
Performance Monitoring in Service-Based
Computing

PhD Thesis

Doris Ressmann

Software Technology Research Laboratory

De Montfort University

2003

Abstract

Service-based computing is a new computing paradigm where computing is seen as

a utility, similar to gas, electricity, etc. An application is not physically shipped
to the customer but made available for remote usage. A service-based application

consists of services executed from all over the world on the machines where they

are installed. This brings a number of design problems into being compared to

traditional local execution. This thesis addresses some of these including naming,

searching, accounting, binding different services to form new services and finally

guaranteeing the quality of service a user would expect, whereby the focus is set

on performance monitoring in such a large scale global distributed system. It is an
important requirement for Quality of Service (QoS). Since the distribution of services
is supposed to be transparent from the user, any kind of delay in the interaction

of these services needs to be kept to a minimum. To achieve a control of these
interactions the performance needs to be monitored and in case of under-performing

a reconfiguration needs to be triggered. Three different architectures for performance

monitoring have been designed, whereby the difference between these architectures
is the location of the performance monitor within the distributed system. Each of
these is able to detect and reconfigure hardware failures and delay in the execution.
A hardware failure means a complete shut down of either a network connection or

a machine where services are being executed. A delay on the other hand, results
in the application not being able to terminate within the time that the user has

originally agreed with the service provider.
The algorithms discussed in this thesis estimate the start and end times of appli-

cation parts running on an heterogeneous Network Of Workstations (NOW) taking
into account that the executing machines are slowing down with the increasing load

of parallel tasks. Additionally to the estimated execution times information about
instructions during which two application parts share same resources are stored.
This information is then used to optimise the distribution of the application parts i

ABSTRACT ii

using a dynamic algorithm which has similarities to Ant Colony Optimization algo-

rithms (ACO-algorithms) and is also described in this thesis.
Finally a Grid Performance Software (GriPS) has been designed, developed and

tested. It is written in Java and has been used to create experimental results to

compare and analyse the different performance monitoring architectures. GriPS

simulates a large global distributed system by using connection data collected from
CAIDA's skitter initiative [8]. Within the simulation there exist actually three
different distributed systems. One for the application itself, one for the performance
monitoring within the models, additionally the location broker can be located on a
different machine as well.

Acknowledgement s

I wish to express my most profound gratitude to:

9 My supervisors Professor Dr. Hussein Zedan, Dr. Amelia M. Platt, Dr.

Michael J Morse and Mr. Steve M. Rumsby for their invaluable advice, sup-
port and encouragement.

9 British Telecom (BT) for their financial support and the help in outlining the

subject.

o Helge Janicke, Niels-Peter de Witt and Karsten Wolke for hours of discussions

and the collaboration during their 6 month project with me.

Prof. Dr. Karl Hayo Siemsen for initiating my contact to De Montfort Uni-

versity and his encouragement throughout my research.

e All our colleagues at the STRL for providing such a stimulating and friendly

working atmosphere.

9 My friends Rolf Peters, Oana Spulber, Gilles Compienne, Carola Deppe, Kara

McKechnie and Ursula Augsd6rfer for all the help and encouragement.

9 My family for the constant belief in my abilities

To all of you
Thank you

iii

Declaration

I declare that the work described within this thesis was originally taken by me
between January 1999 and February 2003. It is submitted for the degree of Doctor

of Philosophy at De Montfort University.

iv

Publications

9 Doris Ressmann, Amelia Platt, Steve Rumsby; Architecture to Support Per-
formance Monitoring in Object Based Distributed Systems; Proceedings of
the 8th IEEE Workshop on Future 'Iýrends of Distributed Computing Systems
(FTDCS'2001); Italy, Bologna; October; 2001

9 Doris Ressmann, Amelia Platt, Steve Rumsby; Performance Monitoring of
Large Global Distributed Systems; Proceedings of 16th Annual ACM Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2001); Florida, Tampa Bay; October; 2001

Doris Ressmann, Performance Monitoring in Service Based Computing: the
Early Warning Approach; Proceedings of Informatiktage 2002, Germany, Bad

Schussenried; November; 2002

V

Contents

Abstract

Acknowledgements iii

Declaration iv

Publications v

List of Figures xiii

List of Tables xiv

List of Listings xv

List of Acronyms xvii

Introduction 1

1.1 Background to Distributed Systems
................... 1

1.2 Background to Research 2

1.3 Environmental Constraints
........................ 3

1.4 Outline of thesis 5

2 Future Distributed Environment 7
2.1 Service-Based Computing 7

2.1.1 Issues Needed for Service-Based Computing 9
2.2 The Structure of Distributed Service-Based Applications 11
2.3 Distributed Environment for Software Developer 18

