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ABSTRACT 

R. MARK RYLATT INVESTIGATIONS INTO CONTROLLERS 
FOR ADAPTIVE AUTONOMOUS AGENTS BASED ON 

ARTIFICIAL NEURAL NETWORKS (2001). 

This thesis reports the development and study of novel architectures for the simulation 
of adaptive behaviour based on artificial neural networks. There are two distinct 
levels of enquiry. At the primary level, the initial aim was to design and implement a 
unified architecture integrating sensorimotor learning and overall control. This was 
intended to overcome shortcomings of typical behaviour-based approaches in reactive 
control settings. It was achieved in two stages. Initially, feedforward neural networks 
were used at the sensorimotor level of a modular architecture and overall control was 
provided by an algorithm. The algorithm was then replaced by a recurrent neural 
network. For training, a form of reinforcement learning was used. This posed an 
intriguing composite of the well-known action selection and credit assignment 
problems. The solution was demonstrated in two sets of simulation studies involving 
variants of each architecture. These studies also showed: firstly that the expected 
advantages over the standard behaviour-based approach were realised, and secondly 
that the new integrated architecture preserved these advantages, with the added value 
of a unified control approach. The secondary level of enquiry addressed the more 
foundational question of whether the choice of processing mechanism is critical if the 
simulation of adaptive behaviour is to progress much beyond the reactive stage in 
more than a trivial sense. It proceeded by way of a critique of the standard behaviour- 
based approach to make a positive assessment of the potential for recurrent neural 
networks to fill such a role. The findings were used to inform further investigations at 
the primary level of enquiry. These were based on a framework for the simulation of 
delayed response learning using supervised learning techniques. A further new 
architecture, based on a second-order recurrent neural network, was designed for this 
set of studies. It was then compared with existing architectures. Some interesting 
results are presented to indicate the appropriateness of the design and the potential of 
the approach, though limitations in the long run are not discounted. 

2 



LIST OF CONTENTS 
LIST OF FIGURES 7 
LIST OF TABLES 9 
ABBREVIATIONS 10 
AUTHOR DECLARATIONS I1 
ACKNOWLEDGEMENTS 12 

CHAPTER 1 
OUTLINE OF THE THESIS 13 

CHAPTER 2 
SHIFTING TOWARDS A NEW Al: COMPETING PARADIGMS 16 

2.1 INTRODUCTION 16 
2.2 OF GUNPOWDER AND GIANT BIRDS: FOUNDATIONAL PROBLEMS IN SYMBOLIC Al 17 
2.3 THE SIMULATION OF ADAPTIVE BEHAVIOUR 19 
2.4 BEHAVIOUR-BASED CONTROL 21 

2.4.1 Rationale: lessons from evolution 22 
2.4.2 Critique of cognitivism from the behaviour-based standpoint 25 
2.4.3 A methodological alternative 26 
2.4.4 The subsumption architecture 26 
2.4.5 Structural and procedural difficulties 28 
Handcrafted architectures. 29 
Designer bias 30 
Engineering solutions 31 
Action Selection 32 
2.5 ADAPTATION THROUGH LEARNING 32 
2.5.1 What to learn 33 
2.5.2 How to learn 35 
2.5.3 Tabula rasa learning 37 
2.6 SUMMARY 38 

CHAPTER 3 
ARTIFICIAL NEURAL NETWORKS: MECHANISMS AND 
INTERPRETATIONS 39 

3.1 INTRODUCTION 39 
3.2 FEEDFORWARD NEURAL NETWORKS 40 
3.3 RECURRENT NEURAL NETWORKS 43 
3.3.1 Mozer's taxonomy of recurrent neural networks 45 
Form 45 
Content 46 
Adaptability 47 
3.3.2 Recurrent Learning algorithms 47 
3.3.3 Performance issues 47 
3.4 INTERPRETATIONS 48 
3.5 SUMMARY 51 



CHAPTER 4 
ARTIFICIAL NEURAL NETWORKS IN THE SIMULATION OF 
ADAPTIVE BEHAVIOUR: A REVIEW 

4.1 INTRODUCTION 
4.2 SUPERVISED LEARNING APPROACHES 
4.3 SELF-ORGANISING APPROACHES 
4.4 REINFORCEMENT LEARNING APPROACHES 
4.5 COMPUTATIONAL NEUROETHOLOGY 
4.6 SUMMARY 

CHAPTER 5 
THE ROLE OF SIMULATION 

5.1 INTRODUCTION 
5.2 ARGUMENTS FOR AND AGAINST SIMULATION 
5.3 THE INTEGRATED MOBILE ROBOTIC AGENTS AND NEURAL NETWORK SIMULATOR. 
5.3.1 Mobile robotic agent simulation 
5.3.2 Neural network simulation 
5.3.3 Validation 
5.4 SUMMARY 

CHAPTER 6 
ARCHITECTURES AND STUDIES (I): LEARNING AT THE 
SENSORIMOTOR LEVEL 

6.1 INTRODUCTION 
6.2 THE CONTINUOUS REINFORCEMENT LAYERED LEARNING ARCHITECTURE 
6.2.1 Background and justification of approach 
6.2.2 Design and implementation 
Control algorithm 
CRBP learning algorithm 
Modular neural nets 
6.3 STUDIES OF SIMULATED ADAPTIVE BEHAVIOUR USING THE CRILL ARCHITECTURE 
6.3.1 Behaviours and related sensors 
Light-seeking 
Contact-based obstacle avoidance 
Range-based obstacle avoidance 
6.3.2 Simulated mobile robot environment 
6.3.3 Simulated robot details 
6.3.4 Module details 
6.3.5 Training details 
6.3.6 Results 
6.4 CONCLUDING OBSERVATIONS 
6.5 SUMMARY 

52 

52 
53 
60 
62 
68 
70 

72 

72 
72 
78 
78 
82 
83 
84 

85 

85 
86 
86 
88 
91 
93 
94 
96 
96 
96 
97 
97 
98 

100 
101 
102 
103 
105 
106 

4 



CHAPTER 7 
ARCHITECTURES AND STUDIES (II): UNIFYING 
COMPETENCE AND CONTROL LEARNING 107 

7.1 INTRODUCTION 107 
7.2 THE RECURRENT MIXTURE OF EXPERTS CONTROL ARCHITECTURE 107 

7.2.1 The mixture of experts approach in static problem domains 109 
7.2.2 Giving the mixture of experts architecture a short-term memory 111 
7.2.3 The adaptive autonomous agent problem revisited 115 
7.2.4 The new architecture in detail 121 
7.3 STUDIES OF SIMULATED ADAPTIVE BEHAVIOUR USING THE RME CONTROL 

ARCHITECTURE 126 

7.3.1 Behaviours and related sensors 127 
7.3.2 Simulated mobile robot environment 127 
7.3.3 Simulated robot details 128 
7.3.4 Module details 
7.3.5 Training details 131 
7.3.6 Results 132 
7.4 CONCLUDING OBSERVATIONS 134 

7.5 SUMMARY 135 

CHAPTER 8 
LOOKING BEYOND THE INSTANT: SUBSTRATES FOR 
TEMPORAL EMBEDDING 136 

8.1 INTRODUCTION 136 

8.2 REPRESENTATION AND THE SUBSUMPTION ARCHITECTURE 136 

8.2.1 Physical grounding 137 
8.2.2 The fallacy of observer idealism 140 
8.2.3 Structural coupling 142 
8.2.4 Augmented Finite State Machines 143 
8.3 EMBEDDING AUTONOMOUS AGENTS IN TIME 147 

8.3.1 Non-conceptual contents 147 
8.3.2 A starting point for a "developmental" approach 148 
8.3.3 Naive time 150 
8.4 SUMMARY 153 

CHAPTER 9 
ARCHITECTURES AND STUDIES (III): A FRAMEWORK 
FOR DELAYED-RESPONSE LEARNING 154 

9.1 INTRODUCTION 154 
9.2 Architectures for delayed-response learning 155 
9.2.1 An enhanced simple recurrent network 156 
9.2.2 The hybrid second order input state network 157 
9.3 SIMULATED ADAPTIVE BEHAVIOUR STUDIES USING ARCHITECTURES 
FOR DELAYED RESPONSE LEARNING 159 
9.3.1 Behaviours and related sensors 162 
9.3.2 Simulated mobile robot environment 163 
Study 1 164 
Study 2 164 
9.3.3 Simulated robot 165 
Study 1 166 



Study 2 166 
9.3.4 Neural network details 166 
Study 1 166 
Study 2 167 
9.3.5 Training and testing details 169 
Study 1 170 
Study 2 170 
9.3.6 Results 171 
Study 1 171 
Study 2 173 
9.4 CONCLUDING OBSERVATIONS 174 

9.5 SUMMARY 176 

CHAPTER 10 
CONCLUSION 177 

10.1 INTRODUCTION 1 77 

10.2 ACHIEVEMENTS AND LIMITATIONS 177 

10.3 SUMMARY 181 

CHAPTER 11 
RECOIIBMNDATIONS 182 

BIBLIOGRAPHY 184 



LIST OF FIGURES 

FIGURE 1: THE EVOLUTION OF "INTELLIGENCE" 22 

FIGURE 2: FUNCTIONAL DECOMPOSITION ACCORDING TO BROOKS (1986). 23 

FIGURE 3: BEHAVIOURAL DECOMPOSITION, RE-DRAWN FROM BROOKS (1986). 24 

FIGURE 4: AUGMENTED FINITE STATE MACHINE 27 

FIGURE 5: SIMPLE FEEDFORWARD NETWORK. 40 

FIGURE 6: ELMAN'S SIMPLE RECURRENT NETWORK (SRN). 43 

FIGURE 7: SIMPLE EXAMPLE OF A JORDAN NETWORK 44 

FIGURE 8: THE ADDAM ARCHITECTURE 54 

FIGURE 9: MEEDEN'S CONTROL ARCHITECTURE FOR CARBOT 66 

FIGURE 10: SCREEN SHOT OF IMRANNS MAIN USER INTERFACE. 80 

FIGURE 11: MODULAR REINFORCEMENT LEARNING ARCHITECTURE WITH 

ALGORITHMIC SELECTOR. 89 

FIGURE 12: CRBP ALGORITHM (ADAPTED FROM ACKLEY AND LITTMAN, 1990). 90 

FIGURE 13: THE CRILL CONTROL ALGORITHM. 95 

FIGURE 14: SCREEN SHOT OF ENVIRONMENT FOR CRILL-BASED SIMULATION OF 

ADAPTIVE BEHAVIOUR STUDIES 98 

FIGURE 15: ARRANGEMENT OF LIGHT SOURCES FOR THE CRILL BASED STUDIES 99 

FIGURE 16: MIXTURE OF EXPERTS ARCHITECTURE 110 

FIGURE 17: SCHEMATIC OF A RECURRENT MIXTURE OF EXPERTS ARCHITECTURE 115 

FIGURE 18: DETAILED DIAGRAM OF MERGE ARCHITECTURE (VERSION 1). 120 

FIGURE 19: CRBP ALGORITHM FOR MERGE ARCHITECTURE. 122 

FIGURE 20: DETAILED DIAGRAM OF MERGE ARCHITECTURE, VERSION 2.134 

FIGURE 21: EXAMPLE OF AN SUBSUMPTION AFSM MODULE 144 

FIGURE 22: HYBRID SECOND-ORDER ARCHITECTURE WITH INPUT STATE. 158 

FIGURE 23: SKETCH OF THE TIME-WARPED SEQUENCE LEARNING PROBLEM 161 

FIGURE 24: MIRROR IMAGE ENVIRONMENTS. 163 

FIGURE 25: INSTRUCTION STIMULI FROM SECOND STUDY. 164 

7 



FIGURE 26: IMRANNS SCREEN GRAB SHOWING SIMULATED ROBOT 

RECEIVING A GO-SIGNAL 165 

FIGURE 27: GRAPH SHOWING PERFORMANCE OF ENHANCED SRN 

ARCHITECTURE (STUDY 1). 170 

FIGURE 28: SEQUENCE OF TURNING MOVEMENTS (STUDY 1) 172 

FIGURE 29: RESULTS SUMMARISED FOR STUDY 2 174 



LIST OF TABLES 

TABLE 1: IMPLEMENTATION DETAILS OF CRILL ARCHITECTURE. 101 

TABLE 2: COMPARATIVE PERFORMANCE OF DIFFERENT 

INSTANTIATIONS OF THE CRILL CONTROL ARCHITECTURE. 103 

TABLE 3: DETAILS OF MERGE ARCHITECTURE (V. 1) 129 

TABLE 4: DETAILS OF THE MERGE ARCHITECURE (V. 2) 130 

TABLE 5: DETAILS OF THE MIXTURE OF EXPERTS ARCHITECTURE (WITH CRBP 

LEARNING ALGORITHM). 131 

TABLE 6: COMPARISON OF MERGE AND ME CONTROLLER INSTANTIATIONS 

WITH BEST CRILL INSTANTIATION 132 

TABLE 7: DETAILS OF ENHANCED SRN ARCHITECTURE (STUDY 1). 167 

TABLE 8: DETAILS OF HYBRID ARCHITECTURE (STUDY 2). 167 

TABLE 9: DETAILS OF SIMPLE DYNAMIC MEMORY ARCHITECTURE (STUDY 2) 168 

TABLE 10: DETAILS OF NARX NETWORK (STUDY 2). 168 

9 



PAGE 
MISSING 

IN 
ORIGINAL 



AUTHOR DECLARATIONS 

During the period of registered study in which this thesis was prepared, the author has 

not been registered for any other academic award or qualification. 

The material included in this thesis has not been submitted wholly or in part for any 

academic award or qualification other than for that for which it is now submitted. 

R. Mark Rylatt 

March, 2001. 

11 



ACKNOWLEDGEMENTS 

Thanks are due to my second supervisor Dr. Chris Czarnecki for giving me the chance 

to undertake these studies, for his continued faith throughout some difficult times and 

for his constant encouragement to publish my work; to Dr. Tom Routen for awakening 

my interest in the more philosophical implications of my work before his departure; to 

Professor Paul Luker for valuable supervisory meetings, general encouragement and 

understanding of personal problems; and to my wife Yvonne who despite serious 

health problems has continued to give me her full support; and to my thirteen year old 

son Matthew for his patience and offers of help! 

12 



CHAPTER 1 

OUTLINE OF THE THESIS 

The structure of this thesis reflects both the nature of the research field to which it 

belongs and the two distinct levels of enquiry in the doctoral studies on which it is 

based. As to the first of these observations, the simulation of adaptive behaviour 

(SAB, see section 2.3) is a relatively young and multidisciplinary field of research. It 

is therefore not surprising to encounter differing positions on foundational issues as 

well as disagreements about practical aims and approaches. Accordingly, it is the aim 

in the earlier chapters to prepare the reader with critically assessed background 

material and technical information on issues and mechanisms. The second observation 

concerns the contribution to knowledge offered by the thesis, mainly contained in the 

later chapters. On one level - and this may be considered the primary level - the thesis 

reports the development and study of control architectures for the simulation of 

adaptive behaviour. At another level, a position is established on a foundational issue 

associated with the chosen mechanisms. This constitutes an essential link between 

two clearly distinguishable phases at the primary level, a relationship reflected in the 

order of presentation. A summary of the chapter contents will make all this clear. 

Chapter 2 begins with a brief treatment of foundational problems in traditional Al and 

a critical examination of one of the solutions offered by behaviour-based robotics. 

Following this, the argument is begun that an approach based on artificial neural 

networks (ANNs) can at least begin to address some of these problems. The general 

importance of learning in simulating adaptive behaviour is discussed in order to 
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suggest why neural network-based approaches may have advantages over behaviour- 

based control architectures; different broad approaches and standpoints are identified 

and critiqued. Chapter 3 contains some background to the mechanisms chosen as the 

substrate for this investigation and a brief outline of the general ANN class of interest 

is given there. This is followed by a more detailed discussion of the less well-known 

subclass of recurrent neural networks that become the focus of the second half of the 

thesis. A review of research work concerning ANN control architectures and 

approaches is the subject of Chapter 4. It contains references to, and descriptions of, 

some quite specific antecedents to this research and highlights research issues for 

investigation. In Chapter 5 there is a discussion of aspects of the approach used for the 

studies of simulated adaptive behaviour that follow. In particular, an outline is 

provided of the integrated mobile robot and neural network simulator developed by 

the author to support them. 

The theme of how an architecture may be developed with a unified approach to 

learning and control begins properly in Chapter 6. It concerns a novel modular 

architecture based on ANNs and some architectural ideas from one of the antecedents 

discussed in Chapter 4. The approach represents a first step, as it combines 

reinforcement learning at the sensorimotor level with an overall control algorithm 

designed to address an intriguing composite of the action selection and credit 

assignment problem. Some studies are described which show that it does not share a 

well-known shortcoming of the subsumption architecture. Chapter 7 continues the 

theme of unifying control and learning in a modular architecture. Here attention is 

turned to finding an ANN-based solution to the problem of action selection and credit 

assignment at the control level. It contains an account of how a connectionist 
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architecture intended for static domains, and based on supervised teaming, can be 

adapted to the temporally extended domain of interest using, instead, reinforcement 

learning. Studies are presented that indicate how the new unified architecture can 

perform in a similar manner to its predecessor. 

Chapter 8 represents a step back from the studies undertaken thus far, taken in order 

to reflect more deeply on the foundational issues introduced in Chapter 2. It 

documents a point at which insights gained from the unfolding studies could support a 

more fundamental critique of the behaviour-based approach and an explanation of the 

need for an approach permitting seamless temporal processing such as recurrent 

neural networks. Chapter 9 concerns an attempt to show how these extended 

temporal aspects can begin to be explored. A new architecture is introduced, together 

with a framework for studying the phenomenon of delayed response learning. Some 

interesting results are presented based on the comparison of the new architecture with 

several other ANN-based approaches. 

The tenth chapter contains concise conclusions concerning the significance of the 

main research findings in relation to the position set forth, together with some 

reflections on the strengths and weaknesses of the approaches used. Finally, in the 

Chapter II the implications for future research are considered. 
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CHAPTER 2 

SHIFTING TOWARDS A NEW Al 

COMPETING PARADIGMS 

2.1 Introduction 

In a research field that is both inchoate and multidisciplinary, it is necessary to 

establish a position at the outset. Indeed, it is integral to an explanation of the purpose 

and scope of the research. In this case, it also serves to justify the choice of 

mechanism underlying the practical investigations and later provides a platform for 

foundational deliberations arising from them. Hence, this chapter deals firstly - and 

necessarily briefly - with relatively well-known, foundational problems in traditional 

Artificial Intelligence (AI). A more detailed critique of an alternative paradigm known 

as behaviour-based AI follows. The argument is then begun, per contra, that an 

approach based on artificial neural networks (ANNs) can at least begin to address 

some of the problems at the project level'. The general importance of learning for 

achieving adaptive behaviour is discussed and, in this respect, it is argued that neural 

network-based approaches have advantages over behaviour-based control 

architectures. Different broad approaches to learning are identified, particularly in 

relation to the point at which learning should start, and some alternatives to the one 

adopted here are critically assessed. 

In this thesis the term project-level refers to work in the field of AI with mainly practical aspirations 
as opposed to program-level or programmatic work that primarily aims to address foundational issues. 
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2.2 Of gunpowder and giant birds: foundational problems in 
symbolic Al 

The investigations in this thesis are primarily empirical in nature, but their provenance 

is to be found at the level of fundamental debate - the philosophy of Al - rather than 

of purely pragmatic concerns. Although these background issues emerge, and are to 

some extent developed, during later discussions of antecedents and means, a brief 

summary is provided in this section. Because space does not permit adequate 

discussion at this level, a metaphor is used in order to place the contribution of this 

thesis in the wider context. 

Recently, and perhaps more clearly than in previous accounts, Franklin (1995) has 

identified three principal areas of debate in what he sees as an emerging paradigm of 

mind, describing intelligence primarily in terms of control mechanisms. The first of 

these debates needs little introduction: it is the ultimate question of whether machines 

will ever be able to think in the way that humans do, the ultimate goal of 

programmatic AI as opposed to project-level Al. It would be presumptuous to suggest 

that the investigations described here will make any substantial contribution to this 

most fundamental debate. The massive AI research programme to date has failed to 

alter the extreme polarity of informed opinion on the issue (see, for example, 

Copeland, 1993 and Winograd and Flores, 1986, pro and contra). By analogy with 

some ancient ideas about space exploration, we have probably not arrived at the stage 
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of inventing gunpowder but, maybe we are beginning to reject the notion of flying 

into space using the wings of giant birds2. 

This rejection of the prevailing symbolic paradigm leads to Franklin's second area of 

debate, which concerns the choice of an appropriate model of mind3. The position in 

this thesis can be very broadly stated at this point by extending the space exploration 

metaphor. As feathers may not have properties entirely suited to flight through a 

vacuum, we must work towards the discovery of rocket propulsion (and hope that we 

are not sidetracked by ideas such as being launched from a cannon). In artificial 

neural networks (ANNs), we may have at our disposal at least a potential component 

of an equivalent to gunpowder. To this debate too, however, little will be added here: 

Justification for this very moderate stance can be found in respected sources such as 

(Smolensky, 1988) and the practical benefits of neural networks will be weighed in 

Chapter 3. 

To the third, and most recently joined of Franklin's debates the last phase of the work 

described in this thesis attempts to contribute. It is the foundational argument about 

representation. Representation is the reason why traditional Al is probably not going 

to get into space, the barrier to symbolic wings. After the next section, a discussion is 

begun of perhaps the best-known and most influential example of a non-connectionist 

approach that rejects traditional AI-style representation. In Chapter 8, it will be 

argued more precisely that this approach too can never lead to artificial creatures with 

human-level intelligence, originally claimed to be its ultimate goal (Brooks, 1991a). 

2 The means of getting to the moon suggested by Lucian of Samosata, an early Greek writer, in Icaro 
Menippus. 
3 No attempt is made in this thesis to explore the well known Mind-Body problem: Franklin's view is 
broadly that mind is process, the activity of the brain. 
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However, it was an approach giving hope to at least one leading movement in the 

philosophy of Al (section 8.2). That it may be viewed as "space propulsion's cannon" 

is explained and justified in the following sections. This is a prerequisite for the work 

described in the next three chapters, in which the advantages of the alternative ANN 

substrate as a control medium are investigated mainly empirically. 

2.3 The simulation of adaptive behaviour 

To facilitate understanding of terms and conventions, a brief introduction to the field 

is provided in this section. Deciding how to label one's research activity should be a 

trivial matter but as indicated earlier, the field is still in the process of cohering into a 

readily identifiable corpus. The simulation of adaptive behaviour (SAB) was adopted 

after some deliberation. The related field of artificial life (A-Life) offers too broad an 

alternative rubric because, as its name suggests, it admits research into the simulation 

of all forms of life. Behaviour-based robotics (sometimes behaviour-based AI) on the 

other hand has connotations that may be too restrictive - although there is no precise 

definition available, the term seems to be used quite commonly to exclude work based 

on neural networks. For example, in a recent authoritative survey of the field (Arkin, 

1998) contains a chapter on different types of behaviour-based architectures, but none 

of these is based on ANNS, even though a later chapter does discuss neural network 

learning. 

Recently, the Society for Simulation of Adaptive Behaviour has been formed, 

organising biennial international conferences referred to (semiofficially) as SABs. 
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Therefore, SAB has been adopted in this thesis as a convenient acronym representing 

an umbrella term with the right balance. Other alternatives are either unwieldy or 

carry connotations that make them inappropriate. For example Maes (1995), refers to 

adaptive autonomous agent research, behaviour-based AI and animat approach as 

synonyms for a new wave of AI that opposes the mainstream, symbolic Al whose 

deficiencies were outlined in the previous section. Even so, the terms "adaptive 

autonomous agent", sometimes abbreviated to "agent" are used for convenience in 

this thesis. According to Maes: 

An agent is a system that tries to fulfil a set of goals in a complex, dynamic 

environment. An agent is situated in the environment: It can sense the 

environment through its sensors and act upon its environment using its 

actuators. (Maes, 1995, p. 136) 

Maes argues that the general approach is appropriate for the class of problems that 

require a system autonomously to fulfil multiple goals in a dynamic, unpredictable 

environment, rather than just robotic forms of intelligence. This means those agents 

and their sensors, actuators and environments do not have to be physical: The field 

includes the study of cyberspace agents occupying purely virtual worlds, and 

computer simulations of physical agents and environments. The commonality of such 

systems is perhaps to be found in general aims, rather than in any specific shared 

organisation or architecture. Most significantly, they seek to avoid any human agency 

in the loop between perception and action. In this, they may most clearly be 

distinguished from the well-known class of traditional Al systems known as expert 
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systems4. They are further distinguishable from traditional Al systems, including 

those that aspire to a more general autonomous real-time operation (for example, 

planner-based robots), by their eschewal of symbolic world modelling. Thus, they 

hope to avoid many of the representational difficulties implied by that approach. The 

field is too young to have evolved any real measure of agreement on fundamental 

issues; indeed this thesis attempts to bridge some of the most worrying explanatory 

lacunae. 

2.4 Behaviour-based control 

In this section, the most influential alternative to symbolic AI and conventional 

connectionism is described and examined. Other behaviour-based approaches are 

discussed by Arkin (1998), including his own motor schema approach, but he 

concedes that it was the subsumption architecture (Brooks, 1987) that "changed the 

direction of autonomous robotics research". It seems clear that the alternatives have 

been less influential both as a practical, architectural basis for robotics or as a more 

general alternative AI approach. For example, although the motor schema 

architecture has been quite successful at the project level, its acceptance of traditional 

Al planning as a higher (deliberative) control level underlines its essentially 

pragmatic nature. Here, some of the project-level problems inherent in the 

subsumption approach are outlined, so that the relevance of solutions discussed later 

can be fully appreciated. In Chapter 8, in the light of insights gained during the 

4 Expert systems that function on-line in real-time, for example, in a process control loop are a slightly 
awkward exception but they can be regarded as a special case of dedicated embedded systems. 
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development of this thesis, it will be argued that it has programme-level problems at 

least as worrying as those now apparent in symbolic Al. 

2.4.1 Rationale: lessons from evolution 

Insects 

First fish & 
verebrates 

U 

bA 
Photosynt- 
hetic Plants 

Single-cell 
entities I 

Mammals 

Reptiles 

Evolutionary time 

Primates 

Expert 
knowledge 
etc. 

Writing 

Agriculture 

Man 

Great 
As 

Figure 1: The evolution of "intelligence" based on Brooks' ideas (1991a) in which no particular 
definition of intelligence was given. This is a chart for illustrative purposes only. 

The main rationale underlying the behaviour-based alternative to symbolic Al is 

summarised graphically in Figure 1, based on ideas expressed by Brooks (1991a), His 

argument was that, if time required for solving a problem is equated with its level of 

difficulty, then clearly Evolution found expert knowledge a relatively simple task to 
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Figure 2: Functional decomposition according to Brooks (1986). 

achieve, once the much harder sensorimotor problems had been solved. Accordingly 

(Brooks concluded), it follows that Al should itself initially address those 

sensorimotor problems instead of much higher-level abstractions, like planning, that 

had traditionally been its starting point. The idea is that, if the example of evolution 

can be followed, once these low-level problems are solved, all the rest should fall 

readily into place. At first sight, this seems a simplistic notion, and it will be part of 

this thesis to show that it remains so after deeper reflection. However, firstly, consider 

it at face value. 
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avoid objects 

Figure 3: Behavioural decomposition, re-drawn from Brooks (1986). 

Brooks (1990) set out the same long-term programme for this nouvelle AI as that of its 

traditional rival, symbolic Al - the achievement of human-like intelligence in an 

artificial agent. However, the implications of a re-focus on much more primitive 

abilities as the programmatic starting point are, of course, profound. Firstly, and most 

obviously, a bottom-up approach is implied. This is in contrast to traditional AI, and 

Brooks (1991a) made much of this distinction. He originally appears to have referred 

to the decomposition of problems into functional units (Figure 2) to characterise the 

standard planner-based control architecture for mobile robots (Brooks 1986). 

