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ABSTRACT 10 
  11 
In a recent paper, Gupta et al., (2015), analyzed whether sunspot numbers cause global temperatures 12 
based on monthly data covering the period 1880:1-2013:9. The authors find that standard time 13 
domain Granger causality test fails to reject the null hypothesis that sunspot numbers does not cause 14 
global temperatures for both full and sub-samples, namely 1880:1-1936:2, 1936:3-1986:11 and 15 
1986:12-2013:9 (identified based on tests of structural breaks). However, frequency domain 16 
causality test detects predictability for the full-sample at short (2 to 2.6 months) cycle lengths, but 17 
not the sub-samples. But since, full-sample causality cannot be relied upon due to structural breaks, 18 
Gupta et al., (2015) concludes that the evidence of causality running from sunspot numbers to global 19 

temperatures is weak and inconclusive. Given the importance of the issue of global warming, our 20 
current paper aims to revisit this issue of whether sunspot numbers cause global temperatures, using 21 
the same data set and sub-samples used by Gupta et al., (2015), based on an nonparametric Singular 22 
Spectrum Analysis (SSA)-based causality test. Based on this test, we however, show that sunspot 23 
numbers have predictive ability for global temperatures for the three sub-samples, over and above 24 
the full-sample. Thus, generally speaking, our non-parametric SSA-based causality test outperformed 25 
both time domain and frequency domain causality tests and highlighted that sunspot numbers have 26 
always been important in predicting global temperatures.  27 

 28 
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1. Introduction 35 
 36 

Global warming, i.e., rising temperature of the earth’s surface, is undoubtedly the biggest topic of 37 

research amongst researchers working on environment. While, analyzing the impact of global 38 

warming cannot be ignored, but what factors drive it is perhaps more important, as it not only allows 39 

us to predict global warming, but also takes measures to control it. It is quite well-accepted that 40 

global warming is due to greenhouse gases, additionally, there is a large literature
1
 that relates the 41 

same with solar activity. However, the evidence from this literature is, at best, mixed. While there 42 

are studies (see for example, Lean and Rind, 1998, 2009; Scafetta and West, 2003, 2005; Scafetta et 43 

al., 2004; Scafetta, 2009, 2011; Folland et al., 2013; Zhou and Tung, 2013) that find significant 44 

relationships between solar radiation and global temperatures, one hand. On the other hand, there are 45 

some authors who claim that the two variables are unrelated (see for example, Pittock, 1978, 1983, 46 

2009; Love et al., 2011; Usoskin, et al., 2004). Thus, there is no clear-cut consensus about the 47 

possibility of a relationship between solar irradiance and global temperatures (Gil-Alana et al., 48 

2014).  49 

          Against this backdrop, using sunspot numbers as a proxy for solar activity, Gupta et al., 50 

(2015), recently analyzed whether sunspot numbers cause global temperatures based on monthly data 51 

covering the period 1880:1-2013:9. However, at this stage, it is important to point out, as indicated 52 

by Scafetta (2014), sunspot numbers can only be considered as a “partial proxy” for solar activity. 53 

This is because time intervals between major solar flares, cosmic ray records, ACRIM composite of 54 

total solar irradiance satellite measurement, multi-scale thermal models of several total solar 55 

irradiances, and solar and astronomical oscillations are also possible, and perhaps, better proxies for 56 

solar activity than sunspot numbers. In addition, one must be cautious in suggesting that sunspot 57 

numbers are linearly and positively related to solar activity due to the intrinsic complexity of solar 58 

                                                           
1
 The reader is referred to Gray et al. (2010) and Gupta et al., (2015) for further details. 
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dynamics and of its multiple coupled phenomena, as discussed in detail in Scafetta (2014). Gupta et 59 

al., (2015) find that standard time domain Granger causality test fails to reject the null hypothesis 60 

that sunspot numbers does not cause global temperatures for both full and sub-samples, namely 61 

1880:1-1936:2, 1936:3-1986:11 and 1986:12-2013:9 (identified based on tests of structural breaks). 62 

However, frequency domain causality test detects predictability for the full-sample at short (2 to 2.6 63 

months) cycle lengths. Interestingly however, the study could not detect any causality for the sub-64 

samples. Gupta et al., (2015) thus, highlights the importance of analysing causality using the 65 

frequency domain tests, which, unlike the time domain Granger causality test, allows one to 66 

decompose causality by different time horizons, and hence, possibly detect predictability at certain 67 

cycle lengths even when the time domain causality test might fail to pick up any causality. However, 68 

given that there exists structural breaks in the sample, Gupta et al., (2015), suggests that the 69 

relationship could be spurious based on a full-sample analysis, since a full-sample analysis assumes 70 

stability of the parameters of a VAR, which is clearly not the case in the presence of breaks, and 71 

which is also vindicated by the fact that there is no evidence of causality over the sub-samples. 72 