2.3.1 Essential Requirements in a Distributed Environment 18
2.3.2 Class Names and Class Function Names 19

vi

CONTENTS vii

2.3.3 Model to Structure Class Information to Facilitate Searching
. 21

2.4 Distributed Environment for Application Execution
.......... 27

2.4.1 Binding
27

2.5 User Requirements Through Contracts
.................

30

2.6 Summary
.................................

34

Architectural Design for Performance Monitoring and Reconfigu-

ration 35

3.1 Introduction 35

3.2 Centralised Model for Performance

Monitoring- Client
......................... 36

3.2.1 Advantages
........................ 39

3.2.2 Disadvantages 39

3.3 Distributed Architecture for Performance Monitoring 41

3.3.1 On a Per Host (Network) Basis
41

3.3.2 On a Per Class Basis 46

3.4 Prediction and trade offs of the Behaviour of the Models 51

3.5 Algorithms for Performance Monitoring 52

3.5.1 Measurements and their Implementation 52

3.6 Summary
............................. 57

4 Estimating the Execution Time of a Globally Distributed Applica-
tion 58

4.1 Introduction 58

4.2 Representation of the globally distributed application 59

4.2.1 Directed acyclic graph 59

4.2.2 Tree-structure as a specialised DAG
........... 62

4.3 Representation of the resources 64

4.4 Estimating times 65

4.4.1 Sequential execution 66

4.4.2 Parallel execution without slow down
.......... 67

4.4.3 Parallel execution affecting machines 68

4.4.4 Generalisation of the times estimation 86

4.5 Summary 91

CONTENTS

5 Optimisation of the Execution Time of a Globally Distributed Ap-

viii

plication 92

5.1 Introduction
........................ 92

5.2 Distributing to slower machines 93

5.3 Idea
............................ 94

5.4 Structure
......................... 95

5.4.1 Calm down
.................... 96

5.4.2 Push back
..................... 98

5.4.3 Expel
....................... 98

5.4.4 Decide where to go 99
5.5 Generalisation of the optimisation 100
5.6 To push or not to push - cycles 101
5.7 Adjusting the parameters 103

5.7.1 Adjusting the greediness and fear
........ 104

5.7.2 Adjusting the evaporation factors
........ 107

5.8 Comparison with random distributions
......... 107

5.9 Properties of the algorithm 109
5.10 Summary

......................... 110

6 The Simulation Model ill
6.1 Introduction Ill
6.2 The Graphical User Interface 112

6.2.1 Machine Panel 113
6.2.2 Application Structure Panel 114
6.2.3 Connection Panel 115
6.2.4 Model Panel 116
6.2.5 Object Diagrams Panel 117

6.3 The Implementation 118
6.3.1 Simulation of a Large Global Distributed System

... 118
6.3.2 The Simulated Application

................ 118
6.3.3 Performance Monitoring Client 119
6.3.4 Performance Monitoring Server 122
6.3.5 Simulated Application Object

.............. 123
6.4 Reconfiguration 124

6.4.1 Reconfiguration due to a hardware failure
....... 124

COA'TENTS ix

6.4.2 Early Warning Performance Monitoring
............. 126

6.4.3 Creation of Results
....................... 127

6.5 Scalability
.................................

127

6.6 Summary
.................................

128

7 Case Study (e-learning) 129

7.1 Introduction 129

7.2 Requirements 130

7.2.1 Hypothesis
......................... 133

7.3 Application
............................ 133

7.4 Analysis
.............................. 138

7.4.1 Centralised Model 138

7.4.2 Host Model 141

7.4.3 Class Model
........................ 143

7.4.4 Comparison of the three models without a failure
... 145

7.5 Failure recovery 147

7.5.1 Failure recovery after a time-out 147

7.5.2 Early Warning Recovery of a Performance Failure 157
7.5.3 Failure Recovery for a time-critical Application

.... 157
7.6 Summary

............................. 157

8 Conclusions and further research and development 159
8.1 Vision 159
8.2 Achievement 160

8.2.1 Performance Monitoring Client and Server 160
8.2.2 Algorithm for Time Estimation 161
8.2.3 Algorithm for Optimisation of Execution Time 161
8.2.4 Grid tool for Performance Monitoring 161
8.2.5 Evaluation 161

8.3 Further Work 162

A Data structures 164
A. 1 Data tables for the time estimation in the DAG 165
A. 2 Distributions for the 24 Vertex DAG 188

CONTENTS

B Grid Performance Software 190
B. 1 The Graphical User Interface 190

B. 1.1 The GUI Structure 192
B. 1.2 The menu bar 192
B. 1.3 The different panels 194
B. 1.4 The Settings Dialog 205

B. 2 Diagram Settings 212
B. 2.1 Diagram Scaling 212
B. 2.2 Graph Policies 213
B. 2.3 Axis & Grid 214
B. 2.4 Misc 215
B. 2.5 MetaPost and TFX 215

