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Current ambient assistive living solutions have adopted a traditional sensor-centric approach, 
involving data analysis and activity recognition to provide assistance to individuals. The reliance on 
sensors and activity recognition in this approach introduces issues with scalability and ability to model 
activity variations. This study introduces a novel approach to assistive living which intends to address 
these issues via a paradigm shift from a sensor centric approach to a goal-oriented one. The goal-
oriented approach focuses on identification of user goals in order to pro-actively offer assistance by 
either pre-defined or dynamically constructed instructions. This paper introduces the architecture of 
this goal-oriented approach and describes an ontological goal model to serve as its basis. The use of 
this approach is illustrated in a case study which focuses on assisting a user with activities of daily 
living. 
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1 Introduction 

The worldwide population is aging and as a result it is producing an uneven demographic composition 

[1], [2]. This is expected to reach a situation by 2050 where over 20% of the population will be aged 

65 or over [1], [2]. This growth in aging population is expected to produce an increase in age related 

illness and will place additional burdens on healthcare provision [2]. In addition, the amount of 

informal support available will decrease due to a reduction in the global Potential Support Ratio 

(PSR). The PSR is the ratio of people that are the working age (15-64) to those older than 65 [1]. The 

PSR is expected to continue on a downward trend reaching a low of 4:1 by 2050. The PSR was 

previously 12:1 in 1950 and more recently 9:1 in 2009 [1]. 

Ambient Assisted Living (AAL) has been widely viewed as a promising approach to addressing the 

problems associated with ageing [3], [4]. Within this domain technology based solutions are used to 

support independent living and subsequently alleviate a portion of the aforementioned problems 

associated with ageing. Such an approach offers the potential of enhancing the quality of life of older 

people. Coupled with AAL is the notion of Smart Homes (SH). It is possible to create residential 

environments augmented with sensor technology and AAL type solutions. Typically SHs operate with 

the following ‘bottom-up’ process: sensors monitor an inhabitant’s activities/environment. Data from 

these sensors are then processed to identify Activities of Daily Living (ADL) for example bathing, 

preparing a meal, using the telephone. ADLs which are identified can be monitored to detect 

difficulties in task completion and to allow assistance to be offered through the SH environment when 

necessary [3]–[6]. As such, SHs allow older people to live longer independently, with a better quality 

of life, in their own homes. 



The bottom-up approach, whist functional, has issues stemming from its sensor centric nature. 

Inhabitant privacy is potentially violated by recording activities which are then used as the basis for 

providing assistive services [3]–[6]. For efficient operation SHs require a large number of sensors to 

be placed in the environment which is realistically not feasible for widespread use due to scalability 

issues related to retrofitting a large number of homes with an appropriate suite of sensors. This 

retrofitting process presents itself with a substantial financial cost in addition to disturbance to 

inhabitants within their own homes. These sensor installations also require maintenance representing 

a potential further cost and disturbance. In addition, current SHs using this approach cannot flexibly 

handle variation in activity performance in a satisfactory way. Finally, reusability of some of these 

bottom-up SHs can be reduced as they rely on a record of events that occur only within their 

environment [3]–[6]. These problems represent a significant barrier to the uptake and adoption of SH 

technology. 

To address these issues we propose a paradigm shift from a sensor centric approach to a ‘top-down’, 

goal driven approach to offer a solution, which can bring additional flexibility whilst simultaneously 

requiring fewer sensors. In a goal driven approach an inhabitant’s goals are the focus of the assistive 

system in contrast to the processing of dense sensor recordings. By combining a goal recognition 

system with an action planning mechanism an assistant system will be produced which will allow 

flexible and proactive assessment of an intended inhabitant goal, thus facilitating assistance 

provision. 

The remainder of the paper is organised as follows. Section 2 discusses related work. Section 3 

proposes a top-down approach and characterizes SH inhabitant goals. Section 4 provides an 

overview and description of the ontological goal model which has been developed. Section 5 presents 

a use case to illustrate the use of goal models for assistive living and Section 6 concludes the paper.  