Given the importance of the issue of global warming, and more importantly the lack of 73 

evidence in favor of sunspot numbers leading to global temperatures in linear models, our current 74 

paper aims to revisit this issue of whether sunspot numbers cause global temperatures, using the 75 

same data set and sub-samples used by Gupta et al., (2015), based on Singular Spectrum Analysis 76 

(SSA) technique, which is a new nonparametric technique known for both time series analysis and 77 

forecasting (as discussed further in Hassani, 2007; Hassani and Thomakos, 2010; Hassani et al., 2009, 78 

2010, 2013a, 2013b; Hassani and Mahmoudvand, 2013). The reason behind using a nonparametric 79 

technique is to capture possible nonlinearities that could exist in the data generating processes of the 80 

global temperatures and sunspots individually (Scafetta, 2014), as well as, in the relationship 81 

between global temperatures and sunspot activity, for instance due to the structural breaks detected 82 
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by Gupta et al., (2015). The SSA being a nonparametric method captures the possible nonlinearities 83 

using a data-driven approach, without specifying any known functional nonlinear model to the 84 

relationship, which in turn, could be incorrectly specified in the first place, just like the linear model, 85 

on which time domain and frequency domain Granger causality tests are based on. Further, as 86 

pointed out by Aguirre et al., (2008), the difficulties encountered in modeling sunspot numbers and 87 

global temperature data are due to the apparent nonstationarity property of the series and the 88 

complex dynamic fluctuations in the cycle amplitude of the sunspot number series. In other words, 89 

these complexities could be driving the mixed results discussed above in terms of the relationship 90 

between these two variables. In light of this, the importance of the nonparametric SSA-based 91 

causality cannot be underestimated, which besides being a nonlinear data-driven approach, also does 92 

not require pretesting to ensure that the variables under consideration is stationary (Hassani, 2007; 93 

Hassani and Thomakos, 2010; Hassani et al., 2009, 2010, 2013a, 2013b; Hassani and Mahmoudvand, 94 

2013).  95 

The paper is structured as follows: Given that time and frequency domain causality tests were 96 

already discussed in Gupta et al., (2015), the details of the frequency domain causality test have been 97 

relegated to the appendix for the sake of completeness, with Section 2 introducing the SSA-based 98 

causality test (following the works of Hassani and Mahmoudvand, 2013). Section 3 presents the data 99 

and empirical results. Finally, Section 4 concludes. 100 

 101 

2.         Methodology: The SSA-based causality test (MSSA) 102 
 103 

Multivariate singular spectrum analysis (MSSA) is an extension of the standard Singular Spectrum 104 

Analysis (SSA) to the case of multivariate time series (Hassani et al., 2013), in which SSA is a 105 

relatively new nonparametric technique known for both time series analysis and forecasting, detail 106 

description can be found in (Hassani, 2007). After Broomhead and King (1986) theoretically 107 
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proposed the MSSA technique in the context of nonlinear dynamics for the first time, it has been 108 

widely applied on a range of different fields and a multitude of fairly precise results proved it as 109 

powerful and applicable technique, numerous applications and examples can be found in (Hassani, 110 

2007; Hassani et al., 2009, 2010, 2013a, 2013b; Ghodsi et al., 2010; Hassani and Thomakos, 2010; 111 

Hassani and Mahmoudvand, 2013; Sanei and Hassani, 2015). From the perspective of MSSA, two 112 

main concerns that make the problem more complex are: i) similarity and orthogonality among series 113 

play an important rule for selecting the window length L and the number of eigenvalues r, and ii) 114 

MSSA deals with a block trajectory Hankel matrix with special features rather than one simple 115 

Hankel matrix (Hassani and Mahmoudvand, 2013). Briefly descriptions of MSSA and causality 116 

criteria are listed in following subsections.  117 

 118 

2.1        Algorithm Description of MSSA 119 

In this subsection of brief description of MSSA algorithm, we mainly follow the paper by Hassani 120 

and Mahmoudvand (Hassani and Mahmoudvand, 2013). Consider M time series with different series 121 

length           

   
    

           

               . By the embedding process that transfer a one-122 

dimensional series    

   
    

   
        

   
  in to a multidimensional matrix    

   
        

   
  with 123 

vectors  
   

    
   
            

   
      , where             is the window length for each series 124 

with length    and           . We can then get the trajectory matrix         
   
        

   
  125 

          
      after this step. The above procedure for each series separately provides M different 126 

      trajectory matrices                 . To construct a block Hankel matrix, we need to 127 

have              . Therefore, we have different values of     and series length    , but 128 

similar    . The result of this step is                      . Hence, the structure of the matrix 129 
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  is as follows:     