However, he later developed this into a critique of symbolic Al in general (Brooks, 

1991a). Essentially, it challenged the prevailing paradigm of cognitivism which 

models cognition / intelligence by reference to information processing concepts. 
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2.4.2 Critique of cognitivism from the behaviour-based 
standpoint 

The problems stemming from functional decomposition - and ultimately from 

cognitivism itself - can be viewed on at least two levels. At the lower level, there are 

practical consequences specifically for robotic forms of Al. In brief, the sequential 

processing of information, from sensory input through the various distinct stages to 

motor output, carries computational overheads that have to date seriously impaired the 

ability of such agents to perform in real time. At this level, the most serious, and (by 

some accounts) intractable, problem is the need to maintain consistency with the 

agent's changing perceptions of the world. This has to be done by continually 

updating the central world model (in the symbolic Al approach, usually a database of 

predicates). Of course, computational power seems to be ever increasing and it 

remains an open question whether the cognitivist view will ultimately be justified by 

this technological advance. Brooks (1991b) however suggests that the paradigm is 

more fundamentally flawed, implying that increased processing speed is not going to 

provide the answer. At another level, Brooks (1991 a) saw Al researchers in general as 

subject to a methodological solipsism. Based on the introspection of our own human 

mentality, intelligence has been broken down into components (roughly 

corresponding to the various distinct information-processing modules required for an 

artificial intelligence). At the same time, perception and motor skills have mostly been 

abstracted away. According to this view, assumptions underlying the work on the 

separate components are not forced to be realistic. Brooks concluded that this lack of 

realism results in the production of increasingly specialised and abstracted sub- 

components that will never fit together to form a complete intelligence capable of 

interacting directly with the world as we do. His alternative way is to force realism at 
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every step and to develop agents incrementally so that they are competent to interact 

with the world at each stage of their development. 

2.4.3 A methodological alternative 

Brooks' alternative approach was behavioural decomposition (Figure 3), also referred 

to by Brooks as decomposition by activity. It was originally proposed specifically as a 

mobile robot control architecture, but was later presented as the methodology for a 

more general nouvelle Al (Brooks, 1990). It is interesting to note that, although 

proposed as a bottom-up design approach, it is still decompositional, a point that does 

not appear to have been commented on by its originator. Clearly therefore, it is a 

bottom-up approach with significant top-down constraints. It will be part of this thesis 

to argue that the entailments of these constraints lead to a methodological solipsism of 

a different kind to that suffered by symbolic Al, but one just as fatal to their common 

programme. For the moment however, judgement will be suspended so that the 

architecture associated with this design approach can be discussed. 

2.4.4 The subsumption architecture 

The architecture that emerged from the new design philosophy was the subsumption 

architecture (Brooks, 1986). The key idea is that control layers, corresponding to the 

levels of competence in the behavioural decomposition, are built as "complete" 

control systems from the bottom up, the entailment of completeness being that each 
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Figure 4: Augmented Finite State Machine (re-drawn from Brooks, 1987) 

layer has its own sensorimotor control loop though the environment. Each layer is 

constructed from basic building blocks, described by Brooks as augmented finite state 

machines (AFSM). 

The issue of building blocks, or substrate, is fundamental to the critique in this thesis, 

but this will be developed later; for now, these AFSMs will be referred to simply as 

modules. Once the first layer achieves the specified level of competence - after 

extensive testing and debugging in the environment for which the whole system was 

intended - the second layer is developed and tested on top of the first. Subsequent 

layers are developed in the same way. The lower layers continue to run concurrently 

once the next layer has been added; they are, in a sense, unaware of the new layer. 

The term subsumption is appropriate to the design principle, because overall system 

behaviour results from control layers effectively including the behaviour of lower 

levels in their own behaviour. The mechanisms used to achieve this effect do not 
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involve replication of lower-level control structures in the higher levels; instead, they 

enable modules in the higher control layer to affect the data flow between modules in 

the lower control layer. The mechanisms are referred to as inhibition (effectively an 

incoming message is blocked for a fixed time-period) and suppression (an outgoing 

message is blocked, and may be replaced by an injection of data from the higher-level 

module). A subsumption architecture consisting of just two layers is shown in Figure 

4. A robot implemented in this way would exhibit the overall behaviour of wandering 

in a cluttered environment while avoiding obstacles. 

A series of robots, with control architectures built on these principles, demonstrated 

advantages over traditional control architectures and symbolic Al approaches, so that 

Brooks (1990) could claim: "we have the most reactive real-time robots around". 

Brooks went on to claim much wider significance for the new approach, and to set out 

further principles establishing a position essentially in opposition to the prevailing 

view of cognition as symbol manipulation. A critique of this nouvelle Al and the 

inadequacy of its foundational position on the issue of representation is developed in 

Chapter 8. However, for now, the project-level weakness of the approach will be the 

main concern as these were the original focus of the experimental work, and of the 

novel architectures described later. 

2.4.5 Structural and procedural difficulties 

In this last subsection of the discussion of behaviour-based control, attention is 

focused on mainly project-level concerns that have been raised by other researchers. 

Some of these are addressed either in the work described in Chapters 6 and 7 or in the 

examples of other ANN approaches surveyed in Chapter 4. 
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Firstly, it should be recognised that deliberation is no longer primarily a system 

function in the behaviour-based approach; instead, the designer has the responsibility 

to wire in the required mappings between conditions and actions. Global system 

behaviour, including any flexible responses that may be required in the face of 

unforeseen circumstances and complex behaviour that cannot be precisely engineered, 

is thus required to emerge from the interaction between layers. In order to ensure 

rationality, the designer needs to predict these interactions and at each level ensure 

that the new behaviour will integrate meaningfully with the whole system. Clearly, 

the demands made of the designer/programmer are very different to those made by 

more conventional programming tasks, and have implications for the viability of the 

approach beyond the pure research stage. These will be considered under the ensuing 

sub-heads. 

Handcrafted architectures. 

The subsumption architecture is representative of an approach to implementing 

autonomous agents often referred to as handcrafted. This cachet is intended to convey 

the labour-intensive nature of the process, along with the need for specialised 

programming skills and even a certain amount of mystique. Brooks himself did not 

dispel this by referring to the "Zen of robot programming" (Brooks, 1990). From the 

standpoint of traditional software engineering, this characterisation of the process, of 

course, is a source of disquiet. To allay such fears, it can be viewed as a transitional 

phase equivalent to the early programming days when mysterious machine code 

programs predominated. However, this kind of design and programming approach 

has other implications that make its role in SAB projects somewhat questionable. To 

make this objection clear, it may be helpful first to consider the functional 
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decomposition approach of symbolic AI from a slightly different angle. Brooks' 

objection was in terms of unjustified (given present knowledge) assumptions on the 

part of the designer. Another view is that by making the assumptions the designer is 

also culpable of introducing a strong bias into the way that the agent will interact with 

the world. 

Designer bias 

The design and programming process was briefly described in subsection 2.4.5. The 

important aspect of it for the present argument is that it takes place in "observer 

space". It is often described as a bottom-up approach but in fact, it is subject to 

significant, task-oriented top-down constraints. Essentially, a desired behaviour is 

identified and described qualitatively, for example "boundary-following". It is then 

broken down into observable discrete actions, in this case, for example, moving 

towards and away from the boundary, and aligning with the boundary, hence the term 

behavioural decomposition. The discrete actions are then implemented, essentially as 

reactive rules. The behaviour actually exhibited by the robot is often said to have 

"emerged" because there is no top-level rule that actually governs the observed 

overall behaviour, in this case following a boundary. However, it is probably 

legitimate to infer that the overall behaviour has been quite precisely engineered in 

the lengthy testing and debugging cycle that separates each layer of development in 

the subsumption methodology. Perhaps, at the lowest level of reflex behaviour, this is 

not a serious worry. However, the amount of "tweaking" that goes on, to ensure 

performance in a particular environment (as commented on by, for example, Fagg, 

Lottspeich and Beckey, 1994), surely guarantees severe generalisation and scaling 

problems. However, extrapolating from this to cognitive behaviour gives cause for 
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alarm. For example, Brooks' original hierarchy went as far as to specify a behavioural 

layer to `reason about objects' (Brooks, 1986). It is pertinent to ask what kind of 

observer space specification and decomposition (not to mention tweaking) could lead 

to the implementation of such a layer. At this point, project-level concerns open onto 

a gulf where foundational demons lurk. An attempt to confront these demons is 

reported in Chapter 8. 

Engineering solutions 

It has been explained how the domain ontology of the designer is smuggled into the 

control mechanism of subsumption-based agents and how this diminishes their appeal 

to those who wish to establish a new Al predicated on self-adaptivity. A particular 

practical consequence, observable in such agents, is the prevalence of rigidly task- 

oriented engineering solutions. A good example of this is the robot Herbert (see, for 

example, Brooks, 1990), whose purpose is to wander around until it finds a drink can 

and then collect it. The control loop through the world in this case depends on: 

0 arm movements being triggered when the robot's wheels stop rotating (i. e. 

arrived at a can location); 

the robot's direction of motion being decided according to the amount of 

separation between the fingers on its hand (i. e. "can in hand, so return home", 

or "no can in hand so continue looking"). 

While the ingenuity of such solutions is not in question, it is clear that there is little 

scope for generalisation and the problem of scaling is compounded with issues of 

complexity. It is legitimate to wonder how many encapsulated, precisely engineered 

31 



tasks can be bolted on and persuaded to work together. Indeed, Franklin (1995) 

comments that Herbert was a "one trick pony" and this may not be wide of the mark. 

Action Selection 

A related problem is that of deciding between alternative behaviours, that is action 

selection. In the subsumption architecture, multiple behaviours run in parallel (usually 

simulated) and potentially can be in control at any time. In the absence of any top- 

level arbiter, some scheme needs to be devised to enable a choice between actions 

competing to control the actuators on a given step. The typical subsumption solution 

is a rigid arbitration regime that imposes an order on the actions according to a scale 

of priorities appropriate in a given context, or a precedence hierarchy. These 

limitations bear on a number of issues. At this level of description it can be said that 

the deliberation that in symbolic Al systems takes place at run time (though as has 

been indicated, rarely in real-time) occurs instead at design time. It has been frozen 

into the system. Consequently, in situations that were not precisely foreseen by the 

designer, the robot could be trapped in cyclical behaviour patterns. They "keep 

activating the same actions even though they have proven not to result in any change 

of state" (Maes, 1995, p. 151). This is a problem specifically addressed in the initial 

experiments described in this thesis. 

2.5 Adaptation through learning 

In subsection 2.4.5, it was suggested why some of the problems faced by the 

behaviour-based approach arise. This was because much of the deliberation, which 

might be expected at run-time in a truly adaptive autonomous agent, actually occurs in 
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the design phase, in the mind of the designer. Metaphorically, such agents may adapt 

in this design space over a kind of evolutionary time span (as described in subsection 

2.4.1), but they are mostly incapable of individual learning, or self-adaptation. 

Undoubtedly, individual hard-wired behaviours can give impressive performance of 

encapsulated tasks, and the emergence of complex, seemingly intelligent swarm 

behaviour in which no learning takes place. Even so, it is now perhaps a 

commonplace to state the importance of learning for the development of individual 

cognitive abilities. Some attempts to confer learning on these systems have been 

made, for example, (Maes and Brooks, 1990). Their limited extent seems to reinforce 

the argument in Chapter 8 that the basic building blocks are at the wrong level of 

abstraction. Machine learning does not of course require a connectionist substrate. 

Nevertheless, the kind of learning that takes place in neural networks makes a 

connectionist framework a much likelier host for a developmental approach to 

machine intelligence than an arbitrary level of abstraction such as the AFSM. (At this 

point in the studies, this observation can be considered as a more-or-less intuitive one, 

but the theme is taken up again and developed much more intensively in Chapter 8). 

Many examples of specifically connectionist learning will be given in Chapter 4. 

Here, an overview of broad approaches to learning in the adaptive autonomous agent 

field is presented in order both to prefigure the discussion of examples and to set the 

approach developed here in context. 

2.5.1 What to learn 

The issue of what agents should learn is closely bound with the issue of 

representation, and hence with questions of grounding and substrate viability (see 

Chapter 8). This section attempts to justify in a more pragmatic way why the 
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particular approach to learning followed in the practical work in this research was 

chosen initially, reflecting again the chronological development of insights as the 

investigations proceeded. 

Therefore, the important question is: what should the agent or robot learn, or, putting 

it another way, where should learning start? From a practical perspective, it would 

seem that there is little to be gained by having an agent learn everything from a tabula 

rasa. If a set of competences or behaviours has been fully investigated and 

implemented, then learning should begin at a higher level, and its purpose should be 

to co-ordinate such multiple abilities already hard-wired (or pre-coded) at the lower 

level. Additionally, it has been found that learning complex behaviours from a tabula 

rasa is a hard problem. Therefore, learning this kind of control, sometimes termed 

control composition learning, is an alternative way for an agent to solve complex 

problems. However, it too smuggles in the designer's domain ontology. For example, 

the designer may comfortably assemble a range of controllers, each with a label for its 

actions, such as "aggression", "love" etc. Together, these may lead to a control 

solution for a problem requiring the interaction of these controls (see Araujo and 

Grupen, 1996). But it is not clear that a true bottom-up agent would analyse the 

problem in the way it has been carved up by the designer, or that the higher level 

solution is likely to be superior. In some ways, the approach is a "quick fix", because, 

again, it is notoriously hard to get bottom-up agents to learn complex behaviour. 

Even if it is accepted that certain low-level competences are now sufficiently 

understood - so that further baseline research is unnecessary (for example, Lemon 

and Nehmzow, 1998) - the important issue of granularity may have consequences for 

34 



the long-term developmental perspective. This relates to how representations are 

learned and structured, and how they may ultimately be manipulated by deliberative 

and reflective agents: in other words the grounding problem (see for example, 

Hamad, 1990). The surprising abundance, even ubiquity, of spatial metaphor in 

language (Lakoff and Johnson, 1980) is perhaps evidence of the route such grounding 

has taken in human development. Leave aside, for the moment, the vexed question of 

social context, and the debate over what should be learned over somatic time, and 

what acquired over evolutionary time. If, ultimately, symbol-level representations are 

to be grounded in sensorimotor interactions with the environment, it must be desirable 

that the representations of these interactions are learned from the bottom. Otherwise, 

their structure will always be opaque to the learning agent, preventing participation in 

the development of language-like structures. 

Superficially, this argument, for an appropriate level for grounding the learning of 

representations, may seem similar to the argument of Brooks (1990) based on the 

physical grounding hypothesis (PSH). The foundational inadequacy of the PSH is 

fully worked out in Chapter 8, where the representational fascicle is finally gathered 

up. 

2.5.2 How to learn 

The question of what to learn may also determine, to some extent, how it is learned, 

but it will be useful to consider this issue in relative isolation. The conventional broad 

categorisations of connectionist learning are used to demarcate approaches in Chapter 

4. Here, however, the intention is to examine the implications of an approach to 

learning that is particularly common in adaptive autonomous agent and related 
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research, and to contrast it with the approach followed in this thesis. Although both 

approaches can broadly be described as reinforcement learning, they have radical 

differences. 

The Q-learning approach (Watkins and Dayan, 1992) is an application of Sutton's 

(1988) Temporal Difference methods where parameter are adjusted using the 

difference between predicted and desired outputs. Most implementations of this 

technique rely on a formulation that tends to undermine the quest for realism in 

simulation and, when applied to real robots, to unrealistic control prescriptions. This 

kind of reinforcement learning depends on a discrete conception of state space, in 

which a finite number of separable states must be enumerable. Therefore, some way 

has to be found of quantifying both the environment faced by the agent and the 

actions that it performs. In simulations, this usually leads to the familiar "grid world" 

environments, where mobile agents move from tile to tile as on a chessboard. In 

experiments with real robots, it is common to find that control decisions are made at 

unrealistically long intervals, so that the robot may move quite a large distance 

between cycles. Such devices appear to have been necessary because the older 

formulations of Q-learning, at least, relied on a simple look-up table that had to be 

stored in memory. Thus, the enumerable set of state-action pairs, over which reward is 

estimated, needed to be kept manageably small. The limitations of this approach for 

ultimate scaling to real-world applications seem apparent. Even if neural networks 

are used to replace the look-up table approach, the technique still implies a separate 

net for each action, and a means of pre-processing sensory inputs to make state 

discrimination straightforward. Connectionist versions often resort to "high-level" 

sensors (that can not easily be replicated in hardware) to achieve this state 

36 



discrimination in simulation. For example, "sensors" may be dedicated to recognising 

a single feature in the environment, such as "food" or "a wall". It is apparent that they 

rely on the kind of "pre-symbolised" representation of inputs used in traditional neural 

network research, where, for instance a "1" in a string such as "00010000" may be 

designated "letter d". Another related problem with Q-learning approaches is the 

difficulty of getting them to generalise. This leads to the "flat policy" criticism (Maes, 

1995), although some recent work has appeared that claims generalisation on typical, 

highly specified toy problems using Q-learning in conjunction with function 

approximation (Sutton, 1996). 

2.5.3 Tabula rasa learning 

The course taken in the practical work underlying this thesis was essentially a bottom- 

up one that exploits learning from a tabula rasa. The rationale for this has been 

developed in accordance with the preceding discussion of alternative approaches. For 

practical reasons, it can be argued that a higher level of control must be the starting 

point for achieving complex behaviour. However, the belief that a SAB agent must 

rely on raw (i. e. relatively un-interpreted) sensory inputs, and ground its problem 

solving representations in them, seems justifiable from the programmatic perspective 

of Al. Accordingly, the simulations, described later, abide by that precondition, in the 

expectation that they will translate successfully to real robotic domains, and 

ultimately scale to useful autonomous task performance. The guiding principle for the 

choice of approach has been to minimise the intrusion of the designer's domain 

ontology into the perceptions, representations and responses of the agent. Thus, the 

agent is not allowed to have highly abstract sensors of the kind described in section 

2.5.2. Although the simulated sensors are only approximations of real sensors, the 
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intention is that the pre-processing of inputs should not amount to interpretations of 

the environment originating in the designer's domain. In this requirement, there is 

strong agreement with other proponents of a "new Al" or "radical connectionism" 

based on interactive neural networks. For example: 

"There should be sole use of sensori-motor interfaces, that is, inputs consisting 

of immediate sensory stimuli and outputs consisting of motor commands, instead 

of pre-digested representations"(Dorffner, 1997, p. 97). 

2.6 Summary 

Some foundational problems in Artificial Intelligence (AI) underlying the research 

were identified. Project-level solutions offered by the behaviour-based control 

approach were critically examined. The important role of learning in achieving truly 

adaptive behaviour in autonomous agents was discussed and different, broad 

approaches to learning were compared in order to justify the one followed in this 

research. The next chapter introduces the type of neural network mechanisms in 

which this learning can occur and begins a discussion of how it should be interpreted. 
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CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS 

MECHANISMS AND INTERPRETATIONS 

3.1 Introduction 

An overview of connectionism is desirable because the research field is 

multidisciplinary, but it will also provide a vehicle to carry forward the argument 

begun in section 2.5.3. So far, this points towards an Al programme predicated on 

building blocks that have the potential to give architectures greater run-time 

adaptivity, an inchoate position described in Rylatt, Czarnecki and Routen (1995). 

The need for an introduction will therefore be balanced by the requirement for a 

relatively succinct account in which to weave discursive threads to be picked up again 

later. 

There are numerous introductory accounts commencing from descriptions of axons 

and neurones (for example, Haykin, 1994; Fu, 1994). Instead, the overview of 

feedforward neural networks in section 3.2 is pitched at a higher level of abstraction, 

and the language tends towards that of the dynamical systems account of the 

processes involved. This account is seen as a bridge between the traditional 

connectionist programme, whose foundational weaknesses will be outlined in section 

3.4, and the one increasingly advocated here. 
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In section 3.3, recurrent neural networks (RNNs) are discussed in more detail. This 

will provide the basis for an adequate account of the rationale for the new 

architectures described in Chapters 7 and Chapter 9. A changing view of their 

essential role will be apparent as the argument is developed in Chapters 8. 

3.2 Feedforward neural networks 

output lays 

hidden layer 

input layer 

Figure 5: Simple feedforward network. 

A typical connectionist system comprises variously realisable, interconnected nodes 

with certain properties. The connections can be abstracted as weighted directional 

paths, and the nodal properties as activation strengths to be transmitted along these 

paths. The bulk of connectionist research, to date, has concerned feed-forward 

networks in which nodes are conceptualised as belonging to various layers, the 

boundaries of the system being defined at the input layer and the output layer (Figure 

5). In this conception, a stream of activations flows through the system, locally 

modulated by simple built-in update rules (usually uniform at least within each layer) 

operating at each node on the sum of activations arriving from the interconnected 

upstream nodes. Most commonly, nodes are fully interconnected, but also possible are 
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sparse interconnection, and - most significantly from the viewpoint that develops in 

this thesis - feedback, or recursive, connections. Connectionist systems are usually 

described as being connected to "the environment" via the input and output layers. By 

this account, the activation of an input node is simply the value of the input, and the 

activation of an output node is something that has informational value for the 

environment. More precisely, in most connectionist research, it is to the user that the 

output has relevance, and from the user that the so-called environmental input derives, 

and so the traditional connectionist system is wrapped tight in user semantics. It 

almost seems that because neural networks are seen as more obviously "brain-like" 

than symbolic systems, the language used to describe experiments using them must 

necessarily have a naturalistic ring, but this can be extremely deceptive. In fact, the 

conventions and experimental approaches underlying this usage give most 

connectionist research the character more of traditional Al than of nouvelle Al or of 

research inspired by neuroethology. However, before this line of argument can be 

developed further it is necessary to focus more closely on some fundamental 

characteristics of the paradigm. It will be argued that they give it the potential to 

escape from the constraints of the traditional outlook, in spite of the tendencies that 

have come to dominate its research programme. 

Consider then, that an ANN has three main separable and informational aspects: 

"a topology, being a digraph of nodes and arcs; 

9a set of weights associated with the arcs of the digraph; 

0a set of update rules determining how a node is activated. 
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These aspects frame both a vector space of all the possible patterns of activation 

strengths, and a dynamical system of possible trajectories through it. Of interest in 

most connectionist research is the type of activation vector space that contains sets of 

stable points from which trajectories do not exit. Each point has associated with it a 

region of attraction that determines trajectories from any vector within it to the point 

of stability. It is the aim of most connectionist systems to settle such a set of stable 

points, in response to "environmental" inputs, so that the regions of attraction will 

have differentiated the input space into the desired categories or distinct patterns. 

Usually, the topology and the update rules are fixed at design time. Only the weights 

change during training, being adjusted according to some measure of error5. The 

process of weight adjustment is referred to as learning, and it occurs in a second-order 

space of possible weight vectors, each point in this space determining a complete 

dynamics of the first-order activation space. 

Most connectionist systems can be described as first-order, in that the weights, once 

trained, are frozen, and all processing then takes place within the so-determined 

dynamics of the first-order activation space. Additionally, the dynamical space of 

these systems is usually organised around local attractors. Movement into one of the 

alternative attractors is interpreted as a representation of the category of input patterns 

corresponding to it. However, interest in this thesis will later focus on networks that 

support the feedback of activation from downstream neurones to upstream neurones. 

These networks may have trajectory attractors rather than point or region attractors 

S Such networks can be trained in various ways but the best known and most successful training or 
learning algorithm is backpropagation (Rumelhart et al., 1986). 

42 



and it is in these properties that interesting correspondences with the dynamical nature 

of cognitive processes may be found. These less well-understood connectionist 

systems will be discussed in the next section. True second-order systems have also 

been studied. In these, the activations of one network are interpreted as the weights of 

a second network, producing a second-order dynamics in the system as a whole after 

the weights in the first network are frozen. Systems of this kind are also explored in 

this project (Chapter 9). 

3.3 Recurrent neural networks 

output lays 

hidden layer 

input layer 

is 

Figure 6: Elman's simple recurrent network (SRN). 

The study of recurrent neural networks has become a reasonably distinct sub field 

within connectionism. What is actually meant by the term is not entirely agreed within 

the research community and mild arguments can still arise at neural network 

conferences on this issue. Somewhat curiously, networks that are, by their 

connectivity, fully recurrent (for example the Hopfield net and some competitive 

learning architectures) are often not recognised as recurrent networks by those 

working in this sub field. This seems to be because their own work is really part of a 

43 



tradition that branches off the mainstream path of feedforward neural networks 

trained using supervised learning techniques, rather than the former kind of settling or 

steady-state network. This is the reason for terminology that retains the global 

copy 

output layer 

hidden layer 

input layer 
("plan units") 

sta 

Figure 7: Simple example of a Jordan network showing self- and (optional) inter-connections between 
the state units. Self-connection weights are set by hand initially and then fixed rather than learned. 

description of their simple forms as feedforward networks, with partially recurrent 

connections. In their earliest form, these networks were trained in the same manner, 

using the standard backpropagation algorithm. Although it is usually stated that 

backpropagation has been adapted in these networks by unrolling the network one 

step back in time, the underlying algorithm is virtually identical. Examples of these 

partial recurrent networks are first order networks, such as the simple recurrent 

network SRN in Figure 6 (Elman, 1990), the Jordan network in Figure 7 (Jordan, 

1986), the simple dynamic memory (Port, Cummins and McAuley (1995). Second- 

order examples are the architectures developed by Pollack (1995), (Ziemke, 1996a), 

and related hybrids (Ziemke, 1996b). These apparently simple networks have 

dynamical characteristics that make their inner working harder to understand and 

predict than those of purely feedforward networks. For this reason, they are still the 
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subject of active research at a very basic level (for example, Wiles and Elman, 1995). 

An attempt to chart some of their general characteristics is described next. 

3.3.1 Mozer's taxonomy of recurrent neural networks 

Mozer (1993) presents a taxonomy of this kind of recurrent network in terms of the 

form, content and adaptability of their short-term memory model. An understanding 

of these terms will help to explain the relevance of these networks to this research. 

Form 

The form of a short-term memory model determines how information is stored with 

respect to time; two characteristics of particular interest are the depth and the 

resolution of the memory. One obvious possibility in approaching a temporal task is 

simply to collect a predetermined number of input vectors, arriving over time, and 

present these simultaneously to a standard feedforward network. Such a time-delay 

network represents a buffered approach. It is clearly governed by practical limitations 

on the size of the buffer (in other words, the depth of memory is fixed and usually 

quite low), but as the actual input values are "memorised", its resolution is high. The 

partial recurrent network approach avoids the problems raised by a fixed buffer size, 

but at the expense of some resolution. This is because the memory decays, usually 

exponentially, over time. In other words, inputs that are more recent will be 

memorised with greater strength, that is, more clearly, than those more distant in time. 

Although, in principle, the depth of memory is infinite, the rapid decay appears to 

limit the usefulness of this characteristic in practice. For example, Elman (1990) 
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warned that it should not be expected that inputs more than seven steps in the past 

should have any significant effect on outputs. 

Even so, this approach is more promising than one that requires a fixed temporal 

buffer such as time-delay. Elman (1995) made the point that the dimensions (units) in 

the input layer of a neural network are all orthogonal to each other in the input vector 

space. Time-delay networks, and similar networks, simply represent a series of inputs 

in a convenient and conventional left-to-right spatialisation of time, but neither this 

arrangement nor the proximity of one unit to another has any intrinsic significance for 

a feedforward network. Thus, such a network cannot capture essential notions of 

relationships between, for example, elements in a sequence apparent to human 

observers. Moreover, it will never be capable of abstracting over the physical order of 

percepts to form novel temporal structures. In contrast, Elman categorises the 

recurrent network approach as one that represents time implicitly, that is, through the 

effects of time on processing. He argues that the dynamical characteristics of such 

networks enable them to capture some of the subtle temporal relationships that, for 

example, are intrinsic to human language processing. 