2 Related work 

Current work in the area of SHs largely focuses on the bottom-up approach. While the bottom-up 

approach follows a general process involving a number of key research areas, central to the approach 

is the process of activity recognition. The general ‘bottom-up’ approach is illustrated in Figure 1. 

 

 
 

Figure 1 The ‘bottom-up’ approach for providing activity recognition within SHs. 

 

Activity recognition processes are generally implemented using 2 main approaches: knowledge driven 

and data driven and are outline in the following Sections.  

 

2.1 Data driven approaches 

 

Data driven approaches use statistical and probabilistic methods to learn activity models from data 

sets in a supervised or unsupervised manner. In these approaches data sets are a compilation of 

sensor activations that have been generated from a SH. These data sets are then used to train 



activity models which map the relationship between events and activities. Activity models which have 

been learnt are then used to perform future recognition of the events recorded within the SH. The 

learning mechanisms are usually based on two general approaches, namely, generative and 

discriminative depending on the modelling strategy employed. 

 

Generative approaches, such as those used in [7]–[12], attempt to produce a description of 

occurrences in a data set by fully mapping the relationship of sensor events and activities. These 

mappings identify the most likely activities that would occur given a set of observations. This 

classification of observations from a data set is achieved using probabilistic classification techniques 

such as a Hidden Markov Model or naïve Bayes classifiers. Generative approaches suffer from the 

requirement of a sufficient amount of data being available to produce the complete set of probabilistic 

representations in order to provide good functionality. 

 

Discriminative approaches, such as those used in [13]–[18], can produce results using a less 

exhaustive data set compared to generative approaches. These approaches focus on matching input 

states (sensor data) to activity labels (classification). This approach may use techniques such as 

Nearest Neighbour modelling and artificial neural networks.  

 

The general advantages of data driven approaches are that they allow the modelling of uncertainty 

and temporal parameters. Their disadvantages include the need to have a suitably large data set to 

learn from. Additionally, the reusability of these activity models is limited to the environment and 

scenarios that have produced the data set. 

 

2.2 Knowledge driven approaches 

 

Knowledge driven approaches to activity recognition use domain knowledge and a priori heuristics as 

the basis to create activity models. There are many general approaches used to realise knowledge 

driven approaches including mining, logical and ontological approaches, these are covered in this 

section. 

 

Mining based approaches, such as those in [19]–[21], create activity models by mining 

representations of activities from publically available information. This approach mines instructive 

resources on the World Wide Web, such as how-to guides, to determine steps and objects required to 

achieve the task described. Similar to data-driven approaches this approach uses statistical and 

probabilistic activity modelling to produce representations of these activities [19]–[21]. 

 

Logical based approaches, such as those in [22], [23], encode representations of ADLs into logical 

structures using knowledge representation formalisms. These logical structures are combined with 

knowledge based inference to support activity recognition. Across the various logical approaches the 

knowledge formalisms used for activity modelling and recognition may vary, however, the overall 

process is common and is described as follows. Domain knowledge is gathered to define activities 

and their performance. Knowledge modelling approaches and formalisms are subsequently used to 

create logical representations of the activities, e.g. encoding plans into a lattice structure [23]. 

Reasoning mechanisms are applied to map changes in world state with a goal of determining what, if 

any, activities are occurring. Sensor and activity ontologies have been used in [24]–[29] as the basis 

for knowledge driven activity recognition and AAL applications. Ontological modelling [30], [31] allows 

explicit representation of a domain concept. This is achieved by structuring elements into a hierarchy 

of concepts and classes. These classes and concepts can have properties, relationships and 

restrictions. 

 

The flexibility of ontologies has been leveraged to allow greater reuse of activity representations [24]. 

This particular implementation overcomes the flexibility issues that traditional logical approaches have 



encountered from their use of rigid activity representations. In this approach, common activity 

representations are used to provide generic representation of ADLs. On performance of an activity by 

an inhabitant, a relevant common representation is used to produce a personalised representation of 

a specific ADL. 

