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Abstract 

Service-based computing is a new computing paradigm where computing is seen as 

a utility, similar to gas, electricity, etc. An application is not physically shipped 
to the customer but made available for remote usage. A service-based application 

consists of services executed from all over the world on the machines where they 

are installed. This brings a number of design problems into being compared to 

traditional local execution. This thesis addresses some of these including naming, 

searching, accounting, binding different services to form new services and finally 

guaranteeing the quality of service a user would expect, whereby the focus is set 

on performance monitoring in such a large scale global distributed system. It is an 
important requirement for Quality of Service (QoS). Since the distribution of services 
is supposed to be transparent from the user, any kind of delay in the interaction 

of these services needs to be kept to a minimum. To achieve a control of these 
interactions the performance needs to be monitored and in case of under-performing 

a reconfiguration needs to be triggered. Three different architectures for performance 

monitoring have been designed, whereby the difference between these architectures 
is the location of the performance monitor within the distributed system. Each of 
these is able to detect and reconfigure hardware failures and delay in the execution. 
A hardware failure means a complete shut down of either a network connection or 

a machine where services are being executed. A delay on the other hand, results 
in the application not being able to terminate within the time that the user has 

originally agreed with the service provider. 
The algorithms discussed in this thesis estimate the start and end times of appli- 

cation parts running on an heterogeneous Network Of Workstations (NOW) taking 
into account that the executing machines are slowing down with the increasing load 

of parallel tasks. Additionally to the estimated execution times information about 
instructions during which two application parts share same resources are stored. 
This information is then used to optimise the distribution of the application parts i 
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using a dynamic algorithm which has similarities to Ant Colony Optimization algo- 

rithms (ACO-algorithms) and is also described in this thesis. 
Finally a Grid Performance Software (GriPS) has been designed, developed and 

tested. It is written in Java and has been used to create experimental results to 

compare and analyse the different performance monitoring architectures. GriPS 

simulates a large global distributed system by using connection data collected from 
CAIDA's skitter initiative [8]. Within the simulation there exist actually three 
different distributed systems. One for the application itself, one for the performance 
monitoring within the models, additionally the location broker can be located on a 
different machine as well. 



Acknowledgement s 

I wish to express my most profound gratitude to: 

9 My supervisors Professor Dr. Hussein Zedan, Dr. Amelia M. Platt, Dr. 

Michael J Morse and Mr. Steve M. Rumsby for their invaluable advice, sup- 
port and encouragement. 

9 British Telecom (BT) for their financial support and the help in outlining the 

subject. 

o Helge Janicke, Niels-Peter de Witt and Karsten Wolke for hours of discussions 

and the collaboration during their 6 month project with me. 

Prof. Dr. Karl Hayo Siemsen for initiating my contact to De Montfort Uni- 

versity and his encouragement throughout my research. 

e All our colleagues at the STRL for providing such a stimulating and friendly 

working atmosphere. 

9 My friends Rolf Peters, Oana Spulber, Gilles Compienne, Carola Deppe, Kara 

McKechnie and Ursula Augsd6rfer for all the help and encouragement. 

9 My family for the constant belief in my abilities 

To all of you 
Thank you 

iii 



Declaration 

I declare that the work described within this thesis was originally taken by me 
between January 1999 and February 2003. It is submitted for the degree of Doctor 

of Philosophy at De Montfort University. 

iv 



Publications 

9 Doris Ressmann, Amelia Platt, Steve Rumsby; Architecture to Support Per- 
formance Monitoring in Object Based Distributed Systems; Proceedings of 
the 8th IEEE Workshop on Future 'Iýrends of Distributed Computing Systems 
(FTDCS'2001); Italy, Bologna; October; 2001 

9 Doris Ressmann, Amelia Platt, Steve Rumsby; Performance Monitoring of 
Large Global Distributed Systems; Proceedings of 16th Annual ACM Confer- 

ence on Object-Oriented Programming, Systems, Languages, and Applications 
(OOPSLA'2001); Florida, Tampa Bay; October; 2001 

Doris Ressmann, Performance Monitoring in Service Based Computing: the 
Early Warning Approach; Proceedings of Informatiktage 2002, Germany, Bad 

Schussenried; November; 2002 

V 



Contents 

Abstract 

Acknowledgements iii 

Declaration iv 

Publications v 

List of Figures xiii 

List of Tables xiv 

List of Listings xv 

List of Acronyms xvii 

Introduction 1 

1.1 Background to Distributed Systems 
................... 1 

1.2 Background to Research ......................... 2 

1.3 Environmental Constraints 
........................ 3 

1.4 Outline of thesis .............................. 5 

2 Future Distributed Environment 7 
2.1 Service-Based Computing ........................ 7 

2.1.1 Issues Needed for Service-Based Computing .......... 9 
2.2 The Structure of Distributed Service-Based Applications ....... 11 
2.3 Distributed Environment for Software Developer ............ 18 

2.3.1 Essential Requirements in a Distributed Environment ..... 18 
2.3.2 Class Names and Class Function Names ............ 19 

vi 



CONTENTS vii 

2.3.3 Model to Structure Class Information to Facilitate Searching 
. 21 

2.4 Distributed Environment for Application Execution 
.......... 27 

2.4.1 Binding .............................. 
27 

2.5 User Requirements Through Contracts 
................. 

30 

2.6 Summary 
................................. 

34 

Architectural Design for Performance Monitoring and Reconfigu- 

ration 35 

3.1 Introduction ............................ .... 35 

3.2 Centralised Model for Performance 

Monitoring- Client 
......................... .... 36 

3.2.1 Advantages 
........................ .... 39 

3.2.2 Disadvantages ....................... .... 39 

3.3 Distributed Architecture for Performance Monitoring ..... .... 41 

3.3.1 On a Per Host (Network) Basis ............. .... 
41 

3.3.2 On a Per Class Basis ................... .... 46 

3.4 Prediction and trade offs of the Behaviour of the Models ... .... 51 

3.5 Algorithms for Performance Monitoring ............. .... 52 

3.5.1 Measurements and their Implementation ........ .... 52 

3.6 Summary 
............................. .... 57 

4 Estimating the Execution Time of a Globally Distributed Applica- 
tion 58 

4.1 Introduction ............................ .... 58 

4.2 Representation of the globally distributed application ..... .... 59 

4.2.1 Directed acyclic graph .................. .... 59 

4.2.2 Tree-structure as a specialised DAG 
........... .... 62 

4.3 Representation of the resources ................. .... 64 

4.4 Estimating times ......................... .... 65 

4.4.1 Sequential execution ................... .... 66 

4.4.2 Parallel execution without slow down 
.......... .... 67 

4.4.3 Parallel execution affecting machines .......... .... 68 

4.4.4 Generalisation of the times estimation ......... .... 86 

4.5 Summary ............................. .... 91 



CONTENTS 

5 Optimisation of the Execution Time of a Globally Distributed Ap- 

viii 

plication 92 

5.1 Introduction 
........................ ........ 92 

5.2 Distributing to slower machines ............. ........ 93 

5.3 Idea 
............................ ........ 94 

5.4 Structure 
......................... ........ 95 

5.4.1 Calm down 
.................... ........ 96 

5.4.2 Push back 
..................... ........ 98 

5.4.3 Expel 
....................... ........ 98 

5.4.4 Decide where to go ................ ........ 99 
5.5 Generalisation of the optimisation ............ ........ 100 
5.6 To push or not to push - cycles ............. ........ 101 
5.7 Adjusting the parameters ................. ........ 103 

5.7.1 Adjusting the greediness and fear 
........ ........ 104 

5.7.2 Adjusting the evaporation factors 
........ ........ 107 

5.8 Comparison with random distributions 
......... ........ 107 

5.9 Properties of the algorithm ................ ........ 109 
5.10 Summary 

......................... ........ 110 

6 The Simulation Model ill 
6.1 Introduction ............................ .... Ill 
6.2 The Graphical User Interface .................. .... 112 

6.2.1 Machine Panel ...................... .... 113 
6.2.2 Application Structure Panel ............... .... 114 
6.2.3 Connection Panel ..................... .... 115 
6.2.4 Model Panel ........................ .... 116 
6.2.5 Object Diagrams Panel .................. .... 117 

6.3 The Implementation ....................... .... 118 
6.3.1 Simulation of a Large Global Distributed System 

... .... 118 
6.3.2 The Simulated Application 

................ .... 118 
6.3.3 Performance Monitoring Client ............. .... 119 
6.3.4 Performance Monitoring Server ............. .... 122 
6.3.5 Simulated Application Object 

.............. .... 123 
6.4 Reconfiguration .......................... .... 124 

6.4.1 Reconfiguration due to a hardware failure 
....... .... 124 



COA'TENTS ix 

6.4.2 Early Warning Performance Monitoring 
............. 126 

6.4.3 Creation of Results 
....................... 127 

6.5 Scalability 
................................. 

127 

6.6 Summary 
................................. 

128 

7 Case Study (e-learning) 129 

7.1 Introduction ............................ .... 129 

7.2 Requirements ........................... .... 130 

7.2.1 Hypothesis 
......................... .... 133 

7.3 Application 
............................ .... 133 

7.4 Analysis 
.............................. .... 138 

7.4.1 Centralised Model ..................... .... 138 

7.4.2 Host Model ........................ .... 141 

7.4.3 Class Model 
........................ .... 143 

7.4.4 Comparison of the three models without a failure 
... .... 145 

7.5 Failure recovery .......................... .... 147 

7.5.1 Failure recovery after a time-out ............. .... 147 

7.5.2 Early Warning Recovery of a Performance Failure ... .... 157 
7.5.3 Failure Recovery for a time-critical Application 

.... .... 157 
7.6 Summary 

............................. .... 157 

8 Conclusions and further research and development 159 
8.1 Vision ................................... 159 
8.2 Achievement ................................ 160 

8.2.1 Performance Monitoring Client and Server ........... 160 
8.2.2 Algorithm for Time Estimation ................. 161 
8.2.3 Algorithm for Optimisation of Execution Time ......... 161 
8.2.4 Grid tool for Performance Monitoring .............. 161 
8.2.5 Evaluation ............................. 161 

8.3 Further Work ............................... 162 

A Data structures 164 
A. 1 Data tables for the time estimation in the DAG ............ 165 
A. 2 Distributions for the 24 Vertex DAG .................. 188 



CONTENTS 

B Grid Performance Software 190 
B. 1 The Graphical User Interface ............ .......... 190 

B. 1.1 The GUI Structure .............. .......... 192 
B. 1.2 The menu bar ................. .......... 192 
B. 1.3 The different panels .............. .......... 194 
B. 1.4 The Settings Dialog .............. .......... 205 

B. 2 Diagram Settings ................... .......... 212 
B. 2.1 Diagram Scaling ............... .......... 212 
B. 2.2 Graph Policies ................. .......... 213 
B. 2.3 Axis & Grid .................. .......... 214 
B. 2.4 Misc ...................... .......... 215 
B. 2.5 MetaPost and TFX .............. .......... 215 

B. 3 Example Files ..................... .......... 216 
B. 3.1 The Connection-Data file ........... .......... 216 
B. 3.2 The Replacement file ............. .......... 218 

C Optimization Software 219 

References 224 



List of Figures 

2.1 The structure of a distributed application ................ 12 

2.2 The structure of a distributed application object based 
......... 13 

2.3 A remote method invocation ....................... 14 

2.4 Replicated Location Broker 
....................... 23 

2.5 logtcal class server hierarchy M physical network ............ 24 

2.6 hierarchy of class servers ......................... 25 

2.7 contract diagram 
............................. 31 

3.1 Interaction between the PMC and PMS M centraltsed model ..... 37 
3.2 Centralised Architecture for Performance Monitoring ......... 40 
3.3 Server Side Performance Monitoring in Centrahsed Model ...... 41 
3.4 Interaction between the PMC and PMS Zn host model ......... 43 
3.5 Distributed Architecture for Performance Monitoring on a per host- 

(network) Basis .............................. 45 
3.6 server and client side performance monitoring on a per host- (net- 

work) basis ................................. 46 
3.7 Interaction between the PMC and PMS M class model ......... 48 
3.8 Distributed Architecture for Performance Monitoring on a per class 

basis .................................... 50 
3.9 server and client side performance monitoring as part of an class .. 51 

4.1 Sample Network of Workstations 
.................... 59 

4.2 Application structure ........................... 61 
4.3 Layers for the execution ......................... 62 
4.4 simplified DAG (left), tree structure (right) 

............... 63 
4.5 DAG for a sequential application .................... 66 
4.6 Time flov, - (greedy) 

............................ 75 
xi 



LIST OF FIGURES xii 

4.7 Time flow for the DAG example ..................... 89 

5.1 Timeflow (more distributed) .................. ..... 94 

5.2 Without push back ....................... ..... 102 
5.3 Push back with A2= 0.2 over 50 iterations .......... ..... 102 
5.4 Push back with cycle over 100 iterations ........... ..... 103 
5.5 Totally greedy behaviour (a = 1, -y = 0) ........... ..... 104 
5.6 Initial greedy solution (a = 1, -y 0) ............. ..... 105 
5.7 Found totally greedy solution (a 1, -y = 0) ........ ..... 105 
5.8 Totally greedy behaviour (a = 1,0) ........... ..... 106 
5.9 Totally frightened solution (a = 0, = 1) .......... ..... 106 
5.10 Random distributions versus the algorithm choices ...... ..... 108 
5.11 Random distributions versus the algorithm choices ...... ..... 108 

6.1 General overview of the Grid Performance Software .......... 112 
6.2 The Overview of the Graphical User Interface 

............. 112 

6.3 The Machine Panel 
............................ 113 

6.4 The Application Structure Panel .................... 114 

6.5 The Connection Panel .......................... 115 

6.6 The Model Panel ............................. 116 

6.7 The Object Diagrams Panel ....................... 117 

6.8 Class Diagram for the Performance Monitoring Client 
......... 121 

6.9 Class Diagram for the Performance Monitoring Server and Simu- 

latedApphcation Object 
.......................... 123 

6.10 example application ........................... 125 

7.1 e-learning distributed over the entZre globe .............. . 131 
7.2 e-learning service connections ..................... . 132 
7.3 The e-learning example application .................. . 134 
7.4 First year study course ......................... . 136 
7.5 The connection speed between the used machines ........... . 137 
7.6 Sequence Diagram of an e-learning course in the centrahsed model 139 
7.7 Sequence Diagram of an e-learning course in the host model .... . 142 
7.8 Sequence Diagram of an e-learning course in the class model .... . 144 
7.9 Chart about the total execution time .................. . 146 
7.10 Fii-st year study course in case machine sienna failed 

........ . 148 



List of Figures xiii 

7.11 Sequence Diagram of an e-learning course in the centrallsed model 

when one hostfails during execution ................... 
150 

7.12 Sequence Diagram of an e-learning course in the host model when one 
host fails during execution ........................ 

152 

7.13 Sequence Diagram of an e-learning course in the class model when 

one host fails during execution ...................... 
154 

7.14 Chart about the total execution time in the failure case ........ 156 

A. 1 Best possible distribution ......................... 188 
A. 2 Worst found solution ........................... 189 

B. I The Graphical User Interface ServZce Panel ........ ....... 195 
B. 2 Adding a machine ..................... ....... 196 
B. 3 The Connection Panel ................... ....... 199 
BA Adding a connection .................... ....... 200 
B. 5 The Application Panel ................... ....... 202 
B. 6 Setting the LocationBroker ................ ....... 206 
B. 7 Setting of object parameter ................ ....... 207 
B. 8 Setting the timer ...................... ....... 208 
B. 9 Setting the speed diagram settings ............ ....... 209 
B. 10 Setting default values for connections .......... ....... 210 
B. 11 Setting default values for services ............. ....... 211 
B. 12 Scaling values of the diagram ............... ....... 212 
B. 13 Policy values of the diagram ................ ....... 213 
B. 14 Axis and grid values of the diagram ............ ....... 214 
B. 15 Miscellaneous values of the diagram ............ ....... 215 

C. I Screen shot of the test application .................... 220 



List of Tables 

2.1 class location 
............................... 

13 

2.2 scheduling ................................. 
13 

2.3 The Advantages and Disadvantages of local execution ......... 17 

2.4 The Advantages and Disadvantages of remote execution ........ 
18 

2.5 A possible classificahon / numbering containing the functionahty 
... 

20 

4.1 Machine speeds/ services .................. ....... 74 
4.2 greedy schedule ....................... ....... 74 
4.3 Description of a collision tuple ............... ....... 76 
4.4 Collisions for the greedy example .............. ....... 81 
4.5 Machines and distribution for DAG example ....... ....... 89 
4.6 Iteration sample ....................... ....... 90 

5.1 Distribution (more distributed) ..................... 93 

7.1 Distribution of e-learning services ............... ..... 134 
7.2 E-Learning Scheduling 

..................... ..... 134 

7.3 Connections used in this example ............... ..... 135 

7.4 Results for the Centralised Model ............... ..... 140 
7.5 Results for the Host Model ................... ..... 141 
7.6 Results for the Class Model .................. ..... 143 
7.7 Results for the Centralised Model in the failure case ..... ..... 149 

7.8 Results for the Host Model in the failure case ........ ..... 151 

7.9 Results for the Class Model in the failure case ........ ..... 153 

x1v 



Listings 

2.1 Contract Agreement 
..................... ...... 32 

2.2 Ponder Posetive Authorisation Example .......... ...... 33 
2.3 Ponder Negative Authorisation Example .......... ...... 33 
2.4 Ponder Obligation Example ................. ...... 34 
3.1 Centralised Model ....................... ...... 38 
3.2 Host Model .......................... ...... 44 
3.3 Class Model .......................... ...... 49 
3.4 Time - Out Failure ...................... ...... 54 
3.5 Failure detection triggered from location broker ...... ...... 54 
3.6 Time-critical applications ................... ...... 55 
6.1 The Early Warning Algorithm ................ ...... 127 
B. I Fake instruction ........................ ...... 190 
B. 2 Windows SpeedServer start ................. ...... 190 
B. 3 Unix SpeedServer start .................... ...... 191 
BA Windows LOB start ..................... ...... 191 
B. 5 Unix LOB start ........................ ...... 192 

xv 



List of Acronyms 

ACO-algorithm Ant Colony Optimization - algorithm 

ATM Asynchron Uansfer Mode 

BT British Telecom 

CAIDA Cooperative Association for Internet Data Analysis 

COM Component Object Model 

CORBA Common Object Request Broker Architecture 

DAG Directed Acrylic Graph 

DARPA Defense Advanced Research Projects Agency 

DCOM Distributed Component Object Model 

DMU De Montfort University 

DTD Document Type Definition 

GriPS Grid Performance Software 

GSM Global System for Mobility 

GUI Graphical User Interface 

HLR Home Location Register 

LOB Location Broker 

NAB Network Address Binding 

NOW ". \etwork of NVorkstations 
xvi 



List of Acronyms 

NSF National Sience Foundation 

NTP Network Time Protocol 

OLE Object Linking and Embedding 

OMG Object Management Group 

PMC Performance Monitoring Client 

PMS Performance Monitoring Server 

QOS Quality Of Service 

RAID Redundant Array of Independent Disks 

RMI Remote Method Invocation 

RPC Remote Procedure Call 

SAObject Simulated Application Object 

VCR Video Cassette Recorder 

VHS Video Home System 

xvii 

XML EXtensible Markup Language 



Chapter 1 

Introduction 

1.1 Background to Distributed Systems 

Distributed Systems have been the focus of much research activity, for a number of 
decades. A Distributed System is defined by Coulouris et al [10] as one 'in which 
hardware and software components located at networked computers communicate 
and co-ordinate their actions only by passing messages'. Most distributed systems 
in existence today, are based on the client/server paradigm. In this paradigm the 

client (personal computer or workstation) makes a request for some service (e. g. 
email) while the server (typically a high specification computer) responds to the 

request. The client and server may be physically separated but connected via a 
communications network. The client typically implements the user interface ("thin" 

client) and may perform some or all of the application processing which are dedicated 
(e. g. cray). 

While client/server applications are in theory distributed, nevertheless the distri- 
bution tends to be relatively simple; indeed Coulouris describes existing distributed 

systems as simple [10]. For instance, the server is located at a well-known address 
and thus the client always knows where to send the request. Furthermore, the ap- 
plication is distributed across only two cluster computers and thus two (logical) 
locations. However, recent developments in software construction and communica- 
tions have created new opportunities for more sophisticated and flexible distributed 

systenis. Object technology allows applications to be constructed using small soft- 
ware components called classes, a class is the template for an object. A class models 
a small part of a systeni and is comprised of data and set of operations on that 

I 
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data. By designing classes that are independent components in their own right, it 

is possible to use classes in more than one application. Indeed class reuse is con- 

sidered to be one of the greatest benefits of object technology [171]. Taking this 

one step further, it is possible to construct applications from existing classes that 

can be widely distributed. This distribution is facilitated by the existence of very 
high speed local area networks (LANs) and wide area networks (WANs) which are 
capable of delivering the Quality of Service (QoS) required by the application. 

1.2 Background to Research 

This thesis is concerned with some aspects of the design and management of large 

scale, global distributed systems that can support many millions of users and a wide 

variety of services. Telephony, videoconferencing, Internet access, television and 

entertainment, etc are some obvious services which must be supported. Anything 

which can be encoded in bits and transmitted across a network is considered a 

potential service in this future distributed system. Note that in the context of this 

research, a service is provided through the execution of an application and we use 
the terms service and applications synonymously. 

The work was sponsored partially by the Future Distributed Systems Group of 
British Telecom (BT). BT initially outlined a number of major problems unique to 

these future distributed systems and it was agreed that performance monitoring was 
a major requirement in this new environment. The role of performance monitoring 
is to monitor the performance of the system and, if necessary, reconfigure some 

parts of the system. In terms of distributed applications, performance monitoring 

specifically monitors the performance of the executing application using the QoS 

defined by the user at runtime. The performance is considered unacceptable if the 
QoS is not satisfied. Performance monitoring must consider both what aspects of 
the performance are to be monitored and also how this can be realised. The system 

must also allow for the application to be partially reconfigured (which will typically 

mean that underperforming classes are substituted ) while it is running. 
From an early stage it was clear that performance monitoring could not be 

considered in isolation from the rest of the environment. For instance, performance 
monitoring relies on knowledge of how distributed applications execute. Thus in 

considering performance monitoring, assumptions and proposals had to be made 
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regarding the runtime environment of this distributed system; these are discussed 

in this thesis. It should be noted that because research into this type of distributed 

system is very new, there was no body of knowledge on which to build. Thus, all the 

work for this thesis has broken virgin ground, drawing on good practice and design 

used in related system software. 
The reader who is familiar with distributed systems will be aware of the contri- 

bution COM (Component Object Model), OLE (Object Linking and Embedding) 

and DCOM (Distributed Component Object Model) which are Microsoft's coun- 
terpart to CORBA (Common Object Request Broker Architecture) [42] have made 
to the development of distributed systems in recent times. CORBA is a standard 
for distributed systems defined by the Object Management Group (OMG), based 
loosely on an object based client/server paradigm. The main aim of CORBA was 
to define a distributed platform which provided transparency of hardware, software 
(programming language and system software) and location between client and server 
objects. A feasibility study carried out prior to the start of this project indicated 
that while CORBA had many strengths, it was not a suitable platform for a large 

scale, global distributed system [381. This is also the view held by BT [32]. 

1.3 Environmental Constraints 

A Grid Performance Software (Gri'PS) has been designed, developed and tested. 
It is written in Java and requires a JRE version 1.3 or higher to run. This soft- 
ware has been used to create experimental results to compare and analyse different 

performance monitoring architectures. GriPS simulates a large global distributed 

system by using the minimal, maximal and average delay between different location 

around the world. These connection data were originally collected, eight times a 
day (at Olam, 04am, 08am, 10am, Olpm, 04pm, 07pm and 10pm) with the help of 
an automated ping command to the following Internet Domains: 



Introduction 

charity 

web. mit. edu 

www. arab. net 

www. china. com 

www. fho-emden. de 

www. japantimes. co. jp 

www. latimes. com 

www. ncl. ac. uk 

www. ru 

internet. vsnl. net. in 

www. acm. org 

www. canada. com 

www. csu. edu. au 

www. indiaworld. com 

www. kaau. edu. sa 

www. man. ac. uk 

www. ox. ac. uk 

www. southafrica. net 

www. state. ny. us 

www. uchile. cl 
www. whitepages. com. au 

www. state. tx. us 
www. washingtondc. gov 
www. yahoo. com 

4 

However it was soon discovered that the information collected was not suffi- 
cient, because no information about the delay between these location were created. 
CAIDA, the Cooperative Association for Internet Data Analysis collects, monitors, 
analyzes, and visualizes several forms of Internet traffic data concerning network 
topology, workload characterization, performance, routing, and multicast behavior. 
These analyses serve a variety of disciplines/ purposes, including research, policy, 
education, and visualization. 

As such the data used in this research was collected as part of CAIDA's skitter 
initiative, http: llwww. caida. org Support for skitter is provided by DARPA, NSF, 

and CAIDA membership. 
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For the example in Chapter 7 four machines with the following specifications are 
used. 

real specification of the ma- Simulated IP Location of Simulated 

machine chine address machine 

name 
forquet HP model C3000 (PA- 128.8.7.4 College Park, 'MD, US 

8500 CPU), 2GB mem- (University of Mary- 

ory, O/S: HP-UX 11.00 land) 

ossi Pentium 450Mhz, 216.168.227.250 Herndon, VA, US 

256MB memory, Win (Verisign) 

NT4.0 

garfield Sunblade 150) Ul- 203.181.248.27 Tokyo, Kanto, JP 

traSparc Ili 650Mhz, (APAN) 

256Mb memory, Solaris 

8 (108528-16) 

sienna Sunblade 150, Ul- 193.0.0.11 Amsterdam, North 

traSparc Ili 550Mhz, Holland, NL (RIPE) 

128Mb memory, Solaris 

8 (108528-16) 

1.4 Outline of thesis 

The present work is organised as follows: 

Chapter 2 
Describes the requirements for service-based computing and the different per- 
spectives a user, service provider and a developer will have. Furthermore it 

covers design problems in future distributed enwonments. It demonstrates 
how an object-based application can be distributed over a vast amount of ma- 
chines within a large global distributed system. Furthermore several options 
are given to search for these objects. Additionally it is explained how these 

remote objects are finally put together to build one service-based application. 
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Chapter 3 

6 

Covers the architectural design for performance monitoring and reconfigura- 
hon. Out of many possible solutions where in the distributed system the 

performance monitor is located, three solutions are being introduced. Finally 

this chapter explains what these performance monitors will have to measure 
and the expected differences between the architectures. It will not be possible 
to choose one of these models and announce it to be "the best", since it de- 

pends strongly on the individual conditions, like the type of application, the 
level of distribution and other environmental parameters. The reason for the 
different performance monitoring architectures is to find an appropriate archi- 
tecture for an application. It is to predict that not all three models behave in 

the same way. 

Chapter 4 
Is all about estimating the execution time of a distributed application, which 

will allow an early detection of a performance problem during execution. This 

idea is evolved stepwise from a sequential to a parallel executing application. 
Finally an algorithm to optimise the object distribution is developed. 

Chapter 5 

Describes the simulation model which is written in Java, requires a JRE version 
1.3 or higher to run, and simulates a large distributed system. First the graph- 
ical user interface is described with all its features, secondly the underlying 
technology. 

Chapter 6 
Uses a Case Study about e-learning to create results which allow to compare 
the different architectural models. 
At the end it is described how the different models react in case of a failure. 

And how they reconfigure the application. 

Chapter 7 
Finally, in the last chapter, the conclusions and further research are given. 
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Future Distributed Environment 

2.1 Service-Based Computing 

A traditional application need to be bought, installed, updated and maintained by 

the user. On the other hand service-based computing is a new computing paradigm 

where an application is not sold, but made available for remote usage. It is executed 
from all over the world on the machines where it is installed. A service-based 

application comprises several perspectives. The user who wants to use the service, 
the service provider who advertised and sells the service, a location broker who 
finds several object providers, each of which own one or more objects, which build 

together the service. When viewing a service-based application it is to bear in mind 
that each of these roles have a different point of view. 

The user's perspective The user sits on his/her own PC and uses the service- 
based application only when needed. S/he has no knowledge about the location of 
this application and has the advantage that the latest version of service is always 
available. As long as the appearance and the compatibility, to earlier versions, stay 
in a way that the user can easily adjust to these changes, the user will have all 
the benefits. However when these conditions are not fulfilled the user might get 
disappointed and does not want to use this service any longer. One of the main 
advantages for the user is the fact that s/he only has to pay for the time the service 
has been used. Very much the same as we use a telephone service nowadays. In 

general the user , A-ill get the impression that every program would be installed on 
the same machine and will not be able to recognise that in reality every service can 

7 
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be located at a completely different place. The management of such a service-based 
application is completely transparent unless there is a fault, from where it is not 

possible to recover, in this case the user would get an error message. 

The service provider's perspective The service provider constructs out of sev- 
eral widely distributed objects a service, whereby the objects remain on the server of 
the object provider and a location broker is responsible for finding all these remote 
objects. The service provider only realises the connection between these objects. 
These newly combined objects build a software as a service. The service provider 
collects the cost for the use of every single object and every network connection, 
adds a service charge for its own so that the user then will have to pay only for the 
time this service has been used. 

The location broker The location broker is responsible for finding the location 

of specified objects on any object provider around the world. The location broker is 
being used by the service provider who assembles out of different objects a service 
as well as by the developer of new objects to allow interaction with other objects. 

The object provider's perspective The object provider is not able to see the 

overall picture of how these objects are being used. On the server is a functionality 

which is able to collect information how long each object is being used by whom 
and how much this provider is able to charge for it. The objects provided are being 

advertised at a location broker together with their interfaces, so that developers and 
service providers are able to use objects from other providers to create a particular 
functionality. 

The developer's perspective The developer of an object, which is specially 
developed for such a distributed application, will have to take care that each object 
can be executed remotely. The interface has to be precisely specified to allow other 
parts to interact and to use objects developed from different teams. The advantage 
is that each object can be updated separately as long as the new version is fully 

compatible with the old version. The developer will also have to bear in mind that 

some kind of monitoring will be installed between every possible remote call. 
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Issues Needed for Service-Based Computing 

A service-based application needs the following issues paramount in their develop- 

ment compared to a traditional centralised application. 

o security 

* accounting 

* naming 

9 location management 

e network configuration 

9 fault management and 

* performance monitoring; including scheduling-related issues 

Security When distributing an application and running software on remote loca- 

tions security is a big issue. There might be a risk of harmful attacks on the remote 
machines. These attacks might have the form of eavesdropping, masquerading, tam- 

pering and denial of service. Cryptography provides the basis for the authentication 
of messages as well as their secrecy and integrity; carefully designed security proto- 
cols are required to exploit it [10]. A policy based specification, e. g. used in Ponder 
[11,12,13] gives a way to control the access and specifies what activities a subject 
is permitted or forbidden to do, to a set of target objects. However it is very hard, 

if not impossible to ensure a system is secure in the sense that no intruder can find 

access to this system. A very secure machine would be a standalone machine with- 
out any network connection, where nobody has access and it is powered by its own 
source. It is incidental that security measurements do not only avoid unauthorised 
access but also establish how to deal with an intruder once it is detected. Neumann 

et al [36] introduces a way to allow a network administrator to realise when an 
intruder has accessed the system, and follow every step the intruder is doing. 

In addition, the system might need a protection against Spam. An increase 

of network traffic needs to be detected and dealt with. E. g., in case the network 
connection is intensively used for all kind of messages, just for the sense of decreasing 

the amount of traffic able to be transferred over this part of the network. 
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Another aspect of security is a form of self harm protection. If the system itself 
is malfunctioning, this needs to be detected and dealt with. 

The aspects of security are not considered in detail in this thesis, and will be a 
subject of further work. 