Content 

The content of a short-term memory describes what is remembered, in terms of the 

input to the memory. For example, the time-delay approach clearly memorises only 

the raw inputs to the network. Recurrent networks can be categorised according to the 

nature of their content. For example, the SRN (Figure 6) is essentially a standard 

feedforward network with a non-linear activation function, and linear feedback 

connections from the hidden layer units to the context units in the input layer. It 

therefore memorises a convolution of the network inputs, transformed by this 
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function, together with the last memory state (that is the values in the hidden layer, 

representing the transformed input and context vectors from the last time step). For 

this reason, it belongs to the class Mozer called transformed input and state memories 

(TIS). Other possibilities are to remember the transformed inputs only, or to 

remember the just the outputs. Mozer calls these, respectively, transformed input 

memories (TI) and output memories (0). The Jordan network is an example of the 

latter. 

Adaptability 

Adaptability is a characteristic of short-term memory more difficult to understyand 

intuitively; it relates to the memory parameters and the degree to which they can be 

modified during learning. Thus, non-recurrent networks (such as time delay) are not 

adaptive, as their parameters are fixed and for this reason, they are sometimes referred 

to as static memories. All recurrent feedforward networks with hidden layers are to 

some extent adaptive, but require specialised learning algorithms (see the next 

section) to be fully adaptive. 

3.3.2 Recurrent learning algorithms 

As well as the aspects discussed in the previous subsection, the learning algorithm 

(which Mozer did not discuss) is relevant to the choice of approach for a particular 

problem. Special-purpose training algorithms for recurrent models, such as 

backpropagation through time (BPTT) and real-time recurrent learning (RTRL) have 

serious drawbacks. For example, according to Doya (1996), RTRL (despite its name) 
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requires O(n3) memories O(n4) computations and BPTT requires O(nT) memories. 

Though used to some extent in conventional control applications, they are not likely 

to be so useful in SAB problems because, typically, they cannot be highly constrained 

in time. For example, the expanding memory requirements of BPTT would be 

intractable for arbitrarily long training-sequences. Additionally, according to Pollack 

(1995), BPTT is unstable. With all recurrent networks trained by algorithms based on 

gradient descent, there is a risk of poor performance, as Lin, Home, Tino and Giles 

(1996) have recently confirmed. The implications of this for SAB will be apparent 

when a problem sensitive to these limitations is addressed in Chapter 9. 

3.3.3 Performance issues 

In this section, some other research findings of particular interest to these 

investigations are briefly mentioned. According to Lin (1994), SRNs are able to 

discover and exploit task-relevant features in a system's history. Ludik, Prins, Meert 

and Catfolis (1997) favourably compared the SRN with other recurrent architectures 

in controlled tests. They reported the Jordan network performed badly. This may 

confirm the view of Cottrell and Sung (1991) that networks relying on feedback from 

the output layer only (like the Jordan network) cannot remember input characteristics 

not directly exploited in their output. The improvements reported by Lin, et al. (1996) 

using a NARX recurrent network (similar to the Jordan network but with multiple 

output feedback delay lines) appear to have depended heavily on their use of the 

BPTT algorithm for training. It may also be possible that, for the same reason 

suggested in the case of the Jordan network above, the NARX would not perform so 

well on a wider range of tasks as it similarly relies only on output feedback. 

Additionally, the problem on which it was tested was particularly toy-like. The 
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computational power of the SRN was investigated recently by Kremer (1995). Kremer 

considered only a subset of SRNs with binary inputs and step activation functions. 

Nevertheless, he concluded these networks were in principle capable of emulating any 

FSM (hence they have power equivalent to any digital computer with finite memory); 

only wiring difficulties, problem representation or training techniques limit this power 

in practice. 

3.4 Interpretations 

At this point, it is appropriate to begin a discussion - one of the discursive threads 

woven into this thesis - about the conceptual interpretation of the usage of 

connectionist techniques. It is started here in order to suggest how, for the most part, 

the work reviewed in the following chapter is fundamentally and radically different 

from traditional connectionism. To appreciate this fully, observe that the 

"environment" often referred to in connectionist research is not the "naturalistic" 

environment of real robots, or even the simulated closed loop environment of 

computational neuroethology. Traditional connectionist research instead takes place 

in the kind of microworld characteristic of symbolic Al. Inputs are usually encoded 

examples of the categories or patterns that are required to be distinguished by the 

network. Mostly, outputs do not affect subsequent inputs. As an example of this it is 

instructive to consider one of the best-known connectionist systems, NETtalk -a 

system intended to model mental processes that transform (English) text into speech. 

For NETtalk the environment is merely a set of letters: clearly far from a physical 

environment sensed directly by the system or influenced by its effectors. At this most 

obvious level, it seems apparent that traditional connectionist systems have more in 
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common with symbolic systems than with nouvelle Al systems or with experiments 

inspired by neuroethology. 

Verschure (1997) discussed the issue of the designer's domain ontology, referred to in 

the discussion of behaviour-based control. A strong hint of how this domain 

exclusively provides the environment for NETtalk is given by considering the 

system's immediate antecedent, DECtalk, which was a (commercial) system based on 

symbolic computation dedicated to the same task. In order to achieve this task, 

DECtalk required input to be encoded by mapping each character onto a description 

in terms of phonemes, stresses and syntax. This scheme of encoding articulatory 

features was used virtually unchanged in the NETtalk experiments. Verschure further 

analysed this encoding scheme to demonstrate how a designer-dependent description 

of a task, in symbolic terms, is effectively compiled into the network model. He 

argued that this invalidates claims made by their designers, and other commentators, 

for the emergence of some kind of symbol level understanding in such networks. The 

specific claim for NETtalk was that it "understood" the difference between vowels 

and consonants, as it was able to distinguish them as part of the task, although such 

distinctions were not programmed into the network. Verschure however argued, quite 

convincingly, that the distinctions were implicit in the encoding of the inputs, whether 

known or unknown to the designers - the network only had to rediscover these 

regularities. He went further, discerning in the example of NETtalk, a procedural 

commitment to the programme of symbolic AI implicit in designer-dependent 

symbolic task descriptions. 

50 



Clark (1993) takes a less extreme view of this famous connectionist system that is 

more mainstream but still committed to a revision of connectionism aimed at enabling 

it to model what he calls contentful thought. With such a view, the position in this 

thesis essentially coincides: even though the strength of Verschure's arguments is 

recognised, the entailment that standard connectionist frameworks are necessarily 

inadequate as at least an initial basis for inquiry is not accepted. For example, 

although the backpropagation algorithm is generally held to be implausible at the 

neurobiological level (e. g. Churchland, 1992), it can be accepted as an enabling 

mechanism for achieving error minimisation by gradient descent. This more general 

procedure is more attractive as a possible brain-like mechanism, even though its low- 

level implementation is yet to be understood (Churchland and Sejnowski, 1996). This 

position is essentially the foundation for the studies in the simulation of adaptive 

behaviour described in this thesis. 

3.5 Summary 

A brief introduction to the main class of feedforward ANNs that form the basis for 

these studies was presented. This was followed by a more detailed account of the 

subclass of partial recurrent neural networks that become the focus of interest later in 

the thesis. Against this background, the general argument against traditional 

connectionism that underpins the thesis was introduced. The next chapter describes 

work that uses and interprets ANNs in a different way, focussing on some antecedents 

of the work in this thesis. 
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CHAPTER 4 

ARTIFICIAL NEURAL NETWORKS IN THE 
SIMULATION OF ADAPTIVE BEHAVIOUR 

A REVIEW 

4.1 Introduction 

This chapter provides a critical overview of work in which ANNs have a principal 

role in the design of controllers for adaptive autonomous agents. A more detailed 

review of much of the work discussed can be found in (Rylatt, Czarnecki and Routen, 

1998). Here only the most closely related research antecedents are discussed in any 

depth - these are examples of research that address at various levels problems of 

particular interest in these studies, relating to: 

" basic performance issues such as cyclical behaviour; 

" design questions such as the relative merits of monolithic and modular 

architectures; 

" problems of a more philosophical nature, such as designer bias and the issue of 

grounding. 

Other work using comparable means that addressed more distantly related problems is 

mentioned briefly. 

The question of how learning should be approached is undoubtedly one that 

differentiates much of the research reviewed here (some researchers have quite 

polemical views on the matter). This fact, together with the, as yet, mostly non- 
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incremental nature of work in the field, means that organisation of the subject matter 

with respect to the conventionally recognised types of connectionist learning remains 

relevant. That the divisions are not merely convenient but underlie quite fundamental 

issues should become clear as the chapter and the thesis as a whole unfold. There is an 

additional area not so readily categorised by choice of conventional learning 

approach. This so-called neuroethological research tends to look at narrower aspects 

of closed-loop control, focussing on biologically plausible neural mechanisms that do 

no fit comfortably into the compartments of connectionist learning. This sub-field is 

consequently accorded a separate section for the sake of completeness, although no 

specific research antecedents are to be found here. Another important, indeed, 

fundamental learning issue is the question of where learning should start (ventilated in 

section 2.5). As an open issue that is not closed simply by the choice of conventional 

connectionist paradigm, this theme is developed across the boundaries of discussion 

and some tentative conclusions are drawn. Each subsection begins with a preliminary 

discussion drawing attention to some of the main issues raised. Individual examples 

of research representing the most specific research antecedents are subsequently 

discussed in more detail. This will show their relevance as practical precedents or as 

the source of concerns that are more foundational. 

4.2 Supervised Learning Approaches 

Supervised learning, using backpropagation , has proved the most fruitful area of 

connectionist research to date in terms of real-world applications. However, for 

adaptive behaviour research, it may be seen as intrinsically unpromising and indeed 

some researchers dismiss it out of hand, (for example, Gausier and Zrehen, 1994). 
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Figure 8: The Addam architecture (re-drawn from Saunders, et al. , 
1994, and reprinted from Rylatt, et 

al., 1998). 

This is because traditional supervised learning implies not only the existence of a 

"teacher" but also a set of correct examples (either collected and presented off-line, or 

generated by an existing plant being modelled by the network). These are needed to 

provide the precise error signal used in this form of gradient descent learning. It 

implies rather more than the human equivalent of learning from instruction, for, to 

provide correction, the neural network's teacher must have access to the internal 

representation of the agent's motor outputs. However, recall that behaviour-based and 

reactive approaches imply that deliberation is delegated to the designer (subsection 

2.4.5). Therefore, teaching in some form may well be a useful adjunct as an efficient 

way of achieving basic competences, without hard-coding, and of gaining some 

benefits, such as generalisation. 
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Saunders, et al. (1994) proposed an alternative to the subsumption architecture known 

as the pre-emption architecture. It was instantiated as Addam (Additive Adaptive 

Modules), a simulated agent constructed from modular backpropagation networks 

(Figure 8). Each module "knows" when to exert or relinquish control so they co- 

operate with each other in a way that extends their limited individual abilities. For 

example, although it was only trained to avoid obstacles in the absence of the goal, 

and to move towards the goal in the absence of obstacles, Addam can navigate around 

obstacles in order to seek its goal. This shows that cyclical behaviour problems facing 

other reactive architectures can be resolved without arbitrary, priority-based schemes, 

time-outs or random movements. An example of such behaviour would be would be a 

sequence such as: moving towards the goal, encountering an obstacle, moving back 

from the obstacle, moving towards the goal, re-encountering the obstacle, ad 

infinitum. 

The approach also combats a general difficulty with supervised learning approaches. 

It has turned out to be formidably difficult to train a multi-behaviour robot in a 

complex environment using conventional backpropagation. This is because it is hard 

for the teacher to put himself in the robot's situation in order to generate training sets 

for a representative set of situations. However, this work indicates that appropriate 

training pairs can be first be generated to support the learning of a set of individual 

behaviours. The huge state space problem can then be addressed by modularising 

behaviours in the subsumption style and by relying on emergent behaviour. This 

means that he teacher does not have to generate a complete trajectory to enable the 

agent to reach its goal. 
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The nature of the simulation represented by Addam is also worth noting. Addam 

exists in a world of ice and blocks, and searches for "food" using "olfactory" sensors. 

No attempt is made to simulate low-level motor control (the agent can simply move in 

eight different absolute directions). Implementation at an arbitrary level of abstraction 

is explicitly is justified by the authors as an enabling measure, so that the 

investigation could focus on the problem of interest. Overall, the work is particularly 

interesting in the way it relates to the subsumption architecture: retaining a behavior- 

specific modularity while addressing some of its practical and foundational 

difficulties. 

The approach reported first by Tani and Fukumura (1994), and then by Tani (1996), is 

particularly interesting. The second paper reports the achievement of symbol-level 

behaviour in a neural network based agent. A behaviour-based robot, with a neural 

network "high-order" controller, is said to have constructed a "symbolic" process that 

accounts for its deliberative "thought" process. This is held to be evidence that 

symbolic processes have been grounded, clearly a very significant claim in relation to 

the symbol grounding problem (Hamad, 1990). The control architecture is a hybrid of 

a behaviour-based, obstacle-avoidance control layer, and a neural network based path- 

planning layer. As in the earlier work, using an artificial potential fields approach, the 

lower, non-neural layer guarantees the robot's safety. At the outset, therefore, it must 

be observed that the robot's detailed sensory percepts are not continuously available 

as input to the neural part of the control architecture. Precisely what is available to the 

neural network is in fact determined in the designer's domain ontology, as will now 

be made clear. The robot's task is to build a "forward model of the environment" and 

then, through an inverse dynamical process, to predict and execute an optimal path to 
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a goal. The model it builds, however, consists only of a directed graph of points at 

which the robot can choose to go in one of two directions. The cluttered environment 

in fact, is devised to ensure that these points are only two-valued. At each point, the 

high-order controller is faced with a choice between only two range profile maxima 

and has to decide whether to continue on its existing path or switch to the other one. 

Once the decision is made, the robot continues under the control of the conventional 

behaviour-based layer until the next decision point is identified, and control is 

switched back to the neural network layer. Effectively, this means that the neural part 

of the controller "sees" only these decision points. The designer determines a simple 

classification of desired features that will initiate the higher-order controller, so this is 

not an autonomous part of the robot's operation. The claims must be considered 

against this obvious lack of a true tractable medium at the level of "raw" sensory 

input (this argument is developed more fully in Chapter 8). On the other hand, the 

representations learned by the neural controller are clearly far removed from 

traditional connectionist representations that merely re-encode the designer's own 

symbol-level representations. 

Pal and Kar (1996) describe a supervised learning approach to sonar-based mobile 

robot navigation using both a neural network with only feedforward connections and a 

recurrent neural network. The robot has to reach a goal point without colliding with 

obstacles on the way. The method depends heavily on on-board odometry (in other 

words, distance and direction to goal are "known" to the controller in a non- 

naturalistic manner). The sensory inputs to the neural network are heavily biased by 

the designer's domain ontology, consisting of range data measured from the 

predetermined goal direction. The work is therefore primarily of interest from the 
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project-level perspective. However, it seeks to address one of the deficiencies of 

conventional behaviour-based controllers identified in subsection 2.4.5, that of 

cyclical behaviour. It does so by showing the importance of context in situations 

where reactive behaviour is inadequate -a central theme in this thesis that certainly 

has implications far beyond the purely practical. The authors first describe an 

experiment devised to show that a neural network controller without context units gets 

trapped in the same kind of cyclical behaviour expected of a conventional behaviour- 

based robot when faced with certain kinds of obstacles. They go on to show that a 

similar controller with context units is able to avoid entrapment and reach its goal. 

The work is also interesting in that it appears to vindicate the use of simulations for 

training neural network controllers using quite simple representations of sensor data. 

Controllers trained in this manner evidently performed successfully when transferred 

to the real robot in its physical environment. This theme will be taken up in Chapter 5. 

Because of the goal-oriented approach and heavily biased sensory encoding, the 

controller has serious limitations. For example, it has no means of escaping (or even 

recognising) dead-ends, or of avoiding any kind of concave objects. Additionally it 

appears to generalise very poorly, being unable to cope with obstacle configurations 

very much different from those on which it was trained. The authors also 

acknowledge that the supervised training regime was laborious. They speculate that a 

reinforcement learning approach might be preferable (although, at the outset, they 

suggest it is only desirable when appropriate responses to the environment cannot be 

predicted with any certainty by the designer). 

Sharkey, Heemskerk and Neary (1996) argue that subsumption-style behaviours can 

be demonstrated using supervised learning techniques. They demonstrate that 
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although a layered subsumption-style approach to co-ordination works satisfactorily, a 

single controller has superior performance. However, the method proposed entails 

some preliminary modularisation. This enables the robot to acquire the desired first- 

level behaviour (avoiding obstacles). Subsequently, a transfer technique is used to 

install the weight set from the first trained net as the initial weights in the composite 

net. This is then trained to acquire the second level behaviour ("find goal") while 

preserving the first-level behaviour. The benefit of this approach is claimed to be that 

there can be an "analogue" change of behaviour rather than a binary switching of 

behaviours according to a fixed priority scheme typical of the conventional 

behaviour-based approach. 

In a piece of research with ramifications that became pivotal for these studies, 

Ulbricht (1996) describes how a recurrent neural network can handle so-called time- 

warped sequences. These are sequences in which significant elements are repeated an 

arbitrary number of times with arbitrary pauses between. For example, an agent might 

observe a particular environmental feature to its right on its way to a junction. It 

would continue to observe the feature in passing and then lose "sight" of it, perceiving 

only the blank wall until it detects the junction ahead. When it arrives at the junction, 

it must remember the significance of the previously observed feature so that it can 

decide which branch to take in order to reach a goal situated some further distance 

along one of the routes 

Although it is couched in the terminology of SAB research, Ulbricht's approach is 

closer to traditional connectionist experiments. These have a quasi-symbolic character 

(see section 3.4) and it is hard to see how her encoding scheme could scale even to a 
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very simple simulated robot or animat with realistic sensors. Briefly, perceptual time 

slices are represented by symbols according to the current state, so that, for example, 

successive "pause" states would be represented as {P*}. Obviously, this is a very 

high-level abstraction of the real situation a situated agent would face. Unfortunately 

the novel recurrent network - the input state network - proposed by Ulbricht depends 

rather heavily on this initial symbolic representation and uses a method of 

transforming the input into a distributed representation. Another potential weakness of 

the approach is that the temporal decay employed at the input state layer appears to 

result in a rather inflexible scaled degradation across the input range. The random 

process of distributing the input representation might result in some representations 

that are disproportionately affected by this fixed scheme. Although there is an 

argument that, in this particular problem, inputs carry the information rather than 

outputs, the intermediate state representation of the hidden units must clearly carry 

some useful information. Additionally, the general task relatedness of the hidden layer 

has made the SRN one of the most useful connectionist models for temporally 

extended problems. Even so, her work is very suggestive of abilities that a real 

autonomous agent would need beyond the relatively simple behaviours such as 

phototaxis and obstacle avoidance. The implications of this will become clearer in 

Chapter 9. 

4.3 Self-Organising Approaches 

Systems that attune themselves to regularities perceived in the environment are not 

inherently promising as the sole basis for controlling mobile agents that must have a 

predisposition to act. Self-organising (it should be noted that the term is occasionally 
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used far more generally), or unsupervised learning systems, adaptively recode 

information from the environment. However, they typically do not have the closed- 

loop characteristics of the controllers reviewed here. In practice, self-organising 

aspects of ANN control architectures turn out to be dependent on reinforcement 

learning in some guise or other, or to function as pre-processors for robotic percepts. 

For example, Fagg, Lottspeich and Beckey (1994) report an approach that avoids the 

problem of interference between different regions of the state space noted in section 

4.2, based on their earlier work modelling primate visual/motor conditional learning. 

It employs a self-organising, winner-take-all (WTA) mechanism primarily as a feature 

detector. At this level the WTA, operation is novel in that each unit has influence over 

only a small neighbourhood of the field, the overall effect being one of contrast 

enhancement between the input patterns, lessening interference. This work is also 

interesting with respect to the question of how reinforcement policies should be 

devised for different tasks. 

However, the categorising power of these networks perhaps affords a glimpse of 

future systems that will exhibit symbol-level autonomy based on internal 

representations grounded in sensorimotor experience. The examples discussed in this 

section are representative of this - in the very long run - rather more ambitious, 

bottom-up approach. Verschure and Pfeifer (1993) show how Hebbian learning 

mechanisms can enable an agent to develop emergent anticipatory behaviour 

(collision avoidance) in an agent that has certain predetermined values. These include 

the ability to detect collisions and move in a certain direction. The claimed the 

emergence is heavily dependent on the predetermined value scheme - essentially 

reflexes wired in by the designer in mimicry of evolutionary pre-wiring. Gaussier and 
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Zrehen (1994) too exploit a form of Hebbian learning to achieve collision avoiding 

behaviour that was not pre-programmed. In both approaches, some form of 

reinforcement is used to guide the learning process. In the first example, it is implicit 

in the set of values bestowed on the agent, whereas. In the second example, it is more 

obvious in the form of a global pleasure/pain function. Moreover, in both some form 

of topology-preserving map is generated more or less in real-time by novel means. 

Gaudiano, Zalama, Chang and Coronado (1996) discuss obstacle avoidance using a 

neural model of operant conditioning originally proposed by Grossberg (1971). 

Operant conditioning is also referred to in the psychological literature as 

reinforcement learning, but although a negative reinforcement signal is used to 

encourage learning, it is the self-organising aspects of this model that are of most 

interest. 

4.4 Reinforcement Learning Approaches 

Reinforcement learning is currently a popular approach to learning in control 

applications. It can take a number of forms: Q-learning, the most popular, was briefly 

discussed in subsection 2.5.2 where it was suggested that it has certain foundational 

difficulties as a prospective paradigm for a programmatic Al. Generally, 

reinforcement learning is employed in situations where a representative training set is 

not available and the agent must itself acquire this knowledge through trial and error 

interaction with its environment. In contrast to supervised learning, the emphasis is on 

exploration rather than generalisation. It has been indicated that it often plays a role 

in approaches that are also described as self-organising (section 4.3). In these 
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manifestations, the term reinforcement is used broadly in a sense that derives from 

psychology or is only generally inspired by the more specialised interpretations that 

have currency in control applications. In particular, the global reinforcement signal is 

only a coarse measure of utility, for example: moving from a state of collision to a 

state of no collision. More typically, reinforcement learning research concerns itself 

with problems in which reward is delayed or sparse. There is typically some notion of 

optimising task performance over time rather than acquiring basic competences: for 

example, learning to navigate efficiently rather than merely avoiding obstacles 

reliably. Barto (1990) distinguishes three types of reinforcement learning task: non- 

associative reinforcement learning, associative reinforcement learning and adaptive 

sequential decision learning. In the first of these, a learning system receives only 

evaluative input. No examples are included here, but they have been studied under the 

umbrella of genetic algorithms, for example, Harvey, Husbands and Cliff (1994), 

Almassy and Verschure (1992). In the second type of task, a controller aims to 

maximise the immediate evaluation at each step, and receives information in addition 

to the evaluation of its control signals. Typically, in the class of problems discussed 

here, this is in the form of inputs from a robot's sensors. In the third type, the 

maximisation of long-term performance may entail foregoing immediate favourable 

evaluations. 

In Lin (1991) and Lin (1993), the method used to perform the sequential decision 

tasks is Q-learning. The degree of autonomy achieved by the robot is limited because 

the domain knowledge necessary for task decomposition must be provided by the 

human designer. It is interesting to compare this work with the modular pre-emption 

architecture discussed in section 4.2. The lesson from both these examples appears to 

be that training multiple simple networks using some form of task decomposition is 
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easier than training complex monolithic nets. Of the two, Lin's approach leads to a 

more efficient state-space representation because the robot can ignore sensory inputs 

that are not required for a particular subtask. On the other hand, the approach requires 

explicit, external rules. These determine which skills should be used, and when skills 

should be switched. This appears to rule out the emergence of new behaviours 

observed in the pre-emption architecture and may perhaps lead to the inflexibility 

more characteristic of the subsumption architecture. Thrun (1994) too employs Q- 

Learning, combining it with a connectionist version of explanation-based reasoning. 

A rare example of structural learning is to be found in Millan's approach (Millan 

1994), where nets are built dynamically based on the robot's experience in order to 

facilitate incremental learning6. Chester and Hayes (1994) also address the problem of 

incremental learning but their algorithmic approach seems to carry questionable 

computational overheads. A hybrid architecture using modular networks and so-called 

reinforcement learning is described by Franchi, Morasso and Vercelli (1994), 

consisting of sets of expert and heuristic modules together with a critic implemented 

as a gating network. The experts are simple perceptrons and the heuristics are fixed 

nets or rule-based algorithms that implement mutually exclusive behaviours. A human 

operator provides reward and punishment signals. 

In some experiments with a relatively simple network, the pattern associator network 

(Nehmzow, Hallam and Smithers, 1989; Nehmzow, Smithers and McGonigle, 1993; 

Nehmzow and McGonigle, 1994; Nehmzow, 1995) only linearly separable problems 

are set. It is well known that SLPs can only learn functions of this kind. In this 

6 Standard backpropagation approaches are prone to the danger that learning can be undone by new 
training instances. 
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limited setting, the pattern associator's virtue of rapid learning could evidently be 

exploited. In the first two of these papers, the learning that occurs is described as 

"self-organising", though the architecture appears to include a "teacher" to provide 

some form of reinforcement signal. Subsequently, the pattern associator is trained in a 

manner described as "supervised", but in fact employs an external teacher so that the 

signal is more typical of reinforcement learning in that no explicit correct exemplar is 

given as a target. Instead, the teacher uses one of the robot's light sensors to signal 

when a motor action for a given sensory stimulus is correct or incorrect in the manner 

of reward and punishment signals. Although this scheme may appear unsophisticated, 

the ability of the robot to learn quickly - not only individual behaviours but also 

combinations of behaviours - seems quite impressive. However, a possible concern is 

that the approach generally seems to rely heavily on the designer's domain ontology 

even to learn quite basic behaviours. For example, to locate a wall the robot is 

programmed to move a fixed number of steps to one side, then a fixed but larger 

number of steps to the other side, and so on, until it makes contact. This approach is 

calls to mind the behavior-based engineered solutions (subsection 2.4.5). 

Meeden, McGraw and Blank (1994) describe some interesting learning experiments 

involving Barto's second type of reinforcement learning. Complementary 

reinforcement backpropagation (CRBP, Ackley and Littman, 1990) was adapted for 

temporally extended problems of obstacle avoidance and light seeking using a simple 

model car-based robot, Carbot. In CRBP, a real-valued search vector on the output 

layer is interpreted as a set of probabilities from which a binary vector can be 

generated stochastically. The difference between this and the search vector provides 

the error measure for backpropagation: the CRPB algorithm then determines the 
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direction of backpropagation according to whether the actions produced by the output 

are rewarded or punished. Different learning rates are applied in each case, according 

to the information value of the reinforcement signals. 
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Figure 9: Meeden's control architecture for Carbot. Re-drawn from Meeden et al., 1994 and 
reprinted from Rylatt et al., (1998). 

In this domain, because Carbot is rewarded just for moving in the environment 

without collision, a much lower ratio was found appropriate than in the original static 

application. This work is also interesting from a network topology perspective in that 

some of the experiments use SRNs to provide a short-term memory (STM), or context 

(Figure 9). Attempts were reported to assess the utility of contextual memory by 

varying its size, but the results do not appear very conclusive. Nonetheless, this work 

is notable for its attempts to investigate and analyse, using quite rigorous statistical 

66 



techniques, a number of learning subtasks singly and in combination, including 

prediction and autoassociation, using a variety of topological variations on the basic 

controller. Arguments that Carbot's behaviour can be interpreted as plan-like are less 

convincing. It seems more likely that any apparently systematic behaviour observed 

can be interpreted as some kind of limit cycle in the dynamical system made up of 

Carbot and its very small, movement-restricting environment. It is evident that human 

planning often, even typically, proceeds off-line, that is, not during interaction with 

the subject of its proposed actions. Therefore, the leap to planning in any sense 

comparable with human planning must surely be preceded by real progress on the 

issue of representation. 