 

Mining based approaches have an advantage over data driven approaches in that they don’t require 

large scale datasets. Nevertheless, this approach uses learning techniques and still has the 

disadvantages associated with data driven approaches. These include the issues affecting the 

reusability and flexibility of the activity representations that were previously learned. 

 

Logic-based approaches do not require the production of a data set to provide training for the activity 

recognition mechanisms. This frees them from exclusive use with the environment and scenario that 

produced the data set [3]–[5], [24], [32], [33]. Additionally, this approach has clear operation as the 

mechanisms of activity recognition and encodings of ADL sets are explicitly defined. These 

approaches do have some negative aspects namely the difficulty representing uncertainty and the 

relatively rigid representations of ADL sets providing limited personalisation. 

 

Ontological approaches add to the benefits of logical approaches through the addition of flexible 

models and allowing greater reusability inherent to ontological structures. Disadvantages include 

weakness in handling uncertainty and modelling, as with other current logical approaches. 

 

A plethora of work relating to activity recognition and SHs currently exists with existing literature 

reviews [3]–[6], [32], [34], [35] providing further coverage of a large number of these works. 

 

2.3 Goal driven approaches to SHs 

 

In order to realise a goal driven approach to SHs, inhabitant's goals need to be suitably modelled for 

use by an assistive system. Goal modelling has previously been a focus in areas such as Intelligent 

Agents (IAs) [36], [37] and requirements analysis for software development [38], [39]. 

Initial work on formal goal modelling stemmed from research in goal oriented requirements 

engineering. This is a method of developing software requirements by examination of the goals and 

expectations of the product to be produced [40], [41]. Within the domain of goal oriented requirements 

engineering there are a number of approaches that exist such as i* [42], KAOS [43] and UML use 

case diagrams [44]. These initial approaches to goal modelling informed studies modelling goals 

within IAs 

IAs are software entities which perceive their environments, plan and act towards achieving their 

goals [45]. In order to achieve these goals IAs can work in isolation or may cooperate with other 

entities which may be other IAs or humans.  

IAs can exhibit a number of characteristics which vary depending on the goal of each specific 

implementation [45]. Such variations produce different goal models and representations [36], [37], 

[45], [46]. Of these approaches, IAs, which are based on the belief, desires and intention (BDI) [46] 

paradigm, have been based on human cognitive model and so provide a suitable basis for modelling 

the goals of a SH inhabitant. 

IAs have been use previously to provide the basis for AAL applications [23], [32], [35], [47]–[52] but 

have not previously been used to model the goals of an inhabitant. These existing applications 

instead use IAs to implement traditional activity recognition based SH using one of two approaches as 

described below.  

One approach models an entire SH as a single agent incorporating all the facilities needed to gather 

information, provide a decision making process and interface with hardware to perceive and affect the 



environment. For example, Bouchard et al. [37] used a single intelligent agent to create a SH to offer 

assistance to inhabitants. The agent operated within a SH which was equipped with location 

mechanisms, smart tags, sensors and identification systems. Signals from perception mechanisms 

are then used by a Low-level Activity Recognition (LAR) agent. The LAR transforms the low-level 

inputs into actions to be used by other software systems. A High-level Recognition Service (HRS) 

interprets the occupant behaviour to provide assistance to an inhabitant.  

The alternative approach is to model SH systems as a set of complimentary and cooperative agents 

which are each specialised to deal with component tasks of the system. In one example, Roy et al. 

[52] used five agents to provide assistance to inhabitants with Alzheimer’s disease. This system used 

a range of sensors and location systems to track interaction with objects in an environment. This 

sensor data was combined with an event manager and probabilistic model to recognise inhabitant 

actions and behaviour to provide assistance when required. These agents were each assigned tasks 

which were to; interpret sensor information, infer environmental context of action, recognise activity 

(using traditional approaches), hypothesise about inhabitant behaviour and offer assistance through 

actuators.  