B. 3 Example Files 216
B. 3.1 The Connection-Data file 216
B. 3.2 The Replacement file 218

C Optimization Software 219

References 224

List of Figures

2.1 The structure of a distributed application 12

2.2 The structure of a distributed application object based
......... 13

2.3 A remote method invocation 14

2.4 Replicated Location Broker
....................... 23

2.5 logtcal class server hierarchy M physical network 24

2.6 hierarchy of class servers 25

2.7 contract diagram
............................. 31

3.1 Interaction between the PMC and PMS M centraltsed model 37
3.2 Centralised Architecture for Performance Monitoring 40
3.3 Server Side Performance Monitoring in Centrahsed Model 41
3.4 Interaction between the PMC and PMS Zn host model 43
3.5 Distributed Architecture for Performance Monitoring on a per host-

(network) Basis 45
3.6 server and client side performance monitoring on a per host- (net-

work) basis 46
3.7 Interaction between the PMC and PMS M class model 48
3.8 Distributed Architecture for Performance Monitoring on a per class

basis 50
3.9 server and client side performance monitoring as part of an class .. 51

4.1 Sample Network of Workstations
.................... 59

4.2 Application structure 61
4.3 Layers for the execution 62
4.4 simplified DAG (left), tree structure (right)

............... 63
4.5 DAG for a sequential application 66
4.6 Time flov, - (greedy)

............................ 75
xi

LIST OF FIGURES xii

4.7 Time flow for the DAG example 89

5.1 Timeflow (more distributed) 94

5.2 Without push back 102
5.3 Push back with A2= 0.2 over 50 iterations 102
5.4 Push back with cycle over 100 iterations 103
5.5 Totally greedy behaviour (a = 1, -y = 0) 104
5.6 Initial greedy solution (a = 1, -y 0) 105
5.7 Found totally greedy solution (a 1, -y = 0) 105
5.8 Totally greedy behaviour (a = 1,0) 106
5.9 Totally frightened solution (a = 0, = 1) 106
5.10 Random distributions versus the algorithm choices 108
5.11 Random distributions versus the algorithm choices 108

6.1 General overview of the Grid Performance Software 112
6.2 The Overview of the Graphical User Interface

............. 112

6.3 The Machine Panel
............................ 113

6.4 The Application Structure Panel 114

6.5 The Connection Panel 115

6.6 The Model Panel 116

6.7 The Object Diagrams Panel 117

6.8 Class Diagram for the Performance Monitoring Client
......... 121

6.9 Class Diagram for the Performance Monitoring Server and Simu-

latedApphcation Object
.......................... 123

6.10 example application 125

7.1 e-learning distributed over the entZre globe 131
7.2 e-learning service connections 132
7.3 The e-learning example application 134
7.4 First year study course 136
7.5 The connection speed between the used machines 137
7.6 Sequence Diagram of an e-learning course in the centrahsed model 139
7.7 Sequence Diagram of an e-learning course in the host model 142
7.8 Sequence Diagram of an e-learning course in the class model 144
7.9 Chart about the total execution time 146
7.10 Fii-st year study course in case machine sienna failed

........ . 148

List of Figures xiii

7.11 Sequence Diagram of an e-learning course in the centrallsed model

when one hostfails during execution
150

7.12 Sequence Diagram of an e-learning course in the host model when one
host fails during execution

152

7.13 Sequence Diagram of an e-learning course in the class model when

one host fails during execution
154

7.14 Chart about the total execution time in the failure case 156

A. 1 Best possible distribution 188
A. 2 Worst found solution 189

B. I The Graphical User Interface ServZce Panel 195
B. 2 Adding a machine 196
B. 3 The Connection Panel 199
BA Adding a connection 200
B. 5 The Application Panel 202
B. 6 Setting the LocationBroker 206
B. 7 Setting of object parameter 207
B. 8 Setting the timer 208
B. 9 Setting the speed diagram settings 209
B. 10 Setting default values for connections 210
B. 11 Setting default values for services 211
B. 12 Scaling values of the diagram 212
B. 13 Policy values of the diagram 213
B. 14 Axis and grid values of the diagram 214
B. 15 Miscellaneous values of the diagram 215

C. I Screen shot of the test application 220

List of Tables

2.1 class location
...............................

13

2.2 scheduling
13

2.3 The Advantages and Disadvantages of local execution 17

2.4 The Advantages and Disadvantages of remote execution
18

2.5 A possible classificahon / numbering containing the functionahty
...

20

4.1 Machine speeds/ services 74
4.2 greedy schedule 74
4.3 Description of a collision tuple 76
4.4 Collisions for the greedy example 81
4.5 Machines and distribution for DAG example 89
4.6 Iteration sample 90

5.1 Distribution (more distributed) 93

7.1 Distribution of e-learning services 134
7.2 E-Learning Scheduling

..................... 134

7.3 Connections used in this example 135

7.4 Results for the Centralised Model 140
7.5 Results for the Host Model 141
7.6 Results for the Class Model 143
7.7 Results for the Centralised Model in the failure case 149