Ziemke (1996a) used a modification of the self-adapting recurrent network (SARN) 

as the control architecture and CRBP as the learning algorithm. SARNs were devised 

for formal language recognition (Pollack, 1995) but in Ziemke's application, they 

enable the agent to behave as a finite state automaton at the level of pre-defined 

control tasks. The robot performs a sequence of manoeuvres involving collision 

avoidance, switching between distinct states each time it detects a light source. A 

SARN incorporates two networks whose relationship is characterised as "master and 

slave". This is a functional (rather than task-based) modularity, in which the master 

net adjusts the input to hidden layer weights of the slave net, and has no independent 

interface with the environment. The approach can thus be effectively construed as 

monolithic. 
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4.5 Computational neuroethology 

The structure of most ANNs only crudely approximates the imperfect knowledge we 

have of the actual structures and processes in the brain and some approaches such as 

backpropagation may indeed be biologically implausible. Although current 

technology cannot hope to emulate the immense complexity of these networks, a 

possible way of enabling robots to operate in environments that are more complex is 

to build controllers based on far more faithful and detailed neurophysiological 

models. However, when the aim is to produce a complete, working robot, a problem 

with such biologically inspired approaches is the state of neurophysiological 

knowledge itself. Currently it may provide data only for a small subset of the required 

functions, leaving the designer to fill in the missing parts with ad hoc solutions. Thus, 

Beer, Chiel and Sterling (1990) advocate striking the "right balance between 

biological reality and computational and conceptual tractability". That an approach 

based on computational neuroethology can nonetheless be motivated by practical 

engineering concerns is confirmed by Hallam, Halperin and Hallam (1994). An 

important goal of their work is to reduce training times below those typically 

achieved, so that a robot can be trained on the many different sensor states it will face 

in a real environment. The position of Scutt (1994), that the lack of a strong 

physiological basis leads to the design of systems from scratch (cf. Brooks' original 

engineering approach, 1986), is perhaps more speculative. It rests on the proposition 

that somehow the road to the achievement of truly intelligent agents may thereby be 

missed. It may prove that the only way to simulate and organise the complexity 

observable in natural cognitive systems is from the bottom up, in Scutt's sense (cf. 

Brooks' later eclectic approach, 1994). Even so, the question of what the correct level 

of abstraction should be is not fully answered. 
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In the work of Beer et al. (1990), a compromise is reached by modelling 

characteristics that appear to have fundamental significance for the control of 

behaviour by neural systems. This turns out to be at an intermediate level between 

biological nerve cells and the simple units typically found in connectionist models. 

The most noticeable difference between this and standard ANN approaches is that the 

model uses time and voltage dependent intrinsic currents. These capture the net 

effects of mechanisms that give individual real nerve cells the character of dynamic 

systems rather than simple functions. 

No such compromise is to be found in the work of Edelman (1992). Edelman, as a 

neuroscientist, has actually studied biological brains. His view is that connectionist- 

style neural networks are too simple ever to lead to anything like cognitive behaviour. 

The simulations and simple robots such as DARWIN IV and NOMAD developed by 

his group should be seen mainly as proofs-of-concept for Edelman's biological theory 

of mind, the Theory of Neuronal Group Selection (Edelman, 1987). It is clear that 

Edelman expects artificial forms of cognition to be developed only in response to 

improved understanding of actual brain mechanisms based on theories closely tied to 

advances in biology research. 

Aitken (1994) proposes an interesting higher-level architecture inspired by the gross 

structure and function of the cerebral neocortex. His suggestion is that a structure of 

this kind could sit on top of a typical connectionist, reactive architecture that has 

mastered fundamental motor abilities; the neocortex model would then enable the 

agent to perform complex behavioural sequences. Conceptually, the idea requires the 
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lower levels of a layered reactive architecture to be viewed as an extended 

environment with which the higher-level architecture can interact. Essentially, lateral 

and vertical recurrent connections enable representations of correlations between 

motor and sensory states to be formed. Higher-level associations of these correlations 

can then be processed to compose behavioural sequences responsive to changes of 

context rather than simply being read out of memory. These ideas are significant in 

view of Toate's (1994) suggestion that a useful definition of true cognitive behaviour 

would entail the ability to break out of fixed patterns of behaviour, whether hard- 

wired or over learned. Aitken's proposal is that the neo-cortex model can respond to 

contextual cues and trigger appropriate behavioural sequences of more primitive 

motor activities, dealing with such problems as overlapping sub-sequences by 

forming yet higher level associations of correlations between modules. Unfortunately, 

Aitken does not report any experimental results, so his architecture can only be taken 

as a proposal for higher-level control. As described, it is an example of task- 

independent modularity whereby modules have generic motor, sensory and 

associative functions. 

4.6 Summary 

The chapter described work on adaptive autonomous mobile agents using neural 

networks, considering these primarily from the perspective of their chosen or 

innovated approach to learning. Promising areas for development and some unifying 

themes emerging from this mostly non-incremental body of research were identified 

as of particular interest for investigation, viewed in the context of the more general 

discussion in Chapter 2: 
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" the appropriateness of supervised learning for autonomous agent research; 

" the issue of modularity; and 

" the role of temporal processing (recurrent neural networks). 

The full significance of these issues emerges as the investigations unfold, as discussed 

in the following chapters. 
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CHAPTER 5 

THE ROLE OF SIMULATION 

5.1 Introduction 

This short chapter introduces the simulator used as the basis for the experiments 

described in the following chapters. Its design and facilities are briefly described, and 

compared with those of simulations described in other published work. Coupled with 

this is a more general argument concerning the value of simulation in work of this 

kind, using examples and opposing views from various published sources. Evidence 

that this debate is still open can be found in the review of work in Chapter 4. The 

issues are worth exploring, not only to provide some justification for the approach 

used in these investigations, but also because they are intrinsically interesting in 

relation to broader implications for research directions in the field. 

5.2 Arguments for and against simulation 

In a sense, it may seem unnecessary to try to justify the use of simulation in a field 

that, after all has the very word in its name. However, the kind of simulation 

described in this thesis is of a kind that has caused much argument over the years. 

Nehmzow (1992), for example, devoted a whole chapter of his doctoral thesis to the 

issue, complaining that most work in the field up to that time had been simulated 

(though he was referring more specifically to mobile robotics research). He argued 
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against the practice except in certain tightly constrained circumstances where 

requirements of available theory, data and predictability could be satisfied. Nehmzow 

held that simulation is viable only in situations where existing physical examples (he 

gave the example of a turbine blade) provide sufficient knowledge to make the 

simulation realistic. In a new field, like mobile robotics (Nehmzow argued), adequate 

theory and data do not yet exist to guarantee simulations with the necessary fidelity. 

Of course, if the research aim is highly specific to a particular mobile-robot platform, 

depending, for example, on its precise dynamical characteristics, then simulation may 

have no role or only a limited one, as Nehmzow suggested. This is by no means 

always the case in SAB research where the aim may be to simulate something less 

specific, such as "minimal cognitive behaviour" rather than an engineering artefact 

with a precise performance specification or mission-critical application. Nehmzow, 

however, took the argument much further, building his case on the idea that certain 

interesting behaviours can emerge from the lower level dynamics of a particular 

robot. He argued that, if these dynamics were not modelled in the simulation, the new 

behaviour would not be able to emerge. An example, given by Nehmzow, was of a 

wheeled robot that escaped from a dead end, although there was nothing in its control 

program that specifically encoded such behaviour. The robot was programmed to turn 

right when its left touch sensor came on, and left when its right touch sensor came on. 

Therefore, in a tightly enclosing dead end it would be expected to exhibit a cyclical 

behaviour pattern and never be able to escape - exactly the behaviour Nehmzow 

observed in a simulated robot with these characteristics. However, in the real robot 

the separately driven wheels happened to have differential torque. Consequently, after 

some time, the left touch sensor usually encountered the right hand wall, causing the 
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robot to turn right and escape. From this example, Nehmzow argued that experiments 

involving real robots are essential, as it is otherwise impossible to foresee how such 

apparently trivial details can so profoundly influence behaviour. 

On the other hand, for some kinds of adaptive behaviour investigations it might be 

more interesting to produce some behaviour in simulation that could not depend on 

such happenstance characteristics. If this behaviour was repeatable to some extent (by 

some measure of confidence) on a real robot, then it could be argued that some more 

general principle had been demonstrated. Jakobi's proposal (Jakobi, 1998) for a 

theoretical and methodological framework for the construction of robot simulators is 

interesting in this light. Though it must be read in the context of evolutionary robotics 

(where the need for simulation is more compelling in view of huge computational 

requirements) the principle of what he calls minimal simulation seems generally valid. 

As Jakobi argues, to model details of dynamical systems peculiar to a specific system 

that have no effect, or insignificant effects, on ultimate performance is not only 

unnecessary, but sometimes undesirable. This is because controllers may evolve or 

learn to exploit those features rather than more general and less brittle ones. In this 

light, the fact that Nehmzow's simulated robot did not escape from a corner does not 

mean that it could not do so if it possessed better adaptive mechanisms at the control 

level. However, it must be admitted that these remarks are made post hoc and that the 

full implications of Jakobi's arguments cannot be claimed as justification for the 

rather more minimal simulations forming the basis for the present studies. For these, 

independent support for this can only be found in less worked-out sources. For 

example, experiments reported by Meeden et al. (1994) indicating that it is sufficient 

to take into account certain readily observable characteristics of the real robot, rather 
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than a complex dynamic model, and to model the effects of noise quite crudely. 

According to the authors, simulation results were replicated very satisfactorily by the 

real robot using the same "transplanted" controller developed in the simulator. 

Because the real robot in practice encountered less noise, it often performed tasks 

more effectively than the simulator. However, it must be conceded that Meeden's 

simulator was based on measurements taken from the real robot. 

Brooks (1991b) also questions the use of simulation. Although the first subsumption 

experiments were simulated (Brooks, 1986), Brooks subsequently emphasised the 

importance of "realistic" environments (Brooks, 1991a). He argued that any 

simplifications could result in a subtle chain of dependencies between system 

modules, making the complete system effective only in environments with similar 

simplified properties. This argument may well be valid in relation to the methodology 

of task decomposition underlying the subsumption architecture. From an alternative 

perspective, it may be seen merely to reinforce the argument that the incremental 

testing and debugging, engineering approach only leads to "one-trick ponies" (see 

Subsection 2.4.5 of this thesis). 

To some extent, the need for simulation - and indeed how the term is to be interpreted 

- can depend on the research perspective. The "simulation" in "SAB" is of course to 

be interpreted very broadly and on different levels. It includes, but is by no means 

restricted to, the use of physical robots that may be used in a sense to simulate the 

behaviour observed in biological creatures. More commonly, of course, the term 

means computer simulation. However, the inter-disciplinary nature of the field admits 

investigation of agent behaviour at various levels, and it is considered legitimate for 
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research at a given level to assume that possible lower level problems are solvable. 

This would be a justification for the high-level simulations much favoured by the Q- 

learning community, for example, the typical "gridworld" experiments described in 

Sutton and Barto (1998). In these, there is no attempt to simulate low level 

sensorimotor aspects. The simulations in the present studies however were much finer 

grained. The intention was to explore the possibility of integrating aspects of learning 

and control initially at the sensorimotor level so that mechanisms involved in the 

grounding of more complex behaviour could be studied. Examples of similar 

approaches can be found in the literature: for example, Pal and Kar (1996) simulated 

sonar in a comparable, somewhat idealised manner. They showed that an ANN 

controller, trained using a simulator (apparently with no simulation of noise), and 

transferred directly to a mobile robot equipped with real sonar, could navigate reliably 

in the real world and avoid obstacles. Stein (1992) described a simulation using sonar 

beams modelled by a line-scan algorithm apparently similar in effect to the one 

developed for the experiments described later in this thesis. MetaToto (described as 

an "imagination shell" for the real subsumption robot, Toto) learned to navigate 

through the simulated environment using these sensors. Once embodied in the real 

Toto, it was able to navigate through the corresponding real world environment using 

real sonar. 

It has been argued that simulation can be an acceptable surrogate for real robots in the 

context of research aims that are not fixed on performance issues relating to particular 

robotic platforms. To clarify the position in these studies still further, it is worth 

noting that the opponents of simulation appear to divide broadly into two camps that 

may be labelled metrical (Nehmzow) and situated/ embodied (Brooks). The metrical 

76 



position may be summed up as essentially the desire to establish a separate science of 

mobile robotics based on measurement and optimisation. For example, not only 

should a robot be demonstrated to exhibit wall-following behaviour, but the accuracy 

of the wall following should be measured. Clearly, this view also entails some move 

towards standardisation so that claims and results could be compared and assessed 

realistically (for example, through the use of a standard robotic platform for research). 

To those workers who do not view their research in these terms but rather within the 

much broader constraints of SAB, such arguments can seem unduly restrictive. 

The situated / embodied position is more problematic. Certainly, the argument that 

embodiment is a complete panacea for the ills of traditional AI should not be accepted 

too devoutly. For example, Vera and Simon(1993) observe that the designers of the 

Navlab robot vehicle abandoned a subsumption approach in favour of a hybrid neural 

network / symbolic Al controller because they found that performance established in 

so-called real world environments (such as laboratory rooms and classrooms) was not 

repeatable in true natural environments. This is not of course an argument for 

computer simulation, but it suggests that situatedness alone is no guarantee of 

transferability. It may also confirm the suggestion expressed above that choice of 

methodology and paradigm may be significant factors in determining whether transfer 

from development environments, simulated or otherwise, to more realistic worlds, can 

be effective. On balance, the evidence considered above indicates that systems based 

on neural networks at least can successfully transfer from simulation to laboratory 

experiment and even to real world performance. Aside from this, there is also a 

question of emphasis, in short, whether the aim is primarily to establish a new science 
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specifically of mobile robotics, or to investigate general ideas that may yield insights 

for a new Al. 

5.3 The integrated mobile robotic agents and neural network 
simulator. 

The experiments in these studies used a simulator specially designed and 

implemented by the author. This integrated mobile robot and neural network 

simulator (IMRANNS) does not provide any features beyond those required for this 

specific research, having been developed piecemeal to meet research requirements as 

the work progressed. The acronym IMRANNS is used in this thesis for ease of 

reference; it does not imply any wider use of the system. It was coded in C++ but has 

a conventional modular, rather than object-oriented, design and runs only under 

MSDOS. Most of the experiments were performed on a PC with a Pentium processor 

running at 120 Megahertz. Some features of the simulator are described below. 

5.3.1 Mobile robotic agent simulation 

IMRANNS provides a medium resolution, graphical simulation of mobile robotic 

agents modelled at a level similar to the simulations described in the last section, and 

to that found in the Khepera simulator (Michel, 1996). Inspection of the actual source 

code for the latter confirmed that there is was no attempt to build a dynamic model of 

a particular robot or to model sensors with complete realism. Movement on screen 

and the behaviour of sensors are fairly realistic (taking a bird's eye view) and can 

reasonably be expected to correspond, within acceptable tolerances for this kind of 

experimentation, to those of a real robot with similar characteristics, as discussed in 
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the previous section and confirmed by various workers using Khepera , for example 

(Ziemke, 1996b), (Jakobi, 1998). A screen shot of the test environment and 

monitoring screen (as it had evolved by the time of the experiments described in 

Chapter 9) is shown in Figure 10. 

For the purposes of the experiments described in this and subsequent chapters, the 

simulated robot was provided with a range of sensors and motor commands. The 

number of different sensor types is fixed as follows, but all sensors can be switched 

on or off both individually and in banks according to the needs of a particular 

experiment: 

" tactile strip sensors (or "bump-sensors"); 

" range finders (approximately representing "laser range-finders" or "active 

sonar"); and 

" light sensors (or "photoreceptors"). 

The tactile sensors are modelled simply as points (pixels) on the periphery of the 

robot. These have Boolean attributes associated with them. The value of a particular 

point is set to true or false according to whether it is in "contact" with a point or 

points representing, for example, part of a wall or an obstacle. These points are 

colour-coded so that a test for adjacency can be made on each time-step using built-in 

graphics commands. The range finders are modelled using a line scan algorithm. A 

ray of pixels is projected, from the centre of the robot, through the locus of each range 

finder on the robot's circumference. Each pixel is checked for contact in the same 
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way as for the tactile sensors. This approach is more realistic (from the robot's point 

of view) than that described by Meeden (1993) or that discernible from inspection of 

the code for the Khepera simulator. Both of these require pre-knowledge of the 

location of obstacles so that the screen coordinates can be stored. However, the 

photoreceptors are not modelled with great realism owing to the computational 

demands this would entail. Instead, the absolute location of a light source is used 

simply to calculate the straight-line distance of a photoreceptor and the intensity is 

then modelled using an inverse-square law. 

The motor commands available differ in the level of abstraction (amount of realism) 

and the kind of environment in which the robotic agent operates: 

" two fixed directions (forward and backwards) for preliminary one-dimensional 

environments (not reported in detail here - they were carried out merely to 

confirm Meeden's findings (Meeden, 1993) and thus validate the simulator's 

performance); 

" eight fixed directions (compass points) for the early two-dimensional environment 

studies described in Chapters 6 and 7; 

" relative directions (steer right or left 45 degrees, straight ahead or reverse) for the 

later two dimensional studies experiments (Chapter 9). 

The less realistic of these motor simulations were used because the early experiments 

were inspired by the work of Saunders et al. (1994) with the Addam architecture and 

Meeden's one-dimensional experiments (Meeden, 1993). 
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The simulation of the physical environment permits obstacles of arbitrary shape to be 

drawn within a room-like enclosure. These obstacles can be made opaque or 

transparent to the range finder sensors and the light-sensors. Light-sources can be 

installed at arbitrary locations and may be switched on and off by contact with the 

robot. The simulated robot can be moved around "by hand" (using the cursor keys) in 

its environment. This enables the collection of sensorimotor training data for 

supervised learning, the close inspection of localised behaviour during testing of 

controllers and placement of the robot at different start points for study variations. 

The main robot-simulator viewport of IMRANNS permits sensors to be monitored 

both as numerical values and visually (as range finder "beams" and "light rays") 

while an experiment is running. It allows inspection of neural network parameters in 

the form of animated Hinton diagrams. Training progress can also be monitored by 

inspection of output error levels. 

5.3.2 Neural network simulation 

The source code of the simulator is not discussed in any detail here, as it is does not 

have any novel aspects. However, some general remarks on the approach used will be 

appropriate. 

The neural network layers were modelled as dynamically allocated, multidimensional 

arrays encapsulated within structures (C-style "structs"), to give computational 

efficiency and flexibility. The interface to the neural network construction code is 
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somewhat crude. However, it enables neural networks such as multi-layer 

perceptrons, partial recurrent networks, and multiple network architectures to be 

specified and implemented rapidly via a simple "question and answer" style interface. 

This was chosen because a disproportionate amount of time would have been required 

to develop a sophisticated user interface, bearing in mind that only the originator of 

the system was foreseen as a user. Conventional backpropagation and CRBP 

algorithms can be selected. A control architecture, once specified, can be easily 

connected to a simulated robot with a specified sensorimotor configuration. 

Additional network input units representing abstract goals can be specified as well as 

extra output units for auto-association and prediction tasks, as described later. 

5.3.3 Validation 

The underlying neural network algorithms for backpropagation of the purely 

feedforward networks and the partially recurrent neural networks were tested and 

validated on neural network architectures built using the simulator. These 

corresponded to specifications provided by Freeman (1994) for the "T-C pattern 

recognition problem" and the "one-to-many time sequence problem". The simulator 

performed well in these tests, converging to solutions in cycle-counts equal to the best 

cases reported by Freeman. Additionally, simple one-dimensional experiments 

reported in detail by Meeden in her doctoral thesis (1993) were replicated. In these, 

the robot can only go forwards and backwards along a "track". This was done in 

order, primarily, to validate the CRBP algorithm (described later), but also to obtain 

some perspective on the way that the robot simulator performed. It was observed that 
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a simulation similar to the one described by Meeden in terms of architecture, sensors, 

motor commands and learning parameters, produced very similar behavior. 

5.4 Summary 

This chapter introduced the IMRANNS simulator used as the basis for all the 

experiments. It presented some in-principle arguments for using simulation and some 

in-practice evidence for its viability. Some advantages of IMRANNS over another 

much-used mobile robot simulator were described and details of its sensorimotor, 

environment and neural network modelling capabilities were given. Validation of the 

simulator was also described. Descriptions of the studies conducted with the aid of the 

simulator begin in the next chapter. 
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CHAPTER 6 

ARCHITECTURES AND STUDIES (I) 

LEARNING AT THE SENSORIMOTOR LEVEL 

6.1 Introduction 

This chapter is the first of the three main chapters concerning novel ANN-based 

architectures. They were designed and implemented as the focus of these 

investigations, and demonstrated in some simple studies of simulated adaptive 

behaviour. The chapter falls into three principal parts, describing respectively the first 

of these architectures, the studies undertaken with it, and some observations and 

conclusions. In the first part (6.2), an approach is described and justified that 

represents the first attempt at incorporating reinforcement learning in the form of 

CRBP (section 4.4) into a modular architecture. This can be viewed as a hybrid 

approach. Connectionist learning mechanisms were deployed at the sensorimotor 

level of its constituent modules, while at the overall control level there was an 

algorithmic solution to the problem of co-ordinating the lower level learning. In the 

second part (6.3), the general nature of the behaviours investigated is discussed. Some 

specific studies of behaviour based on the control architecture are presented, together 

with some observations in relation to certain of the antecedents discussed in Chapter 

4. Finally (section 6.4), the main shortcoming of the architecture is examined - 

namely that learning is not integrated at the overall control level. Conclusions are 
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given which lead to the modification and development of the approach described in 

the following chapter. 

6.2 The continuous reinforcement layered learning 
architecture 

6.2.1 Background and justification of approach 

The architecture and the studies described in this chapter represent a synthesis of 

some ideas and approaches discussed in section 4.2. The work of Saunders et al. 

(1994), based on the so-called pre-emption architecture instantiated as the simulated 

mobile agent Addam, suggested a possible approach to reactive navigation. It 

preserves some of the higher-level structural precepts of the subsumption architecture 

in a modified form, offering a way of overcoming the deficiencies of handcrafting 

(see subsection 2.4.5 of this thesis). The authors also claim increased the potential for 

emergent functionality (Steels, 1994) by exploiting the potential of connectionist 

adaptive learning. However, the methodology appeared to be weakened by a reliance 

on supervised learning that would be difficult to remove without significant 

architectural changes, as will shortly be made clear. Explicit teaching of robot 

behaviour may well have a significant role in the development of autonomous mobile 

robots. However, the position taken at the outset of these studies was that that the 

more interesting and challenging prospect is of robots that can learn from their own 

experiences (see, for example, Mahadevan and Connell, 1993). Ultimately, they 

should be able to operate successfully in circumstances that have not been foreseen in 

detail. 
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Meeden (1993) indicated that it was possible to adapt a form of reinforcement 

learning that does not carry the unrealistic assumptions typical of the mainstream of 

reinforcement learning approaches, such as Q-learning (see subsection 2.5.2 of this 

thesis). It offered, in CRBP, the additional advantage of a familiar, well-researched 

and successful learning algorithm used in supervised learning, backpropagation, in 

only slightly modified form. Meeden, however, investigated only a monolithic 

architecture and focused on single behaviours. Although she refers to "concurrent" 

training on two behaviours, Move-and-Avoid and the so-called Seek-Food (more 

properly light-seeking), concurrent performance of the two behaviours is not 

subsequently discussed or analysed, only the separately learned behaviours). 

A question of considerable interest was whether a modular agent similar to Addam 

could learn similar behaviours by trial and error, rather than by explicit teaching. 

Supervised learning may be an improvement on handcrafting behaviour based layered 

architectures. However, as a design methodology for adaptive autonomous agents 

(rather than merely an ad hoc means of investigation), it does not do enough to lessen 

the influence of the designer's domain ontology. 

Another challenge faced in these initial studies was the problem that when faced by 

discontinuities in the input space, a single network may experience learning 

difficulties. Such discontinuities are likely to be found between the different kinds of 

sensory input available to a SAB agent. The proposal was to combine trial-and-error 

learning, based on medium-fidelity local sensory data as in Meeden (1993), rather 

than global knowledge, with an architecture modularised with respect to different 
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sensory modalities? (as in Addam). This represented a synthesis of ideas with 

potential for solving the practical problems mentioned above. Additionally, although 

the use of reinforcement learning does not entirely allay foundational concerns, they 

are certainly lessened. This is particularly so in the context of the sensorimotor 

modelling approach common to both Addam and the architecture described in this 

chapter. 

6.2.2 Design and implementation 

The first new architecture to be discussed in this thesis is the so-called continuous 

reinforcement layered learning architecture (affectionately known as Crill), shown 

schematically in Figure 11, which was first described in Rylatt, Czarnecki and Routen 

(1996). This represented an early, partial attempt at introducing reinforcement 

learning principles into a modular architecture similar in outline to that of Addam. A 

modified CRBP algorithm was used only at the level of individual modules, that is, at 

the sensorimotor level. Even so, the implications of this for the overall control 

approach are quite significant. 

Recall that although Addam's pre-emption architecture preserved the subsumption 

idea of concurrently active behavioural layers, it replaced the AFSMs of subsumption 

with ANN-based modules, trained using backpropagation. A module assumes control 

when it recognises a sensory input vector appropriate to its particular competence. 

The ability to do so depends crucially on the learning paradigm. Modules must 

converge to the required control outputs during training; their weights are then frozen 

While this idea clearly has some basis in neurophysiology (see, for example, Anderson, 1990), it 
should be noted that there is no intention to model brain structure in any detail - the analogy is only 
inspirational 
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Figure 11: Modular reinforcement learning architecture with algorithmic selector. 

to ensure that the same control outputs will be produced in the presence of 

corresponding input vectors. 

Clearly, the same mechanism could not be relied on to achieve coherent behaviour 

between modules in the case where the agent learns continuously by trial and error in 

its natural environment. The last idea may be considered in relation to the observed 

behaviour of the young of many species. For example, a young animal may not have 

fully mastered the ability to walk, but will move towards food or flee from sudden 

danger, improving its walking behaviour in the process. It does not wait until it has 

perfectly mastered a skill or competence, but develops numerous competences 
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1. Construct backpropagation network with input dimensionality n 
and output dimensionality m. 

2. Collect continuous sensory input vector i and forward propagate to 
produce search vector of the continuous values sj. 

3. Generate a binary output vector o as follows. Given uniform 
continuous random numbers d in the range (0.1,0.9), 

= 
0.9, g: 5 Sj; 

Of 0.1, otherwise. 

4. Compute the reinforcement signal r =" f (i, o). 
5. Generate target output values as follows: 

tj _ 
ýoj, if r>0; 
1- o;, otherwise. 

6. Generate output error values ej as follows: 

ej=(t; -s; )s; (1-s; ) 
7. Backpropagate errors. 
8. Select learning rate as follows (µr> µp; µr, µp> 0): 

17 - 
? 7r if r>0; ýý7p 

otherwise. 
9. Update output layer and hidden layer weights. 

