðf1Þ < a2ðf1Þ must be in the schedule,
where <a1; a2 > 2 f<r1; w2 > ; <w1; r2 > ; <w1; w2 > ,
<creat node1; r2 > ; < creat node1; w2 > g (5)

We need to consider two separate cases:
Case I:<a1; a2 > 2 f<r1; w2 > ; <w1; r2 > ; <w1;

w2 > g.
By definition, tb reads every file in the file system that

has not been created during backup (and so f1 also since
it has not been created by t1 or t2; the case of another
transaction ti such that tb � tz < t1 and tz creates f1, is
covered by Case II below). Hence tb reads file f1. Also by
mutual serializability, a read by tb conflicts with any access
(read or write) by a user transaction to the same file.

Hence, given the relationship tb � t1, rbðf1Þ � a1ðf1Þ
must be in the schedule, where <rb; a1>2 f<rb; w1> ;
<rb; r1> g. (6)

From (6) we get rbðf1Þ � a1ðf1Þ. From (5) we get
a1ðf1Þ < a2ðf1Þ. Therefore, by (5), (6) and the definition of
mutual serializability, rbðf1Þ � a2ðf1Þ holds. a2ðf1Þ � rbðf1Þ
cannot hold as tb reads every file at most once.

Thus,
if tb � t1 < t2 then tb � t2. (7)
Case II: <a1; a2>2f<creat node1; r2> ; <creat node1;

w2> g.
In this case, rbðf1Þ will not exist in the schedule as

tb � t1 and file f1 has been created by t1 which is after tb.
Now, if t2 only accesses f1, then Fb intersect F2 is null
and so by definition of mutually serializable tb is mutually
serializable with t2 as there is no dependency between tb
and t2. So tb � t2 holds.

If Fb intersect F2 is not null, and is say f2, then
depending upon when tb reads f2, tb � t2 or t2 � tb will
hold. But if t2 � tb holds, then it violates the second con-
dition of the theorem where tx ¼ t2, and ty ¼ t1. There-
fore, even in this case, tb � t2 must hold.

It is to be noted that the arguments will continue to
hold if F1 intersect F2 consists of more than one file and
the conflicting operations are from any of the pairs of
conflicting operations. Either Case I or Case II or both
will have to hold, and the same arguments will apply.

It can be easily seen that the same arguments can be
used to prove by induction that A continues to hold.

Having shown this, the proof of Theorem 2 is similar
to the proof of Theorem 1 and is omitted here. tu

3.2.5 Path Lookups

One of the issues that need to be considered in a hierarchical
file system is that, when a user transaction reads a file, the
file’s name can be a pathname, and so to access the file, the
directories in the path have to be read. Are these reads to be
considered as “reads” by the user transaction? If so, it can
create difficulties, as the backup transaction has to either
read all these directories before the user transaction or has
to read them all after the user transaction. This can severely
restrict the degree of concurrency. But user transactions do
not read directory contents one by one to resolve a path-
name. Pathname traversal is done inside the kernel within a
system call. Such a traversal may not be able to proceed if a
directory is locked by another user transaction, but this is
not visible to the user transactions or the backup transac-
tion. So these directory reads by the kernel do not need to
be considered to be reads by the user transaction. Now tb,
the backup transaction captures the backup of the entire file
system and not of any particular file. So neither is it given
any file pathname to backup, nor does it do any file name
lookups during the backup of the file system. It does have
to traverse the directory tree, but only to go from one node
to another. Which node it next goes to does not matter, and
it will go to a node only if it is accessible from the current
node. The pathname of a file that is backed up in the
backed-up copy will depend on the order in which the
backup is being done and on what operations user transac-
tions have executed. Suppose the pathname in the filesys-
tem of the file “b” at the moment it is being backed up is
/usr/a/b. If the backup programme has already backed up
directories “usr” and “a”, then the path name in the backed-
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up file system will also be /usr/a/b. Any operations on
“usr” or “a” by any user transaction will be after tb and so it
will not show up in the backed up file system. If, on the
other hand directories “usr” and “a” have not yet been
backed up, and a subsequent transaction tx moves directory
“a” from “usr” to “etc”, then with reference to directory
“usr” tx will be before tb and so the pathname in the
backed-up copy will be /etc/a/b.