Accounting To execute an application as a service in a distributed manner, the 

way the charging for the application as well as for the resources used are operated 
will have to change. In service-based computing the user will be charged in a 'pay 

per use' basis. The charging will operate in much the same way as charging for 

telecommunication services, in that customers will receive an itemised bill. 
A similar accounting system existed already in the sixties in the hight of main- 

frame computers. At this time computational power was limited to few powerful 
machines at the time, and the user had to connect for his/hers computation. Ob- 

viously this computation was not for free and different accounting systems were in 

operation. Diamond et al [14] describes different billing systems used for mainframe 
computations. Some systems billed the user with a flat rate or for the connection 
times. Other used billing schema's for the transaction or the resources used. 

Naming and Location Management For service-based computing it is an im- 

portant factor to find the remote locations of the services involved. This creates 
a major problem especially in widely distributed systems. It is crucial that every 
service can be uniquely identified, either by its name or by its functionality. How- 

ever the naming only solves one problem to find a remote location. After identifying 

exactly what object we are looking for, the location where it resides has to be found. 

Network Configuration A service-based application is likely to be distributed 

over different types of networks. Every single network will have to be configured 
in its own way. As King et al [25] defines, to name but one, this configuration 
management exists to collect and monitor configuration information so that the 

effects of changes in hardware and software can be managed. This allows re-routing 
in case of failures. Furthermore all these networks need to interact with each other. 

Fault Management Fault management involves a five step process. First the 
fault needs to be detected, and located. The location of the fault can result in a 
restoration of the services. A solution to avoid the fault needs to be found, e. g. an 
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alternative service will be used. Following the location and restoration the root of 
the problem need to be identified. Why did this fault happen? Is there any way to 

avoid that this fault will happen again? Finally the problem needs to be resolved. 

Performance Monitoring and Scheduling Performance monitoring is an im- 

portant requirement for Quality of Service. Since the distribution of objects is 

supposed to be transparent for the user any kind of delay in the interaction of these 

objects need to be kept to a minimum. To achieve a control over these interac- 
tions the performance needs to be monitored and in case of under-performing a 
reconfiguration needs to be triggered. 

Crucial to the above is tasks/object scheduling. A large number of scheduling 
techniques with underpinning theoretical foundation exist. Key references include 
[37,29,31,24,6]. Chapter 4 deals with these issues and its relation with our 
performance monitoring techniques. 

2.2 The Structure of Distributed Service-Based 

Applications 

In describing distributed applications, it is important to differentiate between the 
terms classes and objects. A class can be described as the template for an object; it 
defines the code (in the form of methods) and data for the object. The object comes 
into being (is instantiated) when the class code is executed. The instantiation of 
an object allocates memory for the data defined by the class and thus allows the 

object data to be manipulated. The relationship between class and object is similar 
to the relationship between program and process. Where the program represents 
the source-code and the process the execution of this code. In this thesis the term 

object is used only when the execution of classes are being discussed. 
It was stated earlier that in this distributed environment applications are built 

using existing classes, wherever possible. Furthermore, the classes can be widely, 
indeed globally, distributed. Figure 2.1 shows one way in which a distributed appli- 
cation can be viewed. In this Figure it is assumed that these classes are located at 
6 different addresses in this distributed environment and thus in this instance the 

application is widely distributed. Table 2.1 shows the distribution of the classes. 
It can be seen from Figure 2.1 that the execution of the classes comprising the 
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Figure 2.1: The structure of a dz*stn*buted application 
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Figure 2.2: The stT-ucture of a distributed application object based 

13 

application is controlled by a single class, which conceptually sits at the top of 

a class hierarchy; in this example the class is called TopLevel. The class TopLevel 

makes calls to methods associated with two remote classes (Classes Level,, and class 
LeVeI12)- Similarly, these classes make calls to methods in other remote classes, and 

so on. 

machine class name 
I TopLevel 
11 Level,,, Level2l , Level3l 
III Leve122, Leve132 
IV Level12 
V Level23, Leve132 
VI Level33 

Table 2.1: class location 

tree pos. class name machine 
A TopLevel I 

B Level,, 11 

C Level2l 11 

D Level3l 11 
E Level32 VI 

F Level22 III 

G Level3l Ii 

H Level32 III 

I Level12 IV 

i Level23 V 

K Level33 VI 

L Level32 V 

M Level2l 11 

N Level3l 11 

0 Level33 VI 

Table 2.2: scheduling 
During runtime each class allocates memory and as such becomes an object. 

11 vi 11 111 vi v 11 vi 
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There are two models for executing the remote method calls. Either the appropriate 
class code can be downloaded to the local (invoking) machine, using for example, 
serialisation techniques [17], and then execution takes place locally. Serialisation 

works by converting objects - code and data - into byte streams and then sending 
them over a network connection. Alternatively, execution can take place at the 

remote machine where the object is located, using Remote Nlethod Invocation (RMI) 
(e. g. in procedure terms Remote Procedure Calls (RPQ techniques and the results 
are returned to the calling object when execution has properly terminated. 

The application introduced in Figure 2.1 can be illustrated as a tree, to demon- 

strate its runtime behaviour (see Figure 2.2). The capital letters show the position 
of each object in the tree in preordered enumeration. Whereby the TopLevel class 
becomes the root-object (in the following also called the root-node) and is situated 
at position A. The root-object might call both its children at position B and I in 

parallel. It can be seen that out of class Level2l actually two objects are instanti- 

ated, one at position C and the other at position M, both of them are located on 
machine H. Table 2.2 shows such distribution. 

To be able to call a remote method every remote class is instantiated on the 

remote machine and registered with a regZstry. When the local object calls a method 
from a remote object it gets the handler from the remote registy and is then able to 
invoke this remote method. (see Figure 2.3) 

network distance 

remote object 
1. ) register 

object 

registry .02. ) req uest- 

3. )return local object 
remote handler 

4. ) remote method call 

Figure 2.3: A remote method invocation 

We are considering the remote execution model because there are a number of 
disadvantages associated with the execution locally and additional advantages to 
be gained from the remote execution model. A summary of these advantages and 
disadvýintages for the local execution can be seen in Table 2.3 and for the remote 
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execution in Table 2.4 each of them are explained in the following. 
The traditional way of executing an application on one local machine, as opposed 

of executing it directly on the remote location, has the advantage that neither net- 
work delay nor the availability of remote objects will influence the execution. When 

an object is executed on a remote machine and the results are transferred back to 
the invoking object the network in between these two objects will delay the arrival 
of the results. However whether this delay is acceptable depends on the amount of 
delay, which is dependable of the network speed and the congestion in this part of 
the network. 

Depending on the size of the class code compared to the size of the results created, 
it can be faster and more efficient to execute a class either on the local machine or 
on the remote machine and simply transfer the smaller part over the network. In 

case the size of the results is big in contrast to the size of the class code, the class 
code would be downloaded to the local machine and execution takes place on the 
local machine. On the other hand when the size of the results is fairly small it is 
feasible that the execution takes place on the remote machine, especially when the 
distance to the invoking class is high and the network speed low. 

A disadvantage of the local execution will be when a class uses features not 
available on the local machine. For example a java class needs a virtual machine 
running on the machine where it is executed. In case the virtual machine is not 
already installed it has to be done locally and somebody has to have the knowledge 

and the rights of how to install it. For example, a user who is only interested in the 

results, created from the remote class, has not necessarily the administration rights 
to install any software on the local machine. 

Also it is very difficult to measure how often a piece of software has been executed 
once it is installed. Traditionally this problem is overcome by the fact that the 

user will have to buy the software, install it on the local machine, and then use it 

unlimited times. However the disadvantage of this method is the fact that a user 
might spend lots of money on a product which does not completely fulfil his or her 

requirements. The remote execution of objects changes the way the charging for 

resources used is operated, for instance the cost of using the object itself and the 

cost of the resources required for execution. In particular, they will not buy software 
outright or pay a renewable license fee to gain access to resources, rather they will 
be charged for the service used on a 'pay per use' basis. The charging will operate 
in much the same way as charging for telecommunication services, in that customers 
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will receive an itemised bill. Thus the distributed system must automatically collect 
billing information (this is shown as 'Billing Support' in the Additional Support in 

Figure 2.1). 

A further disadvantage originates when a new version of a locally installed appli- 

cation becomes available. The maintenance of such an application will take time and 
uses again the network resources. An update or even a complete new version will 
have to be downloaded. All these disadvantages are avoidable when the application 
is maintained remotely. 

The additional advantages of a remote execution is when the execution of an 
object needs specific hardware only available on the remote machine. For example 
an object which has to convert a Video Home System (VHS) video tape in a" mpeg" 
file format will need to use the features of an VHS Video Cassette Recorder (VCR). 
The VHS tape and the VCR is not available on every machine in the network. After 

the conversion has taken place this video file would be in a format which can be 

read without the need of the hardware and therefore is portable to be viewed on 
any machine. 

An application which needs a large amount of processor power will slow down the 

processing speed of the machine where it is executed. However when this application 
is distributed all over the network, every part would use a tiny bit of the processing 
power on each machine, and the overall load will not be disturbing. 
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LOCAL execution 
advantages disadvantages 

" no network delay during execu- * the time to download an applica- 
tion tion can be unacceptably high 

" when the local machine is running 0 installation may be required and 
the application is running security becomes an issue 

" depending on the application the 0 it is difficult to control access to 
time to download an application the class once a copy has been 

can be less than the transmission downloaded. For instance, class 
of the results static variables which are shared 

between all instantiated objects 
for a class are more difficult to 

control. 

* the user will have to update and 
maintain the application regu- 
larly 

Table 2.3: The Advantages and Disadvantages of local execution 
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REMOTE execution 
advantages disadvantages 

" the object may require hardware 9 delay during execution 
which is only available where it is 

* depends on the availability of the located 
remote machine and the network 

" the processing load is distributed connection during the whole exe- 
cution 

" easy access control 

" the user has no maintenance re- 
quirements to fulfil 

" depending on the application the 
time to transmit the results might 
be less than to download the 

whole application 

Table 2.4: The Advantages and Disadvantages of remote execution 

2.3 Distributed Environment for Software Devel- 

oper 

2.3.1 Essential Requirements in a Distributed Environment 

To understand the problems of developing distributed object-based applications it 
is useful to consider object based applications where all the class libraries are stored 
locally. Typically a development environment tool such as Jbuilder [23] will be 

used. Among other things the developer will need support from the development 

tool to browse the class libraries in order to obtain precise information relating to the 
functionality and interface of the class. If a distributed environment is considered 
then clearly the class libraries will be distributed, possibly over the entire globe. 
Thus it is not practical for the developer to find class details by browsing. Instead 

the developer must find classes by searching. In some instances the developer will 
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know the name of the class, in which case the search is carried using the class name. 
However, a more realistic scenario is that the developer will know only the function 
that the class must provide. In this instance the search must be carried out by 

using the name of the function required. For instance, the search may be for a class 
providing a soTt function. In summary, classes other than local standard library 

classes will typically be found using the class function search facility in contrast to 
searching by class name. 

In searching for classes, either by name or function, there are two related prob- 
lems to be solved. One relates to the naming of the classes (or the class function) 

and the other relates to structuring the distributed systems to facilitate the search. 
These two problems are considered below. 

2.3.2 Class Names and Class Function Names 

Classes must be given globally unique names when they are made available for 

use. Clearly replications of a given class must have exactly the same name. These 

replications will exist at various locations identified by some addressing scheme, for 

instance the one being used by the Internet. Note that the address is not part of 
the class name, and therefore cannot be used in combination with the class name 
to uniquely identify a class. Thus to find a class in a distributed environment, only 
the class name is used in the search. The address, together with the class interface 
details, is the information returned by the search. The need for unique names for 

classes is widely recognised and solutions are discussed in e. g. [t, 41,44] to name 
but a few. 

In contrast, the name of a class functionality will not be unique because it is 

expected that more than one class will provide the same identical functionality. 

For instance, two different classes may provide a sort method. It is important that 

classes providing the same functionality are given the same name in reference of their 
functionality. This could be achieved by using a function classification scheme. One 

such classification scheme is shown in Table 2.5. The structure of this classification 
is similar in principle to the Domain Name Service (DNS) used in the Internet [43]. 
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Application 

or Object? 

General Detail I Detail 2 Detail 3 Number 

Financial 

Entertain- 

ment 
Gardening 

Race 

Application Leisure Games Snap 

Card Bridge Different 

bridge 

card game 

applica- 
tions 

Poker 

etc 
Adventure 

etc 
Medical 

Design 

Sport 

Statistic 

Quick Sort 
Object Mathe- 

matics 

Algorithm Sort Merge Sort Different 

Merge Sort 

objects 
Bubble 

Sort 

Calculat- 

ions 

Multimedia 

etc 

Table 2.5: A possible classification / numbering containing the functionahty 

The first characteristic of this classification describes if the element is an object 
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or a whole application. The second characteristic describes a general specification. 
In the example shown in the table there are four different kind of applications and 
three different kind of objects. The applications are divided by functionality: fi- 

nancial, leisure, medical, design -application. The objects are divided into sport, 
mathematics and multimedia -objects. The next characteristic describes the next 
level of detail. Whereby the leisure application is divided into Entertainment, Gar- 
dening and Games. The mathematical object is divided into statistics, algorithm 
and calculations. The second level of detail divides the games in the category of 
leisure application into race, card and adventure -games and the object mathematics 
algorithm into sort algorithms. The third level of detail then divides the card games 
into snap, bridge, and poker games as well as the sort objects into quick, merge and 
bubble -sort algorithms. The last characteristic consist of a number to differentiate 
different bridge card games and to differentiate different merge sort objects. 

Before a class is made available for public use, it would be classified (allocated 

a name to specify its functionality) according to the classification shown in Table 
2.5. Clearly the actual classification would have to be standardised and adminis- 
tered by a centralised body. However, authority could be delegated for sub-classes, 
perhaps to the industries which typically produce software for this sub-class. For 
instance, the world financial institutions could assume responsibility for standard- 
ising the classification of functions relating to financial applications. The function 

classification information could be encoded using markup description languages such 
as eXtended Markup Language (XML). XML provides a way of describing the at- 
tributes and content of information and is applicable to all types of information 
including that held electronically. For example the Metalab group [30,33] uses 
Metadata, which is a particular XML Document Type Definition (DTD), as a way 
of cataloguing free software for LINUX. Developers catalogue and register their soft- 

ware and subsequently users looking for LINUX software can search the register. In 

the past it was difficult to locate LINUX Software, because although there was a 
huge amount of free software available, there was no standardised way to find it. 

2.3.3 Model to Structure Class Information to Facilitate 
Searching 

Having considered the problems of class naming and functional classification, the 

, vx-ay in which this information is structured/ distributed to facilitate searching must 
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now be considered. Ultimately the objective is to provide a structure, which allows 
classes matching a given name/ functionality to be found. There are a number of 
ways in which this can be achieved and a simple taxonomy is to consider approaches 
where the class summary details are stored separate from the actual class code and 
where they are one and the same information. 

2.3.3.1 Class Code and Class Summary Details are Separate 

With this scheme the class code is made available by the developer and is typically 

stored on a server (hereafter called a class-server) at the developers site. Class sum- 

mary information (name function, address, etc) are registered with one, or more 
location broker which exist at different sites. There are typically a small number 
of location brokers and these will be shared between distributed systems. A search 
engine is used to find the appropriate class at a location broker in much the same 

way as search engines are used currently. The search engine is likely to be integrated 

with the application development tools. Assuming that at least one location broker 

has knowledge of the class then the summary information together with the class 

address is returned and the development tool now uses this information to commu- 

nicate directly with the appropriate class-server. The user can now browse the class 
documentation as if it was stored locally. 

With this approach the main problem is in deciding how to structure and dis- 

tribute the location broker. One, centralised location broker is not feasible, for a 

number of reasons. The reliability of centralised systems has always been a draw- 

back. Moreover it would clearly represent a bottleneck because all accesses would be 

through this one broker. It is possible to replicate the broker, over a number of sites 

and this would solve these problems, however, it is unlikely that a location broker 

would have the resources to store (and retrieve) details of all classes, efficiently. The 

maintenance of replicated data is an additional problem. All the replicated location 

brokers will have to have a consistent view of all available classes. Figure 2.4 shows 
how a replicated location broker could be implemented. 
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The only realistic solution is to consider the location broker as a logical entity, 

which can be partitioned and distributed throughout the distributed system. This 
is how the Home Location Register (HLR) is defined by the Global System for 
Mobility (GSM) standard [19]. The partitioning could for instance be by function- 

ality, according to the classification discussed above. For example, all entries for 

the financial classification could be stored in one place. The cost of providing and 
maintaining this location broker could be borne by the professional body responsible 
for maintaining the classification scheme and recovered by charging for access to the 
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information. 

2.3.3.2 Class and Search Details are Integrated 

With this approach the various sites can be viewed as a logical hierarchy as shown 
in Figure 2.6. A class-server is resident at every site (network) in much the same 

way as a web server. In Figure 2.6 these class servers are located at the bottom of 
the hierarchy. For instance, the De Montfort University (DMU) Class-server is on 
the DMU network and contain the class details made available publicly by DNIU- 

Clearly the class servers are physical devices in the structure. 
The class servers are grouped according to their geographical location and one 

member of the group is nominated as the group leader. In Figure 2.6 for instance, 

the DMU class-server is the nominated group leader for the Leicestershire region 

which is shown in the shaded box in Figure 2.6. Note that Figure 2.5 gives a more 

abstract view of this hierarchy. 

East 
Midlands 

Leic, 

DIMU 

Figure 2-5: logical class server hierarchy in physical network 
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Europe 
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Germany 
group leader 
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group leader 
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group leader 
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France 
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Cott 

gi 
-p 

Ilead: er) 

C City Council LE Uni 
Cliass server Class server 

Ii 
II 

Workstation 

IBM Compatible 

Figure 2.6: hierarchy of class serven 

The function of the group leader is to provide summary details of all the classes 

available in the group. Thus the Leicestershire group leader has knowledge about 

all classes stored in the City Council, DMU and LE Universities. Note that the 

group lea-der is really an extra function provided by the class server, and clearly 

not all class servers will be group leaders. Any number of levels can be created 
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in the hierarchy and a group leader must be elected for each group, at each level. 
Essentially all group leaders provide the same function, albeit at different levels of 
the hierarchy (for a geographical region). So for example, the England group leader 

contains summary information from all class servers in England. Note also that the 

group members at the level directly below will nominate the England group leader. 
If this is followed through to the bottom clearly the device supporting the England 

group leader function will also support the group leader function at the level below 

etc, right back to the bottom level. Thus the England group leader function will 
reside on a class-server located somewhere in the England region. 

To understand how this supports the searching function consider what happens 

when a class search is initiated by a developer. Note that developers are logged onto 
hosts attached to networks. The search will begin at the local class server. Assume 
for instance that a developer attached to the DMU network initiates the search. In 
this instance the local DMU class server is contacted first. If the class is not known 
here then the search continues one level up with the Leicester Group Leader. The 
Leicester group leader will search its summary information and if the class details 

are not found then the search continues at the next level up, which in this instance 
is the East Midlands group leader. However if an entry for the class is found, it is 

returned to the host which initiated the search. The host can then communicate 
directly with the class-server. 

As the search ascends the hierarchy, the search is covering a greater geographical 
area. In theory it is possible to provide a hierarchy which covers the world, but 
this may not be practical. For instance the amount of class summary information 

which the world group leader would have to store would be excessive. Furthermore, 

the communication costs increase as the hierarchy is ascended. However there are 
a number of ways in which these problems can be solved or at least their effects 
minimised. For instance, separate hierarchies could be provided for each major 
function classification (discussed previously). Clearly separate group leaders would 
exist for each of these functions. The various function group leaders could be located 

on different class servers. This has the advantage of spreading the processing load 

and the number of levels required in the hierarchy will be reduced. One major 
advantage of the hierarchical method is that it is possible to limit the extent of the 

search. It is possible for instance to limit the search to at most 2 levels, or to a 
geographical region, for instance Europe. Hierarchies are similar to all tree like data 

structures and therefore have many other advantages. Indeed Coulouris [10] states 
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that hierarchical algorithms/structures are the only ones which are scalable. 

2.3.3.3 Summary 

This section reviewed two very different ways in which the class information could 
be structured in the distributed system to facilitate searching. Other structures are 
possible. The main objective is to choose a structure which will always allow class 
information stored in the distributed system to be found, efficiently. 

2.4 Distributed Environment for Application Ex- 

ecution 
As was mentioned earlier a distributed application comprises a set of distributed 

classes. Typically classes make calls on methods contained in other remote classes 
and thus the application can be viewed as a hierarchy; Figure 2.1 showed such a 
hierarchy. Before the application can be executed the classes comprising the appli- 
cation must first be located and then bound together. By binding in this context 

we mean the process of finding where in the network the classes are stored (and 

is defined as Network Address Binding (NAB)). There are two obvious approaches 
to binding. Binding can be carried out when the user invokes the application just 
before the application begins execution. Alternatively, binding can be carried out 
during execution. These two approaches are discussed and analysed below. 

2.4.1 Binding 

2.4.1.1 Network Address Binding at Invocation Time 

Static binding is carried out just before execution of the application begins. Such 

as setting up a virtual circuit in a connection oriented network such as ATM [1]. 

In ATM, for instance, the connection is built before any information is transmitted 

and the user is given the opportunity of declining the connection (or renegotiating) 
if the application QoS cannot be guaranteed. 

Clearly the name of all classes comprising the application must be known and this 
information can be extracted from the class source code, starting with the class at 
the top of the application hierarchy. The top class is typically the name of the class 
that the user provides for the runtime system. In Figure 2.1 for instance, the Class 



F`uture Distributed Environment 28 

TOPLevel makes calls to classes Level,, and LeveI12. Thus it needs to be identified 
if classes Level,, and LeveI12 reside on the local machine otherwise the location must 
be found in the distributed system. A paTtial bind table must be constructed by the 

cla, ss-server for the class TOPLevel with entries for class Level,, and class LeVeI12 

and their corresponding addresses. Class-servers for the second level classes (in this 

example class Level,, and class LeVe-112) must be accessed next and the same process 
of constructing a partial bind table must be executed. This recursive process must 
be carried out until addresses have been found for all class references, at all levels. 
As a result of this binding process every class in the hierarchy will have identified 

all the remote class calls and corresponding class addresses, before the execution of 
the application and this information is stored in the set of distributed bind tables. 

Note that the network conditions, just before the choice between each of the 

candidate classes is made, are known and, if there is a choice of candidate classes 
(replications stored at different locations) then the network conditions can be used to 
help in the selection process. However, it should be remembered that network condi- 
tions can change rapidly, thus it is questionable whether this information should be 

used in the class selection process, particularly if the application has a long execu- 
tion time. One disadvantage of this scheme is that it delays the start of application 
execution. Furthermore, all class references must be resolved, but at run time not 
all classes are necessarily invoked. Thus this approach is potentially inefficient. 

Note also that it is possible to bind at compile time. However, the disadvantage 

of this approach is that the time lapse between binding and execution may be long, 

meanwhile the class may have been removed from the location. It would not be 

practical to maintain bind tables to reflect the movement of classes. 

2.4.1.2 Network Address Binding at Run Time 

With this approach classes are located and bound at runtime. Execution of the 

application is started and a search for a class takes place only when it is invoked. 

The actual process of finding the class locations however is identical to that used in 

NAB at invocation time. 
NAB at run time has a number of advantages. Firstly, only classes that are 

actually invoked are located. Secondly, because classes are found just prior to their 
invocation it is possible to take current network performance into consideration when 

choosing bet,, N-een copies of the same class located in different places. However. a 
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major disadvantage is that the application execution is interrupted -while classes are 
found. It is not possible to bound (predict) this extra delay and therefore it is not 
possible to guarantee the application Quality of Service (QoS) requirements. 

Problem Handling in Network Address Binding Whenever the location of 
a class has to be found to bind its network address there exist a problem if no 
corresponding location is found for this class. Obviously a distributed application 
will not function when one of the needed classes does not exist. In this case a 
message has to be sent to the service provider. The service provider might find 

another way of creating the service with the help of different classes with similar 
functionalities, otherwise the user of this service will be informed and the execution 
is cancelled. Furthermore the service provider will inform all involved parties within 
its knowledge. These parties, for example, are all location brokers responsible for 

this class as far as the service provider has knowledge about these brokers and class 
servers previously providing this class. 

2.4.1.3 Summary 

Because of the limitation with all of these structures, we integrate NAB at invocation 

time and NAB at run time. First an initial distribution is created at invocation time 
just before the start of the execution, and in case of any failure a reconfiguration is 

triggered. This reconfiguration initiates a new search and network address binding 
during execution. 

Having defined how the searching for objects can be implemented and how they 

can be brought together to built one entity, we need to look what other aspects are 
needed for service-based computing. 
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2.5 User Requirements Through Contracts 

Every user has different requirements. One might want a fast execution time and 
is willing to pay for this service, whereby another user prefers to get the service for 

the lowest possible cost, which automatically results in longer delays. 

User's requirements in service-based computing paradigm need to be negotiated 

with the system through a contract in much the same way as that between utility 

providers and customers. A contract is modelled by a specialised state transition 
diagram [7] called a contract diagram (see Figure 2.7). The actions to be taken in 

every possible state of affairs are defined in contract clauses, including the contract's 
fulfilment, cancellatton and vZolation. Each results in another state of affairs coming 
into effect, ultimately the termination of the contract. The clauses oblige, permit or 
forbid each party to perform processes in terms of the contract, where permission and 

prohibition are types of authorisation. The appropriate process may be instantiated 

in terms of the contract and, when completed, results in a new state of affairs. 
The ability of XML [45] to structure a document, and to tag its contend with 

semantic labels, provides the opportunity to integrate policies and the process by 

which they are enforced. For example Listing 2.1 is a fragment of a contract with a 
user who might want to use Service A. 
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Figure 2.7: contract diagram 
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<Contract> Service Contract 

<Party> entity. role. party. ServiceProvider 

<Permit> USER NAME 

<Description> The user may request if Service A is available. 

5 This service can be offered with different 

requirements, like cost and speed factors 

</Description> 
<Fulfill> Service A </Fulfill> 
</Permit> 

10 <Oblige> choose from offers 
<Description> The User shall either accept or not 

accept the offers 
</Description> 
<Fulfill> react </Fulfill> 

15 <Violate> negative react </Violate> 
</Oblige> 
</Party> .... 

</Contract> 
Listing 2.1: Fragment of a contract with a user who wants to use Service I 

Ponder [11,12,1 `1] defines a declarative, obj ect-oriented language for specifying 

policies for the security and management of distributed systems. Separating the 

policy from the implementation of a system permits the policy to be modified in 

order to dynamically change the strategy for managing the system and hence modify 
the behaviour of a system, without changing the underlying implementation. Ponder 

supports an extensible range of policy types, however only the two main important 

policies for this thesis are stated below: 

Authorisation policies are essentially security policies related to access-control 

and specify what activities a subject is permitted or forbidden to do, to a set 
of target objects. Any request made by a subject can be defined in terms 

of an action on an object. A positive authorisation policy defines the action 
that a subject is permitted to perform on a target. A negative authorisation 
policy specifies the actions that a subject is forbidden to perform on a target. 
Negative authorisation are supported by many security platforms and can be 
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used to temporarily remove access rights from subjects. This way the access 
to a distributed service-based application can be controlled and managed. 
Example: 

inst auth+ 
subject 
target <sortFunction> 

action 
5} 

selection Procedure 
\user\sort; 
\unlimited; 

choose (), execute(); 

Listing 2.2: Ponder Positive Authorisation Example 

Members of the domain sort, which is a subdomain of user are authorised to 
choose from a "table of contents" any function within the sortFunction domain 

and execute them on the remote location. 

inst auth- 
subject 
target <sortFunction> 

action 
5} 

selectionProceduref 
\user\sort; 
\unlimited; 
downloado, removeo, disable(); 

Listing 2.3: Ponder Negative Authorisation Example 

Members of the domain sort, which is a subdomain of user are forbidden to 
download, remove or disable any function within the sortFunction domain. 

Obligation policies specify what activities a subject must do to a set of target 

objects and define the duties of the policy subject. Obligation policies are 
triggered by events and are normally interpreted by a manager agent at the 

subject. These obligation policies can help to built a service-based application 
because every possible action occuring during execution can be specified. As 

such the runtime behaviour can be fully defined. Negative obligation poli- 

cies are not equivalent to negative authorisations. The main difference lies in 

the fact that obligation policies are interpreted by subjects while authorisation 

policies are interpreted by access control components on the target host. Thus, 

negative obligation policies act as subject based filters specifying actions that 

managers 'must refra, in' from performing. 
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Example: 

34 

inst oblig reconfigure ý 

on timeout (locationA. objectB); 

subj ect s=PerformanceMonitor; 
target <children> t =locationA. objectB. child 

size =locationA. obj ectB. child. size 
do for(int i=O; i<size; i++)f 

locationA. objectB. child [1]. stop 

locationB. objectB. start 

10 
Listing 2.4: Ponder Obligation Example 

This policy is triggered when a timeout occurs for objectB at location A. The 

PerformanceMonitor will stop the execution of all objects originally instanti- 

ated by objectB at locationA and will restart objectB on the new locationB. 

2.6 Summary 

This chapter has introduced the different perspectives a service-based computation 

can be viewed of. In addition it states the issues needed for service based applications 
compared to traditional centralised applications. It introduces an example structure 

of such an application and two ways to implement the searching for application parts 
have been proposed. Once the distributed objects have been found their network 

addresses have to be bound together to build one entity. Three different architectures 
have been introduced to bind the network addresses. Finally it is stated how user 
requirements can be specified through contracts to specify the requirements for the 

performance monitoring introduced in chapter 3. 



Chapter 3 

Architectural Design for 
Performance Monitoring and 
Reconfiguration 

3.1 Introduction 

The performance of an application must be monitored during execution to ensure 
that the required Quality of Service (QoS) is satisfied. Failure to meet the necessary 
QoS will necessitate a reconfiguration (or partial reconfiguration) of the application. 
This may occur, for instance, if a class server fails and a replication of the class 
located at a different class server must be substituted. Thus performance monitoring 

and reconfiguration are inextricably bound together. In the following we discuss 

various architectures that can support program execution, performance monitoring 

and reconfiguration. 
We distinguish between two separate but related application performance moni- 

toring activities that must be undertaken in a distributed environment. The Perfor- 

mance Monitoring- Client (PMC), which invokes another class, must implement the 

performance monitoring activity. In contrast, the Performance Monitoring- Server 
(PMS) which is invoked, plays a more passive role and is merely expected to respond 
to requests and instructions issued by the PMC. For instance the PMC must have 

the functionality to interrogate the PMS server side, for example, to find out current 
values of given parameters. Furthermore, the PNIC must be able to send commands 
to the PNIS, for instance a, command to change the execution priority. The P-NIC 

35 
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can, in theory, be located anywhere. However, because the PNIS must be able to 

respond to requests and commands from the PMC, clearly it is best that it resides 
on the class server where it is executing. In this thesis, the PNIS functionality is 
included in the Additional Support for each class. The Additional Support as 
shown in Figure 2.1 contains information about the functional classification, location 

of invoked classes and the PMS, since each PMS is only responsible for the execu- 
tion of one particular class. A number of alternative architectures for the PMC are 
presented below. 

3.2 Centralised Model for Performance 

Monitoring- Client 

As mentioned earlier the classes comprising a distributed application are located 

and executed at class servers throughout the distributed environment. One simple 
way in which the PMC can be designed in this environment is to locate it at the host 
that invokes the application; Figure 3.1 presents this arrangement. In particular, 
it shows the PMC integrated with user host. The reason to place the PMC on the 

user-host is, when the host with the PMC fails the whole application would fail. 
In case this failure is on the user host s/he will notice and has to restart anyhow. 
Another alternative is to have one or better two replications of the PMC, synchro- 
nised with the original and able to overtake the whole functionality in a failure case. 
There exist numerous techniques in the literature on how to mirror hard disks e. g . 
Baek et al [5] has presented a hierarchical Redundant Array of Independent Disks 
(RAID) architecture with multiple controllers. It can offer performance and reliabil- 
itY without exhaustive disk utilization, thus annihilates the drawbacks of traditional 
disk arrays. 