10. Go to #2. 

Figure 12: : CRBP Algorithm (adapted from Ackley and Littman, 1990). 
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concurrently. In the meantime, some means of selecting the appropriate, if inchoate, 

competence must exist. The problem of selecting the right fully developed or 

implemented action, or competence, is known as action selection in ethology. In 

behaviour-based control, as noted in subsection 2.4.5 of this thesis, the usual choice of 

a fixed arbitration scheme leads to difficulties of cyclical behaviour and, ultimately, of 

coherence as complexity grows. In the context of modular reinforcement learning, it 

takes on a somewhat different aspect. A means of directing reinforcement to the 

appropriate module is required, because the actions of one module may result in a 

situation that indicates another module should receive reinforcement on the next 

cycle. In this initial architecture, the approach was hierarchical, as in subsumption 

(explicitly) and pre-emption (implicitly). The algorithm in Figure 12 was devised for 

this purpose. As in subsumption and preemption, the organisation is implicitly 

hierarchical, reflecting some top-down constraints. Similarly, layers are designed to 

be concurrently active (in the sense that they all sense the environment and have the 

capacity to act on the same time cycle). This is indicated in Figure 11 by the stepped 

arrangement of the schematic modules. Clearly, these constraints derive from the 

designer's domain ontology, but the introduction of bottom-up, trial and error learning 

at the module level at least reduces the designer's influence at that level. 

Control algorithm 

As in Addam, each module in the architecture was intended to receive input from all 

the simulated robot's sensors, but the control algorithm ("Algorithmic selector" in 

Figure 11) was designed to encourage each module to specialise in a particular 

competence. To achieve this, it must solve the problem of structural credit assignment 

at the modular level. It does so by ensuring that the module responsible for an action 

that gives rise to punishment will be rewarded if its next proposed action is beneficial 
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to the agent. Furthermore, it is designed to encourage progress towards an overall 

goal: if on the previous time step the reinforcement signal was a reward, the output 

from the default (top-level) module will be selected to drive the simulated robot. 

Accordingly, if the robot avoids punishment, it should tend to fulfil its overall goal 

(for example, light-seeking as in the studies described later). Reinforcement signals (r 

in Figure 12) are generated by the Critic (Figure 11) for each sensor-related, 

behaviour-defining situation that gives rise to the reward or punishment. For example, 

in the studies described later in this chapter these situations would be identified as 

follows: 

" moving further away from (punish), or closer to (reward), the light source as 

indicated by the simulated light sensor readings on successive steps; 

" moving closer to (punish), or further away from (reward) a wall, within a 

predetermined threshold, as measured by the simulated range-finder readings; 

" colliding with an obstacle or a wall (punish), or moving away from a previous 

collision (reward) as indicated by the simulated touch-sensors; 

The Critic monitors the state of the simulated robot's sensors on each control tick and 

has access to a one-step memory of the previous state. It was implemented as a 

function containing a case structure. Each case contains an implementation of a 

reinforcement policy specific to each sensor type and the function is called by the 

control algorithm for every type on each tick. The control algorithm is designed to 

first determine whether the agent was punished on the previous control tick and 

determine the case that gave rise to the signal. If so, it will select the associated 
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module's output to drive the robot and save that module's identifier. Otherwise, it 

selects the top-level module's output. If the reinforcement signal generated by the 

movement of the robot on the next tick is "punishment", only the module 

corresponding to the saved identifier will be backpropagated. Otherwise, all modules 

will be backpropagated. 

CRBP learning algorithm 

The CRBP learning algorithm used in these studies is summarised in Figure 12, to 

which the following remarks refer. The algorithm differs somewhat from Ackley and 

Littmans' (1990), having been modified for application in real-time, as in Meeden 

(1993) and Meeden et al (1994). Additionally, note that it is unrealistic to force 

convergence of output values on 1.0 or 0.0 (recall that the logistic activation function 

commonly used in backpropagation, as here, returns values that asymptotically 

approach 0 or 1). To avoid this, an approximation to a Bernoulli trial was devised 

(refer to step 2). This avoids "stretching" the probabilities, as in the original algorithm 

but the effect is the same. It aims to achieve some balance between exploration and 

exploitation of the input space by allowing some behavioural variety while 

encouraging the identification of actions that lead to the desired behaviour. The term 

at step 5 assumes that the logistic function (equation 6.1, omitting subscripts) is used 

as the network activation function, the term sj(1 - ss) being its first differential: 

f(s)-1+e-$ (6.1) 

At step 7 the idea of differential learning rates for reward and punishment should be 

noted. Ackley and Littman found this to be an advantage and Meeden continued the 
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practice. Unfortunately, it increases the set of "magic numbers" that have to be set by 

hand. Attempts were made to set these learning rates dynamically (desirable from 

practical (project-level) and foundational (programmatic) perspectives) but sadly, this 

attempt to remove a source of designer-bias did not prove successful. 

Modular neural nets 

In addition to demonstrating the effectiveness of reinforcement learning in a modular 

approach, a subsidiary aim was to investigate different types of neural network as 

components of the modular architecture, to the extent that these would be compatible 

with CRBP. Precise details of topologies and parameters will be given under the 

individual studies. The general types investigated and reasons for doing so where as 

follows: 

9 Feedforward networks with hidden layer, also called multi-layer perceptrons 

(N LP), these are now the most common networks in connectionist research and, 

following the example of Addam, were expected to be effective as Crill modules. 

" Feedforward network with no hidden layers (i. e. the simple or single-layer 

perceptron (SLP) as used by Nehmzow (1990). 

" As above, but with one-to-one connections from the motor output units to 

corresponding extra units in the input layer (corresponding to the "motor" sensors 

described by Meeden et al., 1994). 

" Partial recurrent neural network with one hidden layer (the SRN). 
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IF reinforcement_signal[1][time step t-11 = PUNISH 

send output of module[1] to robot 

last_action =1 

ELSE IF reinforcement-Signal[2] [time step t-1] = PUNISH 

send output of module[2] to robot 

last_action =2 

ELSE 

send output of module[3] to robot 

last action =3 

move robot 

IF reinforcement_signal[last_action][time_step t] = PUNISH) 

FOR i=1 TO NUMBER_OF_MODULES 

backpropagate(module[i]) 

ELSE 

backpropagate(module[last_action]) 

Figure 13: The Cri11 control algorithm. 
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6.3 Studies of simulated adaptive behaviour using the Crill 
architecture 

Inspired principally and broadly by the Addam simulation, the aims of the studies in 

this chapter were: 

" to determine whether the Crill architecture could accomplish a similar kind of 

overall goal by driving a similar simulated robot in a comparable environment; 

" to work towards an alternative modular solution to the same action-selection 

problems that beset subsumption-style approaches by setting tasks that require 

coordination of multiple behaviours; 

" and, on another level, to lever in the foundational advantages of an approach (in 

CRBP) less subject to designer bias than supervised learning. 

6.3.1 Behaviours and related sensors 

The behaviours investigated in these studies were similar to those described by other 

researchers whose work was included in the review in Chapter 4. Each of the 

behaviours is based on a single sensory modality, as described below. 

Light-seeking 

The behaviour of light-seeking, or light-following, has been investigated both in 

simulation and with a real robot by Meeden (1993, where it was described as "light- 
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as-food"); as a component of more complex overall behaviour, by Meeden et al. 

(1994); and in simulation by Ziemke (1996a). In these experiments it appears that the 

reinforcement function typically compares a real or simulated light sensor reading 

obtained at time step t with the reading obtained at time step t -1. The reinforcement- 

learning agent is rewarded if the reading shows an increase; otherwise, it is punished. 

Contact-based obstacle avoidance 

The use of tactile sensors, whiskers or bumpers is quite common in mobile robot 

research. They can be seen as a means of ensuring that the robot does not damage 

itself or its environment if other means of detecting walls and obstacles fail. However, 

they have also been used as the basis for navigation experiments by Nehmzow (1995, 

using real whiskers) and by Saunders, et al. (1994, using simulated bump sensors very 

similar to the ones implemented in IMRANNS for these studies). 

Range-based obstacle avoidance 

Another simple behaviour commonly the subject of adaptive autonomous control 

experiments is range-based obstacle avoidance using either infrared sensors or active 

sonar as range finders. The learning method is usually to set an arbitrary threshold in 

the detected range as the behavioural trigger. The agent is trained to perform some 

manoeuvre that will avert the collision that would have occurred if the previous 

behaviour (perhaps light-seeking or simply wandering) had continued. 
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6.3.2 Simulated mobile robot environment 

I walls (visible) 

obstacles 
(invisible) 

mobile robot 
L tigit source 

Figure 14: Screen shot of environment for Crill-based simulation of adaptive behaviour 
studies with call-outs added. 

A simulated environment was designed for the studies to support the desired 

concurrent learning of the multiple behaviour described above (see Figure 14). There 

was no intention to model any particular real-world environment. Indeed, it was 

similar in outline to the imaginative environment used for Addam - but the simulation 

had features that would be more possible to replicated physically (obstacles rather 

than transparent "ice", walls rather than "blocks", light sources rather than "food"). 

The environment was two dimensional in appearance, intended to represent an 

enclosure surrounded by walls in plan view. The enclosure contained a large, 

irregular shape, intended to represent a low building or structure (clearly visible 

towards one side of the enclosure in Figure 14). This structure and the walls were 

implemented so that they could be detected by both the robot's simulated tactile and 

sonar sensors. A number of square obstacles were scattered about the open area and 

these were implemented so that only the bump sensors would be able to detect them. 
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They represent objects much lower in height than the walls - so low that the robot's 

srange finder beams would pass over them. They were intended to be equivalent to 

the Addam simulator's transparent objects through which Addam's so-called sonar 

could "see". Light-sources were implemented so that they could be placed anywhere 

in the open areas. They would be "visible" to the robot's light-sensors from all points 

in the enclosure, as if suspended above the height of both the structure and the 

obstacles. These were intended to parallel the odoriferous "food" sources detectable 

by Addam's so-called olfactory sensors. In a similar way, the Crill robot would be 

able to "sense" the lights sources, and move towards them (cf. Meeden, et al., 1994 

who also describe a light-seeking task as "light as food"). These arrangements were 

made so that tasks similar to those set for Addam could be devised with similar goals 

and expectations. 

Figure 1S: Arrangement of light sources for the Crill based studies of simulated adaptive behaviour. . 

For the studies discussed in this chapter, the environment was set up as in Figure 15. 

Just as Addam consumed a series of food items, the idea was for the simulated robot 

to seek a series of light sources. Similarly, as the "odour" of a food source would 

99 



disappear once "consumed" a light source would be switched off when the robot 

made contact with it and the next in the series would be switched on. The extended 

behaviour, required to achieve the overall goal, would appear to be sequential to the 

observer. Hoever, according to to Colombetti and Dorigo (1994), as this would be 

determined by the dynamics of the agent's interaction with the environment rather 

than the internal dynamics of the robot's controller, it should be classified as reactive 

navigation. The light sources were so positioned, in relation to the configuration of 

obstacles, building and walls, as to require the flexible co-ordination of behaviours in 

order to achieve the overall goal. For example (Figure 15), the first light (subtask 1) 

was positioned so that the robot would have to navigate around an obstacle to reach 

the light source. The fourth light-source (subtask 4) was placed at the far end of a 

narrow blind alley. 

6.3.3 Simulated robot details 

The simulated robot for these studies was equipped as: 

0 12 sensors, consisting of four of each of the three types described in section 5.3.1, 

light-sensors, range finders and bump-sensors. 

"3 binary motor inputs encoding the 8 (23) fixed directions of movement possible 

under the first of the schemes described in section 5.3.1. 

Recall that the chosen motor scheme ensures that the binary complement of a given 

motor control vector will head the robot in the opposite direction thus giving the 

CRBP approach a meaningful interpretation at the motor level. For example, if on the 

100 



previous step the robot was heading north (motor-control binary code 101), and 

received punishment, the algorithm should tend to push the network responsible in the 

direction of binary output 010 (south). 

6.3.4 Module details 

Four distinct types of feedforward or partial recurrent ANN were discussed in section 

6.2.2 as possible ways of implementing the sensorimotor modules of the Crill 

architecture. It was therefore decided to conduct studies with different instantiations 

of the architecture using each type. The same environment was used for each study, as 

described above. 

For each instantiation of the architecture, the sensorimotor modules were uniformly 

implemented as shown in Table 1. 

Table 1: Implementation details of Cri11 architecture. 
Architecture Crill 
Version 1 2 
Number of 3 (all uniform) 3 (all uniform) 
modules 
Net type MLp SRN 
Layer Input Hidden Output Input Hidden Output 
Units 12 4 3 12 +4 context 4 3 
Connections Fully with Fully Context Fully with Fully with 
(internal) input units with one-to-one input units hidden units 

hidden with hidden (including 
units units context) 

(feedback) 
Connections One-to- One-to- One-to-one One-to-one 
(external) one one with with sensors with motor 

with motor units 
sensors units 

Activation Logistic Logistic Logistic Logistic 
Function 
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Table 1(cont. ) 

Architecture Crill (cont. ) 
Version 3 4 

Number of 3 (all uniform) 3 (all uniform) 
modules 
Net type SLP SLP 
Layer Input Output Input Output 

Units 12 3 12 +3 output 3 
feedback units 

Connections Fully with Output feedback Fully with input and 
(internal) input units one-to-one with output feedback units 

output units units (feedforward) 
(feedback) 

Connections One- One-to-one One-to-one with One-to-one with 
(external) to-one with motor sensors motor units 

with units 
sensors 

Activation Logistic Logistic 
Function 

6.3.5 Training details 

For each of the four instantiations of the architecture the simulation was run 12 times. 

To enable meaningful comparisons to be made across the studies, the same training 

procedure was used for every run: 

" all weights were randomly initialised in the range [-0.1,0.1) ; 

" for rewarded actions a learning rate of 0.3 was used; 

" for punished actions a learning rate of 0.1 was used; 

" no momentum was used; 

" no bias units were employed. 
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6 . 3.6 Results 

The metric used to compare the performance of the different instantiations of the Crill 

architecture was the number of time steps taken by the simulated robot to achieve the 

overall goal. This was defined as extinguishing the final light source after 

successfully extinguishing all the preceding ones in the sequence. For this 

comparison, the arithmetic mean of the successful runs for each type was chosen, any 

unsuccessful runs being discarded. An unsuccessful run was defined as one in which 

the run was terminated because the simulated robot did not appear to be making any 

progress after a long period of observation. Standard deviations from the mean were 

also calculated to indicate the reliability of the metric for each set of runs. These 

results are summarised in Table 2. The table indicates that the instantiation of the Crill 

architecture based on feedforward networks with a single hidden layer (MLP) 

performed the overall task in significantly fewer steps than any of the other versions. 

The instantiation based on SRNs was in turn significantly better on this measure than 

either of the remaining two versions. 

Table 2: Comparative performance of different instantiations of the Crill architecture. 

Neural net 
type 

Percentage runs 
completed 

Arithmetic mean of steps 
taken in successful runs 

Standard deviation 
from the sample mean 

MLP 100% 1745.33 75.07 

SRN 100% 3378.83 108.82 
SLP with 
output layer 
feedback 

100% 5800.16 265.86 

SLP 75% 13042.44 3773.70 
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Of these, the instantiation based on networks with no hidden layer (SLP with 

feedback from the motor outputs) was very significantly better on the same measure 

than the version with no hidden layer and no recurrent connections (SLP). The 

inconsistent and generally inferior performance of the last version perhaps conforms 

most clearly to expectations. The deficiencies of this kind of network in static 

problem domains are well known, while Nehmzow's success with them (see section 

4.4) clearly depended on a formulation of the problem space that explicitly avoided 

any linear separability issues (Nehmzow, 1992). In relation to this, the performance 

of the version with feedback from the motor units (output layer) requires explanation. 

Recall that Meeden et al. (1994) found that feedforward networks having this 

modification (which they characterised as a surrogate "motor sensor") generally 

performed better than ones not having it did. To some extent, then, it appears that this 

kind of motor information if available to the controller can compensate for the 

absence of a hidden layer. The addition of a hidden layer with recurrent connections 

to the input layer (an SRN) however appears to provide a significantly superior 

configuration. The explanation for this may relate to the observation of Cottrell and 

Sung (1991) that networks relying on feedback from just the output layer cannot 

remember information not directly exploited in their output. However, even though 

the addition of feedback in some form at the sensorimotor level appears to confer 

relative advantages, the significantly superior performance of the MLP instantiation to 

even the best of these suggests that - at this level and in the context of a higher level 

action selection scheme - hidden layer information is sufficient. These findings tend 

to support the evidence of Saunders et al. (1994), though they did not investigate 

feedback connections at all. 
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6.4 Concluding observations 

The studies in the simulation of adaptive behaviour presented above indicated that a 

reinforcement learning approach could be applied to learning reactive navigation 

control tasks in a modular architecture. According to Maes (1995) and Saunders et al. 

(1994) subsumption agent can succumb to some kinds of cyclical behaviour. Like 

Addam, based on supervised learning, the simulated robot, controlled by different 

instantiations of the Crill architecture, based on reinforcement learning, were usually 

able to avoid this problem. This suggests that the well-known advantages of problem 

decomposition afforded by modular architectures can be extended to the problem of 

learning relatively complex, multi-behavioural goals through trial and error, though 

admittedly in a somewhat restricted sense. In this context of reinforcement learning, 

the Crill architecture addressed the particular, structural credit-assignment problem 

that results from modularisation whereby the high-level scheme of reinforcement and 

action selection encourages specialised competences to develop in each neural net 

module. However, this top-level arbitration scheme is algorithmic and hence 

inflexible. Foundationally, it represents another case of designer's domain ontology 

intrusion. Moreover, it is less satisfactory, at this level of description, than the 

preemption mechanism whereby modules are able to assume control when necessary 

(whether or not the philosophical notion of leaky levels is accepted). This is not to 

commit, however, to the notion (almost a doctrine! ) of completely de-centralised 

control underlying the subsumption architecture. At the level of cognitive modelling, 

it is hard to avoid the idea that modularity must be subject to some overall control. 

Although the aim in the present studies is to build a relatively simple agent from the 

105 



bottom up, the very long-term aim would be that such agents could be developed to 

exhibit some cognitive behaviour. 

These reflections led to the idea that the high-level arbitration algorithm should be 

replaced with a module, also based on ANNs, that would be able to co-ordinate the 

actions of the lower level modules. That this is a temporally extended problem was 

apparent from the nature of the existing Crill algorithm. The conventional panel of 

experts approach (e. g. Jacobs, Jordan, Hinton and Nowlan, 1991) at first sight seemed 

unsuitable because it is based on supervised learning and addresses only non-temporal 

problems. The next chapter describes the adaptation and development of this approach 

to the modular reinforcement-learning problem just described. 

6.5 Summary 

In this chapter, the nature of the behaviours under investigation was analysed with 

reference to other work in the research community, and the initial experiments were 

described. Experiment results were presented and some comparisons were drawn with 

research antecedents to demonstrate some advantages of the novel approach. 

Weaknesses of approach, too, were recognised and conclusions were given, indicating 

the need for the new approach described in the next chapter. 
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CHAPTER 7 

ARCHITECTURES AND STUDIES (II) 

UNIFYING COMPETENCE AND CONTROL LEARNING 

7.1 Introduction 

The main part of this chapter describes how the architecture described in the previous 

chapter was incrementally developed to achieve the primary objective of the first 

phase of these enquiries: a unified approach that integrates learning of competences 

and control. It begins with a broad presentation of rationale, analysing the nature of 

the control problem in greater depth. In the second part, further studies of simulated 

adaptive behaviour are described in which different instantiations of the new 

architecture are used to control a simulated mobile robot to perform the same set of 

tasks described in Chapter 6. Some comparative results and observations are then 

presented. 

7.2 The recurrent mixture of experts control architecture 

The previous chapter introduced an approach to reinforcement learning with 

immediate or local reward, in a modular control architecture. It was shown that such 

an architecture could enable a simulated mobile robot to perform adaptive control 

tasks (essentially reactive navigation) comparable to a similar agent trained using 

supervised learning techniques. Although this ameliorated some foundational 
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concerns, a serious weakness in the approach remained. This was identified as the 

top-level control algorithm responsible for co-ordinating the competence modules. 

The algorithm was another manifestation of the top-down constraints that determine 

the function of each layer in the behaviour-based approach to control. That these 

constraints originate in observer space and are therefore a consequence of the 

designer's domain ontology, rather than the agent's was discussed in subsection 2.4.5 

and section 3.4. The full foundational implications of this problem were not realised 

until much later and they are not discussed until Chapter 8. 

At the stage of the investigations under discussion, it was recognised that within the 

reinforcement learning paradigm the presence of some top down constraints was 

inevitable. At times, these may assume other guises, for example, as internal drives or 

reflexes (Gaussier and Zrehen, 1994). The fact that quite complex constraints, goals, 

drives, and so on, could be compiled down to simple, scalar signals lent hope to the 

long term program of constructing an artificial mentality from numerous interacting 

subsystems. However, in the present studies, the aim was to advance cautiously, 

building on known mechanisms and familiar resources wherever possible. A sketch of 

how the modular neural network approach to problem solving in static domains, 

known as the mixture of experts (ME), might be adapted for the control of 

autonomous robots was noted in subsection 4.4 of this thesis (Franchi, Morasso and 

Vercelli, 1994). The nature of the action selection control algorithm described in 

Chapter 6 suggested however that a gating network of this kind (described originally 

by Jacobs et al, 1991) would not be adequate. The nature of the control problem in 

terms of its multi-modal sensory input space suggested the overall appropriateness of 

a mixture of experts approach. However, the temporally extended nature of the credit 
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and blame assignment problem at the level of action selection seemed to require a 

temporal processing approach. The broad idea of using some variety of partial 

recurrent networks as the gating network was therefore at least superficially attractive 

but needed further working out. 

ZZ 1 The mixture of experts approach in static problem 
domains 

The rationale for the proposed new architecture now turns for the moment from a 

consideration of the temporal aspects to describe the ME approach to problem solving 

in static domains (that is, those typical of traditional connectionism). It was devised 

originally by Jacobs et al. (1991) to address the problem of local discontinuities in the 

input space of a particular global problem. It has also been presented as a general 

approach that confers the well-known advantages of problem decomposition. 

Although monolithic networks can generally solve such problems, interference effects 

reduce their efficiency. These arise because the error attributable to a particular 

training example is backpropagated globally, thus tending to undermine localised 

configurations forming in the solution space. In the ME architecture, error is assigned 

and backpropagated locally according to an individual network's contribution to the 

solution on a given training step. The approach assumes that the data available to the 

system can be represented as a collection of different functions, or, more properly, 

probabilisitc relations, each defined over a relatively local partition of the input space. 

The general idea is indicated in Figure 16. N feedforward networks, perhaps having 

different internal characteristics but with a uniform number of inputs and outputs, see 
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Figure 16: Mixture of Experts architecture re-drawn from Jacobs, et al. (1991). 

the whole input space. All the networks produce outputs in parallel (that is they are 

all exercised on a single training / test cycle) under a supervised learning regime; 

otherwise in the usual way. 

An auxiliary feedforward network with N output units, each paired with an individual 

network, also sees the whole input space and produces output on the same cycle. The 

output of this network in effect mixes the output of each of the other networks to 

produce the overall output of the system. It can be considered to do this 

probabilistically: if each of its outputs is somehow constrained to be in the range [0,11 
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and all of them sum to 1, then the output functions as a probabilistic predictor or 

selector. Further, if each output vector from each of the N nets is compared with the 

target vector, and the error to be propagated is multiplied by the output of the 

corresponding auxiliary network output line, the amount of error backpropagated 

should be localised. The interference effects noted above can therefore be reduced 

(cf. Sharkey et al. 1996). As all the networks are taught in relation to the same 

training example on each cycle, over time the auxiliary network should choose the 

most appropriate mixture of networks to solve the overall problem. The error 

backpropagated through the auxiliary network of course relates to the correctness of 

its probabilistic suggestions. As there is no a priori training set for these outputs, the 

learning at this level is, in a sense, trial and error, though the error signal does derive 

from explicit training examples for the overall output of the system. The probabilistic 

network is usually called a gating network and the networks it controls are called 

experts. The latter term is, of course, strictly only appropriate once they have been 

successfully trained hence the term sometimes used in these studies, inchoate experts. 

The idea is that they will become experts or specialists on a particular part of the 

problem space or a specific task. 

7.2.2 Giving the mixture of experts architecture a short-term 
memory 

The ME model discussed in the previous section possessed features that 

recommended it as a possible alternative to the fixed modular scheme (so-called Crill) 

described in Chapter 6. The idea of networks specialising in more-or-less local areas 

of a flexibly partitioned input space was one that appeared to map satisfactorily onto 
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the adaptive autonomous agent problem. Another attractive idea was that an auxiliary 

network could learn how to assign ANN modules to different subtasks. This would 

support with the move away (in these studies at least) from the behaviour-based 

doctrine of totally decentralised control towards a model of more cognitive behaviour 

that would ultimately supply its own top-down constraints. It scarcely needs repeating 

that no detailed biological model is implied here. Clearly, the gating network is no 

cerebral neocortex (cf. Aitken, 1994, discussed in subsection 4.5 of this thesis), but at 

a much higher level of description, the parallel can be drawn. However, there were 

two obvious immediate problems: 

" the ME architecture was closely associated with supervised learning schemes. 

" the new class of problems had temporally extended characteristics that would pose 

an unfamiliar control problem for the gating network, quite different from its role 

in static domains. 

The first of these problems could be answered in principle as follows. The mixture of 

experts architecture could be trained by gradient descent methods, even if this was not 

the most efficient approach. Thus it was possible to consider using CRPB in place of 

conventional backpropagation, at least for some initial experiments to establish the 

broad feasibility of the approach. The second issue to be considered was more 

fundamental, involving some reflections and considerations that would lead to the 

preoccupation with matters temporal that dominate the last chapter of this thesis. At 

this stage, the considerations were mainly project-level, but their potential 

foundational significance needs to be borne in mind. To encourage this, it is sufficient 

for now to quote the assertion, "The overriding task of Mind is to produce the next 

action" (Franklin, 1995 - his italics). The resonance of this phrase suggests the 

oneness of some essential project-level and programmatic Al concerns. Certainly, the 
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problem being faced in these studies was how a gating network could be modified to 

produce the next system action through adaptive learning. Recurrent networks were 

discussed in section 3.3. Here, it is worth briefly recalling some examples of SAB 

research reviewed in Chapter 4. This will highlight their findings concerning this class 

of neural network, before moving on to an explanation of why and how they were 

incorporated into an ME style architecture in the furtherance of these studies. 

Recall that Meeden et al. (1994) used the SRN network quite extensively in their 

experiments. However, the statistical results were not very conclusive. Pal and Kar 

(1996) showed that some mobile robot navigation problem not solvable using a 

reactive approach, could be solved using a short-term memory. This was provided by 

recurrent connections in an ANN-based controller, along the lines of the Jordan 

network. Tani (1996) used another Jordan-like network to train a mobile robot off-line 

to achieve a form of model-based learning of a navigation task, and offered an 

analysis of its behaviour in dynamical systems terms. Ziemke (1996a) investigated 

Jordan and Elman networks for the control of a mobile robot in sequential decision 

tasks. He found that their performance was inferior to another partial recurrent 

network, a second-order network, but the basis of comparison may well have been 

skewed in favour of the latter. Some of the implications of the later work will be 

examined and investigated in later chapters of this thesis. Only the first of this series 

of results was available in the formative stages of these studies. However, clearly 

there is a growing interest in the potential of this kind of network as a means of 

providing an STM to enable adaptive autonomous agents to go beyond merely 

reactive behaviour. This is true both at the project-level (Pal and Kar, Tani) and at the 

programmatic level (Meeden, Ziemke, Tani). All the examples cited employed 
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monolithic architectures, though only Ziemke has argued overtly against the principle 

of modularity. To cut from the chase briefly, it will be worth looking at this argument 

and putting the opposing view at this point. 

Ziemke's (1996a) concern was that to predetermine the gross structure of autonomous 

agent controllers, on the basis of the designer's decomposition of a particular 

problem, does not help robotic agents to formulate their own principles of behaviour. 