                         and the sum of           provides the new 130 

block Hankel matrix, which can be subsequently converted to a time series.  131 

 132 

2.2 Causality criteria based on forecasting accuracy 133 

Granger (1969) proposed and formalized the causality concept to address the question that whether 134 

one variable can help in predicting another. The criterion we use is based on out-of-sample 135 

forecasting, which is very common in the framework of Granger causality. Here, we compare the 136 

forecast values obtained by the univariate procedure, SSA and MSSA. If the forecasting errors using 137 

MSSA are significantly smaller than those of univariate SSA, we can conclude that there is a causal 138 

relationship between these series. Brief introduction is listed below which we mainly follow Hassani 139 

et al. (2010)
2
.  140 

Let us consider the procedure for constructing vectors of forecasting error for out-of-sample 141 

tests in a two variable case    and     by both univariate and multivariate SSA techniques 142 

respectively. In the first step we divide the series               into two separate subseries    143 

and                , where               and                 . Same procedure is 144 

conducted for    . The subseries    and    are used in the reconstruction step to provide the noise-145 

free series     and    . The noise-free series are then used for forecasting the subseries    and   with 146 

the help of the recursive formula using SSA and MSSA respectively. For variable   , two different 147 

forecasting values of                      by SSA and MSSA are then used for computing the 148 

forecasting errors accordingly, which will be the same process for variable    .  Therefore, in a 149 

multivariate system like this, the vectors of forecasts obtained can be used in computing the 150 

forecasting accuracy and therefore examining the association between the two variables.  151 

                                                           
2
 The readers are referred to Hassani et al. (2010) for more details. 
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The length of out-of-sample does not have specific limitation, generally considering the 152 

simulation scenario, the length of time series for reconstruction will take 2/3 of the whole series and 153 

the rest 1/3 is considered as out-of-sample for constructing forecasting error. The separate point to 154 

define the out-of-sample size for different series can be chosen respectively, whilst it is important 155 

that when it goes to comparing the performances of different techniques based on constructed 156 

forecasting error of one specific series , the sizes of reconstruction and out-of-sample for all 157 

techniques should be identical. In addition, the choices of window length L and the referring options 158 

of numbers of eigenvalues r should also be carefully evaluated in practice of SSA-based causality 159 

test respectively. In order to conduct the most accurate causality detection results, all the possibilities 160 

of L and its referring choices of r should be applied for both univariate SSA and MSSA processes, 161 

then the optimal ones with best performance of forecasting will be chosen to construct the finally 162 

causality detection  procedure. 163 

Therefore, here we define the criterion                 corresponding to the  forecast of 164 

the series    in the presence of the series   . If       is small, then having information obtained from 165 

the series   can help us to have better forecasts of the series  . If       , we conclude that the 166 

information provided by the series   can be regarded as useful or supportive for forecasting the 167 

series   . Alternatively, if the values of        , then either there is no detectable association 168 

between   and   or the performance of the univariate SSA is better than of the MSSA (this may 169 

happen, for example, when the series   has structural breaks misdirecting the forecasts of  ).  170 

 171 

3. Data and empirical results 172 
 173 

The data are at monthly frequency for global land-ocean temperatures (GT) and sunspot numbers 174 

(SS), and cover the period from January 1880 to September 2013, with the start and end-points being 175 
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maintained the same as that of Gupta et al., (2015) for the sake of comparison. Empirical results, for 176 

the time-domain causality and the SSA tests listed in this section are conducted by R programming 177 

based on source code, while the frequency domain causality tests are performed in GAUSS. In terms 178 

of the data, the global temperatures were obtained from the National Aeronautics and Space 179 

Administration’s (NASA), Goddard Institute for Studies (GISS) (http://data.giss.nasa.gov/gistemp), 180 

while the sunspot numbers were obtained from the Solar Influences Data Analysis Centre (SIDC: 181 

http://www.sidc.be/sunspot-data). The data for temperatures are anomalies relative to the base period 182 

1951-1980. Figures 1(a) and 1(b) plot the two variables. As can be seen, the plot of the global 183 

temperature seems to be non-stationary, though it could well be trend-stationary, while that of the 184 

sunspot looks stationary with a cyclical pattern completed at about 10/11 years. 185 

 186 

Figure 1(a): Plot of Global Temperatures (1880:1-2013:9) 187 
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 188 

Figure 1(b): Plot of Sunspot Numbers (1880:1-2013:9) 189 

 190 

As in Gupta et al., (2015), we start off with unit root tests to verify whether the two series are 191 

stationary I(0) or not. As can be seen, based on the Kwiatkowski-Phillips-Schmidt-Shin (1992, 192 

