

An Approach to Architecture-Centric

Domain-Specific Modelling and Implementation

for Software Development and Reuse

PhD Thesis

Qing Duan

Software Technology Research Laboratory

De Montfort University

2010

To my husband, Le, Jin and

 my mum, Wang, Zhu and my dad, Duan, Youde

for their loves and supports

I

Declaration

I declare that the work described in this thesis was originally carried out by me during

the period of registration for the degree of Doctor of Philosophy at De Montfort

University, U.K., from July 2004 to April 2010. It is submitted for the degree of

Doctor of Philosophy at De Montfort University. Apart from the degree that this thesis

is currently applying for, no other academic degree or award was applied for by me

based on this work.

II

Acknowledgements

My deepest gratitude goes to my supervisor, Professor Hongji Yang, for his

guidance, support and encouragement throughout my PhD career. He always provided

me with many sound comments and suggestions for the improvement of the thesis. I

am grateful for his leading role fostering my academic, professional and personal

growth.

I would like to thank colleagues in Software Technology Research Laboratory at

De Montfort University, for their support and feedback, and for providing such a

stimulating working atmosphere, Professor Hussein Zedan, Dr. Shaoyun Li, Dr.

Amelia Platt, Dr. Francois Siewe and many other my colleagues. Especially, I would

like to express my deep appreciation to Dr. Feng Chen, for his invaluable advice and

constant support.

During my work at the Information Technology Institute of Yunnan University, I

had the opportunity to design software architectures, take the development of business

application integration. The work eventually resulted in this thesis. I would like to

thank Prof. Hua Zhou, Prof. Hongzhi Liao and my group members, Prof. Zhihong

Liang, Junhui Liu and Xingping Sun, and all my colleagues.

I also want to thank the Graduate School Office at De Montfort University for their

outstanding management and warm help during my study.

I thank my parents-in-law, thank my brother Duan, Feiyao and his wife, and thank

all my family members, for their memorable support and encouragement that are too

precious to forget. I am especially thankful to my parents and my husband, for their

support during my PhD study. Without their support, the effort would have been

unbearable. Their love empowers me to steer through ups and downs and helped me

reach this point today. This thesis is dedicated to them.

III

Abstract

Model-driven development has been considered to be the hope of improving

software productivity significantly. However, it has not been achieved even after many

years of research and application. Models are only and still used at the analysis and

design stage, furthermore, models gradually deviate from system implementation.

The thesis integrates domain-specific modelling and web service techniques with

model-driven development and proposes a unified approach, SODSMI (Service

Oriented executable Domain-Specific Modelling and Implementation), to build the

executable domain-specific model and to achieve the target of model-driven

development. The approach is organised by domain space at architectural level which

is the elementary unit of the domain-specific modelling and implementation

framework. The research of SODSMI is made up of three main parts:

Firstly, xDSM (eXecutable Domain-Specific Model) is proposed as the core

construction for domain-specific modelling. Behaviour scenario is adopted to build

the meta-modelling framework for xDSM.

Secondly, XDML language (eXecutable Domain-specific Meta-modelling

Language) is designed to describe the xDSM meta-model and its application model.

Thirdly, DSMEI (Domain-Specific Model Execution Infrastructure) is designed as

the execution environment for xDSM. Web services are adopted as the implementation

entities mapping to core functions of xDSM so as to achieve the service-oriented

domain-specific application.

The thesis embodies the core value of model and provides a feasible approach to

achieve real model-driven development from modelling to system implementation

which makes domain-specific software development and reuse coming true.

IV

Table of Contents

Declaration ...I

Acknowledgements .. II

Abstract ... III

Table of Contents .. IV

List of Figures .. VIII

List of Tables .. X

List of Acronyms... XI

Chapter 1 Introduction .. 1

1.1 Motivation and Problem Description .. 1

1.2 Original Contributions .. 4

1.3 Research Methods ... 6

1.4 Success Criteria ... 7

1.5 Thesis Outline ... 8

Chapter 2 Background .. 11

2.1 Software Engineering .. 11

2.1.1 Generic View of Software Engineering .. 12

2.1.2 Evolutionary Software Process Models ... 13

2.2 Software Architecture ... 16

2.2.1 Software Architecture .. 17

2.2.2 Architectural Styles and Patterns ... 18

2.2.3 Business Goals, System Objectives and Architecture 19

2.3 Software Reuse ... 20

2.4 Domain Engineering ... 21

2.5 Executability of Model.. 23

2.5.1 Core Value of Model .. 24

2.5.2 Executable Model .. 26

2.5.3 Modelling Maturity Levels ... 27

2.5.4 Transformation between Model and System Implementation 30

2.5.5 Obstacles to the Executable Model ... 32

2.6 Summary ... 34

Chapter 3 Related Research .. 35

3.1 Model Driven Development .. 35

Table of Contents V

3.1.1 Model Driven Architecture .. 37

3.1.2 Key Techniques of MDA ... 39

3.1.3 Hierarchy of MDA... 40

3.2 Executability of MDA ... 42

3.2.1 Extension of UML 2.0 ... 43

3.2.2 Combination of UML and OCL ... 47

3.2.3 Executable UML ... 50

3.2.4 Executable and Translatable UML .. 53

3.3 Domain-Specific Modelling .. 55

3.3.1 Architecture of DSM .. 57

3.3.2 Domain-Specific Modelling Language .. 60

3.4 Web Services and Web Service Composition .. 61

3.4.1 Web Services .. 62

3.4.2 Web Service Composition .. 67

3.4.3 Modelling Methods for Web Service Composition 68

3.5 Summary ... 71

Chapter 4 Proposed Approach .. 73

4.1 From Models to System Implementation .. 73

4.1.1 Problems .. 73

4.1.2 Characteristics of Domain-Specific Modelling ... 74

4.2 Proposed Approach ... 78

4.2.1 Targets and Ideas ... 78

4.2.2 Features of the Proposed Approach .. 81

4.2.3 Executable Domain-Specific Model ... 82

4.2.4 Executable Domain-specific Meta-modelling Language 85

4.2.5 Domain-Specific Model Execution Infrastructure .. 86

4.2.6 Software Function Entities - Web Services .. 87

4.3 Summary ... 89

Chapter 5 eXecutable Domain-Specific Model .. 91

5.1 Keys to xDSM ... 91

5.1.1 xDSM Meta-Modelling ... 91

5.1.2 xDSM Behaviour Modelling .. 94

5.1.3 Accuracy and Integrality of xDSM .. 100

5.2 Behaviour Scenario ... 103

5.2.1 Behaviour Scenario ... 103

5.2.2 Primary Meta-Model of Behaviour Scenario .. 108

5.3 xDSM Meta-Modelling Framework .. 112

5.4 Summary ... 116

Chapter 6 eXecutable Domain-Specific Meta-Modelling Language 119

Table of Contents VI

6.1 Introduction ... 119

6.1.1 Structure of Modelling Language ... 119

6.1.2 XDML Architecture ... 121

6.1.3 Design Targets .. 126

6.2 XDML Abstract Syntax ... 127

6.2.1 The Extended XMML Language Unit .. 128

6.2.2 Hierarchy of Behaviour Language Unit ... 131

6.2.3 Behaviour Foundation Language Unit .. 132

6.2.4 Behaviour Core Language Unit ... 135

6.2.5 Action Language Unit ... 137

6.3 AS&MC Concrete Syntax ... 138

6.4 XDML Concrete Syntax .. 144

6.4.1 Domain-Specific Modelling .. 145

6.4.2 Behaviour Modelling .. 151

6.5 Summary ... 157

Chapter 7 Domain-Specific Model Execution Infrastructure 158

7.1 Architecture ... 158

7.2 Behaviour Logic Execution Framework ... 162

7.2.1 xDSM Behaviour Scenario Intermediate Code ... 162

7.2.2 xDSM Compiling and Parsing Algorithm ... 166

7.2.3 Behaviour Logic Execution Unit .. 175

7.2.4 Execution Control Unit ... 179

7.3 Web Service Model based on Business Document Exchange 183

7.4 Provider Framework of Domain Application Web Services 188

7.4.1 Structure of DSPROF ... 188

7.4.2 Domain Application Web Service Call .. 191

7.4.3 Web Service WSDL Description Generation ... 193

7.5 Support Framework of AGOS ... 194

7.5.1 Structure of AGOSOF .. 195

7.5.2 AGOS Service Configuration ... 199

7.5.3 AGOS Service Call ... 200

7.5.4 AGOS Service Virtualisation ... 202

7.6 Summary ... 203

Chapter 8 Domain-Specific Modelling Process and Implementation Framework 205

8.1 Domain Space ... 205

8.1.1 Architecture of Domain Space .. 205

8.1.2 Reuse and Composition of Domain Spaces .. 208

8.2 Domain-Specific Modelling Process ... 211

8.3 Domain-Specific Implementation Framework .. 217

Table of Contents VII

8.4 Summary ... 220

Chapter 9 Case Studies ... 221

9.1 Overview ... 221

9.2 Conference Registration System based on Mobile .. 221

9.2.1 Domain analysis ... 222

9.2.2 Meta-modelling ... 223

9.2.3 Application Modelling .. 228

9.3 Online Shopping System ... 230

9.3.1 Domain Analysis ... 231

9.3.2 Meta-Modelling ... 232

9.3.3 Application Modelling .. 245

9.3.4 System Implementation ... 247

9.4 Summary ... 250

Chapter 10 Conclusions and Future Work .. 252

10.1 Conclusions ... 252

10.2 Success Criteria Revisited ... 255

10.3 Future Work ... 258

References ... 260

Appendix A Concrete Syntax of XDML .. 275

Appendix B List of Publications .. 285

VIII

List of Figures

Figure 2. 1 Business Goals, System Objectives and Architecture 20

Figure 2. 2 Evolutionary Domain Life Cycle ... 23

Figure 2. 3 Modelling Maturity Levels .. 28

Figure 2. 4 Constraining Relationship between Model and Code Generator 31

Figure 3. 1 MDA System Architecture ... 38

Figure 3. 2 Hierarchical Model in MDA .. 41

Figure 3. 3 The Role of OCL in MDA ... 48

Figure 3. 4 The Basic Structure of xUML.. 50

Figure 3. 5 The Development Model of xtUML .. 54

Figure 3. 6 Domain Concept Transforms into System Implementation 56

Figure 3. 7 DSM Architecture .. 58

Figure 3. 8 Web Service Architecture .. 64

Figure 3. 9 Web Service Protocol Stack ... 65

Figure 4. 1 Framework of SODSMI ... 80

Figure 4. 2 xDSM Meta-Modelling and Application Modelling .. 83

Figure 4. 3 DSMEI Functional Structure ... 87

Figure 5. 1 xDSM Meta-Modelling Process .. 93

Figure 5. 2 Behaviour Structure ... 95

Figure 5. 3 The Behaviour Structure of xDSM .. 98

Figure 5. 4 Model Constraints and Action Specifications .. 102

Figure 5. 5 Elements of Behaviour Scenario .. 104

Figure 5. 6 Behaviour Scenario Work Process ... 106

Figure 5. 7 The Extension Mechanism of xDSM Meta-Model .. 114

Figure 5. 8 xDSM Meta-Modelling Framework .. 115

Figure 6. 1 Structure of Modelling Language .. 120

Figure 6. 2 XDML Architecture and Work Process ... 123

Figure 6. 3 Package Structure of XDML Abstract Syntax ... 128

Figure 6. 4 Abstract Syntax of the Extended XMML Language Unit 129

Figure 6. 5 Hierarchy of Behaviour Language Unit ... 132

Figure 6. 6 DataType Language Unit ... 133

Figure 6. 7 Expression Language Unit ... 134

Figure 6. 8 Behaviour Core Language Unit ... 135

Figure 6. 9 XML Schema Definition of Model .. 146

Figure 6. 10 XML Schema Definition of Entity ... 148

Figure 6. 11 XML Schema Definition of Relationship .. 149

Figure 6. 12 XML Schema Definition of Diagram .. 151

Figure 6. 13 XML Schema Definition of Intermediate .. 152

Figure 6. 14 XML Schema Definition of Operation .. 154

file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994746
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994753
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994754
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994758
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994759
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994762
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994809

List of Figures IX

Figure 6. 15 XML Schema Definition of Constraint .. 155

Figure 6. 16 XML Schema Definition of Event ... 156

Figure 7. 1 Functional Structure of DSMEI ... 159

Figure 7. 2 DSMEI Architecture .. 160

Figure 7. 3 XML Schema Definition of xDSM Behaviour Scenario Intermediate Code . 164

Figure 7. 4 The Process of Compiling and Parsing xDSM BS Intermediate Code 166

Figure 7. 5 The Algorithm Flow Chart of ParseXDML ... 168

Figure 7. 6 The Algorithm Flow Chart of RegisterOperation .. 170

Figure 7. 7 The Algorithm Flow Chart of CompileBeScenario 172

Figure 7. 8 The Logic Structure of BLEU.. 176

Figure 7. 9 The Algorithm Flow Chart of XEngineRun ... 177

Figure 7. 10 The Execution Cycle of BLEU .. 180

Figure 7. 11 Web Service Model based on Business Document Exchange...................... 184

Figure 7. 12 The Structure of DSPROF ... 189

Figure 7. 13 WSDL Concept Component Model ... 193

Figure 7. 14 The Structure of AGOSOF... 196

Figure 7. 15 Service Virtualisation of AGOS ... 202

Figure 8. 1 Architecture of Domain Space ... 206

Figure 8. 2 Hierarchy of Domain Spaces ... 209

Figure 8. 3 Reuse and Composition of Domain Spaces ... 210

Figure 8. 4 Generic Modelling Environment -- Archware ... 212

Figure 8. 5 Action Specification Defined in AS&MC Editor .. 214

Figure 8. 6 Model Constraint Defined in AS&MC Editor ... 214

Figure 8. 7 Meta-Graphic Appearance Description Code Editor 215

Figure 8. 8 Meta-Graphic Appearance Preview and Configuration Form 216

Figure 8. 9 Application Modelling in Archware .. 217

Figure 8. 10 DSMEI Console ... 218

Figure 8. 11 Service Information Configuration of AGOS .. 219

Figure 9. 1 Behaviour Scenario of Exit Operation ... 228

Figure 9. 2 Behaviour Scenario of Conference Registration .. 228

Figure 9. 3 Behaviour Scenario of Conference Schedule Browsing................................. 229

Figure 9. 4 Application Model of Conference Registration System based on mobile 230

Figure 9. 5 Meta-Model Designer .. 233

Figure 9. 6 Behaviour Scenario of Login Operation .. 241

Figure 9. 7 Behaviour Scenario of SelectDelivery Active Operation y 242

Figure 9. 8 Behaviour Scenario of CollectCommodity Active Operation 243

Figure 9. 9 Behaviour Scenario of Transaction Active Operation 244

Figure 9. 10 The Application Model of Online Shopping System 246

Figure 9. 11 Sevices Configuration of AGOS .. 248

Figure 9. 12 The Login Interface of Online Shopping System .. 249

Figure 9. 13 The Interface of BrowseCommodity ... 249

Figure 9. 14 The Interface of CommodityDelivery .. 250

file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994825
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994826
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994828
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994832
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994834
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994839
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994840
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994841
file:///D:/Phd%20Thesis/Thesis/Thesis_装订稿.docx%23_Toc264994842

X

List of Tables

Table 5. 1 Elements of the Primary Meta-Model of Behaviour Scenario 108

Table 7. 1 BS Registration Information .. 190

Table 7. 2 Abstract Operation Registration Information .. 197

Table 9. 1 Meta-Model Entities of the Registration System based on Mobile 223

Table 9. 2 Meta-Model Entities of Online Shopping System ... 233

Table 9. 3 Service Information of the Abstract Operation of PasswordValidation 239

XI

List of Acronyms

AGOS Atomic Group of dOmain-specific web Services

AGOSOF suppOrt Framework of AGOS

AS&MC Action Specifications and Model Constraints

ASL Action Specification Language

BLEF Behaviour Logic Execution Framework

BLEU Behaviour Logic Execution Unit

BNF Backus-Naur Form

BS Behaviour Scenario

CWM Common Warehouse Meta-model

DSM Domain-Specific Modelling

DSMEI Domain-Specific Model Execution Infrastructure

DSML Domain-Specific Modelling Language

DSPROF PROvider Framework of Domain application web Services

DSL Domain-Specific Language

EBNF Extended Backus-Naur Form

ECU Execution Control Unit

GME Generic Modelling Environment

MDA Model Driven Architecture

List of Acronyms XII

MDD Model Driven Development

MMLs Modelling Maturity Levels

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

QVT Query/View/Transformation

SODSMI Service Oriented executable Domain-Specific Modelling and

Implementation

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WSDL Web Service Description Language

XDML eXecutable Domain-specific Meta-modelling Language

xDSM eXecutable Domain-Specific Model

XMI XML metadata Interchange

XML eXtensible Markup Language

xUML eXecutable Unified Modelling Language

xtUML eXecutable and Translatable Unified Modelling Language

1

Chapter 1

Introduction

1.1 Motivation and Problem Description

Software is the spirit of a computer system. It has substantial impacts on success in

business today. However, faced with increasing demands and more challenging market

pressures, software systems become more and more large and complex. The

traditional software development technologies are insufficient for ensuring a

successful outcome that fulfills requirements and quality goals set out [39]. The

complexity, variety and changeability make the large software projects have

staggering failure rates: difficult to maintain, low dependability, high cost and the

longer time-to-market. The Standish Report [51] states that nearly a third of projects

are cancelled before completion and more than half suffer from serious cost overruns.

Efficiency and quality software development is a matter of the utmost concern of

the computer society. During the sixty years from the first computer coming in 1946,

the programming language goes through from machine language, assembly language,

to advanced language, the third-generation programming language. In the era of

advanced language, the development method goes from Structured Development to

Object-Oriented Development, then to MDD (Model Driven Development). Each

evolution of software development improves the development efficiency, upgrades

software quality and maintainability. At the same time, it makes the developer face the

problem domain more intuitively, shields the complexity of the development, and

enhances the flexibility and retractility of the system.

Chapter 1. Introduction 2

Software development is switched from code-centric to model-centric with MDD.

The model is not only an analysis and design specification, but also a software product

which can be automatically transformed into the executable system. MDA (Model

Driven Architecture) presented by OMG (Object Management Group) in 2002 is the

most representative MDD standardisation system. In OMG blueprint, a series of

standards of UML、MOF、XMI、CWM and so on separately resolve the problems of

MDA model construction, model extension, model exchange and model

transformation. OMG group attempts to expand the scope of application of MDA

through the standardisation definition. At the same time, IT vendors can feel free to

construct their in-house modelling language along with the mapping from the model

to the executable code, so as to ultimately realise the transformation from model to the

final executable system.

In 1986，Frederick Brooks proposed “The Silver Bullet Law [12]” and predicted

that “Within a decade, there is no single software engineering progress that can

improve software productivity by an order of magnitude[12]”. However, even to these

days, the industry has not broken through the conclusion. Represented by MDA,

MDD has been considered to be the hope of dissolving the silver bullet. After many

years of research and application, MDD has not been achieved either. The model is

still just used as an aided design tool for software development at the analysis and

design stage. Even more seriously, with in-depth software development, the code

implementation gradually becomes dominant. The model and the code implementation

essentially need to be synchronism updated for maintaining consistency by the

designer. But in many cases, the abstractability of the model and the role of the aided

design tool make the system model not be updated in time, especially in the software

maintenance period. Models gradually deviate from system implementation, which

observably reduces the effect of models and makes MDD fall through. Even the agile

software development method comes forth in recent years and put emphasis more

particularly on prototype practice as well as ignores the documentation and modelling

Chapter 1. Introduction 3

[7].

A central tenet of modern computer technology adoption has been the promise of

reuse, but this has proved difficult to deliver in practice. The reuse mechanisms and

fine-grained abstractions offered by object-orientation are rarely sufficient for the

development of large software systems. There is a necessary trade-off between

reusability and tailorability [39] because users‟ requirements cannot be effectively

anticipated.

Software architecture is a discipline that is able to connect and integrate the various

stakeholders, activities, and products involved in software engineering. Software

architecture also allows engineers much greater control over and deeper insight into

their systems earlier in the development process and can foster early identification and

avoidance of problems. As a result, software architecture can help steer the project

toward success rather than stumble into failure due to a lack of understanding [39].

Software architecture describes the high-level structure of a software system, and

can be used for design, analysis, and software evolution tasks. However, existing tools

decouple architecture from implementation, allowing inconsistencies to accumulate as

a software system evolves. Because of the potential for inconsistency, engineers

evolving a program cannot completely trust the architecture to describe the properties

or structure of the implementation accurately.

In response to those challenges, in order to cut the time and cost of development

and maintenance, reduce the complexity and invisibility, the methodology with higher

abstraction (architecture-centric and model driven approach) for software

development has to be pursued. The major topics of this thesis are described as

follows:

 To propose an approach to architecture-centric domain-specific modelling and

Chapter 1. Introduction 4

implementation for domain-specific software development and reuse;

 To construct the executable domain-specific model -- xDSM;

 To design the modelling language – XDML for describing xDSM models;

 To design and instantiate the domain-specific model execution infrastructure --

DSMEI;

 To achieve the domain-specific modelling process and the implementation

framework;

 To build web service oriented applications with domain-specific

implementation framework.

1.2 Original Contributions

In the thesis, a unified approach, SODSMI (Service Oriented executable

Domain-Specific Modelling and Implementation) is proposed in the context of MDD,

which integrates domain-specific modelling and web service techniques for achieving

domain-specific software development and reuse. The original contributions of this

thesis are as follows:

C1: The thesis presents the framework of service oriented executable domain-specific

modelling and implementation: the domain-specific modelling method is

employed to build xDSM (eXecutable Domain-Specific Model); web services are

adopted as the core functional implementation entities of xDSM executed on the

support of DSMEI (Domain-Specific Model Execution Infrastructure). xDSM can

be transformed into the service-oriented domain-specific application by parsing

and executing the behaviour logic of xDSM in DSMEI.

C2: Guided by MML5 (Modelling Maturity Levels 5) standard, XDML language

(eXecutable Domain-specific Meta-modelling Language) is defined to describe

Chapter 1. Introduction 5

xDSM meta-model and xDSM application model. XDML language integrates the

well-defined behaviour semantics to support domain-specific behaviour

modelling. The concrete syntax of action specifications and model constraints is

constructed on the basis of behaviour semantics, which is used to define the

dynamic behaviours of models.

C3: BS (Behaviour Scenario) is proposed as the core of behaviour modelling to

describe system behaviours according to system objectives by decoupling

behaviour logic and computational logic. BS is constructed from the view of the

domain behaviour process. It is represented as the diagram of behaviour logic.

The control flow and data flow of behaviour are defined and restricted by

AS&MC (Action Specifications and Model Constraints) syntax.

 C4: The extension mechanism of xDSM meta-model, which is a round trip from

meta-models to application models, is proposed. Based on the primary

meta-model of BS, the extension mechanism of xDSM meta-model is realised

by the way of using application modelling for the meta-model and the method of

meta-level promotion, and the xDSM meta-modelling framework is proposed to

extend and construct xDSM meta-model by the way to assemble.

C5: DSMEI is designed and instantiated as the execution environment of xDSM. It

utilises BLEF (Behaviour Logic Execution Framework) to interpret and execute

the complied xDSM application model, and provides end users with the xDSM

model execution application interface by the way of web services to achieve

model-driven development.

C6: Web services model based on business document exchange is proposed to design

and realise DSPROF (PROvider Framework of Domain application web Services)

and AGOSOF (suppOrt Framework of AGOS) for xDSM model execution. On

one hand, the dynamic publishing and calling of domain application web services

Chapter 1. Introduction 6

are realised; on the other hand, the virtualisation of AGOS services is realised.

C7: Domain space is proposed as the elementary unit of the domain-specific

modelling process and implementation framework. The reuse and composition of

domain spaces are realised by the flexible architecture of domain space on the

framework of service oriented executable domain-specific modelling and

implementation. It makes software reuse at the domain level, realises the reuse of

domain knowledge, and openly extends the range and scale of domain-specific

model and its implementation.

1.3 Research Methods

The thesis concentrates on the approach of architecture-centric domain-specific

modelling and implementation. This section describes the research methods applied in

this thesis, which links the knowledge coming from research to the practical outcomes.

The research field in this thesis belongs to software engineering aiming to the

successful production of domain-specific software and its reuse. The research method

applied in this thesis is the combination of empirical and constructive research that is

of both high practical utility and academic merit. The basic methods used in this thesis

are summarised as follows:

1) Methodology: a methodology is proposed in the thesis for architecture-centric

domain-specific modelling and implementation for domain-specific software

development and reuse, which links models and system implementation.

2) Observation and analysis: the thesis integrates domain-specific modelling and

web service techniques with model-driven development and proposes a unified

approach, SODSMI (Service Oriented executable Domain-Specific Modelling

and Implementation), to build the executable domain-specific model and achieve

the target of model-driven development.

Chapter 1. Introduction 7

3) Investigation: the thesis studies domain-specific modelling and DSML

(Domain-Specific Modelling Language), analyses similarities and differences

between domain-specific modelling and the universal modelling such as UML,

and investigates the feasibility of the executability of domain-specific models.

4) Modelling: the thesis studies MMLs (Modelling Maturity Levels) with the current

software models. Furthermore, the thesis designs the modelling language to

construct the executable model according to MMLs 5 through behaviour

modelling.

5) Execution infrastructure design: a model itself can not be independently executed.

It must be enforced in a certain execution environment. The thesis designs the

model execution infrastructure by the modelling language to support the model

execution directly.

6) Implementation support: through decoupling behaviour logic and computational

logic, system implementation details are encapsulated into web services.

Therefore, the thesis proposes the dynamic calling and providing mechanisms

based on web service architecture.

7) Extension: domain space is proposed to organise domain-specific modelling and

implementation. Domain space is the elementary unit of our approach, which can

be reused and assembled so as to support the reuse and composition of domain

knowledge at architectural level.

1.4 Success Criteria

The main criterion for the success of the approach to architecture-centric

domain-specific modelling and implementation is how to realise model driven

software development to create application software. The following criteria are given

Chapter 1. Introduction 8

to judge the success of the research described in the thesis:

 How to make model driven software development from the perspective of

domain-specific?

 What is an executable domain-specific model?

 How to describe an executable domain-specific model?

 How to make a domain-specific model executed?

 How to transform application models into the service-oriented domain-specific

applications?

 How to realise model-driven software reuse?

1.5 Thesis Outline

The thesis is organised as follows:

 Chapter 1 describes the motivation and problem, and gives the original

contribution, research methods and success criteria of the thesis.

 Chapter 2 introduces the background of the thesis including software

engineering, software architecture, software reuse, models and traditional

domain engineering. In the section of models, the executability of different

maturity models is investigated and MMLs 5 standard is involved as the

guidance throughout the work.

 Chapter 3 introduces and discusses the background and the state of the art of

the related fields including MDD, MDA system and the executability of MDA,

DSM, web services and web service composition techniques, etc.

Chapter 1. Introduction 9

 Chapter 4 raises the problems emerging from model to system

implementation and discusses why use the DSM (Domain-Specific Modelling)

method as the roadmap. The core idea of the thesis, the framework of

SODSMI is describe in this chapter.

 Chapter 5 designs xDSM (eXecutable Domain-Specific Model), and adopts BS

(Behaviour Scenario) as the core of xDSM to build the meta-modelling

framework for xDSM.

 Chapter 6 defines XDML (eXecutable Domain-specific Meta-modelling

Language), which is used to describe xDSM meta-model and xDSM

application model, and make xDSM application model executed by DSMEI

ultimately. In this chapter, the abstract syntax, the concrete syntax and

AS&MC concrete syntax of XDML are described in detail.

 Chapter 7 designs and instances DSMEI (Domain-Specific Model Execution

Infrastructure). It gives web service model based on the exchange of business

documents, which is used as the basis for designing and implementing

DSPROF (PROvider Framework of Domain application web Services) and

AGOSOF (Support framework of Atomic Group of dOmain-specific web

Services) of DSMEI.

 Chapter 8 proposes domain space which is the elementary unit of the

domain-specific modelling and implementation framework. Domain-specific

modelling process and implementation framework are introduced for guiding

the construction and execution of the domain-specific model.

 Chapter 9 gives two case studies of online shopping system and conference

registration system based on mobile. The chapter focuses on xDSM modelling

and illustrating the domain-specific modelling process and the implementation

Chapter 1. Introduction 10

framework with these application cases.

 Chapter 10 draws the conclusions, revisits the success criteria of this thesis and

discusses the future work.

11

Chapter 2

Background

2.1 Software Engineering

The IEEE has developed a comprehensive definition of software engineering: The

application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software; that is, the application of engineering to

software.

As Roger S. Pressman states in [104] , software engineering is a layered technology,

which has three elements: (1) methods, which provide the techniques for building

software including the design of data structures, program architecture, and algorithmic

procedure, coding, testing, and maintenance; (2) tools, which provide automated or

semi-automated support for methods; and (3) processes, the glue that holds the

methods and tools together and enables rational and timely development of computer

software (i.e., they define the sequence in which methods would be applied, the

deliverables, the controls that help assure quality and coordinate change, and the

milestones that enable software managers to assess progress).

The foundation for software engineering is the software process. SEI (Software

Engineering Institute) has defined five levels to characterise the maturity of a software

development organisation as CMM (Capability Maturity Model):

Chapter 2. Background 12

1. Initial -- ad hoc activities; dependence on the heroic efforts and skills of key

individuals.

2. Repeatable -- each project has a well-defined software life cycle, but different

models are used for different projects; success is predictable for similar

projects.

3. Defined -- uses a documented model for all activities; model is customised at

the beginning of each project.

4. Managed -- metrics are defined for activities and deliverables; data is collected

during the project to quantify progress

5. Optimised -- measurement data are used to improve the model.

There have been many models for software engineering. The choice of the right

model is based on the nature of the project and application, the methods and tools to

be used, and the controls and deliverables that are required. Since software

development is large and complex work, a phased approach to control it is necessary.

The software life cycle is a general model of the software development process,

including all the activities and work products required to develop a software system. A

software life cycle model is a particular abstraction representing a software life cycle.

In this work, a variety of life cycle models are surveyed, most of which focus

exclusively on the development processes.

2.1.1 Generic View of Software Engineering

A generic view of software engineering can be obtained by examining the process

of software development [104]. The process contains three generic phases, regardless

of the software engineering model chosen: the definition, development, and

maintenance phases that are encountered in all software development.

The definition phase focuses on what (i.e., the software developer attempts to

Chapter 2. Background 13

identify what information is to be processed, what function and performance are

desired, what interfaces are to be established, what design constraints exist, and what

validation criteria are required to define a successful system). The production of this

phase is software architecture, which will keep up impacting the following phases.

The development phase focuses on how (i.e., the software developer attempts to

describe how the software architecture and associated data structures are to be

designed, how procedural details are to be implemented, how the design will be

translated into a programming language, and how testing will be performed).

The maintenance phase focuses on change that is associated with error correction,

adaptations required as software environment evolves, and modifications due to

enhancements brought about by changing customer requirements [129]. The

maintenance phase reapplies the steps of the definition and development phases but

does so in the context of existing software. The large cost associated with software

maintenance is the result of the fact that software has proved difficult to maintain.

Early systems tended to be unstructured and ad hoc. This makes it hard to understand

their underlying logic. System documentation is often incomplete, or out-of-date. With

current methods it is often difficult to retest or verify a system after a change has been

made. Successful software will inevitably evolve, but the process of evolution will

lead to degraded structure and increasing complexity [63, 9, 81].

2.1.2 Evolutionary Software Process Models

1. Prototyping

As a software product is being developed, the view of developers is divergent from

the view of clients. Developers focus on design and implementation while clients

focus on requirements. The prototyping model enables the developer to create a

prototype of the software to be built to allow problems and requirements to be seen

Chapter 2. Background 14

quickly [14]. Prototyping begins with requirements gathering, where developers and

customers meet and define the overall objects for the software, identify whatever

requirements are known, and outline areas where further definition is mandatory. A

quick design then occurs. The quick design focuses on a representation of those

aspects of the software visible to the user. The quick design leads to the construction

of a prototype. The prototype is evaluated by the customer or user and is used to refine

requirements for the software to be developed. A process of iteration occurs as the

prototype is "tuned" to satisfy the need of the customer, while at the same time

enabling the developer to understand better what needs to be done.

2. Spiral Model

Barry Boehm et al. devised the spiral model to address the weaknesses of the

waterfall model [10], especially its lack of resilience in the face of change. The spiral

model focuses on addressing risks incrementally by repeating the waterfall model in a

series of cycles or rounds.

The spiral model is an improvement on the waterfall model, as it provides for

multiple builds and provides several opportunities for customer involvement.

However, it is elaborate, difficult to manage, and does not keep all workers occupied

during all phases.

3. Iterative and Incremental Development – UML Based Software Life Cycle

UML (Unified Modelling Language) based software development is a famous

example of an iterative and incremental software development process. Its designers,

Ivar Jacobson et al. characterise the process [49] as:

Use-case driven -- The use case model describes the complete functionality of the

system. Use cases are used as a primary product for establishing the desired behaviour

http://sunset.usc.edu/Research_Group/barry.html

Chapter 2. Background 15

of the system, for verifying and validating the system architecture, for testing, and for

communicating among the stakeholders of the project.

Architecture-centric -- The software architecture represents the most significant

static and dynamic aspects of the system -- the platform on which the software is to

run, reusable components and frameworks available, deployment considerations,

legacy systems, and non-functional requirements. A system architecture is used as a

primary product for conceptualising, constructing, managing, and evolving the system

under development.

Iterative and incremental -- The software development project is divided into

mini-projects, each of which is an iteration that results in an increment. Each iteration

deals with the most important risks and realises a group of use cases that together

extend the usability of the product as developed so far. The iterative makes one that

involves managing a stream of executable releases, and the incremental makes one

that involves the continuous integration of the system architecture to produce these

releases.

4. Component-Based Development Model

Over recent years there has been a move towards component-based architectures

and software development, reuse and the use of COTS [47]. One of the drivers of this

trend is an expectation that increased use of such components will increase system

development productivity and response time together with system quality, reliability

and evolvability.

Component-based development model absorbs many of the characteristics of Spiral

Model. It is a reuse-supporting approach to construct application systems from the

pre-packaged software components called classes. This model is more suitable for

object-oriented software development, but difficult to be adopted by the classical

Chapter 2. Background 16

(structured) software development methodology. The component-based development

model leads to software reuse and provides software engineers with a number or

measurable benefits.

5. The Fourth Generation Technique

The fourth-generation technique (4GT) model encompasses a broad array of

software tools that have one thing in common: each enables the software developer to

specify some characteristic of the software at a high level [30]. The tool then

automatically generates source code based on specifications written by developers.

The 4GT paradigm for software engineering focuses on the ability to specify software

to a machine at a level that is close to natural language or in a notation that imparts

significant function, but it tends to be used in a single, well-defined application

domain. Also the 4GT approach reuses certain elements, such as existing packages

and databases rather than reinventing them.

6. MDD (Model Driven Development)

MDD (Model Driven Development) [70] is a new software engineering method

which is developed following the object-oriented development methods. It focuses on

system modelling based on the best practices to construct software system models.

Models are used to guide requirements analysis, system design, code design, system

test, and system maintenance at various phases of software development. MDD is the

core idea and the target of the thesis. It will be introduced in detail in 3.1.

2.2 Software Architecture

Since the late 1980‟s software architecture has been recognised as an important

independent area of research for developing and reusing software. Software

architecture addresses techniques and approaches for easing difficulties associated

Chapter 2. Background 17

with development of large-scale software systems [112, 38, 23, 100].

2.2.1 Software Architecture

While software architecture has long been recognised that finding an appropriate

architectural design for a system is a key element of its long-term success, current

practice for describing architectures is typically informal and idiosyncratic.

Architectural structures are often described in terms of idiomatic patterns that have

emerged informally over time. For example, typical descriptions of software

architectures include statements such as these:

Definition 1. Garlan & Shaw Model [105]:

SA = {components, connectors, constraints}.

Components can be a group of code, for example, a procedure module, or an

independent program such as SQL server for a database. Connectors represent

interactions between components, for example, procedure call, pipes and RPC. An

overall architecture also includes some constraints.

Definition 2. Bass & Clements & Kazman Model [4]:

SA = {elements, externally visible properties, relationships}.

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them. “Externally visible”

properties refer to those assumptions other elements can make about an element, such

as its provided services, performance characteristics, fault handling, shared resource

usage, and so on.

Chapter 2. Background 18

Software architecture in the thesis is therefore summarised as follows:

1. Software architecture deals with the design and implementation of the high-level

structure of the entire software system. The software architecture of a system is an

product. It is the result of the software design activity.

2. A software architecture is a description of elements of a software system and the

relationships between them. Elements and relationships are recognised as the

fundamental ingredients of software architecture.

Software architecture is concerned with a higher-level abstraction and related to

more complex systems. Software architectures consist of elements and relationships to

describe the structure and topology of a software system.

2.2.2 Architectural Styles and Patterns

Software architecture may be explored at different levels of abstraction. Shaw and

Garlan explored various structural models called architecture styles, which were

commonly used in software and then examined quality attributes related to each style

[112]. At a lower level of abstraction than style, Shaw and Garlan identified

architectural patterns that commonly occur in various design problem domains such as

client-server architectures, proxies, etc. In theory, these architecture patterns can be

defined by applying a combination of architecture styles.

Using architecture patterns, reference architectures for an application domain or a

product line can be built. These architectures embody application domain-specific

semantics and quality attributes inherited from the architecture patterns. Application

architectures may be created using domain architectures. Examples of domain

architectures are reported in [38].

Chapter 2. Background 19

Platform architectures are middleware on/with which applications and components

for implementation of an application can be developed. Examples of these are

CORBA, COM+, and J2EE. A platform architecture selected for implementation of

applications in a domain may influence the architectural decisions for a domain

architecture. For example, transaction management is supported by most of platform

architectures and a domain architecture may use facilities provided by the platform

architecture selected for the domain.

2.2.3 Business Goals, System Objectives and Architecture

From a business perspective the following goals can be defined for products,

having impact on the software architecture within such a product [60, 50]:

 Short time-to-market;

 Low cost of product;

 High productivity of organisation;

 Adequate predictability of process;

 High reliability of product;

 High quality of products.

Chapter 2. Background 20

Figure 2. 1 Business Goals, System Objectives and Architecture

Although business goals are very general and hold for (almost) any business, it is

obvious that some priority ordering is necessary per system (or market). Given the

ordering of business goals, an ordering of system objectives can be derived, as

illustrated in Figure 2.1. For example, the cost of product is related to the amount of

reuse that can be established. Furthermore, system objectives can be mapped on

software architecture. For example, when a specific domain is concerned it is good to

explicitly distinguish generic and specific components.

2.3 Software Reuse

Software reuse is the use of existing software or software knowledge to construct

new software. Reusable assets can be either reusable software or software knowledge.

Chapter 2. Background 21

Reusability is a property of a software asset that indicates its probability of reuse [33].

The purpose of software reuse is to improve software quality and productivity.

Software reuse is of interest because people want to build systems that are bigger

and more complex, more reliable, less expensive and that are delivered on time. They

have found traditional software engineering methods inadequate, and feel that

software reuse can provide a better way of doing software engineering.

An important approach to reuse and one tightly coupled to the domain engineering

process is generative reuse. Generative reuse is done by encoding domain knowledge

and relevant system building knowledge into a domain specific application generator.

New systems in the domain are created by writing specifications for them in a domain

specific specification language. The generator then translates the specification into

code for the new system in a target language. The generation process can be

completely automated, or may require manual intervention.

Important contributions to generative reuse include the development of the theory

of meta-compilers, also known as application generator generators. These tools assist

in the development of domain specific application generators.

An important part of making domain engineering repeatable is a clear mapping

between the outputs of domain analysis and the inputs required to build application

generators. Better integration of these two phases of domain engineering will mean

much improved environments for domain engineering.

2.4 Domain Engineering

The life span of the average software application is ten years with a large variance.

Small-scale systems normally have a relatively shorter life. The type of application is

a consideration in the expected life span. Administrative applications such as

Chapter 2. Background 22

personnel and accounting systems live longer than business supporting systems for

sales or manufacturing [118]. Thus, within the context of domain specific frameworks,

an organisation must consider the scope, nature, and stability of the domain in order to

determine the requirements for the reuse investment [3].