7.8 Results for the Host Model in the failure case 151

7.9 Results for the Class Model in the failure case 153

x1v

Listings

2.1 Contract Agreement
..................... 32

2.2 Ponder Posetive Authorisation Example 33
2.3 Ponder Negative Authorisation Example 33
2.4 Ponder Obligation Example 34
3.1 Centralised Model 38
3.2 Host Model 44
3.3 Class Model 49
3.4 Time - Out Failure 54
3.5 Failure detection triggered from location broker 54
3.6 Time-critical applications 55
6.1 The Early Warning Algorithm 127
B. I Fake instruction 190
B. 2 Windows SpeedServer start 190
B. 3 Unix SpeedServer start 191
BA Windows LOB start 191
B. 5 Unix LOB start 192

xv

List of Acronyms

ACO-algorithm Ant Colony Optimization - algorithm

ATM Asynchron Uansfer Mode

BT British Telecom

CAIDA Cooperative Association for Internet Data Analysis

COM Component Object Model

CORBA Common Object Request Broker Architecture

DAG Directed Acrylic Graph

DARPA Defense Advanced Research Projects Agency

DCOM Distributed Component Object Model

DMU De Montfort University

DTD Document Type Definition

GriPS Grid Performance Software

GSM Global System for Mobility

GUI Graphical User Interface

HLR Home Location Register

LOB Location Broker

NAB Network Address Binding

NOW ". \etwork of NVorkstations
xvi

List of Acronyms

NSF National Sience Foundation

NTP Network Time Protocol

OLE Object Linking and Embedding

OMG Object Management Group

PMC Performance Monitoring Client

PMS Performance Monitoring Server

QOS Quality Of Service

RAID Redundant Array of Independent Disks

RMI Remote Method Invocation

RPC Remote Procedure Call

SAObject Simulated Application Object

VCR Video Cassette Recorder

VHS Video Home System

xvii

XML EXtensible Markup Language

Chapter 1

Introduction

1.1 Background to Distributed Systems

Distributed Systems have been the focus of much research activity, for a number of
decades. A Distributed System is defined by Coulouris et al [10] as one 'in which
hardware and software components located at networked computers communicate
and co-ordinate their actions only by passing messages'. Most distributed systems
in existence today, are based on the client/server paradigm. In this paradigm the

client (personal computer or workstation) makes a request for some service (e. g.
email) while the server (typically a high specification computer) responds to the

request. The client and server may be physically separated but connected via a
communications network. The client typically implements the user interface ("thin"

client) and may perform some or all of the application processing which are dedicated
(e. g. cray).

While client/server applications are in theory distributed, nevertheless the distri-
bution tends to be relatively simple; indeed Coulouris describes existing distributed

systems as simple [10]. For instance, the server is located at a well-known address
and thus the client always knows where to send the request. Furthermore, the ap-
plication is distributed across only two cluster computers and thus two (logical)
locations. However, recent developments in software construction and communica-
tions have created new opportunities for more sophisticated and flexible distributed

systenis. Object technology allows applications to be constructed using small soft-
ware components called classes, a class is the template for an object. A class models
a small part of a systeni and is comprised of data and set of operations on that

I

Introduction 9

data. By designing classes that are independent components in their own right, it

is possible to use classes in more than one application. Indeed class reuse is con-

sidered to be one of the greatest benefits of object technology [171]. Taking this

one step further, it is possible to construct applications from existing classes that

can be widely distributed. This distribution is facilitated by the existence of very
high speed local area networks (LANs) and wide area networks (WANs) which are
capable of delivering the Quality of Service (QoS) required by the application.

1.2 Background to Research

This thesis is concerned with some aspects of the design and management of large

scale, global distributed systems that can support many millions of users and a wide

variety of services. Telephony, videoconferencing, Internet access, television and

entertainment, etc are some obvious services which must be supported. Anything

which can be encoded in bits and transmitted across a network is considered a

potential service in this future distributed system. Note that in the context of this

research, a service is provided through the execution of an application and we use
the terms service and applications synonymously.

The work was sponsored partially by the Future Distributed Systems Group of
British Telecom (BT). BT initially outlined a number of major problems unique to

these future distributed systems and it was agreed that performance monitoring was
a major requirement in this new environment. The role of performance monitoring
is to monitor the performance of the system and, if necessary, reconfigure some

parts of the system. In terms of distributed applications, performance monitoring

specifically monitors the performance of the executing application using the QoS

defined by the user at runtime. The performance is considered unacceptable if the
QoS is not satisfied. Performance monitoring must consider both what aspects of
the performance are to be monitored and also how this can be realised. The system

must also allow for the application to be partially reconfigured (which will typically

mean that underperforming classes are substituted) while it is running.
From an early stage it was clear that performance monitoring could not be

considered in isolation from the rest of the environment. For instance, performance
monitoring relies on knowledge of how distributed applications execute. Thus in

considering performance monitoring, assumptions and proposals had to be made

Introduction

regarding the runtime environment of this distributed system; these are discussed

in this thesis. It should be noted that because research into this type of distributed

system is very new, there was no body of knowledge on which to build. Thus, all the