KPSS), augmented Dickey-Fuller (1981, ADF), Dickey-Fuller test with Generalised least Squares 193 

detrended residuals (Elliot et al., 1996, DF-GLS) Phillips and Perron (1988, PP), and Ng and Perron 194 

(2001, NP) unit root tests, the null of a unit root is overwhelmingly rejected (except for KPSS test the 195 

null of being stationary, it cannot be overwhelmingly rejected), for the total sample of SS. However, 196 

for total sample of GT, while all the tests support that the variable is trend-stationary, the ADF and 197 

DF-GLS test tends to suggest non-stationarity of the series when the unit root test-equation has only 198 

a constant (or neither a constant and trend in case of the ADF test). The PP and the NP tests, though, 199 

indicate stationarity even under the assumption of constant only (and neither a constant and trend in 200 

case of the PP test).  201 

As Gupta et al., (2015) points out, among the unit root tests conducted, the NP test is believed 202 

to have overwhelmingly stronger power relative to the other tests, and hence, one would tend to rely 203 

on the results from this test. Also, given the nature of GT, it is evident that the unit root equation 204 
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should in fact include a trend, while that for SS, it should only be with a constant. In light of this as 205 

in Gupta et al., (2015), we can conclude that GT is stationary as well, and hence, we do not need to 206 

transform the data further for either GT or SS. In addition, we do not need to account for the 207 

possibility cointegration, and hence error-correction, between the two variables.  208 

Note that Gupta et al., (2015) applied Bai and Perron’s (2003) sequential and repartition tests 209 

of multiple structural breaks on the GT equation of the VAR (4) model comprising of GT and SS. 210 

The GT equation on which the tests were performed involved a constant and four lags each of GT 211 

and SS. Now since structural breaks were detected in the full-sample at 1936:3 and 1986:12, we also 212 

conducted the unit root tests over the sub-samples, which are reported in Table 1. In general, for 213 

subsample A and subsample B we have overwhelming evidence of stationary (especially based on 214 

the results of NP test, which mentioned above that have stronger power compared to the other tests). 215 

For sample C, while GT is found to be stationary in general, the evidence of stationarity, 216 

surprisingly, is quite weak for SS, barring the PP and NP tests, at 10 % level of significance. But 217 

given the cyclical pattern of SS, it is very difficult to believe that the variable is non-stationary. In 218 

fact, we can conclude that the variable is weakly stationary for sub-sample C. In summary, for the 219 

full sample and all sub-samples, both variables are stationary.  220 

 221 

Table 1: Unit Root Test Results 222 

Sample Size Series Methods 
None Intercept Intercept and Trend 

Level Decision Level Decision Level Decision 

Total Sample 

(1605 Obs) 

1880:1-2013:9 

GT 

KPSS ----------- ----------- 4.136*** (31) I(1) 0.638***(30) I(1) 

ADF -1.620 (17) I(1) -1.598 (17) I(1) -3.707** (24) I(0) 

PP -6.231*** (12) I(0) -6.222*** (12) I(0) -18.761*** (23) I(0) 

DF-GLS ----------- ----------- -1.539  (6) I(1) -6.868***(3) I(0) 

NP ----------- ----------- -33.684***(12) I(0) -537.250*** (23) I(0) 

SS 

KPSS ----------- ----------- 0.494**(31) I(1) 0.119 (31) I(0) 

ADF -2.499**(3) I(0) -4.055***(3) I(0) -4.109***(3) I(0) 

PP -3.457*** (13) I(0) -6.488*** (12) I(0) -6.800*** (13) I(0) 
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DF-GLS ----------- ----------- -3.303***(3) I(0) -4.029***(3) I(0) 

NP ----------- ----------- -52.985***(12) I(0) -81.5259***(13) I(0) 

Subsample A 

(674 Obs) 

1880:1-1936:2 

GT 

KPSS ----------- ----------- 0.455*(19) I(1) 0.430***(19) I(0) 

ADF -2.710***(3) I(0) -7.207***(2) I(0) -7.228***(2) I(0) 

PP -4.313***(2) I(0) -13.397***(14) I(0) -13.424***(14) I(0) 

DF-GLS ----------- ----------- -6.325***(2) I(0) -7.076***(2) I(0) 

NP ----------- ----------- -234.149***(14) I(0) -275.304***(14) I(0) 

SS 

KPSS ----------- ----------- 0.053(21) I(0) 0.051(21) I(0) 

ADF -1.819*(3) I(1) -3.451***(3) I(0) -3.447**(3) I(0) 

PP -3.226***(18) I(0) -6.075***(8) I(0) -6.075***(8) I(0) 