3.2.6 Realizable Schedule

Our model has assumed that tb reads every file at most once,
because this is what a backup means. In an actual imple-
mentation, transactions including tb may have to abort (roll
back). A transaction aborts either on its own account, to
resolve conflicts or deadlocks, or as a result of reading dirty
data written by a transaction that later aborts.

We define a realizable schedule as one in which tb will
never have to roll back. To understand why this restriction is
required, consider the following example. Let the following
be part of some schedule: f. . . ; w1ðf1Þ; rbðf1Þ; w2ðf1Þ; rbðf2Þ;
w2ðf2Þ; w2ðf3Þ; . . .g. As can be seen, t1 precedes tb in seriali-
zation order. Suppose after tb has read f1, t1 aborts due to
some reason. This renders tb’s read of f1 inconsistent. tb
only reads every file in the file system exactly once and
hence tb’s consistency can be re-established by a partial roll
back of abandoning tb’s read of f1 and reading it again. But
this will make tb � t2 on the basis of f1, while tb � t2 due to
f2. So the read by tb of f2 will also have to be rolled back. In
the worst case scenario tb has to roll back all its reads and
restart from the beginning. Such cascading roll backs
increases the time taken for a backup, thus lengthening the
system vulnerability window. Moreover, the notion of a
backup is to capture a point-in-time or at-least a near point-
in-time image of the data set and a backup that spreads
across a long time-line is not acceptable. Hence, for practical
purposes we need to consider only realizable schedules.

We assume that the backup transaction tb does not roll
back on its own account. Hence, tb would require to roll back
if another transaction it reads from goes on to abort (tb
becomes a victim of the “cascading abort” phenomenon) or
it is forcefully rolled back to resolve a conflict or deadlock.

Standard serializability theory deals with cascading
aborts by allowing transactions to read only those values
that are written by a committed transaction or itself. The
resulting serializable schedule is called a cascadeless schedule.
Let the last operation of every transaction tx be commitx.
This identifies the commit point of the transaction. Then, a
schedule is said to be cascadeless if, whenever tx reads filek
from ty, ðx 6¼ yÞ, commity < rxðfilekÞ. A transaction tx is
said to read data item filek from ty, if ty was the transaction
that had last written into filek before tx read filek.

Roll back of transaction tb as a result of a user transaction
tx aborting can be avoided by applying similar restrictions
on the schedule pChbh . Thus, if tb reads data written by a
user transaction tx, it does so only after tx commits.

A need for a transaction to abort or roll back (in case of tb)
also arises when it is chosen as a “victim” to resolve a con-
flict or a deadlock scenario. Thus, if tb is never chosen as a
“victim” whenever tb conflicts with a tx 2 Th then tb will
not need to roll back.

We state and prove these results in Theorem 3.

Theorem 3. When a backup transaction tb operates concurrently
with a set of transactions Th that are serialized among them-
selves, and where tb is mutually serializable with tx
(8tx 2 Th), tb will never have to roll back any of its read oper-
ations if the following conditions hold:

1. whenever tb reads filek 2 Fh from tx 2 Th,
commitx � rbðfilekÞ holds

2. if tb and tx conflict, it is always tx which resolves the
conflict and never tb.

Proof. By the definition of a cascadeless schedule, condition
1 ensures that tb will not roll back even if any transaction
tx 2 Th aborts.

Condition 2 ensures that tb is never chosen as a victim
when there is a conflict with any tx 2 Th.