From the perspective of analysis, a domain is a well-defined set of characteristics

that accurately, narrowly, and completely describes a family of problems. With respect

to software development, a domain is a collection of current and future applications

that shares this set of common characteristics [16].

Domain analysis is the key to reusable software in that it stresses the reusability of

analysis and design over code [82]. A domain analysis identifies common

architectures, reusable components, design alternatives, and domain-oriented

terminology. It is expressed in terms of abstract classes and subclasses, protocols,

frameworks, constraints, and inference rules, and finally encoded into design schemas,

where appropriate domain-oriented terminology can be used to create

application-oriented requirements language.

A domain model is the product of domain analysis. It provides a problem-oriented

architecture for the application domain that reflects the similarities and variations of

the members of the domain. An individual target system is created by selecting objects

from the domain model to support the provided requirements. The domain model is

also used to be the index into the object repository to ease selection and retrieval. New

requirements or variations not present are flagged as unsatisfied. The proper function

of the model is to capture how the designers and implementers think about the

relationships among the parts of the system, and not necessarily how the relationships

are implemented programmatically [13].

Chapter 2. Background 23

Figure 2. 2 Evolutionary Domain Life Cycle

EDLC (Evolutionary Domain Life Cycle) addresses the problem of software reuse.

As shown in Figure 2.2, EDLC consists of Domain Engineering and Target System

Configuration with emphasis on the production of domain reusable products. Domain

engineering involves domain-oriented reuse – the combining of software development

for reuse and software development with reuse. A cooperative effort between domain

analysts and system analysts is required. Important aspects of the domain engineering

are phenomenology, technology of description, and formalisation.

There is a diversity of opinion as to what products are the products of domain

engineering. They range from creation of the domain model to complete application

development. Specifications, designs, architectures [106], domain-specific code

library [100], and DSLs (Domain-Specific Languages) and tools [44] are three such

examples.

2.5 Executability of Model

Model describes system and its environment from a given view. It is an abstract

representation of system and its environment. For a specific aim, model extracts a

Chapter 2. Background 24

set of concepts relevant to the subject in order to make developers focusing on the

whole system and ignoring irrelevant details [61].

2.5.1 Core Value of Model

In the information age, the software development uses the engineering method to

build and maintain the effective, practical and high-quality software. The Software

Engineering like the engineering method of other fields is all required to use models to

participate in implementation of the project. The model has important practical

significance for engineering method. In the building project, engineers make the

building models to display and analyse the appearance and architecture of the building,

in the project of aircraft manufacturing. The models are created by the engineers to

carry out wind tunnel testing. In the engineering method, models can have a variety of

forms, including the conceptual model -- for examples, the appearance of a

building, the conceptual design of an aircraft; the graphical parametric model -- for

examples, the architecture of a building, the framework of an aircraft; the physical

model -- for examples, the miniature of a building, the proportional model of an

aircraft.

The core values of models used in engineering method embodied in the following

aspects:

 analysis and design of model-assisted: The model is a product of the physical

analysis and design, but also the blueprint is mutually communicated by

engineering staff of different roles, and it is usually produced by a minority of

professional staff, the domain standard is used to describe the analysis of

design thought of physicals, which can be a graphic or a character description.

 The cost of model is low and can be tested: Why do not make models the

physical? Because the model is susceptible to change, while the cost of making

Chapter 2. Background 25

model is less than the cost of making physicals. The blueprint can be given up

easily, but the building cannot be given up. Besides, the model can be used in

mutual communication of project-related staff, its core function is to be tested,

in order to test it, and the available test standard is needed. If you cannot

evaluate a model, the model is of no value.

 The model omits specific functions, but does not omit the details: The model

often reflects one aspect of physicals. It omits specific functions beyond this

aspect, but it cannot omit the details of this aspect. Models must depend on

these details to verify its correctness.

Software engineering [105] uses engineering methods to build and maintain

effective, practical and high-quality software. The model is the description and

specification of software functions, structure, behaviour and its environment. The

software model should have the core value of the model in the engineering method. It

should not only stay in analysis and design of software, but also to be reflected in the

correctness and effectiveness of the software validation, further to use the model to

drive software development. In the BOF meeting of OOPSLA 2003, the experts

defined the core value of a set of model-driven software development [120]. One of

the most important things is to strive to achieve automatically built software according

to domain model, to verify the software in developing is better than that of software

requirements.

It can be affirmed that the core value of model in MDD is the executability of

model. The executable models can be automatically transformed into system

implementation; to validate the model by system implementation is the most direct

and effective. The executable model includes analysis and design of the software, the

cost of building an executable model is much lower than that of code implementation.

At the same time, the executable models support reconstruction and omit the function

Chapter 2. Background 26

realisation. But it does not omit the necessary details of system implementation. MDD

is achieved by executable model, which is the key to dissolve "silver bullet".

2.5.2 Executable Model

Relative to the program executability, the executable models themselves is not

executed in the computer environment. The executability of model is generally shown

in two ways:

The first: models defined precisely can generate the executable code via the

automatic and complete transformation process. The code is compiled into software

system without manual intervention. Then it can be executed correctly in the computer

environment.

The second: models are parsed as the operations with accurate semantics, and can

be executed correctly in a specific software environment (such as the model virtual

machine).

The model in the first form is an intermediate software product, which cannot be

executed until it is fully transformed into executable code. The model itself in the

second form is the executable software product, but it needs a specific execution

environment to support. From the two forms, it is found that the executable models

must have two necessary conditions: Firstly, the model is given with the executable

semantics, and can be mapped to the executable code or operations directly. Secondly,

the model execution is an automatic and complete process no matter in either way, the

transformation of the model itself and parsing of model do not need the human

intervention. The executability of model is the core of model validation and the core

value of MDD. Thereby the software development can be driven by the model-centric

method. The designers no longer need to care about the details of system

implementation, an executable model eliminates the gap between the model and

Chapter 2. Background 27

system implementation.

2.5.3 Modelling Maturity Levels

During the software development process, with the deepening of analysis and

design of the systems, the corresponding system model will be experienced a

refinement process from vague to the fine, from the simple concept of system to the

structure and behaviour of system model. At the same time, in the analysis and design

of complex systems, there are different model descriptions related to different stages

and different abstraction levels, both a descriptive model making the simple natural

language as a subject and a precise behaviour description model. The software is a

complex man-made thing, the corresponding software model is a complex system,

founding hierarchy and using it are fundamentals to analyse and construct the model.

The model as a carrier to understand the behaviour of the system, essentially, the

model not only has architecture, and also has a clear hierarchical structure.

To evaluate the description capacity and the abstract differences of models, MMLs

(Modelling Maturity Levels) [22] is introduced and shown in Figure 2.3. The model

hierarchy is divided into six levels (Level 0 -- Level 5) by the MMLs.

Chapter 2. Background 28

Figure 2. 3 Modelling Maturity Levels

 Level 0: No Specification. The specification and idea of software just exist in

the minds of developers; there is no any model entity. This usually occurs in

early software development, only a subjective idea of the system exists at the

phase.

 Level 1: Textual. The specification and description of the software are

expressed by text documents. The text document can be both purely natural

language and a certain formalised document. As the subject is the natural

language with the ambiguity, so its description and instructions of the software

are quite vague.

 Level 2: Text with Diagrams. The specification and introduction of the

software are expressed by the formalised document with descriptive diagram.

The choice of diagram is freer, which can be any diagram describing system.

At the same time, the adding of diagram makes the system easier to

understand.

Chapter 2. Background 29

 Level 3: Models with Text. The model constructed by the diagram described

by the modelling language. The system is described by model and natural

language or the formalised document. Due to model-based and supported by

formal modelling language, the specification and introduction of the software

is more accurate and easy to understand and exchange.

 Level 4: Precise models. The software structure, functions, behaviours and

environment can be represented accurately with the model which is described

by the consistent and coherent formal notations or the modelling language.

There is no ambiguity on software if it is defined accurately. And it can be

mapped to the code directly. But it may be not complete.

 Level 5: Models only. The models constructed by the modelling language can

completely, consistently and accurately describe the system in detail. It is

sufficient to complete the work of code generation without the need for human

intervention to realise the entire software system.

From the different levels of model maturity, it can be known that the distance

between model and system implementation is closer and closer as the level increasing.

There are too many non-formal descriptions of the model in MMLs 0 -- MMLs 3 level.

The model itself is of ambiguity. Its abstract level is high and inaccurate. Basically, it

is difficult to transform models into system implementation directly. The model only

can be used as the model of analysis and design or the specification.

There is no ambiguity on the model of MMLs 4. MMLs 4 can describe the

software specification accurately, and map the model to the code directly. But it may

not be the complete code implementation，and need the manual supplement and

improvement. MMLs 4 is still at a high abstract level. It also describes the system

from various perspectives. But it may not be system-implementation-oriented

completely.

Chapter 2. Background 30

The model of MMLs 5 can describes the system completely, consistently, in detail

and accurately. And it can be transformed into the software application system

completely and automatically. So the executable model is realised really.

The software developments in MDA focus on building a high-level general system

model. The MMLs 4 model is the goal for MDA to achieve. At the same time, MDA is

committed to making the model in MMLs 4 accurate and complete, and can

automatically and completely complete the code transformation [22]. The designs of

the model in the thesis mainly refer to MMLs 5 level standards, accurately and

completely describe the system and construct executable models.

2.5.4 Transformation between Model and System

Implementation

The ultimate goal of MDD is to make models transform into system

implementation automatically, which is a necessary condition for the executable

model. It involves two key elements: model and code generator. They depend on and

restrict each other. The precise and complete model definition makes the size of model

large and the relationship complex, but the complexity of code generator can be

reduced; on the other hand, vague and incomplete model can be defined relatively

simple, but code generator will become more complex, with a certain degree of

adaptation and intelligence, as shown in Figure 2.4.

Chapter 2. Background 31

Figure 2. 4 Constraining Relationship between Model and Code Generator

The automatic transformation between models and system implementation can be

achieved in two ways.

The first way is to refine models and reduce the degree of abstract, so that models

can not only describe the system accurately and completely, but also gradually

approach to the system implementation. The MMLs is a standard to measure the

model description ability and the abstract degree. The refinement of model is also a

process from vague to accurate, from abstract to concrete, to narrow the gap with the

system implementation step by step, so the software system can be generated

efficiently. MMLs 4 and MMLs 5 are the more suitable model maturity levels for code

generation. For the model at MMLs 1 to MMLs 3, system implementation is difficult

to achieve, or even impossible to achieve. The construction of related executable

model based on UML is developed by following the thought, the architecture of UML

has fundamentally changed starting from UML2.0, it emphasises more on behaviour

modelling, and introduces some advanced language elements. At the same time, OCL

is used to constrain the model accurately. In xUML (eXecutable Unified Modelling

Language) and xtUML (eXecutable and Translatable Unified Modelling Language),

the action specification language is directly used to describe the system in supplement,

more accurate and complete close to implementation, and it is convenient to be

transformed into system implementation.

The second way is to improve code generator technology and make code

System

Implementation

Simple

Code Generator

Accurate

and Integrated

Model

System

Implementation

Vague Model

Complex

Code

Generator

Chapter 2. Background 32

generation more adaptable and flexible, so as to gradually approach to the model

description. MDD is built on existing technologies. Advances in computer technology

will promote the realisation of MDD; the object-oriented technologies have

contributed to the success of UML; the gradual development of computer technology,

such as component technique, distributed technique, artificial intelligence and data

mining technique will promote the realisation of code generator or a further model

virtual machine, automatically and completely make the model transformed into the

system implementation, and even the relatively vague software model.

2.5.5 Obstacles to the Executable Model

The goal of the executable model is to transform the model into the system

implementation automatically. The model is an abstraction of high degree of system

implementation, which simplifies the complexity and omits specific implementation

details. Due to lack of the accurate description, as the model is transformed into a

system implementation, code generator is difficult to generate the full implementation

code, only the traditional coding methods are adopted to realise software systems. The

model itself and the corresponding code generator are the main obstacles for the

executable model at this stage. For the model:

 The description of model is inaccurate; the model itself is highly abstract,

omitting many details of the definition, resulting in the semantics of most of

model elements inaccurate, with a lot of uncertainty and ambiguity.

 The description of model is incomplete. The model is based on a perspective to

look at software, with a certain one-sided; each model scenarios is difficult to

be combined to describe the whole system;

 The description of model is more likely to describe the system structure. The

capacity for describing system behaviours is weak. Software itself is dynamic,

Chapter 2. Background 33

so does the software requirements specification. A large number of static

models are not sufficient to describe the software system;

For code generator:

 Code generator not only contains core domain business code, but also adds

adaptation conditions and transformation logic according to specific modelling

language. If model is incomplete and inaccurate, it even needs to carry out

some logic judgement based on the external environment of model elements or

relationships, or using scenarios, so as to generate the code automatically. Thus

the complexity of code generator, system size and difficulty of implementation

far surpass the generated system;

 Code generator is also a software product. Changes for software systems come

anytime and anywhere. The complex code generators also need to face

requirement changes, not only for the generating system, but also its own

changes. The excessive complexity and the huge scale of the system will make

code generator difficult to cope with requirement changes;

 Code generator according to transformation logic and model semantic to carry

out code generation, code generator is often associated with the modelling

language. Abstract syntax elements can be gotten from the model instance and

according to its semantics to be transformed into a specific executable code.

As the modeller cannot clearly understand the semantics of the model or

semantic expressed by the model element itself is not clear, the model

constructed by the modeller cannot be generated the correct code by code

generator.

Many issues between model and code generator restrict the executability of the

model, so the efficiency of code generation exists in automatic generation platform,

Chapter 2. Background 34

namely, the code framework can be only generated in accordance with the model

definition. The auto-generated code cannot fully meet the design requirements of

software functionality, it is still needed to manually add some code, or connect the

code fragments. However, with the development of techniques and the gradual

refinement of model definition, the executable model will settle the obstacles.

2.6 Summary

In this chapter, the background and basic concepts of the thesis are introduced.

 Software engineering is the engineering application of software development,

operation, and maintenance. The development models in software engineering

evolved from prototyping to MDD. MDD is the target of the thesis.

 The concepts and elements of software architecture, software reuse and domain

engineering are introduced. They are the background of the thesis.

 The executability of model is the core value of model in MDD, which results in

the main idea of the thesis. The executability of different models is investigated

and MMLs 5 standard is used as the guidance for the thesis work. How to make

model executable and the obstacles to the executable model are discussed in this

chapter to do the preparation for the next work.

35

Chapter 3

Related Research

Many organisations, companies and research institutes are carrying out an active

exploration and research about model-driven development methods, modelling

methods and implementation techniques, as well as executable models. OMG puts all

the explorations together and MDA is formed, it also makes some standards to support

MDA, such as UML, MOF, OCL, XMI, CWM, QVT, etc. However, the biggest

problem of OMG is that it elicits the whole architecture, but does not provide the

concrete implementation [55].

The general modelling tool supporting UML is provided by IBM, such as Rational

Rose, but it has some problems in some aspect, for example, Rational Rose is not fit

for domain modelling [115].

This chapter introduces and discusses the background and the state of the art of the

related fields including MDD, MDA system and the executability of MDA, DSM,

web services and web service composition techniques, etc.

3.1 Model Driven Development

MDD (Model Driven Development) is a new software engineering method which

is developed following the object-oriented development methods. It focuses on system

modelling based on the best practices to construct software system models. Models

are used to guide requirements analysis, system design, code design, system test, and

system maintenance at various phases of software development. MDD involves some

Chapter 3. Related Research 36

technical methods, such as model description, modelling methods, model transform

and code generation, etc.

MDD is a model-centric software development process, and the model itself can

have many forms, but an accurate language is needed to be defined to describe the

system or part of the system. The model is the description of the system (or part of the

system) by a precisely defined language. The description language has the precise

form definition (syntax) and the meaning (semantics) definition. Such a language is

suitable for computer to interpret automatically [56]. The underlying purpose of MDD

is to make model and implementation be unified perfectly. The models are

transformed into system realisation by modelling, model transformation and code

generation. At the same time, the models can be used to answer the requirement

changes rapidly. The high flexibility of the models decides that it is only needed to

adjust the models and re-generate the code, which which is better for responding to

requirement changes.

MDD brings reform of the system development, which improves efficiency of

software development and enhances the portability of the software, ability of team

work and maintainability. MDD improves the abstract level of development; the

modelling is carried out above the code realisation in a manner of code generation to

make the highly efficient and stable system come true, which greatly improves

software productivity and reliability.

However, MDD just gives us specification and methods of development; it is not

the real problem-solving entity. It requires a powerful tool to support, including

modelling tool, model transformation tool as well as code generation, etc. while MDD

does not abandon the existing software development methods and techniques; it just

takes a solid step on the forward road of software development method. Due to these

advances in software development methodology, so the successful application of

Chapter 3. Related Research 37

MDD approach becomes possible, for examples, 3GL [22]，design patterns [111],

component-based development [125], middleware [11], declarative specification [97],

application framework [26], design by contract [72] and the object-oriented

development methods [40], etc.

3.1.1 Model Driven Architecture

MDA is a software development framework defined by OMG, which is based on

UML, MOF, XMI, CWM, and CORBA. It supports software design and model

visualisation, storage and exchange. MDA separates the tightly coupled relationship

between analysis and design of business function and implementation techniques.

MDA development process is actually a process of model-centric, changing the

high-level abstraction model into low-level ones, which is finally transformed into

code.

MDA is put forward by OMG (Object Management Group) in 2001, and it is an

essential change from object-oriented design to model driven development [80]. Its

core idea is to abstract the core PIM (Platform Independent Model), which can

completely describe the business function and have nothing to do with implementation

techniques, then multiple transformation rules are made according to different

implementation techniques, and PIM is transformed into PSM (Platform Specific

Model) by these conservation rules and assistant tools, PSM have some with the

implementation techniques, finally the enriched PSM is transformed into code. The

purpose of MDA is to separate business modelling from underlying platform

techniques by PIM and PSM and to protect the modelling result that cannot be

affected by technical change [21].

The essence of development approach based on MDA has raised the role and status

of model in software development and the model-centric idea is used to drive the

Chapter 3. Related Research 38

entire development process, namely, the model is used to guide the understanding of

the software, design, create, deploy, operate, maintain and modification[33]. MDA can

be used to answer the challenges of interoperability. It is an open and vendor-neutral

development method. It is built upon the existing OMG modelling standards, and

takes full advantage of value of these existing standards. MDA system architecture is

shown as Figure 3.1.

Figure 3. 1 MDA System Architecture

The systems development process based on MDA is with the following four

characteristics [109]:

 The development process is completed by concept models of different abstract

level and many viewpoints.

 It makes a clear distinguishing between PIM and PSM.

 The model plays an important role not only in the initial stages of development,

but also in maintenance, reuse and further development process.

Chapter 3. Related Research 39

 The model records the relationships among different models; therefore, it

provides the basis for model refinement and transformation.

3.1.2 Key Techniques of MDA

The core techniques of MDA include UML, MOF, QVT, CWM, XMI and OCL.

MOF (Meta Object Facility) [86] is a language used to define modelling language

to provide support for a wider range of applications. MOF provides a unified way to

describe the different types of modelling structures. So, a unified approach can be

used to describe properties of model structure that make up of the model and the

relationship between the model structures. MOF is the core technique of MDA.

UML (Unified Modelling Language) [91] is a standard modelling language to use

MOF to define meta-model, and MOF can be applied to almost all applications and

platforms. UML is the basis for the existence of MDA, and all the applications created

by MDA techniques are based on a standardised, platform-independent UML model.

UML is used by MDA to describe a variety of models, but it is not for MDA. However,

as the most popular modelling language of current, UML has occupied 90% market

share of modelling language of the world. It becomes the de facto standard of

modelling language [103], which is the basis of MDA and is also the most powerful

weapon of MDA.

XMI (XML metadata Interchange) [93] is meta-data exchange based on XML

(eXtensible Markup Language), which aims to facilitate exchange between the data of

UML modelling tools and metadata, and provides a metadata storage mechanism in a

multi-tier distributed environment. It defines data exchange format based on XML for

various models by standard XML document format and DTD (Document Type

Definitions) [96]. This makes the models as an ending product can be transferred in a

variety of tools to ensure that MDA will not be added a new layer of constraints after

Chapter 3. Related Research 40

breaking a restriction. XMI specification supports any data transformation of

meta-data (including model and meta-model) that can be expressed in MOF. At the

same time, it still supports the transformation of the entire model or a fragment of the

model to XML.

CWM (Common Warehouse Meta-model) [89] provides a means of data format

transformation. At any level of model, CWM can be used to describe the mapping

rules of two kinds of data models, such as transforming the data entities into XML

format from relational database. Under MOF framework, CWM is likely to make a

common data model transformed into engine.

QVT (Query/View/Transformation) [37] are the new standards of OMG, which is

being developed, mainly to solve the problems of transformation realisation of model.

MOF is used to define QVT, which is a part of MOF.

OCL (Object Constraint Language) [87] is an indispensable part of MDA

techniques. It can be used to constraints model at any level of MOF four-layer models

and instances. Its real meaning lies in the modelling-related domain constraints

language, in addition to constraints model, an important usage of OCL is to describe

the model transformation rules.

3.1.3 Hierarchy of MDA

The model is the focus of attention of MDA, from the practical perspective, model

is abstraction of software entities of different views during the software development

process, and at the same time, it guides software development. MDA divides model

and the meta-model into four layers [71], as shown in Figure 3.2.

Chapter 3. Related Research 41

Figure 3. 2 Hierarchical Model in MDA

The M0 layer is the instance layer, the running system is at the M0 layer, at which

is instance. On the point of business modelling, the instances of M0 layer is the

business object. For Example, data in the database or running active object in

computer.

The M1 layer is the model layer, including models; the concepts of M1 layer are

the classification of the instances of the M0 layer. Models are usually faced by the

modeller, such as UML model.

The M2 layer is called meta-model layer, which is corresponded to meta-model

M1-layer. The meta-model of M2-layer extracts abstract concepts and relationships

structure of different domains, and provides a modelling notation for the M1-layer

modelling. That is, the M2 layer provides domain modelling language for different

domains.

Chapter 3. Related Research 42

The M3 layer is meta-meta model layer, and MOF is located at the layer. MOF

provides a more abstract level of modelling support which is needed by defining the

meta-model at the M2 layer. MOF is the meta-model of all the meta-models of the M2

layer. At the same time, it is self-describing. MOF can be used to describe MOF

meta-model itself. In MDA framework, the M3 layer only has a model -- MOF, which

is the most basic and core standards of MDA, and it provides a unified semantic basis

for all the models and the meta-model in MDA, making a unified model operation

based on MOF become possible.

3.2 Executability of MDA

The executability of model of MDA is reflected in transformation from PIM

described by UML to PSM, and then PSM is transformed into executable code, so the

model is transformed into executable code. The model transformation rules and

precise definition of PIM are necessary conditions for MDA to make model

transformed into system implementation, while the key is the accurate and complete

definition of PIM, because no matter how subtle model transformation method is, it is

not able to complement deficiencies in the model itself.

UML is a well-defined, easy to express, powerful and general modelling language,

which is used as a description language for PIM by MDA. PIM is a description of

software features of platform independent and specification, the software features

mainly include architectural feature of the system (static) and behaviour

characteristics (dynamic). MDA demands high quality of PIM. PIM must ensure the

completeness, consistency and unambiguous, otherwise, it cannot be used to generate

PSM through the model transformation; neither can it be accurately and completely

translated into a system implementation. UML can be better modelling structural

features of the software, and PSM generated from PIM can carry more comprehensive

structure information of the system, such as class diagrams, deployment diagrams, etc.

Chapter 3. Related Research 43

However, UML is not good at decrypting software behaviour features, although UML

provides a sequence diagram, state diagrams, activity diagrams, collaboration

diagrams and other model views to modelling the software behaviour features, the

semantics of these model views and its model elements is inaccurate, which cannot

provide the necessary details of system behaviour. Therefore, the quality of PIM

which is solely described by UML is not high, PSM after model transforming cannot

fully reflect for software information of platform-related, and the missing software

behaviour features are needed to be manually added to PSM, so that PSM can be used

for the code generation. In order to improve this defect, making UML completely and

accurately describe PIM, in particular the behaviour features, the capabilities of UML

to describe the software behaviour characteristics must be expanded. Therefore, UML

is improved by OMG and UML 2.0 is released. Meanwhile, two solutions are

provided based on the basis, one is to make combination of UML and OCL to describe

PIM, the other is to use the executable UML to describe PIM, the most representative

is xUML and xtUML.

3.2.1 Extension of UML 2.0

According to some problems existing in UML1.X, OMG releases a new UML 2.0

standard in 2003 [118]. UML 2.0 integrates action semantics [84], extends behaviour

diagrams, adds loop, condition, assignment and other control and operational

structures, and enhances the ability of profile to express dynamic behaviour [35]. A

broad look at UML 2.0, it is not just a modelling language, but a combination that can

be used to define meta-meta core of a language family and a meta-language of

general-purpose modelling. As a narrow UML, compared to UML 2.0 with the

previous version, it is greatly enhanced in the component-based software engineering,

real-time and embedded systems, description ability of business process. The

improvement of UML 2.0 mainly focuses on the basic structure and the upper

structure.

Chapter 3. Related Research 44

The basic structure of UML 2.0 defines a core infrastructure library of

meta-language, a self-shown UML meta-model can be defined through reuse of the

core, and so do other meta-models, including MOF and CWM. Because they use the

common core library, so UML, MOF, and CWM are more consistent in the

architecture. At the same time, the infrastructure library also provides a more robust

mechanism of customisation UML that allows user to define dialects according to

different platforms and fields.

The superstructures of UML 2.0 strictly reuses constructs included in the

Infrastructure, which improves support of component-based development and MDA,

optimises ability of the structure specification, and enhances scalability, accuracy,

integration of behaviour diagram. It is embodied in the following aspects [69]:

 Model Diagrams：UML 2.0 supports 13 kinds of diagrams, which can be

divided into two categories: the structure diagrams and the behaviour diagrams.

The former includes: class diagrams, the composite structure diagram, the

component diagram, the deployment diagram, the object diagram and package

diagrams. The latter includes: the activity diagram, the interactive diagram, the

use case diagram and the state machine diagram, among them, the sequence

diagram, the communication diagram, the diagram of interaction and preview

and timing diagram are collectively called the interactive diagram. Compared

with UML 1.X, composite structure diagrams, package diagrams, diagram of

interaction and preview and timing diagram are the new diagrams. The original

collaboration diagram is renamed as communication diagram, state diagram is

changed its name as the state machine diagram. The original implementation

diagram is cancelled.

 Components：UML 2.0 enhanced support for component-based software

development. As a modularised part of the system, the behaviour and state of

Chapter 3. Related Research 45

the internal element contained in the component is encapsulate by the

component itself with interfaces, and the interface is used to define its

behaviour for the external and it can be replaced in its environments.

Components provide system functionality by assembling and connecting the

interface between the collaboration components. In UML 1.X, the concepts of

components is mainly used in the design phase of system implementation,

while the 2.0 will make the component used in the entire life-cycle modelling,

and finally it will be optimised in the deployment and run-time environment.

 Interactions: According to different interactive purposes, UML 2.0 can express

interactions in several diagrams: the sequence diagram, the communication

diagram, the diagram of interaction and the preview and timing diagram.

Among them, stretching capacity of the sequence diagram in UML 2.0 has

been significantly improved. The New interaction occurrence, combined

fragment and interactive operator makes the complex control structure, such as

selection, loop, parallel, orderly, and references can be expressed in the

sequence diagram. The diagram of interactive and preview is one of the new

interactive diagrams that describes the interaction, particularly focuses on

control flow, removes the message and lifeline, and the use notation of activity

diagram. Meanwhile, the timing diagram is also a new, particularly suitable for

interaction diagrams of real-time and embedded systems modelling.

 Activities/Actions: the activity diagram in UML 2.0 enhances the modelling

capacity of complex process, supporting model of control flow as well as

model of object flow, which enables the integration of the activities and

actions; the activities define a flow diagram (process); the action defines the

nodes of execution behaviour, making behaviour modelling more intuitive and

effective. The core of its new constructs includes: the pin is used for input and

output for the action, the structured nodes, and interruptible regions and so on.

Chapter 3. Related Research 46

Its semantic enrichment for the originally core constructs in UML1.X, which

includes: adding parameters on the edge, such as flag, flow, and abnormal, etc.,

enhancing partition method for the activity diagram of multi-dimensional,

hierarchical and expansion, and control node support bifurcation , convergence,

decision-making, mergers and so on.

 State Machines: UML 2.0 realised complete encapsulation of sub-state

machine and ability of pluggable replacement by exit / entry points on the

border. The state machine can be specialised; a specialised state machine is an

expansion of generalised state machine. At the same time, the sequence of

Constraint Operation occurred in port or interface of component can be

effectively constrained by the protocol state machine.

The making of UML 2.0 makes us see the dawn of MDD again. However， UML

2.0 still has not changed the fact of separation of MDA model and the system

realisation so far. The main reasons are as follows:

Firstly, UML does not fundamentally change its structure, and it still uses

structured abstract syntax to define the model and its elements, although the action

semantics are substantially increased, it is still hard to be dynamically associated

with true system and there are still shortcomings in detail description.

Secondly, UML is still a general modelling language according to all the fields,

UML 2.0 make the whole system more substantial and hard to use, difficult to

understand, more difficult to be transformed into system implementation.

Thirdly, the appearance of UML 2.0 did not change the missing problems in the

model-implementation supporting environment.

Chapter 3. Related Research 47

3.2.2 Combination of UML and OCL

The semantics definition made by the meta-model is informal and half-baked, and

it does not give precise constraints for the detail definition of semantics within the

model. OCL enhances the semantics description ability expressed by the modelling

elements based on UML semantic. The constraints are defined as follows by UML 2.0

specification; namely, it is a semantic condition or restriction. It is one of the three

kinds of UML extension mechanism (prototype, tagged values, constraints), and OCL

is usually used to formally express the constraints [46].

OCL is an expression query language. It plays a role in object model but does not

change the state of the model. It has two central roles in the model semantic

constraints, as well as the model query [124]. As a part of UML standard, which is

used to describe an additional constraint relationship in UML model, such as

invariants, pre/ post-conditions of operation, the state threshold and rules of attribute

derivation, accordingly, it can further accurately describe UML model. OCL has the

following characteristics [123]:

 OCL can not only be used to develop constraints, but also return the result

from expressions defined as the model elements. Thus extends the scope of its

application is extended.

 OCL has a good mathematical background. It is based on set theory and

predicate logic, so it can accurately and unambiguously describe model

elements.

 OCL is a declaratory, not imperative language. It is a language, which

describes what to do and does not describe how to do. It is a query language,

and its action does not make an impact or change on the model itself, which

also means that the system will not be changed because of OCL expressions.

Chapter 3. Related Research 48

 OCL is a strongly typed language, and any element is type-related, the type of

return value of any expression are certain.

OCL is a necessary condition for MDA, but not sufficient one. The typical

development process of MDA is to establish PIM, describe transformation definition,

and transform PIM into PSM by transformation tools. PIM and PSM are defined by

the modelling language during the period, the role of OCL at that time as shown in

Figure 3.3.

Figure 3. 3 The Role of OCL in MDA

The usage of OCL during the typical MDA development process includes three

aspects [22]:

 The first is that OCL is used to describe constraints in the model on creation of

models. To describe constraints in the instance of UML model is the most

common application, the model view and OCL expressions are necessary for a

complete PIM model, or the model cannot be precisely described. Only model

constraints are made in detail, the automatic transformation of models is

possible. According to the modelling, there are three types of constraints. The

first is the invariant, which is used to describe the static structure constraints of

Chapter 3. Related Research 49

the system. The second is the pre-and post-conditions, describing those

conditions and constraints that must be met by an operation at the beginning of

the implementation or at the end of execution. The third is the state threshold,

which is used to express the admissibility constraints on state transitions in the

state machine diagram.

 The second is that the definition of model transformation can be described by

OCL. The corresponding rules between the meta-class described by the source

language and those described by the target language are needed to establish to

define model transformation. OCL expression is used to accurately determine

the model elements of source and target meta-model, as well as their

transformation rules. The source model is transformed into target model by the

analytical implementation of the transformation tool.

 The third is that the modelling language can be described by OCL. Although

OCL is called “Object Constraint Language”, actually it can be used to

constrain the entire model in MDA four-layer model. The real meaning of

OCL is to establish the related modelling constraint language. At the same

time, it still can constrain specialised mechanism of UML profile, which is

defined as a group of stereotypes, a group of related constraints and a set of

tagged values. Using UML Profile needs additional syntax and mapping rules,

the additional rules can be defined by using OCL.

OCL enhanced the accurate model description ability in MDA system and now

quite a number of tools support OCL assistant-modelling. For example, a company

named Klasse Objecten in the Netherlands released plug-in Octopus which supports

Eclipse development environment of OCL2.0 [83]. The inspection tools of OCL

Compiler 1.5 can be integrated into SELECT Enterprise and Rational Rose [48]. It not

only enhanced the accurate description ability of UML, but also enhanced the

Chapter 3. Related Research 50

constraint capacity of MDA four-layer model by introducing OCL, while by making

the definition of rules of model transformation, making the model transformation of

MDA becomes possible. However, if the current OCL to define model transformation

and it is still needed to be extended, and then OCL did not change the nature

shortcomings of UML, the model is still difficult to be transformed into the system

implementation.

3.2.3 Executable UML

UML is a united symbols system, which is widely used to indicate various aspects

of object-oriented symbols. UML is comprehensively used during the process of

MDA, although UML specification is necessary in MDA process, it is inadequate to

carry out an executable modelling. xUML is a subset of the executable UML. xUML

abandoned the weaker semantics elements in UML, such as component diagrams and

deployment diagrams, kept the strong ones, such as sequence diagrams, collaboration

diagrams, state diagrams, class diagrams and package diagrams forming the core of a

subset of UML, while it enhances the action semantics, and to establish an executable

PIM based on this [108], as shown in Figure 3.4:

The core of xUML is the accurate action semantics, the model based on

object-oriented development methodology can be accurately described by the action

semantics. At the same time, the transformation between xUML model and code can

be realised by the mapping rules between model and code [75]. The behaviour

semantic is designed to provide a way for the modellers to precisely define behaviour

xUML

UML

Elements with

weaker semantic

Action Semantics

defined accurately

Figure 3. 4 The Basic Structure of xUML

Chapter 3. Related Research 51

in UML model. The action semantic in coordinating with UML can accurately

describe the model behaviour at the abstraction level above the programming

language.

In xUML, the system is divided as follows: a domain: a subject business needing

studying; categories: a collection of similar transaction; status: a situation of a class;

operation: action of state-free. Generally speaking, xUML is the executable version of

UML, which has a clearly defined and simple model structure, which contains the

precise action semantics, an action specification language and a configured software

process. Using an executable model-driven development has the following

characteristics [75]:

 The accurate and complete analysis model: the analysis model is not related

with the implementation, but the details. A PIM contains all the information

belonged to the subject matter being considered, including the complex and

analysis related detail part. When PIM gives the desired result of all the given

test cases, this PIM is complete. The delivery of PIM is a result, not just the

document. This requires that PIM is accurate, complete and executable.

 The scaled division method: it expresses the domain knowledge of xUML

model in the domain specific subject business for the establishment of complex

domain problems. Each subject business domain is called a domain, and the

independent PIM is used to obtain and express information of each domain. A

domain model encapsulates a subject matter, which can be a problem-oriented,

and can be solution-oriented. The knowledge of a domain is described in the

way of PIM, while PIM itself is executable and testing;

 An unambiguous standard symbol: xUML provides a simple, coherent subset

of UML notation. The choice of these symbols is based on the structure of

practical application, rather than special cases used in a construction of a

Chapter 3. Related Research 52

software system. These symbols themselves are simple, and the way of

organising and integrating those symbols must follow strict rules, which can

maintain the clarity of the entire system specifications.

 A consistent process on concepts: xUML based on the model-driven

development process is with consistency and strictness. Analysis is the process

to understand all the subject business. Design is the subject matter of analysis.

Developers generate the appropriate development products at an appropriate

abstract level. These products will always keep the latest. Even after code

generation, all the work is still carried out in the model.

 A large-scale reuse: in xUML, the domain is used for re-use. A domain

represents a subject matter, and the domain can be mapped to software unit at

the appropriate time, which encapsulates a subject matter or an aspect of the

system. A subject matter can be reused in a large-scale by the loose coupling

and cohesive of a domain.

Although xUML includes the precise definition of the action semantics, it does not

make a definition of a specific action language, which is completed by the software

vendors. The more well-known is ASL (Action Specification Language) [126] issued

by a company named Kennedy Carter. It is a behaviour language that is independent

of implementation language platform, by which the model behaviour description can

be improved and an executable model can be established, too. The ASL is an

unambiguous, accurate, readable and executable process based on object-oriented

modelling techniques. The others are such as OAL (Object Action Language) [42],

SMALL (Shlaer-Mellor Action Language) [76], TALL (That Action Language). At the

same time, xUML supporting tools have appeared based on xUML and different

action semantics. For example, the Products-iUMLite [113] of the Kennedy Carter

supports development process of xUML, establishment and verification of executable

Chapter 3. Related Research 53

models and the code generation. BridgePoint of Project Technology Company uses the

OAL as the behaviour language supporting MDD of xUML. At present, xUML is

mainly used in real-time systems development and the scope of application is

relatively narrow.

3.2.4 Executable and Translatable UML

xtUML [95] is used as a subset of UML, and it integrates a complete object-action

language. The Developers can create an executable domain model by this, after using

xtUML modelling; the verification system will be carried out to verify whether the

models meet the critical requirements. The validated model was compiled into

platform-specific code, finally formed into the target system can be deployed.

xtUML separate analysis model and design of software, allowing the developers to

be detached from target platform to test the analysis model of software, while

application model compiler automatically generates a source code of target- specific

platform and language optimised from the tested analysis model. xtUML is a

well-defined and full automatic software development methodology based on UML

notation. xtUML can accelerate development process of real-time embedded and

industrial software project.

To surround the motives of completely isolating the application model and the

design of software architecture, the design of xtUML includes the following three

components: the application model (namely, software analysis model) to realise a

clear and accurate modelling of software functions. The application model is

executable, so it can be used to verify the functional requirements of software. The

application model is completely independent of software design and implementation

details; the software architecture (defined as a collection of design patterns, design

rules and implementation techniques) is integrated into the translator, acting as a

Chapter 3. Related Research 54

reference template generated by target code. The software architecture is entirely

independent of the type of applications they support; the translator maps the

application model to design rules and patterns corresponding to software architecture

to achieve the full code generation automatically, as shown in Figure 3.5.

Figure 3. 5 The Development Model of xtUML

xtUML automatically generated the complete source code from the application

model. The complete source code is optimised based on the target platform. Of these,

the translator is the core of xtUML, and it is composed by following three parts.

 Software design elements for the translation is a collection of design pattern

and translation rules, the translation rules (also known as translation

prototype-Archetypes) provide the design patterns needed by the code

construction, as well as when and how to apply or fill these patterns.

 Translation engine extracted information of xtUML application model, which

explains the design patterns and translate rules, map model components to the

design pattern and eventually generate a full source code.

 The run-time library provides target code modules obtained from a series of

pre-compiled routines supporting translation.

Chapter 3. Related Research 55

The module syncopations of translator is helpful to customisation, construction

and maintenance of the translator, the addition and modification of design patterns,

transition rules and the run-time library do not need to modify the rendering engine.

The code generation process controlled by the translator involves three steps: (1) the

translator extracts required information from xtUML application model; (2) the

translator choose a suitable design pattern for the model component to be transformed

under the transition rule; (3) the translator uses information extracted from application

model to fill design patterns and get the full source code. The effectiveness of this

simple process lies in a filling of design pattern will usually lead to the filling and

invocation of other design patterns or rules, and thus making the translation of a

model components trigger nested translation of multiple components, while

everything is done automatically by the translator [117].

Currently, xtUML is mainly used in real-time systems development, and its

compiler uses a special code template language, primarily for the design pattern of a

specific framework and application, it is limited in application scope, and almost

unable to interoperability between different tools.

3.3 Domain-Specific Modelling

According to Capers Jones‟s software productivity research [52], the 3GLs

increased developer productivity by an astonishing 450%. After that, the later

introduction of object-oriented languages did not make the improvement much further.