DF-GLS ----------- ----------- -3.043***(3) I(0) -3.322**(3) I(0) 

NP ----------- ----------- -52.499***(8) I(0) -57.985***(8) I(0) 

Subsample B  

(609 Obs) 

1936:3-1986:11 

GT 

KPSS ----------- ----------- 0.794***(17) I(1) 0.321***(16) I(1) 

ADF -7.121***(1) I(0) -7.211***(1) I(0) -7.515***(1) I(0) 

PP -12.979***(13) I(0) -13.102***(13) I(0) -13.678***(13) I(0) 

DF-GLS ----------- ----------- -3.287***(2) I(0) -6.454***(1) I(0) 

NP ----------- ----------- -92.270***(13) I(0) -229.775***(13) I(0) 

SS 

KPSS ----------- ----------- 0.061(18) I(0) 0.052(18) I(0) 

ADF -1.690*(2) I(1) -2.720*(2) I(1) -2.741(2) I(1) 

PP -1.932*(11) I(1) -3.600***(2) I(0) -3.614**(2) I(0) 

DF-GLS ----------- ----------- -2.718***(2) I(0) -2.754*(2) I(1) 

NP ----------- ----------- -24.056***(2) I(0) -24.089***(2) I(0) 

Subsample C 

(322 Obs) 

1986:12-2013:9 

GT 

KPSS ----------- ----------- 1.651***(14) I(1) 0.126*(12) I(0) 

ADF -0.682 (3) I(1) -4.604***(1) I(0) -6.618***(1) I(0) 

PP -1.203 (26) I(1) -6.835***(8) I(0) -9.997***(8) I(0) 

DF-GLS ----------- ----------- -1.178*(3) I(1) -5.614***(1) I(0) 

NP ----------- ----------- -16.711***(8) I(0) -106.142***(8) I(0) 

SS 

KPSS ----------- ----------- 0.534**(15) I(1) 0.093 (14) I(0) 

ADF -0.936 (3) I(1) -1.812 (3) I(1) -2.415 (3) I(1) 

PP -1.497(12) I(1) -2.761*(2) I(0) -3.394*(2) I(0) 

DF-GLS ----------- ----------- -1.138(3) I(1) -1.356(3) I(1) 

NP ----------- ----------- -6.718*(2) I(0) -8.802(2) I(1) 

Notes: 
*, ** 

and 
*** 

indicates significance at the 10%, 5% and 1% level, respectively.  The critical values are as follows: 223 

- None: -2.566, -1.941 and -1.616 for ADF and PP at 1%, 5% and 10% level of significance, respectively. 224 
- Intercept: -3.434, -2.863 and -2.567 (-2.566, 1.941, 1.617) [-13.8, -8.1 and -5.7] {0.739, 0.463, 0.347} for ADF 225 

and PP (DF-GLS) [NP] {KPSS} at 1%, 5% and 10% level of significance, respectively. 226 
- Intercept and Trend: -3.963, -3.412 and -3.128 (3.48, 2.89, 2.57) [-23.80, -17.3 and -14.2] {0.216, 0.146, 0.119} 227 

for ADF and PP (DF-GLS) [NP] {KPSS} at 1%, 5% and 10% level of significance, respectively. 228 
Numbers in parentheses for ADF, PP and DF-GLS tests indicates lag-lengths selected based on the Schwarz Information 229 
Criterion (SIC). For the NP test and the KPSS test, based on the Bartlett kernel spectral estimation method, the 230 
corresponding numbers are the Newey-West bandwidth.  231 

 232 
 233 
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Though our primary interest is to analyze causality between global temperatures and sunspot 234 

numbers using the SSA approach, for the sake of completeness, we also present here the results in 235 

time and frequency domains, as used in Gupta et al., (2015).  236 

             As shown in Table 2 the null hypothesis that SS does not Granger cause GT cannot be 237 

rejected for both full and the sub-samples – a result also pointed out by Gupta et al., (2015). This 238 

result continues to hold when we also detrend GT.
3,4

  239 

Table 2. Time-Domain Granger Causality Test Results 240 
 241 

Sample and Number 

of Observation 

Total Sample  

(1605 Obs) 

Subsample A 

(674 Obs) 

Subsample B 

(609 Obs) 

Subsample C  

 (322 Obs) 

Referring Periods 1880:1-2013:9 1880:1-1936:2 1936:3-1986:11 1986:12-2013:9 

Causality Direction SS-->GT SS-->GT SS-->GT SS-->GT 

Tested 

Series 

Original 
F p-value F p-value F p-value F p-value 

1.0107 0.3642 0.947 0.3884 1.1374 0.3213 1.5871 0.2062 

De-trended  
F p-value F p-value F p-value F p-value 

1.3569 0.2287 1.2343 0.2949 1.6907 0.1505 0.9201 0.4525 

 242 

Next, we repeat and present the frequency domain causality results of Gupta et al., (2015) for 243 

the full and the sub-samples in Figures 2, with the same lag-structure as used in the time domain 244 