Traditionally goals in BDI IAs have been modelled implicitly, representing only actions required to 

achieve a goal. Recent works have added an explicit representation of a goal's objective to allow 

more flexible deliberation on goal pursuit [36], [37]. 

In [37] goals are modelled using two aspects: procedural and declarative. Declarative aspects are 

explicit goal statements, for example Make coffee. Procedural aspects are a stepwise instruction of 

activities which are engaged by an agent for example (open cupboard) -> (get cup). Procedural 

aspects (action plans) can be combined with declarative aspects to allow advanced reasoning [46]. 

This combination provides a separation of goal representation and actions allowing deliberation on 

action plans to achieve a goal, as such this combination is needed to represent inhabitant goals. 

Current goal models implicitly provide motivation for a software agent but are not suited for explicitly 

representing goals of a SH inhabitant. To model the goals of SH inhabitants, the goal modelling 

approach presented in this paper follows the work of Pokahr et al. [36] to model declarative and 

procedural aspects of goals that are pursued by SH inhabitants.  

3 Goal driven top-down approach to assistive living 

In order to realise a goal driven approach to assistive living, a number of aspects need to be 

considered. Firstly an overall architecture must be devised that clarifies the focus of goals and 

complementary components within an assistive living platform. The proposed architecture for this 

work is presented in Section 3.1. Inhabitant goals must be conceptualised and modelled in order to 

produce a suitable data structure. This data structure will then be used to inform the production of 

other components of the overall system in further works. This goal conceptualisation and modelling is 

presented in section 3.2 

 

3.1 A generic architecture for goal driven top-down assistive living 

 

A novel goal driven and top-down approach to assistive living within SHs is proposed, which is 

illustrated in Figure 2. The architecture of the approach consists of a number of components, namely 

a goal repository, a goal recognition component, a specific goal generation mechanism, an activity 

planning component and an assistance provisioning component.  

 

A goal repository is used to store goals, which have been defined by domain knowledge, in an 

expressive manner. The goal recognition component [53] interprets sensor activations within the SH 

to recognise which goal in the repository is most likely being pursued by the SH inhabitant. 



Recognised goals are then passed to the specific goal generation process to be deliberated on and, if 

required, nominate for assistance. Activity planning determines an action plan to be performed to 

achieve a nominated goal. An assistive provisioning component uses such action plans to provide 

stepwise assistance to an inhabitant, e.g. an audio instruction. In order to realise this goal driven 

paradigm an explicit and expressive goal model is required which is the focus of the remainder of this 

paper. 

 

 
 

Figure 2 The proposed generic approach to a goal driven assistive solution. 

3.2 Goal characterisation and conceptual modelling 

ADLs are tasks related to daily living, such as, preparing drinks, preparing a meal and grooming. An 

ADL is usually composed of a sequence of sub-actions. For example, preparing a cup of tea involves 

fetching the teapot, a cup, hot water, milk and sugar. 

 

In the presented goal driven top-down approach to assistive living within SHs, goals represent the 

inhabitant’s intention and are realised by performing actions, similar to the realisation of ADLs. 

Nevertheless, goals are a more abstract representation of activity and so a goal can range from 

representing many ADLs, one ADL or a simple subset of an activity required to partly achieve an ADL. 

For example a goal of GetCup may be incorporated into a MakeTea goal which in turn could be one 

of multiple goals involved with a DailyNourishment goal. Based on how an ADL is performed we can 

characterise inhabitant’s goals in terms of the following dimensions: types, activation conditions and 

state. 

 

ADLs have different characteristics affecting their recurrence [54], these need to be considered when 

creating generic types of inhabitant goals. A subset of ADLs achieve something with no set 

recurrence characteristics, an example of such an IADL is making a cup of tea. Others have set 

recurrence conditions.  