From the pragmatic perspective, the emergence of DSM (Domain-Specific Modelling)

narrows down the abstract distance between domain concepts and its implementation,

thus significantly improves software productivity, as shown in Figure 3.6.

Chapter 3. Related Research 56

Figure 3. 6 Domain Concept Transforms into System Implementation

In the era of assembly language, developers use assembler to express domain

concepts, to the period of the advanced language, developers use the advanced

programming language concepts to represent domain concepts, in particular, the

object-oriented programming languages make programmer able to more directly

reflect the original appearance of the problem domain. The code written by the

advanced programming language can be automatically transformed into assembler to

implement the development of application system, and get the final product. At

present, developers usually map domain concepts into a visual UML model, under the

premise of generating part of advanced language code, add the missing code by hand

and compile to generate the assembly code, thus final product is formed. From the

assembler to UML model, the gap between the domain concept of human

consciousness and computer realisation is getting smaller and smaller, but it is still

great.

In order to further narrow down the gap between domain concepts and their

realisation, DSM uses the domain model to represent the domain concepts. The

information needed by the code generation is contained in the domain model, so the

code can be generated automatically from the domain model, in the effect of domain

framework, these codes turns finally into product. The way of the DSM hiding code is

Chapter 3. Related Research 57

the same as the compiler hided in today programming way.

DSM mainly aims to do two things. First, raise the level of abstraction beyond

programming by specifying the solution in a language that directly uses concepts and

rules from a specific problem domain. Second, generate final products in a chosen

programming language or other form from these high level specifications. The

modelling language, code generation and framework code are required to be

applicable for the requirement of a specific application domain, so the automation of

application development becomes possible. In other words, the application

development is domain-oriented and under the users‟ controls completely [53].

3.3.1 Architecture of DSM

DSM brings such a benefit: modellers only have to focus on the using of domain

concepts to design solutions, rather than on the software architecture and

programming details [20]. Once the design of solution is completed, it can be directly

generated into code under the effect of code generator [43, 54, 25], making developers

freed from burdensome code writing, thus the productivity of software is further

improved, industrial experience shows that productivity is creased by 3-5 times [19,

64]. In addition, code generator is designed by domain experts, so the quality of

generated code is higher than code written by the common programmer [19]. DSM

can effectively and as early as possible find out the problems related to domain

business and may appear in the modelling process, and to solve them by adjusting the

domain model [133]. DSM puts forward a three-tiered architecture in the target

environment [43]:

Chapter 3. Related Research 58

Figure 3. 7 DSM Architecture

1. Language

DSL (Domain-Specific Language) [18] provides an abstraction mechanism to deal

with complexity of a specific domain. The cores of DSL are concepts and rules which

represent things of application domain, rather than the concepts in a given

programming language. In general, the main domain concepts are mapped to the

object of modelling language, while other concepts are mapped to the object

properties, association, sub-models or model links in other languages. DSL embodies

business rules of a domain, such as operation specifications or industry standards.

DSL makes developers feel the directly use the domain concepts to work [45].

DSL is defined as a meta-model supported by relevant notations and tools. The

meta-model is the concept model of the DSL model, a model used to describe model.

The meta-model describes the concept of DSL, nature, the legal association between

the language elements, model hierarchy and correctness rules of model.

2. Generator

Generator specifies how to extract information from the model and to transform

them into code. The simplest situation is that each modelling symbol generates some

Chapter 3. Related Research 59

fixed code, including argument value input in the symbols. The Generator generates

different codes according to values of different symbols, a different relationship

between the symbols and other symbols, or other information in the model. The

generated code will be linked to the framework, and compiled to generate the final

executable code. The goal of creating a DSM solution is that there is no need to

modify or extend the generated code manually.

In DSM, code generator interprets or compiles the model into executable code. By

providing automatic transformation, code generator is helpful to the realisation of

productivity and quality advocated by DSM. From the perspective of modellers, the

generated code is full. It means that generated code is complete, executable and

quality guaranteed. Namely, there is no need to manually rewrite the code or make

operations on the code after code generation. Not all the code used in DSM is

automatically generated, which is the reason for the existence of domain framework

and target environment in DSM. They can be generated from different models or

realised by manually programming. The generator itself, as the framework and target

environment, is not visible for developers to a large degree. The invisible way is the

same as black-box components or compiler that are not visible for developers. At

present, code generators are mainly realised in three ways [27]: template, patterns

and graph traversing.

3. Domain Framework

Domain framework provides interfaces between the generated code and the

underlying platform. Usually, the framework code is not needed, generated code can

directly call the components of underlying platform, and the existing services of the

component are enough to support the execution of the generated code. For some

complex domains, generated code is not executable alone, it cannot execute until

cooperating with platform code provided by the framework at a target environment. At

Chapter 3. Related Research 60

the same time, to define some additional and effective code or components makes the

generated code easier. These codes of framework can be changed in size, from the

component to programming language statements appeared in the chosen domain.

3.3.2 Domain-Specific Modelling Language

DSL ideas are proposed since the language of the first computer proposed [68]: In

fact, DSML accelerated the early development of programming languages. Many

years later, the thought that drives the development of modern languages remains

exactly the same as the first computer language appears: improved the abstract issue

allows the rapid creation and maintenance of a complex application [114]. DSL is a

language which is designed to provide tailor-made symbols for an application domain,

and it is only based on the concepts and characteristics of the domain. Similarly, DSL

is means to describe and generate members of program family in a given domain, no

requiring the programmer with a general programming knowledge. By providing

special notations for the application domain, DSLs provide the substantial growth in

productivity, and even make end users to design program become possible [58].

DSLs are defined by developers to solve domain specific problems. Martin Fowler

believes that [32]: DSL is not a new concept, the early "Little Language" of Unix uses

Lex and Yacc to generate code, as well as languages defined in the LISP are examples

of using of DSL techniques. Karl Frank believes that [34], DSLs can be any language

for a specific domain. In fact, DSL is a computer programming language used to solve

problems of specific domain, which provides a suitable, fixed abstract concepts and

symbols of the domain [18]. DSL is usually small, focusing on the statement rather

than a plethora of rules or orders, and its expressive power is poorer than GPL

(General Purpose Language). The expression of DSL can be plain text or graphic

symbols. Since DSL deal with problems of a specific domain, the using objects are not

only staff, but also domain experts, and even a domain specific grammar that is

Chapter 3. Related Research 61

simpler and can be modified on end users‟ own can be defined. One of the DSL goals

is that domain logic can be modified on the end users‟ own, while developers focus on

developing the DSL support tools, rather than strive for the changing requirement.

With DSLs, the majority of software requirements that are easy to change may be

given the end users to control on their own and adjust the software. The more part can

be controlled by DSL, the lower software maintenance costs are, and developers will

be able to concentrate on other tasks of more valuable.

DSML (Domain-Specific Modelling Language) is a kind of DSLs. DSML is a new

branch of modelling language, which is plotted out from the category of DSLs for

emphasising model-driven design. DSML inherits the merits of DSL and has

prominent features at the same time. The most important is that DSML has an ability

of supporting meta-modelling. In the DSM methodology, the modelling work is

actually divided into two parts, the first is to construct modelling according to domain

concepts and rules that may exist in target application, namely, to establish domain

meta-model; the second is to carry out domain application modelling on the target

application system by using the result of meta-modelling (DSML). Among them, the

capability of supporting meta-modelling is the core task of DSML.

3.4 Web Services and Web Service Composition

In recent years, web services become the main concepts of packaging and sharing

of resources in an open network environment. Service providers can provide their own

software to users in the form of web services; users can choose the wanted services in

a distributed environment. At the same time, web services can simplify the complex

software application styles and provide good support for resources sharing and

cooperation work in the distributed environment by abstracting applications and

resources at different levels into a unified form, and providing with them through the

standard method. Web service provides a mechanism of description, management,

Chapter 3. Related Research 62

sharing and services. It can make applications of different organisations in different

regions and different businesses collaborated and interoperated effectively.

3.4.1 Web Services

Web service is an internet-based distributed component, which meets the service

requirements of technique-neutral, loosely coupled, location transparent and can

provide description, discovery and call for cross-enterprise applications [98]. The

W3C gives a more accurate definition: web service is software application identified

by URI (Uniform Resource Identifier), the application interfaces and bindings can be

defined, described and discovered by XML product, at the same time, the application

can directly interact with XML messaging protocol based on the Internet and other

software applications [121]. Web services have the following characteristics [65, 29]:

 Intact encapsulation: web service is a service object deployed on the Internet,

which has a good encapsulation, for users, who can only see the function list

provided by the services, which is self-contained executable program unit and

can provide specific services.

 Loosely coupling: The feature stems from the object and component

techniques, when the realisation of web service changes, it does not affect

service users. For the users, call interfaces of service providers remains

unchanged, then any changes of the service implementation are transparent to

them. The loosely coupling is greatly improved the flexibility of web service

development.

 Self-Describing: web services explicitly describe its structure by using a

computer-readable form. The Service description is intended to make users of

the services can accurately understand the service and correctly use the service.

The Self-description is the premise of loose coupling services, transparent

Chapter 3. Related Research 63

location, but also provides technical assurance for the discoverable service.

 Interoperability: web service is platform-independent and

language-independent, the services realised by different languages and

platforms can communicate with each other. The interoperability is an

important feature of service-oriented architecture, the core idea of services is to

construct a general platform-independent, language-independent level based on

various existing heterogeneous platforms, and applications beyond several

different platforms rely on this layer to realise the mutual interaction and

integration.

Web service is a self-contained, self-describing, modular web application that uses

the standard XML messaging techniques to package information, and can access its

interface through the network to accomplish a specific task. The separation of service

realisation and service interface accelerates the applications based on web service into

loosely coupled, component-oriented architecture [41]. The intensions of web services

can be understood from the architecture and the protocol stack.

1. Architecture of Web Service

In 2001, IBM proposed a model which clearly describes the interactions between

the various actors in the architecture of web service [59].

Chapter 3. Related Research 64

Figure 3. 8 Web Service Architecture

Components in the web service architecture must have one or more

above-mentioned roles. The components in Service Oriented Architecture totally have

three kinds of roles:

 Service Provider: release their own services, and response to the requests using

their services.

 Service Registry: This is a searchable service descriptions registry center;

service providers publish their services description here. During period of

static binding development or dynamic binding execution, service requestor

find services and get binding information of web services (in the service

description).

 Service Requestor: This is a service consumer, using service broker to find the

services they need, and then use the service.

 Three kinds of operations used in these roles:

 The PUBLISH operation: Making Service Provider can register their functions

and accessing interface to the Service Registry. Location of publishing service

description can be changed according to the requirement of application.

Chapter 3. Related Research 65

 The FIND operation: Making Service Requestor can find specific types of

services by service registry. In the finding operation, the service requestor

directly retrieves the service description or queries the type of requested

service in the service registry.

 The BIND operation: To enable service requestor can really use the service

provider. In the binding operation, the service requestor uses binding details of

service description to locate, contact and call services, thereby to call or start

interaction with the service at run-time.

2. Protocol Stack of Web Service

The characteristics of web services using standard protocols is an important reason

for the successful application of web services, web services are built on standard

techniques and protocols, as shown in Figure 3.9.

Figure 3. 9 Web Service Protocol Stack

XML (Extensible Markup Language) [85] is the basis for all the standards of web

services. It is a meta-markup language used to describe the data organisation and

arrangement structure in the data document, the importance of XML depends on

standard-based, flexible, self-describing, extensible data format concept.

Chapter 3. Related Research 66

SOAP (Simple Object Access Protocol) [88] is a simple and lightweight

XML-based web services exchange standard protocols. The actual goal of SOAP is

simplicity and scalability. SOAP itself does not define any application semantics, by

providing a modular package model and the data encoding mechanism to simply

represent application semantics.

WSDL (Web Services Description Language) [92] uses the way no relying on any

particular programming language and implementation methods to describe web

service by using XML. WSDL defines a service interface for the service, as well as

how to map interface to implementation details of the protocol message and the

specific port address.

UDDI (Universal Description, Discovery and Integration) [119] universally

describes, discovery and integrate standard, which is web service information

registration norms used in a distributed network environment, but also is accessible

realisation collection of the specification. UDDI is mainly composed by a business

registry center and protocols accessing the center and API (Application Programming

Interface). The core information model used by UDDI registration is defined by XML

Schema [94].

BPEL (Business Process Execution Language) [1], web services are usually

required to carry out reasonable composition in accordance with a certain granularity

based on the specific application background and requirement to realise the full

business logic. It is based on the way of orchestration or choreography to create two

different aspects of the business process definition [99].

Web service is described by a standard language and published by the network,

which can be discovered and called by software systems, with loosely coupling,

reusable and interoperability features. After all, a single web service function is simple

and limited, difficult to meet complex and volatile requirement of practical

Chapter 3. Related Research 67

applications. Meanwhile, to maximise web service reuse, it needs using the existing

web service as much as possible to reduce developments, and reusing high-quality

web service composition and become the new powerful web service. With the

extensive application of web services, web service composition techniques is also

more and more widely concerned by the industrial and academic circles.

3.4.2 Web Service Composition

The composition of web service refers to a technique of selecting an existing,

functional matching web service and combining them into a new service [8].The

composition of web service is based on the dynamic characteristics of web services,

including:

 Describable: can be described by the service description language.

 Redistributable: its descriptions information can be registered and published at

the registration center.

 Searchable: the service meets the query parameters can be found by sending a

query to the registration server and binding information of services can be

gotten.

 Binding: the callable service instance or service agent can be generated by

services description information.

 Callable: the remote call of service can be realised by using binding details of

service description information.

 Composable: can be composed with other services to form a new service.

A composed web service is an aggregation of several mutually independent and

Chapter 3. Related Research 68

interacted web services. The components are realised for itself by composed web

services, sequential call them according to given combination models, and combine

into the new web services which are more suitable for the requirement. From the

structural perspective, the aggregation of web services is put forward after a higher

level encapsulation of web service and treating the encapsulated function interface as

web services. The new combined service is called composite service; web service used

for composing composite service is elementary service.

Web service compositions can be divided into static composition and dynamic

composition from the composition methods. The former makes the composition

strategy between control flow and data flow of basic web services during the process

of development and design; the latter one is dynamically going according to specific

strategy in the system running, the composition if the control flow and data flow of

basic web services is automatically generated by specific strategy. The dynamic

composition based on the static one, but its difficulty is greater than the static one.

3.4.3 Modelling Methods for Web Service Composition

There are many formal modelling methods for web service composition. They

respectively correspond to different description languages. Current research methods

of web service composition can be divided into three modelling methods that are

based on flow, cooperation and planning [67].

1. Web Service Composition Modelling Methods based on Flow

The composition method based on flow points out that compositive services are

business flow built on a group of component services [15]. The web service

composition method based flow uses the model which is similar to that used by the

classic workflow modelling method to describe web service composition. Activity,

control flow and data flow are the basic model elements of web service composition

Chapter 3. Related Research 69

modelling. An activity corresponds to one operation of a component service. Control

flow describes the dependency relationship among activities, which is the sequential

relationship between operations of component services. Data flow describes the data

transferring between activities, namely data exchange relationship between

component services.

BPEL4WS is Business Process Execution Language for web services and shorted

for BPEL, which is a description language of composition of web service put forward

by IBM, Microsoft and BEA in 2002 [5]. BPEL combines web services by a process;

the every step of the process is called an activity. At the same time, BPEL defines the

atomic activities and control flow of structured activities, defines a partner and

partners links that is used to intake different web services into the process. BPEL

process is a centralised control point of web service composition.

2. Web Service Composition Modelling Methods based on Cooperation

The service composition method based on cooperation is used to construct

composition service model by decrypting the message exchange sequence of

component service. The method is similar to the description way of commercial

agreement in the e-commerce, and the method believes that it can define their

collaborative behaviours by describing the message interaction specification followed

by each component of the composition services. This composition approach is focused

on describing behaviour feature of message exchange of each component service

during the process of service composition process, which is a more direct modelling

composition method for the cooperation process participated by many parts.

WSCI is a synthetic language specification of web service based on XML format

and jointly developed by SUN, SAP, BEA as well as Intalia [6]. It focuses on tracking

message interaction sequence of the messages in cooperation web services, specifying

information exchange process participated by the combined web services, and

Chapter 3. Related Research 70

supporting constraints relationship of messages, the message interaction sequence,

exception handling, transactional attribute and description of dynamic synthesis.

3. Web Service Composition Modelling Methods based on Planning

The composition method based on planning brings the thoughts of classical AI

(Artificial Intelligence) into the technical service composition. For the service

composition based o AI planning, the initial state and target state are defined by the

requirement of synthesis services, the action is a set of available component services,

rules for state transition define the antecedent, and consequent of service function of

each component [73]. Therefore, the process of web service composition is to find a

group of services from the optional services and make the functions of the group

service composition to meet the requirement specifications of the combinational

service. The composition method based on planning is required to have the aid of

research method of AI, and combined with the semantic web techniques [116], such as

OWL-S [24], SWSI (Semantic Web Services Initiative) [28].

The Stanford University has developed a variety of techniques based on artificial

intelligence planning, using Golog to automatically combine web services systems

[74]. Each web service is considered as an action, an atomic one or a complex one, the

complex actions are combined by several atomic actions. A composite service is a

series of set of atomic web services connected by programming languages symbols. In

this combined system, it still needs to make-up semantics of web services, establish

ontology library, knowledge base of intelligent agents and so on.

The composition of web services increased flexibility, reusability and integration of

web services. The existing modelling method for web service composition can make

the basic web services to effectively compose a new web service which better-meet

the requirements and more powerful. But these web service compositions are carried

out according to functional fragments to achieve business functions of specific

Chapter 3. Related Research 71

requirements. They are more independent and looser. Web service composition can be

deemed as a systematic method for reusing the basic web services to build system

rapidly and effectively. So it needs the support of system-level modelling.

3.5 Summary

This chapter introduces and discusses the state of the art of the related fields

including MDD, MDA, DSM, web services and web service composition, etc.

 Software development is switched from code-centric to model-centric with MDD.

MDD focuses on system modelling based on the best practices, and guides every

phases of software development with models. Model is not only an analysis and

design specification, but also a software product which can be automatically

transformed into the executable system. That is the target of the thesis.

 OMG puts forward MDA system and makes some standards to support MDA.

However, the biggest problem of OMG is that it elicits the whole architecture, but

does not provide the concrete implementation. But MDA system is also a well

reference of the thesis. Especially, ASL and OCL are referred to support action

specifications and model constraints in XDML design.

 DSM pays more attention to the small and proficient modelling. The goal of DSM

is system implementation rather than system analysis and design. DSM puts

forward a three-tiered architecture in the target environment including language,

generator, and domain framework, which are the foundation of the thesis work. In

the thesis, XDML language is designed for describe the executable

domain-specific model; the model parsing and executing mechanism is used by

DSMEI to replace the code generator; domain framework is contained in DSMEI

to support model execution.

Chapter 3. Related Research 72

 Web services can simplify the complex software applications, and support

resources sharing and cooperating work in the distributed environment. In the

thesis, web services are adopted as the core functional implementation entities of

xDSM execution supported by DSMEI. xDSM can be transformed into the

service-oriented domain-specific application by parsing and executing the

behaviour logic of xDSM models in DSMEI.

The thesis integrates DSM and web service techniques with MDD and proposes a

unified approach, SODSMI, to build the executable domain-specific model and

achieve the target of MDD. The details of the approach will be given in the next

sections.

73

Chapter 4

Proposed Approach

4.1 From Models to System Implementation

4.1.1 Problems

The thought of MDD is pioneering but there are some problems during the process

of the traditional MDD. The core problem is that the current models are difficult to be

transformed into system implementation. The main reasons are concluded as follows:

1) Current models are too abstract

MDD needs to do software modelling. The modelling activities involve structure

modelling and behaviour modelling. The structure modelling is the foundation for

supporting software behaviour. It defines the bound of the software behaviours. The

behaviours define software functions and realise the system objective. Therefore, the

behaviour semantics play a decisive role within the transformation from models to

system implementation. Current behaviour modelling itself is highly abstract and

omits many behaviour details definition. So the behaviour semantics of most of

behaviour model elements are imprecise, uncertain and ambiguous. Behaviour models

are only used as a guideline for system implementation.

2) Current modelling domains are too wide

The universal modelling method is the mainstream of current modelling methods.

Chapter 4. Proposed Approach 74

The development of software systems are becoming more and more complex and the

involved domains are larger and larger in range and amount. So the universal

modelling, the modelling language has to be modified and increased accordingly. And

models are increasingly large, difficult to be used and understood as well as more

difficult to be transformed into system implementation.

3) Current modelling activities focus on system analysis and design, not system

implementation

There are different model views of software system at every phase in software

development life cycle. Most model views focus on system analysis and design so as

to be used for developers to communicate with each other and carry out the

specification design. There are little model views for system implementation.

4) The supporting environment for model implementation is absent

To realise models depends on the specific supporting environment for model

implementation, such as code generator or model virtual machine. However, the

supporting environment for model implementation is difficult to achieve due to the

localisation of models themselves. More commonly, models are only used to generate

parts of software products, for examples, code framework, documents, configuration

scripts, etc.

4.1.2 Characteristics of Domain-Specific Modelling

Compared to the large and universal modelling of UML, DSM pays more attention

to the small and proficient modelling. The goal of the methodology of DSM is system

implementation rather than system analysis and design. The characteristics of DSM

are summarised as follows:

Chapter 4. Proposed Approach 75

1. Lower complexity

DSL is customised for solving software development problems existing in a certain

application domain. It is a specific and problem-oriented language [19]. It does not

require that the target range of DSL covers all the software problems. Once a DSL is

correctly formed, it should involve the terminologies and concepts of the specific

problem domain. Namely, it means that a DSL may be useless for other problem

domains. Though DSLs give up the universal scope of the language, it improves the

description accuracy of the specific domain problem and its solutions, and reduces the

complexity of the language itself. DSLs are simpler and more accurate in syntax and

semantics than the universal modelling languages. That reduces the difficulty of DSLs

compiler, interpreter and the supporting environment development.

2. Higher abstract level

DSL is the core of DSM. It is a language for solving domain-specific problems. It

provides suitable and fixed abstract concepts and notations of the domain. It provides

the concepts and rules which represent the corresponding application domain rather

than the concepts and rules which are in a given programming language. Therefore,

DSL is at a higher abstract level.

Generally, the main domain concepts are mapping to the objects of the modelling

language, while other concepts are mapping to the attributes, relationships, sub-model

of the object or model links of other languages. Therefore, DSL makes developers use

domain concepts directly to construct the domain models. It is able to describe domain

concepts, the relationships between domain concepts and domain rules with larger

granularity. Developers can use the domain knowledge elements in DSL directly to

develop the application system, rather than develop program code or components that

are corresponded to domain concepts from the most basic classes or objects from the

scratch. So the system development efficiency is effectively improved.

Chapter 4. Proposed Approach 76

3. Integrity of MDD

In DSM based software development, developers just need to use DSL to carry out

modelling. After modelling completed, these models can be automatically transformed

into the executable code. From the perspective of modellers, it is integrated from

modelling to system implementation. DSL is the foundation to generate the integrated

code automatically. Models are used for both design and system implementation at

higher abstract level. The realisability runs through the entire modelling life cycle. It is

the real MDD. The main aspects that DSM differs from the early CASE and UML

tools are: code generator is built in house. Namely, it is written by the experts who

have development experiences for the same domain, but not provided by vendors.

Code generator built by experts can be adjusted to adapting to an application system.

It is with strong customisability. The code generated based on DSM is practical,

readable, and efficient. It looks like that the code are written by the developer who

defines code generator. So the integrality of model itself and that of the model

implementation foundation are ensured.

4. Goal for system implementation

The goal of DSM is system implementation rather than system analysis and design.

To build the domain-specific meta-model, construct the relevant DSL and build code

generator are all customised for the specific domain and aim at how to make models

transform into the executable code. During the software development process based

on DSM, models are main products. Models specify not only what the system will do,

but also how to do. What the developers have is the source model not the source code.

Therefore, any modification to the system also is the modification to models, rather

than modify the generated code. In the process of adopting DSM, developers /

modellers only use the corresponding tools to carry out modelling. Once the

functional requirements of a particular system and the logical relationships between

Chapter 4. Proposed Approach 77

them each other are completed, the modelling is finished. Then models can be

automatically transformed into the executable code by code generator.

5. Capability of meta-modelling

In the DSM methodology, the modelling process is divided into two steps: the first

is to carry out modelling for domain concepts and domain rules that may exist in the

target application domain, which builds the domain meta-model. The second is to use

the result of meta-modelling (DSML) to carry out domain application modelling for

the target application system.

The meta-modelling supporting capability is the main task of DSML. One of the

goals of DSM is that end users can take part in the application development and adjust

the application logic so that developers can focus on the development for DSML

supporting tools rather than struggle for meeting the continually changed application

requirements. End users use DSML to take part in the development and maintenance

of the application software. The software requirements which are easy to change can

be realised in the application modelling and controlled by end users themselves. So

developers can focus on the more valuable work. Therefore, the meta-modelling

supporting capability of DSML is emphasised in the DSM methodology, which makes

end users get the greater flexibility in the modelling language to adapt to the different

domain application requirements.

6. Reusability

A specific domain is not a specific industry domain, but a functional domain

covered by a group of application systems which have the similar functional

requirements [64]. Software reuse for a specific domain is relatively easy to achieve

[132]. The cohesion (the compact correlation of domain knowledge on logic) and

stability (in a certain period, domain knowledge do not change acutely) of a specific

Chapter 4. Proposed Approach 78

domain provide software reuse activities with the reusable software assets so as to

make domain-specific software reuse relatively easy to achieve. Domain engineering

is the main technical means to generate the reusable software assets, which includes

the three phases: domain analysis, domain design and domain implementation.

Actually, domain meta-models and DSML generated by DSM are the expressions of

domain knowledge. These domain knowledge and the reusable software assets that are

used to realise the domain knowledge will be ceaselessly reused in the different

application modelling processes.

4.2 Proposed Approach

4.2.1 Targets and Ideas

The role of model for software analysis and design is irreplaceable. Developers

establish software analysis and design models in accordance with a variety of software

standards, and communicate with each other by models. Model is expected to bring an

essential leap of software development, and drive the whole software development

process. It means that modelling is not only related to the requirement analysis,

software design and software implementation, but also able to support unit testing,

system testing, long-term system maintenance and software reuse, etc. The above all

require the executability of model. Only executable models can strictly ensure that

model validation, system-generation and system maintenance are based on the models.

The key elements of the executability of model lies in whether there are a

well-defined models and whether there is a code generator which can automatically

and completely generate code. Both of them are mutually constraining and

complementary. Code generator can be simple and easy to implement while the model

is complete and accurate. On the contrary, code generator must be difficult to achieve

with complex structure and required adaptability and flexibility while the model is

Chapter 4. Proposed Approach 79

imprecise. In order to build the executable model, and achieve the automatic

transformation from models to system implementation, there are two aspects both

need to be concerned. On one hand, models ought to be refined and the degree of

abstract ought to be reduced so that models can gradually approach system

implementation; on the other hand, code generator ought to have strong adaptability

and flexibility to reflect the model description.

The thesis is based on domain-specific modelling: the executable model which is in

accordance with MMLs 5 is established with behaviour modelling as its core. Based

on the complete, consistent, detailed and accurate model description by XDML, model

parsing and executing mechanism are used to replace code generator, and combine

with Domain Framework as the infrastructure of the domain-specific model

implementation. Different from other domain specific modelling approach, the

abstract level of code implementation is enhanced by the standardised, self-contained,

self-describing, modular web services. Encapsulating the details of code

implementation, the related domain-specific software functional entities are provided

to DSMEI (Domain-Specific Model Execution Infrastructure) by the way of web

services cluster. The system running is driven by parsing and executing the behaviour

models. The above is the core idea of the thesis. The framework of SODSMI (Service

Oriented executable Domain-Specific Modelling and Implementation) is shown in

Figure 4.1.

Chapter 4. Proposed Approach 80

Figure 4. 1 Framework of SODSMI

SODSMI constructs executable models and their execution infrastructure based on

domain-specific modelling through the model refinement and the enhancement of

code implement.

From the perspective of functionalities, SODSMI is divided into three levels,

corresponding to four core elements:

 xDSM -- Executable Domain-Specific Model

 XDML -- Executable Domain-specific Meta-modelling Language

 DSMEI -- Domain-Specific Model Execution Infrastructure

 AGOS -- Atomic Group of dOmain-specific web Services

XDML is used to describe xDSM. xDSM is parsed and executed in DSMEI. Its

execution depends on the corresponding interfaces provided by Domain Framework.

Domain Framework provides the core software functional entities through

DSMEI (Domain-Specific Model Execution Infrastructure)

XDML (eXecutable Domain-specific

Meta-modelling Language

AGOS (Atomic Group of Domain-Specific Web Services)

Model Parsing and Executing

Mechanism

Domain Framework

xDSM (eXecutable Domain-Specific Model)

Chapter 4. Proposed Approach 81

domain-related services of AGOS, and supports the xDSM execution upwards. xDSM,

XDML, DSMEI and AGOS constitute the framework of SODSMI together.

4.2.2 Features of the Proposed Approach

The SODSMI framework is aimed at modelling for system implementation, which

reduces the model complexity and improves the model accuracy. This method has a

holistic and sustainable system to support the transformation from models to system

implementation. Compared to other modelling methods, such as MDA system, the

proposed approach is more suitable for the establishment and support of executable

models, mainly shown as follows:

(1) SODSMI is customised for solving software development problems in a

certain application areas. It is dedicated and problem-oriented. Although it is at

the expense of commonality, it improves the accuracy of the description on

domain specific problems and its solutions, and reduces the complexity of

modelling.

(2) SODSMI improves the abstract level of models, and XDML provides an

abstract mechanism to deal with the complexity of specific domains. It

provides concepts and rules of the corresponding application domain, rather

than those of a certain given programming language. Modellers face the

domain concepts with different granularity directly, rather than construct the

implementation details in the light of classes and objects, etc.

(3) SODSMI pays attention to the integrity of MDD. Its goal is to achieve the

system implementation, rather than to simply use models as a means of

analysis and design. SODSMI completes the whole process from model

establishment to code generation.

Chapter 4. Proposed Approach 82

(4) SODSMI emphasises on the capacity of meta-modelling, and adopts the

separation of meta-modelling and domain application modelling to establish

models that adapts better to specific domain. At the same time, it is able to

separate users‟ application modelling from domain experts' meta-modelling as

well as developers‟ creating support tools.

(5) In SODSMI, the establishment of meta-model and code generator are

developed within the organisation. They are mutually complementary: the

model establishment is adapted completely to code generator; the generated

code is practical, readable, and efficient as same as the code is written by

experts who define the code generator. Meanwhile, the establishment of

meta-model and code generators implicates a lot of implicit implementation

convention that need not be expressed at the model layer, which observably

reduces the complexity of models.

(6) SODSMI is based on domain engineering, which provides a well support in

essence for software reuse; on the contrary, the software reuse techniques also

provides a well support for the DSM method.

4.2.3 Executable Domain-Specific Model

The primary task of SODSMI is to build executable models, while the executability

of model is always an underbelly of MDD for a long time. Software itself is dynamic.

Static models can describe some profiles of software, for examples, the subordinate

structure and the system hierarchy. But it can describe neither the entire software, nor

the running process of software. At the same time, the abstract of models restricts the

accuracy of models, which makes models lack of many of the key elements that are

used to construct entire software. In MDA system, UML can be used to build models

of the system from different perspectives and aspects. Model views represent a part or

Chapter 4. Proposed Approach 83

a profile of the system. However, there are neither positive connections nor constraints

among those model views. Model views can be more or less, be concrete or abstract.

The process of building a model can be ceased at any phase. It is very difficult for

modellers to construct a complete software model unless they understand all the

details of code generator. That makes the executable models difficult to achieve in

UML system.

xDSM is constructed based on the domain-specific model, and is technically

applied to solve the software development problems existing in a certain application

domain. xDSM represents the concepts and rules of the domain. The model is targeted,

that narrows the scope of the description effectively and is helpful to define the model

accurately. xDSM modelling process is divided into two phases: the xDSM

meta-modelling phase and the xDSM application modelling phase. The former is

carried out by domain experts and technical experts, and the latter is carried out by

end users. The duty and the role of modellers in each modelling phase are different, as

shown in Figure 4.2:

xDSM is required to meet MMLs 5 standards. It requires the model definition is

xDSM (eXecutable Domain-Specific Model)

xDSM Meta-Modelling xDSM Application Modelling

Domain Experts

Technical Experts End Users

Domain knowledge Application Requirements

Figure 4. 2 xDSM Meta-Modelling and Application Modelling

Chapter 4. Proposed Approach 84

sufficiently precise. The accuracy here is to describe the details relevant to the

modelling objectives accurately rather than to describe all aspects of modelling. The

core of xDSM is behaviour modelling. It is required to describe domain concepts and

system behaviours unambiguously. In the meta-modelling phase, domain concepts are

described unambiguously, including domain objects, relationships, constraints and any

operations embodied in the domain concept. In the application modelling phase, the

target is to meet all the requirements to software systems. The accurate software

behaviour modelling is carried out by using meta-model. The model does not care

about the implementation of local software functions, but it does not ignore the

necessary details of the behaviour execution yet -- the data flow, the control flow and

the related constraints of behaviours must be described in detail.

On one hand, the measurement of the accuracy of models is determined by domain

experts and technical experts through xDSM meta-modelling and DSMEI. Namely, if

the application model which is built according to the definition of the meta-model can

be accurately and completely executed by DSMEI, the models can be regarded

accurate enough. On the other hand, the application model which is built in

accordance with end users' requirements can ensure the integrity of the model. Namely,

if the results of the application model execution meet the system requirements

completely, or the generation system realises the functional requirements completely,

the models can be regarded complete enough. Moreover, application modelling also

facilitates the improvement of meta-modelling and the execution environment, to meet

the requirements to application modelling better.

Furthermore, the description of the behaviour details in xDSM also increases the

complexity of modelling. It requires to adjust the complexity of modelling through

meta-modelling and application modelling. That is guided by domain experts and

developers mainly in the meta-modelling phase. On one hand, the behaviour

complexity is encapsulated in the meta-model while the behaviour details are hidden

Chapter 4. Proposed Approach 85

in domain objects and relationships with the different granularity; on the other hand,

the complex behaviour descriptions are hidden by the implementation convention of

the meta-model and the execution environment. So end users can do the application

modelling simply and flexibly. So it is easier for end users to build the executable

model with high-quality.

4.2.4 Executable Domain-specific Meta-modelling Language

Following the guide of MMLs5, XDML is defined to describe xDSM meta-model

and its application model accurately. XDML extends the semantic basis of XMML

language -- a visual meta-modelling language, and integrates the well-defined

behaviour semantics to support the domain-specific behaviour modelling. XDML

defines the concrete syntax of AS&MC which provides accurate definition for

dynamic behaviours of models.

XDML improves the description accuracy of the specific domain problem and its

solutions, and reduces the complexity of the language itself. XDML is simpler and

more accurate in syntax and semantics than the universal modelling languages. That

reduces the difficulty of XDML compiler, interpreter and the supporting environment

development.

XDML is at a higher abstract level. Generally, the main domain concepts are

mapping to the objects in XDML, while other concepts are mapping to the attributes,

relationships, sub-model of the object or model links of other languages. Therefore,

XDML makes developers use domain concepts directly to construct the domain

models. It is able to describe domain concepts, the relationships between domain

concepts and domain rules with larger granularity morpheme. Developers can use the

domain knowledge elements in XDML directly to develop the application system,

rather than develop program code or components that are corresponded to domain

Chapter 4. Proposed Approach 86

concepts from the most basic classes or objects from the scratch. So the system

development efficiency is improved effectively.

4.2.5 Domain-Specific Model Execution Infrastructure

Today, the scales of software systems are increasing, and the number of people who

are involved in software applications is also increasing, so as to make software

architecture more and more complex. The software is no longer limited to a

stand-alone desktop system, but gradually evolved into the networked and complex

systems which are integrated with each other. In this case, the functionalities of code

generator are limited because the generated code may be only a part of the complex

software system. Moreover, code generator is also a software product. It is more

complex than the generated system, and it is also needed to face the changes of the

generated system itself, that requires code generator to be strongly adaptable and

flexible.

DSMEI is combined with Domain Framework, and employs the model parsing and

executing mechanism substituting the code generator to execute xDSM models

directly. Domain Framework is used to provide the interface of the underlying

platform to the generated code. DSMEI encapsulates the architectures, platforms and

concrete implementation of the domain-specific application system into Domain

Framework, which reduces the complexity of the generated code significantly, as

shown in Figure 4.3.

Chapter 4. Proposed Approach 87

The system behaviours are able to be described by xDSM completely and

accurately. Based on that, the model parsing and executing mechanism is used by

DSMEI to replace the code generation process. xDSM is parsed into the operations

with precise semantic, and the operations are corresponded to the interfaces provided

by Domain Framework. Here the model itself is an executable software product. As

the evolution of Domain Framework is independent of the parsing and executing of

the model, the model can be transform into the system implementation on DSMEI

dynamically and flexibly. Furthermore, DSMEI is combined with Domain Framework,

and encapsulates the parts of domain-related implementation into the modular web

services through AGOS. So that it can focus more on the parsing and executing of the

model, as well as the combination with web services which are related to the specific

domain. That makes the architecture of DSMEI general, while the dynamic

characteristics and the virtualisation techniques of web services make DSMEI more

flexible, so that a common and flexible supporting environment is provided for the

model execution by this way.

4.2.6 Software Function Entities - Web Services

To a certain extent, the code is also a model. It is the most refined model, and a

language description defined precisely. It can be used to describe a system, but it is

xDSM

DSMEI

AGOS

 System

Implementation

Underlying Platform

Figure 4. 3 DSMEI Functional Structure

Chapter 4. Proposed Approach 88

also platform-dependent. But such an iterative refinement is not necessary. On one

hand, over-refinement makes the scale of model so large that the model loses its

abstract nature. On the other hand, to deal with the ever-changing system requirements,

even if the advanced language also needs to be added SDK (Software Development

Kit) continuously, it must be much harder to the model which only have a weaker

descriptive ability. Consequently, a better software functional entity must be found to

realise the executable model.

The software functional entity has undergone several evolutions: from functions to

objects, from objects to components, then from components to web services. Web

services architecture adds and standardises a new layer, named "Service Layer"

between the logistic layer and technical implement layer. The standardisation and

dynamic characteristics make web services be able to provide the abundant and

flexible software functional entities. AGOS adopts web services that is standardised,

self-contained, self-described and modulised to enhance the abstract level of the code

implementation, encapsulates the details of the code implementation, and provides the

related domain-specific software functional entities to DSMEI by the way of web

services cluster. Web services are not stand-alone. They depend on the

domain-specific application systems and their processes. The development and reuse

of web services have already been determined when the xDSM meta-model is

constructed. It is a top-down design process. Based on the domain concepts, it

describes the domain behaviour process dynamically according to the model, and

drives the definition and functionalities of web services according to the realisation

requirements of the model. The design principles of web services are as follows: the

common parts of the specific domain are encapsulated into web services. The

changeable parts are divided into two kinds: one kind that is easy to deal with by

xDSM is defined directly by model; the other kind that it is not easy to deal with by

xDSM will be transformed into service parameters, and use the parameterised means

to handle the change-point. Web services provide the minimal software functional

Chapter 4. Proposed Approach 89

entities in the entire system. It is also the implementation foundation of the entire

executable model.

Various web services at the different levels are required to support the problem

space involved in the domain-specific modelling. AGOS regards a group related web

services of a specific domain as a service cluster. On one hand, it requires a lot of web

services entities to provide different functions; on the other hand, there may be several

corresponding web services entities to the same functional requirement. So DSMEI is

able to not only support the protocol of the service itself, but also deploy web services

cluster dynamically in the software life cycle, for examples, querying services,

matching services, assembling services, replacement services, load balancing of the

service group of the same functional node, and adjustment of the coordinated services,

etc. The flexible architecture of DSMEI is the foundation of the above all. It is able to

provide Domain Framework dynamically based on web services, and adjusts the

existing web service cluster to adapt software changes quickly.

4.3 Summary

In this chapter, after debating the problems emerging in the process from models to

system implementation, and analysing the characteristics of DSM, the framework of

SODSMI is proposed. The SODSMI framework is aimed at modelling for system

implementation, which reduces the model complexity and improves the model

accuracy.