Granger causality tests. The figures depict the test statistics (solid line) along with their 5 percent 245 

critical values (broken line) for all frequencies in the interval (0, π), to assess the predictive content 246 

of SS for GT.  For the full-sample (1880:1-2013:9), the null hypothesis of non-predictability is 247 

rejected for ω greater than 2.45 corresponding to a cycle length between 2 and 2.6 months.
5
 For the 248 

sub-samples 1 (1880:1-1936:2), 2 (1936:3-1986:11) and 3 (1986:12-2013:9), however, the null of no 249 

                                                           
3
 Given the weak evidence of stationarity for SS for sub-sample C, we repeated the Granger causality test with first 

differences of SS and GT without and with detrending. The null of non-causality still continued to hold with p-values of 

0.7279 and 0.6597, respectively. Further details on these results are available upon request from the authors. 
4
 Base don the suggestions of an anonymous referee, we also conducted the nonparametric rank Granger causality tests 

which is robust to non-normal errors of Holmes and Hutton (1990). However, as with the standard Granger causality 

tests, the null of no-causality could not be rejected at the conventional 5 percent level of significance. Complete details of 

these results are available upon request from the authors.  
5
 Recall that, the frequency (ω) on the horizontal axis can be translated into a cycle or periodicity of T months by T = (2π 

/ ω), where T is the period. 
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predictability cannot be rejected for any frequency. So, as in the time domain Granger causality tests 250 

for the sub-samples, the frequency domain tests too fail to reject the null that SS has no predictability 251 

for GT in the sub-samples. Since in the presence of structural breaks, the full-sample causality results 252 

cannot be relied upon, our frequency domain causality tests, as in Gupta et al., (2015), tend to 253 

suggest that there is no causality running from SS to GT  254 

 255 

 256 

(a)                                                               (b)  257 

 258 

(c)                                                              (d) 259 

Figure 2: Frequency Domain Causality of -- (a) Total Sample (1880:1-2013:9), (b) Subsample A 260 

(1880:1-1936:2), (c) Subsample B (1936:3-1986:11), (d) Subsample C (1986:12-2013:9). 261 

 262 

             As with the time domain tests, we also present below, in Figures 3, the results from the 263 

frequency domain test of GT after detrending. As can be seen, now there is no evidence of causality 264 
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either for the full-sample or sub-samples any frequency. This result could imply that results based on 265 

trending GT series for the full-sample could have been spurious in the frequency domain as reported 266 

in Gupta et al., (2015).        267 

 268 

(a)                                                                                   (b) 269 

 270 

(c)                                                                                  (d)  271 

Figure 3: Frequency Domain Causality with Detrended GT of – (a) Total Sample (1880:1-272 

2013:9), (b) Subsample A (1880:1-1936:2), (c) Subsample B (1936:3-1986:11), (d) Subsample C 273 

(1986:12-2013:9). 274 

 275 

          Against this background of lack of evidence of causality in the time and frequency domains, 276 

we now next turn our attention to the causality using the SSA-based approach. As mentioned in 2.2, 277 

in order to conduct the SSA-based Causality Test for the sunspot and global temperature data, the 278 



 
 

 

14 

out-of-sample size for each subsample series is 1/3 of the whole series. In addition, before the last 279 

step which determines causality by causality criterion         in 2.2, all the forecasting results of both 280 

SSA and MSSA steps are the optimal choice chosen respectively after considering all the 281 

possibilities of window length L and its corresponding choices of number of eigenvalues r. The 282 

following table summarizes the causality test results based on SSA technique. As what is mentioned 283 

in 2.2, if the causality criterion         , then either there is no detectable association between    284 

and    or the performance of the univariate SSA is better than of the MSSA, this may happen, for 285 

example, when one of the series has structural breaks misdirecting the forecasts; If         , then 286 

we conclude that the information provided by the series   can be regarded as useful or supportive for 287 

forecasting the series  . According to the following table, when the whole sample is considered, the 288 

test statistics is very close to 1 and could not provide strong information to determine the causality 289 

between    and   . This is possibly affected by the structural breaks we detected in   , which 290 

misleads the forecasts. Comparing with the empirical evidence of Gupta et al., (2015), whereby the 291 

authors detected causality only in for the full-sample, our SSA-based causality tests, provides strong 292 

evidence of causality for all the-subsamples as well, to go on with the weak evidence of causality for 293 