 

This realisation allows us to characterise inhabitant goals in two categories, namely Achieve goals 

and Maintain goals. Achieve goals are pursued by inhabitants and are goals that have no set 

recurrence conditions, e.g. making a cup of coffee. Maintain goals represent conditions that an 

inhabitant must maintain, for example monitoring and controlling blood pressure. 

 

During the performance of an ADL different stages of its completion are encountered. These stages 

are mapped to the lifecycle of a goal through activation conditions. As such, Activation conditions 

make it possible to model how inhabitants adopt, manage and pursue goals as their attitude to a goal 

is reflected by its stage in the overall process lifecycle. Examples of these are presented in Table 1. 

Both goal types have specific conditions to uniquely cater for their use cases. 



The stage of a goal lifecycle is determined by which activation conditions have been encountered. For 

example, a goal is adopted when its precondition becomes true; when it is being pursued by an 

inhabitant.  

Adopted goals can be in one of three states, as reflected by the activation conditions which are 

encountered: active, suspended or assist. An active state represents that the goal is actively pursued 

by an inhabitant; this is the initial state of an adopted goal. Suspended state represents that goals are 

not actively being pursued and Assist state represents the condition that goals are in need of 

assistance.  

Achieve goals have an additional achievement condition to determine if a goal has been a success. 

Maintain goals add both an additional maintain state and a regular check for a trigger condition. In 

maintain goals, the trigger condition is used to determine if goal maintenance should occur; at this 

point the goal is in the maintain state. When a goal is in a maintain state the assist condition is eligible 

and will determine if assistance would be offered. Unlike Achieve goals, Maintain goals do not reach 

an achieved state; however, they remain active when their precondition is valid. The lifecycle of an 

Achieve goal is presented in Figure 3 and the lifecycle of a maintain goal is presented in Figure 4. In 

the overall goal-driven approach to a SH these lifecycles are leveraged by the goal recognition and 

specific goal generation components.  

Using this goal representation and lifecycle it becomes possible to offer assistance for an inhabitant 

when necessary. This assistance would be realised by the use of associated actions plans. These 

plans are used to determine the current state of goal progress and guide an inhabitant towards goal 

completion.  

 

Figure 3 The lifecycle of an achieve goal. 

 

 

Figure 4 The lifecycle of a maintain goal. 



4 Ontological goal modelling 

Ontological modelling [30] allows explicit representation of knowledge by structuring it into a hierarchy 

of concepts and classes which have properties, relationships and restrictions. Ontologies use data 

properties and object properties to describe a concept. Data properties model the attributes of a 

concept such as a goal name using primitive data types, e.g. a string. Object properties model 

interrelationships between concepts, e.g. a goal can be achieved by an action plan, thus an object 

property AchievedBy can link a Goal concept with an ActionPlan concept.  

 

Ontologies have been previously used in [24] to overcome the limitations of knowledge driven activity 

recognition. Notably the use of ontologies allowed flexibility in modelling user activities by introducing 

a method to model variation in user activities by providing a base representation of common ADLs 

that can be used as the basis for personalisation.  

 

In this goal driven approach, ontologies represent inhabitant goals and so provide the basis for the 

goal repository component. 

4.1 Ontological representation of inhabitant goals 

The goals characterised in Section 3.2 have been conceptualised and encoded within an ontology by 

using the Protégé ontology engineering tool [55]. Goals have two aspects to be represented; 

declarative and procedural. The properties of these two aspects need to be considered when 

modelling inhabitant goals in order to encode them in the ontology. 

 

Declarative aspects represent a meta-level representation of a goal; in essence this represents a high 

level summary of the goal. Providing declarative aspects allows expressive representation of a goal 

and provides an avenue for flexible deliberation of inhabitant goals. Table 1 presents the properties of 

the declarative aspect of inhabitant goals. 

Table 1. The properties of declarative aspects of a goal. 

Term Description Example 

Base goal 

Name The name of the Goal. “MakeCoffee”  

Description A description of the Goal (optional). “An inhabitant goal for making coffee.” 

Precondition A property showing when a goal is likely 

to be considered by an inhabitant and 

so will be deliberated on. 