From the perspective of functionalities, the SODSMI framework involves four core

elements: xDSM, XDML, DSMEI and AGOS. They will be described in detail in the

thesis.

 xDSM modelling process is divided into xDSM meta-modelling phase and the

xDSM application modelling phase. The duty and the role of modellers in each

Chapter 4. Proposed Approach 90

modelling phase are different. Behaviour modelling is the core of xDSM

modelling.

 XDML improves the description accuracy of the specific domain problem and its

solutions, and reduces the complexity of the language itself. XDML is simpler

and more accurate in syntax and semantics than the universal modelling

languages. That reduces the development difficulty of XDML compiler,

interpreter and the supporting environment.

 DSMEI employs the model parsing and executing mechanism replacing the code

generator to execute xDSM models directly. DSMEI is combined with domain

framework introduced in DSM. It encapsulates the architectures, platforms and

concrete implementation of the domain-specific application system into domain

framework, which reduces the complexity of the generated code.

 AGOS adopts web services to enhance the abstract level of code implementation,

encapsulates the details of code implementation, and provides the related

domain-specific software functional entities to DSMEI by the way of web

services cluster. Various web services at different levels are required to support

the problem space involved in the domain-specific modelling. AGOS regards a

group related web services of a specific domain as a service cluster.

XDML is used to describe xDSM. xDSM is parsed and executed in DSMEI. Its

execution depends on the corresponding interfaces provided by domain framework.

DSMEI provides the core software functional entities through domain-related services

of AGOS, and supports the xDSM execution upwards. xDSM, XDML, DSMEI and

AGOS constitute the framework of SODSMI together.

91

Chapter 5

eXecutable Domain-Specific Model

5.1 Keys to xDSM

MDD is a model-centric method for driving the whole process of software

development. It is difficult that a model is transformed into the concrete realisation if

the model is ambiguity and at a high abstract level. Through analysing the core value

of model and Modelling Maturity Levels, the thesis proposes the SODSMI framework,

in which executable models are established in the means of DSM, and the system is

realised with the support of DSMEI. The keys to making xDSM models executable

are the accuracy and integrality of model, and behaviour modelling. They all are built

based on domain-specific meta-modelling.

5.1.1 xDSM Meta-Modelling

In the domain-specific software development, it is required to define the special

modelling language and establish the corresponding modelling environment for the

different application domain. But it costs much higher to develop special modelling

tools for different modelling languages. The meta-modelling technique is a good

solution to this problem [122]. The main idea is that the domain-specific meta-model

is customised by domain experts according to the requirements of specific domain,

and the meta-model is parsed by the corresponding tools. So a DSML language needs

to be elicited to support the meta-modelling, and the modelling tools need to be

developed to support the DSML language. A large number of engineering practices

show that the efficiency of domain-specific modelling based on meta-modelling is 10

Chapter 5. xDSM (eXecutable Domain-Specific Model) 92

times higher than that based on UML [77]. There are two kinds of meta-modelling

frameworks [66]:

 Modelling method with generic modelling as the core: a meta-model which is

used to describe a modelling language is established by domain experts with

generic modelling tools. It is configured for the generic modelling tools to make

the generic modelling tools support the modelling language described by the

meta-model. The generic modelling tools are also known as GME (Generic

Modelling Environment). GME can be used not only to create meta-models

(meta-meta-models are configured for the generic modelling tools), but also to

build application models (meta-models are configured for the generic modelling

tools) [62].

 Meta-modelling based on the modelling tool generator: The first step is to

establish meta-model by the modelling tool generator to describe the modelling

language. It does not produce the configuration files for the modelling tools

during this process, but generate the modelling tools directly which support that

modelling language.

In this thesis, the modelling method with generic modelling as the core is used to

build the executable model, and define xDSM meta-model and xDSM application

model in a unified generic modelling environment. A fixed generic modelling

environment can be integrated well with DSMEI, which is convenient for model

validation and testing. At the same time, GME can make the integration of xDSM

meta-model which is corresponded to domain spaces be realised.

Domain-specific meta-modelling is an approach of the systematic model abstract.

The abstract is able to reduce the complexity of models and modelling language while

it is used to describe system characteristics and maintain the validity of the model. The

xDSM modelling process is based on the domain-specific meta-modelling approach,

Chapter 5. xDSM (eXecutable Domain-Specific Model) 93

which is divided into meta-modelling phase and application modelling phase while the

roles of modellers separated at the same time, as shown in Figure 5.1.

Figure 5. 1 xDSM Meta-Modelling Process

In the phase of xDSM meta-modelling, domain experts analyse the specific domain

and establish xDSM meta-model. In other words, domain experts construct models of

domain knowledge, extract domain-specific concepts, constraints, rules and the form

of representation, and create domain objects, relationships and the related constraints.

According to xDSM meta-model, domain-specific supporting services are developed

by technical experts at the same time. Meta-modelling and the development of

domain-specific supporting services are complementary. While meta-model built in

the top-down way determines the requirement specifications and organisational

relationship of domain-specific supporting service, the execution of xDSM application

model which is built based on xDSM meta-model is also supported by

domain-specific supporting services. Moreover, xDSM meta-modelling and the

development of domain-specific supporting services are negotiated and completed by

Application Modelling

Phase

Meta-Modelling Phase

Generic Modelling

Environment

Domain Analyais

Meta-Modelling

Domain-Specific

Supporting Services

Application

Modelling

Model Execution

Infrastructure

Model Execution

Software System

Domain

Experts

End

Users

Technical

Experts

Chapter 5. xDSM (eXecutable Domain-Specific Model) 94

domain experts and technical experts together. During the process, it is involved with

many implicit conventions and constraints to ensure that xDSM application model

built according to xDSM meta-model can be executed normally with the support of

domain-specific supporting services.

In the phase of xDSM application modelling, corresponding to application

requirements and based on xDSM meta-model, end users use domain-specific

concepts to carry out the application entity modelling for the problem domain. The

specifications and constraints defined by xDSM meta-model must be abided strictly in

the modelling process. xDSM application model established by end users can be

executed in DSMEI so as to validate users‟ application requirements, and ensure that

application modelling can meet the requirements of software system completely.

Through the separation of meta-modelling and application modelling as well as the

role division of modellers, the responsibility of each role can be defined. By

integrating system modelling and modellers for xDSM modelling, the maximum value

of each role can be brought into play in MDD. The domain knowledge is modelled by

domain experts, and the software is controlled and adjusted by end users according to

software requirements. So that technical experts and developers can concentrate on the

development of DSMEI and domain-specific supporting services. The more are

controlled by xDSM, the cost of software development and maintenance will be lower,

thereby the software productivity is maximised.

5.1.2 xDSM Behaviour Modelling

Software is dynamic and composed of various behaviour sets which accomplish the

different system objectives. Software specification is objective-oriented because only

system objectives are the most direct expression of software system [131]. A system

objective is achieved by a number of domain main concepts working together.

Chapter 5. xDSM (eXecutable Domain-Specific Model) 95

Behaviour is the main expression of the system objective. A series of actions are

executed in software specification to achieve the system objective. To extract the

behaviour model corresponding to system objectives and to describe system objectives

with behaviours are the keys to the problem-oriented modelling method.

The software behaviour is divided into two basic types, the state-related behaviour

and the state-free behaviour. The state-related behaviour can be expressed by finite-

state machine, and the state-free behaviour can be expressed with operations. The

most of software behaviours are state-free. To the state-related behaviour, it is

understood here as follows: being given a message, the responding behaviour of the

state subject is decided by its current state. The state-related behaviour can be also

expressed with operations which is the outcome from parameterising the states and

merging the state transition operations. Consequently, software behaviours can be

expressed with operations entirely.

The behaviour structure is composed of behaviours, actions and operations, which

are the keys to the domain-specific behaviour modelling, as shown in Figure 5.2.

Behaviour is the direct result of actions of at least a domain concept. Behaviour

does not exist by itself. It must depend on domain concepts and actions. Action is the

basic unit of behaviour, which is contained in behaviour. Behaviour provides

Behaviours

Actions

System Objects

Operations

Figure 5. 2 Behaviour Structure

http://en.wikipedia.org/wiki/Finite-state_machine

Chapter 5. xDSM (eXecutable Domain-Specific Model) 96

execution context and constraint for action, and decides their coordination and the

execution timing. Action is more concerned about the independence and atomicity of

semantics which is built based on the conceptions that are proved in computer science.

Operation is the main representation of action and the basic unit of action

specification. An operation gets a group of inputs, which is transformed into a group

of output by executing actions. All the input and output can be defined and described

by the value specification in detail. The operation is similar to the concept of

procedure, operation, or subroutine in a programming language at many aspects. It has

the following features:

 Operation is executed synchronously and asynchronously according to

requirements;

 Operation can have zero or several input parameters;

 Operation has one output at most, or exception;

 The input and output parameters can be any valid data type.

The behaviour modelling of xDSM is carried out according to behaviour logic, not

the simple expression logic and computational logic. Behaviour and computation are

blended with each other. For decoupling the behaviour logic and the computational

logic, the logical behaviour can focus on describing the coordination

relationship between the domain concepts, while the computational process of the

implementation details can be ignored. And the computational logic of the atomic

operation of domain business can be encapsulated in the services. So the behaviour

logic based on the above can be modeled, configured, and dynamically loaded.

 Can be modeled: after encapsulating the atomic operation of domain business

as services, the behaviour description is carried out according to the

coordination logic of domain concepts. That simplifies the complexity of the

Chapter 5. xDSM (eXecutable Domain-Specific Model) 97

behaviour description greatly, and makes the modelling possible.

 Can be configured: through decoupling the logic behaviour and the

computational logic, the atomic operation services of domain business can be

configured. And the behaviour model can be adjusted through the

configuration.

 Can be dynamically loaded: the behaviour model can be corresponding to the

different atomic operation services of domain business. They can be

substituted at run-time since the flexible connection between the behaviour

model and the services, so that the dynamic loading can be realised.

Based on the decoupling between the behaviour logic and the computational logic,

Behaviour Scenario is introduced in the thesis for behaviour modelling of xDSM, as

shown in Figure 5.3.

Chapter 5. xDSM (eXecutable Domain-Specific Model) 98

Behaviour, action and operation are the main bodies of the behaviour structure of

xDSM. Behaviour Scenario is used as the view of behaviour modelling. It focuses on:

 Constructing behaviour models according to the domain-specific system

objectives, and describing system objectives with behaviours, thereby, the

software system can be described.

 Behaviour modelling of xDSM can be divided into two types: Event Behaviour

and Executing Behaviour. Executing Behaviour describes the set of Executions

of domain concepts. Execution is to realise an executing process according to a

definite strategy. Executing Behaviour is the behaviour executed by domain

object itself or the cooperative behaviour between the domain concepts. Event

Behaviour describes the set of Occurrence of domain concepts. Occurrence is

 The

Structure

 of

Behaviour

Behaviours

Actions

Domain-Specific System Objectives

Abstract Operations Coordination Operations

Behaviour Scenarios

Figure 5. 3 The Behaviour Structure of xDSM

Domain

Actions

Basic

Ations

Executing Behaviours Event Behaviours

Basic Operations

AGOS (Atomic Group of dOmain-specific web Services)

Chapter 5. xDSM (eXecutable Domain-Specific Model) 99

produced within the system as well as can affect the system. Event Behaviour

and Executing Behaviour are described with Operation. Both they are related

to the concrete value specifications, execution specifications and domain

concepts, and can be modeled in Behaviour Scenario.

 Action is the basic behaviour unit of xDSM and the basis of behaviour

semantics. Action can be used to construct the behaviour directly which

complete a certain business objective. A complex behaviour can be also

completed by several Actions working together. Actions are divided into Basic

Action and Domain Action. Basic Action executes the basic action of the

supporting behaviour which is provided by the execution framework itself,

such as Exception Action, Variable Action, and Message Action, etc. Domain

Action is formed according to the domain-specific business objective. It

contains the domain objects and the behaviour concepts within relationships. It

is the representation of domain-specific behaviour, and composed of Abstract

Operation and Coordination Operation.

 Basic Operations support Basic Actions while Abstract Operations and

Coordination Operations support Domain Actions collectively. Abstract

Operation is an abstract of the concrete implementation operation, which

describes the structured interface information of an operation. It is

corresponding to the concrete implementation of atomic operation services of

domain business. Coordination Operation is constructed based on Action in

Behaviour Scenario way, in which it may contain Basic Operations, Abstract

Operations and other Coordination Operations. At the same time, Coordination

Operation also has the accordant structured interface information as same as

Abstract Operation.

 Behaviour Scenario is a container of Actions. It is used to illustrate a series of

Chapter 5. xDSM (eXecutable Domain-Specific Model) 100

actions of the system behaviour, and describe an executing system process. It

is modelling from the perspective of the domain behaviour process, and

provides the execution context for Actions. The entire Behaviour Scenario

manifests in the form of Operation which is able to constitute the action

directly according to system objectives, and also be transformed as

Coordination Operations. It is the main body for describing Coordination

Operation.

5.1.3 Accuracy and Integrality of xDSM

The executable model that is in conformity with MMLs 5 is built based on the

accurate and integrate xDSM behaviour modelling. MMLs 5 requires that the model

can describe the system completely, consistently, detailedly and accurately, and can be

transformed into a software system completely and automatically, so as to realise the

model execution in real sense. xDSM modelling is targeted well enough to narrow

down the description scope of the mode. The most important thing is that xDSM

modelling process is divided into the meta-modelling phase with domain experts and

technical experts as the core, and the application modelling phase with end users as

the core. Through the separation of meta-modelling and application modelling as well

as the role division of modellers, the responsibility of each role can be defined, the

maximum value of each role can be brought into play in MDD, and the accuracy and

integrity of xDSM can be ensured.

 Integrality of xDSM: Corresponding to application requirements and based on

xDSM meta-model, end users use domain-specific concepts to carry out the

application entity modelling for solving the application problems. The

specifications and constraints defined by xDSM meta-model must be abided

strictly in the modelling process. xDSM application model established by end

users can be executed in DSMEI so as to validate users‟ application

Chapter 5. xDSM (eXecutable Domain-Specific Model) 101

requirements, and ensure that application modelling can meet the requirements

of software system completely. At the same time, in the process of application

modelling, if xDSM application model correctly constructed by end users is

insufficient to achieve the domain-specific system objective, xDSM

meta-model and domain-specific supporting services will continue to be

improved by domain experts and technical experts. It is an iterative process. It

will enhance the overall integrity of xDSM.

 Accuracy of xDSM: In the process of xDSM modelling, to add the definition

of action specifications besides the definition of model elements that improves

the accuracy of xDSM substantially. In the phase of xDSM meta-modelling,

the construction of xDSM meta-model and the development of

domain-specific supporting services are negotiated and completed by domain

experts and technical experts together. During the process, it is involved with

many implicit conventions and constraints. To measure models accurately is

determined by domain experts and technical experts with xDSM meta-model

and DSMEI. Namely, if the application model which is built on the

meta-model definition can be executed by DSMEI accurately and completely,

the models will be regarded as accurate enough.

The integrality of xDSM is a subjective and dynamic concept. It requires that end

users, domain experts and technical experts work together to construct the complete

xDSM which can achieve the domain-specific system objectives. It also requires the

overall integrity from xDSM meta-model, xDSM application model to

domain-specific supporting services. xDSM meta-modelling is the basis of the

accuracy of xDSM. It integrates the collaborative process of xDSM meta-model and

DSMEI. Both of them are complemented and collaborate with each other to realise

system objectives, reduce the model complexity, and construct the executable model

with sufficient accuracy.

Chapter 5. xDSM (eXecutable Domain-Specific Model) 102

xDSM meta-modelling and xDSM application modelling are the main activities for

constructing the executable domain-specific model. While the behaviour model is

constructed accurately, model constraints and action specifications are also required to

define the xDSM meta-model and the xDSM application model accurately. as shown

in Figure 5.4.

Figure 5. 4 Model Constraints and Action Specifications

In GME, xDSM meta-model is established by meta-modelling language, and

xDSM application model is established based on xDSM meta-model corresponding to

application requirements. xDSM meta-model and xDSM application model are the

main bodies of the executable domain-specific model. Based on behaviour modelling,

action specifications provide the unambiguous, accurate and legible definition of the

action sequences for the behaviour processing details. It expresses the action details in

a clear and accurate way. At the same time, model constraints provide the accurate

constraints (semantics conditions or restrictions) in the modelling process to improve

the description ability of xDSM behaviour modelling. Action specifications and model

constraints can complement the description ability well for the detail parts of

behaviour modelling, and improve the accuracy of xDSM significantly.

xDSM

Meta-Model

xDSM

Application Model

Action

Specifications

Model

Constraints

Accurate Definition

Chapter 5. xDSM (eXecutable Domain-Specific Model) 103

Behaviour modelling is the core of xDSM modelling. The accuracy of xDSM is to

express the behaviour at the necessary accurate level (namely, the requirements of

DSMEI to the executable model), not to implement the behaviour. It is required that

xDSM can express data flow and control flow accurately. Namely, the data flow and

the control flow can be described accurately in the main body of behaviour modelling

-- Behaviour Scenario, so that xDSM can be executed correctly in DSMEI. Behaviour

Scenario is designed based on the idea of parametric programming. A reusable

behaviour scenario can be expressed as a parameterised component. Its behaviour is

determined by its parameter values. By parameterisation, the duplication of modelling

can be avoided effectively, and Behaviour Scenario can be virtualised so as to make it

focus on the behaviour design. Behaviour Scenario represents an independent control

flow unit. It is a sequential system within Behaviour Scenario while it is a concurrent

system between Behaviour Scenarios. From the perspective of data transferring and

processing, Behaviour Scenario relies on the behaviour context and follows the

behaviour logic to transform a group of input into an output, thus to achieve system

objectives or the specific functional requirements. xDSM carries out the behaviours

modelling with Behaviour Scenario, and characterises the data flow and the control

flow of behaviour accurately, so as to be executed in DSMEI correctly and completely

to meet the requirements of MMLs 5.

5.2 Behaviour Scenario

5.2.1 Behaviour Scenario

Software itself is composed of behaviour sets to achieve the different system

objectives. Software specifications are objective-oriented. The system objective is the

most direct expression of the software system. Behaviour Scenario involves a series of

actions which implement system behaviours. It is used to illustrate interactions and

collaborations among domain objects for an executing process of the specific system

Chapter 5. xDSM (eXecutable Domain-Specific Model) 104

objective at implementation time. To achieve a business objective, it is possible that

several Behaviour Scenarios at different levels are needed to support each other.

Behaviour Scenario is used to construct the behaviour model from the perspective of

the domain behaviour process. It is a diagram of the behaviour logic. It describes the

behaviour logic by the way of visual modelling, defines and restricts the control flow

and the data flow of the behaviours accurately by AS&MC syntax. The elements of

Behaviour Scenario are shown as Figure 5.5.

Figure 5. 5 Elements of Behaviour Scenario

Behaviour Scenario executes actions sequentially according to the behaviour logic

which is made by the control flow in behaviour execution context. At the same time, it

connects the correct data flow by the context as well as the inputting and outputting

data of actions to achieve the specific system objectives. The elements involves are:

1. Behaviour Execution Context

Behaviour Scenario is a container of action sets. Behaviour execution context

contained by Behaviour Scenario provides the execution environment for Actions. At

BS (Behaviour Scenario)

Action Control

Flow

Behaviour Execution Context

Basic Actions

Domain

Objects

Relation-

ship

Domain

Actions

Data Flow

InputPin

OutputPin

Chapter 5. xDSM (eXecutable Domain-Specific Model) 105

the same time, it also provides the running environment for the control flow and the

data flow of the behaviour. Behaviour execution context of each BS is different at the

different execution phases or in the different applications. It reserves the current

behaviour states of Behaviour Scenarios. It is the carrier of behaviour logic that

implements for the different instances. It involves the domain object instances within

Behaviour Scenario, attributes and states of the domain object instances, data items

used by Behaviour Scenario, parameter initialisation of Behaviour Scenario, and the

inputting and outputting data of actions.

2. Control Flow

The control flow of Behaviour Scenario embodies the behaviour logic. The

sequences of actions depending on each other are defined by the control flow, and it

has a clear order: the subsequent action is executed only after the previous action is

executed. The control flow is an abstract representation of all the possible execution

sequences of the action execution. The executing path is controlled by behaviour

execution context, runtime constraints and messages. Besides domain entity and

relationship, the control element is also the modelling element of Behaviour Scenario,

such as the element of condition and the element of loop. The relationship between

domain entities extends its constraints and behaviours based on the sequence

relationship. Message sending or message receiving which is the description of an

occurrence of the system will trigger another control flow or interrupt the current

control flow. The execution of operations depends on behaviour execution context.

3. Action

Behaviour Scenario is constructed with actions. Except basic actions, domain

actions are attached to entities and relationships or happened between their

collaborations. Action is defined within entity or relationship in the form of operation.

Entities are the main carrier of actions, which includes active operations and passive

Chapter 5. xDSM (eXecutable Domain-Specific Model) 106

operations. Relationships only involve active operations, which are used to describe

behaviour relationships between entities. A complex action can be expressed flexibly

by action specifications defined by AS&MC syntax can.

4. Data Flow

The data flow reflects the sequential data interaction between actions. The data

flow transports data between the actions which are executed sequentially. It has

unclear sequence and depends on behaviour execution context. The data flow has its

source and target. The source is from behaviour execution context or the output pin of

the action, and the target is the Input Pin of the action. Data interactions are formed by

the data flow to support the normal turning of the control flow. In Behaviour Scenario,

action specifications defined by AS&MC syntax can describe the data flow accurately.

The executable behaviour scenario can be constructed only by the accurate data flow

definition.

Behaviour modelling for system objectives is carried out by Behaviour Scenarios to

describe the behaviour logic. Behaviour Scenario works as Figure 5.6.

Behaviour Scenario

Starting point

[Input Pin]

Ending point

[Output Pin]

Exception

Termination Point

Message

Receiving

Message

Sending

Figure 5. 6 Behaviour Scenario Work Process

Chapter 5. xDSM (eXecutable Domain-Specific Model) 107

Behaviour Scenario has the starting point and the end point of the behaviour. The

control flow starting from the starting point and terminating at the end point represents

the life cycle of Behaviour Scenario. Behaviour Scenario only has one starting point.

It is also a parameterised InputPin, which receives the input parameters to instantiate

Behaviour Scenario. Behaviour Scenario has a unique end point. It is also an

OutputPin, which returns the behaviour results. Besides returning the normal result,

Behaviour Scenario contains an exception termination point. The structure makes

Behaviour Scenario be able to describe not only behaviours, but also coordination

operations, which is transformed into actions in the form of operations. So that it can

describe the behaviours at the higher level.

The nesting design of Behaviour Scenario makes the behaviour model be able to

describe system objectives with different granularities via hierarchy, which reflects the

up-down modelling idea of refining layer by layer for improvement. At the same time,

domain meta-models of the more domains are introduced to solve the domain

problems with the larger scale. In the nesting hierarchy of Behaviour Scenario,

Behaviour Scenario at the high level represents the description of the problem domain

in a sense, which can carry out domain-specific application modelling at the more

abstract level. Behaviour Scenario at the lower level analyses and refines the specific

business objectives, and makes the corresponding model constraints and action

specifications, including the necessary behaviour details and behaviour logic. It is able

to be used for the complex meta-modelling.

The consecutive executed control flow can be disposed better by Behaviour

Scenario. But there are some interrupt processing and parallel processing in many

Behaviour Scenarios, for examples, input waiting, asynchronous operation, etc.

Therefore, the concepts of message receiving and message sending are introduced into

Behaviour Scenario. The interrupted and waiting control flow can be continued to

execute by message receiving. A behaviour scenario can cooperates with the parallel

Chapter 5. xDSM (eXecutable Domain-Specific Model) 108

processing of entities or other Behaviour Scenarios by message sending.

5.2.2 Primary Meta-Model of Behaviour Scenario

The primary meta-model of behaviour scenario can be constructed by XDML. It

describes a series of actions which implement the system behaviours. It is used to

illustrate interactions and collaborations among domain objects for an executing

process of the specific system objective at implementation time. At the same time, it

defines the control flow, the data flow, Action and behaviour execution context

accurately by cooperating with AS&MC syntax. The primary meta-model of

behaviour scenario is also the foundation of the extension mechanism based on

Behaviour Scenario. The more complex domain-specific meta-model can be derived

from the extension based on the primary meta-model of behaviour scenario in GME.

In the essence, the primary meta-model of behaviour scenario is also a DSL, which is

the modelling language that is used for describing the primary behaviour scenario. Its

model elements represent the primary behaviour semantics of Behaviour Scenario.

Compared to other xDSM meta-models, the behaviour semantics of the primary

meta-model of behaviour scenario is implicit, and can be understood by GME and

DSMEI. The behaviour semantics of other xDSM meta-models are constructed on the

foundation of the primary meta-model of behaviour scenario. The modelling elements

of the primary meta-model of behaviour scenario are extracted and organised from the

behaviour elements of Behaviour Scenario, which involves:

Table 5. 1 Elements of the Primary Meta-Model of Behaviour Scenario

Starting Point

Entity

The control flow and the data flow of

BS start from Starting Point. It is the

starting point of the life cycle. It

involves Input Pin, by which the

Chapter 5. xDSM (eXecutable Domain-Specific Model) 109

parameter information is received

from the external to instantiate BS. A

behaviour scenario has only one

starting point.

Return Point

Entity

BS returns the output parameters

from Return Point to the external. It

involves Output Pin. The return point

does not affect the life cycle of BS. A

behaviour scenario can have several

return points, and all the return points

have the consistent Output Pin.

End Point

Entity

The control flow and the data flow of

BS terminate at End Point. It is the

end point of its life cycle. It involves

Output Pin and returns output

parameters to the external. A BS

contains several end points, and all

the end points and return points have

the consistent Output Pin. BS

implicates the exception termination

point. In the cases of absence of

exception processing, BS will returns

the exception information as the

output when an exception happens.

Message Sending

Entity

Message Sending Entity provides an

asynchronous action execution

mechanism. It calls an operation

asynchronously to execute the action.

Chapter 5. xDSM (eXecutable Domain-Specific Model) 110

It encapsulates the input parameters

of the operation as a message to

send without the return value.

Message Receiving

Entity

Message Receiving Entity receives

messages from the external of BS and

gets the encapsulated input

parameters from the received

messages. When the control flow

executes at the point of Message

Receiving, BS will be interrupted and

into a dormant state but does not

affect behaviour execution context

until a particular message arriving.

The reason is that the execution and

transfer of the action is carried out

automatically. But the transfer of the

action in the real system is usually

triggered by the external information

or event, especially in the process

modelling of the behaviour with large

granularity at high-level.

Action Entity

Action Entity is the most primary

action unit, which includes a custom

active operation described by

AS&MC syntax. It contains action

specifications corresponding to the

action name. When the control flow

passes the action entity, the operation

Chapter 5. xDSM (eXecutable Domain-Specific Model) 111

is triggered and the action is

executed.

Action Group

Entity

Several actions are organised by

Action Group to build up an

execution unit. It does not affect the

execution sequences of actions. The

type of the action group determines

the group action of the execution

unit, including:

 Transaction of Action Group；

 Retry of Action Group；

 Exception Catch of Action Group.

Judgement

Entity

Judgement Entity contains Boolean

expression. It represents an optional

path based on the expression. A

branch of the control flow is

produced in terms of the computation

result of the expression, which

corresponds to the action sequences

which is matched or unmatched the

Boolean expression.

Loop

Entity

A loop body is contained in Loop

Entity. The action sequences of the

loop entity element are executed

looply under the control of the loop

body. The loop body can support

these loop structures: For, While and

Foreach.

Chapter 5. xDSM (eXecutable Domain-Specific Model) 112

Sequential

Relationship

Associated

Element

All the entity modelling elements are

associated by the sequential

Relationship. It represents the

sequence of the action execution: the

next action will start-up in turn after

the previous action is completed to

complete the transfer of actions.

Exception

Relationship

Associated

Element

Exception Relationship is associated

between an action unit (action or

action group) and the exception

handling action. The control flow

will be directed to the exception

handling action when the exception

comes to the associated action unit.

The exception handling action can be

a null action which will shield

exceptions and return.

Structural

Relationship

Associated

Element

 The entity modelling elements are

associated by Structural Relationship.

It is unrelated to the concrete

behaviour logic and expresses the

structural static association.

5.3 xDSM Meta-Modelling Framework

It is more suitable to use domain concepts to construct meta-models for a definite

scale of specific domain, rather than to construct meta-models for the larger scale

specific domain. On one hand, if the definition granularity of the meta-model element

that is corresponding to the domain concept is larger, the contents contained within the

Chapter 5. xDSM (eXecutable Domain-Specific Model) 113

element will be more, complex and abstract, and it is more difficult to correspond to

the system realisation in addition. On the other hand, if the definition granularity of

the meta-model element that is corresponding to the domain concept is smaller, the

meta-model will be too complex and hard to be defined and used. The experiences tell

us that the larger scale specific domain may involve several smaller scale subordinate

specific domains. For example, the domain of archives management and the domain

of each business system are involved in the domain of Office Automation. It is

necessary for domain-specific meta-modelling to extend the scope covered by the

specific domain in breadth, and define the hierarchy according to the domain scale in

depth. Especially for xDSM, its executability needs to be ensured from the

meta-model layer. So the meta-modelling framework which is scalable, hierarchical

and defined accurately is required.

The four modelling levels of OMG are to make people understand the actual

contents of models and meta-models better. The relationship of instantiation is its core.

As long as each element has its own upper classified meta-element, the meta-data can

be accessed via the meta-element, so that any model can be created and any system

can be described [47]. In the framework of OMG, meta-models and models both are

the relative model concepts based on instantiation. The instantiation relationship

determines which abstract levels the model is at. This is a kind of static description

relationship. In the dynamic behaviour modelling, there is a relationship as well that to

describe the meta-model with the executable application model. That relationship is a

dynamic description relationship. In DSM way, it will be provided to modellers in the

forms of domain meta-models and application models. Starting from the primary

meta-model of behaviour scenario described by XDML, and using application

modelling for the meta-model and the method of meta-level promotion, the new

meta-model can be created continuously, and the new application model can be

created with the new meta-model. This approach develops the domain modelling

concepts and its behaviours, rather than carries out the promotion at the abstract level

Chapter 5. xDSM (eXecutable Domain-Specific Model) 114

of instantiation. The approach realises the extension mechanism of xDSM meta-model,

as shown in the following figure.

Figure 5. 7 The Extension Mechanism of xDSM Meta-Model

The extension mechanism of xDSM meta-model is the core of the meta-modelling

framework of xDSM. The primary meta-model of behaviour scenario is the starting

point of the extension mechanism. The behaviour modelling capability of the

application model is determined by the accurate behaviour characteristics of the

extension mechanism. At the same time, the executability of the application model is

guaranteed by the accurate definition of AS&MC syntax. In the process, the primary

meta-model of behaviour scenario is used to construct the application model A for the

specific domain that is described by the meta-model A, as well as define and add the

meta-model A by the way of meta-level improvement to extend the primary

meta-model of behaviour scenario. If the larger scale specific domain involves the

specific domain described by the meta-model A, the extended the primary meta-model

of behaviour scenario which involves the primary meta-model and the meta-model A

can be used to construct the application model B for the specific domain that is

described by the meta-model B, as well as define and add the meta-model B by the

way of meta-level improvement to extend the primary meta-model of behaviour

Primary Meta-Model

Application Model A

Primary Meta-Model Meta-Model A

Application Model B

Primary Meta-Model Meta-Model A Meta-ModelB

Application Model C

Application

Modelling

Application

Modelling

Application

Modelling

 。。。。。

 M
et

a-
le

ve
l I

m
pr

ov
em

en
t

 M
et

a-
le

ve
l I

m
p

ro
ve

m
en

t

Chapter 5. xDSM (eXecutable Domain-Specific Model) 115

scenario once again. So the extension mechanism of xDSM meta-model can create the

large scale domain meta-model incrementally through reusing the subordinate domain

meta-model. This is a process of behaviour description, detail encapsulation and

constraints. From the perspective of the domain-specific modelling, on one hand, the

domain concepts with higher abstract degree that is corresponded to the large-grained

meta-model can be created; on the other hand, the xDSM meta-model defined

accurately can be constructed on the basis of the subordinate domain meta-models.

The xDSM meta-modelling framework cannot exist alone, and it requires the

support of GME to construct xDSM meta-model, as shown in Figure 5.8.

Figure 5. 8 xDSM Meta-Modelling Framework

GME is the implementation environment of xDSM meta-modelling framework.

GME supports xDSM meta-modelling to define the meta-model elements, behaviours,

constraints and diagrams. At the same time, GME also supports the extension

mechanism of xDSM meta-model to describe the behaviours of the established

meta-models through application modelling according to the established meta-model.

It involves:

 The definition of meta-model element: The domain entity is defined by domain

xDSM Meta-Modelling Framework

Generic Modelling Environment

xDSM

Meta-Model

Meta-model

Element Definition

Meta Assocated

Element Definition

Diagram

Definition

Constraint

Definition

Behaviour

Definition

Chapter 5. xDSM (eXecutable Domain-Specific Model) 116

analysis, including attributes, operations (active operations and passive

operations), events (modelling time events and runtime events), constraints

(invariants) and diagrams.

 The definition of meta-associated element: The relationship is defined by

domain analysis. It is a binary relationship to connect the meta-model elements,

including attributes, operations (active operations), events (modelling time

events), constraints (invariants), diagrams and relationship roles.

 The definition of diagram: The diagram definition is the basis of visual

modelling. It specifies visual element for each domain element. While the

model elements of xDSM meta-model are registered into GME, the visual

application model instances of the meta-model element or the meta-associated

element can be constructed with the diagram definition.

 The definition of constraint: The model constraints are defined by AS&MC

syntax. It uses meta-data defined by the meta-model to define the

pre-conditions, post-conditions and invariants of the constituent parts of the

model.

 The definition of behaviour: The behaviour definition of the meta-model is

attached to the meta-model elements and the meta-associated elements,

including events (modelling time events and runtime events) and operations

(active operations and passive operations). All the behaviour definitions will be

transformed into behaviour scenarios of the application modelling to construct

the behaviours of the meta-model element based on the primary meta-models.

5.4 Summary

xDSM is the core of MDD. The keys to making xDSM models executable are the

accuracy and integrality of model, and behaviour modelling. They all are built based

Chapter 5. xDSM (eXecutable Domain-Specific Model) 117

on domain-specific meta-modelling.

 Domain-specific meta-modelling is an approach of the systematic model abstract.

The abstract is able to reduce the complexity of models and modelling language

while it is used to describe system characteristics and maintain the validity of

model. xDSM modelling process is divided into meta-modelling phase and

application modelling phase, while the roles of modellers are separated at the

same time.

 Behaviours are the main expression of system objectives. A series of actions are

executed in software specification to achieve system objectives. To eextract the

behaviour model corresponding to system objectives and to describe system

objectives with behaviours are the keys to the problem-oriented modelling.

 The integrality of xDSM is a subjective and dynamic concept. It requires that end

users, domain experts and technical experts work together to construct the

complete xDSM which can achieve the domain-specific system objectives. It also

requires the overall integrity from xDSM meta-model, xDSM application model

to domain-specific supporting services.

 The accuracy of xDSM is based upon xDSM meta-modelling. It integrates the

collaborative process of xDSM meta-model and DSMEI. Both of them are

complemented and collaborate with each other to realise system objectives,

reduce the model complexity, and construct the executable model with sufficient

accuracy.

In this chapter, DSM method is employed to build xDSM models. Behaviour

Scenario is proposed as the core of behaviour modelling to describe system

behaviours according to system objectives by decoupling behaviour logic and

computational logic. And the xDSM meta-modelling framework is proposed to

Chapter 5. xDSM (eXecutable Domain-Specific Model) 118

construct and assemble xDSM meta-models. The extension mechanism of xDSM

meta-model, which is a round trip from meta-models to application models, is

proposed to extend xDSM meta-model by the way of using application modelling for

the meta-model and the method of meta-level promotion.

119

Chapter 6

eXecutable Domain-Specific

Meta-Modelling Language

A model is a description and specification of the functionalities, structures,

behaviours and context of a system. A model needs to be described by a well-defined

language. A well-defined language is a language with the strict form (syntax) and

meaning (semantics), and can be interpreted and understood by the computer

automatically [79]. XDML (eXecutable Domain-specific Meta-modelling Language)

is a meta-modelling language which is designed for domain-specific modelling. It is

used by GME to support xDSM meta-modelling and application modelling as the

description language. Namely, XDML supports the description and construction of

xDSM meta-model as well as xDSM application model.

6.1 Introduction

6.1.1 Structure of Modelling Language

The design of modelling language involves syntax design and semantics design.

The syntax design involves the design of abstract syntax which is independent on the

expression of modelling language and the concrete syntax which is associated with the

concrete expression. The concrete syntax is the concrete expression of the abstract

syntax. The concrete syntax is generally divided into two kinds: the textual syntax

using texts to express; and the graphical syntax using graphics to express. The

semantics is used to express the meaning of the concepts which is described by the

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 120

abstract syntax in modelling language. The well-understanding of semantics of

modelling concepts leads to that the modellers can understand and use the modelling

concepts correctly. The concept set, that contains the modelling concepts understood

and used accurately by the modellers, is the semantics domain of the modelling

language. Semantics are also the mapping relationship from the modelling concepts to

the concepts of semantic domain, as shown in Figure 6.1.

An abstract syntax describes the concepts and the relationships among the concepts

of the modelling language [17]. To design a modelling language, besides to identify

and modelling the concepts of the description language, it is also required to define

some rules for the abstract syntax to judge whether the model which is described by

the modelling language is legal or not. Those rules will guarantee that the model is

flexible. The concrete syntax is provided for modellers to express the model

concretely. It is the different view of the abstract syntax. A language can have many

kinds of concrete syntaxes. The representation of the concrete syntax of the modelling

language can be the textual syntax or the graphical syntax. The concrete syntax with

the graphical representation is adopted by the majority of the modelling languages,

Semaintic Domain

[Model Instance Sets]

Modelling

Concepts

Abstract

Syntax

Concrete

Syntax

Mapping Representation

Description

Semantics

Figure 6. 1 Structure of Modelling Language

Mapping

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 121

such as UML. There are some modelling languages only having the textual syntax too,

such as OCL and QVT.

To design the modelling language, the relationships among abstract syntax,

concrete syntax and semantics are compartmentalised into two mappings which are

disjoint: one mapping is from modelling concepts (abstract syntax) to concrete syntax;

another is from modelling concepts (abstract syntax) to instances (semantic domain).

The above partitions make the abstract syntax, the concrete syntax and semantics can

be designed with relatively independent way, reduce the coupling between syntax

design and semantics design, and improve the efficiency of the modelling language

design.

Semantics of a modelling language is different from abstract syntax of the

modelling language. In the thesis, the concrete syntax is used to define the structure

and the well-formed relationships of the modelling language. It is the prerequisite of

semantics definition. Semantics is the specifications of domain objects and their

behaviours. The thesis absorbs parts of the static semantics of XMML into XDML.

Those static semantics can be understood by GME, for examples, to check whether

the model element types are consistent, whether the connection between model

elements can be constructed, etc. The dynamic semantics is expressed by DSMEI

collaborated with web services. Thereby, the modelling language can keep the

platform independence and the linguistic homogeneity. The focus of the thesis is to

analyse and design the behaviour semantics.

6.1.2 XDML Architecture

For enhancing the accuracy of models and the ability of the behaviour modelling in

MDA system, OMG issued UML 2.0 which integrates action semantics [35] to

improve the ability of the behaviour modelling, and uses OCL to enhance the ability

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 122

of the accurate model description in MDA system. And ASL (Action Specification

Language) is also introduced into xUML to define the system actions in detail. The

ultimate goal of above all is to make the behaviour modelling more accurately. UML,

OCL and ASL are overlapped in semantics. A part of the abstract syntax of OCL is

introduced from the abstract syntax of UML 2.0, especially the introduction of action

semantics [90]. ASL is consistent with the action semantics of UML [75]. The

coexistence of several sets of abstract syntax of several languages makes it needs a lot

of correspondence and references among those languages, and depends on the

cohesion of the model reflection interfaces, so as to make the whole syntax

architecture huge and complex.