Furthermore it can be seen in Figure 3.1 and Listing 3.1 that the user first 

negotiates a service with a service provider. After this the two parties have agreed 
on a contract the service provider contacts one or more location broker to find all 
needed class locations. The found network addresses are bound together (NAB at 
invocation time as described in section 2.4.1) and saved in a bind table. Then the 

execution is instantiated by contacting and sending the bind table to the PMC on 
the user host. This P. MC is responsible to control and monitor the execution of the 

whole application. 
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Figure 3.1: Interaction between the PMC and PMS M centrahsed model 
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user -> negotiates with service Provider 

service provider -> contacts location broker for all class locations 

service provider -> starts Performance Monitoring Client on user' sLjhost 
PMC -> monitors the performance within the distributed 

execution 
PMC -> controls the distributed execution 

PMC -> gets locations for class name (TopLevel) 

out of bind table or 

10 if not any more available from the location broker 

PMC -> sends request to the PMS responsible 
for the TopLevel Class 

PMS -> invokes the TopLevel object 
TopLevel object -> when it calls the next class 

15 (Class Level,, and LeveI12) 

it asks the PMS 

PMS -> forwards request to PMC 

PMC -> extracts class names (Level,, and LeveI12) 

of services to be called 
20 PMC 

-> gets locations for class names 
(Level,, and LeveI12) 

out of bind table or 
if not any more available from the location broker 

PMC -> sends request to the PMS responsible 

25 for the Class Level,, on class server II 

PMC -> sends request to the PMS responsible 
for the Class Level12 on class server IV 

and so on ... 
Listing 3.1: Centralised Model Scenario 

When taking the example application shown in Figure 2.2 the RINIC extracts 
details of the TopLevel class from the bind table (class name and location) sends 

a request to start the execution for the TopLevel class to the responsible PNIS on 

class server I (using RMI techniques). The PNIS invokes the TopLevel object, which 

starts executing. As soon as this object reaches the point where it would have to 
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call objects Level,, and Level12 it sends a message to its EMS with this request. The 
PMS forwards this request to the PMC which gets the location for these objects out 
of its bind table. It then sends a request to the PMS responsible for class Level,, 

on class server II and in parallel a request to the PMS responsible for class Level12 

on class server IV. Both these PMSs will invoke the corresponding objects and so 
on. In this way, all class invocations are made centrally by the P'NIC. 

The PMC typically will be implemented as a separate program and thus will 
run as a process on top of the operating system. Figure 3.2 shows a wide area 

network environment in the form of a set of class servers interconnected via a mesh 
of WAN routers. Note that the classes incorporate Additional Support which, as 
stated earlier, includes the PMS. This interface augments the class with the ability 
to respond to requests from the PMC for performance information. Figure 3.2 also 
shows how the classes comprising the example application shown in Figure 2.1 can 
be distributed across class servers. For instance one class server supports classes 
011) 0211 031 

- In this example, the classes for the example application have been 

distributed over 6 class servers as shown in Table2.1, but clearly any pattern of 
distribution is possible. Figure 3.3 gives a more detailed view of a class-server and 

attempts to clarify a number of points. Such as the close connection between the 
PMS and the object. The PMS is part of the class and communication from/to 

other classes is under the control of the centralised PMC. 

3.2.1 Advantages 

The function of the PMC relates specifically to a single execution of a given applica- 
tion. Thus the PMC has an overall view of the performance of the application and 
thus can more easily assess whether the performance satisfies the QoS requirements 

specified by the user at run time. Furthermore, failure recovery and maintenance 

are under central control. 

3.2.2 Disadvantages 

. Much communication is involved; this can be seen visually in Figure 3.2. In par- 
ticular, all classes must report back to the PMC when execution has finished (or 

when there are problems). Clearly the communication overhead depends on both 

the location of the classes relative to the PMC function together with the number of 

performance messages which must be exchanged during execution. The invocation 
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of classes is also inefficient because the class server issuing the invocation must filter 
it through the PMC. In case the PMC fails and no replication exist, all information 

will be lost. 
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3.3 Distributed Architecture for Performance Mon- 
itoring 

It is also possible to design performance monitoring in a, distributed manner. Two 

alternative designs are considered here. They differ according to where the PMC is 

located and thus the overall responsibility of the PMC. In the first design the PMC 

is integrated with the class, while the second design has the PMC function located 

in the class-server (host). These are referred to as PMC on a per class basis (class 

model) and per host (network) basis (host model) respectively and the implications 

are discussed in the following subsections. 

3.3.1 On a Per Host (Network) Basis 

Figure 3.4 shows the interaction between the PMC and PMS for the arrangement 

where there is one PMC for every class-server. Comparing Figure 3.4 with Figure 

3.1 shows that the beginning of the execution follows the same schema, only this 

time the service provider has to contact the PMC located on the class server I 
directly. Listing 3.2 explains the sequence of events. Furthermore Figure 3.5 shows 
the arrangement in a wide area network environment. In this situation the PMC 
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runs as a process and the PMS runs as a thread. Note however, if there is only 
one class server on a network (in much the same way as there is one -, N, eb server 
on a network) then this can also be described as on a per Network basis. In this 
instance the PMC co-ordinates the performance monitoring activity for all remote 
class invocations issued by a class server. Figure 3.6 shows the class-server in greater 
detail. 

Advantages 

Communication is necessary at only one level in the application hierarchy. Only 

one PMC function is required in the class server. This allows the PMC function 

to co-ordinate the sharing of the resources of the class server between the various 

executing classes, according to the requirements specified by the user. Note that the 

operating system could be enhanced to provide this function. As long as there is 

no reconfiguration required, the monitoring will not create any additional network 
traffic. 

3.3.1.2 Disadvantages 

The major disadvantage of this design is that the PMC has to co-ordinate classes as- 

sociated with different applications. No global knowledge relating to the application 
is available. F'urthermore the first host accommodating a PMC in this application 
hierarchy creates a weak point for failures. When this machine fails there is no re- 

configuration possible unless this PMC is mirrored to at least one different location, 

so that in case the first machine fails the mirrored PMC can take over the monitoring 

smoothly. 
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Figure 3.4: Interaction between the PMC and PMS M host model 
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user -> negotiates with service Provider 

service Provider -> starts Performance Monitoring Clients 

on every host 
PMC -> monitors the performance on the host 

where the monitor is located 
PMC -> controls the execution started from this client 

-------------------------------- 

PMC (machine I) -> sends request to the PMS 

10 responsible for the TopLevel Class 
PMS -> invokes the TopLevel object 
TopLevel object -> when it calls the next classes (Level,, and LeveI12) 

it asks the PMS 
PMS -> forwards request to PMC 

15 PMC (machine 1) -> extracts class names (Level,, and LeveI12) 

of services to be called 
PMC (machine 1) -> gets locations for class Level,, and LeveI12 

out of bind table or 
if not any more available from the location broker 

20 PMC (machine I) -> sends request to PMC for Level,, on machine II and 

sends request to PMC for LeveI12 on machine IV in 

parallel 
PMC (machine Il)- > sends request to the PMS 

responsible for Class Level,, 

25 

PMC (machine IV) -> sends request to the PMS 

responsible for Class LeveI12 

and so on 
Listing 3.2: Host Model Scenario 
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Figure 3.5: Distributed Architecture for Performance Monitoring on a per host- 
(network) Basis 
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Figure 3.6: server and chent sZde performance monitoring on a per host- (network) 
basis 

3.3.2 On a Per Class Basis 

When the PMC function is integrated with the invoking class, it runs as a thread. 
Figure 3.8 shows how a distributed application is executed using this approach. Fig- 

ure 3.9 gives a more detailed view of a class-server. Taking the application shown 
in Figure 2.1 again as an example, it can be seen that the object TopLevel remotely 
invokes the object Level,, (compare also Listing3.3 and Figure3.7). A communica- 
tion channel must be established between the invoking and invoked classes so that 

message relating to the performance can be exchanged between them. This is shown 
in Figure 3.8 (the pink connection at the top of the diagram). Note that when a 

class invokes another class on the same class server then no communication channel 
is needed. For instance 01, invokes021. With this arrangement both the appli- 
cation execution and the performance monitoring is distributed. Note also, in this 
instance the bind table is also distributed. Listing 3.3 gives this example in pseudo 

code. 
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3.3.2.1 Advantages 
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The implementation of the PMC can be part of the additional support for each class. 
since every PMC belongs to exactly one class. 

3.3.2.2 Disadvantages 

Potentially there could be an excessive number of PMC threads executing in a class- 
server, and the operating system will have to co-ordinate the sharing of resources. 
There is no communication between the PMC threads and no co-ordination between 

them. No global knowledge relating to the application is available. As well as in 

the other two models the first PMC in the application hierarchy will have to be 

mirrored to a different location. Otherwise when this machine fails there will be no 
reconfiguration possible. 
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Figure 3.7: Interaction between the PMC and PMS Zn class model 



Architectural Design 49 

user -> negotiates with service Provider 

service Provider -> starts Performance Monitoring Clients 
for every class on every host 

PMC -> monitors the performance for each class 

where the monitor is located 
PMC -> controls the execution started from this client 
-------------------------------- 

PMC (TopLevel) -> sends local request to the PMS 

10 responsible for the TopLevel Class 
PMS (TopLevel) -> invokes the TopLevel object 
TopLevel object- > when it calls the next classes 

(Level,, and Leve112) 
it asks the PMS 

15 PMS (TopLevel) > forwards request to PMC (TopLevel) 

PMC (TopLevel) > extracts class names (Level,, and LeveI12) 

of services to be called 
PMC (TopLevel) -> gets locations for class Level,, and LeveI12 

out of bind table or 
20 if not any more available from the location broker 

PMC (TopLevel) -> sends request to PMC (Level,, ) on machine 11 and 
to PMC (Level12) on machine IV in parallel 

PMC (Level,, ) -> sends request to the PMS 

responsible for the Level,, Class 
25 PMC (Levell2) -> sends request to the PMS 

responsible for the LeveI12 Class 
PMS (Level,, ) -> invokes object Level,, 

PMS (LeveI12) -> invokes object LeveI12 

and so on 
Listing 3.3: Class Model Scenario 
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class server I 

PM 
os 

Route( 

01, Object Level 11 
012 Object Level 12 
021 Object Level 21 
0 22:: 

:: Object Level 22 

023 Object Level 23 
0 31 Object Level 31 
0 32 Object Level 32 
033 Object Level 33 

OS = Operating System 
PM = Performance Monitor 
0 Top Level= the Top Level Object wich is 

first called 
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Figure 3.8: Distributed Architecture for Performance Monitoring on a per class basis 



Architectural Design 

class server 11 

PMS PN1S2 P MS3 

PMC PMC 2 P ýjC- 
3 

os 

from to from to from 
000 
TopLevel 22 0 

12 33 022 

Figure 3.9: server and chent side performance monitoring as part of an class 
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3.4 Prediction and trade offs of the Behaviour of 
the Models 

We have introduced three different architectures, where in a distributed system 
the performance monitor should reside. As described earlier each of these models 
has its advantages and disadvantages. It will not be possible to choose one of 
these models and announce it to be "the best", since it depends strongly on the 
individual conditions, like the type of application, the level of distribution and other 

environmental parameters. However it is likely that the centralised model becomes a 
big bottleneck for physically widely distributed applications. Furthermore the host 

model should not create any extra traffic and performance monitoring is feasible for 

every kind of application, whereby not as accurate as the centralised model, because 

each monitor has no overview of the whole application. Last but not least the class 

model loses a further part of the overview of the whole application and as such has 

to rely even more on information about failures from outside its own PMC. The only 

advantage for this model is, no extra installation is required, since the PMC can be 
included in the additional support of each class. 

The reason for the different performance monitoring architectures is to find an 

appropriate architecture for an application. It is envisaged that not all three models 
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behave in the same way. Comparing the past performance versus future perfor- 
mance it is likely that the host model will have the fastest response time for widely 
distributed applications and the centralised model for local execution. 

3.5 Algorithms for Performance Monitoring 

A performance monitor (written for distributed applications) specifically monitors 
the performance of the executing application using the QoS defined by the user at 
runtime. Failure to meet the necessary QoS will necessitate a reconfiguration (or 

partial reconfiguration) of the application. The performance is considered unaccept- 
able if the QoS is not satisfied. Performance monitoring must consider: 

* what aspects of the performance are monitored and 

o how this can be designed. 

The system must also allow for the application to be partially reconfigured (which 

will typically mean that under-performing objects are substituted) while it is run- 
ning. 

3.5.1 Measurements and their Implementation 

When a service has a level of real time constraints, there are a number of non- 
functional as well as functional requirements to be considered and monitored. As 
for the non-functional requirements it is to monitor if an object is available and how 

reliable it will be over the next period of time. 
In addition a user of such a service-based application will have some functional 

requirements. In contrast to an application installed on the local machine, a service- 
based application will bring a different perspective on how to calculate the cost a 

user (human or application) will have to pay to use this service. In addition the 

user will be interested in some kind of feedback. One might want to know of the 

progress, whereby another user, just wants to get the results as soon as possible 

and is not interested in this detailed information. All this is negotiated within the 

contract described in section 2.5. As soon as a network is involved in the execution 

a factor of delay is created and needs to be monitored especially when real time 

critical services are involved. 
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The factor of delay can be separated in number of remote calls served, the corre- 
sponding network speed for these remote calls, processing capabilities of the remote 

servers, magnitude of inter process communication, and an overall worst case exe- 
cution time. 

In order to define the different techniques for measuring performance, we need 
to differentiate between the time frames used for measuring the parameters. This 
implies that measurement implementations for each parameter, before execution, 

will be different from the implementation used, during execution of the remote calls. 

Availability In case a host machine no longer provides a particular service, it will 
be unregistered at the location broker responsible for this service. If this happens 

prior to execution an alternative location is chosen. However when it happens during 

execution a penalty for the provider of the host machine occurs, since the contract 
is broken. Furthermore the location broker is able to inform every performance 

monitor monitoring this particular service on the particular host and an alternative 
location can be chosen. 

However whether a host providing a service is available, prior to execution, is 

easily discovered out when the performance monitor sends a request "Are you alive? " 

In case an acknowledgement comes back the execution can start otherwise a repli- 

cation of this service has to be detected. However even when a service was available 

prior to execution it might fail during the execution. There are three different types 

to monitor the availability during execution. The traditional way is not an option 
in a large global system, because it would create far too much unnecessary traffic. 

For this instance a kind of watchdog would keep sending requests to the service and 

wait for the reply. As soon as this reply is missing the watchdog would know that 

the service is not any more available and has to find a replacement. The second 

option is a very cheap implementation, which can be used as long as no time crit- 
ical applications are involved. In this case the performance monitor starts a timer 

as soon as a service is called. When the reply does not arrive within the limit a 

replication of the same service has to be started. Listing 3.4 shows this algorithm in 

pseudo code. In addition every performance monitor will register with the location 

broker responsible for the services used. This location broker detects early whether 

a machine has failed and sends a message to all listening performance monitors, to 

inform about the failure of a host machine. A pseudo code demonstrating this sce- 

nario can be seen in Listing 3.5. Finally a more expensive but very accurate option, 
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for time critical application is called N-version programming [2]. This solution im- 

plies starting replications of the same service on different location at the same time. 
The results are taken from the service finishing first, as Listing 3.6 demonstrates. 
However the performance of every single machine used will go down as we find in 

chapter 4. To improve each of these solutions breakpoints [21] can be injected inside 

of the object code and partial results can be created. It will then be possible to 

restart an object right from the last valid state within it. 

performance monitor -> start timer A 

performance monitor -> start remote service I 

service I - execute 
<the machine I where service I is executing fails> 

performance monitor -> timer A expires 

performance monitor -> start reconfiguration 
Listing 3.4: Failure detection triggered by time-out 

performance monitor -> start timer A 

performance monitor -> start remote service I 

service I execute 
<the machine I where service I is executing fails> 
location broker -> detects failure of machine I where service I is 

located 
location broker -> send message to all performance monitors 

interested in machine I 

performance monitor -> receives message machine I has failed 

io performance monitor -> start reconfiguration 

performance monitor ->... (find alternative location 

start timer B 

start service I on machine II) 

performance monitor -> timer A expires 

15 performance monitor -> reconfiguration already started 

timer A is ignored 

Listing 3.5: Failure detection triggered from location broker 
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performance monitor -> start service 1 on machine 1,11 and III 
in three different threads 

<service 1> -> execute on machine 1,11 and III 

<machine I fails> 

<service I> -> still executing on machine 11 and III 

performance monitor -> receives results of service I from machine III 

performance monitor -> stopps the execution of service I on machine 11 

Listing 3.6: Failure handling for time-critical applications 

Reliability Failure can occur, either due to software or hardware failure. Here we 
assume only hardware failure. The reliability of a host machine prior to execution 

can be predicted on the basis of statistical data about the failure of the object 

maintained by the service provider. During every execution, these records can be 

updated and used for the next invocation of the object. In addition to detect a delay 

early during runtime, the estimated start and end time for every object is compared 

with the actual time by the performance monitor, just before the call takes place. 
Whereby it is to bear in mind, that here exist a problem of different times around the 

globe and a synchronisation of timeservers will have to be implemented. Mills [341 

explains the Network Time Protocol (NTP) used for Internet Time Synchronisation 

and Lamport [27] describes one example to implement a time server by synchronising 

all the node clocks, using the available information about Universal Time. 

Before the start of the execution the distribution and estimated execution time 

for every object is calculated. To reduce the execution time for the whole application 
it is advisable to execute parts in parallel. However for objects executing in parallel, 
it is not always advisable to use the fastest available machine, since every execution 

will decelerate the machine speed (further information are given in Chapter 4), 

this results in a requirement to distribute the parts of the application running in 

parallel. The algorithm to calculate the estimated execution time for every object 
is a challenging problem, since the behaviour of a machine, when changing the load, 

needs to be predicted in advance. 
For software failures, various techniques forward and backward error recovery 

may be adopted [391. 
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Number of Remote Calls The number of remote calls made by an application 
prior to execution can be estimated in two ways. One of these is using statistics 
maintained by the location broker for an earlier execution of the same distribution. 
The other way is a prediction by the location broker, of the number of remote 
calls possible for a particular object invocation. Both of these solutions are only 
manageable with a certain level of precision. The location broker knows every object 
location, however it is not able to predict the exact behaviour during runtime. Some 
decisions like which object is to be called next are only made during runtime e. g. 
one object calls the next only in case of one event happening and in case of another 
event a third object will be called. Furthermore it might be necessary to reconfigure 
the application during runtime by using replicated objects on different locations 

and the whole structure of distribution changes. This would automatically change 
the number of remote calls. However calculating the number of remote calls during 

runtime is complex and an easy way to do it is to increment a counter for every 
remote call made and review these statistics after the execution is over. 

Network Delay The network delay can be measured as a function of delay be- 

tween the call made and results obtained. Prior to execution, network delay can 
be predicted on the basis of data collected from previous invocations. Chapter 4 

describes how to estimate the execution time for every object used within the ap- 
plication. The same estimation can be used for the delay created by a network 

connection. During execution, the PMC saves the time before it calls a remote ob- 
ject and as soon as this call return. The difference between these two times is the 

execution time plus the network delay. Before the start of the execution this delay 

has been estimated and can be used for an early warning algorithm (as described in 

section 6.4.2). When an object finishes after the estimated end time it is clear that 

a performance problem exist and a reconfiguration of each following object can be 

initiated. 

Cost The cost of the execution depends on the way the performance will be mon- 
itored and if a failure occurs during execution. In case an N-version programming 

algorithm is being implemented, there exist a cost for every replication executed. 
Even though that only one solution will be used at the end, the other distributions 

will create network traffic and use system resources. Furthermore additional service 

providers might be involved and need to be paid. 
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In case a failure occurs one must additionally differentiate between a hardware 
failure (every object on the same computer will have to be migrated and restarted), 
and a performance failure (only the next objects to be executed have to be migrated). 
Before the execution such a cost can always only be estimated, however during 

runtime it can be added up, so that after the execution has terminated, the exact 
cost can be determined. 

3.6 Summary 

This chapter has introduced three performance monitoring architectures. Whereby 
in each of these architectures the monitor is divided into two parts. The Perfor- 

mance Monitoring Client (PMC) implements the monitoring activity. In contrast 
the Performance Monitoring Server (PMS) plays a more passive role and responses 
to requests and instructions issued by the PMC. The PMS is always a part of the 

object which has to be monitored, whereby the difference between the architectures 
is the location of the PMC. In the centralised model there exist only one PMC for 

each application, whereby the other two models have even a distributed architec- 
ture for the PMC. In one model there exist one PMC on every host used and in 

the last model there exist for every PMS exactly one PMC. The advantages and 
disadvantages for each of these architectures and a prediction of the behavioural. 

difference between the models have been discussed. Furthermore several algorithms 
to monitor the availability, reliability, number of remote calls and the network delay 

created by these remote calls are presented. 



Chapter 4 

Estimating the Execution Time of 
a Globally Distributed Application 

4.1 Introduction 

This chapter describes an algorithm, that estimates start and end times of dis- 

tributed application parts that run in parallel on a heterogeneous network of work- 
stations (NOW). 

Objects are distributed to workstations inside a network (LAN or WAN), where 
they represent data structures combined with methods operating on the data. The 

workstations' behaviour is simulated by machine and operating system dependent 

values (such as maximum speed and behaviour for pseudo parallel tasks) described 

in Section 4.3. 

The communication between machines is only of interest when communication 
times between workstations are known values, and when estimating the execution 
time. Though the described algorithm gives an idea of how connection load can be 

simulated. Figure 4.1 shows a NOW, that is used in one of the later examples. 

58 



Estimating Execution Times 

06 

11 

11 
III 

0 

"I 

0 ON 4 
406. -., ir IV N%%", 

N 

Figure 4.1: Sample Network of Workstations 

The machines throughout this chapter are identified by Roman numbers, 
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where uppercase letters denote objects. Figure 4.1 depicts the object distribution 

and connections between four machines. 
The algorithm for estimating execution times is gradually evolved from a re- 

stricted application structure (tree structure, Section 4.4.3.1) to an application that 
is represented by a directed acyclic graph (DAG, Section 4.4.4), which allows asyn- 

chronous calls, parallel execution within objects and synchronisation. Section 4.2 

describes the DAG and the application structure. 

4.2 Representation of the globally distributed ap- 

plication 

4.2.1 Directed acyclic graph 

The application is represented as a directed acyclic graph (DAG) [9]. The DAG 

consists of vertices and arcs. A vertex represents an atomic part of the application, 

where the arc represent communication between these parts. Atomic means that 
during the execution of the vertex neither calls are made from the vertex itself nor 
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does the vertex receive messages or wait for other kind of events - it is computational 
closed [46]. Both vertices and arcs are labeled. The label 0n at the vertex denotes 
that n instructions are executed in service instance 0. The term object is used as 
a synonym for service instance. The arcs are described as an ordered tuple of two 
vertices (ni, nj) and labeled with the communication cost of the message c(ni, nj). 

Arcs with r: costs If the c(ni, nj) is E the thread continues within the object itself, 
therefore stays on the same machine', and is not measured. Arcs labeled with an E 
cost must satisfy the following equation: 

c(ni, nj) =E ni. o = nj. o 

Where ni. o denotes the service instance of vertex ni. 
c arcs also indicate that the object stays alive and is used by the same or another 

thread later. A new object is created, if no c arc enters the vertex. The object is 
destroyed after a vertex, that has no c arc leading from it, has executed and sent 
messages. 

Synchronisation in the DAG Each vertex ni waits for all messages Vnj(nj, ni)to 
arrive, and then executes its instructions on the assigned machine. After all instruc- 
tions have been executed all messages are sent asynchronously at the same time. 

Figure 4.2 shows an example of a DAG. Note that, to keep the example simple, 

we have only one thread executing instructions on one object (service instance) at 
a time. We used the name of the object to identify the thread in Figure 4.3. 

'persistent storage of objects and migration of objects during their lifetime is not discussed in 
this thesis. 
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Figure 4.2: Application structure 

In this example the entry vertex executes 200 instructions, then splits of a new 
thread, which calls n2- Meanwhile it executes 100 more instructions (n3) and then 
forks again to call n6 and in parallel execute 300 instructions more (n5). n2 executes 
450 instructions and then synchronises with vertex n8 to execute n4. n6 executes 
500, forks to call n8, executes 100 instructions more in ng and waits 

(n12) for the 

separated thread to join again after this has executed n1l. Meanwhile n4 received 
the synchronisation message from n8 and joins after 50 instructions in vertex n7 its 

parent thread. So does the other remaining thread in n1o, which is the exit vertex 

of this graph. 

Figure 4.3 shows for all the threads, their execution and waiting phases. 
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The filled parts of the bars means that the thread is executing instructions, while 
the outlined bar means that the thread is currently waiting. The dotted vertical lines 

define level borders. From one level to the next the conditions in the system are 

changing, because the number of parallel processing threads changes, however within 

one level no changes can occur. The algorithm to estimate the execution time of the 

distributed application is mainly finding these times and using them to compute the 

total time of the application - which is the end time of the last level. 

The DAG consists of vertices and arcs. ni identifies the vertex, where the ordered 
tuple (ni, nj) is used to address the arcs connecting the vertices ni and nj. 

Costs are the communication time of a call which is c(ni, nj) and the execution 
time of a node ni which is denoted by w(ni), where the number of instructions 

executed by the node is ni. i. 

4.2.2 1'ree-structure as a specialised DAG 

To introduce the algorithm on simple examples, a more restricted data structure is 

chosen to represent the application. The algorithm will be evolved using the tree 

structure, which is described below and is generalised to take a DAG as input at 

2 : 3: 456789 10 : 11 12 13 '14: 15 : 16 

Layers 
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the end of each section. 
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The tree represents the application as follows: Each node represents one object 
executed in its own thread. When a node starts, it executes all its instructions and 
then starts each of its children in a new thread. The thread of the node joins all 
threads of its children what we call termination of the node. Leaf nodes terminate 

when they have executed all their instructions. The application terminates when 
the root node terminates. If the communication cost is used, the labelled cost is 

used twice, once for the call and once for the return. 

Figure 4.4 shows a restricted DAG and the corresponding tree structure. 

Entry 

Exit 

Entry 

A(l 1000i 

B(2) - 1500' 
2 

lb llýAý1ý10 b 

E(2) - 2000i 

up 

C(3) - 750i D(4) - 5000i F(3) - 1000i G(2) - 1500i 

Figure 4.4: simplified DAG (left), tree structure (right) 

The DAG left and the tree on the right hand side of Figure 4.4 describe the 
same application behaviour. Obviously the restriction that a node cannot execute 
instructions after (one or more) of its children have terminated (n8, ng, nio are la- 
belled with 0 instructions) is strong. But this restriction will be eliminated when 
the algorithm is generalised later on. Note the other important restriction which is 

necessary to represent a DAG as a tree structure is that the communication cost for 

the return call is the same as for the invocation (e. g. c(4,8) = c(2,4)). 
The term node is used when the tree structure is described, where we use vertex 

for the description of the DAG. Further there is a distinction between the two terms 
finish execution and terminating. A node finishes execution if it has executed all its 
instructions and calls its children. Terminate is used to indicate that the focus is 
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returned to the parent node, as described above. 
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4.3 Representation of the resources 
Resources The NOW consists of several host machines, which are heterogeneous. 
This means that they can run different operating systems, have different amount of 
processors and provide different speeds and memory resources. Machines are iden- 
tified by their name, (which is throughout this chapter a Roman number). The 
behaviour of a particular machine is simulated using a speed value and two parame- 
ters (a and 0) which describe the behaviour of the machine when it executes threads 
in (pseudo) parallel. 

With ni. m we denote the machine which accommodates the node ni. Ams(m) 

stands for the actual machine speed of the machine m, which is determined by the 

machines absolute speed and its characteristic parameters a and 0. 

m. speed 
The machine speed in instructions per second. This is specified before the 

algorithm executes. It may be the minimum/ maximum/ average or current 

speed of a machine, dependent on what execution time should be estimated. 

a ........... 
This parameter describes how the actual machine speed drops when two nodes 
collide. A setting of 0 means no speed drop, where a setting of I means the 

execCountth (Im. EJ) part of the speed. 
Setting aE (0,1) can simulate a multiprocessor machine. A setting of a=0.5 
for example means that if there are two nodes executing the machine is running 

at full speed (simulates a machine with 2 equal processors). Setting a>I 

means that for more than one executing service instance the speed drops more 

rapidly. Obviously the described values are given under the assumption, that 

the scheduling operating system on the machine does not use processor time 

itself. Values that describe the real behaviour of a machine are in most cases 

empirical. 

........... 
Similar to oz it describes the speed drop, but for waiting nodes. A setting of 
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0 means no speed drop, where a setting of I means the waitCountth (jm-ll'ý) 

part of the speed. 

The actual machine speed of a machine (ams(m)) can be computed by the 
following formula: 

I if EIAa>1 

a* Im. El else 

q (m) 
IW1 

(4.2) 
0* IM. W1 else 

d(m) p(Tn) + q(m) if p(Tn) + q(m) > (4.3) 
1 else 

ams (m) m. speed (4.4) 
d(m) 

p(m)/q(m) are the summands of the denominator which represent the speed drop 
due to executing/waiting service instances. d(m) is the denominator representing the 
total speed drop. Note that if the denominator P(m) + q(m) :ýI =ý- ams (m) 

-= speed. 
This means that the ams(m) is never faster than m. speed. 

The different memory usage of objects (code size and memory allocation etc. ) 

and the time that is used for swapping is not taken into account. To simulate memory 
effects the machines have to store additionally to the thread load a memory load, 

which affects the actual machine speed. Although the estimation would benefit 
from the simulation of a memory load it is not the goal of this thesis to simulate 
different scheduling algorithms and the memory management of operating systems. 
The more accurate simulation of heterogeneous machines does improve the accuracy 
of the time estimation, and is part of the future work. 

4.4 Estimating times 

This section stepwise evolves the idea of execution time estimation from a sequential 
to a parallel application. The estimation is necessary to judge whether the appli- 

cation cýui terminate within a certain time. Performance monitors can use these 
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times to decide during the run if the remaining parts of an application run short in 
time and try to reconfigure the distribution or priority of parts during the execution. 
Furthermore it is possible to store the information of what is causing the speed drop 

of machines (eg. several threads sharing resources) and optimise the distribution to 
avoid these collisions. The optimisation algorithm described in Chapter 5 is based 

on this information. 

Some subsection refer to a setting2 of oz and 3 values. These values are used to 

specify the effect the execution of parallel parts has on the executing machine when 
using the algorithm that is introduced in Section 4.4.3.1. 

Algorithm dependent data The algorithm keeps track of all executing and 
waiting nodes. These nodes are stored in the sets E and W. Each node has a start 
time (ni. startTime) and an end time (ni. endTime). 

Additionally to detect collisions, each machine m stores its own set of execut- 
ing and waiting nodes, which we denote by m. E and m. W. The actual load of a 
machine is therefore Im. El executing and Im. W1 waiting threads. Of course this 
is redundant information and could be retrieved from the sets E and W, but for 

clarity and efficiency we avoid the search and store them separately. 

During the evolution of the algorithm from a simple example we need more 
data structures. We will describe them when they are used the first time. Though 

Appendix A shows an overview over all used data structures. 