The representation that the goal 

recognition has determined an inhabitant 

is wishing to make coffee; 

(Intent.IdentifiedGoal == MakeCoffee && 

Intent.IdentifiedGoal == KichenGoal). 

SuspendCondition This represents conditions where a goal 

is considered to be suspended. 

A representation showing an inhabitant 

is pursuing an incompatible goal which 

suspends pursuit of this one. An 

example of such is, an inhabitant 

pursuing any goal which inherits a core 

bathroom activity goal (which is inherited 

by all bathroom goals); 

Intent.IdentifiedGoal == BathroomGoal. 

AssistCondition This represents a condition where a 

goal is in need of assistance. 

Goal progression is occurring in a 

confused manner; 

Intent.Sys.UnknownGoal == True. 

OperationalState The current state of the goal. Typically 

this will be 1 of 4 eligible states; 

 “Active”  



[“Inactive” | “Active” | “Assist”| 

“Suspended”].  

PreviousEventTimesta

mp 

Time stamp of a previous goal action as 

represented by Unix time.  

511582260 

Achieve Goal  

AchievementCondition This condition under which a goal is 

considered to be achieved. 

All the actions to complete the goal have 

been performed; Intent.IdentifiedGoal == 

MakeCoffee && 

Intent.IdentifiedGoal.hasCompleteAction

Plan(). 

Maintain Goal  

TargetCondition The target condition to be maintained 

by the goal. 

An ambient temperature of 19
o 
Celcius; 

Home.Environment.AmbientTemp == 

19C. 

TriggerCondition The condition specifying when the 

target maintains condition should be 

pursued. 

Ambient temperature is not below 18
o
 or 

over 20
o
Celsius; 18C> 

Home.Environment.AmbientTemp < 

20C. 

MaintenanceCheckFreq

uency 

The frequency which the maintain goal 

is checked (in seconds). 

300 (s) 

Procedural aspects of goals, also known as action plans, need to be considered. These procedural 

aspects provide a representation of steps of how to complete a goal. The properties of this aspect are 

presented in Table 2.  

Table 2.The properties of an action plan and atomic actions. 

Term Description Example 

Action Plan 

Name The name of the Action plan. “MakeCoffee_Latte”  

Description The description of the plan 

(optional). 

“Making a latte with an espresso machine” 

Atomic Action 

Name The name of the atomic action “Place coffee in hopper” 

Precondition A precondition needed for this 

action to be eligible. This will 

generally be the action status of 

the effect of an atomic action. At 

times where there is no 

precondition required this can be 

left empty. 

this.CoffeeHopperCleared.ActionStatus == True. 

Effect The effect when an atomic action 

is completed. 

CoffeeInHopper 

Action status The status of this particular 

action, showing if it has been 

completed or not; typically this is 

True or False. 

True 

Two graphical representations of this ontology are presented below. Figure 5 presents the ontology 

as a hierarchy of concepts whilst Figure 6 presents the classes and properties of the ontology as 

depicted in the Protégé ontology modelling tool. 



In the presented ontology, the general class of a Goal has a hasGoalprofile object property linking to 

a GoalProfile. The GoalProfile entity contains all the common properties for a base goal type. The 

goal class contains two sub classes to cater for the needs of achieve and maintain goal types. These 

sub classes contain individual data properties for their goal types. The goal concept is linked by a 

hasActionPlan object property to the ActionPlan concept. The ActionPlan in turn has a hasAction 

object link which is used to link to the component AtomicAction concept.  

The use of this hasActionPlan object property allows a goal to have multiple action plans which can 

be followed to complete the goal. For example, the MakeCoffee goal presented in Table 1 has one 

associated action plan as shown in Table 2. The action plan shown in Table 2 is a representation of 

making a latte coffee with an espresso maker. Alternative coffee preferences and production methods 

can be catered for by linking their differing ActionPlan concepts to this goal by using the 

hasActionPlan concept. 