The core of xDSM is the complete and accurate behaviour modelling, with the

well-defined behaviour semantics, the accurate model constraints and action

specifications as its necessary conditions. XDML is extended based on the semantics

of the visual meta-modelling language – XMML. It integrates the well-defined

behaviour semantics, supports the domain-specific behaviour modelling adequately,

and constructs the concrete syntax of XDML based on XML meta-language. It

constructs the textual concrete syntax of AS&MC (Action Specifications and Model

Constraints) based on the behaviour semantics of XDML to provide the accurate

definition for the dynamic behaviour of models, as shown in Figure 6.2.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 123

Figure 6. 2 XDML Architecture and Work Process

XDML is the basis of constructing xDSM meta-model and xDSM application

model. Model constraints and action specifications are required to define models

precisely while behaviour modelling is being carried out accurately. The idea is as

follows:

1) The abstract syntax of XDML defines behaviour semantics based on the

extended semantics of XMML.

XDML supports the description and construction of xDSM. The visual

meta-modelling language -- XMML provides domain meta-modelling and domain

application modelling with the complete and valid supports in GME. From the

perspective of the static visual modelling, XMML can define and extend the domain

concepts completely which are required by domain models. XDML is constructed on

XDML (eXecutable Domain-Specific Meta-Modelling Language)

Abstract Syntax of XDML

Behaviour Semantics

xDSM

Meta-Model

xDSM

Application Model

Concrete Syntax of

AS&MC

Extended XMMLSemantics

Concrete Syntax of XDML

Action Specifications

&

Model Constraints

Parsing &

Executing

modeller

 computer

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 124

XMML, and extended the XMML semantics for the executable domain-specific

model. Behaviour semantics of XDML is defined to meet the requirement of

behaviour modelling and to endow the model with the executable behaviour semantics.

The abstract syntax of XDML is required to meet the requirement of that model

constraints and action specifications is defined precisely, and describe the details of

models. What differs from UML language system is that the abstract syntax of XDML

is small and precise. Its abstract syntax should be the minimal set to meet the

requirements of the construction of the executable domain-specific model.

2) Both AS&MC syntax and the concrete syntax of XDML use the unified

abstract syntax.

The concrete syntax of XDML is the concrete expression of the abstract syntax of

XDML. AS&MC syntax also uses the abstract syntax of XDML. On one hand, the

behaviour semantics involved in XDML is the core of the description of model

behaviours, and can support the behaviour requirements of AS&MC. On the other

hand, the abstract syntax of XDML provides the way to access and control model

elements for AS&MC. AS&MC syntax can enhance the ability of model description.

With the unified abstract syntax, semantics is clearer and simpler to avoid duplication

and confliction.

3) AS&MC Syntax

Behaviour modelling of UML is too simplex to describe the details of model

behaviours clearly. And the complex behaviours lead to that the multi-tier behaviour

models have to be used and refined to meet the requirement of complementing the

necessary behaviour process. It is very important to provide the unambiguous,

accurate and legible AS&MC Syntax for the model details based on behaviour

modelling. Action specifications express the action details in a clear and accurate way.

At the same time, model constraints provide the accurate constraints (semantics

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 125

conditions or restrictions) in the modelling process to improve the model description

ability. So the accuracy of xDSM can be improved significantly. The abstract of

models decides that models are used to describe the system at a certain abstract level.

The granularity of the model element description is relatively large. AS&MC syntax

can complement the necessary details and constraints, and define models accurately

while maintaining the abstract of models. AS&MC is described based on EBNF

(Extended Backus-Naur Form), which is used by modellers to describe the details of

models. It is similar to using the advanced language, with the friendly user interface

and easier to understand.

4) Concrete Syntax of XDML

The concrete syntax of XDML is the concrete expression of the abstract syntax of

XDML, and also the integrated expression. XDML is based on XML meta-language,

which describes and builds xDSM meta-model and xDSM application model by GME.

It involves domain objects, relationships, constraints and behaviour processes. The

concrete syntax of XDML is a computer-oriented and textual concrete syntax. It can

be identified and displayed by GME, as well as parsed and executed by DSMEI. The

concrete syntax of XDML includes all the information described by xDSM and is

responsible for models‟ physical storage. AS&MC syntax will be translated into the

concrete syntax of XDML ultimately so as to be handled by DSMEI. That requires

algorithms to support the translation from AS&MC syntax to the concrete syntax of

XDML.

5) Layered Architecture of XDML

The layered architecture of XDML is divided into three layers: XDML is at

meta-modelling language layer, which is used to create the meta-modelling element

for the xDSM meta-model.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 126

xDSM meta-model is at meta-model layer. The semantics of XDML is independent

of the specific domain. It is an abstract of domain concepts and business processes,

and can be used to define the extracted concepts, business and rules from the specific

domain. At the same time, xDSM meta-model is the specifications of DSL, which is

used to describe and characterise the modelling language.

xDSM application model is at application modelling layer. The definitions of

xDSM meta-model are used to construct and assemble the concrete application model

of xDSM. AS&MC syntax which is created from XDML at the meta-modelling

language layer can be used to accurately define xDSM meta-model and xDSM

application model. They will be reflected as the concrete syntax of XDML eventually.

6.1.3 Design Targets

XDML is a domain-specific meta-modelling language which is designed for

constructing xDSM. xDSM is based on domain-specific modelling. It is required to

provide the support of the complete description language for the domain-specific

modelling process, including xDSM meta-modelling and xDSM application modelling.

XDML is used to describe xDSM meta-model and xDSM application model

accurately, and make xDSM application model executed by DSMEI ultimately. To

provide the accurate and complete description ability for xDSM is the design objective

of XDML. It is reflected mainly on the two following aspects:

1) For Domain-Specific Modelling:

 Be able to describe domain concepts, terms in the domain-specific problem

domain;

 Be able to describe the attributes, behaviours and events of domain objects;

 Be able to describe domain-specific business rules and constraints;

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 127

 Be able to describe domain-specific business process.

2) For Behaviour Modelling:

 Be able to modelling the system behaviour accurately;

 Be able to describe action specifications and model constraints accurately;

 Be able to describe data flows and control flows of the system behaviours

accurately.

6.2 XDML Abstract Syntax

Constructing abstract syntax is the nature of constructing a modelling language.

Abstract syntax of XDML defines a series of model concepts, relationships, and the

rule sets which links theses concepts to construct models for xDSM. The abstract

syntax of XDML defines the behaviour semantics on the basis of the semantics of the

extended XMML to provide the ability of accurate behaviour modelling. Abstract

syntax can be divided into many language units. A language unit includes a

tightly-coupled abstract syntax concept set. Abstract syntax of XDML is composed of

the extended XMML language unit and Behaviour Language Unit, as shown in Figure

6.3.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 128

Figure 6. 3 Package Structure of XDML Abstract Syntax

6.2.1 The Extended XMML Language Unit

XMML, the visual meta-modelling language, is the domain-specific

meta-modelling language designed for the realisation of the domain-specific

modelling [133]. XMML can provide the domain meta-modelling and the domain

application modelling with complete and effective support in GME. It is able to

completely define and extend the domain concepts which are required by the domain

model from the perspective of static visual modelling. The extended XMML language

unit includes the abstract syntax concepts of XMML, introduces Behaviour, Action

and Constraints, as well as the behaviour concepts that supports the definition of

domain rules and domain elements. The extended XMML language unit is the basis of

the domain-specific behaviour modelling, as shown in Figure 6.4. The part marked in

the black line frame is the task of this thesis for extending the XMML language to

provide the ability of the accurate behaviour modelling.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 129

Figure 6. 4 Abstract Syntax of the Extended XMML Language Unit

The following concepts are included in the extended XMML language unit:

1. Model: Model is the descriptions and specifications about software functions,

structure, behaviour and its environment. A modelling type or a solution to a

domain-specific problem can be expressed as a model. Model represents domain

concepts, their relationships, and behaviours, constraints and configuration

effecting on the domain elements. Model is composed of Domain Elements,

Diagrams and Domain Rules.

2. Domain Element, Entity and Relationship: the main domain concepts of the

specific domain are mapped to Domain Elements. Each Domain Element is

composed of Properties, Event Behaviour and Executing Behaviour. In the visual

modelling process, Visual Element represents the visual design of Domain

Element. In the extended XMML language, Domain Elements are derived into

Domain Entity and Relationship. Domain Entity is used to represent the types of

various entity modelling elements of the domain. Domain Entity will be

instantiated as various concrete entity objects in the domain modelling.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 130

Relationship expresses the binary relationship that exists between entities. It will

be instantiated as the associations between varieties of Domain Elements.

3. Diagram and Visual Element: Diagram is used to represent an aspect and a part of

a model. Diagram includes the View information of an aspect or a part of the

model. Visual Element is used to represent Domain Element in Diagram, and

define the visual design of Domain Element. A Domain Element can correspond

to more Visual Elements, which means that a Domain Element can show different

graphical appearances by Visual Element in the different Views.

4. Behaviour, Action and Behaviour Scenario: Behaviour is the core of behaviour

modelling, and it reflects the system objective. Behaviour is the direct result of a

group of actions of at least a domain concept. Behaviour does not exist by itself. It

is attached to Domain Element. Behaviour Scenario is generalised from Diagram,

and used to illustrate a series of Actions of Behaviour, describe an execution

process of the system, and indicate the interaction and cooperation among domain

objects, as well as the implementation of system objectives. Behaviour Scenario is

responsible for displaying data of Model, logic relationships and state information

in the description way of graphics or text, and unifying Control Flow and Data

Flow in the views.

5. Domain Rule and Constraint: Domain Rule is used to characterise the business

rules of the application domain and the specifications related to the domain

knowledge. When mapped to Model, they are expressed as Model Constraints.

Constraint is generalised from Behaviour. It contains a series of Actions and a

constraint return. Constraints are used for realising Domain Rules during

modelling time and runtime, including pre-conditions, post conditions and

infinitives.

6. Event Behaviour and Executing Behaviour: Event Behaviour and Executing

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 131

Behaviour are generalised from Behaviours. They are parts of Domain Element,

and used to represent the behaviours it own contained. Executing Behaviour is the

passive behaviour or cooperative behaviour contained Domain Element. It is an

executing set and process of Action. Event Behaviour is a kind of active

behaviour, which describes the occurrence set and process of Domain Element.

6.2.2 Hierarchy of Behaviour Language Unit

Behaviour Language Units contains the necessary behaviour semantics that support

behaviour modelling, action specifications and model constraints. Behaviour

Language Unit is divided into three levels: the first level contains DataType Language

Unit and Expression Language Unit, which are used as the behaviour foundation. The

second level is Behaviour Core Language Unit which is regard as the core of

Behaviour. The third is the Action unit set which is extended from Behaviour Core

Language Unit, as shown in Figure 6.5.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 132

Figure 6. 5 Hierarchy of Behaviour Language Unit

6.2.3 Behaviour Foundation Language Unit

Behaviour Foundation Language Unit supports Behaviour Core Language Unit. It

is the necessary condition to describe behaviour and construct the behaviour model.

Behaviour Foundation Language Unit contains DataType Language Unit and

Expression Language Unit.

1. DataType Language Unit is shown in the following figure.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 133

Figure 6. 6 DataType Language Unit

DataType Language Unit describes the data type in XDML language. It is not only

the basis of the accurate behaviour modelling, but also the necessary condition of the

data flow description. It is used to describe the various related data types of the system

behaviours. Various kinds of concrete types are generalised from DataType, including:

• Null and AnyType: Null represents a data type without value. AnyType can

denote any valid data type. They are especial data type.

• Primitive Type: it is the basic and the commonly used data type, including String,

Integer, Real and Boolean.

• Enumeration: a limited number of identifiers which is used to represent a group of

continuous constants.

• Domain Element Type: it is used to describe the complex data type of Domain

Element, and coordinate with the reflection interface to access Entity and

Relationship within Model.

• Collection: it is a set of the data which have the same type. The element types

supported by Collection include all the valid data types, such as Primitive Type,

Domain Element Type, etc.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 134

2. Expression Language Unit:

Figure 6. 7 Expression Language Unit

Expression Language Unit describes the expressions of XDML language. It is

composed of operators, constants and variables. It can calculate a result of the

operations. It is the basis of data computing, and the important part of behaviour

modelling for supporting model constraints and computational logic actions. Various

kinds of the concrete expressions are generalised from Expression, including:

• Atomic Expression: Atomic Expression is the basic Expression Language Unit. It

represents an operation which cannot be subdivided. It may contain a number of

operation variables, which is provided with variables, constants, or operations.

Atomic Expression is generalised into three basic expressions: Logic Expression

provides the logic operations, such as And, Or and Not; Comparative Expression

provides Comparative operations, such as Greater, Less and Equals; Arithmetic

Expression provides arithmetic operations such as Add, Sub, Multiplication and

Division.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 135

• Complex Expression: Complex Expression is the combination of Atomic

Expressions. It contains at least one Atomic Expression. Complex Expression

carries the composition operation according to the priority of each Atomic

Expression to get the computing results of the expression.

6.2.4 Behaviour Core Language Unit

Behaviour Core Language Unit is the core unit to support behaviour modelling in

XDML. Based on DataType Language Unit and Expression Language Unit,

Behaviour Core Language Unit describes the behaviour structure completely,

including Behaviour, Action and Operation. There are many concepts introduced from

the extended XMML Language Unit, which relevant to each other.

Figure 6. 8 Behaviour Core Language Unit

The following concepts are included in Behaviour Core Language Units:

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 136

1. Behaviour and Behaviour Scenario: Behaviour is the core of behaviour modelling.

It embodies the system objective. In XDML language, Behaviour Scenario is used

to describe the behaviour, and explain the executing process of a series of Actions

contained in a behaviour. Behaviour Scenario is expressed as a entirety in the

form of Operation, which includes Input Pin and Output Pin. BS can be

transformed into a Coordination Operation.

2. Action: Action is the basic unit of behaviour semantics. It represents the state

transformation or the handling operation of a system element. Action can be

generalised into four kind of basic Actions: Atomic Action, which represents a

basic action that cannot be subdivision; Group Action: Atomic Actions are

assembled as a group of actions and have some characteristics of the group

execution, including basic group actions, transaction actions, retrying actions and

exception catching actions; Loop Action, which executes a group of actions

circularly under the loop control; Condition Action: a group of actions is executed

when the control condition is met, otherwise the loop is quitted or another group

of actions is executed.

3. Operation: Operation supports the execution of Action, and realises operation

semantics of a behaviour. Operation includes Input Pin and Output Pin, which

transforms a group of input into a group of output. The following three kinds of

operations are generalised from Operations. Basic Operation, that supports Basic

Action and provides more primitive and commonly used operations; Abstract

Operation, that is an abstraction of the concrete implement operations and

describes the structured interface information of the operation. It corresponds to

the concrete implement of the atomic operation services of domain business;

Coordination Operations, that is constructed by the way of Behaviour Scenario

based on Action. It is used to describe the behaviour logic of coordination

operations among the domain concepts.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 137

4. Pin and Data Flow: Pin is both type element and multiplicity element. Namely,

the data of Pin is multi-valued, sequential and unique. Pin provides values to

Operation as well as gets the returned values from Operation. Accordingly, Pin is

generalised into Input Pin and Output Pin. The executing process of a behaviour is

from the source of the Output Pin of an Operation, based on Execution Context to

deal with the data then transfer to the Input Pin of another Operation. That

constitutes a whole data flow. The data flow is not an absolute concept of data

pipeline, but can get and assign data clearly from Execution Context and

Operation, and support Control Flow working normally.

5. Control Flow: Sequential Relationship represents a sequential execution

relationship between actions. It is generalised from Relationship. Sequential

Relationship is associated with two actions, and expresses the control flow of

action executions. It also defines the order of action executions that are depended

on each other: follow-up actions can be executed only after the previous actions

have been done.

6.2.5 Action Language Unit

The set of Action Language Unit is constructed based on behaviour modelling

foundation of Behaviour Core Language Unit. It extends action semantics by the

pertinent generalised Action, and provides more abundant basic Actions to support

Behaviour to achieve system objectives. Action Language Unit is the flexible and

scalable set of language units. At this stage, it generally includes:

• Language Unit of Exception Action: It is designed for the exception handling

actions in the behaviour executing process, including Exception Throwing Action

and Exception Catching Action.

• Language Unit of Domain Object Action: It is designed for the actions of domain

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 138

objects (such as Entity and Relationship), including Creation Action of domain

object, Destroy Action of domain object, and Data Access Action of domain

object.

• Language Unit of Variable Action: It is designed for the actions in connection

with the data of variable, including Variable Declaration Action, Variable Access

Action and Variable Update Action.

• Language Unit of Message Action: It is designed for the actions of the system

messages, including Message Sending Action and Message Receiving Action.

• Language Unit of Collection Action: It is designed for the actions of the data type

of collection, including Collection Index Action, Collection Traversal Action and

Collection Dynamic Setting Action.

6.3 AS&MC Concrete Syntax

AS&MC provides the accurate Action Specifications and Model Constraints for

xDSM modelling. With action specifications, what processes happen in an Operation

can be declared. Action specifications is able to introduce model elements, operate

domain objects and relationships, call the related operation, send message, and

describe the behaviour at the abstract level of domain model. The model constraints is

able to enhance the description ability to express semantics of the modelling elements

in models, so as to accurately define Domain Rules that are expressed by the model

during the periods of modelling and running. At the time of domain model running,

Domain Rules is also embodied in action specifications, so as to make action

specifications and the runtime model constraints integrated. The unified expression of

the concrete syntax of Action Specifications and Model Constraints semantics is

propitious to describing models collaboratively and accurately.

The thesis uses EBNF (Extended Backus-Naur Form) [127, 110] to describe the

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 139

concrete syntax of AS&MC. EBNF is a family of meta-syntax notations used to

express context-free grammars. It is a formal way to describe computer programming

languages and other formal languages. EBNF is developed on the basis of BNF

(Backus-Naur Form) [57]. Its expressing ability is the same as BNF, but its structure is

simpler and clearer, and easy to use. The basic contents of EBNF are:

1. ::= ：is defined as

2. "..." ：terminals

3. <… > ：nonterminals, represent syntax constituents

4. [...] ：optional items, occur up to once

5. {...} ：repeated options, which can be repeated from 0 to any times

6. | ： parallel options, only one can be chosen from the multiple options

7. (...) ：syntax packet

The concrete syntax of AS&MC is defined as follows.

 The definition of Syntax Unit and Statement:

<Constraint> ::=

Constraint <Identifier> <Block> .

<Operation > ::=

<Operation-heading> ";" <Block> .

<Operation-heading> ::=

Operation <Identifier> [<Formal-parameter-list>] [":"

<Type-identifier>].

<Formal-parameter-list> ::=

"(" <Formal-parameter-section> { ";" <Formal-parameter-section> } ")" .

<Formal-parameter-section> ::=

<Identifier-list> ":" <Type-identifier> .

<Block> ::=

http://en.wikipedia.org/wiki/Metasyntax
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Terminal_symbol
http://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#function-heading
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#block
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#formal-parameter-list
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#type-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#formal-parameter-section
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#formal-parameter-section
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#formal-parameter-section
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier-list
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#type-identifier

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 140

 "{" <Statement-sequence> "}" .

<Statement-sequence> ::=

<Statement> { ";" <Statement> } .

<Statement> ::=

<Simple-statement | <Structured-statement> .

<Simple-statement> ::=

[<Constant-definition> | <Variable-declaration> | <Assignment-statement>

| <Operation-statement>] .

<Constant-definition> ::=

Const <Identifier> "=" <Constant> .

<Variable-declaration> ::=

Declare <Identifier-list> ":" <Type> .

<Assignment-statement> ::=

<Variable> ":=" <Expression> .

<Operation-statement> ::=

<Operation-identifier> [<InputPin>] .

<Structured-statement> ::=

<Compound-statement> | <Repetitive-statement> | <If-statement> .

<Repetitive-statement> ::=

<While-statement> | <For-statement> | <Foreach-statement> .

<While-statement> ::=

while <Expression> do (<Statement> | <Block>) .

<For-statement ::=

for " ("<Assignment-statement> ";" <Expression> ";"

<Assignment-statement> ")" (<Statement> | <Block>) .

<Foreach-statement> .

Foreach " ("<Type-identifier> <Variable-identifier> in <Variable> ")"

(<Statement> | <Block>) .

http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#simple-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#structured-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#assignment-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#procedure-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#constant
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier-list
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#procedure-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#compound-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#repetitive-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#conditional-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#while-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#for-statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#type-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#variable-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#variable-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#statement

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 141

<If-statement> ::=

if <Expression> then (<Statement> | <Block>) [else (<Statement> |

<Block>)] .

<Pin> ::=

 <InputPin> | <OutputPin> .

<InputPin> ::=

 "(" <Actual-parameter> { "," <Actual-parameter> } ")" .

<OutputPin> ::=

 <Type> .

<Actual-parameter> ::=

<Expression> | <Variable> | <Actual-Operation> .

<Actual-Operation> ::=

<Operation-identifier> .

 The definition of Expression:

<Expression> ::=

<Simple-expression> [<Relational-operator> <Simple-expression>] |

<Collection-Query>.

<Simple-expression> ::=

[<Sign>] <Factor> { <Expression-operator> <Factor> } .

<Factor> ::=

<Variable> | <Number> | <String> | nil | <Constant-identifier> |

<Bound-identifier> | <Function-designator> | "(" <Expression> ")" | not

<Factor> .

<Relational-operator> ::=

"==" | "<>" | "<" | "<=" | ">" | ">=" .

<Expression-operator> ::=

"+" | "-" | "*" | "/" | and | or .

http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#statement
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#actual-parameter
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#actual-parameter
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#actual-variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#actual-function
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#procedure-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#simple-expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#relational-operator
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#simple-expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#sign
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#factor
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#multiplication-operator
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#factor
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#number
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#string
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#constant-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#bound-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#function-designator
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#factor

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 142

<Collection-Query> ::=

 <Variable> "(" <Type> "|" <Expression> ")" .

<Variable> ::=

<Entire-variable> | <Component-variable> | <Referenced-variable> .

<Entire-variable> ::=

<Variable-identifier> | <Field-identifier> .

<Component-variable> ::=

<Indexed-variable> | <Field-designator> .

<Indexed-variable> ::=

<Collection-variable> "[" <Element-list> "]" .

<Element-list> ::=

[<Expression> { "," <Expression> }] .

<Field-designator> ::=

<Object-variable> "." <Field-identifier> .

<Operation-designator> ::=

<Operation-identifier> [<InputPin>] .

 The definition of Type and Assistant Syntax:

<Type> ::=

<Primitive-type> | <Enumerated-type> | <Collection–type> |

<Domainelement-type> | <Type-identifier> .

<Primitive-type> ::=

<String> | <Real> | <Boolean> | <Integer> .

<Enumerated-type> ::=

"(" <Identifier-list> ")" .

<Collection-type> ::=

Collection ["[" <Integer> { "," <Integer> } "]"] of <Type> .

<Integer> ::=

http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#entire-variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#component-variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#referenced-variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#variable-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#field-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#indexed-variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#field-designator
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#array-variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#element-list
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#expression
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#record-variable
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#field-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#function-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#simple-type
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#type-identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#simple-type
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier-list

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 143

<Digit-sequence> .

<Real> ::=

<Digit-sequence> "." [<Unsigned-digit-sequence>] |

<Digit-sequence> .

<Digit-sequence> ::=

[<Sign>] <Unsigned-digit-sequence> .

<Unsigned-digit-sequence> ::=

<Digit> { <Digit> } .

<Sign> ::=

"+" | "-" .

<String> ::=

"‟" <String-character> { <String-character> } "‟" .

<String-character> ::=

<Any-character> | "‟‟" .

<Boolean> ::=

 "true" | "false" .

<Constant> ::=

[<Sign>] (<Integer> | <Real>) | <String> .

<Domainelement-type> ::=

 <Identifier> .

<Type-identifier> ::=

<Identifier> .

<Operation-identifier> ::=

<Identifier >.

<Identifier> ::=

<Letter> { <Letter> | <Digit> } .

<Identifier-list> ::=

<Identifier> { "," <Identifier> } .

http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#digit-sequence
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#digit-sequence
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#unsigned-digit-sequence
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#digit-sequence
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#sign
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#unsigned-digit-sequence
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#digit
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#digit
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#string-character
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#string-character
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#sign
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#string
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#letter
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#letter
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#digit
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier
http://www.lrz-muenchen.de/~bernhard/Pascal-EBNF.html#identifier

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 144

<Comment> ::=

 "/*" <Any-character> "*/" .

<Include> ::=

include <String> .

<Letter> ::=

"A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" |

"N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" |

"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" |

"p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" .

<Digit> ::=

"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

6.4 XDML Concrete Syntax

The concrete syntax of XDML is defined by XML Schema [94]. XSD (XML

Schema Definition) is a W3C standard which is used for the type system called XML

Schema which is based on XML. The language used for definition is a kind of XML

syntax called XML Schema Definition Language. XML Schema document itself is the

validating XML. Compared to the early DTD, XML Schema has the following

characteristics, for examples, simpler format, easier to understand and stronger

capacity of expression. At the same time, XML Schema is convenient for forming

SOM (Schema Object Model) and good for the application to carry out the syntax

parsing and validation of the object XML document according to XSD.

XDML is the domain-specific meta-modelling language based on XML

meta-language. It employs the unified concrete syntax to describe xDSM meta-model

as well as xDSM application model (the detailed definition of XSD refers to Appendix

A). XDML is computer-oriented, responsible for model persistence, model

visualisation, and the parsing and executing of models. The concrete syntax of XDML

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 145

is extended on the basis of the concrete syntax of XMML. It supports domain-specific

meta-modelling, application modelling as well as model visualisation. The concrete

syntax of XDML is described on the following two aspects:

 Domain-specific modelling and model visualisation: They are inherited from the

concrete syntax of XMML, and carry out the behaviour extension of the model

entities so as to support behaviour modelling.

 Accurate behaviour modelling: it integrates action specifications and model

constraints of models from AS&MC.

6.4.1 Domain-Specific Modelling

1. Domain Model

A domain modelling objective or a solution to a domain-specific problem is

represented as a domain model. In XDML, the domain model is composed of

framework elements (for examples, views, domain entities and relationships) which is

necessary for the model, and the related behaviours and their details of the domain

modelling objective (for examples, operations, constraints and events). Its concrete

syntax structure is shown in Figure 6.9.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 146

Figure 6. 9 XML Schema Definition of Model

Model is a ComplexType, which involves:

Attributes:

 ID：It is the unique identification of a model, and also the namespaces of model

elements, views and operations.

 Type: It is the type of a model.

 Version: It is the version identification of a model.

Child Elements:

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 147

 Entities: It is the set of various domain concepts and domain object entities of a

model.

 Relationships: It is the set of associations among various entities of a model.

 Diagrams：To show the set of diagrams of a model in the visual way. Diagrams

are used to describe Behaviour Scenario visually in XDML.

 Properties：It is the set of various properties information of a model;

 Events: It is the event set involved in a model itself.

 Operations: It is the set of operations at the model level, including abstract

operations and behaviour operations with the larger granularity.

 Constraints: It is the set of constraints at the model level.

 RefEntities：It is the set of reference entities that is introduced from the

external of a model.

2. Domain Entity

In meta-modelling and application modelling, the domain concepts and the

instantiated entity objects are used to represent the content of model entities. Domain

Entity is used to represent various entities of modelling elements of the specific

domain, and will be instantiated as various concrete entity objects in domain

application modelling. Its concrete syntax structure is shown in Figure 6.10.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 148

Figure 6. 10 XML Schema Definition of Entity

Entity is a ComplexType, which involves:

Attributes:

 ID: It is the unique identification of an entity.

 Type: It is the type of an entity. It is used to identify its meta-model elements.

Child Elements:

 RefinedModel: It is the refined model contained in an entity. Model is refined

further by establishing sub-models.

 Attachment: It is the set of attachable sub-entity objects in an entity. Entity is

responsible for the life cycle of sub-entity.

 Contained: It is the set of the referenced entity objects that is contained in an

entity. The relationship between them and the entity is loosely coupled.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 149

 Properties: It is the set of various properties information of an entity.

 Events: It is the event set of an entity, including modelling time events and

runtime events.

 Operations: It is the set of operations of an entity, and the set of the attached

Executing Behaviours of an entity. They are represented as active operations or

passive operations.

 Constraints: It is model constraints at the entity level.

3. Relationship

The relationship in Model is used to describe the binary relationship existing

between Entities, and establish the association between Entities. The roles played by

the connected Entities can be specified in Relationship. The data flow of Entities can

be joined and the control flow of behaviour modelling can be embodied in

Relationship. Its concrete syntax structure is shown as the following figure.

Figure 6. 11 XML Schema Definition of Relationship

Relationship is a ComplexType, which involves:

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 150

Attributes:

 ID: It is the unique identification of a relationship.

 Type: It is the type of a relationship. It is used to identify its meta-model

elements.

Child Elements:

 Roles: It shows the role information of the two entities which are connected by

a relationship. The role embodies the position, effect and identity, etc. of the

entity in the binary relationship.

 Properties: It is the set of various properties information of a relationship.

 Events: It is the event set of a relationship, including modelling time events

and runtime events.

 Operations: It is the set of operations of a relationship. It is action

specifications which connect the entity behaviours, and represented as the

active operation.

 Constraints: It is model constraints at the relationship level.

4. Diagram

The visualisation method is used to display the diagrams of models. Diagrams are

the visualisation definition of models. VisualElements are corresponded to the

modelling elements of the domain model and describe its visualisation information.

Diagram is the interactive interface with users; at the same time, it is also a logic unit

of the domain model. Its concrete syntax structure is shown as the following figure.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 151

Figure 6. 12 XML Schema Definition of Diagram

Diagram is a ComplexType, which involves:

Attributes:

 ID: It is the unique identification of a diagram.

 Type: It is the type of a diagram, such as Behaviour Scenario.

 RenderEngine：It is the render engine of a diagram.

Child Elements:

 VisualElements：It is the set of the visual information of each modelling

element in a diagram. It is associated with the modelling element by its

ElementID.

 Properties: It is the set of various property information of a diagram.

6.4.2 Behaviour Modelling

1. Intermediate of AS&MC

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 152

AS&MC syntax is used to describe action specifications and model constraints

accurately. Its concrete syntax is similar to that of the advanced language. AS&MC

syntax is integrated into XDML as the intermediate of AS&MC. The intermediate of

AS&MC is the structured representation of AS&MC syntax which is processed by the

lexical and syntactic analysis. It is the basis for the computer to understand behaviours

and constraints. Its concrete syntax structure is shown as the following figure.

Figure 6. 13 XML Schema Definition of Intermediate

Intermediate is a ComplexType, which involves:

Attributes:

 Type ：It is type, operation or constraint described by Intermediate.

Child Elements:

 Tokens：It is the indivisible logic unit of AS&MC syntax. Token is the

structured representation of AS&MC syntax which is processed by the lexical

and syntactic analysis. It represents the minimal token unit, which can be used

to express the concrete operation or data by the individual or grouped way.

Each token is composed of the following attributes:

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 153

• Type: It is the classification of Tokens, including separators, keywords,

identifiers, etc.

• Value：It is the concrete value of a Token.

• Line: It is the number of lines which a Token corresponds to.

• ModelId：It is the identification of the domain model which a Token

corresponds to, and also the corresponding namespace.

• MatchNo：It is the sequence number of the paired tokens. It is only valid

for the paired tokens.

 AS&MC Code：It is the source code of action specifications or model

constraints which is described by AS&MC syntax.

2. Operation

Operation is the concrete expression of Executing Behaviour. It is divided into

Abstract Operation and Coordination Operation. Coordination Operation can be

associated with a Behaviour Scenario. At the same time, Operation can act as the

carrier of action specifications and joins Entity. Operation is the main representation

of Action and the basic unit of action specifications. Its concrete syntax structure is

shown as the following figure.

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 154

Figure 6. 14 XML Schema Definition of Operation

Operation is a ComplexType, which involves:

Attributes:

 OperationName：It is the name of an operation, and the unique identification of

the operation in the model namespace.

 Type : It is the type of an operation, for examples, behaviour operation and

action operation.

 BSID: It is the ID of Behaviour Scenario that Coordination Operations

correspond to.

 IsActive: It says whether the operation is active operation or not.

 IsAbstract: It says whether the operation is abstract operation or not.

 IsPublic: It says whether the operation is public or not.

Child Elements:

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 155

 Input Pin: It is the input pin of an operation. It is an ordered sequence of names

and types.

 Output Pin: It is the output pin of an operation.

 Intermediate: It is the intermediate of action specifications described by

AS&MC syntax.

 Constraints: It is the set of constraints of an operation, including pre-conditions

and post-conditions.

3. Constraint

In the modelling process, the accurate constraints are provided by Constraints to

represent domain rules and to enhance the description ability of behaviour modelling.

Constraints can be used to represent domain rules at both modelling time and runtime.

Model constraints are embodied in GME by the events of modelling elements at

modelling time. At runtime, domain rules require to be expressed explicitly, and

constraints are realised in the concrete model execution. Its concrete syntax structure

is shown as the following figure.

Figure 6. 15 XML Schema Definition of Constraint

Constraint is a ComplexType, which involves:

Attributes:

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 156

 ID: It is the unique identification of a constraint.

 Type: It is the type of a constraint, for examples, Pre-Conditions,

Post-Conditions or Invariant.

 Scope: It is the effect scope of a constraint, namely, effect domain, which can

be attributes or operations of the domain model or the domain entity.

 Exception: It is the exception operation of a constraint, which is a appointed

exception handling action when the constraint is not be met;

Child Elements:

 Intermediate: It is the intermediate of model constraints described by AS&MC

syntax.

4. Event

Event is the concrete expression of Event Behaviour. It corresponds to Occurrence

of domain concepts, which answers to the external messages and executes the

corresponding operations. At the same time, Event is also the means to embody model

constraints at modelling time in GME. Its concrete syntax structure is shown as the

following figure.

Figure 6. 16 XML Schema Definition of Event

Chapter 6. XDML (eXecutable Domain-Specific Meta-Modelling Language) 157

Event is a ComplexType, which involves:

Attributes:

 EventName: It is the name of an event, and the unique identification of the

event in the model namespace.

 Type: It is the type of an event, for examples, Event Behaviour and Modelling

Constraints Events.

 MessageID: for Event Behaviour, it is the ID identifier of the message which

triggers the event.

Child Elements:

 Intermediate: It is the intermediate of model constraints or action specifications

described by AS&MC syntax.

6.5 Summary

In this chapter, XDML language is defined to describe xDSM. XDML Language is

a meta-modelling language which is designed for DSM. It is used by GME to support

xDSM meta-modelling and application modelling as the description language. XDML

language is the foundation for the model execution.

XDML language integrates well-defined behaviour semantics to support

domain-specific behaviour modelling. The concrete syntax of action specifications

and model constraints are built on the basis of behaviour semantics of XDML

language, which is used to define behaviour details and behaviour constraints of

xDSM meta-model and application model, so as to describe systems in detail and

accurately.

158

Chapter 7

Domain-Specific Model Execution

Infrastructure

With the accurate definition of XDML, xDSM application model is built based on

xDSM meta-model for a domain-specific application. xDSM application model

describes system behaviours accurately and completely, and meets the requirements of

MMLs 5. However, only xDSM is impossible to be executed. It must depend on some

execution environment to be parsed and executed. DSMEI (Domain-Specific Model

Execution Infrastructure) provides the executable environment for xDSM application

model. DSMEI is responsible for parsing behaviour semantics of xDSM application

model, transforming them into the operational sequence with accurate semantics, and

executing these operations to achieve system objective. DSMEI integrates domain

framework and combines AGOS to provide software functional entities for the virtual

operations, thereby which makes xDSM application model become the executable

software product in DSMEI.

7.1 Architecture

With the development of network technology, software platform has been evolving

from traditional stand-alone, closed, static runtime environment into varied, open,

dynamic network runtime environment gradually. DSMEI is a software platform

within network environment, as well as the execution environment for xDSM models.

DSMEI takes the accurate and integrated behaviour logic of xDSM as the core and

AGOS as software functional entities, so as to transform xDSM application model

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 159

into the service-oriented domain-specific application. The service-oriented application

is a kind of software system in network environment. It is a natural extension of the

traditional software structure [128].

DSMEI parses and executes xDSM, as well as provides soft function entities for

model operations by combining with AGOS, while it provides domain application web

services for end users, in order to accomplish system target. The functional structure

of DSMEI is shown in Figure 7.1.

DSMEI parses and executes xDSM which is a platform-independent executable

model. Meanwhile, DSMEI employs web services as software functional entities

which are platform-independent and realisation-independent based on the standard

web service protocol system. On one hand, it provides atomic software functions for

domain-specific system to express the utmost of the reusability and openness of web

services; on the other hand, the customised domain application software functions

corresponding to xDSM application model can be used by clients widely and

standardisedly. DSMEI is open and substitutable since the relevant parts of DSMEI

are platform-independent and realisation-independent. For example, different DSMEIs

Figure 7. 1 Functional Structure of DSMEI

xDSM

DSMEI

AGOS

Executable model defined accurately

<Platform-Independent>

Standard protocol of web services

<Platform-Independent and

Realisation-Independent >

Model execution infrastructure

< Network Infrastructure>

Domain

Application

Web

Services

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 160

developed on different operating systems can provide the same execution environment

for xDSM like model virtual machines.

The architecture of DSMEI is made up of BLEF (Behaviour Logic Execution

Framework), DSPROF (PROvider Framework of Domain application web Services),

AGOSOF (suppOrt Framework of AGOS), as shown in Figure 7.2.

 BLEF (Behaviour Logic Execution Framework)

BLEF is the core of DSMEI. It is responsible for parsing and executing xDSM

application model. Under the harmony and control of ECU (Execution Control Unit),

BLEF creates BLEUs (Behaviour Logic Execution Unit) which is amount

configurable to load and execute xDSM behaviour scenario intermediate code

concurrently. BLEU is similar to a behaviour logic processor. BLEF involves:

Web Services WSDL

AGOS (Atomic Group of Domain-Specific Web Services)

D
S

M
E

I
(D

o
m

a
in

-S
p

ec
if

ic
 M

o
d

el
 E

x
ec

u
ti

o
n

In
fr

a
st

ru
ct

u
re

)

BLEF (Behaviour Logic Execution Framework)

AGOSOF (Support Framework of AGOS)

DSPROF (Provider Framework of Domain Application Web Services)

xDSM Behaviour Scenario Intermediate Code

BLEU (Behaviour

Logic Execution Unit

BLEU (Behaviour

Logic Execution

Unit

 。。。。。

ECU (Execution Control Unit)

Figure 7. 2 DSMEI Architecture

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 161

 xDSM behaviour scenario intermediate code：xDSM BS is the basic behaviour

logic unit of xDSM. BS is extracted from xDSM defined with XDML and

compiled into intermediate code which is able to be parsed and executed by

BLEUs.

 BLEU (Behaviour Logic Execution Unit): It is a software object. BLEU can

parse and execute xDSM behaviour scenario intermediate code autonomously,

control the execution state independently, handle the control flow and the data

flow of operations execution, as well as interrupt the execution and receive the

external information.

 ECU (Execution Control Unit): It manages and coordinates BLEU instances,

as well as provides the uniform façade for the interaction between DSPROF,

AGOSOF and the BLEU cluster. BLEU running is driven by ECU with

message.

 DSPROF (PROvider Framework of Domain application web Services)

DSPROF provides software functions of xDSM application model for end users,

which are BSs marked with deployed state in xDSM application model. DSPROF

assorts starting point, end point, return point and message receiving of a BS with its

pin sequence to build a web service dynamically, and provides corresponding WSDL

for each web service. Consequently, it provides end users with xDSM model

execution application interfaces according with the open standard.

 AGOSOF (suppOrt Framework of AGOS)

AGOSOF adopts web service model based on business document exchange as web

service calling mechanism. It forms a dynamic flexible web services support

framework depending on abstract operations and virtual services to replace the

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 162

changeable concrete implementation details by web service virtualisation according to

AGOS service configuration.

7.2 Behaviour Logic Execution Framework

BLEF (Behaviour Logic Execution Framework) is the main body of the execution

of xDSM application model. xDSM application model cannot be executed directly. It

is needed that to extract xDSM BS and compile the BS described by XDML originally

into intermediate code. The intermediate code is loaded, parsed and executed by

BLEU. Meanwhile, ECU is responsible for cooperating and managing the BLEU

cluster, as well as providing the uniform façade for BLEF interacting with the external

framework.