Even so, to insist on "generic" structuring of a monolithic neural network during task 

performance may be an extreme position. If such structural learning is indeed generic 

and not ad hoc then abstraction and re-use of its defining features ought to be 

possible, but there is no indication that this is so. Moreover, although task-based 

modularisation in the style of software engineering presumably has no biological 

parallel, neurophysiological evidence supports some kind of modularity, conforming 

broadly to boundaries between sensory modalities, specialised motor functions and 

separable cognitive functions. Such areas of "expertise" in the human brain have of 

course arisen phylogenetically. It therefore seems more "natural" to define similar 

areas in our agents than to expect them to emerge ontogentically (typically, during the 

performance of a particular task). In the context of an agenda for a new Al based on 

connectionism, Dorffner (1997) too expressed the view that modularity in some form 

will be necessary. This was for the more pragmatic reason of confronting the problem 

of scaling SAB-style agents to more realistic and useful task performance. 

To conclude, the SRN network was chosen as the required short-term memory, based 

on its in-principle power and evidence from the comparative studies showing its in- 

practice advantages, particularly over Jordan-style networks. It was intended that this 
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would enable the ME model to be adapted for the control of temporally extended 

behaviour. The generic, so-called recurrent mixture of experts control model is shown 

in Figure 17. To avoid confusion with the later hierarchical RME of Tani and Nolfi 

(1998) it will subsequently be referred to as MERGe (Mixture of Experts with 

Recurrent Gating network). 

Sensory interlace 

Figure 17: Schematic of a recurrent mixture of experts architecture first described in Rylatt, Czarnecki 
and Routen, (1996). (EN = expert network, RGN = recurrent neural network, the p symbol represents a 
time delay of 1 step, following the convention in Lin al. (1996) - in this case the hidden layer in the 
RGN is copied to the input layer. 

7.2.3 The adaptive autonomous agent problem revisited 

In the previous chapter, the nature of the problem was presented at an intuitive level 

typical of much similar work reported in the literature. In order to show how the two 

broad groups of ideas discussed above (recurrent neural networks and the ME 

architecture) bear on this problem, deeper analysis is required. A good starting point 

is Kaelbling's (1993) model of what she calls an embedded system, typically a mobile 

115 



robotic agent. In this model, the agent moves around and so affects the world in which 

it is situated. Even if nothing else moves or changes in this world, the agent's own 

movements will affect its input stream. It is therefore always appropriate to regard the 

agent / world system as a dynamical system. Beer (1995) provides a sketch of 

dynamical systems theory to support this view. Recall too, that one of the 

foundational aims to emerge in the investigations was to minimise the influence of the 

designer's domain ontology on what the agent perceives (given the inherent 

limitations of its sensors), and what the agent decides to do (similarly, given the 

limitations of its effectors). The agent's knowledge of the world must therefore be 

derived mainly from this raw input stream, together with some compiled designer's 

domain knowledge in the form of scalar reinforcement signals. 

From the agent's perspective, the combination of input stream and reinforcement 

signal represents the state of the world. In this conceptualisation, the world undergoes 

a series of state transitions caused by the actions of the agent, and can be modelled as 

some kind of finite-state automaton. However, this commits to an essentially 

computational account of the agent's behaviour. A typical reinforcement learning 

approach would interpret the actions of the agent as the cause of state transitions in 

the world. Commonly, the agent itself is regarded as having no internal state. In this 

case, the agent's next action is causally dependent only upon its current input. This 

view corresponds to a purely feedforward neural network-based agent like Addam 

(section 4.2 of this thesis). Once trained, such networks have nothing that can be 

regarded as internal state: the weights are fixed and the activations are lost between 

processing cycles. They perform a static mapping from inputs to outputs that 

implement a reactive, or stimulus-response behaviour pattern. Alternatively, the agent 
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can be considered to have internal state. In this case, both the agent's current inputs 

and its last state may causally determine its next action. The simplest example of an 

agent with internal state would be a binary switch between input and output. The 

agent's actions would differ according to the last setting of the switch and its current 

inputs on each cycle (Colombetti and Dorigo, 1994). Internal state of a more complex 

kind is represented by the feedback layer activations of a recurrent neural network. 

The question of exactly what constitutes state in such networks is not always 

obvious. In the SRN network, clearly the hidden layer activations represent state. In 

the Jordan network, the state is represented by the output layer activations. The 

inappropriateness of Jordan-style representation in some situations can be readily 

appreciated by considering the case of a network with multiple hidden units and a 

single outpu. Here, the output unit activation is an inadequate representation of the 

network's state. The SRN network on the other hand, provides a potentially richer 

representation of state by storing the hidden layer activations, but the state is hidden. 

This network must simultaneously form internal task-relevant representations of the 

current raw input pattern and of the temporal history. Elman (1995) makes the point 

that these encodings, because they are produced by the underlying feedforward 

network architecture, will tend to be highly abstract in nature. Accordingly, like 

purely feedforward network hidden layer representations, they will have a functional, 

rather than pattern-based, similarity structure. Thus, instead of being like a tape 

recording, the history representation should enable such a network to make relatively 

flexible and sophisticated use of the temporal information. 
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Now recall that the ME architecture was intended for static domains. It tries to 

allocate a specific expert network to a subset of the inputs, or to a subspace of the 

input space. In this sense, it maps quite well onto the static aspects of the adaptive 

autonomous agent problem of how to learn appropriate responses to multi-sensory 

stimuli. Clearly, at this level, outputs are a function of inputs, but the nature of the 

sensory data means that there will be discontinuities in the global function being 

learned. It therefore makes sense to fit a number of models on each side of the 

discontinuities rather than try to fit a single model across them. At this level, a 

computational interpretation of the processes involved may be the right one (see for 

example Beer, 1995). This may justify using purely feedforward networks as the 

"sensory experts". 

It may be that feedforward connections are typical at the immediate sensory levels in 

biological neural networks , while recurrent connections are common at cognitive 

levels. If so, a dynamical systems account of the latter may be appropriate. Of course, 

this somewhat speculative justification for considering the use of recurrent 

connections at some higher level of control (in this case the gating network) needed 

more working out. Consideration of the aforementioned finite state model of the agent 

and its environment helped to reveal the relevant aspects of the problem more clearly. 

On each cycle, the agent perceives the state of the world through the vector of sensory 

inputs and the reinforcement signals. If the correctness of the outputs depends on 

appropriate structural credit assignment at the modular level, the problem for the 

gating network is to assign the appropriate sensory expert to a presented input vector. 

The nature of the cluttered world faced by the agent and the differing sensory 

manifold it presents, together with the task-related reinforcement signals, suggested a 
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dynamic soft switching process hidden in the world. At this level of description, it 

was possible to think of a hidden Markov model in which the next state is determined 

by the last state and the last inputs and outputs. The task of the gating network could 

therefore be recast as the modelling of this process; consequently, it was reasonable to 

infer that internal state is required in the model. The subtleties of temporal 

representation discussed above in the Elman network suggested it could be a suitable 

model both for this and for tasks that are more complex. As the hierarchical control 

task only appears to require a memory of the immediately preceding state, it could be 

argued that a simpler approach might have been adequate. However, the prospect of 

an architecture that would perhaps be capable of complex tasks involving more subtle 

temporal relationships was regarded as sufficient justification for taking a longer 

view. For example, it is hard to see how the non-connectionist example of an agent 

with internal state provided by Colombetti and Dorigo (1994) could be developed 

significantly in this way. 
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7.2.4 The new architecture in detail 

The broad rationale for the new architecture and its general outline should now be 

clear. Before the control experiments performed with it are described, some details of 

topology, connectivity and training method are set out in this section. The first version 

of the architecture is shown in the detailed diagram in Figure 18. This shows how the 

sensors are connected at the input layer and gives a clear illustration of the gating 

network output connections to the expert network outputs. In conjunction with the 

block diagram of the conventional mixture of experts network in Figure 17, this 

should help to clarify the nature of the processes by which the overall output of the 

control network is reached. However, the nature of the control algorithm still needs 

some explanation. Recall that in section 7.2 the potential for retaining CRBP was 

mentioned. Clearly, however, some amendment to the algorithm was necessary so that 

it would conform to the somewhat different problem posed by the new control layer. 

In its simplest form (for example, Jacobs, et al., 1991) the gating network uses a 

normalising activation function at the output layer to make its choice of the most 

suitable expert on a particular training case (in supervised learning). This function has 

the form shown in equation 7.1, where gk is the kth gating network output and netk is 

the /t" weighted sum of all the connected units on the gated network layer beneath: 

exp(net* ) 
94 =I 

exp( net, ) 
R 

(7.1) 
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1. Construct R feedforward backpropagation networks Eq each with an input layer x 
with (1.. i.. N) sensor units, hidden layer h and output layers with (1.. k.. M) units (the 
expert nets). 

2. Construct recurrent backpropagation network G with input layer with (1.. k.. M) sensor 
units x, L context units c, hidden layer h with (1. j.. L) units and output layer g with 
(1.. k.. R) units (the gating net) 

3. Collect continuous sensory input vector X of dimensionality N. 
4. For each Eq and for G, copy X to x 
5. Forward propagate through each Eq to produce search vector of the continuous values 

s. 
6. Forward propagate through G to produce the softmax output vector g (equation 4.2) 
7. For each Eq multiply outputs Si to s, � by gq 
8. For k =1 to M sum skin E1 to Er to give system search vector S of dimensionality M. 
9. Generate a binary output vector 0 of dimensionality M as follows. Given uniform 

continuous random numbers d in the range (0.1,0.9), 

Ok = 
0.9, ifý <_ Sk; 
0.1, otherwise. 

10. Compute the reinforcement signal r=f (X, O). 
11. Generate target output values as follows: 

lk = 
Ok, if r>0; 

1- Ok, otherwise. 
12. For each Eq generate output error values ek as follows: 

ek = (tk - sk)sk(1 - sk) 

13. Generate output error values ek for G as in equations 5.2 and 5.3 (see text). 
14. Backpropagate errors through each Eq. 
15. Backpropagate errors through G. 
16. Select learning rate as follows: 

11 = 
?7+ if r>0; 

- otherwise. 
IT Update weights in each Eq and in G. 
18. Copy h° to co 
19. Go to #3. 

Figure 19: CRBP Algorithm for MERGe architecture. 
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This activation function encourages convergence of the gating network to an output 

sequence in which each output vector has a single output with value one and the rest 

are zero. In other words it competitively selects an expert to specialise in each 

training case. The reason for this is revealed by the first differential of this function 

with respect to the error (omitting inessential subscripts): 

exp(gk)[ý exp(Sk)] - [eXp(gk)]Z 
f'(netk) =R (7.2) 

[ER exp(Sk)]Z 

Because the (squared) absolute sum of the error from each expert network is 

backpropagated through the gating network, equation 7.2 has the effect of selecting a 

single expert at the expense of the others. It does so by encouraging error reduction in 

that expert and not in its competitors, for example: 

deq 
_ g9sz 

doq 
(7.3) 

In equation 7.3,8 is the error vector and eq is the error at the output layer of expert q. 

It remains to be explained how this idea was adapted to serve under a CRBP learning 

regime. 

Recall the original CRBP algorithm shown in Figure 11, Chapter 6. The algorithm for 

the novel MERGe architecture is shown in Figure 19. A number of questions had to 

be addressed in adapting the basic ME idea for use as a continuous feedback, closed 

loop controller (the points are numbered below for subsequent reference): 
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1) How should the output of the system be generated? 

2) How should the error of the individual experts be calculated for backpropagation? 

3) What form should the short-term memory take? 

4) What algorithm should be used to determine system state? 

These questions fall into two groups: the first group of two questions relates to the 

general problem of fitting CRBP into the ME scheme; the second group concerns the 

issue of adapting the ME approach to temporally extended problems. These will be 

discussed in turn. 

With respect to question 1 above, consider that the ME architecture for supervised 

learning can be imagined to produce its output in one of two ways. The output unit 

value for each expert can be multiplied by the related output from the gating network 

and then linearly combined with each corresponding expert output to form the overall 

system output vector. Alternatively, all the expert network output vectors can be 

treated as separate system output vectors on each cycle (that is, each one is compared 

with each and every target vector). In the CRBP scheme, only the first of these 

approaches is sensible, as the second scheme would require that several separate 

motor commands be issued for each input vector. 

However, this choice has consequences that become clear in considering question 2 

above. Referring again to the original ME architecture based on supervised learning, 

the result of choosing a linear combination of outputs was a mixture of co-operating 

experts that made a proportional contribution on each training case. In the CRBP 

context each input vector corresponds to a training case, so the expected consequence 

of adopting this scheme would be that each sensory modality might contribute to the 
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motor output vector on each step. Although this idea is quite attractive, there are 

implications for the learning process that are less desirable. As Jacobs et a]. (1991) 

point out, this strong coupling between the experts makes it hard for the gating 

network to learn the task-decomposition. This is because adjustments to weight 

vectors in one expert effectively influence changes in the weight vectors belonging to 

other experts. The authors indicate that this is not problematic if the experts can be 

trained separately on each set of distinct, subtask-related cases. Indeed this was the 

broad approach used in training the Addam architecture to perform mobile agent tasks 

(section 4.2 of this thesis). However, the intention here was to devise an approach to 

continuous learning that did not rely on the designer to separate out the situational 

categories before the agent actually encountered them in their environmental context. 

The solution to questions 1 and 2 above may appear makeshift, but it to be proved 

effective. It was to assume that each expert contributes proportionally to the output 

vector, but that the error to be backpropagated should be calculated according to 

equation 7.3. This assumes that each expert makes its own complete proposal on each 

step. There is of course a random aspect to the CRBP target vector so there is no 

inherent contradiction in this strategy. For example, where an expert contributes the 

largest component to a particular motor decision that proves good (that is, receives 

reward), the error backpropagated is proportional to its contribution. In this way, the 

inchoate experts should co-operate to explore the problem space but should compete 

to exploit the emerging domain knowledge, that is, to become experts on a particular 

subtask (in this case the sensory subdivisions previously identified). 

Answers to the second group of questions have been prefigured in section 3.3. For the 

reasons discussed there in general terms, the answer to question three above was to 
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use an SRN. In relation to this specific problem, its recognised ability to predict 

sequences (though of course only symbolically-encoded ones) was interesting. It 

seemed possible that it might be able to learn to solve the high-level control problem 

(the generalised sequence of action selections necessary to navigate through the 

cluttered domain). The algorithm in Figure 12 (Chapter 6) represents a handcrafted 

solution to be replaced by this new approach. To use Mozer's terminology (subsection 

3.3.2 of this thesis), a TIS memory was chosen to be the gating network for the 

adapted ME architecture. 

The last question (question 4 above) to be answered concerned the choice of learning 

algorithm for the recurrent network. Some general possibilities were discussed in 

subsection 3.3.2. The solution to problems, such as instability and exponential 

computational demands posed by more specialised training algorithms, offered by the 

SRNs only slightly amended version of the standard backpropagation algorithm 

appeared even more attractive in the context of CRBP. It was accordingly adopted. 

Figure 19 shows how it fits in to the CRBP scheme. 

7.3 Studies of simulated adaptive behaviour using the RME 
control architecture 

The simulations in the studies described in section 6.4 of this thesis were replicated to 

compare the performance of the new integrated architecture with the observed 

performance of the original so-called Cril1 architecture. In addition, studies were 

undertaken to investigate the role of recurrent connections and the implications of the 

new architecture in terms of the deployment of sensory modalities. 
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7.3.1 Behaviours and related sensors 

Recall again that the simulated robot's goal was to seek out a series of light sources. 

These were arranged to test the agent's ability to select conflicting actions and avoid 

getting stuck in the cyclical behaviour patterns typical of simple behaviour-based 

mobile robot controllers. Inputs to its neural network modules came from three 

distinct banks of sensors. These consisted of bump sensors, range finders, and light- 

intensity sensors and the behaviours related to these sensory capacities were as fully 

described in Chapter 6: 

" light-seeking; 

" contact-based obstacle avoidance; 

" range-based obstacle avoidance. 

7.3.2 Simulated mobile robot environment 

The same environment was used for each study, as fully described in Chapter 6. For 

the studies discussed in this chapter the environment was set up as in Figure 14 with 

the intention that the simulated robot should seek a series of light sources. As before, 

a light source would be switched off when the robot made contact with it and the next 

in the series would be switched on. The light sources so were positioned in relation to 

the configuration of obstacles, building and walls as to require the flexible co- 

ordination of the behaviours in order to achieve the overall goal of reaching every 

light source in the sequence. 
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7.3.3 Simulated robot details 

The simulated robot for these studies was equipped as follows: 

0 12 sensors, consisting of four of each of the three types described in subsection 

5.3.2, "light sensors", "range-finders" and "bump sensors". 

"3 binary motor inputs encoding the 8 (23) fixed directions of movement possible 

under the first of the schemes described in subsection 5.3.2. 

Recall again that the chosen motor scheme ensures that the binary complement of a 

given motor control vector will head the robot in the opposite direction thus giving the 

CRBP approach a meaningful interpretation at the motor level (section 6.3.3). 

7.3.4 Module details 

Four distinct types of feedforward or partial recurrent ANN were discussed in section 

6.2.2 as possible ways of implementing the sensorimotor modules of the Crill 

architecture. It was therefore decided to conduct studies with different instantiations 

of the architecture using each type. 

Recall also that, over the series of trials, the algorithmically controlled Crill, with 

modules having one hidden layer and no recurrent connections, was found to be the 

most effective in terms of the number of cycles required to complete all the tasks. 

Consequently, modules conforming to this pattern were chosen for the architecture 

with TIS gating network control. 
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As in the Crill studies, for each instantiation of the architecture, the sensorimotor 

modules were uniformly implemented as in Tables 3,4 and 5. 

Table 3: Details of MERGe architecture (v. 1) 

Architecture MERGe v. I 
Module Expert 1 Expert 2 
Net type MLP MLP 
Layer Input Hidden Output Input Hidden Output 
Units 12 4 3 12 4 3 

Connections Fully with Fully with Fully with Fully 
(internal) input units hidden units input units with 

hidden 
units 

Connections One-to- One-to-one One-to- One-to- 
(external) one with motor one one with 

with units with motor 
sensors sensors units 

Activation Logistic Logistic Logistic Logistic 
Function 

Table 3 (cont. ) 

Architecture M ERGe v. 1(cont. ) 
Module Expert 3 Gating 
Net type MLP SRN 
Layer Input Hidden Output Input Hidden Output 
Units 12 4 3 12 +4 context 4 3 

units 
Connections Fully Fully Context one-to- Fully with Fully with 
(internal) with with one with hidden input hidden units 

input hidden units (feedback) units 
units units (including 

context) 
Connections One-to- One-to- One-to-one with One-to- 
(external) one one with sensors many with 

with motor expert net 
sensors units out uts 

Activation Logistic Logistic Logistic Softmax 
Function 
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Table 4: Details of the MERGe Architecure (v. 2) 

Architecture MERGe v, 2 
Module Expert 1 Expert 2 
Net type MLP MLP 
Layer Input Hidden Output Input Hidden Output 

Units 4 4 3 4 4 3 
Connections Fully with Fully with Fully with Fully 
(internal) input units hidden units input units with 

hidden 
units 

Connections One-to- One-to-one One-to- One-to- 
(external) one with motor one one with 

with units with motor 
sensors sensors units 

Activation Logistic Logistic Logistic Logistic 
Function 

Table 4 (cont. ) 

Architecture M ERGe v. 2(cont. ) 
Module Expert 3 Gating 
Net type MLP SRN 
Layer Input Hidden Output Input Hidden Output 
Units 4 4 3 12+4 4 3 

context 
units 

Connections Fully Fully Context Fully with Fully with 
(internal) with with one-to-one input hidden units 

input hidden with hidden units 
units units units (including 

(feedback) context) 
Connections One-to- One-to- One-to-one One-to-many 
(external) one one with with with expert net 

with motor sensors outputs 
sensors units 

Activation T Logistic Logistic Logistic Softmax 
Function 
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Table 5: Details of the Mixture of Experts architecture (with CRBP learning algorithm). 

Architecture ME 
Module Expert 1 Expert 2 
Net type MLP MLP 
Layer Input Hidden Output Input Hidden Output 
Units 12 4 3 12 4 3 
Connections Fully with Fully with Fully with Fully 
(internal) input units hidden units input units with 

hidden 
units 

Connections One-to- One-to-one One-to- One-to- 
(external) one with motor one one with 

with units with motor 
sensors sensors units 

Activation Logistic Logistic Logistic Logistic 
Function 

Table 5 (cont. ) 

Architecture ME (cont. ) 
Module Expert 3 Gating 
Net type MLP MLP 
Layer Input Hidden Output Input Hidden Output 
Units 12 4 3 12 4 3 
Connections Fully Fully Fully Fully with hidden 
(internal) with with with units 

input hidden input 
units units units 

Connections One-to- One-to- One-to- One-to-many with 
(external) one one with one expert net outputs 

with motor with 
sensors units sensors 

Activation Logistic Logistic Logistic Softmax 
Function 

7.3.5 Training details 

For each of the instantiations of the architecture, the simulation was run 12 times. 

To enable meaningful comparisons to be made across the studies the same training 

procedure was used for every run: 

" all weights were randomly initialised in the range [-0.1,0.1] ; 
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" for rewarded actions a learning rate of 0.3 was used; 

" for punished actions a learning rate of 0.1 was used; 

" no momentum was used; 

" no bias units were employed. 

7.3.6 Results 

The metric used to compare the performance of the different instantiations of the Cri11 

architecture was the number of time steps taken by the simulated robot to achieve the 

overall goal(extinguishing the final light source after successfully extinguishing all 

the preceding ones in the sequence). For this comparison, the arithmetic mean of the 

successful runs for each type was chosen, any unsuccessful runs being discarded. An 

unsuccessful run was defined as one in which the run was terminated because the 

simulated robot did not appear to be making any progress after a long period of 

observation (10,000 control ticks). Standard deviations from the mean were also 

calculated to indicate the reliability of the metric for each set of runs. These results are 

summarised in Table 6. 

Table 6: Comparison of MERGe and ME controller instantiations with best Crill instantiation 

Architecture Number of Percentage Arithmetic Standard 
runs successful runs mean of deviation of 

successful successful 
runs (in runs 
control ticks) 

Crill (MLP version) 12 100 1745 

MERGe v. 1 (3 X 12 inputs) 12 100 1835.41 108.10 

MERGe v. 2 (3 X4 inputs) 12 50 1267.16 125.69 

ME (3 X 12) 12 0 ------- -------- 
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To test the validity of the use of recurrent connections in the gating network, a study 

was undertaken as a control in which no such connections were employed. Table 2 

shows the comparative performances over a series of trials of all three architectures. 

It can be seen that there was little to choose in terms of performance between the 

algorithmically controlled architecture and version 1 of the MERGe architecture. The 

similarity of performance (that is, no gain) reported was regarded as acceptable in the 

context of the adequate, rather than optimal, control culture serving the (putative) 

emerging new paradigm of mind (Franklin, 1995). 

Without recurrent connections however the ME's performance is shown to be 

ineffective. It was unable to complete all the tasks and usually failed at subtask 3 

(Fig. 15, Chapter 6) which provides the first of two difficult navigational situations. 

At this point in the research, the hitherto unchallenged (but somewhat counter- 

intuitive) assumption that each net should receive the full set of sensory data was re- 

examined, although experiments with Crills had seemed to confirm this overview of 

the input space was necessary for the agent to complete the whole series of tasks. 

Indeed, the device of limiting each module to the inputs from one specific sensor type 

proved disastrous, the agent usually failing to progress beyond subtask 2. However, the 

introduction of a gating network with an "overview" suggested that copying every 

module input layer might not be the most efficient approach in view of the a priori 
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Figure 20: Detailed diagram of MERGE architecture, version 2. 

articulation of the problem space along sense-modal lines. Further experiments were 

conducted in which each of the inchoate expert nets had access only to its related sense- 

modal inputs, the gating network, of course, still having access to the whole input 

space. This architecture is shown in detail in Figure 20. It showed ability to complete 

the overall task in under 1200 cycles, a figure not approached by the other 

configurations tested, but its performance was not so robust as it was sometimes unable 

to complete the overall task. 

7.4 Concluding observations 

The architecture designed for the studies in this chapter represents the culmination of 

what can be regarded as the first phase of the enquiries that make up the thesis. This 

134 



work successfully built on the achievements of its closest antecedents and it is worth 

recounting the main points here in view of the material that is to follow: 

" the advantages of a modular approach under CRBP for the investigation of 

multiple behaviours (cf. Meeden et al., 1994) were demonstrated; 

" it was shown how to use reinforcement learning to address specific problems of 

the behaviour-based approach, thus lessening still further the designer bias only 

partially relaxed by a supervised learning scheme (cf. Saunders et al., 1994); 

7.5 Summary 

The chapter presented a more integrated approach to the learning of competences and 

action selection. Additional background material was introduced firstly on recurrent 

neural networks and, secondly concerning a representative modular architecture for 

static domains. Following a more exhaustive analysis of the problem domain, it was 

explained how these two ideas could be integrated to form the basis for the new 

control architecture. It was shown that the new architecture could achieve a level of 

performance similar to the original architecture when tested in replica experiments 

with the advantage of a unified approach to control and sensorimotor learning. That 

this is still essentially a reactive control approach is discussed in the next chapter, 

where ways of stepping beyond this limitation are also proposed. 
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CHAPTER 8 

LOOKING BEYOND THE INSTANT 

SUBSTRATES FOR TEMPORAL EMBEDDING 

8.1 Introduction 

This chapter focuses on the intimately related foundational problems of representation 

and grounding, building on insights gained in the preceding investigations to delineate 

more clearly than hitherto the role of temporal processing in these most fundamental 

issues. First, these insights are marshalled to construct a more comprehensive critique 

of the major behaviour-based alternative paradigm. The work in this chapter is offered 

as a small contribution to the increasing debate on fundamental psychological and 

philosophical issues apparent within the SAB research community. As such, it can 

stand alone, but it also serves as a bridge between the studies in the last two chapters 

and those in the next. Much of the material was presented in Rylatt and Czarnecki 

(1998) but here there is a more detailed critique of the subsumption architecture and 

examination of the concept of situated action, intended to clarify the argument still 

further. 

8.2 Representation and the subsumption architecture 

In this section the critique of the subsumption architecture (section 2.5) is extended 

and deepened. Based on an examination of its stance on the issues of representation 
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and grounding it is argued that this and related approaches are unsatisfactory as the 

basis for a new Al programme, despite impressive project-level achievements. During 

the development of the argument, some further key ideas are introduced that are 

essential to an understanding of the proposals that follow in section 8.3. For 

discussions of the underlying issues, see Hamad (1990), Steels (1995). 

8.2.1 Physical grounding 

The ideas in this chapter stem partly from some deeper reflections on the well-known 

aphorism "the world is its own best model" (Brooks, 1991a). To trace the idea back to 

the seminal work (Brooks, 1986), it can be read simply as an alternative approach 

intended to circumvent the problems faced by conventional planner-based 

architectures. These generally failed to scale up to real-world performance 

requirements because they relied on a central world model that needed continual 

updates to maintain consistency with the changing environment (section 2.4.4). 

Instead, Brooks' early creatures worked on the principle of a tight control loop with 

"little slack" between input and output. Brooks went on to claim much wider 

significance for the new approach, and to set out further principles establishing a 

position essentially in opposition to the prevailing view of cognition as symbol 

manipulation. As these ideas were not mentioned in the more pragmatic earlier papers 

(for example, Brooks, 1986), it may be that this position resulted from reflection on 

the practical issues, and from the idea of situated action (SA). The latter appears to 

have been retrofitted and developed into a "stronger" form known as nouvelle Al. 

According to Brooks, this stronger version follows from what he called the Physical 

Grounding Hypothesis (PGH, Brooks, 1990). The PGH required that "intelligent 

systems must have their representations grounded in the physical world2. It will be 
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argued that, in the case of the subsumption architecture at least, this was merely a 

prescription for building intelligent systems connected to the world via sensors and 

effectors rather than keyboards and cathode ray tubes. 