In order to flexibly model complex user goals, goal inheritance should be catered for. Goal inheritance 

provides a mechanism for user goals to incorporate properties from other goals thus reducing the 

overhead required to model inhabitant goals. This inheritance is catered for by the inheritsGoal object 

property. The flexibility offered by goal inheritance is presented in Section 4.2. 

 

Figure 5 The classes, object properties and data properties of the proposed goal ontology. 



 

Figure 6 The classes (a), object properties (b) and data properties (c) of the goal ontology. (As shown in the 

protégé ontology engineering tool.) 

4.2 Goal inheritance 

Inhabitant goals can share a number of common tasks or contexts that can be efficiently modelled by 

using goal inheritance. Goal inheritance allows non-identifying and non-instance properties of goals, 

such as preconditions and action plans, to be incorporated into other goals. Identifying properties are 

those such as a goal’s name or its description, instance properties are those such as 

OperationalState and PreviousEventTimestamp. 

For example, a number of goals could be pursued in a kitchen context which may have common 

preconditions and actions. In order to reduce the effort required to model these goals, a base kitchen 

goal could be specified which these goals can inherit using the inheritsGoal object property. This base 

kitchen goal would contain preconditions to represent goals that would take place in a kitchen 

environment and may not necessarily have an associated action plan.  

A more complex scenario showing inheritance is depicted in Figure 7. In this scenario, the 3 top level 

beverage goals (Black Coffee, White Coffee and Milkshake) share common elements (e.g. conditions) 

and actions. Common elements and actions include obtaining a Mug or Cup for the beverage, boiling 

and pouring water into a vessel and adding milk to the Mug or Cup. These common preconditions and 

actions are inherited by these 3 top level goals from the Mug/Cup goal, Hot Drink Goal and Milky 

Drink Goal. 



 

Figure 7 The use of goal inheritance to model a number of goals which may be pursued in a kitchen 

environment. 

5 Use scenarios for assistive living  

In the following Section we use the EU AAL funded PIA Project
1
 as the basis of a scenario to illustrate 

the suitability of the developed goal model in a top-down, goal-driven SH setting. PIA aims to provide 

a system capable of assisting SH inhabitants by reminding them of the steps required to perform an 

ADL. PIA provides assistance by affixing NFC
2
 tags to items associated with ADLs, for example, tags 

attached to a medication container or coffee maker. Caregivers record relevant instructional videos, 

upload them to the PIA system and associate them with these tags. Inhabitants use devices such as 

smartphones to interact with these tags. On interaction with a tag the device reads identifiers and 

references an associated ADL in a database to obtain and display video clips to illustrate to the user 

how to perform the task. The interface of the PIA application is shown in Figure 8. Further information 

about the PIA project is available in [56]. 

 

                                                      
1
 PIA AAL Funded Research Project available at: http://www.pia-project.org/ 

2
 Near Field Communication – A short range contactless communication technology 



       
(a)                                         (b)                                                           (c) 

 

Figure 8 Screen shots of the menu (a), video recording (b) and tag linking (c) interface of the implemented PIA app. 

In this case study, the PIA solution is extended by employing the top-down approach to create a more 

capable system with less inhabitant interaction and awareness. 

 

In this scenario
3
, a number of inhabitant goals are modelled and stored in the goal driven assistive 

system. These inhabitant goals are stored within the goal ontology allowing reuse, the ability to 

extend goals and use of semantic technologies to provide scalable operation. These goals involved 

include those shown in the hierarchy presented in Figure 7, in addition to a BrushTeeth achieve goal 

and inherited BathroomActivity and KitchenActivity goals.  

 

A goal recognition component monitors sensor activity, in conjunction with the activation conditions 

present in each goal, to determine the goal most likely pursued by an inhabitant. The specific 

approach used by this goal recognition mechanism can vary [53] and is beyond the scope of this 

scenario.  