4.4.1 Sequential execution 

Entr 
c(1,2) c (2,3) c(3,4) Exit 123 

B150 A200 BIOO A300 

Figure 4.5: DAG for a sequential application 

2a and ý3 are used to compute the actual machzne speed. See Section 4.3 
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Figure 4.5 shows the DAG of a sequential application. Here we have two different 

objects A and B which the single executing thread uses alternatingly. The C arcs 
in this DAG are necessary to indicate that the object A in n, is the same as in n3- 
For the other two vertices it is the same with object B. The c arc will cause n3, and 
therefore n3-0 (which is A) to wait for the incoming message (n2, n3)- 

If all nodes are executed serially, the estimation of the time used for execution is 
fairly simple: the times each node takes to execute is simply added. If N is defined 

to be the sequence of all vertices and T the set of arcs between these vertices, the 
total execution time of the application is: 

SL = 1: w(n) +E c(t) 
VncN WET 

(4.5) 

the total execution time of the application 
N;............... the sequence of all vertices 

w (n) ; .......... the execution time of node n 
T;............. the arcs between vertices and 

C (t) ; .............. is the communication time 

w (n) = 
n. z 

assuming m. 0 is 0 (4.6) 
n. m. speed 

4.4.2 Parallel execution without slow down 

If nodes can be executed in parallel the computation is more sophisticated. To 

simplify the algorithm we use the tree structure of the application, which of course 
is only a very small subset of the possible DAGs. We also specify that the execution 

of a service instance does not affect the machines speed and memory load where it 

is executed. This is equivalent to a=0=0, which means the machine provides 
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constant speed. In this very artificial case the time can be computed as follows: 

time(ni) = 
ni. z 

n. ams(ni. m) 
MAX(f 01 Uf time(c) IcE ni. childrenj) 

+2* c(parent(ni), ni) 
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(4.7) 

Note: ams =- speed when a=0=0 as assumed. ni. children is the set of all 
children of node ni. The communication c(parent(ni), ni) is counted twice, once for 
the call and once for the return. For the root node (parent(root) does not exist) we 
define c( - root) = 0. We define the maximum/ minimum of a set as: 

MAX(S) S: sE SAVX, x E S, As >x (4.8) 

MIN(S) S: sE SAVXIX E S7 As <x (4.9) 

This assumption leads to the question, what happens when a and 3 are values in 
R+. This means both executing and waiting service instances are slowing down the 

machine while they are running. In this case the equation 4.7 is insufficient, because 

the actual machine speed (ams(m)) is changing during the algorithm according to 

the load on the particular machine. This side effect demands to adjust the speed 

at well defined points during the execution of the application. These points are as 

mentioned before the layers shown in Figure 4.3. 

4.4.3 Parallel execution affecting machines 

To simulate a speed drop of a machine depending on its load, we set the values 
a=I and 0=0. All executing service instances share the speed in equal parts, 
and waiting instances do not slow down the machine. This attempt comes closer 
to the behaviour of a real application than the equations used in preceding subsec- 
tions. This section will introduce an algorithm to find the estimated start and end 
times for the tree structure. In Section 4.4.3.1 we describe the estimation for the 

tree structure, whereby we omit the times that are needed for the calls from one 

node to another one. The next Section shows the estimation for the example tree 

shown in Figure 4.4. Before introducing the communication for the algorithm in Sec- 

tion 4.4.3.5 we describe how collisions can be detected and stored in Section 4.4.3.3 
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and 4.4.3.4. 

4.4.3.1 Estimating times for a tree without communication 

This section describes the most restricted (and therefore simplest) version of the al- 
gorithm. It is assumed, that the application is represented by a tree structure as de- 

scribed in Section 4.2.2. Furthermore no communication cost/time (c(ni, nj) = Oms) 
is taken into account. 

For the algorithm it is assumed that each machine is providing a constant speed 
(m. speed), which is only affected by the number of its waiting or executing nodes. 
For this number is only changed when a new node is started, or one has terminated, 
the simulated actual machine speed needs only adjusting at these well defined points. 
Between these machine condition changes all nodes can execute instructions at the 

constant actual machine speed. We will describe the algorithm using a combination 
of structure diagrams and sets. 

Additional attributes For this algorithm n. ei stores the currently executed in- 

structions of node n. Furthermore each node stores its status which can be INI- 
TIALISED, EXECUTING, WAITING or TERMINATED. The start and end time 

of each node is stored in ni. startTime and ni. endTime 

For each Nassi- Schneiderman diagram [35] a short informal description is given 
below. 

Initialise E with the root node, and then start the root node. For the estimation 
of more than one tree all root nodes have to be started before the loop is entered. 
This allows to simulate the effects of other applications which run at the same time. 
Then the main algorithm is: 
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main 

start(root) 

EU W =7ý 

first EEI MIN(execTime(o E E)) = execTime(f irst) 

execute(first) 

After initialisation the loop continues until all service instances are executed. 
The first loop statement assigns to first the node, which under current conditions 
finishes its execution first. This one is executed. If there is more than one node 
fulfilling the condition, one is taken randomly. The others remain for the next loop 

iteration. 

start (n: node) : void - 

n. m. W +- n. m. W\f nj 

n. m. E <-- n. m. E U fnj 

W4-W\fnl 

E ýnj 

n. state <-- EXECUTING 

If the node is waiting it is removed from the waiting sets and added to the 

executing sets. When start has been called, the node is set to be executing. 
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wait(n: node) : void - 
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n. m. E <-- n. m. E \f nj 

n. m. W +- n. m. W Uf nj 

E <-- E\ fnj 

W <-- WU fnj 

n. state +- WAITING 

If the node is executing it is removed from the executing sets and added to the 

waiting sets. 

terminate(n: node) : void 

n. m. E +- n. m. E \ fnj 

n. m. W +- n. m. W \ fnj 

E\ fnj 

W+-W\ýnj 

n. state <-- TERMINATED 

The node is removed from the executing and waiting sets. 

execTime(n : node) : long - 

return (long) ((n. i - n-ei) / ams(n. m) + 0.5) 

This method computes the time the passed service instance will take, under cur- 

rent conditions, to finish its execution. The returned time is rounded. 
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execute(n : node) 
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time <-- execTime(n) 

f or each eEE 

run(e, time) 

n has children ? 
y 

--ý ZZN 

wait(n) terminate(n) 

n. ei = n. i n has a parent ZZN y 
ýý 

Set C <-- n. children ready(n. parent) finished... 

f or each cC 
root tenntnates 

c. startTime <-- 

n. endTime 

c. endTime 

n. endTime 

start(c) 

All other currently executing objects run for the time the passed object takes 
for its execution. They run under the current conditions. If the node has children 
it updates its machine properties, which means changing the runtime conditions. 
Then the children are started, changing their machine properties and updating the 

set of executing service instances. If the node is a leaf it terminates; updating the 

set of executing service instances and informing its parent. 
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run(n: node, time: long) 

73 

n. endTime += time 

n. ei += (long) (ams(n. m) * time + 0.5) 

This method updates the end time and the current instruction count of the ob- 
ject. Rounding errors do not affect the algorithm. But the more often conditions 
change during the execution of a service instance the more inaccurate the result of 
the end time becomes. If a guarantee is needed that the end time is never estimated 
to low you should modify execTime/I method so it always rounds up (other solu- 
tions: measure times in double values and/or use interval arithmetic). 

ready(n: node) 

Yý 
Vc E n. children, c-state = TERMINATED 

n-endtime +- MAX(fc. endtime IcEn. childrenj) 

terminate(n) 

Yn 
has a parent ZIN 

ready (n. parent) finished... root terminates 

If all children are ready the machine properties are adjusted, and the node ter- 

minates - informing its parent. There is no check necessary if the node has children, 
because this method is only called from a child. 

4.4.3.2 Example for the tree structure 

The application is defined by the tree shown in Figure 4.4. Each node represents 
one object, and therefore the execution time of a node is equivalent to the lifetime 
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of the object. 
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For the example we have 4 machines that are identified by Roman numbers. 
Table 4.1 shows the attributes for the machines. The services list can be ignored for 

this example. It is used to indicate that not every node can be scheduled for every 
machine - which is important for the optimisation algorithm discussed later. 

Machine Speed Services 
1 100 11 21 3 
11 200 3ý 4 
111 300 114 
IV 200 21 3 

Table 4.1: Machine speeds/ ser- 

Instance I Service I Machi 

A I III 
B 2 IV 
C 3 IV 
D 4 111 
E 2 IV 
F 3 IV 
G 2 IV 

vices Table 4.2: greedy schedule 

Table 4.2 shows a greedy schedule for all nodes. All nodes take the fastest 

machine, where their corresponding service is provided. 
The algorithm results are shown in Figure 4.6. The y axis shows different ma- 

chines and their scheduled nodes. The x axis shows the time in milliseconds. A 

filled bar means again executing, whilst a outlined bar means waiting. Note that 

the calls are omitted in this diagram. 



Estimating Execution Times 

IV 

III 

11 

I 

machines 

: IF7, 

---------------- ------------------------------- 

3333 18333 ý 27083 37083 
23333 : 35000 

34583 

Figure 4.6: Time flow greedy 
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time 
in ms 

After A finishes execution B and E are started on machine IV. They both share 
the machine speed in equal parts. After B, the nodes C and D are started. While D 

is running at full machine speed, node Chas to share the resources with E. At time 

- 23333 E calls its children F and G on machine IV. Now all nodes on machine IV 

are running at a third of the machine speed. After C terminates, only nodes F and 
G are sharing their resources. Node G is the last to finish, about 37 seconds after 
the applications start. 

4.4.3.3 Detection of collisions in the tree 

Definition of a collision: Two nodes (n, N) collide, when they are executing 

and/ or waiting on the same machine at the same time. We refer to wait colliston 

of n if N was waiting when the collision occurred and execute collision, if N was 

................................ ..................................... 

............................... .......... 

executing. Therefore n has a wait collision with N if and only if N is waiting at 
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In the algorithm described in Section 4.4.3.1 the machines conditions are ad- 
justed in the start/1, wait/1 and terminate/1 functions. When it is necessary to 

store which collisions occur (e. g for an optimisation which tries to avoid collisions) 
we only need to modify these three methods. 

Additional attributes A coffiston is stored as a tuple of (N, s, e, w). Table 4.3 

shows the meaning of the tuple members. 

N The node which collides with. 
S The start time of the collision in ms. 
6 The end time of the collision in ms. 
W. flag indicating whether N is executing or waiting. 

true means waiting. 

Table 4.3: Description of a collision tuple 

Collisions are stored in two separate sets within the node structure. Set n. EC 

stores the collisions that occur during ns execution and n. WC stores those while n 
was waiting. 

Below are the modified structure diagrams of the start/1, wait/1 and terminate/1 
functions. 
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start(n: node) : void 

f or all eEn. m. E U n. m. W 

endCollision(e, n, n. endTime) 

n. state <-- EXECUTING 

n. m. W +- n. m. W \ fnj 

W +- W\ fnj 

f or all eEn. m. E U n. m. W 

startCollision(e, n, n. endTime) 

startCollision(n, e, n. endTime) 

n. m. E +- n. m. E U fnj 

E <-- EU fnj 

The first loop ends all wait collisions (and all collisions of n) that have started, 
but not yet ended. The second loop starts execute collisions for all other nodes, and 

also the appropriate collisions for the node itself. 
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wait(n: node) : void - 
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f or all eGn. m. E U n. m. W 

endCollision(e, n, n. endTime) 

n. state <-- WAITING 

n. m. E <-- n. m. E \ fnj 

E <-- E\ fnj 

f or all eEn. m. E U n. m. W 

startCollision(e, n, n. endTime) 

startCollision(n, e, n. endTime) 

n. rn. W +- n. rn. W U fnj 

W +- WUf nj 

As described in start/1 the first loop ends all execute collisions (and all collisions 

of n). The second loop starts all wait collisions. 
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terminate(n: node) : void 
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f or all eEn. m. E U n. m. W 

endCollision(e, n, n. endTime) 

n. m. E n. m. E \ fnj 

n. m. W n. rn. W \f nj 

E <-- E\ fnj 

W <-- W fnj 

n. state TERMINATED 

Ends all collisions. 

Additionally we need two more functions, that handle the collision start and 
end. Because these functions deciding on the nodes state (n. state) and are used 
often within the start/l, wait/l and terminate/l functions we separated them. 

start Collision (n : node, c: node, time : long) 

n. state 

WAITING EXECUTING else 

entrySet n. WC entrySet +- n. H7 error 

entrySet entrySet Uf (c, time, -, c. state = WAITING)l 

When called this method decides on which set to operate depended on the nodes 

own state. To the chosen set a new collision tuple is added. 
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endCollision(n : node, c: node, time : long) 
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n. state 

WAITING EXECUTING else 

entrySet n-WC entrySet +- n. Rý' error 

nc N x Ix 

Vi E fx E entrySet I x-e is not setj iE fx E entrySet I x. N cl 

i. e +- t ime z. e +- time 

Decides on which set to operate depending on the nodes own state. If n equals 

c it means that the node n itself is causing a configuration change. In this case 

all pending collisions (those which have not ended yet) must be terminated. If the 

passed node is different, only the collision which contains this node has to terminate. 
The end attribute of a collision is only set once. 

4.4.3.4 Example for collisions 

When the modified algorithm is run on the previous greedy example we encounter 

several collisions. Table 4.4 shows the collisions during the nodes execution and 

waiting time. The contents of the table is divided into blocks for each node A to 

G. These blocks are grouped into execute collisions (w =f alse) and wait collisions 
(w = true). Inside these groups the collided nodes are sorted alphabetically. 
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during execution while waiting 
Node Tstart I 

end 
I 

wait Node I 
start 

T 
end 

Fwait 

Coffistons for Sermce instance A 

no collisions 
1 1D -7 18333 1 35000 f alse 

Coffistons for Service instance B 

E 3333 18333 false C 18333 27083 false 

E 18333 23333 false 

F 23333 34583 false 
G 23333 35000 false 

E 23333 35000 true 

CoffisZons for Service instance C 

E 18333 23333 false 

F 23333 27083 false 
G 23333 27083 false no collision 
B 18333 27083 true 
E 23333 1 27083 1 true 

CollMions for Service instance D 

A 18333 35000 ýtrue I- 
no collision 

CoffisZons for Sermce Mstance E 

B 3333 18333 false C 23333 27083 false 

C 18333 23333 false F 23333 34583 false 

B 18333 23333 true G 23333 37083 false 

11 B 23333 35000 1 true 

Coffimns for Service instance F 

C 23333 27083 false 

G 23333 34583 false no collision 
B 23333 34583 true 

E 23333 34583 true 

CoffisZons for Sermce Mstance G 

C 23333 27083 false 

F 23333 34583 false no collision 
B 23333 35000 true 

E 23333 37083 true 

Table 4.4: Collisions for the greedy example 
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Obviously there are no collisions while the root node is executing and no collisions 
for waiting leaf nodes (they are never waiting). Of more interest is the occurance 
of two collisions with node E while B is waiting (see Coffistons for ServZce instance 
B). The first one is an execute collision (E is executing from 18333 until 23333) and 
the second one a wait collision (E waits for F and G from 23333 until 37083). 'Note 

that for this wait collision the end time is only 35000 which is the time when B 

stops waiting for D. When comparing Table 4.4 with the Figures 4.4 and 4.6 this 

case occurs several times. 

4.4.3.5 Communication in the tree 

The only points where communication occurs is when starting or terminating nodes. 
The point to modify the algorithm described in Section 4.4.3.1 is the execute/1 and 

ready/1 function, this is where nodes are started and terminated. 
Additionally the main method needs a modification. Because we have to delay 

the calls, we need a new set T which stores all messages, that are currently processed. 
The minimum search in main needs to be adjusted to find the minimum time, when 
the first node in E will finish execution and the first message which will reach its 

addressee. Depending on whether the minimum is found for a node or a message 

main has either to execute/l the node or invoke the message. 

Additional attributes As mentioned above the set T to store all currently pro- 

cessed messages. To store the progress of a message transmission we store the time 

that has already been used in the attribute (ni, nj). time. The remaining transmis- 

sion time therefore is c(ni, nj) - (ni, nj). time. 
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- main 

start(root) 

EUWUT =ý 

f irstNode D MIN(f execTime(o) I Vo C= EJ) 

exe cTime (f irstNode), f irstNode c: E 

f irstMess E) MIN(f c(t) - t. time I Vt E TI) = c(f irstMess)), f irstMess cz T 

execTime(firstNode) < c(firstMess) - 
firstMess. time 

Z'4 

execute(firstNode) Itransmit(firstMess) 

Find the first node that finish execution under current conditions. Find first 

message that arrives. If the node finishes before the next message arrives, execute 
it otherwise transmit the message. 
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transmit( (ni, nj) ) 
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time <-- c(ni, nj) - (ni, nj). time 

for each eCzE 

run(e, time) 

for each tEET 

c(t) <-- t. time + time 

T +- T\f (ni, nj)l 

nj. startTime <-- ni. endTime + c(ni, nj) 

nj. endTime +- nj. startTime 

start(n. j) 

All executing nodes can safelY run for the time the message transmission took. 
After that time the conditions are changing, because a new node will be started. 
The start and end times of the called node are set and the node is started. This is 

correct for a tree, where each node has only one message calling it. 

If a message has started transmission and a node is executing we have to take 

care, that the transmission time is decreased Therefore we need to modify the 

execute/l method. 
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execute(n : node) - 
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time <-- execTime(n) 

f or each eCE 

run(e, time) 

f or each tET 

c(t) <-- t. time + time 

Yn 
has children ?N 

Y 

wait(n) terminate(n) 

n. ei = n. i n has a parent 
Yý 

T <-- TU f (n, nj) I nj 

n. childrenj 
ready (n. parent) finished... 

root termffiates 

The end time of a parent node has to be adjusted according to the communication 
time, too. In the tree structure we assume that the call to a child takes the same 
amount of time as the return call to the parent takes. 

ready(n: node) - 

Y 
Vc E n. children, c. state - TERMINATED 

zZIN 

endtime <-- MAX(f c. endtime + c(n, c); I Vc E n. childrenj) 

terminate(n) 

n has a parent 
Y 

ready (n. parent) tree finished... root termZnates 

If all children of a node have terminated, then the node can terminate itself. 
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The end time of the node is therefore the maximum of the endtime of its children 
plus their communication cost. The node in this case informs its parent that is has 
terminated. If n is the root node the application terminates. 

4.4.4 Generalisation of the times estimation 

This section shows how the existing algorithm can be generalised to take a DAG 

as an application structure. We only show which methods need to be modified to 
adjust the behaviour, for all others it is sufficient to replace the passed node by a 
vertex. Each vertex stores the same information as the nodes do for the tree struc- 
ture. 

To compare the DAG and the tree structure, we need to define the terms parent 
and child for the DAG: 

Parent ni is parent of nj when (ni, nj) exists. A node in the DAG can have more 
than one parent. 

Child ni is child of nj if nj is parent of ni. 

Ancestor ni is ancestor of nj if either ni is parent of nj or it exists a nk such that 
nk is parent of nj and ni is ancestor of nk- 

Descendant ni is descendant of nj if nj is ancestor of ni. 

The main differences between the DAG and the tree structure are: 

* Control flow does never return from a child to its parent. 

eA node can have more than one parent. 

As can be seen in Figure 4.4 the return through the tree is realised through the 

vertices (n8, ng, nio). In the algorithm for the tree structure the return is realised 
through the ready/1 method. If we convert from the tree structure to the DAG the 

ready/1 method has to be removed, because the implicit return is now explicitly 

signed in the application structure. 
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execute(n : node) 
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time +- execTime(n) 

f or each eGE 

run(e, time) 

f or each tET 

c(t) ý-- t. time + time 

n has children ? Lý 
ZZN 

n. ei = n. i 

T <-- TUf (n, nj) I nj c n. childrenj 

terminate(n) 

Now the ready/1 is never called and can therefore be removed for the DAG 

algorithm. The second point is that a vertex unlike a node can have more than 

one parent. As mentioned in Section 4.2.1 the vertex must not be started before all 

messages from its parents have arrived. This can be accomplished by modifying the 

transmit/l function. 

Additional attributes For each message (arc) in the DAG it has to be stored 
if it has already been transmitted. This boolean flag we denote as (ni, nj). used. If 

true the message had already been transmitted. We use the notation used instead 

of (ni, nj, used) to denote the extension to the previously explained parts of the 

algorithm. 
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transmit( (ni, nj) ) 

88 

time <-- c(ni, nj) - (ni, nj). time 

f or each eGE 

run(e, time) 

f or each tET 

c(t) <-- t. time + time 

(ni 
, nj) -used <-- true 

T 4- T\f (ni, nj)l 

y 
Vk, (nk, nj). used true 

AN 

nj. startTime 
" 

nj. state INITIALIZED 
AN 

y Lý 
ni. endTime + 

c(ni, nj) 
. 

wait(nj) 

nj. endTime <-- 

ni. startTime 

start(nj) 

After an arc has been transmitted its used flag is set. The destination vertex is 

only started if all incoming messages have arrived. Otherwise the destination vertex 
is set to be waiting after the first message arrival (but only once). 
Obviously we are now able to estimate the times for a DAG in the same way as for 

the tree structure. Even the collision detection introduced in Section 4.4.3.3 does 

store the collisions of each vertex. The interpretation of these collisions is not as 

easy as it has been for the tree, but Section 5.5 does describe how this data can be 

used when defining the object context of a vertex for the optimisation. 
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In Figure 4.3 the qualitative diagram for the threads and their waiting and executing 
time is shown. For we now have the algorithm to compute this times we can label 
the layers with times to get a better impression of the concurrency within the appli- 
cation. For this example two machines are used, both have the characteristic values 
oz =I and 13 = 0. Table 4.5 lists the machines speed and the object distribution. 
To keep the example easy to follow there exist only one thread accessing nodes that 
belongs to one object. 

machine accommodates speed 
A) D instr 

M'S 
11 B, C nstr 2 -' m8 

Table 4.5: Machines and distribution for DAG example 

All non c transitions take 10 ms time before they arrive. Figure 4.7 shows the 

start and end time of nodes and messages. 

D 

C 

B 

A 

Figure 4.7: Time flow for the DAG example 

The data for the times was calculated using the previously described algorithm, 
but without storing collision data. For each of the 27 iterations (12 nodes, 15 

210 : 310 600 :: 735 : 1940 '114-5 time in ins : 695 930 1120: 
200 '300 '560 '685 905 1110: 

895 : 1060 
1050 1195 
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transitions) in the main part of the algorithm appendix A. 1 provides a table. which 
shows the actual machine speed, the remaining times for all executing nodes and 
currently transmitted messages. In table 4.6 the data for one sample iteration is 
shown. 

Iteration 0: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

first = nl in 200ms 

exec(nl): 

accommodates only ni 

not used 

the initial value 

execute ni - run for 200ms 

Sets: // sets after execution 
E= ýl 

T= ý(nl, n2), (nl, n3)1 
I. E = 
II. E = 

E Nodes: 

the listing of nodes 

with their properties 
W Nodes: 

T Nodes: 

nl: start= Oms, end= 200ms, ei= 200i 

calls: 
(n1, n2): c= 10ms, time= Oms 
(n1, n3): c= Oms, time= Oms 

c ... total call time 

time ... time since start 

Table 4.6: Iteration sample 

After the execute/1 or transmit/1 decision the tables give an overview over 
the used sets. The sets and node attributes contain the values at the end of the 
iteration (after the execute/1 or transmit/1). 

We marked some interesting points in the diagram (Figure 4.7) with red dots. 

1. Node n7waits for n4 to terminate. 

2. Node n4waits for n8 to terminate. 

3. Node nj-) waits for n1l to terminate. 
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4. Nlessage (nl2, nio) arrives before n7 terminates. Therefore n12 starts waiting 
from 1120ms for n7 to terminate. 

4.5 Summary 

This chapter has gradually evolved an algorithm for the estimation of the execution 
time of a distributed application. First a simple application with sequential execu- 
tion has been introduced. Then the application was evolved to execute in parallel, 
first without a slow down of the machine speed and then with a slow down. The slow 
down of a machine speed depends of the behaviour of a machine, taking into account 
that each machine runs a different operating system, has not the same number of 

processors and provides different speeds and memory resources. 



Chapter 5 

Optimisation of the Execution 
Time of a Globally Distributed 
Application 

5.1 Introduction 

This chapter describes an algorithm to optimises the distribution of objects to the 

machines in the NOW (explained in Chapter 4). Machines are not able to accommo- 
date all objects. We restrict each object to be of a specific type, the service. Each 

machine provides a set of services, and can run several instances of those at a time. 
The algorithm has similarities with Ant Colony Optimisation (AC 0) -algorithms 
[16], though it does not rely on global knowledge. 

It is explained why an optimisation is desirable and it sketches the idea of the 

algorithm. The shown structure diagrams, can guideline an implementation. Several 

examples and pictures are provided, to explain the algorithm and its behaviour. 

Parallel tasks within an distributed application compete. The execution time 

of those parts is highly dependent on the executing machine and the amount of 
instructions used to accomplish this task. In Section 5.2 we show that the greedy 

attempt described in Chapter 4.4.3.2 is not a good solution and how it is possible 
to find a better schedule. The static scheduling for an application represented by 

an DAG is proved to be an NP hard problem [26] even in an homogeneous system, 

where each processor executes only one vertex at a time. Facing this complexity we 

use a dynamic algorithm which has similarities with the ACO algorithm [16]. As 
92 
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in the previous section the algorithm is explained first for the tree-structure and 
then generalised to the DAG. Section 5.3 describes the idea of the optimisation in 

an informal way, which is then explained in Section 5.4 in more detail. 

5.2 Distributing to slower machines 
The greedy schedule (schedule shown in Table 4.2) tends to locate all nodes on the 

same (fastest) machine. Due to this load the machine's speed will break down, and 
nodes will only have small part of the machine's speed to execute their instructions. 
This section shows a configuration where collisions are to be avoided, even if it meant 
to use a much slower machine. Table 5.1 and the flowchart in Figure 5.1 shows this 

more distributed version of the application. 

Instance I Service ý Machine 

A I III 
B 2 IV 
C 3 11 
D 4 111 
E 2 
F 3 
G 2 IV 

Table 5.1: Distribution 

In this configuration there are no collisions between executing nodes. The four 

collisions involving waiting nodes: 

1. B waiting collides with G executing. 

2. G executing collides with B waiting. 

A waiting collides with D executing. 

4. D executing collides with A waiting. 
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machines 
------------ ........................ ------------------- 

IV 

.................. I ...................... .................. 

III 

IA 

D 

................... ................................................ 
11 FEW 

................... ------ -------------- ------- --- -- ------------------- 

E 
time 
in ms 

3333 14583 30835 
10833 28335 

27500 
23333 

Figure 5.1: Timeflow more distributed 
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can be ignored if the machines 0 is 0. In this case all nodes have the full 

machine speed to execute. When comparing Figure 4.6 and 5.1 the distributed 

version terminates about 6 seconds earlier than the greedy configuration. Therefore 
it really makes sense to optimise the distribution. Actually this solution is the best 

possible distribution when machines provide only the services shown in Table 4.1 

and the settings for a=1,3 = 0. 

5.3 Idea 

First the optimisation for the tree structure described in Section 4.2.2 is discussed. 

Therefore each node represents one object. This section gives an informal descrip- 

tion of the algorithm and is intended to be an easy way to understand the basic idea. 

Think of the parallelised application as a relay. The parallel parts are repre- 

sented by the different competitors, while the serial parts are represented by the 

runners of one team. Each runner wants his team to win, which means reaching 
the goal (which is the termination of the last part in the series) first. Even if the 

runners in our example are not human the idea is to have them behaving in the 
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same (non Olympic) manner: Losers get angry because they were slower than the 

winners. Each runner keeps in memory with whom he run on the gravel (each part 
of the application remembers with which other part it had to share resources - or so 
to say: collided). In the next run losers (longer execution time) will try to displace 
the previous winners. The more angry they are (the greater the time difference) the 
harder they will try to push them to an outer lane (means: slower machine). Every 

runner has to decide for himself, whether to take a faster lane (being pushed harder) 

or a slower one. 

As ACO algorithms use pheromones to represent the memory of all ants, the 

bruises of each runner are used to represent the memory of how much others wanted 
him to take a slower lane. Bruises, as pheromones, vanish with the time, which 
means the information is stored only for a certain amount of time. Runners in our 
algorithm are quite unforgiving. If they are now slower than the one that displaced 

them, they push back (regardless, whether they are colliding or not! ). How hard 

they push is determined by three values: 

* The amount of races, that have been run since. 

o How heavy the push was. 

* The current difference in their (execution) time. 

The main difference, between this algorithm and ACO is that there is no global 
knowledge like pheromones, which affects all competitors. 

5.4 Structure 

This section gives an overview of the main structure of the optimisation. The par- 
ticular actions are described in the following sections in more detail. 

The algorithm starts with an initial solution s. It runs for a specific amount of 

n steps, and stores the best found solution in b. 
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- Overview 

s <--- initial; b <-- s 

for i=O; i<n; i++ 

calm down nodes 

push back 

expel nodes 

decide where to go 

t evaluate (s) 

t<b. endTime 

bsI 

With n it is possible to adjust the effort that is made to find a good solution. This 

algorithm does converge only for specific parameter settings, it does not necessarily 

mean that a higher n leads to a better result. But the solution found in more steps 
is guaranteed to be at least as good as solutions found in less steps. 

5.4.1 Calm down 

Each node n stores in a punishment value Pn, m (double), how much they have 

been pushed away from a machine, for each machine m where it can be executed 
(fm I n. service E m. Sj). This value represents the fear of the node to go back to 

this machine. This memory is decreased using the following function: 

i-*i+ll (5-1) Pn, m ' (AOPn, m) 
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Ao ................. factor in 1, LO: 
11 

AO describes the percentage of the memory that is used for the next iteration 1*. 
A setting of AO =1 means that the memory is never declining, where a setting of 
AO =0 means there is no memory at all. Ao is comparable to the evaporation of 
pheromones in ant algorithms. 

Additionally to the punishment value we store the maximum punishment value 
that has ever occurred. If p,,, is set it is tested if Pmax,,, rn < Pn, m - 

In this case Pmax,, rn 
is assigned to the new higher value. Even the memory of the hardest punishment is 

allowed to fade with the time. Instead of using the same factor A for all evaporation 
factors it is distinguished to see the different behaviours. The hardest punishment 

value is decreasing with the factor A,. 

Pmaxn, m 
i-*i+l ' (/ýlPmaxn, 

m) 
(5.2) 

A, must be a value in [Ao, 1] 

The third type of memory are the push back lists, which are explained in the 

next section in more detail. Each of these lists stores a collision instruction count 
Cin, m, Nwhich represents the maximum number of collision instructions that have 

occurred between the nodes n and N on machine m. This value is used for the push 
back, and decreased in each iteration by the factor A2 E [0,1]. 

Cin, m, N 
(A2CZn, 

m, N) (5-3) 

For the push back list that is constantly growing a lower limit 6"j, for Cin, m, N 
is maintained. If a collision instruction stored in the push back lists is decreased 

below cZ, j,, this entry is removed from the list. 
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- calm down 

for each node in s 

for all mc fm I n-service G m-Sj 

Pn, m +- AOPn, m 

Pmaxn, 
m +- AlPmaxn, 

m 

Cin, m, N ý-- /\2Cin, m, N 

5.4.2 Push back 

Each node stores for each machine a list of nodes which had previously tried to 
displace it. For each node in the list the maximum number of collision instructions 
(Cin, 

ni, N) is maintained. Push back means the attempt to expel all nodes that are 

stored in the list for machines that are faster than the current location. Addition- 

ally the other node has to be accommodated by this machine in the last run. When 

expelling other nodes from their location the number of collision instructions to 

determine the weight is used. For a push back this information is not available, 
because both nodes are not necessarily located on the same machine. To determine 

the weight of the push back we use the stored maximum number of collision instruc- 

tions in the push back lists (Cin, m, N). The actual push back is performed using the 

equation described in Section 5.4.3. The reason why the push back was introduced 

is discussed in Section 5.6. 

5.4.3 Expel 

Before a new evaluation all competitors try to displace the others to slower ma- 

chines. How successful the attempt to expel the faster node is, is determined by 

equation 5.4. Let ni try to expel n2 provided that nl. endTime > n2. endTime. Then 

cl is the number of instructions that nl has executed during the collision of nj and n2- 

If it is a push back then the saved maximum number of collision instructions (Ci, 
j, m, n2) 

for node 1? 2 is used instead of the cl value. 
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Pn2, ni. m '-- Pn2, ni. m + Cl n endTime - n2. endTime 
root. endTime 
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(5.4) 

root-endTime is the endtime of the whole application. The time difference is 
divided to relativise it to the total execution time. This means if the whole applica- 
tion takes 20000 ms to execute a time difference of 10 ms between two nodes does 
not weight as much as if the applications execution time was 100 ms. 