work for this thesis has broken virgin ground, drawing on good practice and design

used in related system software.
The reader who is familiar with distributed systems will be aware of the contri-

bution COM (Component Object Model), OLE (Object Linking and Embedding)

and DCOM (Distributed Component Object Model) which are Microsoft's coun-
terpart to CORBA (Common Object Request Broker Architecture) [42] have made
to the development of distributed systems in recent times. CORBA is a standard
for distributed systems defined by the Object Management Group (OMG), based
loosely on an object based client/server paradigm. The main aim of CORBA was
to define a distributed platform which provided transparency of hardware, software
(programming language and system software) and location between client and server
objects. A feasibility study carried out prior to the start of this project indicated
that while CORBA had many strengths, it was not a suitable platform for a large

scale, global distributed system [381. This is also the view held by BT [32].

1.3 Environmental Constraints

A Grid Performance Software (Gri'PS) has been designed, developed and tested.
It is written in Java and requires a JRE version 1.3 or higher to run. This soft-
ware has been used to create experimental results to compare and analyse different

performance monitoring architectures. GriPS simulates a large global distributed

system by using the minimal, maximal and average delay between different location

around the world. These connection data were originally collected, eight times a
day (at Olam, 04am, 08am, 10am, Olpm, 04pm, 07pm and 10pm) with the help of
an automated ping command to the following Internet Domains:

Introduction

charity

web. mit. edu

www. arab. net

www. china. com

www. fho-emden. de

www. japantimes. co. jp

www. latimes. com

www. ncl. ac. uk

www. ru

internet. vsnl. net. in

www. acm. org

www. canada. com

www. csu. edu. au

www. indiaworld. com

www. kaau. edu. sa

www. man. ac. uk

www. ox. ac. uk

www. southafrica. net

www. state. ny. us

www. uchile. cl
www. whitepages. com. au

www. state. tx. us
www. washingtondc. gov
www. yahoo. com

4

However it was soon discovered that the information collected was not suffi-
cient, because no information about the delay between these location were created.
CAIDA, the Cooperative Association for Internet Data Analysis collects, monitors,
analyzes, and visualizes several forms of Internet traffic data concerning network
topology, workload characterization, performance, routing, and multicast behavior.
These analyses serve a variety of disciplines/ purposes, including research, policy,
education, and visualization.

As such the data used in this research was collected as part of CAIDA's skitter
initiative, http: llwww. caida. org Support for skitter is provided by DARPA, NSF,

and CAIDA membership.

Introduction 5

For the example in Chapter 7 four machines with the following specifications are
used.

real specification of the ma- Simulated IP Location of Simulated

machine chine address machine

name
forquet HP model C3000 (PA- 128.8.7.4 College Park, 'MD, US

8500 CPU), 2GB mem- (University of Mary-

ory, O/S: HP-UX 11.00 land)

ossi Pentium 450Mhz, 216.168.227.250 Herndon, VA, US

256MB memory, Win (Verisign)

NT4.0

garfield Sunblade 150) Ul- 203.181.248.27 Tokyo, Kanto, JP

traSparc Ili 650Mhz, (APAN)

256Mb memory, Solaris

8 (108528-16)

sienna Sunblade 150, Ul- 193.0.0.11 Amsterdam, North

traSparc Ili 550Mhz, Holland, NL (RIPE)

128Mb memory, Solaris

8 (108528-16)

1.4 Outline of thesis

The present work is organised as follows:

Chapter 2
Describes the requirements for service-based computing and the different per-
spectives a user, service provider and a developer will have. Furthermore it

covers design problems in future distributed enwonments. It demonstrates
how an object-based application can be distributed over a vast amount of ma-
chines within a large global distributed system. Furthermore several options
are given to search for these objects. Additionally it is explained how these

remote objects are finally put together to build one service-based application.

Introduction

Chapter 3

6

Covers the architectural design for performance monitoring and reconfigura-
hon. Out of many possible solutions where in the distributed system the

performance monitor is located, three solutions are being introduced. Finally

this chapter explains what these performance monitors will have to measure
and the expected differences between the architectures. It will not be possible
to choose one of these models and announce it to be "the best", since it de-

pends strongly on the individual conditions, like the type of application, the
level of distribution and other environmental parameters. The reason for the
different performance monitoring architectures is to find an appropriate archi-
tecture for an application. It is to predict that not all three models behave in

the same way.

Chapter 4
Is all about estimating the execution time of a distributed application, which

will allow an early detection of a performance problem during execution. This

idea is evolved stepwise from a sequential to a parallel executing application.
Finally an algorithm to optimise the object distribution is developed.

Chapter 5

Describes the simulation model which is written in Java, requires a JRE version
1.3 or higher to run, and simulates a large distributed system. First the graph-
ical user interface is described with all its features, secondly the underlying
technology.

Chapter 6
Uses a Case Study about e-learning to create results which allow to compare
the different architectural models.
At the end it is described how the different models react in case of a failure.

And how they reconfigure the application.