the full-sample. In addition, considering the detrended GT series in comparison with using the GT 294 

with trend for our tests, the causality for all subsamples and the weak evidence for total samples still 295 

hold. Recall, when we repeated the frequency domain analysis for Gupta et al., (2015) using 296 

detrended GT, we could not detect causality even for the full-sample – a result also obtained for the 297 

time-domain version of the test.
6
 In more details, subsample A show the strongest effect comparing 298 

to other subsamples regardless of the original and de-trended series; followed by subsample C with 299 

slightly weaker causal effect from SS to GT; moreover, the weakest causal effect holds for 300 

subsample B according to tests of both original and de-trended series.  301 

                                                           
6
 For a discussion of causality based on cross-spectrum analysis between GT and SS, refer to the Appendix of this paper. 
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Table 3. SSA-based Causality Test Results 302 
 303 

Sample and Number 

of Observation 

Total Sample  

(1605 Obs) 

Subsample A 

(674 Obs) 

Subsample B 

(609 Obs) 

Subsample C 

(322 Obs) 

Referring Periods 1880:1-2013:9 1880:1-1936:2 1936:3-1986:11 1986:12-2013:9 

Test Statistics                             

Series 
Original 0.998 0.284 0.399 0.308 

De-trended 0.967 0.400 0.800 0.465 

Note that        is the criterion of SSA-based causality test based on forecasting accuracy (see 2.2). 304 

 305 

4. Concluding remarks 306 
 307 

Global warming is undoubtedly the biggest topic of research amongst researchers working on 308 

environment. What drives global temperatures is understandably an interesting area of research. 309 

While greenhouse gases emissions are believed to be a major cause, there is also a large literature 310 

that tends to suggest that solar activity also drives global temperatures. However, the evidence in 311 

terms of the latter line of reasoning is mixed. Given this, in a recent paper, Gupta et al., (2015) 312 

analyzed whether sunspot numbers cause global temperatures based on monthly data covering the 313 

period 1880:1-2013:9, using not only time-domain, but also frequency domain causality tests. The 314 

authors find that standard time domain Granger causality test fails to reject the null hypothesis that 315 

sunspot numbers does not cause global temperatures for both full and sub-samples, namely 1880:1-316 

1936:2, 1936:3-1986:11 and 1986:12-2013:9 (identified based on tests of structural breaks). 317 

However, frequency domain causality test detects predictability for the full-sample at short (2 to 2.6 318 

months) cycle lengths. As with the time domain results, no causality however, could be detected for 319 

the sub-samples. But since, full-sample causality cannot be relied upon due to structural breaks, as 320 

Granger causality tests assumes constancy of parameters during the sub-sample, which is of course 321 

not the case with structural breaks, Gupta et al., (2015) concludes that the evidence in favour of 322 

sunspot numbers causing global temperatures is weak, if not non-existent.  323 
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             Given the importance of the issue of global warming, our current paper aims to revisit the 324 

question of whether sunspot numbers cause global temperatures, using the same data set and sub-325 

samples used by Gupta et al., (2015), but now, based on an advanced new nonparametric technique --326 

the Singular Spectrum Analysis (SSA)-based causality test. Our nonparametric technique is able to 327 

capture possible nonlinearities that could exist in the data generating processes of the global 328 

temperatures and sunspots, but also, in the relationship between global temperatures and sunspot 329 

activity, for instance due to the structural breaks. The SSA being a nonparametric method captures 330 

the possible nonlinearities using a data-driven approach, without specifying any known functional 331 

nonlinear model to the relationship, which in turn, could be incorrectly specified in the first place, as 332 

is possibly the linear model. Using the SSA-based causality tests, we show that sunspot numbers 333 

have predictive ability for global temperatures for the all three sub-samples, over and above the full-334 

sample, even if the latter result can be ignored due to structural instability. Thus, the non-parametric 335 

SSA-based causality test outperforms both time domain and frequency domain causality tests, and, 336 

more importantly, highlights that sunspot numbers have always been important in predicting global 337 

temperatures. In other words, researchers working on global warming can predict movements of the 338 

global temperatures based on movements in sunspot activity, but for this, they need to rely on a 339 

nonlinear data-driven, i.e., nonparametric approach.  340 

              Given the importance global warming, two areas of future research would be: (1) Since 341 

there is evidence of causality in the full-sample, it is clear that there must be causality at certain 342 

specific points in time, even if it is not for the sub-samples identified based on structural breaks. In 343 

light of this, one needs to undertake a time-varying or rolling sub-samples based test of causality. 344 