BLEU is a relatively independent component for executing models. ECU provides

global environment, message bus and controls for executing and cooperating BLEUs.

BLEU can load, clear, suspend and recovery xDSM behaviour scenario intermediate

code and behaviour execution context dynamically. Meanwhile, several BLEUs can

constitute the BLEU cluster which communicate and cooperate with each other by

messages in order to reduce coupling. The structure is quite suitable for the distributed

execution environment since the BLEU cluster can be distributed at different servers

and managed uniformly by ECU. Furthermore, the amount of the BLEU instances at a

certain server can be fixed according to the server performance so as to enhance the

performance of model execution by expanding the hardware capacity and improve the

concurrency.

7.2.1 xDSM Behaviour Scenario Intermediate Code

xDSM models described by XDML language cannot be executed directly by BLEF.

It involves much structure information and visualisation information of model

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 163

elements, and the primary meta-model of behaviour scenario also implies some

behaviour semantics. BLEF can extract BS of xDSM models then compile and parse it

into the intermediate code which contain the pure behaviour logic procedure and

interface information of BS and can be loaded and executed by BLEU directly.

Behaviour semantics represented by BS is contained in the structural tokens

collections of xDSM behaviour scenario intermediate code. It can be parsed as the

corresponding operational semantics sequence [102, 101]. Behaviour scenario is

understood as a series of operation steps which represent the signification of this

behaviour scenario. BLEU parses xDSM behaviour scenario intermediate code and

executes the corresponding operation according to operational semantics in tokens so

as to achieve the corresponding system objectives of behaviour scenarios. xDSM

behaviour scenario intermediate code is also defined by XML Schema based on XML

meta-language as follows:

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 164

Figure 7. 3 XML Schema Definition of xDSM Behaviour Scenario Intermediate Code

Scenario is a root element of XML Schema. It represents the specific behaviour

scenario. It involves:

Attributes:

 ModelID: It is the unique identification of a domain model, namely, the

namespace of a BS.

 Name: It is the unique identification of a BS.

 EntryOrder: It is the serial number of the entry to execute tokens.

 IsPublic: It is the identification whether the BS is public or not.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 165

Child Elements:

 InputPin: It is the input pin of a BS.

 OutputPin: It is the output pin of a BS.

 Tokens: It is the set of behaviour logic tokens of a BS. A token represents the

minimal markup notation unit. It can express the concrete operation or data by

the individual or grouped way. BLEU parses tokens to get data and executes

specific operations.

 Messages: It is the set of messages received by BS. BS holds the execution

state and waits for messages while a suspension takes place. These messages

inputted with data will recover the execution process. MessageID is the unique

identification of a message. EntryOrder is the serial number of the entry to

execute tokens.

 Operations: It is the set of declarations of operations applied in a BS. Any BS

operation in executing time should be searched and gotten from the set of

Operations, and the different execution mode should be adopted according to

the different concrete operation type. ModelID identifies the namespace of an

operation. OperationName is the unique identification of an operation. Type

involves Abstract Operations (corresponding to web services), Coordination

Operations (corresponding to behaviour scenario), and Execution Framework

API (corresponding to default internal functions).

 DomainObjects: It is the set of declarations of domain objects applied in a BS.

DomainObject is a complex data type. It is the foundation of memory

allocation and attributes access to a domain object in BLEU. ModelID

identifies the namespace of DomainObject. Name is the unique identification

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 166

of DomainObject.

7.2.2 xDSM Compiling and Parsing Algorithm

xDSM is translated into behaviour scenario intermediate code with a series of

compiling and parsing processes in BLEF. Meanwhile, it involves three main

processes named parsing AS&MC, parsing XDML and compiling xDSM BS. BLEF

extracts and compiles xDSM BS to generate the intermediate code by the core

algorithm in each process, and registers BS information and abstract operation

information in DSMEI to lay the foundation for xDSM execution. The process is

shown in Figure 7.4.

1. AS&MC parsing algorithm

AS&MC parsing process is to parse action specifications and model constraints

defined by AS&MC syntax into AS&MC intermediate format. The concrete syntax of

AS&MC described by EBNF grammar is used to define action specifications and

model constraints. Its representation is like advanced language.

AS&MC AS&MC intermediate

XDML (eXecutable Domain-specific Meta-modelling Language)

xDSM Behaviour Scenario BS information Abstract Operation

information

xDSM Behaviour Scenario Intermediate Code

Parsing

Integrating

Parsing

Compiling

Extracting Registering Registering

Figure 7. 4 The Process of Compiling and Parsing xDSM BS Intermediate Code

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 167

Thereafter, AS&MC intermediate format is integrated into the concrete syntax of

XDML which is based on XML meta-language. AS&MC intermediate format is a set

of tokens which structure is as same as that of Tokens of xDSM behaviour scenario

intermediate code. It is parsed and formed after modelling completed.

The thesis describes AS&MC parsing algorithm according to principles of compiler

including lexical analysing algorithm, syntax analysing algorithm and semantics

analysing algorithm, and constructs the finite automata by AS&MC EBNF definition

to realise the lexical analyser. The input is the code of action specifications and model

constraints defined by AS&MC syntax. AS&MC intermediate format is the output

after parsed. The body of the algorithm is as follows:

• Firstly, Tokens and the category of each token are decomposed by AS&MC

lexical analyser.

• Secondly, Tokens is traversed and done syntax analysis according to the

EBNF definition of AS&MC so as to ensure Tokens is valid in syntax

• Afterwards, Tokens is traversed time after time and checked whether it meets

the requirements of semantics according to the semantic rule set (for example:

the variable must and only be used after it is declared). Finally, AS&MC

intermediate format in line with the requirements of syntax and semantics is

generated.

2. XDML parsing algorithm

The XDML parsing process is to extract behaviour logic of xDSM BS as well as

provide necessary registration information (BS information, Abstract Operation

information) for BLEF in order to connect with DSPROF and AGOSOF to support

operation execution. XDML parsing algorithm includes main-procedure of

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 168

ParseXDML and sub-procedure of RegisterOperation.

 Main-procedure of ParseXDML：

Figure 7. 5 The Algorithm Flow Chart of ParseXDML

Procedure ParseXDML (xDSM: TXMLNode) // Main-procedure of parsing XDML

 Begin

 xDSM.GetNode(„Diagrams‟); // Diagrams node is gotten

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 169

 Foreach(Diagram in Diagrams) Begin

 If (Diagram.type=C_BeScenario) then Begin

 RegisterBeScenario(Diagram); // Behaviour Scenario is registered

 CompileBeScenario(Diagram); // Behaviour Scenario is compiled

 End;

 End;

 RegisterOperation(Model. Operations) // Model operation is registered

 xDSM.GetNode(„Entities‟); // to analyse domain entity operation

 Foreach(Entity in Entities)

 RegisterOperation(Entity. Operations);

 Model.GetNode(„Relationships‟); // to analyse relationship operation

 Foreach(Relation in Relationships)

 RegisterOperation(Relation. Operations);

 End;

 Sub-procedure of RegisterOperation：

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 170

Figure 7. 6 The Algorithm Flow Chart of RegisterOperation

Procedure RegisterOperation(Operations: TXMLNode) //Sub-procedure of registering operation

 Begin

 Foreach(Operation in Operations) Begin

 If (Operation.IsAbstract) then

 RegisterAbOperation(Operation); // Abstract Operation is registered

 Else if(Operation.BSID<>null) then

 RegisterOPtoBS(Operation, BSID); // the related operations of Behaviour

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 171

 Scenario are registered

 End;

 End;

The XDML parsing process is to traverse the model defined by XDML, extract BS

from Diagrams and register including its namespace (ModelID) and BS ID.

Meanwhile, the behaviour scenario is compiled and the information received by the

behaviour scenario is registered. All operations contained in Model, Entity and

Relationship are traversed one by one. Abstract Operation is extracted and registered

including its namespace (ModelID), operation name and Pin. Moreover, coordination

operations corresponding to the behaviour scenario are added and registered,

including its Pin, IsPublished or not.

3. xDSM behaviour scenario compiling algorithm

The xDSM BS compiling process is to extract behaviour semantics of model

elements from the behaviour scenario as well as integrate and compile action

specifications and running time constraints into xDSM behaviour scenario

intermediate code so as to BLEU can understand and execute the corresponding

xDSM behaviour scenario. xDSM behaviour scenario compiling algorithm is shown

as follows：

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 172

Figure 7. 7 The Algorithm Flow Chart of CompileBeScenario

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 173

 Procedure CompileBeScenario(Diagram: TXMLNode);

 Begin

 // to traverse elements of Behaviour Scenario

 Foreach(Element in Diagram) Begin

 // to save element constraints into ConstraintsList

 ConstraintsList.Add(Element, Element.Constraints);

//if the element is the element of the primary meta-model of behaviour scenario, its behaviour semantics is

parsed into TokensList

 If (Element.Type is BMM) then

 ParseBMMToTokensList(Element);

 //to add active operations and constraints of the element

Element.GetNode(„Operations‟);

Foreach(Operation in Operations) Begin

 If (Operation.IsActive) then Begin

 ParseOPToTokensList(Operation);

 ApplyConstraints(Operation.Constraints)

 End;

End;

 //if the element is the starting point, it is parsed into InputPin and marked as Starting Point

 If (Element.Type=C_Start) then Begin

 ParseInputPin(Element);

 StartElement := Element;

 End;

//if the model element is the end point, it is parsed into OutputPin

 If (Element.Type=C_End) then

 ParseOutputPin(Element);

//if the element is Message Receiving, it is parsed into Messages and the message receiving

information of behaviour scenario is registered

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 174

 If (Element.Type=C_ReciveMessage) then Begin

 ParseMessages (Element);

 RegisterMGtoBS(Element, BSID) ;

 End;

End;

 //to djust the order of TokensList from Starting Point according to the control flow

AdjustTokensListOrder(TokensList, StartElement);

//to traverse TokensList, add element constraints and extract Operations and DomainObjects used by

Tokens

Foreach(Tokens in TokenList) Begin

 ConstraintsList .ApplyConstraints(Tokens);

 ParseToOperations(Tokens);

 ParseToDomainObjects(Tokens);

End;

 // to save TokensList into Tokens

 TokenList.SaveToTokens;

 End;

The compiling process of xDSM BS is to traverse elements and their affiliated

operations and constraints firstly, and save the related tokens of each element into

TokensList. For each element:

• To save element constraints into ConstraintsList. This is the preparation for

adding constraints into the related tokens.

• If the element is the element of the primary meta-model of behaviour

scenario, its behaviour semantics is parsed into TokensList. For example, the

element of Judgement Entity is parsed as the tokens of “if (Expression)

then … else ….”

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 175

• To add active operations and constraints of the element. The constraints are

divided into pre-conditions and post-conditions, which are added before or

after operation tokens directly as AS&MC intermediate format.

• If the element is the starting point, it is parsed into InputPin and marked as

Starting Point.

• If the element is the end point, it is parsed into OutputPin.

• If the element is Message Receiving, it is parsed into Messages and the

message receiving information of behaviour scenario is registered

Afterwards to adjust the order of tokens in the TokensList from Starting Point

according to the control flow, to traverse TokensList then add element constraints and

extract Operations and DomainObjects used by Tokens, and to save TokensList into

Tokens, which make xDSM behaviour scenario intermediate code come into being

finally.

7.2.3 Behaviour Logic Execution Unit

BLEU (Behaviour Logic Execution Unit) is the relatively independent component

for model execution. It interprets and executes xDSM behaviour scenario intermediate

code within BLEF autonomously, and realises xDSM behaviour logic to accomplish

the given system objective. Behaviour scenario is the behaviour logic unit of xDSM,

which is transformed into xDSM behaviour scenario intermediate code by the parsing

and compiling processes. BLEU loads xDSM behaviour scenario intermediate code,

and executes the intermediate code by the way of interpretive execution. Meanwhile,

it creates processes and memory spaces independently and manages the control flow

and the data flow of behaviour logic execution by itself. The logic structure of BLEU

is as follows:

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 176

Data in tokens area and index area is determined by xDSM behaviour scenario

intermediate code. It is relatively fixed and composes meta-data of BSs. Data area and

stack area may be different in different execution instances. They compose behaviour

execution context.

 Tokens Area: It is the memory area of code tokens and responsible for loading

Tokens of xDSM behaviour scenario intermediate code. It is the concrete

expression of behaviour logic.

 Index Area: It is responsible for loading data of BS (attributes, InputPin,

OutputPin), lists of Messages, Operations and DomainObjects of each segment

of xDSM behaviour scenario intermediate code in sections. Index area is the

memory area of meta-data of BS, which provides essential information for

message receiving, operations searching and executing, and memory

assignment and access of complex objects.

 Data Area: It is the memory area of data during BLEU running process. It is

the self-managed memory spaces. Variables, constants and domain object

instances are stored in this area.

 Stack Area: It is the memory area of the related data of operations (such as

Tokens Area

Data Area

Index Area Stack Area
B

eh
a
v

io
u

r
S

ce
n

a
ri

o

S
o

u
rc

e
D

a
ta

Execution Engine

B
eh

a
v

io
u

r
E

x
ec

u
ti

o
n

C
o

n
te

x
t

Figure 7. 8 The Logic Structure of BLEU

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 177

parameters, return values etc.) and execution context (such as the execution

token pointer etc.) during BLEU running process. Stack area is the core area of

operations execution and the necessary condition for executing operations.

Execution engine is the core of BLEU, which drives and executes the behaviour

logic of xDSM BS and realises the operation semantics of xDSM behaviour scenario

intermediate code by the way of interpretative execution. The algorithm of execution

engine running is as follows:

Figure 7. 9 The Algorithm Flow Chart of XEngineRun

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 178

Procedure XEngineRun (Message: TMessage)

Begin

 If Message=null then

 PrescanTokens(Tokens); //to scan Tokens

 ActivityToken := GetStartTokenOrder(Message); // to get ActivityToken

 ActionTokens := GetActionTokens(ActivityToken, Tokens); //to get Action Tokens

 While (ActionTokens<>null) Begin

 ActivityToken := DoAction(ActionTokens); //to execute Action Tokens

 ActionTokens := GetActionTokens(ActivityToken, Tokens);

 End;

End;

BLUERun starts from Starting Point and terminates at End Point or suspends

execution. If it suspends execution, the execution can also be continued by Message

Receiving. Therefore, both Starting Point and Message Receiving can start BLUERun.

Message should be null if it starts from Starting Point. The running steps of BLEU are

as follows:

• To scan Tokens to initialise execution context when behaviour logic

execution starts from Starting Point, as well as to assign memory for

variables and domain objects.

• To get the execution token pointer -- ActivityToken in tokens area. The serial

number of Token is in the attributes of EntryOrder of xDSM behaviour

scenario intermediate code if the execution starts from Starting Point; the

serial number of Token should be in the attributes of EntryOrder of the

corresponding Message if the execution starts from Message Receiving.

• To sequential down and analyse tokens from the one in tokens area pointed

by ActivityToken to get ActionTokens which represents an Action (for

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 179

examples, expression evaluation action, group action, etc.).

• Loop until ActionTokens are null.

• To execute the action represented by ActionTokens. It is accomplished by the

concrete action execution function according to the action adscription. The

execution process of the action may be recursive, such as complex expression

evaluation action. After accomplishing the action execution, subsequent

ActivityToken can be gotten in term of behaviour logic.

• To sequential down and analyse tokens from the one in tokens area pointed

by ActivityToken to get ActionTokens

It is very suitable for using BLEU to execute the consecutive BS which is not

suspended and without Message Receiving. The domain-specific business logic can be

realised better with the architecture. Meanwhile, BLEU provides the mechanism of

suspension and message receiving. The execution state of BLEU can be reserved by

suspension as well as the execution can be resumed by message receiving and the

execution token pointer -- ActivityToken can be relocated. The mechanism can deal

with the BS better that the single session is executed discontinuously. For instances,

BS of asynchronous operations and the interface related BS. For the interface related

BS, the client is required to support the serialisable interface updating techniques,

such as Ajax techniques [36], which can update local pages in web browser via

transferring HTML by web services.

7.2.4 Execution Control Unit

ECU (Execution Control Unit) is employed by BLEF to manage and harmonise the

BLEU cluster. It is an instance of Façade Design Pattern, providing the uniform

façade for the interaction between DSPROF, AGOSOF and the BLEU cluster.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 180

Meanwhile, ECU connects with DSMEI frameworks by the way of message delivery

which is coupled loosely, and drives the running of BLEU. The core functions of ECU

are expressed as follows:

 To manage the BLEU cluster

ECU manages the execution cycle of BLEU. It monitors all current states

(Execution, Idle and Interruption) of BLEU by the BLEU state list during the running

process, and manages BSs running in a certain session of BLEU by the BLEU

execution scenario list. The execution cycle of BLEU is illustrated as follows.

• Load：When ECU receives the message of execution request, it queries the

BLEU state list and assigns the execution task to idle BLEU. If there is no

idle BLEU, on one hand, messages with execution task are queuing and

waiting; on the other hand, the interrupted BLEU execution context is

suspended to release available BLEU. Once BLEU is gotten, its state is

changed to Execution and the corresponding xDSM behaviour scenario

intermediate code is loaded and executed and the BLEU execution scenario

Load

Execute

Terminate

Interrupt

Suspend

Resume

BLEU State List

BLEU

STATE

BLEU Execution

Scenario List

BLEU

BS

SESSION

Figure 7. 10 The Execution Cycle of BLEU

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 181

list is registered with BLEU instance, executed Behaviour Scenario and the

corresponding session.

• Execute: BLEU runs according to behaviour logic of BS.

• Interrupt: When BLEU execution meets interruption and waits for receiving

messages, its state is changed to Interruption.

• Suspend: ECU serialises and saves BLEU execution context (behaviour

execution context, execution token pointer, etc.) from the BLEU with

Interruption state, terminates the execution of the BLEU and changes its state

to Idle, at the same time, clears the information of the BLEU in the BLEU

execution scenario list.

• Resume: After receiving the message that the BS in session interrupts waiting,

ECU will assign the idle BLEU to load the corresponding xDSM behaviour

scenario intermediate code, anti-serialise the BLEU execution context which

is saved when suspended and change the BLEU information in the BLEU

execution scenario list.

• Terminate: When BLEU execution is completed and returned, its state is

changed to Idle, BS source data and behaviour execution context are cleared,

and the information in the BLEU execution scenario list is deleted.

 Uniform Façade

ECU provides uniform façade for DSPROF. It receives the message of BS

execution request and sends execution results or exceptions. DSPROF provides

domain application web services for the external according to the registration

information of BS in DSMEI. Web service call is transformed into BS execution

request message and BLEU is dispatched by ECU to execute the corresponding BS.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 182

When the execution terminates, execution results or exceptions will be returned by

BLEU and sent to DSPROF by ECU.

ECU provides uniform façade for AGOSOF. It sends the abstract operation request

and receives running results or exceptions returned by the support services. AGOSOF

manages AGOS and provides software functional entities by the way of web services

for Abstract Operation. ECU sends the message of executing abstract operation to

AGOSOF when receiving the execution request of Abstract Operation from BLEU.

AGOSOF calls the corresponding web services according to the registration

information of Abstract Operation and returns execution results or exceptions. ECU

receives the returned message and feeds back to BLEU.

ECU provides uniform façade for BLEU. It provides the related global control

functions for BLEU by the way of interfaces, including cooperation operation call

(xDSM Behaviour Scenario), abstract operation call (web services), message

receiving and sending, and global data access.

 Message delivery and control

The three main cooperating frameworks of DSMEI are driven by messages.

Messages are among web services and BLEU. In BLEU, all messages are related to

tasks, and messages are the concrete expressions of tasks. ECU provides uniform

façade for the three frameworks, delivers messages for tasks, and accomplishes the

execution of BS and Abstract Operations call. During the process, ECU can control

messages receiving and sending, filter messages and control the priority of messages

or pre-handle messages.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 183

7.3 Web Service Model based on Business Document

Exchange

DSMEI is logically divided into the internal framework and the external framework.

The internal framework is BLEF which is the core of DSMEI and driven by messages.

The external framework is composed of DSPROF and AGOSOF. DSPROF provides

domain application web services for the external by executing xDSM models.

AGOSOF calls external web services as the computational logic of xDSM model

execution. Web services run through the whole DSMEI, and drive the collaborative

operation of the internal framework and the external frameworks by mutual mapping

between DSMEI message specifications of the internal framework and SOAP protocol

of the external framework. However, web services provided by DSMEI are changing

with xDSM application model. They are virtual services. At the same time, AGOS

used by DSMEI is unfixed and web services to realise abstract operations are also

changing with requirements. The variability of DSMEI determines that web services

cannot be bound or published permanently as well as cannot mapping SOAP and

DSMEI messages permanently. Therefore, DSMEI needs a flexible web service

application model.

Web services are based on XML and supported by SOAP. From the perspectives of

business functionalities and data exchange, web services are software functional

entities to realise WSDL and SOAP standard business document exchange. As a

business document with business function identifier and business dataset, SOAP

message can be generated and parsed dynamically. On one hand, SOAP

communication is an exchanging process of SOAP service calling request message

and SOAP service result return message. It is an exchanging procedure of SOAP

standard business documents. SOAP communication procedure can be accomplished

by dynamically parsing and generating SOAP business documents, which replaces the

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 184

traditional web services binding and communication procedure. Meanwhile, web

services publishing can be regarded as WSDL document exchange procedure. On the

other hand, through business documents mapping, SOAP and WSDL documents can

be transformed into DSMEI messages dynamically, and DSMEI messages can also be

transformed into SOAP and WSDL documents. So the internal framework and the

external frameworks of DSMEI are joined. Based on the above discussion, the thesis

presents web service model based on business document exchange as shown in Figure

7.11.

Figure 7. 11 Web Service Model based on Business Document Exchange

Web service model based on business document exchange takes the traditional

protocol and messages as the corresponding business documents (business function

identifier and business dataset). Business documents are divided into two categories.

One is SOAP business document generated by the standard web service, the other is

message business document generated by BLEU. The exchange between the

documents in the same category is a standard call which accords with the established

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 185

protocol and specification, such as web service call. The exchange between the

documents in the different categories is accomplished by Exchanging Pipeline

transforming and transferring business documents. The core of Exchanging Pipeline is

business documents mapping that Message business documents and SOAP business

documents are transformed according to web service specifications and message

specifications.

 Web Services and SOAP Business Documents: web service is a standard

software entity which follows SOAP protocol. The related SOAP message is

the business document containing business function identifier and business

dataset. Web service call can be regarded as an exchanging procedure of

SOAP business documents.

 BLEU and Message Business Documents: BLEU is the main body to carry out

domain application web services and the entity to call AGOS service. It is

driven by messages. Messages in DSMEI are also business documents

containing business function identifier and business dataset. Abstract operation

execution and xDSM BS execution are driven by Message business documents.

They are transformed into standard web service calling procedures by

exchanging Message business documents and SOAP business documents.

 Exchanging Pipeline: Exchanging Pipeline realises the exchange between

SOAP business documents and Message business documents. The core of

Exchanging Pipeline is business document mapping. Meanwhile, it provides an

Exchanging Pipeline to deal with business documents. It processes business

documents step by step, for instances, business document filtering, logging and

security controlling. Exchanging Pipeline is the core transforming and

transferring entity of business documents.

 Web service specification and message specification: They are the structures of

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 186

business documents and validity rules. Web service specification defines the

specification of SOAP business documents and message specification defines

the specification of Message business documents.

 Mapping: Mapping is the main function of Exchanging Pipeline. It establishes

the mapping criterion with source specifications and target specifications, and

transforms the business document with source specifications into that with

target specifications. It is the exchange between SOAP business documents

and Message business documents.

There are two main processes involved in web service model based on business

document exchange in DSMEI. They are SOAP business document exchanging

process of web service call, and the exchanging process of SOAP business documents

and Message business documents.

 SOAP business document exchanging process of web service call: It is a standard

web service call process: document transformation is accomplished by the

concrete service execution entity, and web service call procedure is accomplished

by the exchange of SOAP service calling request document and SOAP service

result return document. Two procedures are involved in the process:

• Calling procedure of domain application web services: SOAP service calling

request document generated by External Call is transferred to DSMEI and

SOAP service result return document is generated by executing BS in

DSMEI to accomplish web service call.

• AGOS service calling procedure: DSMEI generates SOAP service calling

request document and gets SOAP service result return document by executing

the external web services to accomplish actual AGOS service call.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 187

 The exchanging process of SOAP business documents and Message business

documents: It is done by Exchanging Pipeline. It makes SOAP business

documents and Message business documents transforming into each other and

loosely couples the internal framework and the external framework of DSMEI to

realise the exchange of business request and data. There are four operations

contained in the process as follows:

• In the calling procedure of domain application web services, SOAP service

calling request document is transformed into BS execution request message

document.

• In the calling procedure of domain application web services, BS execution

result message document is transformed into SOAP service result return

document.

• In AGOS service calling procedure, abstract operation execution request

message document is transformed into SOAP service calling request

document.

• In AGOS service calling procedure, SOAP service result return document is

transformed into abstract operation execution return message document.

Web service model based on business document exchange joins the internal

framework and the external frameworks of DSMEI effectively. It provides a flexible

and dynamic web service calling and publishing mechanism which makes dynamic

domain application web service calling and publishing be possible. Meanwhile,

AGOS services is virtualisable by document mapping and SOAP business documents

dynamically generating, which makes DSMEI with strong reactivity and evolutionary.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 188

7.4 Provider Framework of Domain Application Web

Services

DSPROF (PROvider Framework of Domain application web Services) is the

external framework of DSMEI. It provides open and standard application interfaces of

xDSM model execution for end users by web services. A series of BSs are established

to system objectives in the process of xDSM modelling. Each BS has its Starting Point

and End Point. Besides, some BSs also include Return Point and Message Receiving.

These modelling elements all contain parameter Pin which compose multi-group of

input parameters and output parameters of a BS. Therefore, each BS corresponds to

one main operation and may attach several message interaction procedures. The main

operation and message interaction procedures of the BS which is marked as public is

released as domain application web services by DSPROF.

7.4.1 Structure of DSPROF

DSPROF adopts web service model based on business document exchange to

construct the standard web service architecture. It connects BLEF by Exchanging

Pipeline and carries out web services by executing xDSM models. DSPROF provides

standard web services for the external by the way of SOAP business document

exchange and provides the corresponding WSDL web services description at the same

time. For the internal, DSPROF transforms SOAP business documents and Message

business documents according to BS Registration Information. The structure of

DSPROF is shown in Figure 7.12.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 189

Figure 7. 12 The Structure of DSPROF

DSPROF is composed of BS Registration Information, Service Proxy, SOAP Parser,

SOAP Generator and WSDL Generator.

 Behaviour Scenario Registration Information

DSMEI generates BS Registration Information in the process of parsing and

compiling xDSM application model. It is web service specification and message

specification of DSPROF. The main operation and each Message published in BS

Registration Information will be transformed into a domain application web service.

BS Registration Information is a structural dataset as follows.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 190

Table 7. 1 BS Registration Information

ModelID Identification of a xDSM model. It is the

namespace of a BS

BSID Unique identification of a BS

IsPublic It is the identification whether BS is public

or not.

MainOperation Name Name of the main operation represented by

BS

InputPin InputPin of the main operation

OutputPin OutputPin of the main operation

MessageCount The number of messages received by BS

Message0 MessageID MessageID corresponding to Message0. It is

the unique identification of Message0.

InputPin InputPin of Message0

OutputPin OutputPin of Message0

MessageN ….. The same as Message0, described in parallel

 Service Proxy

Service Proxy is an interactive proxy between Service Requester and DSPROF. It

provides SOAP protocol specification according to web service standard, receives web

service requests (SOAP service calling request, WSDL request) and returns

corresponding results (SOAP service result return, SOAP service error return, WSDL

service description). It makes Service Requester invokes domain application web

services by the transparent and standardised way.

 SOAP Parser

SOAP Parser is responsible for parsing SOAP service calling request documents

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 191

received by Service Proxy in accordance with BS Registration Information, and

transforming them into BS execution request message documents then transferring to

BLEF.

 SOAP Generator

SOAP Generator is responsible for parsing BS execution result message documents

returned by BLEF in accordance with BS Registration Information, and transforming

them into SOAP service result return documents then transferring to Service Proxy.

 WSDL Generator

WSDL Generator generates the WSDL description documents of the web service

which is transferred to Service Proxy in accordance with BS Registration Information.

7.4.2 Domain Application Web Service Call

For end users, domain application web service call is the standard web services

realised by SOAP protocol. It is a SOAP business document exchange process within

DSMEI which receives SOAP service calling request documents and returns SOAP

service result return documents to accomplish domain application web service call.

Meanwhile, SOAP business documents and Message business documents exchange

need to be accomplished in order to realise web services by executing xDSM models.

Domain application web service call process in DSPROF is as follows:

1. Service Proxy monitors HTTP requests and gets SOAP service calling request

document from HTTP body. It holds session then sends SOAP service calling

request document to SOAP Parser with the session ID.

2. SOAP Parser extracts the service method name and the parameter list from SOAP

service calling request document, and searches for the suited

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 192

MainOperation.Name or Message.MessageID of the corresponding ModelID in

BS Registration Information. The BS execution request message document is

generated in terms of the corresponding BS items involving ModelID, BSID,

SessionID, MainOperation.Name or Message.MessageID and the input parameter

list, and sent to ECU within BLEF.

3. ECU assigns BLEU to handle the BS execution request message document,

executes the related BS and gets the BS execution result message document

which is sent to SOAP Generator by ECU.

4. SOAP Generator parses the BS execution result message document and gets

ModelID, BSID, and SessionID etc. If the execution result is an exception, SOAP

service fault return document will be generated and the fault information will be

filled in FaultCode and FaultString; or else SOAP service result return document

will be generated in terms of the suited BS items searched in BS Registration

Information and the returning value will be filled in Return element. Then SOAP

service return document and the session ID will be sent to Service Proxy.

5. Service Proxy returns SOAP service return document as the result of web service

call to Service Requestor according to the session ID to accomplish domain

application web service call.

In the process of domain application web service call, SOAP business documents

are exchanged by Service Proxy and web service call is openly and standardisedly

done by Service Requestor. Meanwhile, Exchanging Pipeline that is composed of

SOAP Parser and SOAP Generator accomplishes the mapping between SOAP

business documents and Message documents with BS Registration Information used

as web service specification and message specification. So domain application web

services are realised by xDSM model execution.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 193

7.4.3 Web Service WSDL Description Generation

WSDL is a contract language based on XML which is used to describe web

services, its parameters and return values. Firstly, WSDL describes the accessing

operations and the request/response messages abstractly. Then WSDL binds these to

the concrete transfer protocol and the message format. WSDL descriptions of web

services can be modelised as two parts: to describe the service interface in the part of

abstract definition, and to describe the service implementation in the part of concrete

definition:

Figure 7. 13 WSDL Concept Component Model

WSDL binding defines the message format and SOAP protocol details for web

services in order to use them directly. UDDI also needs web services description with

WSDL. It is the key to using domain application web services. WSDL descriptions of

domain application web services are accordant with SOAP business document

exchange of domain application web services call.

DSPROF gets the request for web services WSDL descriptions from Service Proxy

and sent it to WSDL Generator. WSDL Generator gets ModelID from the request

message, generates WSDL descriptions according to BS Registration Information for

the specific xDSM model, and sends it to Service Proxy for return. WSDL description

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 194

generation is the core of the above process. It builds the parts of abstract definition

and concrete definition of WSDL description according to BS Registration

Information.

 Message: it is used to define data in communication. Input Pins and Outpun Pins

of MainOperation and all Messages in BS are used to build Messages of WSDL.

 Operation: it associates the message exchange pattern with one or more messages.

InputPins and OutputPins of MainOperation or Messages in BS are organised and

mapped to the messages of WSDL to form Operations.

 Interface: Operations are polymerised based on transfer and message neutrality.

They are organised by MainOperation and Messages in Behaviour Scenario to

form the Interface.

 Binding: it specifies the transfer mode and message format of Interface.

 Endpoint: it associates URL (Uniform Resource Locator) with Binding. It defines

the sub-element location of <Soap:address> as the URL address of this service

based on WSDL Binding.

 Service: Endpoints of BS interfaces are aggregated to form service.

7.5 Support Framework of AGOS

AGOSOF (suppOrt Framework of AGOS) is another external framework of

DSMEI. It adopts web services as software entities for xDSM model execution. A

series of abstract operations are defined during xDSM modelling in order to

encapsulate the specific computational logic and implement the refined software

functions. DSMEI adopts AGOS to implement the corresponding abstract operations

in xDSM models. Meanwhile, a dynamic flexible web services support framework is

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 195

formed by virtualising web services according to AGOS service configuration. It

employs abstract operations and virtual services to substitute the easy-changed

implementation details.

7.5.1 Structure of AGOSOF

Service-oriented development beyond the traditional application development

methods fully considers about the existing service and dynamically deploys web

service resource during software life circle, including services of querying, matching,

assembling, and replacing. So AGOSOF should support not only SOAP protocol

which is web service foundation, but also the technologies and methods of service

assembling and replacing. AGOSOF adopts web service model based on business

document exchange to utilise AGOS based on business document exchange.

The execution of web services is driven by xDSM model execution. Web service

virtualisation is implemented by Exchanging Pipeline in the exchange process

between message business document and SOAP business document for corresponding

to the implementation of abstract operations. AGOSOF calls the standard web services

by the way of SOAP business document exchange for the external to implement

SOAP protocol. The structure of AGOSOF is shown as follows:

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 196

Figure 7. 14 The Structure of AGOSOF

AGOSOF is composed of Abstract Operation Registration Information, Service

Configuration, Service Calling Proxy, Selector, SOAP Generator and SOAP Parser.

 Abstract Operation Registration Information

Abstract Operation Registration Information is generated by DSMEI in the process

of parsing and compiling xDSM application model. It is both web service

specification and message specification of AGOSOF. It contains all abstract operation

information of xDSM models, and the basic information and runtime information of

the relevant web services. Abstract Operation Registration Information is a structured

dataset:

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 197

Table 7. 2 Abstract Operation Registration Information

ModelID Identification of a xDSM model. It is the

namespace of Abstract Operation

AbstractOperation Name name of abstract operation

 InputPin InputPin of abstract operation

 OutputPin OuputPin of abstract operation

ServiceCount The number of web services which realise

abstract operation

Service0 Name Opration Name of web service

URL URL address of web service

Protocol Binding protocol of web service

SOAP SOAP binding information corresponded to

web service

WSDL WSDL description of web service

InputMap Document matching script information of

service input

OutputMap Document matching script information of

service output

ResponseTime Runtime information, the average response

time of service

Loaded Runtime information, load amount of

service call

ServiceN ….. The same as Service0

 Service Configuration

It is used to deploy the relevant web services cluster to abstract operations of

xDSM models. It searches Service Registry or appoints Service Provider directly, gets

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 198

WSDL and selects the relevant operation from Service Provider, and defines the

document matching script information of input and output for the operation of web

service.

 Service Calling Proxy

Service Calling Proxy is the interaction proxy between AGOSOF and Service

Provider. It implements SOAP specification and protocol binding according to web

service standard, sends web service calling request (SOAP service calling request) and

gets web service calling result (SOAP service result return, SOAP service fault return)

in order to make AGOSOF call web service transparently.

 Selector

Selector selects and calls the most optimistic web service in the light of the values

of ResponseTime and Loaded in accordance with Abstract Operation Registration

Information.

 SOAP Generator

In accordance with Abstract Operation Registration Information, SOAP Generator

parses the selected abstract operation execution request message document and

transforms it into SOAP service calling request document, then sends it to Service

Calling Proxy.

 SOAP Parser

In accordance with Abstract Operation Registration Information, SOAP Parser

parses SOAP service result return document received by Service Calling Proxy and

transforms it into abstract operation execution return message document, then sends it

to BLEF.

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 199

7.5.2 AGOS Service Configuration

DSMEI generates Abstract Operation Registration Information in the process of

compiling and parsing xDSM application model. Abstract Operation Registration

Information is not insufficient at present. It is only with the basic information of

abstract operation. Service Configuration appoints the relevant web service cluster for

the abstract operation, provides matching script information of service input and ouput,

and generates the complete web service specification and message specification so as

to make AGOSOF working well. Meanwhile, AGOS system can be configured

dynamically by Service Configuration at runtime so that web services are updated

online.

Service Configuration extracts the WSDL description of the appointed service and

selects the relevant operation to form the corresponding information between abstract

operation and service in detail:

• Name: to extract the attribute of Name of Operation of the element of

Binding from WSDL

• URL: to extract the attribute of Location of soap:address of the element of

Service from WSDL

• Protocol: to extract the attribute of Transport of soap:binding of the element

of Binding from WSDL

• SOAP: to extract the input and output message of Operation of the element of

Binding from WSDL, which contains SOAP format request, InputPin and

OutputPin

• WSDL: WSDL text message

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 200

If the InputPin sequence or the OutputPin sequence of the selected web service is

different from that of the abstract operation, the Pin sequence and SOAP parameter

sequence matching should be taken in Service Configuration.

The matching operation is defined by scripts. Target business document is gotten

by executing the scripts while source business document inputs. The matching scripts

can do some simple operations, such as calculating, evaluating, and XML object

operation. The matching scripts between the InputPin sequence of abstract operation

and SOAP service calling document message element is saved in InputMap. The

matching scripts between SOAP service result return document message element and

the OutpuPin sequence of abstract operation is saved in OutputMap.

7.5.3 AGOS Service Call

AGOS service call is a procedure that DSMEI invokes web service to implement

abstract operation. It is the standard web service call by SOAP protocol for users. It is

a SOAP business document exchange process in DSMEI which sends SOAP service

calling request documents and receives SOAP service result return documents to

implement AGOS call. Meanwhile, the exchange between Message business

documents and SOAP business documents is also carried out in the process of abstract

operation call. Web services are used to implement computational logic of abstract

operation. The AGOS service calling procedure in AGOSOF is as follows:

1. BLEU sends abstract operation execution request message when interpreting and

parsing to abstract operations. ECU transfers it as document to Selector.

2. Selector extracts the abstract operation information from abstract operation

execution request message document, finds the matched AbstractOperation with

the relevant ModelID from Abstract Operation Registration Information, and

queries the runtime information of the relevant web services (Response Time,

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 201

Loaded). The web service with the minimum Min value is selected in the light of

Min (ResponseTime * (Loaded + 1)). Meanwhile, abstract operation execution

request message document and the target web service information are transferred

to SOAP Generator.

3. SOAP Generator parses abstract operation execution request message document,

and get InputMap from Abstract Operation Registration Information according to

the target web service information. It executes the matching scripts and

transforms the InputPin sequence of abstract operation into the message elements

of SOAP service calling document. Then it integrates SOAP binding information,

generates SOAP service calling request document, and sends it to Service Calling

Proxy with the target web service URL and Protocol information.

4. Service Calling Proxy binding SOAP service calling request document in the light

of the target web service URL and Protocol information, and sends web service

calling request message to Service Provider. Service Calling Proxy sends the

result return document and the target web service to SOAP Parser when it gets

SOAP service result return document. Response Time and Loaded information

matched with abstract operation are updated into Abstract Operation Registration

Information before or after web service call.

5. SOAP Parser parses SOAP service result return document, and gets OutputMap

from Abstract Operation Registration Information according to the target web

service. It executes the matching scripts and transforms SOAP service result

return document into the OutputPin sequence of abstract operation. Abstract

operation execution return message document is generated and sent to ECU then

to BLEU to implement abstract operation invoking.

SOAP business document exchange is carried out by Service Calling Proxy in

AGOS service call. Meanwhile, Selector, SOAP Generator and SOAP Parser compose

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 202

Exchange Pipeline which implements the mapping and matching between Message

business document and SOAP business document with Abstract Operation Register

Information as web service specification and message specification. Therefore,

abstract operations are implemented by DSMEI with web services.

7.5.4 AGOS Service Virtualisation

Service virtualisation is adopted as an available communication method for service

users and providers. It provides a simple way for users to utilise the dynamic and

distributed network service resources, and implements service deployment and update

dynamically [31]. The technical details can be encapsulated (such as web service

binding protocol, accessing mode).

Service virtualisation is a kind of important technique for building the service

oriented flexible framework. The aim of service virtualisation is to reduce the

complexity of service utilisation, and provide the simpler calling mode. AGOSOF

achieves service virtualisation by web service model based on business document

exchange. It can support service location transparency and service transparent

migration. It raises the dynamic ability of web service (dynamic matching, dynamic

binding, dynamic updating, dynamic deploying). AGOS service virtualisation is

shown on two aspects as Figure 7.15.