Chapter 7
Finally, in the last chapter, the conclusions and further research are given.

Chapter 2

Future Distributed Environment

2.1 Service-Based Computing

A traditional application need to be bought, installed, updated and maintained by

the user. On the other hand service-based computing is a new computing paradigm

where an application is not sold, but made available for remote usage. It is executed
from all over the world on the machines where it is installed. A service-based

application comprises several perspectives. The user who wants to use the service,
the service provider who advertised and sells the service, a location broker who
finds several object providers, each of which own one or more objects, which build

together the service. When viewing a service-based application it is to bear in mind
that each of these roles have a different point of view.

The user's perspective The user sits on his/her own PC and uses the service-
based application only when needed. S/he has no knowledge about the location of
this application and has the advantage that the latest version of service is always
available. As long as the appearance and the compatibility, to earlier versions, stay
in a way that the user can easily adjust to these changes, the user will have all
the benefits. However when these conditions are not fulfilled the user might get
disappointed and does not want to use this service any longer. One of the main
advantages for the user is the fact that s/he only has to pay for the time the service
has been used. Very much the same as we use a telephone service nowadays. In

general the user , A-ill get the impression that every program would be installed on
the same machine and will not be able to recognise that in reality every service can

7

Future Distributed Environment 8

be located at a completely different place. The management of such a service-based
application is completely transparent unless there is a fault, from where it is not

possible to recover, in this case the user would get an error message.

The service provider's perspective The service provider constructs out of sev-
eral widely distributed objects a service, whereby the objects remain on the server of
the object provider and a location broker is responsible for finding all these remote
objects. The service provider only realises the connection between these objects.
These newly combined objects build a software as a service. The service provider
collects the cost for the use of every single object and every network connection,
adds a service charge for its own so that the user then will have to pay only for the
time this service has been used.

The location broker The location broker is responsible for finding the location

of specified objects on any object provider around the world. The location broker is
being used by the service provider who assembles out of different objects a service
as well as by the developer of new objects to allow interaction with other objects.

The object provider's perspective The object provider is not able to see the

overall picture of how these objects are being used. On the server is a functionality

which is able to collect information how long each object is being used by whom
and how much this provider is able to charge for it. The objects provided are being

advertised at a location broker together with their interfaces, so that developers and
service providers are able to use objects from other providers to create a particular
functionality.

The developer's perspective The developer of an object, which is specially
developed for such a distributed application, will have to take care that each object
can be executed remotely. The interface has to be precisely specified to allow other
parts to interact and to use objects developed from different teams. The advantage
is that each object can be updated separately as long as the new version is fully

compatible with the old version. The developer will also have to bear in mind that

some kind of monitoring will be installed between every possible remote call.

Future Distributed Environment 9

Issues Needed for Service-Based Computing

A service-based application needs the following issues paramount in their develop-

ment compared to a traditional centralised application.

o security

* accounting

* naming

9 location management

e network configuration

9 fault management and

* performance monitoring; including scheduling-related issues

Security When distributing an application and running software on remote loca-

tions security is a big issue. There might be a risk of harmful attacks on the remote
machines. These attacks might have the form of eavesdropping, masquerading, tam-

pering and denial of service. Cryptography provides the basis for the authentication
of messages as well as their secrecy and integrity; carefully designed security proto-
cols are required to exploit it [10]. A policy based specification, e. g. used in Ponder
[11,12,13] gives a way to control the access and specifies what activities a subject
is permitted or forbidden to do, to a set of target objects. However it is very hard,

if not impossible to ensure a system is secure in the sense that no intruder can find

access to this system. A very secure machine would be a standalone machine with-
out any network connection, where nobody has access and it is powered by its own
source. It is incidental that security measurements do not only avoid unauthorised
access but also establish how to deal with an intruder once it is detected. Neumann

et al [36] introduces a way to allow a network administrator to realise when an
intruder has accessed the system, and follow every step the intruder is doing.

In addition, the system might need a protection against Spam. An increase

of network traffic needs to be detected and dealt with. E. g., in case the network
connection is intensively used for all kind of messages, just for the sense of decreasing

the amount of traffic able to be transferred over this part of the network.

Future Distributed Environment 10

Another aspect of security is a form of self harm protection. If the system itself
is malfunctioning, this needs to be detected and dealt with.

The aspects of security are not considered in detail in this thesis, and will be a
subject of further work.

Accounting To execute an application as a service in a distributed manner, the

way the charging for the application as well as for the resources used are operated
will have to change. In service-based computing the user will be charged in a 'pay

per use' basis. The charging will operate in much the same way as charging for

telecommunication services, in that customers will receive an itemised bill.
A similar accounting system existed already in the sixties in the hight of main-

frame computers. At this time computational power was limited to few powerful
machines at the time, and the user had to connect for his/hers computation. Ob-

viously this computation was not for free and different accounting systems were in

operation. Diamond et al [14] describes different billing systems used for mainframe
computations. Some systems billed the user with a flat rate or for the connection
times. Other used billing schema's for the transaction or the resources used.