Thus, tb never needs to roll back any of its operations.
tu

One way of enforcing condition 1 of the above theo-
rem is to ensure that the concurrency control protocol
which is used to serialize the transactions in Th does not
expose uncommitted writes or creates to other transac-
tions, including the backup transaction. Strict two phase
locking or strict timestamp based concurrency control
protocols fulfill this criterion.

4 IMPLEMENTATION

In order to implement and evaluate the proposed consistent
online backup facility, we first implemented our own basic
transactional file system, referred to as TxnFS. A need to
develop TxnFS arose because current transactional file sys-
tems either exist as research projects still under develop-
ment and evaluation [5], [28] or are closed-source systems
limited to a specific file system and operating system [27].
TxnFS has been built as a user level file system using an
underlying ext2 Linux file system to actually store informa-
tion. A backup utility which traverses the file system hierar-
chy in a depth-first manner copying every file on its path to a
backup medium has been developed over TxnFS. To serial-
ize the backup utility with concurrently executing applica-
tion transactions, the mutual serializability concurrency
control protocol has been implemented.

Applications run as a sequence of transactions and under
normal circumstances when the backup program is not
active, they simply use any standard concurrency control
technique such as locking or optimistic protocols to ensure
consistent operations. We have used Strict 2PL in the current
implementation. Once the backup program is activated, all
other transactions are made aware of it by some triggering
mechanism (the current implementations sets a global vari-
able) and they now need to serialize themselves with respect
to the backup transaction, while continuing to serialize
among themselves as before.Mutual serializability is realized
using two bits, one reserved in a file’s metadata called the
read bit (we utilized the sticky bit of an inode to implement
the read bit) and another bit called the before-after bit stored in
a transaction’s housekeeping data structure. As the backup
utility reads files, it marks a backed up file by changing its
read bit to 1. A transaction’s before-after bit is initialized to the
value of the read bit of the first file it accesses. Thereafter, a
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transaction is detected to violate mutual serializability if it
attempts to access a file whose read bit value is not equal to
the value of its before-after bit. Our implementationmaintains
mutual serializability by either aborting the user transaction
or pausing it for a random period (depending on whether
the user transaction is initially serialized before or after the
backup transaction respectively) and allowing the backup
utility to go ahead and read the files in conflict.

We evaluated the effect of obtaining an online consis-
tent backup using the mutual serializability protocol on the
performance of user transactions as well as the backup
transaction by running a number of simulated transac-
tional file system workloads on the implemented system.
As transactional file systems are still at the research stage
and not yet widely used in real environments, we could
not find any real transactional file system trace to use as
input. We therefore simulated workloads of different cat-
egories. Synthetically generated traces allow us to isolate
interaction patterns and to test a system on these separate
patterns. Moreover through synthetic traces we can
model access patterns not yet seen but likely to exist in
future, such as an increase in the degree of file sharing
among users. The main objective while generating traces
was to match it as closely as possible to realistic work-
loads as described in various file system workload studies
[35], [36], [37], [38]. The different simulated workloads
used for our experiment were:

� the global workload which accessed the entire file
system hierarchy with equal probability (a worst
case scenario).

� the local workloads where transactions exhibited
spatial locality of access. The set of files were spread
over a number of subtrees, and each transaction
accessed files of a particular subtree only, each with
equal probability, and with equal probability of an
access being a read or a write. Within this larger
group the following workloads were modeled

- 50 percent share, 25 percent share, 10 percent
share and 0 percent share workloads: in 50 per-
cent share for example, 50 percent of the files
were shared. This was implemented by divid-
ing the set of files in each subtree into a set of
shared and a set of non-shared files. A transac-
tion would access each file in a subtree with
equal probability, except that a non-shared file
was constrained to be accessed by only one
transaction (to study the effect of differing
level of inter-transactional sharing on the
backup process).

- the stat workload modeled higher percentage of
read access (70 percent of stat calls in our imple-
mentation; this was to model the effect of a
higher percentage of reads over writes).