If the new punishment valuepn2, ni. m is greater than the stored maximum pun- 
ishment valuePmaXn2, 

nj. m the new higher value is stored as the maximum: 

Pmaxn2, 
nl. m '-- l"X(Pmaxn2, 

nl m lPn2, ni. m) (5.5) 

Furthermore we have to store the collision in the push back list: 

C"2, ni. m, ni +- MAX (Cin2, 
ni. m, ni) Cl) (5.6) 

5.4.4 Decide where to go 

The most difficult question is, what is the best machine for a node to be executed. 
Each node tries to find the answer for itself, taking in account its displacement value 
on this machine (p.,,,, ) and the maximum speed of the machine compared with the 

maximum possible speed. 

maxspeed = MAX(m-speed E fm E MI n. service c m. Sj) 

minspeed = MIN(m. speed G fm E MI n. service E m. Sj) 

.11 
f (111) =am. 

speed - minspeed 
-Y 

Pn, m (5.7) 
( 

maxspeed - minspeed) PmaXn, 
m 
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n ........... the node that decides 

Ce .................. 
factor in [0; 1] 

.............. exponent in (0; )r-) 

.................. 
factor in [0; 1] 

.............. exponent in (0; Dc) 

a and -y are factors that adjust how greedy the node chooses a fast machine, 
where -y represents how frightened the node is to go back to a specific machine. 
These factors only allow a linear adjustment. For exponential behaviour one has to 

adjust the 0 and 6 parameters. The higher the value is the higher the influence of 
the summand becomes. 

The special case that m. speed = maxspeed = minspeed, which means that there is 

only one machine speed for the execution of the node n we define the fraction 

m. speed - minspeed 0 

maxspeed - minspeed 0 

to be 1. Analogous to this definition we define the second fraction to be 1 if there 

is no punishment value for the machine (p,,, = 0) and therefore no maximum 

punishment value (Pmaxn, 
m 

ý 0)* 

Pn, m 
Pmaxn, 

m 

Each node chooses the machine m where f (m) has the highest value. 

n. m <-- m E) f (m) = MAX (f (mi) I n. service G mi - services, mi E M) 

Where M is the set of all machines. 

5.5 Generalisation of the optimisation 

Transferring the optimisation described in Section 5.4 to the DAG means that all 

vertices will compete with each other. This might lead to unexpected resultsl when 

a vertex tries to expel another vertex, which operates on the same object (to say 

expels itself). These considerations lead to transfer collisions and times from their 

vertex context to their object context. 
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object. start Time 

object. endTime 

obj ect. EC 

object. WC 

MIN(fn. startTime I n. o objectl) 

MAX (f n. endTime I n. o obj ect 1) 

U fc (E n. EC I c. N. o =ý n. ol 
n, n. o=object 

U fc G n. WC I c. N. o =, 4 n. ol 
n, n. o=object 

101 

(5.8) 

(5-9) 

(5-10) 

(5.11) 

The set of collisions of an object is the union of all collisions that occur in vertices 
that operate on this object, without those colliding with other vertices corresponding 
to the same object. The latter is the case if two vertices execute at the same time 

on the same object. 
We assume that the threads represented by the vertices join at the end of the 

application again. If threads run into an open end, and therefore the initial ob- 
ject is destroyed before the application finishes we cannot say if the object context 
represents the application in a decent way. 

As mentioned at the beginning, this thesis does not cover the persistent storage 
of objects and the migration during their lifetimes. If this possibility would exist 
the vertex context of the collisions would be appropriate - however to measure the 
time an object migration takes needs to be specified. 

Running the optimisation using the object context behaves similar for the DAG 

as it does for the tree structure. 

5.6 To push or not to push - cycles 
The push back is introduced in the algorithm to prevent cycles. Figure 5.2 shows 
how cycles occur for the tree example with reasonable parameter settings. The di- 

agram in Figure 5.3 depicts how the push back changes the period of the cycles. 
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Figure 5.2: Without push back 
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Without push back The distributions between iteration 3 and 8 cyclic behaviour. 
The reason for this is, that the fraction Pn, m for the chosen machine in iteration P-axn'M 

3 is the same as in iteration 8. For the machines speed does not change we make 
the same decision we did already in iteration step 3, again. For this cycle will never 
lead to new solutions we could stop the optimisation process at iteration 8 when we 
detected the cycle without changing the end result. 

In this example this would be a good decision because we have already found the 
best solution, but unfortunately we can build up cycles that do not contain the best 
known optimum. The example for the completely greedy behaviour (Figure 5.5) 

shows the extreme version of the cycle with a period of 1. To avoid these cycles, we 
introduced the push back. 
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45 

-52 
40 

35 

30 

ce = 0.7 ß=j -y ý16=1 XO = 0.7 \l = 0.95 \2 = 0.2 n= 50 

130.835 

50 

53.33 

30.835 

10 20 30 40 50 
Iterations 

Figure 5.3: Push back with A2= 0.2 over 50 iterations 
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Using the push back Within the first 50 iterations we can not determine a cycle 
for the same parameter settings (excluding A2). But if we take a closer look and 
iterate further we see that we have only stretched the period of the cycle. Figure 5.4 

depicts the cycle. The cycle period (41) is quite large in comparison to the number 

of different distributions (3 * 2' = 192) we have for this example. But still we did 

not achieve the set goal. 

55 
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zi 45 
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: 35 

30 

0.7 ß=1 -y =16=1 Äo = 0.7 Xj = 0.95 Ä2 = 0.2 n= 100 

53-33 

30.835 

0 20 40 60 SO 100 
Iterations 

Figure 5.4: Push back with cycle over 100 iterations 

Cycles can only occur if the relation P', ' is the same as for a previously pro- Pmaxn, m 

cessed equal distribution. Our experience is the period of cycles can be stretched 

by decreasing the a value - (nodes behaving less greedy, or increase the push back 

memory (-ý2)). Still cycles are the main problem of this algorithm and it is a chal- 

lenging task to give the exact conditions that are responsible for cycles. 

The use of the push back must still be questioned, because even if it can increase 

the period of cycles, it does not rectify the effort that is made to store and update 

the Cin, m, Nvalues. Our experience is that even without it the algorithm is able to 

find reasonable good results within a small number of iterations. 

5.7 Adjusting the parameters 
The algorithm for the optimisation takes 8 parameters, a set of available machines 

and an application represented by a graph as input. This section describes the pa- 

ranieters and their relationship, as well as our experimental settings. 
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5.7.1 Adjusting the greediness and fear 

As described in Section 5.4.4 the oz and 0 value adjusts how greedy the algorithm 
looks for a fast machine. The values -y and 6 specify how frightened an object is to 
choose a machine, were it was previously expelled from. The Oz and -ý values allow a 
linear adjustment, which is discussed first. Good results were observed, when a more 
frightened setting (a < -y) was chosen, which allowed the usage of slower machines to 
avoid collisions. We adjusted the linear factors rather than the exponents, because 

we noticed a heavier impact on the behaviour of the algorithm. 

Linear adjustment First is the extreme settings for the a and 3 parameters 
described, were the algorithm behaves totally greedy, which means it always takes 
the machine providing the fastest speed and the totally frightened version, which 
tries to find a distribution without collisions. The exponents 0=I and 6=I are 
set so that they do not have any influence on the decision. 

Totally greedy Setting a=I and -y =0 means that the second summand in 

equation 5.7 is always zero. Therefore the punishment values do not weight in the 
decision of the new location - its behaviour is totally greedy. All nodes strive to 

choose the fastest possible machine. Figure 5.6 depicts the estimated times for this 

case. 
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Figure 5.5: Totally greedy behaviour (a = 1,0) 

Because we already start the algorithm with a greedy solution it is interesting 

to see that the algorithm picks another solution and keeps it. If we only look at the 

machine speed for object 4, we see that its service is provided by three machines (1,11 

and IV see Table 4.1). Machine I is the slowest with a speed of 0.1 Ln-s-r where II and MS 
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IV have the same speed ( 0.2l-t-). For the greedy solution, it does not matter if the 

algorithm takes 11 or IV to execute object 4. In this particular case we have chosen 
MS 

the better one, just because it was checked first. This is the reason why we see two 
different distributions in Figure 5.5. Figures 5.6 and 5.7 show the distribution and 
estimated times for the initial greedy solution and the greedy solution chosen by the 
optimisation. 
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Figure 5.6: Initial greedy solution (a = 1, -y = 0) 
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Figure 5.7: Found totally greedy solution (a = 1, -y = 0) 

Totally frightened If we have a look at the reverse parameter setting, a=0 and 

-y =I we experience that the objects try to avoid each other at all cost. This setting 
leads to the solution, which has the least collisions (the weight of a collision is given 

in equation 5-4). Figure 5.8 depicts the behaviour for this settings. 
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Figure 5.8: Totally greedy behaviour (a = 1, -y = 0) 
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With these linear factors the objects do not care about the speed of the accom- 
modating machine at all. This configuration is highly distributed, but has also a 
execution time which is far away from the optimum. Figure 5.9 shows the distribu- 
tion and time estimation for the third iteration. 
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Figure 5.9: Totally frightened solution (a = 0, -y = 1) 
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Reasonable settings for a and 0 Neither the greedy nor the frightened attempt 
leads to satisfying results. Our "best" values for the parameter settings are a values 
between 0.55 and 0.8, where we set -ý = 1. 

The more greedy the algorithm is, the higher is the probability to have short 

cycles. We experienced, that without the push back and with aa>0.85 and -1, =1 
the period of the cycles often leaves little freedom to find a close to optimal solution. 
We chose for the examples a values between 0.55 and 0.8, where we set -ý = 1. 

ei =1j -y =06=1 XO = 0.7 Xj = 0.95 \2 = 0.7 n= 50 
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Exponential adjustment The concrete behaviour for the exponents .3 and 6 

are not analysed. Even without using these parameters it is possible to find good 
solutions in a small number of iterations. Further work will be to analyse the 
influence of the exponents on the results. They can be used to stress constellations 
which lead to an extreme value for greedy and/or fear summand. If the influence is 

not significant it would highly increase the performance of the compensating function 
to remove them. 

5.7.2 Adjusting the evaporation factors 

The choice of the evaporation parameters has a high influence on the behaviour of 
the algorithm. The best results are experienced, for AO between 0.5 and 0.9. The 

choice for A, was close below I which means that the memory of the total punish- 
ment value does fade slowly. The difference between A, and Ao specifies how greedy 
the algorithm becomes over the iterations. A, must be greater than AO because oth- 
erwise it cannot be guaranteed to keep the right summand (fear summand) within 
the interval [0,1]. 

For the evaporation of the push back memory we usually used low values. Typical 

settings were between 0 and 0.5. But as mentioned in Section 5.6 the push back is 

not necessarily needed and is one of our first choices to save computation time. 

5.8 Comparison with random distributions 

If we take a look at the different distributions that were evaluated during the iter- 

ative optimisation, one can get the impression that a randomly chosen distribution 

could lead to comparable results. Even if the diagrams shown in this section are not 

statistically reliable we think that they show that the knowledge of the nodes and 
the compensating function (equation 5.7) lead to good results. 

Figure 5.10 shows the results for a bigger example. The DAG for this example 

consists of 24 vertices which are corresponding to 7 objects. Each object is available 

on 4 different machines. This makes a total of 2 14 possible distributions. The red 
line in Figure 5.10 shows the estimated times of the described algorithm, where the 
black line shows the first 100 distributions chosen of a random sequence. 



Optimising Execution Time 

ci = 0.69 3=1 -ý =16=1 Ao = 0.815 \, = 0.98 ý2 = 0-19 n= 100 

108 

3.214 (Nvorst) 

3 

2.5 

41 

cc 

1.5 

1 

IIIIIIIIIII ri IIIIIII1 1111 1111H avi 1ý0 III Fl 111111 av a 

rký 

ý 

-i 
HI 

p avg comp. Imý 

ýL 

--4, j -,, 7-L ý-t ff R-"- T ! It LýJJMUU Lm 0.894 (best) 

0 20 40 
Iterations 

60 80 100 

Figure 5.10: Random distributions versus the algorithm choices 

We marked the best possible solution, the average time of all possible distribu- 

tions, the average of the used random sequence and the worst possible distribution. 

Since 100 random distributions are not at all representative, we have generated a 

sequence of 1000 distributions and picked the subjective lowest interval out of this 

sequence. Figure 5.11 shows the comparison between these two sequences. 
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In appendix A. 2 the estimated execution times for the best found distribution 
(894 ms) and the worst possible distribution (3214 ms) is printed. We printed only 
one of the 63 distributions which have an estimated time of 894 ms, and one of the 
worst choices (there are two possibilities). 

5.9 Properties of the algorithm 
This section gives an 0-notation [3] for the optimisation algorithm. 

Let v be the number of vertices, that are corresponding to n objects and a be 
the number of calls that are made between the vertices. The number of available 
machines is m. If x is the number of iterations we have for each iteration: 

fcalm down (n, m) 

fpush back (n 
, m) 

fexpel (n) 

fdecide (n) m) 

festimate (v 
, a) 

fsave 
solution 

(n) 

= O(n * m) 

= 0(n'* m) 

= O(n 2) 

= O(n * m) 

= 0((v + a)2) 

= O(n) 

Then the total time is: 

Foptimise(n, m, v, a, x) =x* (O(m *n 
2) + 0((v + a)2)) 

We assumed, that all set operations can be made in a constant time 0(l). Ad- 
ditionally to this information we need to find the average case, which is challenging. 
For festimate(v, a) for example we can easily say that if a vertex executes at most all 
other vertices and arcs are being processed. For the average case in comparison we 
need information about the application structure, eg. how many vertices (n, ) are at 

most processed in parallel to a particular vertex v can be expressed more specific: 

n I, n -I vertices\ fvi C vertices I parent(vi, v) Vparent(v, vi) I 
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5.10 Summary 

This chapter has described a static optimisation algorithm to schedule application 
parts. In case every application part will be executed on the fastest possible machine, 
the overall execution time might slow down enormously, because a vast number of 
nodes will execute in parallel and as such collide during their execution. The op- 
timisation algorithm described in this chapter minimises the execution time where 
different nodes collide by changing the distribution of these nodes. The algorithm 
described in Chapter 4 is used to estimate the execution time for the whole appli- 
cation and the distribution with the minimal execution time is chosen. However 

the algorithm presented in this chapter will not necessarily find the absolute opti- 
mal distribution, since scheduling represented by a DAG is proved to be a NP hard 

problem [26]. 



Chapter 6 

The Simulation Model 

6.1 Introduction 

The simulation models a largely distributed application. It is written in Java, re- 

quires a JRE version 1.3 or higher to run, and contains the architectures described 

in Chapter 3. The purpose of this simulation is to compare the results of the three 

different models with each other. 
Within the simulation there exist actually three different distributed systems. 

1. the application itself, 

2. the performance monitoring within the models 

3. the location broker can be located on a different machine as well. 

A general overview of the Grid Performance Software is shown in Figure 6.1. A 

short overview of the main features of the graphical user interface (GUI) is given 
in Section 6.2, while a complete user guide is given in Appendix B. Furthermore, 

Section 6.3 describes the implementation of the performance monitoring, and the 
handling of hardware and performance failures is demonstrated in Section 6.4. Fi- 

nally, the scalability of the system is discussed in the last Section. 

III 
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Figure 6.1: General overview of the Grid Performance Software 

6.2 The Graphical User Interface 

112 

The Graphical User Interface (GUI) is divided into several parts as can be seen in 
Figure 6.2. 
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Figure 6.2: The Overview of the Graphical User Interface 

Before any settings within the Graphical User Interface (GUI) the location of the 



The Simulation Model 113 

location broker (LOB) responsible for this application has to be chosen as described 
in Appendix B. I. 

6.2.1 Machine Panel 

Figure 6.3 represents the machine panel, it allows the adding, removing and changing 
of machine registrations on the actual LOB. The information about the speed of a 

machine displayed are collected from the Speedserver, which has to be started on 
every machine beforehand. 
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Figure 6.3: The Machine Panel 
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The application structure panel is used to create a simulated application with all 
its parameters as can be seen in Figure 6.4. The application structure is shown 

as a tree. This tree structure can be altered by adding or removing nodes. Nodes 

in this tree represent an object (service instance) which is part of the application. 
During runtime of the simulated application the status of each object will change. 
This status will be identified by a coloured bullet in front of the related node. The 

different colours and their meaning are explained in Appendix B. 1.3.3. 
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Figure 6.4: The Application Structure Panel 
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The connection panel allows to add and remove connections between machines and 
change the data of these connections on the current LOB. This is to simulate a large 

global distributed system even when a local area network is used. Connections have 

a origin and destination address, a min- and max-delay between these connections 
in milliseconds and an availability in percent. 

File Tree Settings Testing Help 

Reset HostMachines 

Services Machines Appl. Structure Connection Model Application Object Diagrams 

Select Origin of Connection 192.172.226.24 
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204.29.239.23 22.034 39.263 95.0 
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09: 00-10: 00 0.5 
10: 00-11: 00 1.0 
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13: 00-14: 00 2.0 
14: 00-15: 00 5.0 il 
5: 00-16: 00 O.. P-. 

-- 

Add Connection Remove Selected Connection 

threadcount = 12 

Figure 6.5: The Connection Panel 
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To execute an application one of the three performance monitoring models (see Fig- 

ure 6.6) described in Chapter 3 have to be chosen. Each of these models determines 

the location of the performance monitor. 

File Tree Settings Testing Help 

RUN Reset HostMachines 

Services Machines Appl. Structure Connection Model Application Object Diagrams 

Centralised Model Hostmachine Model Class Model 

Additional flata voi mouel 

Hosiname where the performance monitor is located forquet. cse. dmu. ac. uk 
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Name in rtniregistry PMCI! ent____. 

Actual LOB: ossi threadcount =8 

Figure 6.6: The Model Panel 
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The Object Diagrams Panel shown in Figure 6.7 shows information about an exe- 
cuted application. The diagrams show graphically the behaviour during execution 
of each node. Each diagram has a vertical axis labeled with percentage values for 
the amount of instructions this node has to execute and a horizontal axis labeled 
with times. 
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Figure 6.7: The Object Diagrams Panel 
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Every remote call within the simulation is implemented with the help of Java Remote 
Method Invocation (RMI). RMI is part of the Java 2 platform. This framework 
enables communication between Java objects on different virtual and/or physical 
machines. An RMI application has usually two different parts: a client and a server. 
A typical server application creates objects (called remote objects) and when the 
client has a reference to the remote object it is able to invoke the methods out of 
these objects. The server usually registers a remote object in the RMI-registry. The 
client is then able to get the reference for the remote object out of the RMI-registry 

via a lookup. RMI uses stub and skeleton classes as proxies to simulate a reference 
on clients. However RMI does not allow any kind of location transparency which is 
highly required for a service-based application. This transparency is realised with 
the architecture of the Performance Monitoring Client and Server as described in 
Section 6.3.3 and 6.3.4. Further information about RMI can be found in [22]. 

6.3.1 Simulation of a Large Global Distributed System 

The simulation is actually distributed over several machines within the local area 
network. However it is to simulate a large global distributed system. The addi- 
tional delay created from the distance between far remote machines are stored in a 
"Connections" class and added with the help of some real measurements. These mea- 
surements are taken from [8] further information are available in Appendix B. 3.1. 
These data always represent a traceroute between two machines on different loca- 
tions on the globe. It represents the different delay at different times of the day as 

well as the failure rate, when it was not possible to reach the remote location. 

6.3.2 The Simulated Application 

The original location of every SAObjectl has been specified by the user interface 
(compare Section B. 1) and additionally with the help of an optimisation algorithm 
as described in chapter 4. 

Pressing the run button in the user interface starts the execution of the simula- 
tion. This button is visible on the top left corner in Figure 6.2. As a first instance a 

class specified for the chosen model is called. This class only prepares the simulation, 
'Simulated Application Object 



The Simulation Model 119 

starts the required performance monitors and calls the first performance-monitoring 
client (PMC) responsible for the root class of the simulated application. 

The PMC' sends a request to the performance monitoring server (PMS)' respon- 
sible for the root class. This PMS instantiates the first SAObject in the hierarchy. 
Every SAObject within the simulation is identical. It receives as a parameter, the 

number of simulated instructions it should execute and which SAObjects it will call 
as a child, whereby it will call all its children in parallel, only after all instructions 
have been fully executed. The execution will take place with conventional termina- 
tion in the way that every parent of an object call is a synchronisation point. That 

means an object is only returning and terminates itself when every child it has called 
has been terminated itself. The execution follows an asynchronous communication 
protocol in the sense of an pu bhsh- subs crZbe order. 

A SAObject' will call its children only indirectly. In the sense that it sends 

a request, containing the information about the child it wants to call, to the PMS 

which originally has invoked itself. The PMS then decides if the original distribution 
demands a remote call or if it is scheduled for execution on the same machine. 
Depending on which performance monitoring model is currently running it will call 
the corresponding PMC. In case of the centralised model the whole application is 

monitored by only one PMC as can be seen in Figure3.1, whereby in the host model 
there exist for every different machine its own PMC as Figure3.4 presents and in 

the class model every different service on every machine will have its own PMC 

(compare Figure3.7). 

6.3.3 Performance Monitoring Client 

The Performance Monitoring Client (PMC) has to fulfil several tasks. The SAObjects 

are distributed over a large distributed sYstem and an SAObject has no knowledge 

about the location of other SAObjects. To realise this transparency between the 
SAObjects a middleware is inserted between the SAObject calls. In this case the 

middleware is realised within the PMC. One of the responsibilities of a PMC is 

the knowledge about the SAObjects locations. The PMC has the knowledge about 

every SAObjects location specified before the start of the execution. However during 

runtime the situation might change and a different location is to be found. This 

2 More Information about the RNIC are available in Section 6.3.3 
3 More Information about the PNIS are available in Section 6.3.4 
4Simulated Application Object 
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leads to the second purpose of the PMC which is the detection of failures. As soon as 
a host is not available anymore the PMC starts enquiring for alternative locations 
of all objects running on this host. The last purpose of the PNIC is the actual 
reconfiguration 5. Every SAObject failing during runtime need to be restarted on a 
different location. Furthermore the PMC prevents the start of an SAObject on a 
machine not functioning in a way it was originally planned. 

The PMC consists of four classes as can be seen in Figure 6.8. The class PM- 
Client is responsible for remote access and as such extends UnicastRemoteObject and 
implements PMClientlntf and Host Mach i neListener. The interface PMClientlntf con- 
sist all the methods needed for remote access and the interface HostMachinelListener 
consist of the notify method for the LocationBroker to inform the PNIC of events 
happening with a host machine the PMC has registered interest in. 

Every call to a PMClient object contains an identifier for the application. In case 
this PMClient has never before dealt with the execution of this application it will 
create a new instance of the class PMC-Appl and keeps a reference inside a Hashtable. 
In case this PMClient was already involved in the execution of this application it will 
find a reference in this Hashtable and is able to call the object PMC-Appl again. 

For every call made from this client a new instance of the PMClientLogic is 

created. In depends of the model and the location of the SAObject to be called, the 
PMClientLogic will either call directly the PMServer or it will call another PMClient 

on the remote machine. 
A failure can be detected either in the PMClientLogic because of an Remote- 

Exception, or because the PMClient got informed via the notify method from the 
LocationlBroker or from other PMClients detecting this failure. 

In all three models, when the machine, where the PMC calling the root SAObject 

is located, fails no detection and reconfiguration will be possible. However this 

problem can be overcome when the root PMC is either located on the user's machine, 
because when this machine fails the user will notice and he or she is not interested in 

the results anymore. Another way to overcome this disadvantage is a replication for 

the root PMC. This replication needs to keep track of everything happening within 
the original PMC so that it can take over the work as soon as this machine fails. 

5see also Section 6.4 
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Figure 6.8: Class Dwgrarn for the Performance Monitoring Client 
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6.3.4 Performance Monitoring Server 

For every different SAObject class there exist exactly one Performance Monitoring 
Server (PMS) on every machine. The main function of a PNIS is to allow remote 
access to the SAObjects. Each time a new SAObject is called the PMS creates a new 
instance of this class. 

The PMS consist of three classes as can be seen in Figure 6.9. The class PM- 
Server is responsible for remote access and as such extends UnicastRemoteObject and 
implements PMServerlntf and HostMachineListener. The interface PMServerlntf con- 
sist all the methods needed for remote access and the interface HostMachineListener 

consist of the notify method for the LocationBroker to inform the PNIS in case the 
HostMachine this machine runs on has created a simulated machine failure. In case 
of a simulated machine failure every functionality of the PMS or the SAObject is 

stopped immediately. 

When the PMServer receives a request to start an SAObject it would create a new 
instance of the class PMServerLogic. The PMServerLogic stores all the information 

needed for this call and creates a new instance of the SAObject class. The SAObject 

creates for every call to its children a new Thread PMServerCal ling. This allows the 

execution of all children in parallel. The PMServerCalling Object has a reference to 
the PMServerLogic and as such always calls the PMC from where it was originally 
called. And the PMC decides if a reconfiguration' is necessary and if another PMC 

or PMS will have to be called. 
6see also Section 6.4 
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Figure 6.9: Class Diagram for the Performance Monitoring Server and SimulatedAp- 

plicattonObject 

6.3.5 Simulated Application Object 

The SAObject itself has not much functionality. It is a dummy object which calls the 
HostMachine Class to execute its instructions and only afterwards it will call each 
of its children in a new thread. As soon as every child has returned the " results", 
which has no meaning for this dummy object, it will terminate itself and return the 
focus back to the PMServerLogic it had been called from. 
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There exist several reasons why a reconfiguration might be required. It is always 
possible that during execution an outage of hardware occurs. Whereby this failure 

can occur either on the network or on the machine where objects are being executed. 
Reason for reconfiguration are described in Section 6.4.1. Furthermore hardware or 
even software might be malfunctioning. Even though this is a serious problem 
this thesis assumes this type of failure will never occur. Finally during execution 
it might become clear that the contract originally finalised between the user and 
the service provider is at risk because of a delay within the execution. This delay 

might occur because of congestion or transmission errors within the network or 
because of machines being overloaded. Section 6.4.2 introduces an early warning 
reconfiguration schema to avoid a delay for further SAObjects execution before it 
becomes a problem for the whole application. 

6.4.1 Reconfiguration due to a hardware failure 

A hardware failure, either on the machine the object runs on or on the network 
connecting the machines, results in a failure of every object on this machine. 

In case of a network failure the objects are still executing on a remote machine, 
however the connection is lost and as such there is no use for the rest of the applica- 
tion. When this machine becomes available after a reconfiguration has already been 

started, the PMC and PMS located on this machine will receive a notify method 
and are able to stop every still ongoing execution. 

The simulation is able to react on real hardware failures. However it is possible 
to specify in the GUI that a HostMachine will fail after a certain amount of instruc- 

tion executed on this machine. When these instructions have been executed the 
HostMachine throws a RemoteException in the same way as the Exception would 
be thrown when the machine fails in reality. 

A hardware failure is detected in four different ways. Either the remote call 

creates an RMI RemoteException, the location broker detects the failure and sends 

a message to the corresponding performance monitors, or one of the other perfor- 

mance monitor detects the failure itself and send a message to all other performance 

monitors it knows of. Every PNIC who has knowledge about other PMCs will inform 

each of them as soon as it has detected a failed machine. In this case every PNIC 
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saves valuable time to start the reconfiguration. Furthermore a hardware failure 

can be detected by a time-out. Each time before a remote call a specified timer 
is started, and in the normal case this timer will expire after the remote call has 

already returned. However when the timer expires and the call has not yet returned 
it results, the PMC realises that it has to react and starts a reconfiguration. 

In case a hardware failure is only simulated, the PMC, which first detects this 
failure, has to stop every object (the PMC, PMS and every SAObject) on this ma- 
chine. Furthermore every PMC who has originally started one or more SAObject 

called from an SAObject on a failed machine need to be stopped. This PMC has to 
decide if this object will have to be restarted. Not every SAObject will have to be 

restarted, because when an SAObject has been called from an SAObject on the failed 

machine, this SAObject will automatically be restarted, when the previous SAObject 

reached the point in its execution to call this SAObject again. Only this time the 

performance monitor might choose a different location for all following SAObjects. 
Since the reconfiguration already has wasted valuable time the rest of the execution 
will have to speed up its execution time. 

For example Figure 6.10 shows an application 

where object A is located on machine 1, objects B, 
D, F and C are located on machine 11, objects C and 
H are located on machine III and object E is located 

on machine IV. Let us now assume machine 11 fails 

while executing all of its objects. Consequently ob- 
jects B, C, D, F and G have already started their execu- 
tion and the results will be lost, and only objects B, F 

and C will have to be restarted. As a conclusion dur- 

ing runtime object B will call object C and D again. 
Only this time the performance monitor might choose 

rA ) 

E IV 

F, G "'H 

Figure 6.10: example applz- 

catzon 

a different location for object C, since the time for the execution, which has to be 

repeated, will have to be regained. The difference now is that the machines restart- 
ing the execution should run faster in case the overall time left for the execution 
is already at risk. Therefore these objects will have to speed up their execution. 

The performance monitor which has the knowledge about every call done from this 

particular object has to choose the location of the following objects very carefully, 

to assure that they will reduce their execution time. 

To decide which SAObject has to be restarted and which SAObject simply has to 
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stop its execution, a history of every HostMachine is passed between every P-MC. 
This history is simply a vector which stores the host name of a machine. Before 

every remote call this vector is copied and the new location is added to this vector 
and passed as an argument to the next PMC or in case of the centralised model to 
the next PMS. 

6.4.2 Early Warning Performance Monitoring 

An early detection of a delay within the execution results in a migration of all SAOb- 
jects, which have not yet started their execution, and will benefit from a migration. 
Whereby a delay can be caused when a machine runs low of memory, or simply is 

overloaded. 
As described in Chapter 4 before the start of the execution it is estimated at 

what time every SAObject will terminate. Since every object has been called from 

a PMC it will return there after termination. The PMC then has to compare the 

estimated execution time with the actual time when the object has finished. If 

an object finishes after the estimated time a delay is detected and the PMC can 
find an alternative location for objects which haven't started their execution yet as 
demonstrated in Listing 6.1. 

Because the reconfiguration takes time itself, it is advisable to continue execut- 
ing as originally scheduled and at the same time run an optimisation algorithm as 
described in Chapter 5. The PMC which detected the delay will start a new Thread 

to optimise every SAObject which has not started executing, and when the results 
of the optimisation returns it then has to decide if these SAObjects have already 
started or even finished their execution. The PMC then informs all other PMC's of 
its knowledge (if there are any) about the rescheduling. And every SAObject started 

afterwards takes advantage of this rescheduling. 
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begin 
tinit tinit= time when execution starts 
run 
for (i=O; i<totalObjects; i++)f 

5 object' term 

get tt time when ob *ect' terminates erm 
tterm 

tworking = tter7n - tinit 

if tworking< WCT' then 

continue // WCT' = worst case execution time for object' 
10 else 

reconfigure all not started objects 
I 

end 
Listing 6.1: The Early Warning Algorithm 

6.4.3 Creation of Results 

The purpose of this simulation is to compare the results of the centralised model with 
the host model and the class model'. To create these results the same application 

with the same distribution and the same time constraints is executed for a number 

of times for each model. All information collected during runtime, will be used to 

create statistical data for every model. These data allow to compare the different 

models with each other and are analysed in Chapter 7. 

6.5 Scalability 

As Colouris [10] states a system is described as scalable if it will remain effective 

when there is a significant increase in the number of resources and the number of 

users. 
The centralised model as described in Chapter 3 is not fully scalable, because 

every remote call has to go through one performance monitor. For very large ap- 

plications the performance monitor becomes a huge bottleneck and as such will be 

'The three different models are described in Chapter 3 
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overloaded. However the performance monitoring algorithm in the host and the 
class model is scalable, since there is no central control anywhere in the sý-stem- 

As for the current implementation, the performance monitor reconfigures the 
system directly at the failed object. Every object executed after the failed object 
in the hierarchy will be terminated, and a new instance will be created from the 
replacement of the failed object. This reduces the scalability for large applications, 
however this problem is easily overcome, when persistent storage is implemented. 
The persistent storage would save all results created during runtime of an object, so 
that this information is not lost, in case the execution would have to be repeated. 

6.6 Summary 

This chapter has described the Grid Performance Software designed and developed 
to simulate a large global distributed system. The user interface is described briefly 

and further information is provided in Appendix B. In addition this chapter intro- 
duced the implementation of the performance monitoring software, this includes the 

relationship between the performance monitoring client and server and the simulated 
application objects. Furthermore the reconfiguration of hardware and performance 
failures were described. Finally we have discussed the aspects of scalability in the 

system. 