As a "hypothesis", the PGH really lacks sufficient substance and structure to be 

testable. It may be that the ideas it encapsulates simply needed this kind of rubric to 

highlight their opposition to symbolic Al's own conceptual foundation, the Physical 

Symbol System Hypothesis (PSSH, Newell and Simon, 1976). Its acceptance requires 

something like a leap of faith, for Brooks (1990) segued to a position holding that 

once a commitment to the PGH has been made, "the need for symbolic 

representations fades away entirely". It is this dictum that underlies the claim for the 

PGH as a stronger version of SA and it will be instructive to examine this claim here 

as it seems to have gone more or less unchallenged in the literature. 

Firstly, it should be noted that SA is rooted in ethnomethodology (and hence 

sociology). It is essentially a critique of AI planning, holding that planning (that is 

the manipulation of background knowledge in the form of symbols) has a subsidiary 

rather than a primary role in human activity. It has nothing to say about physical 

grounding or about the mechanisms that give rise to representational content for an 

individual intelligent system. Rather, the "activity" it promotes over planning to the 

leading role in human behaviour is "free-floating" in a similar sense to the symbols of 

the PSSH. Indeed, as the account is wholly in social terms it is difficult to see why the 

PGH is claimed to be a version of it in any sense, whether stronger or otherwise. 

Superficially, however it is possible to concede that the PGH at least appears to put 
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something tangible in place of ill-defined "activity". 

However this may be, there seems to be a paradox in the PGH. Firstly, note that 

although traditional symbol systems were to be swept away, the kind of 

representations that could replace them was not discussed. For PGH agents, 

input/output representations were to be virtually semantics-free; everything had to be 

explicit, expressed by the fixed topology of AFSMs (see subsection 2.4.4. ) and all 

knowledge had to be extracted from physical sensors. Thus, paradoxically, the PGH 

appeared to rule out rather than support the ultimate appearance of higher-level 

abstractions grounded in sensorimotor representations. Indeed, such abstractions, 

according to Brooks (1990), "have to be made concrete" (i. e. supplied by the designer 

and implemented as top-down constraints on bottom-up development). 

Although Brooks seemed to acknowledge that representations might play a part in 

higher-level intelligence, their role would not be developmental. It seems that 

somehow they could be introduced when the time was right. In retrospect, this seems 

a curious view, for by this light, "grounding" as an initial requirement for the design 

of autonomous agents, would happen in the absence of representation. Consequently, 

it is not merely mischievous to ask just what it was that the PGH required to be 

grounded. The not very satisfactory answer is to be found, if anywhere, in Brooks' 

defence against charges of denying that intelligence uses any form of representation. 

On this point, at least, the position in Brooks (1991a) seems superficially more 

reasonable: he claimed no more than that representation is the "wrong unit of 

abstraction" for the "bulkier" parts of intelligence (that is, sensorimotor abilities). 

Therefore, by his lights there is no contradiction in holding that this part of 
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intelligence (as suggested earlier, also the "hardest" part) can indeed be achieved 

without representations. However, it remains to be determined what kind of 

representation ultimately will be required and, most significantly, how it will be 

supported. The kind of representations that are not going to be required are identified 

in (Brooks, 1991a) as "explicit manipulable (sic) internal representations". Although 

these are of course just the kind of representations those levelling the aforementioned 

charges would be concerned with, Brooks claims here that even human-level 

intelligence is achievable without them. By way of explanation, Brooks falls back on 

the following argument. We only recognise the power of thought in others (other 

intelligent systems) by introspecting our own intelligence and so, by the same 

yardstick, eventually we shall witness the emergence of intelligence in our own 

situated, artificial agents. Emergence is another key idea in behaviour-based control 

theory (Steels, 1994). In this instance, it seems to imply simply that intelligence will 

appear, in artificial agents, as the epiphenomenon of interactions with the same 

complex world that gave us our existence proof of intelligence. 

8.2.2 The fallacy of observer idealism 

The position implied by Brooks' argument for nouvelle AI was essentially a radical 

one. It was tantamount to holding that representational content and relationships are 

observer dependent. Interestingly, observer-dependence is the basis of another, much 

more philosophically sophisticated variant of SA called enactionism (Maturana and 

Varella, 1988). Therefore, it is significant that its proponents should have pinned their 

hope for a practical demonstration of their theories on Brooks' creatures. In a sense, 

Brooks' work can be viewed as a project within this emerging programme or intended 
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paradigm. Remarks such as the following are typical and have a similar optimistic 

ring: 

We are willing to bet with Brooks that in a relatively short term such artifacts will have evolved into 

generations of sufficiently intelligent Creatures whose efficacy can begin to be exploited. (Varela, 

Thompson and Rosch, 1993). 

Bickhard and Terveen (1995) have criticised the enactionist view, because it commits 

the foundational error of observer idealism, a philosophical position considered 

dubious in that it shifts all accounts of representational content to mysterious and 

unknowable observers. Such observers are akin to the homunculi that haunt traditional 

accounts of representation, and hence are open to the same objections of infinite 

regress. Curiously, the behaviour-based movement, primarily represented by Brooks, 

seems to have been exempted from this judgement. For example, Bickhard and 

Terveen proposed a radical alternative account of representation called interactivism, 

emphasising the critical importance of intrinsic timing and dynamic topologies. Their 

alternative conception seeks to avoid the untenable philosophical positions to which 

symbolic Al and other rival accounts fall back. Yet, their account incorporates a view 

of the subsumption architecture that is critical only to the point of admonishing its 

creator for overlooking its representational potential. 

It will become clear that this thesis is moving towards a position that has much in 

common with interactivism. However, part of its contribution will be to show that, per 

contra, despite the many useful insights offered by Brooksian nouvelle Al and its 

undoubted practical successes, it too is foundationally flawed. That nouvelle Al falls 

back to an observer-idealism has already been indicated in the above discussion of 
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Brooks' remarks. In order to show, more than anecdotally, why this is inevitable, and 

subsequently, why an alternative substrate based on ANNs of a certain kind is not so 

fated, it will be necessary to look in more depth at the substrate on which the 

subsumption architecture rests. This will be done in the section 8.2.4. Beforehand, 

some further discussion of a key idea in enactionism, and its ramifications, will help 

to focus this issue of substrate viability. It will also cement the idea that the fallacy of 

observer idealism leads to an uncritical acceptance of substrates for an artificial 

mentality, mainly on the grounds of their interactive credentials. 

8.2.3 Structural coupling 

The notion of structural coupling that underlies theories based on SA, such as 

enactionism, differentiates them most clearly from cognitivist ideas based on 

information processing. According to this notion, cognition is a structure that evolves 

from the interaction of the individual agent with the unstructured world it encounters. 

Accordingly, autonomous agents cannot be information processors, because there is 

no information "out there" to be processed and no representational atoms to encode. 

Structural coupling should not be confused with idealism; it does not posit a detailed, 

pre-determined mental structure to be projected as the outer reality. In some sense, at 

the philosophical level, it represents a middle way between atomistic materialism and 

idealism. From the SA perspective, because cognition arises from closely coupled 

sensory and motor activity, disembodied minds, even those with some sensory 

apparatus, are ruled out. On the question of precisely what kind of structures undergo 

this coupling the SA movement, generally, is not definitive. However, it seems clear 

that structural coupling implies at least that cognition must be distributed across 
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collections of sensorimotor modules, or networks, acting in parallel. At this level of 

description, the notion is relatively neutral concerning the nature of the substrate. This 

lack of definition, together with the acceptance of observer idealism noted above, 

admits many possible candidates for the role of cognitive substrate, including of 

course the AFSM. That this relative neutrality is not a tenable position if the attractive 

notion of structural coupling is to be accepted will now be argued by way of example. 

8.2.4 Augmented Finite State Machines 

Firstly, recall (and bear in mind) that the subsumption architecture was conceptualised 

as a layered architecture permitting only minimal information processing between 

input and output within the modules composing each layer, or between layers. If it is 

accepted that no representational significance can be ascribed to the simple numerical 

values passing along the "wires" of the architecture8, the atomicity 9 of these systems 

must be defined at the level of the AFSM (see section 2.4.4). Consider also that the 

atomicity of symbolic AI is defined at the level of its constituent symbols. These are, 

in computational terms, its instantiable variables. Its representational power, as well 

as the probably fatal problems it faces, derives from the combinatorial possibilities 

inherent in its atomicity. It will now be argued that the atomicity of nouvelle Al denies 

it both the (at least interesting) modelling capacity of traditional Al and the possibility 

of ever achieving a true representational content free from user semantics. An 

example of a (software) AFSM is illustrated in Figure 21. 

8 Brooks (1991a) maintained that low-bandwidth communications and simple numerical instantiations 
of variables do not amount to any explicit, internal symbolic manipulation. 
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(defmodule avoid 1 

: inputs (force heading) 

outputs (command) 

instance-vars (resultforce) 

; states 

((nil (event-dispatch (and force heading) plan)) 

(plan (setf resultforce (select_direction force heading)) 

go) 

(go (conditional-dispatch (significant-force-p resultforce) 1.0) 

start 

nil)) 

(start (output command (follow force resultforce)) 

nil))) 

Figure 21: Example of an subsumption AFSM module 

The AFSM has registers, instance variables and clocks in addition to internal states, 

inputs and outputs. Of course, finite state machines are not inherently mysterious. 

Also referred to as state machines, or sequential machines, they are the foundation on 

9 This neologism is intended to expresses the fundamental unit at the level of description appropriate 
for understanding intelligent behaviour. 
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which the components of digital electronic computers are based, and the conceptual 

tools for the theories of computability underlying computer science. In addition, as 

outputless finite state automata they are the basis for modern programming languages. 

At this level of description, indeed, neural networks too can be encompassed. 

Therefore, it might seem, at first sight, that this choice of building blocks imposes no 

more constraints on function than are suffered by any other conceptualisation that can 

be realised, or simulated, 'using existing computing devices. However, it is significant 

that Brooks chose to define the basic modules at this level; in a sense, it represents a 

statement of intent. 

To appreciate the last point, consider that finite state machines (FSM) are not the 

building blocks of symbolic AI, where atomicity is defined rather at the level of 

combinatorial symbols. FSMs exist at some level that stands in the same relationship 

to symbolic Al as do electrochemical descriptions of neural processes to cognitive 

psychology / neuroscience. Symbolic Al exists in a conceptual framework that is 

independent of physics and chemistry, starting from free-floating symbols that can 

only be defined by circular arguments. Similarly, the subsumption architecture, 

arguably the representative architecture of nouvelle AI and the white hope of 

enactionist theories, rests on an arbitrary mechanism chosen so as to conform to a user 

semantics. This kind of FSM is not a generator or recogniser of symbol strings as in 

symbolic Al because its inputs and outputs are simple numeric values or bandwidth- 

limited wires. Its atomic nature is apparent at the behavioural level as a particle that 

has its functional boundaries determined in an observer space. This can be clearly 

seen, though the interpretation is novel, by inspecting the AFSM in Figure 21. The 

Avoid module relies on a simple artificial potential fields concept (Khateb, 1986) that 
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converts sensor readings directly into motive force. Recall that, at this level of 

description, undesirable project-level consequences for nouvelle Al - stemming from 

this attempt to build an artificial mentality with engineered components - were 

identified in section 2.4.5 of this thesis. Here, however, the argument shifts to the 

programmatic perspective. Essentially, although the subsumption approach engineers 

out the problems associated with encoded symbols, it does not (and indeed cannot) 

engineer in any possibility of for-the-machine semantics (that is, semantics that are 

not imposed by the user). It should now be clear that its atoms, the putative building 

blocks of a machine mentality, are, essentially, particles of from an engineering 

domain-ontology, hard-wired together in heavily task-oriented configurations. Such a 

massively predetermined, minimally interconnected system, with hard-bounded 

subsystems is most unlikely substrate for the formation of concepts necessary for a 

reflective intelligence. 

Although these systems have a functional organisation that can support some kind of 

non-symbolic "representation", it is to be expected that this will always be of an ad 

hoc nature. Mataric (1992) provides an example of this, describing the robot Toto's 

"memory" as a dynamic graph of "landmark recogniser modules" corresponding to 

gross sonar configurations (with user-semantics such as "wall right") and compass 

readings. This characteristically ad hoc, engineering approach, originally criticised in 

this thesis at the project-level (section 2.4.5) can now be attributed more 

fundamentally to an atomicity that is not amenable to the integration of truly 

interactive subsystems between input and output. However there is another, perhaps 

even more fundamental problem with the FSM substrate that also undermines 

symbolic Al and some forms of connectionism, as discussed in the next section. 
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8.3 Embedding autonomous agents in time 

A necessary preamble to the main argument in this section introduces some key terms 

and continues the discussion (begun in section 8.2) as a means of elucidating them. 

The specific idea of temporal embedding was first aired (Rylatt and Czarnecki, 1998) 

during a SAB conference session on philosophical issues. These indicated the 

increasing awareness of the need for foundational debate in the field (see also, for 

example, Clark and Wheeler, 1998; Spier and MacFarland, 1998; Scheier and Pfeifer, 

1998). The relevance of the notion has subsequently been recognised in, for example, 

(Ziemke, 1999). The related term temporal grounding (Nehaniv, Dautenhahn and 

Loomes, 1999) also represents - at some level -a concern with building systems that 

transcend simple reactive behaviour. However, as will become clear, the argument in 

this chapter is differentiated as it proceeds essentially from substrates (i. e. that 

temporal processing mechanisms at an appropriate level of granularity need to be in 

place as a prerequisite for grounding). 

8.3.1 Non-conceptual contents 

Clark (1993) regarded non-conceptual contents as the prerequisite for systems that 

ultimately aspire to conceptual contents (these can be thought of as broadly equivalent 

to the manipulable representations discussed in the previous section) and hence for the 

ultimate programmatic aims of AI. Unlike Verschure (section 3.4 of this thesis), Clark 

accepted that NETtalk did indeed learn to recognise similarity between vowels. 

Hoever, heargued that the knowledge NETtalk gained was too task-specific: "highly 
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intertwined with its (NETtalk's) ability to use the knowledge to perform text to 

speech transformation - it lacks the general idea of a vowel". From this, he proceeded 

to the position that networks with the ability to negotiate a certain domain are capable 

of supporting contents that properly consist just in that ability. This a position (not 

stated by Clark) appears close to the Heideggarian analysis of a world fundamentally 

experienced non-reflectively as ready-to-hand. He did not claim that NETtalk 

supported this kind of content, only that it might be capable of doing so if some 

unspecified conditions could be satisfied. However, he did suggest that networks of 

NETtalk's type which he called "first-order" 10 are excellent candidates to become 

systems that will form such contents. This is simply because they "know their way 

around" a domain without conceptualising it (that is non-reflectively or without 

forming manipulable representations). The significant question for Clark was how 

conceptual contents can arise from these non-conceptual ones. 

8.3.2 A starting point for a "developmental" approach 

The explanatory lacuna noted at the end of the previous section cannot be bridged by 

conventional connectionism. Verschure's convincing argument (discussed in section 

3.4) showed that even at the level of inputs this approach was subject to a symbolic 

interpretive bias. Additionally, Bickhard and Terveen (1995) concluded that 

connectionist representations always have an underlying symbolic interpretation, 

observing that this resulted from a compulsion to regard as encodings the activation 

patterns that differentiate input patterns in typical connectionist architectures. Non- 

10 Feedforward networks relying on backpropagation for gradient descent error minimisation -a usage 
that is unfortunately not consistent with the usage of the term 'second-order' later in this thesis. 
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conceptual contents, however they may be construed, cannot be encodings. It 

therefore seems futile to look for evidence of them in networks of this kind (pace 

Clark above). It is obvious that the newer situated form of connectionism has moved 

away from an insistence on regarding representations as emergent atoms. However, 

some versions, to some extent and at least implicitly, seem to share the anti- 

representational stance of nouvelle Al. They perhaps seek to replace its reactive 

components with neural networks construed as stateless input/output devices, for 

example, and, most pertinently, the work of Saunders et al. (1994, section 4.2 of this 

thesis). Indeed, much of this earlier work, while beginning to recognise the 

importance of internal state, did so more from a typical behaviour-based control- 

oriented perspective, although it was not predicated on any strong rejection of the role 

of representation. It seems clear that if internal state is eschewed in situated 

connectionist approaches, it may lead to foundational errors similar to those noted in 

section 8.2. The need for a developmental approach was a key insight provided by 

Clark (above) but the evident need is for a starting point that is neither subject to 

interpretative bias nor oblivious to representational issues. In relation to autonomous 

agents, the explanatory lacuna is how even non-conceptual contents for-the-machine 

arise in the first place. The notion of embedding autonomous agents in time is 

intended to encapsulate the view that a temporal processing economy integral to the 

substrate is a prerequisite for a developmental approach. The notion assumes that such 

an agent will also be embedded in space either literally, or, as here, in simulation. 
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8.3.3 Naive time 

The issue of time was omitted from the discussion of representation in section 8.2. 

Against that background, the behaviour-based approach can be seen as an attempt to 

embed agents in space so that they would not suffer from the closed system brittleness 

of traditional, disembodied AI systems. However, the problem of brittleness is 

reducible to the problem of representational contents and symbolic AI's difficulties in 

this respect are partly attributable to the lack of a temporal essentiality. This arises 

from its theoretical foundation. The absence of any conception of time (beyond the 

idea of sequence) is a feature of Turing machine theory, as noted by Bickhard and 

Terveen (1995), in their critique of the symbolic AI view of representation (referred to 

as encodingism). The argument is that physical Turing machines, such as computers, 

are provided with clocks to drive their sequential processing, but these are 

engineering accessories extraneous to the model and can provide only a user- 

semantics. It might be argued that subsumption robots of nouvelle Al are more 

intimately involved with time, and they indeed appear to have been exempted from 

the above critique. However, this would be to confuse real-time behaviour (obviously 

something these creatures are good at) with real time (in the sense defined below); 

and of this, they too have no conception. The clocks that augment the finite state 

machines that form their substrate are also examples of engineered time, so the 

management of temporal effects and dependencies is extraneous to the model. It 

follows that, as with symbolic AI systems, their temporal imperviousness denies them 

for-the-machine representational content. It must be emphasised that it is not the 

intention in this thesis to attempt to argue conclusively that any kind of machine can 

achieve this, only that some substrates are intrinsically more promising than others. 

True interaction with the environment must intimately involve basic mechanisms, a 
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flow of internal system processes unimpeded by observer-determined abstraction 

barriers". The loop through the world is not enough - there must also be many 

recursive loops through a tractable medium internal to the agent that effectively 

embed the agent in time as well as in space. 

Clearly, conventional connectionist research, too, has been concerned with spatial 

patterns or with giving a spatial representation to essentially temporal structures such 

as natural language or speech. Adducing the example of scientific research into 

human audition, Port et al. (1995) argued that the standard models suffer from 

predication on what they call naive time. This is the notion that what we call real or 

biological time, consisting in the information available to an organism intrinsically 

bound with timing, uses a representation of absolute time, that is time measured by 

reference to some external clock. One consequence of this is that such models usually 

incorporate a temporal buffer (as in NETtalk). Input sequences of arbitrary length are 

collected and presented to the model contemporaneously. There appears to be no 

direct biological evidence for this approach but buffered models are common in 

connectionist research into processes that unfold over time. The shortcomings of this 

approach and of explicit time models generally, were described by (Elman, 1990), in 

the context of human language processing experiments. Although, in his experiments 

the system was not situated (in the sense of having real or realistically simulated 

sensors or motor outputs), Elman's alternative implicit model of time (the SRN) 

contributes strongly to the notion of embedding in time. From this perspective, it can 

be interpreted in the following way: the effects jects of time on processing in the system 

solely constitute the system's model of time, and thus time is no longer an engineering 

11 Brooks refers to subsumption's behavioural layers as abstraction barriers (Brooks, 1986). 
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appurtenance extraneous to the model. In the SRN, this is achieved through simple 

feedback connections between layers. According to Elman, "representations", formed 

in the hidden units of the SRN (ignoring, for the moment, how these are to be 

construed), are involved in mapping both current external stimuli and prior internal 

states to outputs. They thus intimately bind spatial and temporal patterns in a task- 

related manner. This connectionist ability to model simple, dynamic short-term 

memory (STM), at the level of granularity of its processing elements, differentiates 

neural networks from both symbolic Al systems and nouvelle AI systems. This is so 

although both, in some manifestations, and at some level, can also be viewed as 

dynamical systems of a kind (Franklin, 1995). 

The distinction between traditional accounts and the one this thesis is moving towards 

is most clear at the dynamical systems level of description. The dynamic space of the 

standard, connectionist feedforward model is organised around local points or regions 

of attraction. The characteristic behaviour of this model encourages interpretations 

similar to the folk psychology account of stable referential relations between internal 

and environmental states rejected by Bickhard and Turveen (1995). However, in 

recurrent models of the kind advocated here, the dynamics may be characterised by 

trajectory attractors. In (Peschl, 1995) may be found support for the view that 

traditional representational misconceptions should be abandoned and replaced with a 

conception of representations in terms of such dynamic state trajectories' 2 through the 

activation space of cognitive systems. In sum: the perspective opened up in this 

chapter is of systems and subsystems that model processes intrinsically (rather than ad 

12 If the cognitive system is modelled using a discrete time dynamical system the term is more correctly itineraries, 
but as is well known, continuous time dynamical systems can be approximated to an arbitrary degree of accuracy 
by controlling the granularity of the model, so the argument holds for connectionist models too. 
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hoc) dynamical. This opens the possibility of enabling autonomous agents to enjoy 

non-conceptual contents, that is contents-for-the-machine rather than for the observer 

/ user. The next section explores the possibility that such models may be provided by 

connectionist networks, provided they are not construed merely as stateless input- 

output systems, and that they conform to one of the requirements of interactivism, 

namely that the system should interact with an environment so that past outputs affect 

subsequent inputs. 

8.4 Summary 

In this chapter the notion was developed that situated autonomous agents need to be 

embedded in time as a prerequisite for enjoying the representational contents 

necessary for the programmatic aims of Al. It was argued that the temporally 

impervious substrates of symbolic Al and nouvelle Al could not achieve such 

temporal embedding. In the next chapter some early work is presented that seeks to 

investigate the potential of recurrent neural networks in this respect. 
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CHAPTER 9 

ARCHITECTURES AND STUDIES (I11) 

A FRAMEWORK FOR DELAYED-RESPONSE LEARNING 

9.1 Introduction 

In this penultimate chapter, the focus turns to the role recurrent neural networks might 

play in the simulation of a form of behaviour that represents a step beyond the 

essentially reactive kind studied in Chapter 6 and Chapter 7. A foundational position 

on the need for so-called temporally embedded systems was established in the 

previous chapter. In the first section of the present chapter, a new second-order 

architecture is described, together with a framework designed to support the study of 

delayed response in the context of SAB. This form of behaviour generally requires 

more than the single step memory previously investigated. In the second section, two 

further sets of studies are described that suggest how the new approach can be used to 

investigate the potential of various simple models of short-term memory, both extant 

and novel. These studies are offered as a preliminary step towards the longer-term 

aim of gaining insight into the temporal processes, held to be intrinsic to the 

grounding process (see Rylatt and Czarnecki, 1998; Rylatt and Czarnecki, 2000). 
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9.2 Architectures for delayed-response learning 

In Chapter 4, the work of Ulbricht (1996) was briefly discussed. She described how 

her input state network could learn so-called time-warped sequences. Clearly, this 

behaviour belongs to the class of behaviour studied more generally in cognitive 

science under the heading of delayed response tasks, for example Guigon and Burnod 

(1996). In both these examples, sensorimotor encodings were at a high level of 

abstraction. Guignon and Burnod were most interested in demonstrating a model of 

neuronal circuits in the prefrontal cortex and in their model each specific stimulus and 

required motor response was represented by a single, dedicated input or output unit. 

Ulbricht, though depicting a more "naturalistic" setting, in practice relied on a 

traditional connectionist scheme of representing inputs by means of alphabetic 

symbols. Within these constraints, she showed that her network could learn this class 

of behaviour by relying on task-specialised features dedicated to the temporal 

processing of input-level information. Unfortunately, these same features implied a 

pre-processing and training approach unsuitable for simulations of sensorimotor 

activity that try to be more realistic. For the studies discussed later in this chapter, 

sensorimotor activity would be simulated at a somewhat lower (though still far from 

realistic) level than described in the earlier chapters (cf. Stein, 1992, Pal and Ker, 

1996). Therefore, ways of focusing on input level information had to be found that 

avoided these problems. In this section it will now be described how: 

" enhancements where made to the basic SRN (for the first set of studies); 

"a new hybrid architecture was designed and implemented (for the second set of 

comparative studies). 
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9.2.1 An enhanced simple recurrent network 

It was decided to investigate the possibility that the SRN could be enhanced for 

delayed response learning by inducing the hidden layer to provide more input-relevant 

information to be fed back as temporal context. The use of feedforward networks to 

compress input into hidden layer representations by training the network to reproduce 

its own inputs at the output layer (auto-association) is described, for example, in 

(Kadaba, Nygard, Juell and Kanga, 1990): An SRN was set up to perform the auto- 

association task concurrently with the task of associating percepts with motor outputs 

by adding extra output units equal to the number of inputs. In training, the inputs were 

to be used as the target vector for the additional outputs so that a compressed input 

representation would form part of the hidden layer's state, fed back as context. 

Additionally, in order to control the amount of state information processed 

recurrently, a constant "gain" was to the context units. Note that in Elman's original 

SRN the feedback was modelled as connections to the context layer with fixed 

weights of 1.0. However, short-term memory can be modelled generally in recurrent 

neural networks as the convolution of the input sequence with a so-called kernel 

function (Mozer, 1993): 

I 
f K(t-z)X(r) (9.2) 
0 

where Kis the kernel function and X the input function. Applying this idea to the 

SRN, the equation for the context layer activation can be written : 
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cj = (1- y )hj (t) +yc, (t -1) (9.3) 

where cc is the jh context unit, h is the ph hidden unit and y is the gain constant. If y is 

set to zero, the effect is the same as that of the standard Elman context unit, that is, of 

a high definition, low depth memory unit, according to the terminology introduced by 

Mozer (1993). In this scheme, an increase in the gain should tune the context units by 

reducing the definition of the memory, at the same time increasing its depth. 

Convwersewly, a decrease in the gain should reduce the depth of the memory, at the 

same time improving its definition. No originality is claimed for this idea - it was an 

enhancement to the standard model that seemed strongly worth investigating as an 

independent variable that might be significant. 

9.2.2 The hybrid second order input state network 

The architecture shown in Figure 22 is a hybrid based on the second-order or 

quadratic network described by Pollack (1995) and the simple dynamic memory of 

(Port et al, 1995). It also has similarities with the self-adapting recurrent network 

(SARN) a hybrid of a second-order network and the SRN (Ziemke, 1996a). An 

explanation of its task-oriented features will be given later but first its general aspects 

need to be described. With further reference to Figure 22, it will be seen that this 

model has two levels of feedback (dotted arrows). Firstly, feedback occurs from the 

input layer to itself - indicated by showing an extra "layer" at a level before the input 

layer, similar to the context layer of an SRN. This re-conceptualisation may blur the 
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Figure 22: Hybrid second-order architecture with input state. 

distinction between "layer feedback" and "unit feedback" drawn by Ulbricht (1996). 