  

During the course of a day, the inhabitant enters a kitchen environment. This is a precondition for the 

KitchenActivity goal which is inherited as a number of goals including the Mug/Cup goal. This 

KitchenActivity goal has a suspend condition which factors in the inhabitant pursing goals which 

inherit other context based goals, such as a BathroomActivity goal or a BedroomActivity goal. At this 

stage all goals which inherit the KitchenActivity goal are considered as being potentially pursued by 

the goal recognition mechanism. The inhabitant acts further and engages in reaching for a mug or 

cup; this leads the goal recognition mechanism to add weight to the probability that the inhabitant’s 

goal involves the Mug/Cup goal or one of the many goals which inherit it. Further actions are 

performed by the inhabitant, indicating goals based on the Hot Drink goal are most likely to be 

pursued by the inhabitant.  

 

At this point, the inhabitant may become confused and not pursue their goal. The Hot Drink goal 

incorporates an assist condition that will trigger if the inhabitant has not moved towards the goal within 

a reasonable timeframe. When this inactivity is shown the assist stage of the lifecycle is encountered 

and assistance is rendered. Using action plans associated with the goal, the assistive system 

determines the atomic actions that have been enacted and constructs some illustrative guidance that 

                                                      
3
 This use scenario assumes a fully implemented goal driven assistive system that uses a small number of contact sensors 

affixed to objects within a residence and has a method of providing illustrative guidance based on video.  

 



will show the inhabitant the remaining steps required to complete the task.  To provide this instruction, 

the video repository of the PIA project can be used in a process of dynamically matching appropriate 

video sequences or potentially producing an appropriate instructional video from multiple clips. This 

assistance can then be delivered to multiple screens within the inhabitant’s environment, including 

personal smart devices (e.g. a tablet or mobile phone) and smart TVs. 

 

Once reminded how to achieve the goal the inhabitant continues to act towards the next inherited goal 

which is a Coffee goal. This goal has an assist condition which also reflects that the inhabitant has not 

acted towards their goal within a reasonable time; this condition overrides the assist condition of the 

Hot Drink goal. 

 

At this stage the inhabitant wishes to brush their teeth and moves to the bathroom to engage in the 

BrushTeeth goal which inherits the BathroomActivity. Although the inhabitant is not acting towards the 

Coffee goal, this deviation does not contribute towards the assist condition to be encountered due to 

the suspend condition factoring in pursuit of the BathroomActivity goal. Once the inhabitant returns to 

the kitchen the Coffee goal is no longer suspended and may be used to provide assistance if the 

assist condition is encountered. In this particular case the inhabitant successfully pursues the 

BlackCoffee goal and so encounters its AchieveCondition which retires the goal for consideration by 

the goal recognition mechanism. 

 

This scenario extends the PIA solution by leveraging its video repository and infrastructure while 

changing its paradigm from that of an on-demand delivery mechanism for instructive guidance to that 

of a goal driven assistive system. This paradigm change enables the PIA project to provide 

automated assistance instead of requiring an inhabitant to have the mental capacity to use the 

manual on-demand solution.  

 

6 Conclusion 

This paper introduced a top-down, goal driven approach to realising a SH in order to address the 

shortcomings of the current widespread sensor-focused paradigm.  

 

We have proposed an architecture which can be used to realise this goal driven approach. In the first 

step towards realising this architecture, we have characterised and developed a conceptual model for 

the goals of SH inhabitants. This model has been represented in an ontology which has been 

described. To illustrate the suitability of the developed ontological goal model for this approach and 

general goal driven approach to assistive living, we presented a use scenario extended from the PIA 

project to show the use of such a system in assistive living.  

 

This approach conceptually shows a novel method of producing an assistive living system. While 

testing and evaluation await further implementation of this system, the proposed approach and 

underlying mechanisms have never been used to produce such an assistive system. 

 

Future work will produce and integrate all components required for this approach. Once the overall 

system is produced, the performance and suitability of such an approach will be evaluated. During 

evaluation, the suitability of goal modelling, the capability of goal recognition and the flexibility of 

illustrative guidance will be considered. 
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