Chapter 7 

Case Study (e-learning) 

7.1 Introduction 

This chapter gives an illustrative example of a service which can be used distributed 

over a large global network. The choice of this example was motivated considering 
the fact that it has to be clear to a reader unfamiliar with the presented environment. 
Furthermore it proves the hypothesis introduced in Chapter 3. 

As Dorai [15] et al states web based learning is rapidly emerging as an alternative 
to traditional classroom-based education, whereby a useful course/lecture browsing 

system would enable cross-referenced access to all the materials pertaining to a 

course in a synchronised manner. Graves [18] furthermore explains the technology 

to learn at anyplace-anytime to take some of the friction out of the delivery of 

academic and student administrative services. 
On the other hand such an e-learning course could use additionally some more 

traditional ways. Assume a university in England would provide online courses, 

whereby each module could be provided at different locations around the world. A 

lecturer, e. g. somewhere in Germany, would start the lecture for a duration of 

thirty minutes to an hour. During this time the students would have to be logged 

into the system. However they are located all over the world, and enrolled at the 

university in England. This is also called distant learning via the Internet. 

This scenario has the advantage of being completely independent of its location, 

everything is distributed (see Figure 7.1). And it is even conceivable to support 

as many as 2000 students logged in at any one time. Figure 7.2 shows that every 

student is connected to each of the different services, whereby each of them will not 
129 
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notice where this service is located and not everybody needs to be connected to the 
same server. 

Let us assume a virtual university offers a computer science degree as an e- 
learning course. The students would electronically enrol at this university. And 

access the course from wherever they are in the world. The virtual university may 
subcontract modules within the course from other well established departments or 
groups. Each of these modules may have a different quality and cost. 

7.2 Requirements 

The requirements for performance monitoring in the case study of e-learning are 
defined in the following. 

Initial session setup 
Before a student can subscribe to a service, the infrastructure needs to be 

checked to be able to guarantee the minimum quality of service required. In 

case these requirements are not fulfilled the student needs to be rejected from 

the beginning. 

For example, when a student lives somewhere in a desert and s/he connects to 
the e-learning course with a 64Kbyte Modem, s/he can not expect a real-time 
voice connection to the computer at home. 

Quality of delivery (transmission) 
It is necessary to detect as soon as somebody logs in the system, to guarantee 
that this person will have the minimum transmission rate negotiated when 

s/he subscribed to this course. This requires monitoring so that the quality of 
the transmission will be guaranteed and does not dramatically decrease during 

connection time. 

E. g. a student will not be satisfied when s/he can hear the lecturer but does 

not understand him or her because the quality of the voice transmission is not 

good enough. 

Availability 
Rirthermore it needs to be guaranteed, that even when a service fails during 

runtime there , N-ill always be a replacement available somewhere. 
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Figure 7.1: e-learning distributed over the entZre globe 
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Figure 7.2: e-learning service connections 
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7.2.1 Hypothesis 

Earlier it has been predicted that: 

133 

9 The centralised model becomes a big bottleneck for physically widely dis- 
tributed applications. 

The host model should not create any extra traffic and performance mon- 
itoring is feasible for every kind of application, whereby not as accurate as 
the centralised model, because every monitor has no overview of the whole 
application. 

The class model loses a further part of the overview of the whole application 
and as such has to rely even more on information about failures from outside 
its own PMC. 

Comparing the past performance versus future performance it is likely that 
the host model will have the fastest response time for widely distributed ap- 

plications and the centralised model for local execution. 

In the following an application is introduced, which will be executed with GTZPS for 

each of the different performance monitoring architectures described and the results 
are being compared. Furthermore it is explained why the above assumptions are 
correct. 

7.3 Application 

After the students have enrolled to their course they will start their first unit. 
This unit begins with an induction course where the most basic knowledge of 
the course will be conveyed. Afterwards they will need some in depth knowl- 

edge about other subjects such as math, programming languages, operating 

systems, networking and soon. These subjects are available from different service 

providers. 
Services under Grid Performance Software (GriPS) are in a tree structure. Figure 

7.3 shows the structure of the tree for this e-learning service. This Figure uses the 

same structure ýis other applications before: every node in the tree represents one 

service instance. As explained before an object or in this particular case a service 
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Table 7.1: Distribution of e-learning ser- 

instance consist of data and allocated memory defined by one class and as such every 
student executing this application will create his/her own service instance. When 

one student has to restart the application one service instance terminates and for 

the next run a new service instance will be created. 
The service defined by the service instance are defined in Table 7.2. This table 

also shows how many fake instructions each of these service instances are suppose to 

execute before calling their children, if there are any, whereby one fake instruction 
is defined in Listing B. I. Finally the table shows the distribution for this particular 

example, i. e. the machine on which each service instance is being executed. Addi- 
tionally Table 7.1 shows what services are available on which machines. In case one 
of the machines fails an alternative location is taken from this table. 

Service Instance I Service Instructions ý XIachin 

A 0 Enrolment 250 forquet 

B I Start year one 350 forquet 

C 2 Induction 450 forquet 

D 3 Math 3500 garfield 
E 4 Programming 5000 ossi 
F 5 Operating systems 800 ossi 
C 6 Networking 1000 sienna 

Table 7.2: E-Learning Scheduling 

Gri*PS produces a time diagram of the first year study as shown in Figure 7.4. 

This diagram shows for every service instance on the y axis the total amount of 
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instructions in percentage and on the x axis the time in seconds for the whole 
application. It can be seen that the students start with their induction course only 
after they have enrolled and the year has started. Only after the induction course 
has been fully completed they will start with the different subjects in parallel. 

GriPs uses real-life data for the connection between different machines. Since 
this simulation is executed in a local area network, the real connection time is 
comparably small and can as such be neglected. GriPs reads the connection data 
out of a file and uses a replacement file to translate the information for the real 
machines used. The data used for the connection are described in Appendix B-3-1. 
Table 7.3 shows the real machine used in this example and the IP address and the 
location of the machine it is simulating. Figure 7.5 shows the delay in milliseconds 
added between the different machines. The delays in the diagram are rounded to 
the nearest millisecond, however GriPs uses the connection data up to microseconds. 
Some of the connections do not show a difference between the minimum delay and 
the maximum delay, this is when the difference only appears within microseconds. 

real specification of the ma- Simulated IP Location of Simulated 

machine chine address machine 
name 
forquet HP model C3000 (PA- 128.8.7.4 College Park, MD, US 

8500 CPU), 2GB mem- (University of Mary- 

ory, O/S: HP-UX 11.00 land) 

ossi Pentium 450Mhz, 216-168.227.250 Herndon, VA, US 

256MB memory, Win (Verisign) 

NT4.0 

garfield Sunblade 150, Ul- 203.181.248.27 Tokyo, Kanto, JP 

traSparc Ili 650Mhz, (APAN) 

256Mb memory, Solaris 

8 (108528-16) 

sienna Sunblade 150, Ul- 193.0-0-11 Amsterdam, North 

traSparc Hi 550Mhz, Holland, NL (RIPE) 

128Mb memory, Solaris 

8 (108528-16) 

Table 7.3: Connections used in this example 
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All results presented in this chapter are created by GriPS when executing this 
distribution 100 times. Because of the time involved running the application the 
execution time for each course is limited to a couple of seconds. In a real e-learning 
class surely every course would have to execute more instructions, however the 
behaviour would be the same. First the three models and their results are being 

presented and at the end the results of all three models are compared in Section 
7.4.4. 

The results for each model contain the minimum, average and maximum execu- 
tion time, the delay created by the connection between the remote machines and 
the minimum, average and maximum total execution time for the whole application, 
whereby the total time includes, the connection delay and the execution time. The 

time is given in the format hours: minutes: seconds: miliseconds. 

7.4.1 Centralised Model 

Let us assume the performance monitor client (PMC) is located on the same host 
(ossi (Herndon, US)) as the graphical user interface and the operating systems 
course. Each execution starts with an initial distribution. When the performance 
monitor does not trigger a reconfigurahon this distribution will not change. Figure 
7.6 shows a sequence diagram of the interconnections between the different services 

and the performance monitor. It can be seen that every new service call has to go 
through the centralised performance monitor client. This results for this distributed 

example application in II remote calls. 
Since it was predicted that the centralised model depends on the type and dis- 

tribution of an application a second example is given. This time we place the PMC 

on the same machine as the networking course, which is sienna (Amsterdam, 

North Holland, NL), for all the other courses and the GUI the distribution stays 
the same. 

For the first example Figure 7.6 shows that most of the communication time 
is between f orquet (College Park) and ossi (Herndon, US). The delay between 

these two locations is the minimum between all machines and is between 3ms to 4ms. 

When moving the PNIC to sienna (Amsterdam, NL) the delay increases between 

105ms to 106ms. Furthermore this distribution has to do one extra remote call and 
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Figure 7.6: Sequence Diagram of an e-learning course in the centraltsed model 
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Centralised Model 
PMC on ossi 

Centralised Model 
PMC on sienna 

amount remote calls 11 12 
min connection delay 

(hh: mm: ss: MMM) 
00: 00: 00: 328 00: 00: 01: 451 

max connection delay 00: 00: 00: 362 00: 00: 01: 777 

min execution time 00: 00: 07: 060 00: 00: 08: 813 
average execution time 00: 00: 08: 685 00: 00: 09: 295 

max execution time 00: 00: 11: 076 00: 00: 10: 626 

min total time 00: 00: 07: 388 00: 00: 10: 264 
average total time 00: 00: 09: 032 00: 00: 10: 909 

max total time 00: 00: 11: 438 00: 00: 12: 403 
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Table 7.4: Results for the Centralised Model (all times are given in the format 
hours: minutes: seconds: miliseconds) 

has as such a total of 12 remote calls altogether. The results of both distributions 

are presented in Table 7.4. 
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7.4.2 Host Model 
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GriPs executes the host model with exactly the same data and distribution only 
this time there exist one performance monitoring client for every host machine. A 

sequence diagram of the same application in this model can be seen in Figure 7-7. 
The host model saves remote calls to the centralised performance monitor and can 
connect directly to the machine of the next service, which results for this distribution 
in 4 remote calls all together. Table 7.5 shows the results for this model. 

Host Model 
amount remote calls 4 
min connection delay 00: 00: 00: 321 
max connection delay 00: 00: 00: 323 

min execution time 00: 00: 08: 433 
average execution time 00: 00: 09: 053 

max execution time 00: 00: 10: 375 

min total time 00: 00: 08: 754 
average total time 00: 00: 09: 375 

max total time 00: 00: 10: 698 

Table 7.5: Results for the Host Model (all times are given in the format 
hours: minutes: seconds: miliseconds) 
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Figure 7.7: Sequence Diagram of an e-learning course in the host model 
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7.4.3 Class Model 
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In the class model every service has its own performance monitoring client as can 
be seen in Figure 7.8. The rest of the services and distribution is exactly the same. 
The GUI connects directly to the PMC responsible for object A on f orquet. The 
PMC then contacts the PMS which creates a new instance of object A. When object 
A is calling child object B it creates a new thread which calls its PMS and waits till 

all children (in this case it is only one) has finished executing. The P. NIS contacts 
the PMC it was called from, and the PMC calls the PMC responsible for object B 

and so on. Table 7.6 shows the results for this model. 

Class Model 

amount remote calls 4 

min connection delay 00: 00: 00: 321 

max connection delay 00: 00: 00: 323 

min execution time 00: 00: 08: 642 

average execution time 00: 00: 09: 651 

max execution time 00: 00: 16: 784 

min total time 00: 00: 08: 963 

average total time 00: 00: 09: 999 

max total time 00: 00: 17: 107 

Table 7.6: Results for the Class Model (all times are given in the format 
hours: minutes: seconds: miliseconds) 
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Figure 7-8: Sequence Diagram of an e-learning course in the class model 
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7.4.4 Comparison of the three models without a failure 

Comparing the connection time between the different models shows an astonishing 
behaviour. The centralised model with the PMC on host ossi (Herndon, US) 
does 11 remote calls and the delay for the connection is between 328ms and 362ms. 
Compared to the host or class model with only 4 remote calls but a delay between 
321ms and 323ms it does not seem to be realistic. 

However the centralised model makes only remote calls between ossi (Hern- 
don, US) and every other machine, whereby the host model connects directly to 
the different locations irrespective of the connection cost. As Figure 7.5 shows a 
connection between f orquet (College Park, US) and sienna (Arnsterdwn, NL) 
has a delay of 105ms to 106ms. Whereby a connection from f orquet (College 

Park, US) to ossi (Herndon, US) has a delay of 3ms to 4ms and a connection 
from ossi (Herndon, US) to sienna (Amsterdarn, NQ has a delay of 86ms to 
87ms. Together it adds up to a delay of 89ms to 91ms much below the direct 

connection delay of 105ms to 106ms. 

The situation looks much different when the performance monitoring client in the 

centralised model is placed not on the same machine as the graphical user interface 
but on machine sienna (Arnsterdam, NQ. This results in 12 remote calls with a 
delay between Is 451ms and Is 777ms. 

As predicted at the beginning it shows that the centralised model becomes a bot- 
tleneck for widely distributed applications. Whereby when the performance monitor 
is located at a strategic place within the distributed application the increase in net- 

work traffic does not need to increase the overall execution time noticeable. 
Furthermore it was predicted that the host model does not increase any network 

traffic and it is feasible for every kind of application as can be seen in Figure 7.9, 

because it even reduces the connection delay. Comparing the behaviour of the 

centralised model and the host model, the centralised model takes the route over 

at least two hops whereby the host model does take the direct route, which does 

take longer, however in designing a routing algorithm it is important to cater for 

the heavy load situation thus minimum hop is the most useful combined with Load 

Balancing for multi-service networks [40]. 

In case the application runs through without any failure and as such no recon- 
figuration is needed all three models behave at their optimum. In what follows fault 

treatments are dealt with. 
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7.5 Failure recovery 
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Three types of failure recovery are considered. First we explain the failure recovery 
after a time-out. This is clearly not the best solution for a time critical appli- 

cation like this e-learning example, however even this example demonstrates the 
behaviour clearly. The following subsection describes the early warning recovery of 
a performance failure. The next subsection then describes a failure recovery for a 
time-eritical application. 

7.5.1 Failure recovery after a time-out 

GriPS has the ability to let a machine fail after a specified number of instructions 
(i. e. fault injection). This allows to reproduce exactly the same failure for all the 

three models and for every time the application is executed. Figure 7.10 shows the 

same execution as shown in Figure 7.4 only this time machine sienna failed after it 

has executed 500 instructions. 
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Failure detection and recovery in the centralised model In this example 
the PMC is located on ossi (Herndon, US) as this was the best solution for the 

centralised model. As soon as the performance monitor detects that machine sienna 
has failed it triggers a reconfiguration. In this case the failure is detected because 
Java RMI throws an exception as soon as it is not able to connect to the remote 
machine within a certain amount of time. When the performance monitor, which 
has triggered this remote call, receives an exception, instead of the return value it 

was waiting for, it sends a request to the location broker. For the moment GriPs 

only handles one location broker at a time. However it is possible to extend this 

architecture e. g. with an hierarchical structure of location brokers. Information 

about these architectures can be found in Chapter 2.3.3. 
Figure 7.11 shows a sequence diagram of the interconnections between the dif- 

ferent services and the performance monitor. Furthermore it can be seen that the 

performance monitor, after it has received an alternative location to execute the 

networking course from the location broker, will start this course right from the 
beginning again. This results for this distributed example application in 12 remote 

calls. The results for this model are presented in Table 7-7. 

Centralised Model 

amount remote calls 12 

min connection delay 00: 00: 00: 331 

max connection delay 00: 00: 00: 366 

min execution time 00: 00: 09: 023 

avg execution time 00: 00: 10: 560 

max execution time 00: 00: 15: 712 

min total time 00: 00: 09: 354 

avg total time 00: 00: 10: 908 

max total time 00: 00: 16: 078 

Table 7.7: Results for the Centralised Model in the failure case (all times are given 
in the format hours: minutes: seconds: miliseconds) 
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Figure 7.11: Sequence Diagram of an e-learning course in the centrahsed model when 
one host fails during execution 
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Failure detection and recovery in the host model In case of the host model 
the situation is similar. The performance monitor on host f orquet which has called 
the failed machine will detect this failure and sends a request to the location broker 

which is situated on machine ossi in this example. The location broker will return 
f orquet, since this is the best alternative between the possible solutions. It is 

necessary to contact the location broker first because there might be a better solution 
to execute this course. And the performance monitor has no global information 

about which other hosts providing this course or what their current runtime situation 
might be. After the performance monitor has received the new location it will start 
this course again. Furthermore the PMC will send a message in a different thread 
to all other PMCs it knows of to inform them about this failure. 

Figure 7.12 shows a sequence diagram of the interconnections between the differ- 

ent services and the performance monitor and Table 7.8 presents the results created 
when executing this model. 

Host Model 

amount remote calls 5 

min connection delay 00: 00: 00: 325 

max connection delay 00: 00: 00: 327 

min execution time 00: 00: 09: 453 

avg execution time 00: 00: 10: 580 

max execution time 00: 00: 13: 109 

min total time 00: 00: 09: 778 

avg total time 00: 00: 10: 906 

max total time 00: 00: 13: 436 

Table 7.8: Results for the Host Model in the failure case (all times are given in the 

format hours: minutes: seconds: miliseconds) 
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Figure 7.12: Sequence Diagram of an e-learning course in the host model when one 
host fails during execution 
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Failure detection and recovery in the class model In the class model the 
PMC-2 will detect the failure first, and contacts the location broker on ossi. Be- 

cause the client has no overall knowledge about the whole application it will have to 
inform all other clients running on its machine about the failure. In case any other 
client has already called the failed host or is about to call it. This early message 
gives the opportunity to react on the failure even before it will detect it itself. In 
both other models this calls will not be necessary because the client knows about 
every failure detected by this host automatically. However the class model will also 
send a message to all other clients it knows about on other hosts, to inform them 

about the failure. This is done in a separate Thread and as such does not disturb the 
normal program flow. Figure 7.13 shows a sequence diagram of the interconnections 

between the different services and the performance monitor and Table 7.9 presents 
its results. 

Object Model 

amount remote calls 5 

min connection delay 00: 00: 00: 325 

max connection delay 00: 00: 00: 327 

min execution time 00: 00: 10: 725 

avg execution time 00: 00: 11: 923 

max execution time 00: 00: 19: 789 

min total time 00: 00: 11: 050 

avg total time 00: 00: 12: 249 

max total time 00: 00: 20: 116 

Table 7.9: Results for the Class Model in the failure case (all times are given in the 

format hours: minutes: seconds: miliseconds) 
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Figure 7.13: Sequence Diagram of an e-learning course in the class model when one 
host fails during execution 
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Comparison of the three models in case of a machine failure 

In this example the failure occurs on one machine where only one service is being 

executed and this service does not call any service itself. In this case only the PMC 

which calls the failed machine has to react on the failure, and the failure detection is 
identical in all three models. However the PMCs within the host- and class- model 
do not realise this special condition because they do not have an overview of the 

whole application and as such have to inform all other PMCs about this failure. 
This is done in a separate thread and as such influences the applications execution 
only in the sense that the machine has some extra load to deal with, as explained 
in Chapter 4. 

Generally the centralised model has the widest overview of the whole application 

and as such can react slightly faster than the other two models in case of a failure 

as can be seen in Figure 7.14. However the centralised model creates so much more 
remote calls that this advantage is singled out by the host model. 

As predicted the reconfiguration after a time-out delays the execution noticeably. 
In case of a real failure (and not just a simulated one) this delay might even be higher. 
Since within the simulation the exception is thrown immediately, whereas in case 
of a real failure the timeout, before this exception is thrown, might be much higher 

and as such the whole failure detection process will consume far more time. For soft 
real-time applications, this problem of a delay might be overcome when a buffer is 

used at the receiver's end. However for real time-critical application this delay is 

not acceptable. Imagine a life threatening operation where in the middle suddenly a 

couple of seconds no new information arrives. The next two sections illustrate how 

the performance can be improved for time critical- applications. 
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7.5.2 Early Warning Recovery of a Performance Failure 

It is conceivable that one of the machines involved in the execution might run low 

on memory or is simply overloaded, which causes a delay in the execution of ever 'y 
object on this machine. However the situation might already improve when one or 
more objects will be migrated to another machine. To detect this kind of situation 
the execution time of every object is estimated before the execution starts (Chapter 

4). 
Let us assume that an other user start running some applications on machine 

ossi. This results in the performance breaking down. The course on operating 
systems will terminate after it has executed 800 instructions. It has been estimated 
that this course should have finished after 8s and 840ms. But in this case the time 
taken directly after the execution indicates an execution time of 9s and 200ms. It is 

clear that the machine ossi has some performance problems. And in case there is 

a machine available who provides the programming course on a faster machine, it 

makes sense to simply migrate this course to this faster machine. This would allow 
the whole e-learning application to finish within the estimated time limit of 22s and 
840ms, hence satisfying user-contract agreement. 

7.5.3 Failure Recovery for a time-critical Application 

The programming course is the last to finish for the whole e-learning course, this 

makes it the most performance-critical course. As long as there is no user interaction 

during the execution of this course it makes sense to execute it on different machines 

at the same time and only transfer the results from the one finishing first. The 

execution of all other replications can be stopped as soon as one finishes successfully. 
However when choosing the location for the replication it is to bear in mind that 

every additional execution on a particular host will slow down the execution of every 

other object running on that host. For the moment this feature is not implemented 

within GrZPS. 

7.6 Summary 

This chapter has introduced a case study on e-learning. One example application 

has been presented which was executed 100 times for each model on GrZPS. The 
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results created during this execution where compared. Like predicted beforehand the 

centralised model becomes easily a bottleneck for widely distributed applications. 
Depending on the application and its distribution the centralised model has also 
the ability to create some usable results, since it has the overview of the whole 
application. However in general the host model is more likely to create reasonable 
results independently of the distribution. It keeps a fairly good overview and has 

the advantage of a direct connection to the next object. 



Chapter 8 

Conclusions and further research 
and development 

8.1 Vision 

A traditional application need to be bought, installed, updated and maintained by 

the user. On the other hand service-based computing is a new computing paradigm 
where an application is not sold, but made available for remote usage. It can be 

executed from all over the world on the machines where it is installed. This thesis 
has first introduced future distributed environments, where this research is built 

on. It has been explained how the object oriented programming paradigm helps to 
build service-based distributed applications. The advantages and disadvantages of 
local and remote execution have been discussed, with the result that this research 

concentrates on remote execution. When using objects distributed over a large 

network it is inevitable to search for these objects before they are executed. Various 

solutions of how to resolve this searching have been discussed, and mechanisms to 

support the search either with the help of the class names or its functionality are 

given. However, to allow any successful search in a large distributed system several 

architectures for location brokers have to be introduced. To have only one centralised 
location broker would result fairly quickly into a bottleneck, which has to be avoided. 
This bottleneck can be avoided by using a hierarchical structure of location brokers. 

After an object has been found it is discussed at what time the different object 

addresses are bound together. It is possible to bind the addresses either at invocation 

time or at runtime. The solution used in this research is a combination of both 

159 
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options. First an initial static distribution is created at invocation time just before 
the start of the execution, and in any failure case a dynamic reconfiguration and 
as such a new process of NAB (Network Address Binding) will be initiated during 
execution. Furthermore to built a service-based application a user, a service provider 
and the developer will each have a different interest in such an application. These 
interests have been discussed and resulted in the fact, that before the execution these 
requirements have to be specified in a contract between the user and the service 
provider. Additionally a service-based application needs some further development 
in the area of security, accounting, naming, location management, network and fault 

configuration as well as performance monitoring. Each of these have been introduced 

whereby the focus of this research lies on performance monitoring. 

8.2 Achievement 

8.2.1 Performance Monitoring Client and Server 

The performance monitor introduced in this thesis is divided into two parts. The 
Performance Monitoring Client (PMC) implements the monitoring activity. In con- 
trast the Performance Monitoring Server (PMS) plays a more passive role and re- 
sponds to requests and instructions issued by the PMC. In all the introduced ar- 
chitectures the PMS is always executed on the same machine where the objects are 

executed. Indeed every PMS is responsible for only one class and instantiates ev- 

ery object out of this class, whereby different architectures for the location of the 
PMC are presented. In the centralised model there exist only one PMC for each 

application, whereby the other two models have even a distributed architecture for 

the PMC. In one model there exist one PMC on every host used and in the last 

model there exist for every PMS exactly one PMC. For each of these models the 

advantages and disadvantages have been discussed. Several algorithms to monitor 
the availability, reliability, number of remote calls and the network delay created 
by these remote calls are presented. Whereby one of these algorithms relies on an 

estimation of the execution time before the actual start of the execution. 
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8.2.2 Algorithm for Time Estimation 
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The estimation process of times has been evolved step by step from a sequential 
towards a parallel executing application. When executing several tasks on the same 

machine this machine will slow down and as such it is not advisable to use always 
the fastest possible machine for an object. A machine, which is slower before the 

execution starts, might be faster during the execution. It is not possible to predict 
the exact run-time behaviour of a machine because a machine might also be used 
for other application - parts. However this estimation provides the performance 

monitor with enough information to notice shortfalls and react to compensate. 

8.2.3 Algorithm for Optimisation of Execution Time 

The static optimisation to schedule an application has been described. This schedul- 
ing represented by a DAG is proved to be a NP hard problem [26]. As such the 

ophmtsahon of the object distribution presented in this thesis will not necessarily 
find the absolute optimal distribution, however the results created by this algorithm 

are still better than choosing the distribution randomly. 

8.2.4 Grid tool for Performance Monitoring 

The Grid Performance Software developed to simulate a global distributed appli- 

cation takes as an input an application represented in a tree structure. It can be 

freely chosen where in the network each part of the simulated application should be 

executed. Furthermore a simulated machine failure can be injected on one or more 

of the used machines after it has executed a certain number of instructions. When 

these instructions have been executed the HostMachine throws a Remote Exception 

in the same way as the Exception would be thrown when the machine fails in real- 
ity. Moreover it was explained how the reconfiguration from such a failure or indeed 

from a performance point of view has been dealt with. 

0 8.2.5 Eva uation 

A case study about e-learning is given as an example. The same e-learning appli- 

cation has been executed 100 times for each model and a comparison of the three 

different performance monitoring architectures is given. Like predicted the cen- 

tralised model becomes a bottleneck for widely distributed applications. However, 
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depending on the application and its distribution even the centralised model pro- 
duces some acceptable results, since it keeps the overview of the "N-hole application. 
However the host model can be used more in general since it still is able to keep a 
fairly good overview and has the advantage of a direct connection to the next object. 

8.3 Further Work 

There are various aspects in which the work can be extended. 

Location Management 

As for the location management it has been explained why a centralised man- 
agement is not appropriate for a large global system. Some ideas have been 

presented how a hierarchical model can be implemented. However these ideas 

are clearly not at a stage to be put into practice. Who will be responsible for 

the naming of a new object? In case the naming is be done by its functionality 

clearly different people might come up with a different functionality for the 

same object. Will it be possible for the developer to decide every possible way 
this object might be used in its lifetime? 

Dynamic Reconfiguration and Failure 
Furthermore the reconfiguration algorithm can be extended to include failure 

because of malfunctioning hard- or software. The detection of such a failure 

is a challenging problem, imagine an object which returns a call even though 

that it has not terminated its execution, and as such these results are not 

valid. Or even a machine, which keeps sending not valid messages over the 

network, and as such congest the network unnecessary. 

Response Time 
The response time for the performance monitoring can be improved by in- 

jecting breakpoints into the code [21] and using persistent storage for partial 

results. 

A mechanism to introduce the measurement of memory load on machines and 
the speed drop of heavily used connections. Where the usage of connection 

resources can be realised in the same way we presented for the machines re- 

sources. 
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Billing 
How can this "pay as you go" computing be implemented and an appropriate 
contract between the service provider and the user being accomplished? 