Naming and Location Management For service-based computing it is an im-

portant factor to find the remote locations of the services involved. This creates
a major problem especially in widely distributed systems. It is crucial that every
service can be uniquely identified, either by its name or by its functionality. How-

ever the naming only solves one problem to find a remote location. After identifying

exactly what object we are looking for, the location where it resides has to be found.

Network Configuration A service-based application is likely to be distributed

over different types of networks. Every single network will have to be configured
in its own way. As King et al [25] defines, to name but one, this configuration
management exists to collect and monitor configuration information so that the

effects of changes in hardware and software can be managed. This allows re-routing
in case of failures. Furthermore all these networks need to interact with each other.

Fault Management Fault management involves a five step process. First the
fault needs to be detected, and located. The location of the fault can result in a
restoration of the services. A solution to avoid the fault needs to be found, e. g. an

Future Distributed Environment 11

alternative service will be used. Following the location and restoration the root of
the problem need to be identified. Why did this fault happen? Is there any way to

avoid that this fault will happen again? Finally the problem needs to be resolved.

Performance Monitoring and Scheduling Performance monitoring is an im-

portant requirement for Quality of Service. Since the distribution of objects is

supposed to be transparent for the user any kind of delay in the interaction of these

objects need to be kept to a minimum. To achieve a control over these interac-
tions the performance needs to be monitored and in case of under-performing a
reconfiguration needs to be triggered.

Crucial to the above is tasks/object scheduling. A large number of scheduling
techniques with underpinning theoretical foundation exist. Key references include
[37,29,31,24,6]. Chapter 4 deals with these issues and its relation with our
performance monitoring techniques.

2.2 The Structure of Distributed Service-Based

Applications

In describing distributed applications, it is important to differentiate between the
terms classes and objects. A class can be described as the template for an object; it
defines the code (in the form of methods) and data for the object. The object comes
into being (is instantiated) when the class code is executed. The instantiation of
an object allocates memory for the data defined by the class and thus allows the

object data to be manipulated. The relationship between class and object is similar
to the relationship between program and process. Where the program represents
the source-code and the process the execution of this code. In this thesis the term

object is used only when the execution of classes are being discussed.
It was stated earlier that in this distributed environment applications are built

using existing classes, wherever possible. Furthermore, the classes can be widely,
indeed globally, distributed. Figure 2.1 shows one way in which a distributed appli-
cation can be viewed. In this Figure it is assumed that these classes are located at
6 different addresses in this distributed environment and thus in this instance the

application is widely distributed. Table 2.1 shows the distribution of the classes.
It can be seen from Figure 2.1 that the execution of the classes comprising the

Future Distributed Environment

Class Ltvel2l

FClass Level 11
method II(
Level2l oLeve]21=

new(Level2l)
oLevel2l. method2l()

Class TopLevel Leve122 oLtvel22=
new(Leve122)

main....
Level II ol-evel I I= oLevel22. method22()

new(Level II

oLevel I I. methodl 1()
Additional Supporl

Level 12 oLevel 12=
new(Level 12

oLevel 12. method 12()

Class LeveI12

Additional
Tu:

p: polr-t
71

methodl2f
Leve123 oLevel23=

new(Level23)
oLevel23. method23()

Leve]21 oLevel2l=
new(Leve]21)

RMI Support
Stubs, Skeleton

Qos Interface

Performance Monitorm. -
Interface

Charaino Interface
00

Persistence, Consistency,
Concurrency Support

header of class calls

oLevel2l. method2l()

Addi onal Support

method2l (
Level3l oLevel3l=

new(Level3l)
oLeve]31. method3l()

Level33 oLeve]33=
new(Level33)

oLevel33. method33()
Class Level3l I

method3l (

I Additional Support I

Class Leve122

method22(
Level3l oLevel3l=

new(Level3l)
oLevel3 I. method3 I ()

Leve132 oLevel32=
new(Level32)

oLeve132. method32()

Additional
TUPP70

Class Level23

method23f
Leve133 oLevel33=

new(Level33)
oLevel33. method33()

Leve132 oLevel32=
new(Level32)

oLevel32. method320

Additional
iu---pPO)TI

I Additional Supporl I

'Class Level32 f

method32(

I Additional Support I

F--- --
Class Level33

method33(

I

I Additional Support

Figure 2.1: The structure of a dz*stn*buted application

12

Future Distributed Environment

Figure 2.2: The stT-ucture of a distributed application object based

13

application is controlled by a single class, which conceptually sits at the top of

a class hierarchy; in this example the class is called TopLevel. The class TopLevel

makes calls to methods associated with two remote classes (Classes Level,, and class
LeVeI12)- Similarly, these classes make calls to methods in other remote classes, and

so on.

machine class name
I TopLevel
11 Level,,, Level2l , Level3l
III Leve122, Leve132
IV Level12
V Level23, Leve132
VI Level33

Table 2.1: class location

tree pos. class name machine
A TopLevel I

B Level,, 11

C Level2l 11

D Level3l 11
E Level32 VI

F Level22 III

G Level3l Ii

H Level32 III

I Level12 IV

i Level23 V

K Level33 VI

L Level32 V

M Level2l 11

N Level3l 11

0 Level33 VI

Table 2.2: scheduling
During runtime each class allocates memory and as such becomes an object.