But in fact it shows the fully interconnected (solid arrows) nature of the self-recurrent 

input layer quite clearly, conforming to the activation equation of (Port et al, 1995): 

y, (t+l)=squash[ay, (t)+I: wsy+ input + bias] (9. l) 
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In equation 9.1, a is a decay rate, y is the feedback and input represents direct sensory 

input (bias is optional). The second level of feedback is from the hidden layer and this 

incorporates the second-order aspects. The architecture is illustrated as a single 

network but it may be conceptualised as two separate nets in a master-slave 

relationship. Feedback, from the hidden layer at time t-1, is construed as the input 

layer of the master network, which is then fed forward through a linear function to its 

output layer. The units of this output layer, in this model, represent the weights of the 

slave net hidden layer. The terms "quadratic" and "simple" reflect the multiplicative 

order of the connections. It will be seen that the master subnet will have a number of 

weights equal to the multiple of the simple weights between the layers it connects and 

the number of units in its input layer. The model is trained using backpropagation in 

the manner found to be successful by Elman (1990) and Pollack (1995) that 

effectively backpropagates error a single step in time. In this case, as in Ziemke 

(1996a), the hidden layer weight vector, adjusted by the slave net at time t-1, serves 

as the target vector for the master net at time t. Thus, the master weights multiplex 

the activation function of the slave's hidden layer, giving richer representational 

potential. 

9.3 Simulated adaptive behaviour studies using architectures 
for delayed response learning 

The two studies described in this section were set in a framework based on a 

synthesis of ideas from the aforementioned work of Ulbrich (1996) and Guigon and 

Burnod (1996). The framework was designed to support investigation of delayed 

response learning in the kind of simulated mobile robot environment described in the 
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earlier studies in this thesis. It represents a first attempt at supporting the position 

established in the previous chapter by providing a basis for practical investigation. 

The re-interpretation of Ulbricht's work in terms of Guigon and Bumod's 

neurophysiological laboratory-based indicates that traditional connectionism can still 

have relevance for SAB through a salient and mutual transfer of ideas between 

different levels of description. It also highlights some of the problems that emerge 

when levels of description change. In order to show this fully, it is necessary to recall 

Ulbricht's depiction of a scenario for so-called time-warped sequence learning (see 

Figure 23) and her scheme of representation. 

Although the figure depicts an agent moving along what appears to be a road with a 

T -junction and a landmark or sign, the salient features were simply represented as 

streams of discrete input and output tokens. At this level of description the problem is 

related to those discussed by Port et al. (1995), and (less obviously) by Elman (1990), 

and Pollack (1995). This observation is important because the agent's percepts were 

modelled at the level of symbols; and the unfolding of its perceptions in time, by 

means of strings of those symbols. At some level of description, this broad area of 

enquiry is concerned with either the recognition or prediction of grammars composed 

of such strings. In Ulbricht's scenario, instead of being interpreted as "accept" states 

signifying the recognition of a string as a member of a particular grammar or 

"language", the outputs of the network represent motor commands, which might be 
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Figure 23: Sketch of the time-warped sequence learning problem showing the landmark (X), 
concealed goal (G), decision point (D). The gap between X and D is represented by P. Re-drawn from 
Ulbricht (1996). 

interpreted in the following way (Figure 23): "go straight ahead while symbol X is 

perceived, continue straight ahead while symbol P is presented, turn right when 

symbol D is seen"', etc. X can be construed as some environmental feature that the 

agent is able to differentiate and use (as a memory trace) to make the control decision 

at D (maybe another environmental feature such as the perception of a fork in the 

route). P simply represents a unit interval following the last perception of X. During a 

sequence of Ps, the agent is not receiving input that is relevant to the decision at D 

(that is the symbol P has no information content relevant to D). Sequential 

presentations of these symbols can be interpreted as the constant sampling of a 

continuous signal, with repetitions of symbols representing varying rates of 

presentation. Two non-trivial problems investigated by Ulbricht were: 

1. how to handle long-term dependencies (for example many repetitions of P 

before D); and 

2. how to generalise across rates of presentation (that is, to ignore variations in 

rates so that, for example, the model can predict D following PPP having been 

trained only with P). 
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Reinterpreted at a lower level of abstraction, these became the foci of the two studies 

described here. 

9.3.1 Behaviours and related sensors 

In delayed response learning experiments, as described by Guigon and Burnod, a 

subject (typically an animal) in a laboratory setting is given an instructional stimulus 

(for example, one of two lights each spatially associated with a lever). This must be 

memorised in order to support an appropriate response (pulling the lever) when, 

subsequently, a decision is required (indicated by a third light, termed the go-signal). 

In Ulbricht's scenario, a correlate of the instruction stimulus was represented by a 

distinctive feature of the landscape "remembered" by the agent in passing. This was 

modelled by a single, suitably encoded alphabetic symbol. A correlate of the go-signal 

- the point at which the agent reaches aT -junction - was modelled in the same way. 

In the new framework these ideas where synthesised and reinterpreted at a lower level 

of abstraction in terms of the available simulated sensors. Thus, the landmarks / 

instruction stimuli were conceived as objects with clearly distinguishable profiles that 

the robot would scan with its range finder sensors when moving in the simulated 

environment. The simulated robot designed for these studies had sensors oriented 

forwards. A problem associated with this configuration was that there would be a 

considerable time lapse between the robot's last perception of the stimulus and its first 

turning movement to negotiate a branch of the T -junction. This would be so even 

though the simulated robot was holonomic13 - non-holonomic types would pose even 

13 A sufficient definition for the purposes of these experiments is: the ability to turn in place. 
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greater problems. As various researchers have noted (for example, Elman (1995), 

Linn, et al., 1996) existing and novel non-buffered ANN models of STM have 

difficulty in remembering context information more than a few steps into the past. 

Even Ulbricht's dedicated input state network seems to have been reliable only up to 

about six time steps. For these reasons a simplified version of the problem was 

represented in the simulation: the required delayed response would be a U-turn in a 

specified direction: each being a distinct temporally extended, motor control 

sequence. Rather than pre-wire the sequences it was decided to use supervised 

learning so that the representations responsible for them would be at the same level of 

granularity as the representations being memorised. This satisfied some of the 

requirements for structural coupling identified in the previous sections in a way that, 

for example, Colombetti and Dorigo (1994). 

9.3.2 Simulated mobile robot environment 

Figure 24: Mirror image environments. 

In both studies, the instructional stimulus was modelled as a "notch" or recess in the 

"solid" wall (Figure 24). This delimited zone offers a distinctive profile to the 
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Figure 25: Instruction stimuli from second study. 

simulated range finders, in contrast to the undifferentiated expanses on either side. In 

the first study, this feature was located either to the right or to the left of the central 

aisle. The delayed response task was to execute a U-turn. If the stimulus-object was 

passed on left hand side, then the turn should be to the right. Alternatively, if the 

stimulus-object was passed on right hand side, then the turn should be to the left. 

Study 1 

Two environments were created using IMRANN's screen painter; apart from the 

reflection about the vertical axis of symmetry, the two environments were identical in 

all respects. This procedure was devised to ensure that the neural network did not 

distinguish accidentally unbalanced features and use these as the basis for its 

decisions, rather than its memory of the distinct range finder profiles. Figure 24 shows 

two cropped screen dumps of these mirror image environments. 

Study 2 

In this study, more demanding recognition objects were used as the instructional 

stimulus (Figure 25): concavities with distinct contours situated on the same side of 

the aisle (that is, the instruction stimulus depended not on handedness but on 
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perceived shape). The investigation of generalisation across time was facilitated by 

incorporating a decision point into the simulations. This provided a dependent 

variable that could be adjusted in relation to the instructional stimulu. It took the form 

of a "go-signal", in this case a simulated light beam that could be flashed on and oft' at 

varying time intervals after the instructional stimulus was received. The robot's 

photoreceptors were the means of detecting this beam. This aspect of the simulation is 

illustrated in the cropped screen dump in Figure 26. 

Figure 26: IMRANNS screen grab showing simulated robot receiving a go-signal 

9.3.3 Simulated robot 

Although similar in outline to the simulated robot used previously in these studies, 

there were some significant differences: 

0 bump sensors were not used; 

" the simulated range-finders were positioned around the robot's `front' hemisphere, 

the beam angle varying according to the number of sensors used; 
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" two simulated light-sensors were also positioned on the front hemisphere; 

" the robot was able to turn in place through 45° in one movement; 

" the motor commands were encoded over just two binary units in the output layer 

of the controller, giving four (22) alternatives: straight ahead, left, right and 

reverse. 

As before, translations were simulated in single pixel steps. All sensors were placed 

symmetrically about the longitudinal axis. Each sensor was connected to an input unit 

on the input layer of the neural network controller. The only differences between 

studies were as follows. 

Study 1 

Six range finder sensors were used. 

Study 2 

More range finders were added to the robot for this task, making 10 in total, with the 

idea of improving the robot's ability to make and recall a reliable distinction between 

the profiles. 

9.3.4 Neural network details 

Study 1 

This was carried out using the enhanced SRN described in subsection 9.2.1. The 

network, with one hidden layer, was configured as in table 7. 

166 



Table 7: Details of enhanced SRN architecture (study 1). 

Architecture Enhanced SRN 

Layer Context Input Hidden Output 

Units 4 8 4 2 motor +8 predictors 
Connections One-to-one Fully All fully interconnected 
(internal) with hidden interconnected with hidden units 

layer units with input and 
(feedback) context units 

Connections One-to-one with Motor outputs only: one- 
(external) sensors (6 to-one with robot motor 

rangefinders, 2 units 
photoreceptors) 

Activation Logistic Logistic 
Function 

Bias units No No 

Table 8: Details of hybrid architecture (study 2). 

Architecture Hybrid 

Module' Slave Master 

Net type MLP SLP 

Layer Input state Input Hidden Output Input Output 
Units 12 12 4 2 4 48 

Internal One-to-one Fully with Fully with Fully with hidden Fully with Full 

connections with inputs input state input layer layer slave output 
units layer layer 
feedback 

External One-to-one one to-one with Fully with One-to-one 

connections with robot robot motor inputs slave output with master 
sensors layer first layer 

weights 
Activation Identity Logistic Logistic Identity 
Function 

Bias No No No 

'The modules are conceptual. 

Study 2 

This was a comparative study involving four different architectures. All networks had 

the same numbers of hidden layer units and motor output units as in study 1. The total 

number of sensory input units was increased to twelve, the additional four units being 
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connected to the extra range finder units on the simulated robot. Four architectures 

were compared. These were, the enhanced SRN used in Study 1 with an additional 

four predictor units on the output layer, together with the three architectures detailed 

in tables 7 to 10. 

Table 9: Details of simple dynamic memory architecture (study 2). 

Architecture Simple dynamic memory 
Layer Input state Input Output 

Units 12 12 2 
Internal One-to-one with Fully with input Fully with 
connections inputs units state layer hidden layer 

(feedback) 
External One-to-one with One to-one 
connections robot sensors with robot 

motor inputs 
Activation Identity Logistic 
Function 

Bias No 

Table 10: Details of NARX network (study 2). 

ARCHITECTURE NARR 
Layer Plan Input Hidden Output 

Units 2(t-1), 2(t- 12 4 2 motor 
2,2t-31. 

Connections One-to-one Fully Both fully interconnected 
(internal) with output interconnected with hidden units; both 

layer units with input and one-to-one with plan units 
(feedback) plan units 

Connections One-to-one with One-to-one with robot 
(external) sensors (8 motor units 

rangefinders, 2 
photoreceptors) 

Activation Identity Logistic Logistic 
Function 

Bias units T No No 

'Feedback to plan units was subject to multiple delays. 
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9.3.5 Training and testing details 

The special training scheme devised for this approach to delayed response learning 

had procedures that were common to both studies. Firstly, continuous samples of the 

robot's sensory inputs and corresponding motor responses were collected 

automatically. For this, the trobot was moved manually (that is, by using direction 

keys on the computer keyboard) along the centre of the aisle in each of the two 

associated environments (mirror-image in Study 1, pattern-differentiated in Study 2). 

Secondly, the controllers were trained initially (referred to as first phase training) on 

sets generated in each environment and tested in the same environment. This 

procedure was followed in order to confirm that the appropriate behaviour had been 

learned in response to each distinct stimulus, for example, turning right after a notch 

on the left-hand side. As expected, learning these sub-tasks proved to be a relatively 

trivial problem for all the controllers tested. Initial trials with the enhanced SRN led to 

successful parameter settings being adopted as common settings for all the 

architectures. During first phase testing, the learning rate was 0.3 and the momentum 

was 0.9. 

The common procedure for training on the overall tasks (referred to as second phase 

training) was initiated by concatenating the two training sets obtained from the paired 

environments for a given trial. For example, the set for turning right after a notch on 

the left-hand side and the set for turning left after a notch on the right-hand side. The 

controller was then trained using this expanded training set. The initial trials with the 

enhanced SRN (see above) had showed that parameter setting was far less 

straightforward than in first phase training. Ultimately common settings were adopted 

for both studies (a learning rate of 0.07 and momentum of 0.15). 
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In both of the training phases in each of the two studies, the following common 

parameter settings and were adopted. All weights were randomly initialised in the 

range [-0.1,0.1]. The enhanced SRN was trained and tested with five different 

settings of the feedback gain (0.1,0.3,0.5,0.7 and 0.9). The decay rate a (equation 

9.3) on the simple dynamic network and the hybrid input state network was zero in 

both training and testing. 

After second phase training was completed, the controllers were tested in each of the 

underlying paired environments and their ability to perform the required delayed 

response was assessed. 

Study 1 

In this single architecture study, only the capacity for long-term dependency, or 

memory depth, of the STM was tested. As it did not involve a go-signal, the robot 

was turned about its axis following a number of steps, starting when the instruction 

stimulus was no longer being detected (in the judgement of the observer). The total 

number of steps before the turning point was varied across multiple training sets to 

support investigation of the effective depth of STM. The number of steps varied 

between one and twenty. 

Study 2 

This study involved a go-signal. There was one training set for each instructional 

stimulus (because the interval between the instruction stimulus and the decision point 

was fixed at the mean value derived from the first set of trials - see above). For each 
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architecture the testing was repeated twenty times. The step on which the go signal 

was administered was incrementally increased from one to twenty across the trials 

During the training phase, the simulated light beam was "flashed" for one time step at 

a fixed number of steps following extinction of the stimulus in the training. The 

number of steps chosen was based on the mean value of five steps obtained in Study 1 

based on just the enhanced SRN. This was considered to represent the optimum depth 

of memory on which to base investigations into the ability to generalise across time 

when the controller was subsequently tested. 

9.3.6 Results 

Study 1 

The simulation was run and observations were made of the behaviour of controllers 

trained on each of the training sets with varying numbers of steps between instruction 

stimulus and turning point. Results, averaged across trials are summarised in the chart 

in Figure 27. As there would be a 50 per cent chance of turning in either direction, the 

results have been re-calibrated to set chance-level performance at zero. Figure 28 

shows a sequence of screen shots recording the robot's behaviour when it passes the 

instructional stimulus on the left and subsequently executes a right U-turn. The first 

two shots (viewed across the rows) indicate the gap between the robot's last 

perception of the stimulus and its commencement of the U-turn behaviour, in this case 

four time steps. Successful test runs were repeated using different lateral starting 

points for the robot. It was found that, with the exception of starting points very close 

to the wall containing the stimulus object, the successful behaviour was repeated. This 

eliminated the possibility that any arbitrary features of the robot's path were 
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Figure 27: Graph showing performance of enhanced SRN architecture (study 1). 

Figure 28: Sequence of turning movements (study 1) 
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responsible for its behaviour, and incidentally demonstrated the spatial generalisation 

capability of the ANN controller. It was observed that the longer the temporal 

dependency in the training set, the more erratic was the behaviour during testing. 

Tests at the far end of the range often led to the robot turning before it had passed the 

notch in one of the environments. Unsuccessful tests in the middle of the range 

usually merely led to the robot turning in the same direction in both environments. 

Clearly, this SRN has some ability to handle long-term dependencies in a continuous 

domain (contrast this with the findings of Ulbricht, 1996). 

Study 2 

The comparative results are summarised, re-calibrated as before, in Figure 29. Using 

the go-signal to enable measurement of the ability to generalise across time, these 

experiments indicated that all the networks had some temporal generalisation ability. 

In the case of the enhanced SRN, a network gain setting of 0.3 produced the most 

noticeable effects but generalisation tended to disappear as the gain was increased. 

The comparative results shown are based on the SRN with this setting. 

These results largely confirmed expectations that input level information is most 

useful to the agent, but the reasonable performance of the NARX network (with three 

output feedback delay lines) was surprising at least in the relative sense. However, the 

generalization ability overall was somewhat disappointing, particularly in the case of 

the hybrid network - certainly this was markedly inferior to the performance of 

Ulbricht's input state network (see section 4.2). It is possible that the highly 

specialized architecture, input pre-processing technique and training procedure 
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together with the conventional connectionist interpretive bias at the input level were 

responsible for the latter's superiority. Certainly, it was not possible to achieve the 

same level of performance, at the lower level of sensorimotor abstraction prevailing in 

these studies. 

Although the results reported are interesting, they must be seen as little more than a 

suggestion of how the much longer-term aims envisioned in section 8.3 might be 

approached initially, with existing or hybrid models. Clearly, performance limitations 

that have been noted in more conventional connectionist domains remain a problem in 

SAB studies. 

9.4 Concluding observations 

It will be noted that in the studies described in this chapter the modular approach 

investigated earlier was abandoned. Instead, the studies focussed more minutely on 
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Figure 29: Results summarised for study 2. 
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the temporal processing capabilities of monolithic architectures rather than on their 

ability to fulfil a certain task-oriented requirement as in the action selection problem 

described in Chapter 6. However, this did not represent a philosophical or design 

position as in the case of Ziemke (1996a, 2000). The belief in the long-term need for a 

modular approach was retained (cf. Dorffner, 1997). The change of focus simply 

reflected the need to step back to look more closely at the nature of temporal 

processing itself and its essential role in the development of autonomous agents. For 

similar reasons, supervised learning was used as a temporary, enabling measure. The 

approach need not attract the criticism that it has received in the context of traditional 

connectionism (for example Bickhard and Terveen, 1995), nor the rather polemic, 

blanket disapproval of some workers (for example Gaussier and Zrehen, 1994). This 

kind of criticism seems to stem from a rather die-hard commitment to "situatedness" 

that brooks no degree of disconnection from "reality" even to facilitate the 

investigation of interesting mechanisms. That different learning rules, including 

supervised learning, probably coexist in real neural architectures is a view expressed 

by Ellis & Humphrey (1999). Consequently, it would seem premature to reject any 

that in principle may have a role to play, even if as here the training regimes 

employed in practice are certain to be quite unlike those in real neural systems. We 

are faced by some of the most challenging problems still confronting the cause of 

human knowledge. In view of this, it is unsurprising that we are nowhere near being 

able to build "complete creatures" (pace Brooks, 1989) in any sense that keeps the 

long term aims of Al alive. Therefore, any techniques that can be marshalled in the 

attempt to throw a little light on obscure processes may perhaps not be too sternly 

resisted on the grounds of purity or polemics, provided they do not raise 

overwhelming foundational concerns. 
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The initial experiments described in this section concentrated on the SRN in an 

attempt to determine whether its advantages in other contexts could be shown to 

persist in this version of Ulbricht's scenario. Despite her findings that it was unable to 

solve the two constituent problems, the conclusions were that, with some processing 

enhancements, it was able to demonstrate a limited ability to handle the recast version 

of these problems. This perhaps confirms her conclusion that an "inappropriate" 

training procedure may have been a factor in its failure, rather than its inadequacy as a 

general model for temporal processing. 

9.5 Summary 

In this chapter the notion was developed that situated autonomous agents need to be 

embedded in time as a prerequisite for enjoying the representational contents 

necessary for the programmatic aims of Al. It was argued that the temporally 

impervious substrates of symbolic AI and nouvelle Al could not achieve such 

temporal embedding. Drawing broad inspiration from neuroscience, the chapter 

focussed on the association between short-term memory processing areas and 

behaviour guided by internal representations. A framework for study was established 

in which recurrent neural network controllers could be compared using a simulated 

mobile robot to perform tasks that required a delayed response. Some studies where 

described to investigate existing models, an enhanced model and a model with some 

novel characteristics in simulations. 
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CHAPTER 10 

CONCLUSION 

10.1 Introduction 

The inquiries into the simulation of adaptive behaviour reported in this thesis 

proceeded on two levels. On what may be termed the primary level, there were two 

distinct phases; the second level provided a bridged between them. In the first phase, 

the broad aim was to incrementally develop architectures integrating bottom-up 

learning and control for study in an essentially reactive setting. This was based on the 

opening discussion. It lent strength to the pragmatic view that ANNs offered a 

promising alternative to behaviour-based robotics in the attempt to surmount the 

problems of traditional Al (see also Rylatt et al., 1995 and Rylatt et al. 1998). The 

inquiries at the second, more philosophical level were seeded in that initial argument 

and germinated during the first phase of the inquiries. They took the form of a critique 

and statement of position on the question of how to move beyond reactive behaviour 

on a unified basis. From this position, the second phase of the inquiries went on to 

develop and investigate additional architectures for study in a delayed response 

setting. 

10.2 Achievements and limitations 

In the first phase, the aim was to address performance problems noted in subsection 

2.4.5 using a modular approach on the lines of the pre-emption architecture (section 
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4.2) but based on reinforcement learning. The full goal of this phase was achieve a 

unified implementation of the sensorimotor and control levels within this scheme. 

Because of the special problems associated with the introduction of reinforcement 

learning, two distinct architectures with several variants were incrementally 

developed and studied. Firstly, a modular architecture (Crill) was demonstrated to 

achieve performance similar to the pre-emption architecture, avoiding the kind of 

cyclical behaviour afflicting subsumption-based agents in reactive control setting 

(Chapter 6, see also Rylatt et al, 1996). Underlying this demonstration, the principal 

advance was the application of CRBP learning in a modular architecture. However, 

this fell short of the full goal as it relied on an algorithm to provide overall control. 

Incremental development of the first architecture led to MERGe, an architecture with 

the desired unified control approach (Chapter 7, see also Rylatt et al. 1997a and Rylatt 

et al. 1997b). This architecture was then studied in the same setting as the Cri11 

architecture. Its substantially similar performance is considered to have satisfied the 

full goal of this phase. The noteworthy underlying advance was the integration of the 

SRN under the CRBP learning scheme into the existing ME model. At another level, 

the approach succeeded in restricting the influence of user/observer semantics on 

behaviour learning to the very coarse-grained definition of a modular framework 

within which sensory-modality related competences could emerge. 

The second level of enquiry extended, and deepened the critique of nouvelle Al begun 

in section 2.5. In this, the foundational difficulties of behaviour-based robotics were 

more clearly identified as the reason why this approach cannot hope to cash the 

cheques written by Brooks (1990a, 1990b, 1992). The notion of embedding in time, 
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distinct from related arguments in focussing on the appropriateness of substrate, was 

developed as an extension of the idea of structural coupling from this critique 

(Chapter 8, see also Rylatt and Czarnecki, 1998). It represented a statement of 

position on the need for an appropriate, unified substrate to advance the simulation of 

adaptive behaviour significantly beyond reactive control. The conclusion drawn is 

that recurrent neural networks possessed features - not yet fully researched either in 

the context of the simulation of adaptive behaviour or of traditional connectionism - 

which made them promising as the mechanism for this substrate. 

At the primary level of inquiry, the second and concluding phase stemmed from the 

critique and statement of position but also represented an incremental advance on the 

first phase in terms of the behaviour studied. It had the limited aim of establishing a 

framework for these new studies, in which the behaviour investigated would be 

delayed response. Additionally, a further new architecture was developed with 

characteristics expected to have particular advantages in the new setting. In the 

studies, it was compared with extant recurrent neural network architectures. It proved 

to have measurably superior performance (Chapter 9; see also Rylatt and Czarnecki, 

1998; Rylatt and Czarnecki, 2000), though this was not sufficiently marked to remove 

the possibility that a radically different architecture might be needed in the end. 

The foundational arguments advanced in Chapter 8 were intended to assist the 

development of the new Al paradigm based on ANNs free not only of traditional 

connectionist pseudo-symbolic bias but also of any lingering behaviour-based 

preconceptions. Without such foundational surety, this new AI, advocated in Dorffner 

179 



(1997), falls to critiques such as, for example (Bickhard and Terveen, 1995) which 

dismisses connectionism because it shares the foundational representational errors of 

encodingism. However, the issue of representation is still highly contentious. It is 

likely that an enormous amount of experimentation and philosophical debate will be 

required to even begin to settle the issue (for an up-to-date overview, from a 

perspective particularly relevant to the ideas in Chapter 8, see Ziemke, 1999). Linäker 

and Niklasson (2000) provide an example of some fascinating recent work in this 

area. Abandoning the principle of error minimisation in favour of so-called change 

detection, they show how compact representations of sensorimotor experiences can be 

extracted from the abstract sensory flows that emerge from agent-environment 

interaction. The work is based on the novel Adaptive Resource Allocating Vector 

Quantisation Network (ARAVQ). However, the conclusion that such representations 

should make it possible to solve the problem investigated in Chapter 9 (to which the 

authors refer), using reinforcement learning, is not actually demonstrated. 

In conclusion, it will be clear that the overall contribution of these studies to 

knowledge cannot be neatly categorised as the construction of a single theory, 

application, artefact or methodology. It is offered in the context of the simulation of 

adaptive behaviour, an activity that is yet perhaps too diffuse to be considered a fully- 

fledged science. To this loose fascicle of knowledge, it has sought to contribute some 

new sticks of insight and some organically derived foundational glue. The integration 

of learning and control in one fine-grained medium, and the tentative identification of 

mechanisms therein that might support the grounding of representations, doubtless 

constitute only an infinitesimal part of the story that needs to unfold if the simulation 

of truly cognitive adaptive behaviour is to be demonstrated. In these studies, it only 
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remains to indicate how the work described might form the basis for further 

investigation. 

10.3 Summary 

The achievements and limitations of the work undertaken in these doctoral studies 

were summarised in this chapter. In the following final chapter, recommendations are 

made for further work. 
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CHAPTER 11 

RECOMMENDATIONS 

During the investigations, a number of interesting possibilities for further research 

were noted. The modular design of the MERGe controller described in Chaper 7 

provides scope for further studies that might explore different network topologies 

within the architecture, for example SRNs as experts as well as in the gating network. 

An example of recent interest in this kind of approach should be noted in (Tani and 

Nolfi, 1998) where a hierarchical, recurrent mixture of experts architecture (RME) is 

described. 

It might also be interesting to investigate the ability of a recurrent gating network to 

select appropriate types of expert for different tasks as in the experiments of Jacobs et 

al. (1991), with the added independent variable of temporal extension. Clearly, there 

is also scope for investigations that vary dimensionality, for example the number of 

units in various layers. It can however be noted in this respect that parametric 

investigations of this kind were undertaken by Meeden et al. (1994) using the 

monolithic Carbot architectures. These seemed fairly inconclusive, resulting in only 

very broad yardsticks - for example, "more is better". The dynamics of the recurrent 

networks require analysis so that observed behaviour can be more precisely attributed 

to activity at this level. However, analysis, in these terms, of other than very small 

networks is problematic. Experiments with such networks, however, may well be 

justified in order to carry out the "glass box" analysis that does not appear to be 
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applicable to networks with higher dimensionality (that is, hidden layers with more 

than three units). For examples of this kind of approach, with small hidden layers that 

permit 3D visual plots of activity, see Pollack (1995), Ziemke (1996a) and Sharkey et 

al. (1996). In particular, this approach might shed further light on the "modular versus 

monolithic" debate, in which the last named authors and at least Ziemke (1996b, 

2000) appear to have an interest, by revealing the way in which the gating network 

partitions the control space. An alternative approach sometimes followed is principal 

components analysis (for example Elman, 1995 and Meeden et al, 1994), but it would 

appear to be best suited to more traditional connectionist systems (that is, where input 

representations have been pre-determined through a symbolic user-semantics). 

The framework for study proposed in Chapter 9 could be used as the setting for 

further studies, based on existing and novel architectures. In particular, the suggestion 

of Linker and Niklasson (2000) that a new approach not based on error minimisation 

would provide a more complete solution to this problem could be investigated. 
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