Security 

Last but not least security will play a major role for any service-based com- 

putation. The system has to be protected against attacks like eavesdropping, 

masquerading, tampering, denial of service, Spam and viruses. 
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Data structures 

E Set of executing nodes 
W Set of waiting nodes 
M machine 

Tn. E Set of execution nodes on machine m 

M. W Set of waiting nodes on machine m 

M. G parameter specifying the speed drop 

m. ý3 parameter specifying the speed drop 

m. speed the maximum speed of the machine 

m. services the set of services that are available on the machine 

ams(m) the actual machine speed of m 
(ni, nj) message (edge) from node ni to node nj 

c(ni, nj) costs (in ms) of message (ni, nj) 
(ni 

, nj). time already transmitted ms 
T Set of currently transmitting messages 

ni a node in the DAG 

ni. o The related object of the node 

ni. i The total instructions that have to be executed by this 

node 

ni. ei The instructions that already have been executed 

ni. startTime The start time of this node in ms 

iii. endTime The end time of this node in ms 

n. state The state of this node (INITIALISED, EXECUTING., 

WAITING, TERMINATED) 
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(N, s, e, w) a collision tuple. 
N is the colliding node. 

s is the start time. 

e is the end time. 

w stores if N was waiting or executing. 
n. EC Set of collisions that occured while n was executing 
n. WC Set of collisions that occured while n was waiting 

A. 1 Data tables for the time estimation in the 
DAG 

** ***** **** * ******* ********* ****** ** ** ** * 

Initial values: alpha = 1, beta =0 for I and II 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

Sets: 

E 

T 

I. E fn11 

II. E fl 

E Nodes: 

nl: start= Oms, end= Oms, ei= Oi 

W Nodes: 

T Nodes: 

calls: 

Iteration 0: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

first = nl in 200ms 

exec(nl): 
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Sets: 

E 

T 

I. E 

II. E 

E Nodes: 

W Nodes: 

T Nodes: 

nl: start = Oms, end = 200ms, ei = 200i 

calls: 
(1,2): c= 10ms, time= Oms 
(1,3): c= Oms, time= Oms 

*** **** *** ****** * **** **** *** *** ********** 

Iteration 1: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

first = (1,3) in Oms 

transmit((1,3)): 
Sets: 

Ef n3l 

Tf (1,2)1 

I. E f n3l 

II. E* 

E Nodes: 

n3: start = 200ms, end = 200ms, ei = Oi 

W Nodes: 

T Nodes: 

nl: start = Oms, end = 200ms, ei = 200i 

calls: 
(1,2): c= 10ms, time= Oms 
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ams(I) =1 i/ms 

ams(II) =2 i/ms 
first = (1,2) in lOms 
transmit((1,2)): 

Sets: 

E W, n3l 
T fl 

I. E Wl 

II. Ef n2l 

E Nodes: 

n3: start= 200ms, end= 210ms, ei= 10i 

n2: start= 210ms, end= 210ms, ei= Oi 

W Nodes: 

T Nodes: 

nl: start = Oms, end = 200ms, ei = 200i 

calls: 

* ** ** ** ** * ***** *********** *** *********** * 

Iteration 3: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n3 (ri= 90i) (rt= 90ms) 

n2 (ri= 450i) (rt= 225ms) 

first = n3 in 90ms 

execute(n3): 
Sets: 

E fn2l 

T ý(3,5), (3,6)1 

I. E * 

II. E fn2l 

E Nodes: 

n2: start= 210ms, end= 300ms, ei= 180i 

W Nodes: 

T Nodes: 
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nl: start = Oms, end = 200ms, ei = 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

calls: 

(3,5): c= Oms t= Oms 
(3,6): c= 10ms t= Oms 

** ** * *** * ** ** *** ****** ************* *** **** * 

Iteration 4: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n2 (ri= 450i) (rt= 225ms) 

(3,5) (rt= Oms) 

(3,6) (rt= lOms) 

first = (3,5) in Oms 

transmit((3,5)): 

Sets: 
E ýn2, n5 I 

Tf (3,6)1 

I. E ýn5l 

II. E ýn2l 

E Nodes: 

n2: start= 210ms, end= 300ms, ei= 180i 

n5: start= 300ms, end= 300ms, ei= Oi 

W Nodes: 

T Nodes: 

nl: start = Oms, end = 200ms, ei = 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

calls: 
(3,6): c= 10ms t= Oms 

Iteration 5: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n2 (ri= 450i) (rt= 225ms) 
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n5 (ri= 300i) (rt= 300ms) 
(3,6) (rt= lOms) 

first = (3,6) in lOms 

transmit((3,6)): 

Sets: 
E ýn2, n5, n6l 
T ýl 

I. E f n5l 
II. E fn2, n6l 

E Nodes: 

n2: start= 210ms, end= 310ms, ei= 200i 

n5: start= 300ms, end= 310ms, ei= 10i 

n6: start= 310ms, end= 310ms, ei= Oi 

W Nodes: 

T Nodes: 

nl: start = Oms, end = 200ms, ei = 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

calls: 

** ** ************** *** ***** * **** *** *** *** **** ** * 

Iteration 

ams(I) 

ams(II) 

n2 (ri= 

n5 (ri= 

n6 (ri= 

6: 

=1 i/ms 

=1 i/ms 

250i) (rt = 250ms) 

290i) (rt = 290ms) 

500i) (rt = 5OOms) 

f irst = n2 

execute(n2): 

Sets: 

E ýn5, n6l 

T ý(2,4)1 

I. E ýn5l 

II. E ýn6l 
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E Nodes: 

n5: start= 300ms, end= 560ms, ei= 260i 

n6: start= 310ms, end= 560ms, ei= 250i 

W Nodes: 

T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

calls: 
(2,4) c=O, t=O 

*** **** ** * ****** ************ ** * ***** *** ** 

Iteration 

ams(I) 

ams(II) 

n5 (ri= 

n6 (ri= 

(2,4) ( 

7: 

1i /MS 

2 i/ms 

40i) (rt = 40ms) 

250i) (rt = 125ms) 

rt= Oms) 

first = (2,4) in Oms 

transmit(2,4) 

Sets: 
E= In5, n6l 

w= ýn4l 

T ýl 

I. E ýn5l 

II. E ýn6l 

II. W ýn4l 

E Nodes: 

n5: start= 300ms, end= 560ms, ei= 260i 

n6: start= 310ms, end= 560ms, ei= 250i 

W Nodes: 

n4: start= -, end= -, ei=O 

T Nodes: 
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nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

calls: 

** * ***** ******* **** * ********* ***** * ********* **** *** 

Iteration 8: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n5 (ri= 40i) (rt = 40ms) 

n6 (ri= 250i) (rt = 125ms) 

first = n5 in 40ms 

execute(n5) 

Sets: 
E ýn6l 

w ýW 

T ý (5,7) 

I. E = fT 

II. E = fn6l 

II. W = f n4l 

E Nodes: 

n6: start= 310ms, end= 600ms, ei= 330i 

W Nodes: 

n4: start= -, end= -, ei=O 

T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

calls: 
(5,7) c= Oms, t= Oms 
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ams(I) =1 i/ms 
ams(II) =2 i/ms 
n6 (ri= 170i) (rt = 85ms) 
(5,7) (rt= Oms) 

first = (5,7) 

transmit (5,7) 

Sets: 

E= ýn6l 

w= ýn4, n7l 
T 

I. E 

II. E= ýn6l 

I. W = ýn7l 

II. W = ýW 

E Nodes: 

n6: start= 310ms, end= 600ms, ei= 330i 

W Nodes: 

n4: start= end= ei=O 

n7: start= end= ei=O 
T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

calls: 

** ** ** ******* ** * *** *************** ** ***** * **** ******** 

Iteration 10: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n6 (ri= 170i) (rt = 85ms) 

first = n6 

execute(n6) 
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E 

w n4, n7l 
T ý(6,8), (6,9)1 

I. E fj 

II. E fj 

I-W fn7l 

II-W fn4l 

E Nodes: 

W Nodes: 

n4: start= end= ei=O 

n7: start= end= ei=O 
T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

n6: start= 310ms, end= 685ms, ei= 500i 

calls: 
(6,8) c= 10ms t= Oms 
(6,9) c= Oms t= Oms 

* *** ** ******* *************** * ***** ******** ********* *** 

Iteration 11: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 
(6,8) (rt= lOms) 
(6,9) (rt= Oms) 

first = (6,9) 

transmit(6,9) 

Sets: 

E= ýn9l 

w= ýn4, n7l 

T 

I. E 

II. E ýn9l 
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I-W = fn7l 

II-W = ýn4j 

E Nodes: 

n9: start= 685ms, end= 685ms, ei= Oi 

W Nodes: 

n4: start= end= ei=O 

n7: start= end= ei=O 
T Nodes: 

nl: start 

n3: start= 

n2: start= 

n5: start= 

n6: start= 

calls: 
(6,8) c= 11 

Oms, end = 
200ms, end= 
210ms, end= 
300ms, end= 
310ms, end= 

Oms t= Oms 

200ms, ei= 200i 

300ms, ei= 100i 

560ms, ei= 450i 

600ms, ei= 300i 

685ms, ei= 500i 

Iteration 12: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n9 (ri= 100i) (rt= 50ms) 

(6,8) (rt= lOms) 

first = (6,8) in lOms 

transmit(6,8) 

Sets: 
E= f n9, n8l 

w= ýn4, n7l 

T fl 

I. E f n8l 

II. E f n9l 

I. W f n7l 

II. W f n4l 

E Nodes: 

n9: start= 685ms, end= 695ms, ei= 20i 
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n8: start= 695ms, end= 695ms, ei= Oi 

W Nodes: 

n4: start= end= ei=O 

n7: start= end= ei=O 
T Nodes: 

nl: start 

n3: start= 

n2: start= 

n5: start= 

n6: start= 

calls: 

Oms, 

200ms, 

210ms, 

300ms, 

310ms, 

end = 

end= 

end= 

end= 

end= 

200ms, ei= 200i 

300ms, ei= 100i 

560ms, ei= 450i 

600ms, ei= 300i 

685ms, ei= 500i 

Iteration 13: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n9 (ri= 80i) (rt= 40ms) 

n8 (ri= 200i) (rt= 200ms) 

first = n9 in 40ms 

execute(n9) 

Sets: 
E= ýn8l 

w= ýn4, n7l 

T= ý (9,12) 

I. E = f n8l 

II. E fl 

I. W W1 

II. W fn4l 

E Nodes: 

n8: start= 695ms, end= 735ms, ei= 40i 

W Nodes: 

n4: start= end= ei=O 

n7: start= end= ei=O 

T Nodes: 
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n3: start= 

n2: start= 

n5: start= 

n6: start= 

n9: start= 

calls: 
(9,12) c=O 

200ms, 

210ms, 

300ms, 

310ms, 

685ms, 

t=O 

end= 

end= 

end= 

end= 

end= 

300ms, ei= 100i 

560ms, ei= 450i 

600ms, ei= 300i 

685ms, ei= 500i 

735ms, ei= 100i 

Iteration 14: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n8 (ri= 160i) (rt= 160ms) 

(9,12) (rt= Oms) 

first = (9,12) 

transmit(9,12) 

Sets: 
E ýn8l 

w fn4, n7, nl2j 

T fT 

I. E fn8l 

II. E = fj 

I. W = fn7l 

II-W = fn4, n121 

E Nodes: 

n8: start= 695ms, end= 735ms, ei= 40i 

W Nodes: 

n4: start= end= ei=O 

n7: start= end= ei=O 

n12: start= -, end= _, ei=O 

T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 
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n6: start= 310ms, end= 685ms, ei= 500i 

n9: start= 685ms, end= 735ms, ei= 100i 

calls: 

Iteration 15: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n8 (ri= 160i) (rt= 160ms) 

first = n8 in 160ms 

execute(n8) 

Sets: 

E fl 

w ýn4, n7, nl2j 
T f(8,11), (8,4)1 

I. E 

II. E 

I. W fn7l 

II. W fn4, n121 

E Nodes: 

W Nodes: 

n4: start= end= ei=O 

n7: start= end= ei=O 

n12: start= -, end= -, ei=O 

T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

n6: start= 310ms, end= 685ms, ei= 500i 

n9: start= 685ms, end= 735ms, ei= 100i 

n8: start= 695ms, end= 895ms, ei= 200i 

calls: 
(8,11) C=O, t=O 

(8,4) c=10, t=O 
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Iteration 16: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

(8,11) (rt= Oms) 

(8,4) (rt= lOms) 

first = (8,11) in Oms 

transmit (8,11) 

Sets: 

E W11 

w ýn4, n7, nl2j 
T ý(8,4)j 

I. E W11 

II. E ýl 

I. W ýn7l 

II. W ýn4, n121 

E Nodes: 

n1l: start= 895, end=895, ei= Oi 

W Nodes: 

n4: start= end= ei=O 

n7: start= end= ei=O 

n12: start= end= ei=O 

T Nodes: 

nl: start 

n3: start= 

n2: start= 

n5: start= 

n6: start= 

n9: start= 

n8: start= 

Oms, end = 

200ms, end= 

210ms, end= 

300ms, end= 

310ms, end= 

685ms, end= 

695ms, end= 

200ms, ei= 200i 

300ms, ei= looi 

560ms, ei= 450i 

600ms, ei= 300i 

685ms, ei= 500i 

735ms, ei= looi 

895ms, ei= 200i 

calls: 
(8,4) c=10, t=O 
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Iteration 17: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

nll (ri= 100i) (rt= 100ms) 
(8,4) (rt= lOms) 

first = (8,4) in lOms 

transmit(8,4) 

Sets: 

E= W1, n4l 
w= ýn7, n121 
T * 

I. E W11 

II. E ýW 

I. W ýn7l 

II. W W21 

E Nodes: 

n1l: start= 895, end= 905, ei= 10i 

n4: start=905, end= 905, ei= Oi 

W Nodes: 

n7: start= -, end= -, ei=O 

n12: start= -, end= -, ei=O 

T Nodes: 

nl: start 

n3: start= 

n2: start= 

n5: start= 

n6: start= 

n9: start= 

n8: start= 

calls: 

Oms, end = 
200ms, end= 

210ms, end= 

300ms, end= 

310ms, end= 

685ms, end= 

695ms, end= 

200ms, ei= 200i 

300ms, ei= looi 

560ms, ei= 450i 

600ms, ei= 300i 

685ms, ei= 500i 

735ms, ei= looi 

895ms, ei= 200i 

** ** ** ** ******** *** * ****** 

Iteration 18: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 
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nll (ri= 90i) (rt= 90ms) 

n4 (ri= 50i) (rt= 25ms) 

first = n4 in 25ms 

execute(n4) 

Sets: 

E W11 

w ýn7, n121 
T ý(4,7)j 

I-E W11 

II. E ýj 

I. W ýn7l 

II. W W21 

E Nodes: 

n1l: start= 895, end= 930., ei= 35i 

W Nodes: 

n7: start= -, end= -, ei=O 

n12: start= -, end= -, ei=O 
T Nodes: 

nl: start 

n3: start= 

n2: start= 

n5: start= 

n6: start= 

n9: start= 

n8: start= 

n4: start=! 

= Oms, end = 
200ms, end= 
210ms, end= 

300ms, end= 

310ms, end= 

685ms, end= 

695ms, end= 

905, end= 93, 

200ms, ei= 200i 

300ms, ei= looi 

560ms, ei= 450i 

600ms, ei= 300i 

685ms, ei= 500i 

735ms, ei= looi 

895ms, ei= 200i 

0, ei= 50i 

calls: 
(4,7) c=10ms t=Oms 

Iteration 19: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

nll (ri= 65i) (rt= 65ms) 

(4,7) (rt= lOms) 
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first = (4,7) in lOms 

transmit (4,7) 

Sets: 

E W1, n7l 
w W21 

T ýl 

I. E = ýnll, n7l 
II. E = 
I-W = 
II. W = W21 

E Nodes: 

n1l: start= 895, end= 940, ei= 45i 

n7: start= 940, end= 940, ei= Oi 

W Nodes: 

n12: start= -, end= -, ei=O 
T Nodes: 

nl: start 

n3: start= 

n2: start= 

n5: start= 

n6: start= 

n9: start= 

n8: start= 

n4: start=! 

Oms, end = 
200ms, end= 
210ms, end= 
300ms, end= 
310ms, end= 

685ms, end= 

695ms, end= 

)05, end= 93, 

200ms, ei= 200i 

300ms, ei= looi 

560ms, ei= 450i 

600ms, ei= 300i 

685ms, ei= 500i 

735ms, ei= looi 

895ms, ei= 200i 

), ei= 50i 

calls: 

* **** *** * ** **** * *** *** ****** ***** * ***** * 

Iteration 20: 

ams(I) = 0.5 i/ms 

ams(II) =2 i/ms 

nll (ri= 55i) (rt= 110ms) 

n7 (ri= 150i) (rt= 300ms) 

first = 110ms 

execute(nll) 
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Sets: 

E= ýn7j 

w= ýnl2l 

T f (11,12)1 

I. E fn7l 

II. E fj 

I. W fj 

II. W Inl2l 

E Nodes: 

n7: start= 940, end= 1050, ei= 55i 

W Nodes: 

n12: start= -, end= -, ei=O 
T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

n6: start= 310ms, end= 685ms, ei= 500i 

n9: start= 685ms, end= 735ms, ei= 100i 

n8: start= 695ms, end= 895ms, ei= 200i 

n4: start=905, end= 930, ei= 50i 

n1l: start= 895, end= 1050, ei= 100i 

calls: 
(11,12) c=10, t=O 

Iteration 21: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n7 (ri= 95i) (rt= 95ms) 

(11,12) (rt= lOms) 

first = (11,12) in lOms 

transmit(11,12) 

Sets: 

E jn7, n121 
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w 

T 

I. E= ýn7j 

II. E = W21 

I. W = 
ii. w = 

E Nodes: 

n7: start= 940, end= 1060, ei= 65i 

n12: start= 1060, end= 1060, ei= Oi 

W Nodes: 

T Nodes: 

nl: start 

n3: start= 

n2: start= 

n5: start= 

n6: start= 

n9: start= 

n8: start= 

n4: start= 

n1l: start: 

calls: 

Oms, end = 200ms, ei= 200i 

200ms, end= 300ms, ei= 100i 

210ms, end= 560ms, ei= 450i 

300ms, end= 600ms, ei= 300i 

310ms, end= 685ms, ei= 500i 

685ms, end= 735ms, ei= 100i 

695ms, end= 895ms, ei= 200i 

905, end= 930, ei= 50i 

= 895, end= 1050, ei= 100i 

** * ******** ** *** ** ** ****** **** * ****** ******* *** 

Iteration 22: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n7 (ri= 85i) (rt= 85ms) 

n12 (ri= 100i) (rt= 50ms) 

first = n12 in 50ms 

execute(nl2) 

Sets: 

E ýn7l 

w ýl 

T ý(12,10)1 

I. E ýn7j 
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II-E = fj 

I. W = fj 

ii. w = fj 

E Nodes: 

n7: start= 940, end= 1110, ei= 115i 

W Nodes: 

T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

n6: start= 310ms, end= 685ms, ei= 500i 

n9: start= 685ms, end= 735ms, ei= 100i 

n8: start= 695ms, end= 895ms, ei= 200i 

n4: start=905, end= 930, ei= 50i 

n1l: start= 895, end= 1050, ei= 100i 

n12: start= 1060, end= 1110, ei= 100i 

calls: 
(12,10) c=10, t=O 

Iteration 23: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n7 (ri= 35i) (rt= 35ms) 

(12,10) (rt= lOms) 

first = (12,10) in lOms 

transmit(12,10) 

Sets: 

E = fn7l 

w = InlOl 

T ýl 

I. E Wl 

II. E ýl 

I. w ýnlOl 
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ii. w = ýj 

E Nodes: 

n7: start= 940, end= 1120, ei= 125i 

W Nodes: 

nlO: start= -, end= -, ei= 
T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

n6: start= 310ms, end= 685ms, ei= 500i 

n9: start= 685ms, end= 735ms, ei= 100i 

n8: start= 695ms, end= 895ms, ei= 200i 

n4: start=905, end= 930, ei= 50i 

n1l: start= 895, end= 1050, ei= 100i 

n12: start= 1060, end= 1110, ei= 100i 

calls: 

** *** ** ** ** *** * *** ****** ******** *** ********* * 

Iteration 24: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

n7 (ri= 25i) (rt= 25ms) 

first = n7 in 25ms 

execute(n7) 

Sets: 
E 

w W01 

T (7,10) 

I. E 

II. E 

I. W ýnlOl 

ii. w ýl 
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W Nodes: 

nlO: start= -, end= -, ei= 
T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

n6: start= 310ms, end= 685ms, ei= 500i 

n9: start= 685ms, end= 735ms, ei= 100i 

n8: start= 695ms, end= 895ms, ei= 200i 

n4: start=905, end= 930, ei= 50i 

n1l: start= 895, end= 1050, ei= 100i 

n12: start= 1060, end= 1110, ei= 100i 

n7: start= 940, end= 1145, ei= 150i 

calls: 
(7,10) in Oms 

Iteration 25: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

(7,10) (rt= Oms) 

first = (7,10) in Oms 

transmit(7,10) 

Sets: 
E W01 

w 

T 

I. E WOT 

II. E fl 

I. W fT 

ii. w fT 

E Nodes: 

nlO: start= 1145, end= 1145, ei= 0 

W Nodes: 
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T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 

n5: start= 300ms, end= 600ms, ei= 300i 

n6: start= 310ms, end= 685ms, ei= 500i 

n9: start= 685ms, end= 735ms, ei= 100i 

n8: start= 695ms, end= 895ms, ei= 200i 

n4: start=905, end= 930, ei= 50i 

n1l: start= 895, end= 1050, ei= 100i 

n12: start= 1060, end= 1110, ei= 100i 

n7: start= 940, end= 1145, ei= 150i 

calls: 

Iteration 26: 

ams(I) =1 i/ms 

ams(II) =2 i/ms 

nlO (ri= 50i) (rt= 50ms) 

first = nlO in 50 ms 

execute (nlO) 

Sets: 

E 

w 

T 

I. E 

II. E 

I. W 

ii. w 

E Nodes: 

W Nodes: 

T Nodes: 

nl: start = Oms, end = 200ms, ei= 200i 

n3: start= 200ms, end= 300ms, ei= 100i 

n2: start= 210ms, end= 560ms, ei= 450i 
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n5: start= 300ms, end= 600ms, ei= 300i 

n6: start= 310ms, end= 685ms, ei= 500i 

n9: start= 685ms, end= 735ms, ei= 100i 

n8: start= 695ms, end= 895ms, ei= 200i 

n4: start=905, end= 930, ei= 50i 

n1l: start= 895, end= 1050, ei= 100i 

n12: start= 1060, end= 1110, ei= 100i 

n7: start= 940, end= 1145, ei= 150i 

nlO: start= 1145, end= 1195, ei= 50 

calls: 

A. 2 Distributions for the 24 Vertex DAG 

a=0.69 ß=1 -y =16ý1 \o ý 0.815 Xi = 0.98 \q ý 0.19 n= 100 

V9 
V8 
V7 
V6 
V5 
V4 
V3 

V23 
V22 
V21 
V20 

V2 
V19 
V18 
V17 
V16 
V15 
V14 
V13 
V12 
Vil 
vio 

vi 
vo 

one 

0 0.2 0.4 0.6 0.8 
Time in seconds 

object*0(1) 
object 6(l) 

object 3(l) 

object 0(l) 

object 6(l) 

object 0(l) 

object 2(4) 

object'l(l) 
objectl(l) 
object'l(l) 
object*5(3) 
object*0(1) 
object 4(3) 

object 5(3) 

object 4(3) 

object 5(3) 

object 4(3) 

object 5(3) 

object'4(3) 
object l(l) 

object 6(l) 

object 3(l) 

object'6(l) 
object 0(l) 
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Figure A. 1: Best possible distribution 
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v9 
v8 
V7 
v6 
v5 
vli 
V3 

V23 
V22 
V21 
V20 

V2 
,ZV 19 

v18 
V17 
v16 
v15 
VII 
V13 
V12 
Vil 
vio 

vi 
vo 

2 
Time in seconds 

object I (I) 

object*4(l) 

object'3(i) 

object l(l) 

object'4(l) 

object'l (1) 

object'2(4) 

object 0(l) 

object *0(1) 

object 0(l) 

object'5(3) 

object'l(l) 

object 6(3) 

object 5(3) 

object 6(3) 

object'5(3) 

object 6(3) 

object 5(3) 

object*6(3) 

object *0(1) 

object 4(1) 

object*3(l) 

object 4(l) 

object l(l) 
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Figure A. 2: Worst found solution 
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Grid Performance Software 

B. I The Graphical User Interface 
Figure 6.1 demonstrates the structure of the Grid Performance Software (GriPS) used for 
the Simulation. The Graphical User Interface (GUI) relies on information it receives from 
SpeedServer and LocationBroker described in the following. Both programs have to be 

started before using the GUL All parameters used for the simulation are specified within 
the GUI and as soon as the simulation is started a class specifically for the model type is 
instantiated and the corresponding performance monitoring client is called. 

The SpeedServer: 
The SpeedServer is measuring the speed of the machine where it is running on. Listing 

(B. 2, B. 3) shows how the SpeedServer is started from a console window. It is using a small 
code block that represent a faked instruction and measures the time this code will need 
to execute. This faked instruction is also used when an object executes on this machine. 
One faked instruction executes the following code block: 

long d=O; 
for (int i=O; i<100; i++) 

d += i+ i*i + i*i*i + i*i*i*i; 
I 

Listing B. 1: Fake instruction 

start rmiregistry 

staxt java SpeedServer 

Listing 13.2: ý; tart the Spee%gver from a windows console 
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rmiregistry & 

java SpeedServer & 

Listing B. 3: Start the SpeedServer from a Unix console 

The LocationBroker: 
The LocationBroker is a data structure that provides the simulation and its graphical 

user interface (GUI) with environmental data such as HostMachines, Connections and 
Services. A HostMachine provides information about the minimum, average and maximum 

speed, this machine has reached during its lifetime, additionally the actual speed. Since 

the LocationBroker keeps checking the speed information of the HostMachine in regular 
intervals, it is able to notice quickly when a HostMachine is not anymore available. Under 

normal circumstances (when no failure occurs) the HostMachine will unregister itself from 

the LocationBroker before it is shut down. In addition the HostMachine class does the 

actual execution of instructions for every SimulatedApplicationObject (SAObject). This 

way it is feasible to artificially let one machine fail after it has executed a certain number 

of instructions. 

The LocationBroker also implements the association between ServiceDetails and Host- 

Machine, as well as a mapping from HostMachines to Connections. For convenient storage 

of a HostMachine object the MachineRegistration class is used. This is necessary, because 

if the connection to one HostMachine breaks down, there is no chance to get the data 

needed for a lookup. The MachineRegistration class therefore stores copies of the nec- 

essary attributes that are needed, even if the machine is unreachable. On one computer 

there is exactly one MachineRegistration for one HostMachine, though RMI creates copies 

of it when returning or passing it as parameter. 
Furthermore the LocationBroker provides a feature to inform an object interested in 

a particular HostMachine if the status of this machine has changed. Whereby the status 

of a HostMachine can be: available, not available, registered or unregistered. Within the 

simulation every PMC registers itself at the LocationBroker to listen for an event of every 

HostMachine it has called. Listing (B. 4, B. 5) shows how the location broker is started 

from a console window. 

start rmiregistry 

sta, rt java sim. LocationBroker 

Listing t5.4: btart the LUb trom a winc[ows console 
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rmiregistry & 

java sim. LocationBroker & 

Listing B. 5: Start the LOB from a Unix console 

The GUI has to connect to a LOB as explained in section B. 1.4.1. 

The GUI Structure 

The GUI is divided into four parts as can be seen in Figure 6.2. 

The menu bar 
The menu options like loading, saving, exporting, importing of data, creation of 

applications and changing of settings are accessible. The menu bar is described in 

detail in Section B. I. 2. 

The tool bar 
Contains two buttons one is used to start a simulated application and the other to 

reset the total executed instructions of all machines. 

The tabbed pane 
Contains different panels to create the application and to view the results. These 

panels can be accessed by pressing on the corresponding tab and are described in 

detail in Section B. 1.3. 

The status bar 
Displays the actual LOB and the number of threads currently running in this virtual 

machine. 

B. 1.2 The menu bar 

The menu bar contains five main menus. 

File Options to clear, load, save, export and import data, as well as quitting the program 

can be found here. 

Clear Clear or remove the data of services, machines, connections and application 

or all. 
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Load Load data of services, machines, connections, application, settings or all. 
It is also possible to load only above parts out of a file that contains all data. 

Load settings, or all will ask you, if you want to use the saved LOB or register 
the loaded data on the current LOB. 

Save Save the data of services, machines and connections of the current LOB, 

application, settings or all. 

Export app. -data The application data is exported into a CSV (Comma Sep- 

arated Values) file. The file contains the used model, the number of remote 

calls, total number of instructions executed, the minimum and maximum delay 

of all used connections, the duration of the application and a list of machines 
with a triplet of executed object, service number and instructions. 

Export Obj. -diagram data Exports the data of the Object Diagrams panel (s. 

Section B. I. 3.7). 

Three files are created during the export. The data file, which contains the 

pure data of times and percentage of total instructions per object as well as 
the data when which machine was executing which object. 
The second file is a MetaPost (. mp)- file to create from the data a simple PS- 

file. (see [20]). 

The last file is a TOC-file to create a document (PDF, DVI, PS, etc) file to 

view the data. (see [28]) 

More information how to work with these files is displayed in Appendix B. 2.5 

Import Connections Importing connections from several files with the addition- 

ally option to replace host names or IP-addresses by a replacement string read 

out of a file. (see Section B. 1.3.4, AppendixB. 3.1 and B. 3.2) 

Exit Quitting the program. 

TI-ee Option to create and fill the simulated application tree. 

Create Random T! ree A random application tree is generated. The current ap- 

plication tree is lost. The number of objects (nodes) and the maximum depth 

of the tree, as well as the seed for the random generator can be specified in a 

dialog. 

The objects axe filled with a randomly chosen service out of all available ser- 

vices. More about the application structure in Section B. 1.3.3. 

Fill in fastest machines Assign the fastest possible machine to the objects. 

Fill in random machines Assign a random machine to the objects. The seed for 

the random generator can be specified in the Settings-Dialog B. I. 4. 
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Reset application Reset all objects of the simulated application to the state ini- 

tialised and their executed instructions count to 0. 

Settings Change the default settings and log options. 

Change settings Opens the Settings Dialog. 

Object Diagram logging If selected the data needed to export object diagram 
data is logged. (If unchecked data export is not available! ). 

Testing Used only for testing purposes. 

Help A small about dialog. 

B. 1.3 The different panels 
There are seven main panels in the GUI that can be selected by pressing on the tab with 
the name of the panel. 

* The Service Panel to add, remove and change services 

* The Machine Panel to add, remove and change machines and their services 

o The Application Structure Panel to create a simulated application and to set some 

parameters 

9 The Connection Panel is used to add, remove and change connections 

o The Model Panel where the performance monitoring model can be chosen 

9 The Application Panel displays some data of the application's results 

* The Object Diagrams Panel visualises the execution of objects in diagrams. 

The different panels are described in the following subsections. 

B. 1.3.1 The Service Panel 

The service panel is used to add, remove or change service registrations on the actual LOB. 

A service has a unique service number (when newly created it is one more then the last 

available number), a name, a minimum, a maximum and average number of instructions 

to execute. 
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File Tree Settings Testing Help 

RUN Reset HostMachines 

Serx4ces Machines Objects Connection Application Object Diagrams Model Performancernonitor data 

Number Name Min_Instructions Max-Instructions Avg_ Instructions 
0 Service 0 100 500 350 
i Service 1 200 850 350 
2 Service 2 150 3000 350 
3 Service 3 1000 5000 3500 
4 Service 4 100 500 350 
5 Service 5 100 500 350 

add Serx4ce delete SenAce 

Actual LOB: ossi CUFFeHt time I, 9: JU: 12: 409 

Figure B. 1: The Graphical User Interface Service Panel 

A service can be added by pressing the add-button. A default service is created and 
can be altered by selecting the field in the table and typing the new values. Confirm the 

new value by pressing ENTER. 

To delete a service, mark the service in the table and press the delete-button. The actual 

version does not allow to delete multiple services at a time (the service which was selected 
last is deleted). 

The default values of a service can be altered in the Settings-Dialog (see Section B. 1.4). 

B. 1.3.2 The Machine Panel 

The machine panel allows the adding, removing and changing of machine registrations on 
the actual LOB. 

Machines and their properties are shown in a tree structure on the left side of the 

panel. A machine is either in the available or not available branch of the tree. The 

available branch shows for each machine: 

* Which services are provided 

* Runtime data such as the total executed instruction count and the failure instruction 

where the machine will simulate a failure (crash) 

9 The speed data such as the current, minimum and maximum speed 

e Settings like the time zone and location. 
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ga Registering a machine 

Please enter the data to connect to a SpeedServer 

Hostname I IP nemesis 

Portnumber 1099 

Service Name mac_nemesis 

Register I Cancel I 

Figure B. 2: Adding a machine 

Not available machines show only the registered services of this machine. 

196 

Whether a machine is available or not is determined by the LOB which is checking regis- 
tered machines in intervals. 

To add a machine one can either press the add- machine -button, which opens a dialog 
(Figure B. 2) to enter the data necessary to connect to the remote machine, or use the 

right mouse-button which is described later. 
To connect to a remote machine the machine name or its IP-address, the port num- 

ber of the rmiregistry and the name how the machine is registered in the rmiregistry are 

needed. 
To remove a machine, select it in the tree and press the rem ove- machine- button. 

On the right side of the machine panel two tabs are located which show detailed 

information on the machine which is selected in the tree. One is Machine details, the 

other one is Costs. 
The Machine details tab allows to: 

o register and unregister services 

* set the instructions after which the machine will fail 

9 shows the actual executed instructions 

The Reset button resets the actual executed instructions to 0 (Available for all 

machines) - 
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* Change the alpha and beta of the machine. (a and 0 axe used for estimating the 

start and end times of objects see Chapter 4). 

* Add or remove services to/from a machine using the register-service or unregister 

service button. 

The Co8ts tab shows the information about the costs in specified times. This is up to 

now not editable in the GUI but can be altered in the property file of the SpeedServer. 

Last but not least on the lower right side of the panel is a diagram showing the actual 
speed data provided by the SpeedServer. A right mouse click on this diagram allows the 

user to change the settings for this diagram. How to change data in the dialog is described 
in Appendix B. 2. 
Note: Using a right click on the tree pops up a menu, where most of the above actions 
are available. Additionally one can choose which data is displayed in the machine-tree. 

B. 1.3.3 The Application Structure Panel 

The application structure panel is used to create a simulated application with all its 

parameters. 
This panel as shown in Figure 6.4 is divided in three parts. On the left side there is 

the application structure shown in a tree. This tree structure can be altered by adding or 

removing nodes. Nodes in this tree represent an object (service instance) which is part of 

the application. 
At the upper right side are information shown, based on the user - provider contract for 

the application. The lower right side gives additional information about the selected node. 

To add a new node, select the node where you want to add a child-node or sibling to and 

press the Add Node button. This will display a dialog, where you can choose to add the 

new node as a child or sibling. A sibling can be added above or below the selected node. 
To delete a node, select it and press the Delete Node button. This will delete this node 

and all its children. 
These options are also available by pressing the right mouse button on the application-tree. 

Additionally there is a button to expand the tree and one to pre- estimate the times 

(as described in Chapter 4) for the application (using the selected speed setting from the 

Settings dialog). In the combo box below the tree, one can choose which time should be 

displayed in the tree (No time, pre-estimated time and estimated time). 
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For every object in this tree the right service instance has to be specified. This is done 
by selecting the node (which represents an object) and choose the machine and service 
in the Major Attributes tab. Another possibility is to fill in the machines automatically 
(Further information are available in Section B. 1.2. ) The number of faked instructions 
the node executes before calling its children are specified to the average instruction of 
the service specified in the Service Panel. However this number can be altered manually 
and it only should remain between the minimum and the maximum instructions specified 
for this particular service. More information about the Service Panel are in Section B. 1.3.1. 