- the hot-cold workload where about 10 percent
of files are accessed 90 percent of the time and
the rest 90 percent remain mostly “cold” by
being accessed only 10 percent of the time [37].
Within this group the 50 percent share-hot-cold
and the 0 percent share-hot-cold sets were

generated consisting of transactions sharing up
to 50 percent of the files and not sharing any files
among themselves respectively.

The metrics used for evaluation were the percentage
of transactions conflicting with the backup transaction,
time taken for the backup to complete, and the number
of transactions completing to commit per microsecond
during the duration the backup utility was active (the
throughput of user transactions). Experiments were run
with (referred to as MS_enabled) and without (referred
to as MS_disabled) enabling the mutual serializability
protocol to evaluate the overhead of capturing a consis-
tent backup copy over an inconsistent one. To the best of
our knowledge the online concurrency control method
proposed in this paper is the first protocol aimed at
ensuring backup copy consistency in the file system
domain. Thus, the proposed technique could not be com-
pared with other existing techniques as there were none.

Table I shows the results of the experiments as percent-
age change in the number of user transactions conflicting
with the backup transaction, percentage change in the
backup time and percentage change in the throughput of
the MS_enabled as compared to the MS_disabled run. It
can be seen that the global workload gives poor perfor-
mance with 54 percent increase in the percentage of con-
flicts, 161 percent increase in backup time and 67 percent
decrease in throughput during the MS_enabled run as
opposed to its MS_disabled run). However, this is not a
realistic load and only serves as a worst case. As expected,
incurred overhead decreases sharply in workloads exhibit-
ing spatial locality of access, within which overheads
decrease as the degree of inter-transactional sharing
decreases. With hot-cold workloads, the performance
improves further. A hot-cold workload with 50 percent-
share could be considered to be a realistic case as seen from
previous file access pattern studies [37]. Here the overheads
are very reasonable: about 6 percent increase in conflict per-
centage, 7:6 percent increase in backup time and 4:37 per-
cent decrease in user transaction throughput. It is to be

TABLE 1
Overheads Due to Online Backup
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noted that an increase in the percentage of reads over writes
(by including many more stat calls in the workloads) did
not reduce the overheads of backup. This is because the
mutual serializability algorithm has to consider read-read
conflicts also.

To improve performance further, performance enhanc-
ing heuristics which involved diverting the backup pro-
gram to lesser active regions of the file system on detecting
conflicts were implemented and evaluated. We applied
these heuristics techniques on the hot-cold workload with
50percent share, as it resembles most closely existing work-
loads [35]. As can be seen from the table, there was further
improvements: only 2 percent increase in conflict percent-
age, 4 percent increase in backup time and 3:4 percent
decrease in user transaction throughput.

5 CONCLUSION

Data backup is extremely important for the protection of
data against its possible loss or corruption, as well for the
purpose of retention of old file versions. A backup is con-
sistent when taken of an unmounted and inactive file sys-
tem. But, a backup may be inconsistent when taken
arbitrarily while a file system is up and running. The cur-
rent study has considered the issue of a consistent online
backup in a file system supporting transactions. Using
standard concurrency control techniques for backup in
transactional file systems can be inefficient as the backup
process, considered as a transaction, has to access every
file in the system. Aborting this transaction will be expen-
sive, and other transactions may experience frequent
aborts because of this transaction. In this paper we have
presented a theoretical framework for the study of online
file system backup and have formally shown that extend-
ing the set of conflicting operations to include read-read
conflicts, results in a scheme in which ensuring that the
backup transaction is mutually serializable with every other
transaction results in a consistent backup copy. The user
transactions continue to serialize within themselves using
some standard concurrency control protocol. The backup
transaction does not have to be aborted, and delaying a
conflicting transaction for a short while in most cases
resolves conflicts. We term this concurrency control pro-
tocol as mutual serializability. A prototype implementation
has shown that the protocol can be implemented effi-
ciently. As transaction support becomes part of file sys-
tems, the protocol will allow consistent online backup of
large file systems.
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