 Service interface virtualisation: as the implementation entities of abstract

AGOSOF (Support Framework of AGOS)

Web service model

based on business

document exchange

Service interface virtualisation

Service resource virtualisation

AGOS service resources

Figure 7. 15 Service Virtualisation of AGOS

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 203

operations, web service interfaces may be different from abstract operation

interfaces. Dynamic adaptation can be achieved by executing the matching

scripts to transform between the Pin sequence of abstract operations and SOAP

documents so as to implement web service interface virtualisation.

 Service resource virtualisation: an abstract operation can correspond with

multiple web services as its implementation entities. The web service

dynamically binding technique is adopted to do load balancing for multiple

service entities and select the most optimistic service entity in the light of the

result. Furthermore, abstract operation service configuration can be changed,

and web services can be updated and deployed online to implement web

service resource virtualisation.

Service virtualisation of AGOS plays an important role in DSMEI. Firstly, it can

shield the change and update of web services for the behaviour logic infrastructure,

and provide simple and identical interfaces, and make DSMEI be able to utilise the

complex, dynamic and easily changed web service resources at the low level by a

simple and stable way. Secondly, it enhances the flexibility of service implementation

and deployment for service providers. Service providers can implement and deploy

web services following the established requirements which will not affect AGOS

utilisation by DSMEI. So web services can be used openly, and web services

resources is available for reuse.

7.6 Summary

xDSM models cannot be executed directly. It depends on the execution

environment to be interpreted and executed.

In this chapter, DSMEI is designed and instantiated as the execution environment

for xDSM models which is parsed into operation sequences with accurate semantic,

Chapter 7. DSMEI (Domain-Specific Model Execution Infrastructure) 204

and the operations is executed to realise the application system. DSMEI integrates

domain framework and combines AGOS to provide software functional entities for the

virtual operations, which makes xDSM application model become the executable

software product. Model is executed indeed so as to realise MDD.

DSMEI is composed of three frameworks: one internal framework -- BLEF; and

two external frameworks -- DSPROF and AGOSOF. They work together to parse and

execute xDSM models to achieve system objectives.

 BLEF parses behaviour semantics of xDSM application model, transforms them

into the operational sequence with accurate semantics.

 DSPROF provides the xDSM model execution application interfaces to end users

by the way of web services.

 AGOSOF adopts web services as software entities for xDSM model execution.

 Web services model based on business document exchange is proposed to design

and realise DSPROF and AGOSOF for xDSM model execution. On one hand, the

dynamic publishing and calling of domain application web services are realised;

on the other hand, the virtualisation of AGOS services is realised.

 AGOS is not only provided as software functional entities for xDSM model

execution, but also served as software assets for large-scale reuse.

205

Chapter 8

Domain-Specific Modelling Process and

Implementation Framework

8.1 Domain Space

Domain space [130] is the set of domain entities and the relationships defined on

the set of domain entities. Based upon domain analysis, domain space extracts the

typical features of domain concepts to construct the set of domain entities and the

relationships on the entity set. Domain entities are constructed according to the

domain-specific architecture standard.

SODSMI approach is organised by domain space at architectural level which is the

elementary unit of the domain-specific modelling and implementation framework.

Domain space involves the problem space and the solution space of a specific domain.

Domain space integrates domain framework on the basis of xDSM meta-model,

which is the integrated representation of domain-specific knowledge and its

implementation. Domain-specific software reuse at architectural level can be achieved

by reusing and assembling domain spaces. Domain space expands the scale and scope

of domain-specific models and their implementation.

8.1.1 Architecture of Domain Space

In SODSMI, domain space is the elementary unit of the domain-specific modelling

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 206

and implementation. It involves domain-specific architecture standards. Domain space

integrates service information of AGOS on the basis of xDSM meta-model, which

represents domain-specific knowledge and its realisation. In addition, domain space

involves domain public behaviours and domain space dependences to support the

reference and composition of domain spaces, which realises software reuse at

architectural level.

 xDSM meta-model: xDSM meta-model for a specific domain is constructed with

XDML language in GME. The name and version of the domain space come from

xDSM meta-model. xDSM meta-model is the core of the domain space, which

represents a specific domain concept. Domain concepts can be concrete or

abstract. On one hand, model elements, constraints and behaviours of xDSM

meta-model come from the problem space directly; on the other hand, the domain

framework corresponding with xDSM meta-model represents the solution space.

By the support of AGOS, xDSM application model constructed upon xDSM

meta-model can be executed directly in DSMEI, and generate the domain-specific

application instance. Therefore, xDSM meta-model represents domain knowledge

from the problem space and the solution space.

Domain Space

xDSM Meta-Model

Service Information of AGOS

Domain Public Behaviour

Domain Space Dependence

Figure 8. 1 Architecture of Domain Space

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 207

 Service Information of AGOS: AGOS collects web services as software

functional entities for executing xDSM models. AGOS is associated with abstract

operations of xDSM model to generate AGOS service configuration in DSMEI so

as to realise the virtualised operations. Domain space involves service information

of AGOS as the system implementation entities of the solution space, including

web services information configuration and interface matching configuration.

 Domain Public Behaviour: domain space supplies domain public behaviours at

architectural level for domain software reuse and combination. Service interfaces

offered by domain space can be used by other behaviour scenarios. Domain space

constructed domain-specific public behaviours though its xDSM meta-model. All

domain public behaviours contained by the domain space are optional, and can be

expanded according to the requirements of combination.

 Domain Space Dependency: there are dependencies between the domain spaces

when they are assembled. Child domain space depends on parent domain space.

In other words, child domain space and its domain framework are constructed on

the basis of parent domain space.

Domain space is a self-sufficient architecture which contains domain-specific

concepts and the corresponding entities to support xDSM application modelling and

model executing independently. xDSM application model is constructed based upon

xDSM meta-model of the domain space, and transformed into the service-oriented

domain-specific application by the support of AGOS service information. In addition,

domain space provides other domains with service interfaces of the specific domain

via domain public behaviours, which encapsulate the concrete implementation and

data.

Domain space is also an open architecture due to the dynamic reconstructable and

extensibility of models. xDSM meta-model and the constructed application model can

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 208

be reconstructed in GME. The reconstruction process is visual and controllable.

Furthermore, the complex xDSM application model can be constructed with the set of

xDSM meta-models formed by domain space dependency.

8.1.2 Reuse and Composition of Domain Spaces

Domain engineering roots in software reuse [107, 2]. Domain-specific modelling is

to construct and realise the different application models in a specific domain for

software reuse. Domain-specific modelling is based upon the reusable infrastructure

which makes up of domain-specific meta-model and domain framework.

 In general, each domain-specific meta-model and its domain framework follow to

the development pattern of “Everything starts from nothing.” Domain-specific

modelling aims at solving software development problems existing in a certain

specific application domain. Properly speaking, domain-specific modelling is fit for

the small-scale specific domain to construct its meta-model. On the contrary, the

big-scale specific domain will result in huge domain-specific meta-model and domain

framework. According to “7+2 principle [78]”, it could be better for developers if

modelling elements can be controlled within 9 at a time, otherwise it will make

developers hard to understand the model. So it is necessary to plot out the hierarchy

and the granularity for the domain space of a certain domain. For instance, the domain

of office automation can be divided into the domain of document management and the

domain of authority management.

At the same time, the domain space can be reused adequately. The new domain

spaces can be constructed with the composition hierarchy of domain spaces

incrementally increasing to achieve the reuse at domain level.

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 209

The higher-level domain space is compounded by the primary domain space with

different granularities at different levels. The composition of domain spaces not only

raises the abstract level but also extends the functionalities scale of model concepts in

domain space. It is no limit to the composition levels so that the existing domain

spaces can be incrementally compounded to reuse domain knowledge.

It is necessary to divide the domain into small ones while constructing the domain

space of a large specific domain. The large specific domain is considered as one being

composed of a series of domain spaces with high cohesive. Each domain space

contains its domain-specific meta-model and domain framework. They must satisfy

the following rules:

 Single domain: domain concepts and contents of a domain space that is just for a

specific domain, not shared with multiple specific domains.

 Common reuse：Domain space is responsible for all domain spaces that depend on

it base on high-cohesion. Changes of the referred domain spaces do not affect

child domain spaces.

 Non-cyclic dependency: it means that there is no cycle dependency among

Higher-Level Domain Space

Primary Domain Space C

C

Primary Domain Space D

Primary Domain Space E

Primary Domain Space F

Middel-Level Domain Space A Middel-Level Domain Space B

Figure 8. 2 Hierarchy of Domain Spaces

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 210

domain spaces.

Domain spaces defined by SODSMI with well-structured architecture can be

reused and compounded to form the domain space hierarchy in GME and DSMEI.

 xDSM meta-model describes concepts and rules of the specific domain. The

entire xDSM meta-model is loaded into GME to generate the visual xDSM

application modelling environment. The definition of xDSM meta-model provides

architectures, concepts and constraints for the domain space composition. The

target meta-model is constructed with the xDSM meta-model of the parent

domain space in GME by the extension mechanism of xDSM meta-model.

 AGOS service information of the domain space provides DSMEI with AGOS

service configuration. It loads abstract operations as registration information, and

takes xDSM meta-model of the domain space as the benchmark to provide

domain framework and the supporting services for model execution. AGOS

General

Modelling

Environment

Domain-Specific

Model Execution

Infrastructure

Child Domain Space

xDSM Meta-Model

AGOS Services Information

Domain Public Behaviour

Domain Space Dependancy

Parent Domain Space

xDSM Meta-Model

AGOS Services Information

Domain Public Behaviour

Domain Space Dependancy

Figure 8. 3 Reuse and Composition of Domain Spaces

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 211

service information of different domain spaces is loaded one by one into DSMEI

irrepeatedly to support the execution of the compounded xDSM application

model.

 Child domain space can call the domain public behaviours of parent domain space,

and utilise the domain business functionalities of the parent domain space without

application modelling.

 The domain space dependency of child domain space keeps the information of

parent domain space in order to provide the dependent relationship for domain

space composition.

The reuse and composition of domain spaces provide the modelling mechanism

and the extension mechanism for xDSM. Domain space reuse is systematic reuse from

modelling elements to domain framework. It raises software reuse to a new level --

domain knowledge reuse at domain level. By reusing and compounding domain

spaces, the domain space with larger scale can be constructed incrementally which

improves the efficiency and quality of domain-specific modelling significantly.

8.2 Domain-Specific Modelling Process

The domain-specific modelling process is accomplished by building xDSM

meta-model and xDSM application model in GME.

GME we developed is Archware, supporting XDML language and carrying out

domain-specific modelling. Archware was extended and added new functions for

behaviour modelling and xDSM model definition. The core functions focus on two

aspects: the first is to provide an xDSM meta-modelling environment in which domain

space can be created, loaded and outputted. The second is that it can parse xDSM

meta-model, generate the supporting environment for xDSM application modelling,

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 212

and support xDSM application modelling.

Figure 8. 4 Generic Modelling Environment -- Archware

The domain-specific modelling process is an iterative process. The process includes

the following steps, from domain analysis to xDSM application modelling.

 Domain Analysis

Domain analysis aims at identifying domain boundary and extracting domain

concepts and the relationships between concepts. Domain analysis collects the

common requirements of domain systems, finds the similarity and differences from

application systems, and describes the architectural model which is suitable for all

application systems in the specific domain. Domain experts study the developing

domain-specific system, identify and capture the similar information from domain

systems. By mining internal features and rules, domain experts sort out and organise

the information to get the corresponding domain concepts and their relationships so as

to identify the boundary of domain finally.

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 213

 To create domain space and xDSM meta-model

Domain space is the set of domain entities and the relationships defined on the set

of domain entities. The core of domain space is xDSM meta-model. When domain

space is created by developers, the corresponding xDSM meta-model project is

created too. If there has been the relevant domain space of the specific domain, the

domain space just needed to load in Archware. Archware adopts the visual method to

define attributes, behaviours, events, constraints, rules and diagrams of model

elements so as to get xDSM meta-model.

 Attribute definition: to define all attributes of model elements. Archware

provides Attribute Form Designer for developers, which can be used to design

attribute editor for the model elements with complex attributes.

 Behaviour and event definition: to define behaviours and events of model

elements. Behaviour of model elements is described by behaviour scenario or

action specification. The way to describing behaviour scenario is as same as

xDSM application modelling. In Archware, behaviour scenario is defined via

the primary xDSM meta-model to describe the behaviours of model elements.

AS&MC Editor is used to edit action specifications according with AS&MC

syntax to describe the behaviours of model elements. And event definition of

model elements is also described by action specifications according with

AS&MC syntax which is edited in AS&MC Editor, as shown in the following

figure.

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 214

Figure 8. 5 Action Specification Defined in AS&MC Editor

 Constraint definition: to define constraints of model elements or attributes and

behaviours of model elements. In Archware, AS&MC Editor is used to edit

model constraints according with AS&MC syntax to describe the relevant

constraints of model elements.

Figure 8. 6 Model Constraint Defined in AS&MC Editor

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 215

 Rule definition: to define modelling rules of model elements. The rules include

association rule, refinement rule and reference rule of model elements. The

definition is made by meta-configuration manager of Archware.

 Diagram definition: to define the visual meta-graphic of model elements.

Element meta-graphic designer in Archware is used to design the

corresponding visual meta-graphic for each element of the meta-model. There

are two important parts of element meta-graphic designer: one is meta-graphic

appearance description code editor, the other is meta-graphic appearance

preview and configuration form. The former is a tool similar to HTML editor,

and its design result could be previewed in the latter that also provides the

function to adjust the appearance style of model elements.

Figure 8. 7 Meta-Graphic Appearance Description Code Editor

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 216

Figure 8. 8 Meta-Graphic Appearance Preview and Configuration Form

 To create xDSM application model

End users create xDSM application model on the basis of xDSM meta-model in

Archware as follows: The first is to analyse and extract all system objectives

according to the requirements specifications of the target application system. The

second is to create behaviour scenario for each system objective. The third is to

describe system behaviours by using model elements of the xDSM meta-model to

achieve system objectives. During the process of application modelling, Archware will

execute the modelling rules and constraints defined by the xDSM meta-model, as well

as control and instruct modelling activities. xDSM application modelling is shown in

Figure 8.9.

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 217

Figure 8. 9 Application Modelling in Archware

8.3 Domain-Specific Implementation Framework

The domain-specific implementation framework is an instruction for

domain-specific model implementation. The core is DSMEI which takes web service

as software function input and output entities, interprets and executes xDSM

application model to complete domain-specific model implementation. There are three

core functions of DSMEI: the first is to compile xDSM application model, parse and

execute the intermediate code to accomplish the behaviour logic described by xDSM

application model. The second is to integrate domain framework with AGOS in order

to provide execution environment for xDSM application model. The third is to output

the execution result of xDSM application model by domain application web services

calling mechanism to achieve system implementation.

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 218

Figure 8. 10 DSMEI Console

The domain-specific modelling implementation framework mainly involves the

following steps:

 To develop and configure domain-specific supporting services

After creating xDSM meta-model, domain experts can provide the detail of abstract

operations including operation name, Pin and the detailed function declaration. The

design and implementation of abstract operations are carried out by technical experts

with web services. Technical experts may also reuse the existing web services to

realise abstract operations. If it is required, technical experts will write the matching

scripts of input and output documents.

This process is a part of xDSM meta-modelling, and accomplished by domain

experts and technical experts from the same organisation to ensure the consistency of

xDSM meta-model and domain-specific supporting services. It forms the

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 219

corresponding information between abstract operations and domain-specific

supporting services which is AGOS service information, and adds it to the domain

space. When DSMEI compiles the xDSM application model, AGOS service

information will be loaded to complete AGOS service configuration automatically,

and complement Abstract Operation Registration Information. When there are

requirements of changing the relevant implementation of abstract operation, it just

need adjust the domain-specific supporting service information though AGOS service

information configuration of DSMEI -- web services should be dynamically updated

online.

Figure 8. 11 Service Information Configuration of AGOS

 To compile, interpret and execute xDSM application model

xDSM application model described by XDML language cannot be executed

directly. DSMEI extracts behaviour scenarios of xDSM application model and

Chapter 8. Domain-Specific Modelling Process and Implementation Framework 220

compiled them into the intermediate code, then interprets and executes the

intermediate code to achieve behaviour logic defined by xDSM application model.

The details can be found in Chapter 7.

 To call and provide web services

DSMEI provides open application interfaces of xDSM model execution for end

users by web services, and employs web services as the core functional

implementation entities of xDSM execution. DSMEI provides the mechanisms of

calling and providing web services separately to support xDSM model execution. The

details can be found in Chapter 7.

8.4 Summary

In this chapter, the domain-specific modelling process and implementation

framework are introduced. Domain space is proposed as the elementary unit of the

domain-specific modelling process and implementation framework. The reuse and

composition of domain spaces are realised by the flexible architecture of domain

space on the framework of SODSMI. It makes software reuse at domain level, realises

the reuse of domain knowledge, and openly extends the range and scale of

domain-specific models.

The domain-specific modelling process includes from domain analysis, to xDSM

meta-modelling, and xDSM application modelling. It is an iterative process.

The domain-specific implementation framework is an instruction for supporting the

model implementation. The core is DSMEI which takes web service as software

functional input and output entities, interprets and executes xDSM application model

to complete the model implementation.

221

Chapter 9

Case Studies

9.1 Overview

The SODSMI approach focuses on xDSM modelling which is accomplished by

building xDSM meta-model and xDSM application model in GME. In this chapter,

two case studies will be used to illustrate xDSM modelling and implementation.

The xDSM modelling process includes the following steps, from domain analysis

to xDSM meta-modelling, then to xDSM application modelling. The xDSM model is

constructed in Archware, and the xDSM application model is executed in DSMEI to

realise the software system.

9.2 Conference Registration System based on Mobile

In the section, conference registration system based on mobile is designed as a case

study of xDSM modelling. Domain analysis, meta-modelling and application

modelling are carried out to show the feasible domain-specific modelling.

Conferences usually adopt online registration for participants to register their

relevant information. However, it will be more convenient if online registration can be

completed with mobiles. Conference registration system based on mobile is designed

mainly for participants to register online with their mobiles. The system functions are

described as follows:

 Function tips: After logining the system successfully, users can see the welcome

Chapter 9. Case Studies 222

page and function tips such as registration, conference schedule browsing and

registration cancellation.

 Registration: Users are prompted to enter his/her name and password, and select

the way to pay the costs associated with the conference. Users exit registration if

the operation is successful. The system sends text message to users to show the

registration is successful.

 Conference schedule browsing: Only the registered users can browse the relevant

conference information, such as scheduling.

9.2.1 Domain analysis

Conference registration system based on mobile mainly involves the following

functions, conferee registration, schedule browsing, relevant information prompting

and text message sending. It is similar to other application systems based on mobile,

for instances, restaurant reservation system based on mobile and hotel reservation

system based on mobile.

The registration system based on mobile is taken as a specific space to carry out

domain analysis. The following main domain concepts are extracted:

 Conferee: as the main part of the registration system based on mobile, Conferee

contains the related information of registered users. Conferee logins system via

password checking. The other procedures are associated with Conferee, for

examples, schedule browsing and payment.

 Note: it is used to show the prompt information, for examples, welcome to the

system, registration is made, etc.

 Popup Menu: the function menu will be popped for the user to choose when the

user presses hot key on the mobile, for example, conference registration,

Chapter 9. Case Studies 223

conference schedule browsing, etc.

 Query: it requests users to input their information, for examples, user name, user

exit, etc.

 List: it shows the optional items, for examples, select registration, conference

schedule browsing, and cancel registration.

 Form: it shows information and the related operations.

 Text Message: it is sent to the relevant conferee.

 Comment: it shows the descriptive information.

9.2.2 Meta-modelling

According to the above domain analysis, the related domain concepts are extracted

to define the xDSM meta-model of the registration system based on mobile. Firstly,

domain entities and their attributes, icons and events of the meta-model are defined as

Table 9.1.

Table 9. 1 Meta-Model Entities of the Registration System based on Mobile

Icon Name Attributes Event

Conferee UserName: string

PassWrd: string

Registered: Boolean

[DesignTimeEvent]

OnCreate

Note Text:string [DesignTimeEvent]

ShowInfo

Chapter 9. Case Studies 224

Popup

Menu

Prompt:string

AvailableItem: string []

[DesignTimeEvent]

OnSelect

OnCreate

Query Prompt: string

QueryType: string

returnValue: string

[DesignTimeEvent]

OnQuit

OnRegistered

OnPay

List Text: string

AvailableItem: string []

Validated: Boolean

[DesignTimeEvent]

OpenNewForm

Form Text: string

Fields: string[]

[DesignTimeEvent]

ShowSeletedInfo

Text

Message

Text: string

Recipient: string

Payment: string

Returned: Boolean

[DesignTimeEvent]

SendSMS

Comment Text:string [DesignTimeEvent]

ShowIntroInfo

The primary xDSM meta-model of the domain space of the registration system

based on mobile is constructed by defining the domain entities and their attributes,

icons and events in Archware. The domain entities are defined and shown in Table 9.1.

Events are almost the design time events which are implemented in application

1

2......

Schedule

1. by time

2. by subject

Option

Schedule Browsing

Chapter 9. Case Studies 225

modelling in Archware.

 The xDSM meta-model entities of the domain space of the registration system

based on mobile have many operations which carry out system functions contained in

the above domain concepts. They are defined as follows:

 Conferee

 Password Checking [Abstract Operation]

Operation PassWrdValidation; Abstract;

InputPin UserName, PassWrd: string

OutPutPin Registered: Boolean

 Login Interface [Abstract Operation]

Operation LoginInterface; Abstract;

InputPin Null；

OutputPin Result string

 Login[Behaviour Scenario] [Active Operation]

Operation Login; BS; Active;

InputPin Null；

OutputPin Result： string

 Exit[Behaviour Scenario] [Active Operation]

Operation Exit; BS; Active;

InputPin Null；

OutputPin Result： string

 Note

 ShowInfo [Abstract Operation]

Operation ShowInfo; Abstract;

InputPin Text: string;

OutputPin Result: Boolean

Chapter 9. Case Studies 226

 Popup Menu

 ShowAvaliableMenus [Abstract Operation]

Operation ShowAvaliableMenus; Abstract;

InputPin Text: string;

OutputPin Result: Boolean

 OnSelect [Abstract operation]

Operation OnSelect; Abstract;

InputPin Text: string;

OutputPin Result: Boolean

 Query

 ShowPrompt [Abstract Operation]

Operation ShowPrompt; Abstract;

InputPin Text: string;

OutputPin Result: Boolean

 GetInfo [Abstract operation]

Operation GetInfo; Abstract;

InputPin null;

OutputPin Info: string

 Browser Agenda

 BrowserAgenda [Behaviour Scenario]

Operation BrowserAgenda; BS;

InputPin BroserInfo:string;

OutputPin Result: Boolean

 List

 ShowAvailableChoices [Abstract Operation]

Operation ShowAvailableChoices; Abstract;

Chapter 9. Case Studies 227

InputPin Text: string;

OutputPin Result: Boolean

 OpenForm [Abstract Operation]

Operation OpenForm; Abstract;

InputPin Text: string;

OutputPin Result: Boolean

 Text Message

 SendSMS [Abstract Operation]

Operation SendSMS ; Abstract;

InputPin Message,Recipent:String

OutputPin Result: Boolean

 Comment

 ShowIntroInfo [Abstract Operation]

Operation ShowIntroInfo ; Abstract;

InputPin null;

OutputPin introInfo

There are xDSM meta-model entities involving the operations described with

behaviour scenarios in the domain space of the registration system based on mobile.

For example:

 Conferee, Behaviour Scenario of Exit Operation

Chapter 9. Case Studies 228

Figure 9. 1 Behaviour Scenario of Exit Operation

9.2.3 Application Modelling

Individual behaviour scenarios can be constructed in the phase of xDSM

application modelling too, as shown in the following examples.

 Conferee, Behaviour Scenario of Conference Registration

Figure 9. 2 Behaviour Scenario of Conference Registration

Registration

Registration

made

Name + Cancel

Name+Payment

Exit

Chapter 9. Case Studies 229

 Conferee, Behaviour Scenario of Conference Schedule Browsing

Figure 9. 3 Behaviour Scenario of Conference Schedule Browsing

The application model is constructed by using the meta-model of the registration

system based on mobile and the primary meta-model of behaviour scenario and the

behaviour scenarios of the application model.

Login Interface

Login
Cancel

HTML return

Password

Checking

Fail
Checking Result

Pass

 By time

Chapter 9. Case Studies 230

Figure 9. 4 Application Model of Conference Registration System based on mobile

9.3 Online Shopping System

An online shopping system is designed and implemented to illustrate the

domain-specific modelling process. It helps to demonstrate the detailed steps for using

SODSMI approach to develop domain-specific application system based on the xDSM

models.

Nowadays Internet provides us with not only an information platform but also a

business trading platform. People can carry out a transaction at home no matter the

Conferee Login

 HTML return the schedule

Ending

Chapter 9. Case Studies 231

transaction is B2B (Business to Business), B2C (Business to Consumer) or C2C

(Consumer to Consumer). It increases the transaction speed and reduces the

transaction cost significantly. The case studies the core fragments of the online

shopping system to complete domain analysis and construct the executable

domain-specific models.

9.3.1 Domain Analysis

We use the core fragments of the online shopping system to do domain analysis.

The business process of the online shopping system involves customer login, to

browse classified commodity information, to select commodities and make the order,

to select the delivery method, and to pay via online bank system. For most online

shopping systems, the business processes are same and the requirements are also

common. It can be implemented with browser/server architecture. Certainly, there are

different commodity information, customer information and business rules, etc. in the

different concrete online shopping systems. The main domain concepts are extracted

and analysed as follows:

 Customer: As the main part of online shopping system, Customer contains all

information of registered users. Customer logins system via password validation.

All procedures of online shopping system are associated with Customer, for

examples, order, delivery, and online payment, etc.

 Browse Commodity: Customers browse the commodity information lists offered

by merchants in the catalog and query the details.

 Collect Commodity: Customers pick out commodities after browsing then create

the order.

 Order: Order is created after Customers Collect Commodity. It is a collection of

Chapter 9. Case Studies 232

commodities selected by Customers, and also the basic unit of delivery and

payment.

 Commodity Delivery: The commodity delivery information is collected and the

delivery cost is calculated according to the order information.

 Select Delivery: Customers select the delivery vendor and the details of the

delivery are determined.

 Online Transaction: Customers select the way to pay for the order to complete

online transaction, and complete the payment for the transaction by connecting to

the online bank.

9.3.2 Meta-Modelling

Based on the above domain analysis, the xDSM meta-model is built within the

generic modelling environment of Archware. First of all, it is to establish the domain

space of Online Shopping, then to establish the meta-model based on the domain

space and visually define the model elements in Meta-Model Designer.

Chapter 9. Case Studies 233

Figure 9. 5 Meta-Model Designer

According to the domain analysis, the relevant domain concepts are extracted to

define the xDSM meta-model of online shopping. Firstly, domain entities and their

attributes, icons and events of the meta-model are defined in Table 9.2.

Table 9. 2 Meta-Model Entities of Online Shopping System

Icon Name Attribute Event

Customer

UserID：String

UserName：String

Registered：Boolean

[DesignTime Event]

OnCreate

OnClick

Browse

Commodity

BrowseType：int

BrowseCommodity：

CommodityList

[DesignTime Event]

OnCreate

OnClick

Collect

Commodity

OrderID：String [DesignTime Event]

OnCreate

Chapter 9. Case Studies 234

Order

OrderID：String

Commodities：CommodityList

CommodityCount：int

CommodityWeight：Real

TotalPrice：Real

[DesignTime Event]

OnCreate

OnClick

Commodity

Delivery

DeliveryProvider：String

Destination：String

HandlingFee：Real

[DesignTime Event]

OnCreate

OnClick

Select

Delivery

DeliveryFinished：Boolean [DesignTime Event]

OnCreate

Online

Transaction

TradeSuccess：Boolean [DesignTime Event]

OnCreate

The primary xDSM meta-model of the domain space of Online Shopping is

constructed by defining the domain entities and their attributes, icons and events in the

generic modelling environment of Archware. The domain entities are shown in Table

9.2. Events are almost the design time events which are implemented in application

modelling by the generic modelling environment of Archware. While model

constraints can be attached to the domain entities. They are the same as events defined

by AS&MC syntax. They can improve the details of the xDSM meta-model. For

examples:

1. Model constraint of “Order” is an invariant: the total price of the commodities in

the order equals the value of TotalPrice.

Constraint TotalPriceInvariant{

 Declare AllPrice: Real;

AllPrice := 0;

 If (this. Commodities.count>0) then {

 Foreach (Commodity ACommodity in this.Commodities){

http://dict.cnki.net/dict_result.aspx?searchword=%e7%9b%ae%e7%9a%84%e5%9c%b0&tjType=sentence&style=&t=destination
http://dict.cnki.net/dict_result.aspx?searchword=%e6%89%8b%e7%bb%ad%e8%b4%b9&tjType=sentence&style=&t=handling+fee
http://dict.cnki.net/dict_result.aspx?searchword=%e4%ba%a4%e6%98%93%e6%88%90%e5%8a%9f&tjType=sentence&style=&t=successful+trade

Chapter 9. Case Studies 235

 AllPrice := AllPrice+ ACommodity.Price;

}

Return (this. TotalPrice= AllPrice);

} else {

 Return (this. TotalPrice=0);

}

}

2. The OnClick event of “Customer” at design time: to initialise and display of the

interface of attribute configuration, which is carried out by Archware.

Operation Customer1OnClick{

SetAttribute(ID, "IsDrawBack", "true");

SetAttribute(ID, "BackColor", "80, 0, 0, 255");

 …..

 ShowAttributeInterface;

}

There are three modes to define Operation in Archware. Firstly, to take advantage

of other xDSM meta-models to construct Operation based on behaviour scenario.

Secondly, Operation is defined by AS&MC syntax. Thirdly, Operation is defined as an

abstract operation and implemented by mapping to the specific web service. The

xDSM meta-model entities of the domain space of Online Shopping have multiple

Operations which carry out system functions contained in domain concepts.

 Customer

• Password Validation [Abstract Operation]

Operation PasswordValidation；Abstract；

InputPin UserID, Password: string；

Chapter 9. Case Studies 236

OutputPin Result: Boolean；

• Login Interface [Abstract Operation]

Operation LoginInterface；Abstract；

InputPin Null；

OutputPin Result:string；

• Login [Behaviour Scenario]

Operation Login；BS；

InputPin Null；

OutputPin Result:string；

 Browse Commodity

• Browse Commodity [Abstract Operation]

Operation BrowseCommodity；Abstract；

InputPin BrowseType:string；

OutputPin Result:string；

 Collect Commodity

• Collect Commodity [Behaviour Scenario] [Active Opertion]

Operation CollectCommodity；BS；Active；

InputPin Null；

OutputPin Result:string；

 Order

Chapter 9. Case Studies 237

• Order Confirmation [Abstract Operation]

Operation OrderConfirm；Abstract；

InputPin OrderID: string；

OutputPin Result:Boolean；

• Order Cancel [Abstract Operation]

Operation OrderCancel；Abstract；

InputPin OrderID: string；

OutputPin Result:Boolean；

• Add Commodity [Abstract Operation]

Operation AddCommodity；Abstract；

InputPin OrderID, CommodityID: string; Num:int；

OutputPin Result:Boolean；

• Delete Commodity [Abstract Operation]

Operation DelCommodity；Abstract；

InputPin OrderID, CommodityID: string; Num:int；

OutputPin Result:Boolean；

 Commodity Delivery

• Information Collection [Abstract Operation]

Operation DeliveryInfo；Abstract；

InputPin OrderID, DeliveryProvider: string；

OutputPin Result:string；

Chapter 9. Case Studies 238

• Cost Calculation [Abstract Operation]

Operation CostCalculate；Abstract；

InputPin OrderID, DeliveryProvider: string；

OutputPin Result:Real；

 Select Delivery

• Select delivery [Behaviour Scenario] [Active Operation]

Operation SelectDelivery；BS；Active；

InputPin OrderID: string；

OutputPin Result:string；

 Online Transaction

• Trasaction [Behaviour Scenario] [Active Operation]

Operation Transaction；BS；Active；

InputPin OrderID: string；

OutputPin Result:string；

• Collect Payment Information [Abstract Operation]

Operation SelectBank；Abstract；

InputPin Null；

OutputPin Result:string；

• Payment Confirmation [Abstract Operation]

Operation PayConfirm；Abstract；

Chapter 9. Case Studies 239

InputPin OrderID,BankName: string；

OutputPin Result:string；

• Pay Online [Abstract Operation]

Operation PayOnline；Abstract；

InputPin OrderID, BankName: string; Payment: Real；

OutputPin Result:Boolean；

All abstract operations are extracted at the stage of meta-modelling of the domain

space of Online Shopping by developers, and corresponded to web services which

implement those abstract operations so as to construct AGOS service information of

the domain space. For example, Table 9.3 shows the abstract operation of

PasswordValidation of the modelling entity of Customer as follows.

Table 9. 3 Service Information of the Abstract Operation of PasswordValidation

ModelID Meta-OnlineShopping

Abstract

Operation

Name PasswordValidation

InputPin UserID,Password: string

OutputPin Result: Boolean

ServiceCount 1

Service0 Name MetaOS- PasswordValidation

URL http://202.203.208.127/SOAP/Meta-OnlineSh

opping

Protocol HTTP

SOAP <message name=" MetaOS-PVRequest ">

<part name=" UserID"

type="xs:string"/>

Chapter 9. Case Studies 240

<part name=" Password"

type="xs:string"/>

</message>

<message name=" MetaOS-PVResponse ">

<part name="return" type="xs:boolean

"/>

</message>

<operation name=" MetaOS-

PasswordValidation ">

<soap:operation soapAction= "urn:Hanks-

MetaOS" style="rpc"/>

<input

message="tns:MetaOS-PVRequest">

<soap:body use="encoded" encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/

" namespace="urn:MetaOS #PV/>

</input>

<output message="tns:

MetaOS-PVResponse">

<soap:body use="encoded" encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn: MetaOS #PV/>

</output>

</operation>

WSDL http://202.203.208.127/WSDL/Meta-OnlineS

hopping

InputMap ServiceInput. UserID := OPInputPin. UserID;

ServiceInput. Password:= OPInputPin.

Chapter 9. Case Studies 241

Password;

OutputMap OPOutputPin.Result := ServiceOutput.

return;

The domain space of Online Shopping adopts the extension mechanism of xDSM

meta-model. Namely, the existing meta-models of Online Shopping and the primary

meta-model of behaviour scenario are collected to define the operations of the

meta-model entities of the domain of Online Shopping. They will be fixed into the

xDSM meta-model. There are multiple xDSM meta-model entities involving the

operations described with behaviour scenarios in the domain space of Online

Shopping.

 Customer, Behaviour Scenario of Login Operation:

Figure 9. 6 Behaviour Scenario of Login Operation

 Select Delivery, Behaviour Scenario of SelectDelivery Active Operation:

Chapter 9. Case Studies 242

Figure 9. 7 Behaviour Scenario of SelectDelivery Active Operation y

 Collect Commodity, Behaviour Scenario of CollectCommodity Active Operation:

Chapter 9. Case Studies 243

Figure 9. 8 Behaviour Scenario of CollectCommodity Active Operation

 Online Transaction, Behaviour Scenario of Trasaction Active Operation:

Chapter 9. Case Studies 244

Figure 9. 9 Behaviour Scenario of Transaction Active Operation

On one hand, behaviour scenario is used to construct Operations of xDSM model

to describe system behaviour. On the other hand, behaviour scenario can refer the

meta-models of other domain spaces while it is used to describe Operations so as to

support the reuse of domain knowledge and its implementation. The control flow of

behaviour scenario is established by using Relationships of the primary meta-model of

behaviour scenario. The data flow is established mainly by action specifications

attached to Relationship to carry out the association. The action specification is

represented as an active operation described by AS&MC syntax. For instance, the data

Chapter 9. Case Studies 245

of Login and PasswordValidation are connected by the active operation of the

associated relationship between Login and PasswordValidation.

Operation SR_ActiveOP1{

 Declare G_Password: string;

 Declare G_UserID: string;

G_Password := ParseXML(‘Root.Result.Password’,

ComfirmEvent.Message.OutputPin.Result);

G_UserID := ParseXML(‘Root.Result.UserID’,

ComfirmEvent.Message.OutputPin.Result);

 If (G_UserID<>’’ and G_Password<>’’) then {

 Customer1. PasswordValidation.InputPin.UserID := G_UserID;

 Customer1. PasswordValidation.InputPin.Password := G_Password;

} else {

 ThrowException(‘1002’,’Input Customer LoginInfo Errror’);

}

}

The sequential relationship associated element can bind the active operation of

SR_ActiveOP1 and fix it into the relationship element with the specific role of the

meta-model in order to be easier for application modelling.

9.3.3 Application Modelling

Based on the meta-model of the domain space of Online Shopping, requirement

analysis is carried out for a concrete online shopping system. The application model is

constructed with Archware by using the meta-model of Online Shopping and the

primary meta-model of behaviour scenario on the basis of system requirement

specification.

Chapter 9. Case Studies 246

Figure 9. 10 The Application Model of Online Shopping System

Modellers can not only build the xDSM application model but also modify

behaviour scenarios which describe operations of the meta-model with Archware, for

examples, behaviour scenario of Login and behaviour scenario of CollectCommodity.

So the controllability of xDSM model can be improved observably and the application

model can be simplified.

Chapter 9. Case Studies 247

9.3.4 System Implementation

After the completion of domain-specific modelling of the online shopping system,

the domain space and the xDSM application model are created. They are the

foundation of model execution. DSMEI is the major component of the

domain-specific implementation framework. The xDSM application model is loaded

and compiled in DSMEI, and transformed into the intermediate code which contains

the behaviour logic process and the interface information of xDSM behaviour

scenarios. Then the intermediate code is loaded and executed directly by BLEU. For

example, the behaviour scenario of Login, the compiled intermediate code is briefly

shown as follows:

The xDSM application model execution of online shopping system needs the

Chapter 9. Case Studies 248

support of AGOS. Service configuration tool of AGOS loads AGOS service

information of the domain space of Online Shopping. It is also able to deploy and

support web services at run-time.

Figure 9. 11 Sevices Configuration of AGOS

The xDSM application model of online shopping system is loaded into DSMEI

while AGOS service information of the domain space of Online Shopping is loaded

into the AGOS service configuration tool. End users visit the guide page of online

shopping system via web browser, and transparently call web services provided by

DSMEI. The system interfaces are shown as follows:

Chapter 9. Case Studies 249

Figure 9. 12 The Login Interface of Online Shopping System

Figure 9. 13 The Interface of BrowseCommodity

Chapter 9. Case Studies 250

Figure 9. 14 The Interface of CommodityDelivery

The domain-specific modelling process and the implementation framework are

shown in the case of online shopping system modelling and implementation, involving

xDSM meta-modelling of online shopping domain and xDSM application modelling,

and executing xDSM application model in DSMEI.

9.4 Summary

In this chapter, two case studies were used to demonstrate that the SODSMI

approach can help developers achieve MDD from modelling to system

implementation on different domains.

 The case study of conference registration system based on mobile focuses on

how to construct the executable domain-specific models including xDSM

meta-modelling and xDSM application modelling.

Chapter 9. Case Studies 251

 The case study of online shopping system is designed and implemented to

illustrate the domain-specific modelling process. It helps to demonstrate the

detailed steps for using SODSMI approach to develop domain-specific

application system based on the executable domain-specific model.

252

Chapter 10

Conclusions and Future Work

MDD is a leap in software development methodology and is the key to solving the

"silver bullet" problem. However, models stay at the analysis and design stage over

time, and are falling away from system implementation gradually.

The thesis integrates the DSM method and web service techniques with MDD and

proposes the SODSMI approach to build the executable domain-specific model and

achieve the target of MDD.

In the thesis, xDSM models can be constructed according to MMLs 5 standard to

realise MDD. XDML language is designed to construct xDSM models and describe

systems integrally, uniformly, detailedly and accurately. Web services are used as

software functional entities for xDSM model execution so that the service-oriented

domain-specific applications can be implemented by DSMEI without manual

intervention.