The other tabs are of no further interest, because the underlying performance monitor 
structure is not providing any data for it anymore. 

In the upper right part is the general information of the whole application. It is possible 
to enter the maximum allowed costs and the maximum allowed time that the application 
is allowed to use. Also the start time/date when the application is simulated to start can 
be set. 

The application structure panel shows during runtime of the simulated application the 

status of each object. This status will be identified by a coloured bullet in front of the 

related node. The different colours and their meaning are explained in the following: 

9 Red bullet: In this object some data such as the service or the machine for this 

service is not available or not selected. 

o Blue bullet: The object is correctly initialised. 

* Yellow bullet: The object is started and executing or waiting on its children to 
terminate. 

o Green bullet: The object has terminated. 

B. 1.3.4 The Connections Panel 

This panel allows to add and remove connections between machines and change the data 

of these connections on the current LOB. 
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File Tree Settings Testing Help 

Reset Hostfulachines 

Sersvices Machines Appl. Structure Connection Model Application Object Diagrams 

Select Origin of Connection 192. 172.226.24 

De-s. tinat-io, n-------M,, -i-n. De-lay, 
_(nns) 

Max. DelayCrns )_ Availabililyin % time costs in k1min 
128 223,22&56 1W213 142.162 _ 1010 100: 00-01: 00 - 1.0 
128.8,7.4 80.621 94.39 100.0 : 01: 00-02: 00 1.0 
141142.121.4 79.718 106.863 100.0 0 2: 00-03: 00 2.0 
1 92ý203,230,250 29.365 152.296 10&0 ; 03: 00-04,00 5.0 
193.0.0.11 182.35 209.469 100.0 0 4: 00-05: 00 1.0 
203.181.248.27 246.759 273.369 10&0 0 5: 00-06: 00 1.0 
204.152.184.98 17.406 26.924 80.0 0 6: 00-07: 00 1.5 
2 04.29.239.2 3 22.034 39.263 95ýO ý07: 00-08: 00 3.0 
205.189.33.78 102,709 129.823 99.0 ý08: 00-09: 00 1.0 
216.168.227.250 96.111 17CB16 100.0 '09: 00-10: 00 0.5 

ý1 0: 00-11: 00 1.0 
11: 00-12: 00 1.0 
12: 00-13: 00 4.0 

113: 00-14,00 2.0 
14: 00-15,00 5.0 
15: 00-16: 00 0.0 

Add Connection Remove Selected Connection 

Actual LOB: hope threadcount = 12 

Figure B. 3: The Connection Panel 

Connections have a origin and destination address, a min- and max-delay between 

these connections in milliseconds and an availability in percent. 
A subset of Connections can be selected by choosing the origin in the combo box at 

the top of Figure B-3. All connections having the selected origin are shown in the table 

below (the combo box on the left). Select one connection in the table will show the costs 

of these connections over the time in the table on the right hand side. To add a connection 

press the Add Connechon button. 
A dialog pops up as shown in Figure BA. The source and destination machine of the 

connection are to be entered. An already registered machines from the lists in the top can 
be entered or a name can be entered in the text fields below. If something is entered in 

the text fields, this value will be used. The min- and max-delay of the connection as well 

as the availability are set to default settings and can be edited. 

To remove a connection select one in the left table and press the Remove Selected 

Connection button. Adding and deleting multiple connections is not supported in the 

current version. There is a possibility to import connections from several files, by using 
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xh 
Select the origin host 

hope 
nemesis 

Select the destination host 

, hope 
nernesis 

or type new hostmachi... or type new hostmachine 

Min Delay, 190.0 

Max DeIW. 200.0 

Availabilityin% 

The costs are taken from your default-settings. You are 
available to change the values later. 

Add Connection Cancel 

Figure BA: Adding a connection 

200 
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the menu File and pressing Import Connechons in there. It is additionally possible to 
replace names or IP-Addresses of these files by writing a replacement file and speciýving 
it in the import dialog. Examples of how these files are formatted are shown in Appendix 
B. 3.1 and B. 3.2. 

B. 1.3.5 The Model Panel 

The model panel allows to specify the performance monitor model used to execute the 
application. 

The panel as shown in Figure 6.6 is divided into two parts. The upper part allows to 
choose the model, where the in the lower model dependent data for the selected model 
can be specified. 

There are 3 models to choose as described in Chapter 3: 

9 Centralised Model 

* Hostmachine Model 

9 Class Model 

To choose one specific model click on the button labelled with the name of the model. 
A picture above each button describes the structure of this model. To see the picture 
more detailed double click on it. The main difference between these models is the lo- 

cation and the number of performance monitors (PM). The centralised model has only 
one performance monitor for the whole application, the host model has one performance 
monitor per used machine and the class model has one performance monitor per service 
instance. In the host and class model the location of performance monitor is specified by 

the distribution of the objects. The centralised model has only one performance monitor 

and therefore its location needs to be specified (bottom panel). For the centralised model 

enter the hostname where the PM is located, the port of the running rmiregistry on this 
host and the name of the PM with which it is bound in the rmiregistry. 

B. 1.3.6 The Application Panel 

This panel as shown in Figure B. 5 gives information about the application. 
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TIMI . 1" --' 

File Tree Settings Testing Help 

RIJN Reset HostMachines 

Services Machines Appl. Structure Connection Model Application Object Diagrams 
Application: Appihope_1038304877765 

Starttime 10: 00: 00: 000 Used Model Centralised model 
Endtime 10: 00: 17: 125 Remote Calls 0 

Pre estimated values 

Instructions 

Preestimated instr. 0 

Execution Times 

Preestimated time 00: 01: 05: 358 
Max. time 00: 01: 00: 000 

simngs -00: 00: 05: 358 

Costs 

Connection costs 0,000 1 
+ Machine costs 0,000 f 

Total costs 0,000 f 
Max. costs 0,000 k 

Sarvings 0,000 1 

Connection data 

Min. Delay 00: 00: 00: 000 

Actual LOB: hope 

Estimated values Current values 
Instructions Instructions 

Estimated instr. 0 Executed instr. 0 

Execulion Times 

Estimated time 00: 01: 05: 358 
Max. time 00: 01: 00: 000 

SaNnngs -00: 00: 05: 358 

Exectition Times 

Elapsed time 00: 00: 17: 125 
Max. time 00: 01: 00: 000 

Sarvings 00: 00: 42: 875 

Costs 

Connection costs 0,000 1 

+ Machine costs 0,000 f 

Total costs 
Max. costs 

0,000 1 

0,000 r, 

Savings 0,000 X 

Max. Delay 00: 00: 00: 000 

threadcount =9 

Costs 

Connection costs 0,000 f 

+ Machine costs 0,000 f 

Total costs 0,0001 

Max. costs 0,000 1 

Sarvings 0,000 1 

Figure B. 5: The Application Panel 

It is divided in five major parts. The whole panel is only interesting during execution 

or afterwards because these values are set or being adjusted only during runtime. Before 

execution all values are initialised with the default values. The following list describes the 

five parts of the panel. 

Application: 

The label of this part shows the name of the application which has the following 

syntax: Appl-HOSTNAME-STARTTIME. In detail: HOSTNAME is the name of the host 

machine where the GUI is running and STARTTIME is the real start time (millisec- 

onds after 1970) of this particular application. This means that the name for an 

application changes as soon as you restart the execution because the system time 

has changed. 
Contents: 

Start Time 
Is set at the start of the execution to the value specified in the application- 



Appendix: Grid Performance Software 203 

structure panel described in Section B. 1.3.3. By default it is 01: 00: 00: 000 
(hh: mm: ss: SSS). This time format is used throughout the application. 

o End Time 
Is set when the application has executed. The time is calculated by adding the 

real execution time to the start time. 

e Used Model 
It represents the model which would be chosen in the model panel described 

in Section B. 1-3.5 to execute the application. It will be set just at the start of 
the application. Before execution it has the value no data. 

9 Remote Calls 
This is the number of remote calls which were needed to execute the applica- 

tion. This value is adjusted during execution. 

Pre estimated values 
Before executing an application the times and cost for this particular application 

can be estimated as described in Chapter 4. We refer to this estimation before the 

start as pre estimation. How to estimate these times see section B. 1.3.3. 

Instructions 

9 Pre estimated ilistr. 1 

Will show the total number of instructions needed to terminate the application. 

Execution times 
These values are only set if times were pre-estimated. 

9 Pre-estimated time 
The estimated time that it will take to execute the application with the current 

settings. 

* Max time 
The time which is allowed to execute the application. This time is specified in 

the application structure panel. 

Savings 

This time is the difference between the Max time and the Pre-estimated time. 

A positive number means that the application can be executed in time. A 

negative number (red digits) means that the execution time will take longer 

'Not implemented 
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as it is allowed. The contract can not be accomplished. 

Costs 

* Connection costs 
Every connection has cost depending on the start time and the duration of 
the connection usage. The shown value represents the pre-estimated sum of 
all connection cost. 

* Machine costs 
The cost for a machine is time dependent, too. This value represents the sum 
of all machine cost which will be used to execute the application with the 
current settings. 

e Total cost 
This is the sum of machine and connection cost. 

Max costs 
The cost which is allowed to execute the application. This value is specified in 
the application structure panel. 

0 Savings 

This cost is the difference between the Max cost and the Total cost. A positive 
number means that the application can be executed cheaper than the maximum 
cost provided by the contract. A negative number (red digits) means that the 

execution cost will be higher - The contract can not be accomplished. 

Estimated values 
While executing an application other programs (eg. Performance Monitors) observe 
the behaviour of this application. For example if a host machine crashes this observer 
tries to execute parts of the application on another host. This reconfiguration costs 
time and as a result the execution time has to be estimated again. The values in this 

part can change during execution. Just after starting an application they are the 

same as the pre-estimated values. During execution these values will be adjusted in 

a later version of this software when a part of the application runs faster or slower as 

expected. At the end of the execution this values should be close to the real values. 

Current values 
This are the real values (cost, instructions, elapsed time) for the execution and 
therefore show only information about executed parts. After execution this values 
represents the real values for the execution. 
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Connection data 
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'U- 
For all connections which can be used there exist statistical data. To add or modify 
a connection see Section B. 1 . 3.4. 

* Min Delay 

This value represents the sum of all min delays of the used connections. This 

value will be adjusted during the execution. Before the start it has the value 
00: 00: 00: 000. 

9 Max Delay 

This time value represents the sum of all max delays of the used connections. 
This value will be adjusted during execution. Before the start it has the value 
00: 00: 00: 000. 

The real time value for building up all is between Min Delay and Max Delay. 

B. 1.3.7 The Object Diagrams Panel 

The object diagram panel as shown in Figure 6.7 also shows information about an exe- 
cuted application. 

The panel is divided in two parts labeled with Tree respectively Diagram. It is possible 
to change these parts from the left side to the other and vice versa by dragging the labels 

to the other side. The tree part shows the application structure. To fully expand the 
tree click the expand button in the upper left corner of the panel. For each node there 

exists a diagram in the diagram part. The diagram shows graphically the behaviour 

during execution. Each diagram has a vertical axis labelled with percentage values and a 
horizontal axis labelled with times. It can happen that there are too many labels at the 

axis that it is impossible to read. To change the look of the diagram right click on one. 
This will pop up a dialog which is described in the Appendix B. 2. Changes in this dialog 

affect all diagrams - It is not possible to change only the look of one particular diagram. 

The default type of the diagram is Stairs and takes the executed instructions dependent 

on the time into account. This can also be modified in the dialog which was mentioned 
above. Diagrams can be exported by clicking on the Export Obj . -diagrain data button 

in the menu bar (see Section B. 1.2). 

B. 1.4 The Settings Dialog 

The settings dialog allows the user to specify default values, timer settings and which 
LocationBroker is to be used. 
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The Settings dialog can be opened by selecting Settings - Change Settings in the menu bar. 

Tab LocationBroker 

The LocationBroker Tab is shown in Figure B. 6 and specifies a LocationBroker. 

ýIbSettings X1 

LocationBroker Objects Timer Diagram Connection Serx4ce 

LocationBroker Settings 

Host localhost 

Port 1099 

Service locationbroker 

update LOB 

Close Settings___ 

Figure B. 6: Setting the LocationBroker 

A LocationBroker is specified by the IP-address or name of the machine, a port number 

of the rmiregistry on the given machine and the name how the LocationBroker is bound in 

the rmiregistry. 
Pressing the Update LOB button tries to connect to the LocationBroker. 

If the connection was successful the status bar of the main window will show the name of 

the machine as the actual Location Broker (Actual LOB). 

B. 1.4.2 Tab Objects 

The objects panel (Figure B. 7) specifies the settings for a random tree and the settings 
for pre-estimating the times of the application. 
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LocationBroker Objects ; TWW Diagram Connection Service 
Default-Settings for Object Details 

Random Tree Generator 

Node count 20 

Max. depth of tree 5 

Random seed for tree creation 0 

Random seed for filling in machines 0 

Update Data 

Execution Times 
Select speed for pre estima(e execution times Minimum speed 

using default alpha and beta with following default values 

Close Settings 

Figure B. 7: Setting of object parameter 
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The settings for the random tree consist of four parameters. First the node count of 
the randomly chosen tree, second the maximum depth of the tree, third the seed for the 

random generator for creating the tree and last the seed for the random generator when 
filling in the machines randomly. 
In the pre-estimation part one can select which machine speed should be used, like the 

minimum, maximum, current, the cached current or a constant speed of 1000 instructions 

per second. Further the alpha and beta settings off all machines can be overridden by 

using the default alpha and beta settings, that can be specified here as well. 

B. 1.4.3 Tab Timer 

The timer panel as shown in Figure B. 8 is up to now only used for the cache timer. 
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X 

LocationBroker Objects Timer Diagram Connection Service 
Timer Settings 

Settings for the Cache-Timer 

Update-intervall 500 

maximum lookup time 500 

I- - Vl Using Machine-Cache 

Update Cache Timer 

Settings for the Repaint-Timer 

Close Settings 

Figure B. 8: Setting the timer 
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The cache timer specifies in which intervals data is cached. The maximum lookup 

interval specifies the time the caching of one data snapshot is allowed to take. This value 

should be less than the update interval. 

If Using Machine-Cache is selected the speed diagrams are active. 
There is space reserved for the repainting time of the GUL But up to now it is not 
implemented to change this value. 

B. 1.4.4 Tab Diagram 

This panel (Figure B. 9) is responsible to set the values for all speed diagrams of the ma- 

chine panel. 
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Ilk Settings I 
- tluy. 6ýwl: ý' X 

LocationBroker Objects Tinier Diagram Connection SepAce 

Diagram scaling Graph policies Axis & Grid Misc 

X scaling 

Incremental Increment 50.0 
Units per Pixel 

Exac(fit 

Y scaling 

auto scale Upper boundary 1.01 

Lower boundary 
- -0. -0 

Close Settings 

Figure B. 9: Setting the speed diagram settings 

These values can be changed for only one machine (see Section B. 1.3.2). 
For a description of the dialog see Appendix B. 2. 

B. I. 4.5 Tab Connection 
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This panel (Figure B. 10) allows to set the default values for the creation of connections 
like min- and max-delay (in milliseconds), the availability (in percent) and the costs in 

specified times (in pounds per minute). 



Appendix: Grid Performance Software 

fk Settings 
LocationBroker Objects Tmw Diagrarn Connection Service 
Delays 

Xi 

Minimum Delay 100.0 

Maximum Delay 200.0 

Availability in % 100.0 

Update DelaY 

Costs 

Time costs in V min 
100: 00-01: 00 10.0 
101: 00-02: 00 10.0 
02*00-03*00 10.0 
ý03: 00-04: 00 10.0 
! nA nn. fas--na. 1nn 

Update Costs 

Close Settings 

Figure B. 10: Setting default values for connections 

B. 1.4.6 Tab Service 
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This panel (Figure B. 11 allows the user to change the default values that are used when 

creating a new service. 
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LocationBroker Objects Timer Diagram Connection SepAce 

X1 

Defauftname of services 
_Servi 

Ce 

Minimum Instructions 100 

Maximum Instructions 500 

Average Instructions 350 

These changes have only affect on new created services 

Update SeMces 

Close Settings 

Figure B. 11: Setting default values for services 
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The service name, the minimum, maximum and average instructions can be changed 
here. 



Appendix: G UI Diagram Information 

B-2 Diagram Settings 
A right click on a diagram will show the Diagram Settings dialog. 
This panel is used to change the look of the diagram. There are several options for the 
axes, the colours, the scaling, how grids are displayed etc.. 
To use the changed settings, press the use Values button. To discard changes press the 
cancel button. 

B. 2.1 Diagram Scaling 
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Change settings 

,5 Diagram scaling Graph policies Axis & Grid Misc 

X scaling 

Incremental Increment 50.01 

Units per Pixel 
Exact fit 

Y scaling 

ýv,, aulo scale Upper boundary 1.0 

Lower boundary 0.011 

use values Cancel 

Figure B. 12: Scaling values of the diagram 

This pane allows to change the scaling of the axis. 
The first part is for the x-axis. It can be choosen between the options incremental and 

exact fit. 
Incremental means, that only the part is shown, which fits into the diagram panel size. 
How big this part is depends on the increment value. A value of 50 Units per pixel means 
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that each pixel of the diagram in x-orientation represents 50 milliseconds on the x-axis. 
Exact fit will show the whole data from the minimum x-value to the maximum x-value in 
the diagram. 
The second part is for the y-axis. It can be selected whether to use auto scale, so that all 
values between the minimum y-value and the maximum y-value are shown, or specify the 
borders by hand. 

B-2.2 Graph Policies 

Create drawing policies for the graphlines. 
Policies are used in the order they appear in the list. 
If you don't specify policies the default is used. 

acthre policy. 

Display style Colors & Stroke 

visible Fill color 

Polygon Fill Line color 

Stairs Outline Stroke 

ý--. Dots 

_use 
values Cancel 

Figure B. 13: Policy values of the diagram 

Policies are rules how to draw the data of the diagram. 

If no policy is specified the default values are used to draw the data. 

The policies have an order, how they are used on a data set of the diagram. 

A data set has one x-value but can have more then one y-value. In case of the speed 

diagrams we have three y-values. The first one is the maximum speed, the second the cur- 

rent speed and the third the minimum speed. The object diagrams have only one y-value 

which is the executed instructions as a percentage of the total instructions. 

ýAjIV, 
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The first policy is used for the first y-value, the second policy for the second and so on. 
A policy has a display style how to draw the data. There it is possible to choose between 

polygons, stairs and dots (dots is not implemented up to now). Additional attributes are 
the filling of the stair/polygon and/or outlining it. If a y-value should be shown or not 
can be toggled by the vistble check box. 
Furthermore the fill- and line-colour and the width of lines can be specified by clicking on 
the colour or stroke field. This will open a colour chooser where you can choose the new 
colour, or opens a dialog to enter the width of the stroke. 

B. 2.3 Axis& Grid 

X1 

Diagram scaling Graph policies--Iý -Axis-&--G-rid- Misc 

visible 

X-Axis 

Major tick every 

Minor tick every 

Size of a major tick 

50_00.0 

500.0 
1 6: 1 

Size of a minor tick 3 

'eil Show values on X-Axis 

Y-Axis 

Major tick every 

Minor tick every 

Size of a major tick 

Size of a minor tick 

100000.0 

50000.0 

_6_ 
3 

,v Show values on Y-Axis 

Gridlines 

V, X major gridlines 

X minor gridlines 

Y major gridlines 

Y minor gridlines 

Major gridline color 

Minor gridline color 

Major gridline stroke 

Minor gridline stroke 

I-u-s--e-V---a-l-u--e's Cancel 

Figure B. 14: Axis and grid values of the diagram 

Options related to the axes and grid. 

The major and minor ticks on the axes, the size of the ticks (in pixel) and if labels are 

displayed can be specified. 

Grid lines can be switched on or off and the colour and line width can be chosen. 
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B. 2.4 Misc 

IL Change settings 

Diagram scaling Graph policies Axis & Grid Misc 

Boundaries 
v autoscrolls 

left 601 
use additional space. 

right 20 1 

upper ____20] 
scrollbar as needed 

bottom 29 
grid on top 

ki frame diagram 

use Values Cancel 

Figure B. 15: Miscellaneous values of the diagram 

This are miscellaneous options of the diagrams like the boundaries, if it should auto scroll 

to the latest dataset (highest ordinate), if an additional space to the right of the diagram 

should be used, if the grid is drawn on top of the data and if the diagram should be framed. 

For example setting the boundaries to 0 will fit the complete diagram into the visible size, 

without any space. The left border is then the y-axis and the bottom is the x-axis. 

If you want to examine data that was long ago in a speed diagram, switching auto scrolls 

to off is a good idea. 

B. 2.5 MetaPost and TFX 

When exporting the object diagram three files are created. One datafile storing the times 

and percentage values of the executed instruction, as well as a table showing when which 
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object used which machine. The created MetaPost- and TEX-file have the same name as 
the datafile where only the extension mp and Jex is added. If your system has a version 
of T)EXinstalled, it is common that MetaPost is installed as well. In the first step the 
MetaPost file has to be executed with the command for MetaPost. This can be 

mp filename. mp or 
This will create a PS-file with the name f ilename. 0 
PDF-document with a command like 

pdflatex filename. tex 

or other commands specified by your TFXversion. 

B. 3 Example Files 

B. 3.1 The Connection-Data file 

mpost filename. mp 
The next step can be to create a 

"The data used in this research was collected as part of CAIDA's skitter initiative, 
http: //www. caida. org Support for skitter is provided by DARPA, NSF, and CAIDA mem- 
bership. " The file must have following format: 

Key Source Destination Time RTT Count hopl hop2 

Whereby the Key can be: 

C Complete The destination and all intermediate hops in the path all replied. The 

RTT to the destination is valid. 

I Incomplete skitter got a reply from the destination, but did not receive a reply from 

every intermediate hop on the path. The RTT to the destination is valid. 

N No reply no reply was received from the destination although a partial path may 
have been recorded. The RTT has no meaning in this case. 

The source and destination are IP addresses or host names. 
The time is a UNIX time stamp in milliseconds from 01/01/1970. 

The RTT is the round trip time in milliseconds. 
Count specifies how many hops where in between and then the hops are following. 

For importing the data, only the lines that have aC or IT as key are used and is creating 

connections between source and destination address with the min- and max- delay based 

on the RTT. 
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short example of a connection data file: 

# KEY SOURCE DESTINATION TIME RTT COUNT HOPS ... 
reading: .. /skitterData/result/a-root. 20020315 and look for IP: 203.181.248.27 

c 216.168.227.250 203.181.248.27 1016156250 216.874 14 216.168.227.1 ... 
c 216.168.227.250 203.181.248.27 1016166239 212.155 14 216.168.227.1 ... 
c 216.168.227.250 203.181.248.27 1016176226 210.753 14 216.168.227.1 ... 
c 216.168.227.250 203.181.248.27 1016186235 213.538 14 216.168.227.1 ... 
c 216.168.227.250 203.181.248.27 1016196240 210.757 14 216.168.227.1 ... 
c 216.168.227.250 203.181.248.27 1016206265 236.666 14 216.168.227.1 

c 216.168.227.250 203.181.248.27 1016216280 236.928 14 216.168.227.1 

c 216.168.227.250 203.181.248.27 1016226293 236.764 14 216.168.227.1 ... 
c 216.168.227.250 203.181.248.27 1016236299 236.849 14 216.168.227.1 ... 
reading: .. /skitterData/result/caida. mae. net. 20011231 and look for IP: 203.181.248.27 

c 204.29.239.23 203.181.248.27 1009775669 247.176 17 204.29.239.1 ... 
c 204.29.239.23 203.181.248.27 1009838024 247.240 17 204.29.239.1 ... 
reading: .. 

/skitterData/result/champagne. 20020315 and look for IP: 203.181.248.27 

c 141.142.121.4 203.181.248.27 1016151311 189.608 9 141.142.121.254 ... 
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B-3.2 The Replacement file 

A short example of a replacement file: 

------------------------------------------------------------- 

# This is a replacement file. 

# Format must be: 

# original replacement 
# Example: 

# 127.0.0.1 nemesis. dmu. ac. uk 
# The Ip-adress 127.0.0.1 will be replaced to nemesis. dmu. ac. uk 

# Ottawa, CA - 205.189.33.78 

# College Park, MD, US (University of Maryland) - 128-8.7.4 

# Herndon, VA, US ( Verisign) - 216.168.227.250 

# Tokyo, Kanto, JP ýAPAN) - 203.181.248.2-( 

# Amsterdam, North Holland, NL (RIPE) - 193.0.0.11 

# Eugene, OR, USA (University of Oregon) - 128.223.220.56 

------------------------------------------------------------- 

128.8.7.4 = forquet. cse. dmu. ac. uk 

216.168.227.250 ossi 

128.223.220.56 liverpool. dmu. ac. uk 

205.189.33.78 buda 

203.181.248.27 garfield. dmu. ac. uk 

193.0.0.11 = sienna. dmu. ac. uk 
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Optimization Software 

To test the algorithm and their behaviour we have designed and implemented a graph- 
ical user interface, which allows to draw graphs quickly. The source code is written in 

Java and requires the JRE1.4. An initial distribution has to be specified for the designed 

graph. This distribution can then be optimised using the algorithm described in this paper. 

Additionally to an extensive logfile it is possible to export the data gathered during the 

optimisation run into a MetaPost [20] file, which can be easily included in T)EX-documents. 

It is also possible to export the graph into a MetaPost. Figure CA shows the graphical 

user interface of the test application. 

219 
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Figure C. 1: Screen shot of the test application 



Bibliography 

[1] http: //www. atmformum. com/atmforum/specs/approved. html. 

[2] Algirdas Avizienis. The N-Version approach to fault-tolerant software. IEEE Rans- 

actions on Software Engineering, SE-11(12): 1491-1501, December 1985. 

[3] Paul Bachmann. Analytische zahlentheorie (1894), 1894. 

[4] Jean Bacon. Concurrent Systems Operating Systems, database and Distributed Sys- 

tems: An Integrated Approach. Addison Wesley, second edition edition, 1998. 

[5] Sung Hoon Baek, Bong Wan Kim, Eui Joung Joung, and Chong Won Park. Reliability 

and performance of hierarchical RAID with multiple controllers. In Proceedings of 
the twentieth annual ACM symposium on Principles of distributed computing, pages 
246-254. ACM Press, 2001. 

[6] T. P. Baker. A stack-based resource allocation policy for realtime processes. In 

Proceedings of the 11th IEEE Real-Time System symposium. IEEE Press, 1990. 

[7] Booch, Jacobson, and Rumbaugh. Using UML Software Engineering with Objects 

and Components. Addison Wesley, updated edition edition, 2000. 

[8] http: //www. caida. org/tools/measurement/skitter/sample-code/. 

[9] D. Coudert and X. Muoz. How graph theory can help communications engineering. 

citeseer. nj. nec. com/481792. html- 

[10] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems Concepts 

and Design. Addison Wesley, 3rd edition edition, 2001. ISB-N 0201-61918-0. 

[11] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and -Morris Sloman. Ponder: A 

language for specifying security and management policies for distributed svstems - 
the language specification. Technical report, Imperial College Research Report DoC 

2000/1, October 2000. 
9. )l 



References 222 

[121 Nicodemos Damianou, Naranker Dulay, Emil Lupu, and -Morris Sloman. The pon- 
der policy specification language. Lecture Notes in Computer Science, 1995: 18-39. 
January 2001. 

[13] Nicodemos C. Damianou. A Policy Framework for Management of Distributed Sys- 
tems. PhD thesis, Imperial College of Science, Technology and Medicine, University 

of London, Department of Computing, February 2002. 

[14] Daniel S. Diamond and Lee L. Selwyn. Considerations for computer utility pricing 
policies. In Proceedings of the 1968 23rd ACM national conference, pages 189-200. 
ACM Press, 1968. 

[15] Chitra Dorai, Parviz Kermani, and Avare Stewart. ELM-N E-Learning media naviga- 
tor. In A CM Proceedings of the International Conference on Multimedia, September 
2001. 

[161 Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The Ant System: Optimiza- 

tion by a colony of cooperating agents. IEEE Transactions on Systems, Man, and 
Cybernetics Part B: Cybernetics, 26(l): 29-41,1996. 

[17] Bruce Eckel. Thinking in Java. Prentice Hall PTR, 3rd edition edition, 2002. ISBN 

0131002872. 

[18] William H. Graves. The new challenges of E-Learning. UBIQUITY A CM IT Magazine 

and Forum, 1(43), January 2001. 

[19] http: //www. etsi. org/. 

[20] John D. Hobby. Drawing graphs with metapost. Computing Science Technical Report 

no. 164, AT&T Bell Laboratories, Murray Hill, New Jersey, 1993. 

[21] Christine R. Hofmeister and James M. Purtilo. Dynamic reconfiguration in distributed 

systems: Adapting software modules for replacement. In Proceedings of the 13th 

International Conference on Distributed Computing Systems, IEEE Computer Society 

Press, May 1993. 

[22] http: //java. sun. com/j2se/1.3/docs/guide/rmi/index. html. 

[23] http: //www. borland. com/ibuilder/. 

[24] Mathai Joseph, editor. Real-Time Systems Specification, 1erification and Analysis. 

Prentice Hall International (UK) LTD, 1996. ISBN' 0-13-455297-0. 



References 223 

[25] A. King and R. Hunt. Protocols and architecture for managing TCP/IP network 
infrastructures. Computer Communications, 23(16): 1558-1572, September 2000. 

[26] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating di- 

rected task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4): 406- 
471,1999. 

[271 Leslie Lamport. Synchronizing time servers. Technical report, Systems Research 
Center Palo Alto, California 94301, June 1987. 

[28] Leslie Larnport. DYkX-. A Document Preparation System. Addison-Wesley, 1994. 

[29] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic scheduling algorithm: exact 
characterisation and average case behavior. In Proceedings of the 10th IEEE Reall- 
Time System Symposium, IEEE Computer Society Press, 1989. 

[30] http: //rpmfind. net/linux/rpm2html/mirroring. html- 

[31] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a 
hard-real-time environment. Journal of the ACM (JACM), 20(l): 46-61,1973. 

[32] Paul McKee. Enabling distributed services. Presented to CDS Club meeting, Topics 

in Distributed Systems, December 1998. 

[33] http: //www. ibiblio. org/pub/Linux/LSMTEMPLATE. html. 

[34] David L. Mills. Internet time synchronization: The network time protocol. IEEE 

Transactions on Communications, 39(10), October 1991. 

[35] Ike. Nassi and Ben Shneiderman. Flowchart techniques for structured programming, 

August 1973. 

[36] Neumann. Monitoring and controlling suspicious activity in real-time with IP- 

Watcher. In IEEE 11th Annual Computer Security Applications Conference, 1995. 

[37] Jr. Paul K. Harter. Response times in level-structured systems. ACM Transactions 

on Computer Systems (TOCS), 5(3): 232-248,1987. 

[38] Amelia Platt. Final report on CORBA, internal report submitted to mobility cam- 

paign group. British Telecom, 1996/97. 

[39] B. Randell, P. Lee, and P. C. Treleaven. Reliability issues in computing system design. 

ACM Compuhng Surveys (CSUR), 10(2): 123-165,1978. 



224 References 

[40] Akos L. Redey. A novel Routing Strategy for Public, Wide Area ATM Networks. PhD 

thesis, De N'lontfort University, 1997. 

[41] Klaus Schmaranz. DOLSA -a robust algorithm for massively distributed. dynamic 

object-lookup services. submitted to J. UCS, 2002. 

[42] Jon Siegel. CORBA 3 Fundamentals and Programming. John Wiley and Sons, Inc, 

second edition edition, 2000. 

[43] Zaw-Sing Su and Jon Postel. The domain naming convention for internet user appli- 

cations, August 1982. 

[44] Andrew S. Tanenbaum and Maarten von Steen. Distributed Systems (Principles and 
Paradigms). Prentice Hall, 2002. ISBN 0-13-088893-1. 

[45] http: //www. w3. org/XML. 

[46] Hussein. S. M. Zedan. Distributed Computer Systems, chapter Reliable systems in 

occam, pages 132-148. Butterworths, 1990. 