Also, in this regard, it is important to analyze the direction or the sign of the effect of this causal 345 

relationship if it exists at specific points in time, to design environmental policies better, and (2) Here 346 

we analyze in-sample predictability, in the future it would be interesting to compare linear and 347 
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nonlinear models in forecasting out-of-sample global temperatures based on sunspot numbers. This 348 

would provide information, ahead of time as to where global temperatures are headed given an 349 

existing set of information on sunspot numbers. 350 

             Finally, as a cautionary note, it is important to highlight, something that we have touched 351 

above as well, that the Earth’s climate is regulated by anthropogenic emissions like CO2, volcanoes 352 

and other greenhouse gases, which need to be factored in as well to properly identify the contribution 353 

of solar activity (Scafetta, 2014). Ignoring these issues could also lead to spurious, in other words, 354 

more significant influence from sunspot numbers on global temperatures. However, in our case, the 355 

objective was replicating the work of Gupta et al., (2015), and over the same sample period data on 356 

CO2 emissions were only available at annual frequency. In this regard, an interesting piece of recent 357 

work can be found in Hassani et al., (2015). In addition, while we are only analyzing causality and 358 

not correlation between sunspot numbers and global temperatures, we must be careful in saying that 359 

sunspot numbers used as a partial proxy for solar activity are positively (and linearly), since this 360 

might not be the case, and hence. In other words, our evidence of causality between sunspot numbers 361 

and global temperatures should not be associated with positive correlation between these two 362 

variables. The sign of this relationship is beyond the scope of this paper.  363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 
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Appendix 496 
 497 

The Frequency Domain Causality Test 498 

 499 

Breitung and Candelon’ (2006) presented that in a two-dimensional vector of time series  ,t t tZ X Y500 

observed at time 1,...,t T , where  tZ
 
is a finite-order VAR process, is of the form: 501 

     ,...,2,1t,Z)B( tt    (A1) 502 

where   11 ... p

pB B B      is a 2 2 lag polynomial with
k

t t kB Z Z 
. 

The error vector t is a 503 

white noise process, with   0tE  
 
and  t tE     , where   is a positive definite variance matrix. 504 

The VAR process may include a constant, a trend or dummy variables. The matrix  is then 505 

decomposed as 1G G     where G  is the lower triangular matrix of the Cholesky decomposition. 506 

With the assumption that the system is stationary, the moving average (MA) representation of the 507 

process is, 508 
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where .G)B()B( 1 Then, the spectral density of X t can be expressed as: 510 
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Using the following measure of causality, as in Geweke (1982) and Hosoya (1991): 512 
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 Replacing (A3) into (A4) gives, 514 
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Note that, Equation (A5) is zero, if
2

i
12 )e(  =0, which implies that Y does not Granger-cause X at 516 

frequency ω. 517 

 The null hypothesis that Y does not Granger-cause X at frequency ω is then given as: 518 

     .0)(M:H XY0     (A6) 519 

The statistic  Y XM   is then obtained by replacing  11

ie    and   12

ie    in (A5) by the 520 

estimated values obtained from the fitted VAR. 521 

 522 

Cross Spectrum Analysis 523 

 524 

For the total sample and all subsamples, we performed the cross spectrum analysis on SS and GT, as 525 

well as on SS and detrended GT series for comparison. Briefly, the cross spectrum analysis is the 526 

Fourier transformation of cross-covariance of two series, which gives us the degree of relationship 527 

between two series at different frequency. For each case, i.e., SS and GT and SS and detrended GT, 528 

while conducting the cross spectrum analysis, two types of figures are provided: the squared 529 

coherency by frequency and the phase spectrum by frequency. If the squared coherency is large at 530 

some specific frequencies, it implies that we can probably consider linear relationship between two 531 

tested series at these frequencies. Therefore, we then refer to the figure of the phase spectrum by 532 

frequency at these frequencies with relatively large squared coherency. If the phase spectrum is 533 

approximately linear with a positive slope, it will suggest the first variable lead changes in the 534 

duration of the second variable. When we change the order of variables in the beginning, the final 535 

results will be identical for the squared coherency, but an opposite slope should emerge for the phase 536 
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spectrum accordingly. Here we only provide the results where sunspots numbers is the first variable. 537 

As can be seen from the results below, we can generally conclude that, unlike the SSA-based 538 

approach, there is not much clear-cut evidence of SS causing GT based on the cross-spectrum 539 

analysis. 540 

Total Sample (original series) 541 

 542 

Total Sample (detrended series) 543 

 544 

Subsample A (original series) 545 
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 546 

Subsample A (detrended series) 547 

 548 

Subsample B (original series) 549 

 550 

Subsample B (detrended series) 551 
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552 
Subsample C (original series) 553 

 554 

Subsample C (detrended series) 555 

 556 