In the thesis, domain space is proposed to organise domain-specific modelling and

implementation. Domain space is the elementary unit of our approach, which can be

reused and assembled in order to support the reuse and composition of domain

knowledge at architectural level.

10.1 Conclusions

To construct the executable domain-specific models in accordance with MMLs 5 is

Chapter 10. Conclusions and Future Work 253

the target of the thesis. Namely, systems can be integrally, consistently, detailedly and

accurately described by models which built with the modelling language. And the

service-oriented domain-specific applications can be implemented by DSMEI without

manual intervention. The conclusions are drawn as follows:

1) System can be integrally described by xDSM

xDSM is constructed by executable domain-specific modelling based on web

services. There are two phases of executable domain-specific modelling: xDSM

meta-modelling phase and xDSM application modelling phase. The roles and the

responsibilities in the two modelling phases are different. Domain experts/ technical

experts, end users complete different work in different phases, and they work together

to build the gradually integrated xDSM model:

Firstly, xDSM meta-model and domain framework based on web services can be

constructed on the basis of domain analysis by domain experts and technical experts,

which make the foundation for xDSM application modelling.

Secondly, in the phase of application modelling, application modelling in GME

based on xDSM meta-model is accomplished by end users according to the concrete

application requirements. And the final xDSM application model can be executed in

DSMEI to verify whether the application requirements have been met. End users raise

the application requirements, carry out application modelling and utilise the final

result of model execution, which ensures the xDSM application model fully meet the

requirements from end users.

 During the process of xDSM application modelling, if the xDSM application

model constructed by end users cannot achieve system objectives fully, the

requirements will switch to domain experts and technical experts. They can improve

the xDSM meta-model and its domain framework, and transfer them to end users to be

Chapter 10. Conclusions and Future Work 254

reloaded in GME and DSMEI. This is an interactive process which promotes the

integrity of xDSM meta-model and xDSM application model.

2) Systems can be consistently described by xDSM.

The framework of SODSMI ensures that models are consistent with system

implementation from two aspects. Firstly, xDSM meta-model and AGOS are

collaboratively constructed by domain experts and technical experts who are in the

same orgnisation for a specific domain. Abstract operations contained in xDSM

meta-model are implemented by AGOS so that behaviour semantics expressed by

xDSM meta-model are consistent with the behaviour implementation of AGOS.

Secondly, xDSM application model is created by end users according to domain

concepts, rules and constraints defined by xDSM meta-model. xDSM application

model is accordant with xDSM meta-model. Meanwhile, xDSM application model is

interpreted and executed by DSMEI. xDSM application model can be looked as the

executable model as well as the execution entity to accomplish the business behaviour

logic with the support of AGOS and achieve system objective. So the integrity of

xDSM can be realised.

3) Systems can be accurately described by xDSM in details.

XDML language supports the description and construction of xDSM meta-model

and xDSM application model. XDML language integrates well-defined behaviour

semantics to support domain-specific behaviour modelling. The concrete syntax of

action specifications and model constraints are built on the basis of behaviour

semantics of XDML language, which is used to define behaviour details and

behaviour constraints of xDSM meta-model and application model, so as to describe

systems in detail and accurately. The accurate is limited at the architectural level, not

the absolute accuracy.

Chapter 10. Conclusions and Future Work 255

4) Systems can be implemented without manual intervention.

The most work of creating the executable models is carried out in xDSM

meta-modelling phase. Domain space is the elementary unit of the domain-specific

modelling and implementation framework. Based on xDSM meta-model, domain

space integrates service information of AGOS. Domain space can be loaded into GME

and DSMEI, initialising the services configuration of AGOS. After accomplishing

xDSM application modelling, xDSM application model can be automatically parsed

and executed into the service-oriented domain-specific application to achieve system

implementation. Therefore, the system can be realised without manual intervention.

10.2 Success Criteria Revisited

The methodology is proposed in the thesis for architecture-centric domain-specific

modelling and implementation for domain-specific software development and reuse,

which links models and system implementation. The successes mainly reflect as

follows:

1) The executable model, xDSM is constructed based on domain-specific

modelling to achieve MDD.

The accurate and integrated executable domain-specific model, xDSM can be

constructed based on the framework of service oriented executable domain-specific

modelling and implementation. Compared to the traditional modelling methods, the

process of xDSM modelling can be divided into two phases, xDSM meta-modelling

phase and xDSM application modelling phase.

xDSM meta-model and the corresponding AGOS services are accomplished by

domain experts and technical experts in the phase of xDSM meta-modelling based on

domain analysis. Not only xDSM meta-model but also the relevant domain framework

Chapter 10. Conclusions and Future Work 256

based on web services are constructed by xDSM meta-modelling. It intensively

completes the most work of the executable modelling and reduces the complexity of

xDSM application modelling significantly. The reusability of xDSM meta-model and

AGOS services confirm that all the work is worthy. xDSM meta-modelling is the

foundation of constructing the executable models, and makes it possible that xDSM

application model can be transformed directly into domain-specific application

system.

In the phase of xDSM application modelling, xDSM meta-model is used by end

users who are familiar with the concrete requirements to construct xDSM application

model in GME. xDSM application modelling should be relatively simple and intuitive.

End users are familiar with the domain concepts which will be used to construct

application models. xDSM application model can be directly executed in DSMEI with

the support of AGOS.

The xDSM modelling process is an iterative process. xDSM application model is

constructed based on xDSM meta-model, while xDSM application model can reflect

to xDSM meta-modelling so as to make xDSM meta-model and its corresponded

AGOS incrementally improved.

2) The executable model, xDSM is described by XDML language.

XDML language is defined for executable domain-specific modelling. It supports

the description and construction of both xDSM meta-model and xDSM application

model. XDML language supports the description and construction of xDSM

meta-model and xDSM application model. XDML language integrates well-defined

behaviour semantics to support domain-specific behaviour modelling. The concrete

syntax of action specifications and model constraints are built on the basis of

behaviour semantics of XDML language, which is used to define behaviour details

and behaviour constraints of xDSM meta-model and application model, so as to

Chapter 10. Conclusions and Future Work 257

describe systems in detail and accurately. XDML language is the foundation for model

execution.

3) DSMEI is constructed to realise the direct execution of xDSM models.

The xDSM model cannot be executed directly. It depends on the execution

environment to be interpreted and executed. DSMEI is designed and instantiated in

the thesis, which includes BLEF, DSPROF and AGOSOF. DSMEI provides execution

environment for xDSM application model which is parsed into operation sequences

with the accurate semantics, and executes operations to implement the application

system. DSMEI integrates domain framework and combines AGOS to provide virtual

operations with software functional entities. Therefore, xDSM models become the

executable software products and can be executed directly in DSMEI.

4) xDSM application model can be transformed into service-oriented

domain-specific application with the support of DSMEI.

The external framework of DSMEI, AGOSOF and DSPROF, are on the basis of

web services. As the standard and generic software components, web services provide

end users with open and standard application interfaces of xDSM model execution.

Meanwhile, web services can be served as software assets for large-scale reuse and

provided for xDSM model execution as software functional entities.

Web services model based on business document exchange is proposed. On one

hand, the dynamic publishing and calling of domain application web services are

realised; on the other hand, the virtualisation of AGOS services is realised. It supports

xDSM model execution effectively, and achieves the transformation from xDSM

application model to the service-oriented domain-specific application.

5) Domain specific software reuse and composition are achieved via domain

Chapter 10. Conclusions and Future Work 258

spaces reuse and composition at architectural level so as to realise the reuse

and composition of domain knowledge.

Domain space is the basic unit of domain-specific modelling process of

implementation framework. Domain space integrates domain framework on the basis

of xDSM meta-model, which is the synthetical representation of domain-specific

knowledge and its implementation. The reuse and composition of domain spaces are

realised by the flexible architecture of domain space on the framework of service

oriented executable domain-specific modelling and implementation. It makes software

reuse at the domain level, realises the reuse of domain knowledge, and openly extends

the range and scale of domain-specific model and its implementation.

10.3 Future Work

The thesis integrates domain-specific modelling and web service techniques with

model-driven development and proposes SODSMI approach to build the executable

domain-specific model and to achieve the target of model-driven development. But

there are still many aspects for improvement and implementation. The further works

are as follows:

1) Verification Tools

In the thesis, XDML language is used to define behaviour detail and behaviour

constraints of xDSM meta-model and xDSM application model. So the system can be

described accurately and in detail. Domain experts/technical experts and end users

accomplish different work in different phases to construct incrementally improved

xDSM models. Next, the corresponding verification tools will be developed and

loaded into DSMEI to ensure the integrity and accuracy of models.

2) Intelligentised Model Execution Infrastructure

Chapter 10. Conclusions and Future Work 259

DSMEI is designed on the basis of the accurate and integrated description of

xDSM models. The model execution infrastructure is relatively simple. We will

intelligentise the model execution infrastructure and introduce the intelligentised

model parsing and executing mechanism so as to simplify the modelling process.

3) Application and practices

It is necessary for us to utilise the framework of service oriented executable

domain-specific modelling and implementation to carry out application practices. The

more practical results can help us to improve the approach and to achieve MDD

practically.

260

References

[1] T. Andrews, F. Curbera and H. Dholakia, Business Process Execution Language

for Web Lervices Version 1.1, IBM, USA, 2003

[2] G. Arango, “Domain Analysis Methods”, Software Reusability, Ellis Horwood,

New York, 1993, pp.17-49.

[3] B. Barns, and T. Bollinger, “Making reuse cost-effective”, IEEE Software, 8(1),

pp. 13-24, Jan. 1991.

[4] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice SEI

Series, Addison-Wesley, Chapter 12, 1998.

[5] BEA, IBM, Micosoft, SAP and Siebel, Business Process Execution Language

for Web services, Packt Publishing, Birmingham, 2003.

[6] BEA Systems, Intalio, SAP and Sun Microsystems, Web Service Choreography

Interface (WSCI) 1.0, 2002.

[7] K. Beck and C. Andres, Extreme Programming Explained: Embracechange, 2nd

edion, Addison-Wesley, Massachusetts, 2004.

[8] B. Benatallah, M. Dumas, M-C Fauvet and F. A. Rabhi, “Towards Patterns of

Web services Compostion”, Patterns and Skeletons for Parallel and Distributed

Computing, Springer-Verlag London, 2003, pp. 265 - 296.

[9] K. Bennett, J. Denier, and J. Estublier, "Environments for Software

http://211.151.93.38/index.html?Title=Extreme%20programming%20explained:Embracechange%5bM%5d&aufirst=BECK%20K,ANDRES%20C&issue=6

References 261

Maintenance," Technical Report, Durham University, UK, 1989.

[10] B. Boehm, A. Egyed, J. Kwan and R. Madachy, "Developing Multimedia

Applications with the WinWin Spiral Model," Proceedings of ESEC/FSE 97

and ACM Software Engineering Notes, November 1997.

[11] C. Britton, IT Architectures and Middleware: Strategies for Building Large,

Integrated Systems, Addison-Wesley Professional, Massachusetts, 2003.

[12] F. P. Brooks, No Silver Bullet - Essence and Accidents of Software Engineering,

IEEE Computer, Vol.20, No.4, April 1987, pp. 10-19.

[13] R. Buhr, R. Casselman, “Architectures With Pictures”, Proceedings of OOPSLA

'92, pp.466-483, 1992.

[14] J. Carey, "Prototyping: Alternative Systems Development Methodology,"

Information and Software Technology, Vol. 32, No. 2, 1990.

[15] F. Casati, M. Sayal and M. C. Shan, “Developing e-services for Composing

Eservices”, Proceeding of 13th International conference on Advanced

Information Systems Engineering(CAiSE), Springer Verlag, Berlin, 2001.

[16] D. Champeaux, D. Lea, and P. Faure, Object Oriented System Development,

Addison-Wesley, Reading Mass, 1993.

[17] T. Clark, A. Evans, P. Sammut and J. Willans, Applied Metamodelling -- A

Foundation for Language Driven Development, Version 0.1,

http://albini.xactium.com/content/index.php?option=com_remository&Itemid=2

8.

[18] S. Cook, G. Jones, S. Kent and A. C. Wills, Domain Specific Development with

http://sunset.usc.edu/Research_Group/barry.html
http://www.awprofessional.com/

References 262

Visual Studio Domain-Specific Language Tools, Addison-Wesley,

Massachusetts, 2007.

[19] K. Czarnecki and U.W. Eisenecker, Generative Programming, Addison-Wesley,

Massachusetts, 2000.

[20] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools,

and Applications, Addison-Wesley, Massachusetts, 2000.

[21] F. S. David, Model Driven Architecture: Applying MDA to Enterprise

Computing (Paperback). Wiley, New York, January 2003.

[22] M. D. Davis, R. Sigal and E. J. Weyuker, Computability, Complexity, and

Languages, Fundamentals of Theoretical Computer Science, Academic Press,

Inc, 2008.

[23] T. Dean and J. Cordy, “A Syntactic Theory of Sohare Architecture”, IEEE

Transactions on Software Engineering, Vol. 2 I. No. 4, pp. 302-312, April 1995.

[24] M. Dean, G. Schreiber and S. Bechhofer etc., OWL Web Ontology Language

Reference, W3C Recommendation, 10 February 2004.

[25] J. Ebert and R. Suttenbach, Meta-CASE in Practice: A CASE for KOGGE,

Springer Berlin, Heidelberg, 2006.

[26] M. E. Fayad and R. E. Johnson, Domain Specific Application Frameworks:

Frameworks, John Wiley & Sons, Inc., New York, 2004.

[27] M. Feilkas, “How to Represent Models, Languages and Transformations”,

Proceedings of 6th OOPSLA Workshop on DomainSpecific Modelling DSM06,

2006, pp.171-185.

References 263

[28] D. Fensel and C. Bussler, “Web service Modelling Framework WSMF”,

Electronic Commerce Research and Application, 2002, pp. 113-137.

[29] C. Ferris and J. Farrell，“What are Web services”, Communications of the ACM,

Vol.46, No.6, ACM, New York, 2003, pp.31-35.

[30] A. Fisher, CASE: Using Software Development Tools, New York: John Wiley

and Sons, 1988.

[31] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing

Infrastructure (Chapter 14, Service Virtualization: Infrastructure and

Applications), Morgan Kaufmann, San Fransisco, 2004.

[32] M. Fowler, "Language Workbenches: The Killer-App for Domain Specific

Languages?", Proceedings of the 2008 Conference on Future Play: Research, Play, Share,

ACM, New York, 2008, pp.224-227.

[33] W. B. Frakes and K. Kang, “Software Reuse Research: Status and Future”,

IEEE Transactions on Software Engineering, Vol. 31, No. 7. (2005), pp.

529-536, 2005.

[34] K. Frank, “Domain Specific Languages VS. UML”, Methods and Tools, Vol.16,

No.2, Martinig & Associates, Rue des Marronniers 25, 2008, pp2-8. http://www.

codegear.com/tw/downloads.

[35] D. S. Frankel, Model Driven Architecture:Applying MDA to Enterprise

Computing, John Wiley & Sons, January 2003.

[36] A. Gallo, D. Barkol, R. Vavilala and S. Guthrie, ASP.NET AJAX in Action,

Manning Publications, Greenwich, CT, 2007.

http://gp.codegear.com/authors/edit/1706.aspx
http://www.golden-book.com/search/search.asp?key1=David+S%2EFrankel

References 264

[37] T. Gardner, C. Griffin, J. Koehler and R. Hauser, A review of OMG MOF 2.0

Query/View/Transformation Submissions and Recommendations Towards the

Final Standard, IBM White Paper submitted to OMG, September 17, 2003.

[38] D. Garlan and M. Shaw, “An Introduction to Software Architecture: Advances

in Software Enpineering and Knowledge Engineering”, World Scientific

Publishing Company, Volume I, 1993.

[39] J. C. Georgas, E. M. Dashofy and R. N. Taylor, “Architecture-Centric

Development: A Different Approach to Software Engineering”, ACM

Crossroads, Vol.12, Issue.4, 2006, pp. 6-23.

[40] I Graham, Object-Oriented Methods: Principles & Practice, Addison-Wesley

Professional, Massachusetts, December 27, 2000.

[41] S. Graham, Building Web Services with Java-Making Sense of XML, SOAP,

WSDL, and UDDI, China Machine Press, Beijing, 2003.

[42] M. Graphics, Object Action Language Reference Manual,

http://www.mentor.com/products/sm/techpubs/object-action-language-reference

-manual-38098.

[43] J. Greenfield, K. Short, S. Cook and S. Kent, Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, Wiley, United

States, 2004.

[44] M. Griss and R. Kessler, “Building Object-oriented Instrument Kits”, Object

Magazine, 6(2), pp.71-81, April 1996.

[45] R. He and B. Liang, “Using Rule Engine to Replace Code”, Computer World,

2004-14.

http://www.acm.org/crossroads/xrds12-4/arqcentric.html#authorbio_jcg
http://www.acm.org/crossroads/xrds12-4/arqcentric.html#authorbio_emd
http://www.acm.org/crossroads/xrds12-4/arqcentric.html#authorbio_rnt

References 265

[46] R. Hennicker, H. Hussmann and M. Bidoit, “On the precise meaning of OCL

constraints”, Advances in Object Modelling with OCL, Springer Berlin,

Heidelberg, 2002. pp. 69-84.

[47] D. Hybertson, D. Anh and W. Thomas, “Maintenance of COTS-intensive

Software Systems”, Software Maintenance: Res.and Pract., Vol. 9, pp.203-216,

1997.

[48] Ingenieria del Software, OCL Tools, http://www.um.es/giisw/ocltools/ocl.htm

[49] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development

Process, Addison Wesley, 1999.

[50] I. Jacobson, M. Griss and P. Jonsson, Software Reuse -- Architecture, Process

and Organization for Business Success, ACM Press, 1997.

[51] J. H. Johnson, The CHAOS Report, The Standish Group International, Inc.,

1994.

[52] C. Jones, Programming Languages Table (PLT2006b), Software Productivity

Research, 2006.

[53] S. Kelly and J. P. Tolvanen, Domain Specific Modelling: Enabling Full Code

Generation, Wiley-IEEE Computer Society Press, Los Vaqueros, March 2008.

[54] R. Kieburtz et al., “A Software Engineering Experiment in Software Component

Generation”, Proceedings of 18th International Conference on Software

Engineering, IEEE Computer Society Press, United States, March, 1996.

[55] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven

Architecture(TM): Practice and Promise, Addison-Wesley Professional,

References 266

Massachusetts, 2003.

[56] A. Kleppe, J. Warmer and W. Bast, MDA Explained the Practice and Promise

of the Model Driven Architecture, Addison-Wesley, Massachusetts, February

2004.

[57] D. E. Knuth, “Backus Normal Form VS. Backus Naur Form”, Communications

of the ACM, Vol.7, No.12, Dec.1964, pp.735-736.

[58] T. Kosar and P. E. M. Lopez, “A Preliminary Study on Various Implementation

Approaches of Domain Specific Language”, Information and Software

Technology, Vol.50, No.5, Butterworth-Heinemann, Newton , 2008, pp.390-405.

[59] H. Kreger, Web services Conceptual Architecture, IBM Software Group, 2001.

http://www.ibm.com/developerworks/cn/Webservices/ws-wsca/part1/

[60] R. Krikhaar and J. G. Wijnstra, Architectural Concepts for the Single Product

Line, Philips internal report RWB-508-re-95047, Philips Research, 1995.

[61] T. Kuhne, “What is Model? Language Engineering for Model Driven Software

Development”, Dagstuhl Seminar Proceedings, 2005.

[62] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle and G.

Karsai, “Composing Domain-Specific Design Environments”, IEEE Computer,

Vol.34, No.11, 2001, pp.44−51.

[63] M. Lehman, "Programs, Life Cycles, and Laws of Software Evolution,"

Proceedings of IEEE (Special Issue on Software Engineering), Vol. 19, No. 9,

pp. 1060-1076, 1980.

[64] K. Li, Z. Chen, H. Mei and F. Yang, “An Introduction to Domain Engineering”,

References 267

Computer Science, Beijing, 1999-5-26, pp.21-25.

[65] M. Little, “Service-Oriented Computing, Transactions and Web services”,

ACM, New York, Vol.46, No.10, 2003, pp.49-54.

[66] H. Liu, Z. Y. Ma and W. Z. Shao, “Progress of Research on Metamodelling”,

Journal of Software, Vol.19, No.6, 2008, pp.1317-1327.

[67] F. Liu, Y. Shi, L. Zhang, L. Lin and B. Shi, “Analysis of web services

composition and substitution via CCS”, Data Engineering Issues in

E-Commerce and Services, Vol. 4055/2006, Springer Berlin, Heidelberg, 2006,

pp. 236-245.

[68] S. Lohr, The Programmers who Created the Software Revolution -- Go To,

Basic Books, New York, 2001.

[69] H. Ma, W. Shao and Z. Ma, Grown UML 2.0, http://www.uml.org.cn

/umlgf/200801073.asp.

[70] S. J. Mellor, A. N. Clark and T. Futagami, “Guest Editors' Introduction: Model

Driven Development”, IEEE Software, Vol. 20, No. 5, Sep/Oct 2003, pp. 14-18.

[71] S. J. Mellor, MDA Distilled Principles of Model Driven Architecture.

Addison-Wesley, Massachusetts, 2005.

[72] B Meyer, C Mingins and H Schmidt, "Providing Trusted Components to the

Industry", Computer, Vol. 31, No. 5, May, 1998, pp. 104-105.

[73] S. Mcharaith, T. C. Son and H. Zeng, “Semantic Web Services”, IEEE

Intelligent Systems, The IEEE Computer Society, Los Alamitos, Vol.16, No.2,

2001, pp.6-53.

http://www.springerlink.com/content/q2g496574831/?p=dd839dee216044d78c7b8545f93727a9&pi=0
http://www.springerlink.com/content/q2g496574831/?p=dd839dee216044d78c7b8545f93727a9&pi=0
http://ww.ebookee.net/MDA-Distilled-Principles-of-Model-Driven-Architecture_29825.html

References 268

[74] S. Mcharaith and T. C. Son, “Adapting Golog for Composition of Semantic

Web services”, Principles of Knowledge Representation and Reasoning, Morgan

Kaufmann Publishers, Toulouse, 2002, pp.482-496.

[75] S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for Model Driven

Architecture, Addison Wesley, Massachusetts, 2002.

[76] S. J. Mellor, S. Tockey and R. Arthaud, An Action Language for UML: Proposal

for a Precise Execution Semantics, Springer Berlin, Heidelberg 1999.

[77] MetaEdit Inc., Domain-Specific Modelling with MetaEdit+ 10 Times Faster

than UML, MetaCase, USA, White Paper, 2005.

[78] G. Miller, “The Magic Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information”, The Psychological Review, Vol. 63, Issue 2,

American Psychological Assn, 1956, pp.81−97.

[79] J. Miller and J. Mukerji, Model Driven Architecture, Object Management Group

(OMG) document ormsc, July 2001.

[80] J. Miller and J. Mukerji, MDA Guide Version 1.0.1, Object Management

Group(OMG), Framingham, Massachusetts, June 2003.

[81] National Bureau of Standard, "Guidelines on Software Maintenance," U.S.

Department of Commerce/National Bureau of Standards, June 1984.

[82] J. Neighbors, “The DRACO approach to constructing software from reusable

components”, IEEE Transactions Software Engineering, 10(5), pp. 564-574,

Sep. 1984.

[83] K. Objecten, Octopus: OCL Tool for Precise Uml Specifications, 2005.

References 269

http://www.klasse.nl/octopus/index.html

[84] OMG, Action Semantics for UML, Object Management Group, 1999.

[85] OMG, Extensible Markup Language (XML) 1.0, Object Management Group,

Framingham, Massachusetts, 2008.

[86] OMG, Meta Object Facility Specification, version 1.3, Object Management

Group, Framingham, Massachusetts, June 1999.

[87] OMG, OCL 2.0 Specification, Object Management Group, Framingham,

Massachusetts, 2005.

[88] OMG, SOAP Version 1.2, Object Management Group, Framingham,

Massachusetts, 2007.

[89] OMG, The Common Warehouse Metamodel Specifications, Object Management

Group, Framingham, Massachusetts, 2003.

[90] OMG, UML 2.0 OCL Specification, Object Management Group, Framingham,

Massachusetts, 2003.

[91] OMG, Unified Modelling Language Specification, version 2.0, Object

Management Group, Framingham, Massachusetts, 2003.

[92] OMG, Web services Description Language (WSDL) 1.1, Object Management

Group, Framingham, Massachusetts, 2001.

[93] OMG, XML Metadata Interchange Specification version1.2, Object

Management Group, Framingham, Massachusetts, 2003.

[94] OMG, XML Schema Part 1: Structures Second Edition, Object Management

References 270

Group, Framingham, Massachusetts, 2004.

[95] OMG, xtUML Specification, Object Management Group, Framingham,

Massachusetts, 2005.

[96] Y. Papakonstantinon and V. Vianu, “DTD Inference for Views of XML Data”,

Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, ACM, New York, 2000, pp: 35 - 46.

[97] Y. Papakonstantinou, H. Garcia-Molina and J. Ullman, "MedMaker: A

Mediation System Based System Based on Declarative Specifications",

Proceedings of the 12th International Conference on Data Engineering (ICDE'96),

icde, Louisiana, 1996, pp.132.

[98] M. P. Papazoglou, “Service-Oriented Computing: Concepts, Characteristics and

Directions”, Proceedings of the 4th International Conference on Web Information

Systems Engineering (WISE'03), IEEE Computer Society Press, Los Alamitos,

CA, USA, 2003, pp.3-12.

[99] C. Peltz, “Web services orchestration and choreography”, Computer, Computer

Publication, USA, Vol.36, No.10, 2003, pp.46-52.

[100] D. Perry and A. Wolf, “Foundations for the Study of Software Architecture”,

ACM Software Engineering Notes, 17(7), pp.40-52, 1992.

[101] G. D. Plotkin, “A Structural Approach to Operational Semantics”, Journal of

Logic and Algebraic Programming (JALP, 60-61), 2004, pp.17-139.

[102] G. D. Plotkin, “The Origins of Structural Operational Semantics”, Journal of

Logic and Algebraic Programming (JALP, 60-61), 2004, pp.323-351.

References 271

[103] J. Poole, “Model Driven Architecture: Vision, Standards and Emerging

Technologies”, Proceedings of the Workshop on Metamodelling and Adaptive

Object Models (ECOOP 2001), 2001.

[104]R. S. Pressman, Software Engineering: A Practitioner’s Approach, Fifth Edition,

McGraw Hill, 2001.

[105] R. S. Pressman, Software Engineering: A Practitioner's Approach,

McGraw-Hill Publishing Co., CA, 2004.

[106] R. Prieto-Diaz, “Status Report: Software Reusability”, IEEE Software, 10(3),

pp. 61-66, May 1993.

[107] R. Prieto-Díaz and G. Arango (eds.), Domain Analysis and Software Systems

Modelling, IEEE Computer Society Press, Los Alamitos, CA, 1991.

[108] C. Raistrick, P. Francis and J. Wright, Model Driven Architecture with

Executable UML, Cambridge University Press, Cambridge, 2004.

[109] R. K. Runde and K. Stolen, “What Is Model Driven Architecture”, University of

Oslo Department of Informatics, Research Report 304, September 2003.

[110] R. S. Scowen, Extended BNF -- A Generic Base Standard, Software Engineering

Standards Symposium, 1993.

[111] A. Shalloway and J. R. Trott, Design Patterns Explained: A New Perspective on

Object-Oriented Design, Addison-Wesley Professional, Massachusetts, 2004.

[112] M. Shaw and D. Garlan, Software Architecture: Perspectives of an Emerging

Discipline, Preutice-Hd, 1996.

[113] R. Soley and OMG Staff Strategy Group, Model Driven Architecture white

http://www.awprofessional.com/

References 272

paper Draft 3.2, 2000.

[114] J. Sprinkle and G. Karsai, “A Domain Specific visual Language for Domain

Model Evolution”, Journal of Visual Languages and Computing, Vol.15, No.2,

Nashville, 2004, PP. 291-307.

[115] F. Steimann, Why Most Domain Models are Aspect Free, August 2004.

http://www.kbs. uni-hannover.de/steimann/published/UML2004AOM.pdf.

[116] R. Studer, S. Grimm and A. Abecker, Semantic Web Services: Concepts,

Technologies, and Applications, Springer, Heidelberg, 2007.

[117] Q. Sun, Y. L. Cao and Z. H. Zhang, “Next Generation Technology of UML

Execution and Translation -- ~X_TUML”, Computer Engineering, Issue.8,2004,

pp.90-91.

[118] T. Tamai and Y. Torimitsu, “Software lifetime and Its Evolution Process over

Generations”, Proceedings of IEEE Conference on Software Maintenance,

Orlando, FL, pp. 63-69, 1992.

[119] UDDI Org, Universal description, discovery, and integration (UDDI).

http://www.uddi.org

[120] M. Völter and J. Bettin, Patterns for Model Driven Software Development,

Version 1.4, May 10, 2004.

[121] W3C Working Group, Web service architecture, http://www.w3.org/tr/ws-arch/.

2003.

[122] Y. Wand, “Ontology as a foundation for meta-modelling and method

engineering”, Journal of Information and Software Technology, Vol.38, No.4,

http://202.203.222.213/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=JSJC&NaviLink=%e8%ae%a1%e7%ae%97%e6%9c%ba%e5%b7%a5%e7%a8%8b

References 273

Springer, Berlin, 1996, pp. 281–288.

[123] J. Warmer and A. Kleppe, The object constraint language, Addison-Wesley,

2002.

[124] J. Warmer and A. Kleppe, Object Constraint Language: Getting Your Models

Ready for MDA, Second Edition, Addison-Wesley Professional, Massachusetts,

2003.

[125] K. Whitehead, Component-Based Development Principles and Planning for

Business Systems, Addison-Wesley Professional, Massachusetts, 2003.

[126] I. Wilkie, A. King, M. Clarke, Ch. Weaver, Ch. Raistrick and P. Francis, UML

ASL Reference Guide - ASL Language Level 2.5 - Manual Revision D, Kennedy

Carter, 2003.

[127] N. Wirth, “What can we do about the unnecessary diversity of notation for

syntactic definitions?” Communications of the ACM, Vol. 20, Issue 11,

November 1977, pp. 822–823.

[128] F. Yang, H. Mei, J. Lu and Z. Jin, “Some Discussion on the Development of

Software Technology”, Acta Electronica Sinica, Vol.26, No.9, 2003, pp.1104-

1115.

[129] H. Yang and M. Ward, Successful Evolution of Software Systems, Artech House,

2003.

[130] Y. Yu and Y. Gu, “Domain Feature Space Based Semantic Representation of

Component”, Journal of Software, Vol.13, No.2, 2002. pp.311-316.

[131] W. Zhang, J. Huai and X. Li, “Software specification of goal and operation”,

http://www.informit.com/safari/author_bio.asp@ISBN=0321179366
http://www.informit.com/safari/author_bio.asp@ISBN=0321179366
http://www.ooatool.com/docs/ASL03.pdf
http://www.ooatool.com/docs/ASL03.pdf
http://202.203.222.213/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=DZXU&NaviLink=%e7%94%b5%e5%ad%90%e5%ad%a6%e6%8a%a5

References 274

Proceeding of China National Computer Conference 2003, Tsinghua

University Press, Beijing, 2003, pp.1610～1618.

[132] W. Zhang and H. Mei, “A Feature-Oriented Domain Model and Its Modelling

Process”, Journal of Software, Vol.14, No.8, Beijing, 2003-8-14, pp.1345-1356.

[133] H. Zhou, X. P. Sun and Q. Duan etc., “XMML: A Visual Metamodelling

Language for Domain Specific Modelling and Its Application in Distributed

Systems”, Proceedings of 12th IEEE International Workshop on Future Trends

of Distributed Computing Systems (FTDCS), Kunming, China, October 21-23,

2008, pp. 133-139.

275

Appendix A Concrete Syntax of XDML

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="DSMProject">

 <xs:annotation>

 <xs:documentation>Comment describing your root element

</xs:documentation>

 </xs:annotation>

 <xs:ComplexType>

 <xs:sequence>

 <xs:element ref="Models" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="name"/>

 <xs:attribute name="version"/>

 </xs:ComplexType>

 </xs:element>

 <xs:ComplexType name="ModelType"/>

 <xs:ComplexType name="ModelsType">

 <xs:sequence>

 <xs:element ref="Model" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:ComplexType>

 <xs:ComplexType name="EntitiesType">

 <xs:sequence>

Appendix A Concrete Syntax of XDML 276

 <xs:element ref="Entity" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:ComplexType>

 <xs:ComplexType name="SpecificationType">

 <xs:sequence>

 <xs:element name="SpecsItem" minOccurs="0"

maxOccurs="unbounded">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element name="content"/>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="type"/>

 <xs:attribute name="lang"/>

 </xs:ComplexType>

 </xs:element>

 </xs:sequence>

 </xs:ComplexType>

 <xs:element name="Models" type="ModelsType"/>

 <xs:element name="Entities" type="EntitiesType"/>

 <xs:ComplexType name="PropertiesType"/>

 <xs:element name="Properties">

 <xs:ComplexType>

 <xs:complexContent>

 <xs:extension base="PropertiesType">

 <xs:sequence>

 <xs:element name="Property" minOccurs="0"

maxOccurs="unbounded">

Appendix A Concrete Syntax of XDML 277

 <xs:ComplexType>

 <xs:sequence>

 <xs:element ref="Properties"/>

 </xs:sequence>

 <xs:attribute name="type" use="required"/>

 <xs:attribute name="name" use="required"/>

 <xs:attribute name="value"/>

 </xs:ComplexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="propertyMgr"/>

 </xs:extension>

 </xs:complexContent>

 </xs:ComplexType>

 </xs:element>

 <xs:ComplexType name="EventsType">

 <xs:sequence>

 <xs:element name="Event" minOccurs="0" maxOccurs="unbounded">

 <xs:ComplexType>

 <xs:attribute name="type"/>

 <xs:attribute name="scriptFile"/>

 </xs:ComplexType>

 </xs:element>

 </xs:sequence>

 </xs:ComplexType>

 <xs:element name="Events" type="EventsType"/>

 <xs:ComplexType name="RelationshipsType">

 <xs:sequence>

Appendix A Concrete Syntax of XDML 278

 <xs:element name="Relationship" minOccurs="0"

maxOccurs="unbounded">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element name="Roles">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element name="Role" minOccurs="2" maxOccurs="2">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element ref="Properties"/>

 <xs:element ref="Events"/>

 <xs:element ref="Specification"/>

 </xs:sequence>

 <xs:attribute name="type"/>

 <xs:attribute name="elementId"/>

 </xs:ComplexType>

 </xs:element>

 </xs:sequence>

 </xs:ComplexType>

 </xs:element>

 <xs:element ref="Events"/>

 <xs:element ref="Properties"/>

 <xs:element ref="Specification"/>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="type"/>

 </xs:ComplexType>

Appendix A Concrete Syntax of XDML 279

 </xs:element>

 </xs:sequence>

 </xs:ComplexType>

 <xs:ComplexType name="DiagramsType">

 <xs:sequence>

 <xs:element name="Diagram" minOccurs="0"

maxOccurs="unbounded">

 <xs:ComplexType>

 <xs:complexContent>

 <xs:extension base="DiagramType">

 <xs:sequence>

 <xs:element name="VisualElements">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element ref="VisualElement" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:ComplexType>

 </xs:element>

 <xs:element ref="Properties"/>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="type"/>

 <xs:attribute name="RenderEngine"/>

 </xs:extension>

 </xs:complexContent>

 </xs:ComplexType>

</xs:element>

Appendix A Concrete Syntax of XDML 280

 </xs:sequence>

 </xs:ComplexType>

 <xs:ComplexType name="DiagramType"/>

 <xs:element name="Relationships" type="RelationshipsType"/>

 <xs:element name="Diagrams" type="DiagramsType"/>

 <xs:element name="CodeGenerators">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element name="CodeGenerator" minOccurs="0" >

 <xs:ComplexType>

 <xs:sequence>

 <xs:element name="script"/>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="type"/>

 <xs:attribute name="lang"/>

 </xs:ComplexType>

 </xs:element>

 </xs:sequence>

 </xs:ComplexType>

 </xs:element>

 <xs:element name="Specification" type="SpecificationType"/>

 <xs:ComplexType name="EntityType">

 <xs:sequence>

 <xs:element name="RefinedModel">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element ref="Model" minOccurs="0"/>

Appendix A Concrete Syntax of XDML 281

 </xs:sequence>

 </xs:ComplexType>

 </xs:element>

 <xs:element name="Attachment">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element ref="Entity" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:ComplexType>

 </xs:element>

 <xs:element name="Contained">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element name="EntityRef" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:ComplexType>

 </xs:element>

 <xs:element ref="Properties"/>

 <xs:element ref="Events"/>

 <xs:element ref="Specification"/>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="type"/>

 </xs:ComplexType>

 <xs:element name="Entity" type="EntityType"/>

 <xs:element name="Model">

 <xs:ComplexType>

Appendix A Concrete Syntax of XDML 282

 <xs:complexContent>

 <xs:extension base="ModelType">

 <xs:sequence>

 <xs:element ref="Entities"/>

 <xs:element ref="Relationships"/>

 <xs:element ref="Diagrams"/>

 <xs:element ref="Events"/>

 <xs:element ref="Properties"/>

 <xs:element ref="Specification"/>

 <xs:element ref="CodeGenerators"/>

 <xs:element name="RefEntities">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element name="RefEntity" minOccurs="0"

maxOccurs="unbounded">

 <xs:ComplexType>

 <xs:attribute name="id"/>

 <xs:attribute name="ModelId"/>

 </xs:ComplexType>

 </xs:element>

 </xs:sequence>

 </xs:ComplexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="type"/>

 </xs:extension>

 </xs:complexContent>

Appendix A Concrete Syntax of XDML 283

 </xs:ComplexType>

 </xs:element>

 <xs:ComplexType name="VisualElementType">

 <xs:sequence>

 <xs:element ref="Div" maxOccurs="unbounded"/>

 <xs:element name="Scripts"/>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="elementId"/>

 <xs:attribute name="events"/>

 </xs:ComplexType>

 <xs:ComplexType name="DivType">

 <xs:sequence>

 <xs:element ref="Div" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="style"/>

 <xs:attribute name="features"/>

 <xs:attribute name="events"/>

 </xs:ComplexType>

 <xs:element name="Div" type="DivType"/>

 <xs:element name="VisualElement">

 <xs:ComplexType>

 <xs:sequence>

 <xs:element ref="Div"/>

 <xs:element name="Script">

 <xs:ComplexType>

 <xs:attribute name="lang"/>

Appendix A Concrete Syntax of XDML 284

 </xs:ComplexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="id"/>

 <xs:attribute name="type"/>

 <xs:attribute name="elementId"/>

 <xs:attribute name="events"/>

 </xs:ComplexType>

 </xs:element>

</xs:schema>

285

Appendix B List of Publications

[1] Qing Duan, Zhihong Liang, etc., “Developing Distributed Virtual Machines for

the Tri-Integration-Pattern Based Platform (TIPBP)”, Proceedings of IEEE

International Workshop on Service-Oriented System Engineering (SOSE2005),

Beijing, China, October 20-21, 2005.

[2] Qing Duan and Hongji Yang, “An Application Framework for the Tri-Integration

Pattern”, Proceedings of Postgraduate Research Conference in Electronics,

Photonics, Communications & Networks, and Computing Science (PREP2005),

Lancaster, UK, April 2005.

[3] Yang Xu, Qing Duan and Hongji Yang, “Business Rules Based web services

Oriented Customer Relationship Management System (CRM) Evolution”,

Proceedings of Workshop on Software Technology and Engineering Practice

(STEP 2005) at the 21st IEEE International Conference on Software

Maintenance (ICSM 2005), Budapest, Hungary, September 24-25, 2005.

[4] Hua Zhou, Xingping Sun, Qing Duan, etc.,“XMML: A Visual Meta-Modelling

Language for Domain-Specific Modelling and its Application in Distributed

Systems”, Proceedings of 12th IEEE International Workshop on Future Trends of

Distributed Computing Systems (FTDCS), Kunming, China, October 21-23, 2008.

pp. 133-139.

[5] Huaiyan Gao, Hua Zhou and Qing Duan, “A Reengineering Assistant and Case

Studies”, Scientific Research Monthly Journal, no.4, Serial 4, December 2004, pp.

38-42.

http://www.prep2004.org/