11 vi 11 111 vi v 11 vi

Future Distributed Environment 14

There are two models for executing the remote method calls. Either the appropriate
class code can be downloaded to the local (invoking) machine, using for example,
serialisation techniques [17], and then execution takes place locally. Serialisation

works by converting objects - code and data - into byte streams and then sending
them over a network connection. Alternatively, execution can take place at the

remote machine where the object is located, using Remote Nlethod Invocation (RMI)
(e. g. in procedure terms Remote Procedure Calls (RPQ techniques and the results
are returned to the calling object when execution has properly terminated.

The application introduced in Figure 2.1 can be illustrated as a tree, to demon-

strate its runtime behaviour (see Figure 2.2). The capital letters show the position
of each object in the tree in preordered enumeration. Whereby the TopLevel class
becomes the root-object (in the following also called the root-node) and is situated
at position A. The root-object might call both its children at position B and I in

parallel. It can be seen that out of class Level2l actually two objects are instanti-

ated, one at position C and the other at position M, both of them are located on
machine H. Table 2.2 shows such distribution.

To be able to call a remote method every remote class is instantiated on the

remote machine and registered with a regZstry. When the local object calls a method
from a remote object it gets the handler from the remote registy and is then able to
invoke this remote method. (see Figure 2.3)

network distance

remote object
1.) register

object

registry .02.) req uest-

3.)return local object
remote handler

4.) remote method call

Figure 2.3: A remote method invocation

We are considering the remote execution model because there are a number of
disadvantages associated with the execution locally and additional advantages to
be gained from the remote execution model. A summary of these advantages and
disadvýintages for the local execution can be seen in Table 2.3 and for the remote

Future Distributed Environment 15

execution in Table 2.4 each of them are explained in the following.
The traditional way of executing an application on one local machine, as opposed

of executing it directly on the remote location, has the advantage that neither net-
work delay nor the availability of remote objects will influence the execution. When

an object is executed on a remote machine and the results are transferred back to
the invoking object the network in between these two objects will delay the arrival
of the results. However whether this delay is acceptable depends on the amount of
delay, which is dependable of the network speed and the congestion in this part of
the network.

Depending on the size of the class code compared to the size of the results created,
it can be faster and more efficient to execute a class either on the local machine or
on the remote machine and simply transfer the smaller part over the network. In

case the size of the results is big in contrast to the size of the class code, the class
code would be downloaded to the local machine and execution takes place on the
local machine. On the other hand when the size of the results is fairly small it is
feasible that the execution takes place on the remote machine, especially when the
distance to the invoking class is high and the network speed low.

A disadvantage of the local execution will be when a class uses features not
available on the local machine. For example a java class needs a virtual machine
running on the machine where it is executed. In case the virtual machine is not
already installed it has to be done locally and somebody has to have the knowledge

and the rights of how to install it. For example, a user who is only interested in the

results, created from the remote class, has not necessarily the administration rights
to install any software on the local machine.

Also it is very difficult to measure how often a piece of software has been executed
once it is installed. Traditionally this problem is overcome by the fact that the

user will have to buy the software, install it on the local machine, and then use it

unlimited times. However the disadvantage of this method is the fact that a user
might spend lots of money on a product which does not completely fulfil his or her

requirements. The remote execution of objects changes the way the charging for

resources used is operated, for instance the cost of using the object itself and the

cost of the resources required for execution. In particular, they will not buy software
outright or pay a renewable license fee to gain access to resources, rather they will
be charged for the service used on a 'pay per use' basis. The charging will operate
in much the same way as charging for telecommunication services, in that customers

Future Distributed Environment 16

will receive an itemised bill. Thus the distributed system must automatically collect
billing information (this is shown as 'Billing Support' in the Additional Support in

Figure 2.1).

A further disadvantage originates when a new version of a locally installed appli-

cation becomes available. The maintenance of such an application will take time and
uses again the network resources. An update or even a complete new version will
have to be downloaded. All these disadvantages are avoidable when the application
is maintained remotely.

The additional advantages of a remote execution is when the execution of an
object needs specific hardware only available on the remote machine. For example
an object which has to convert a Video Home System (VHS) video tape in a" mpeg"
file format will need to use the features of an VHS Video Cassette Recorder (VCR).
The VHS tape and the VCR is not available on every machine in the network. After

the conversion has taken place this video file would be in a format which can be

read without the need of the hardware and therefore is portable to be viewed on
any machine.

An application which needs a large amount of processor power will slow down the

processing speed of the machine where it is executed. However when this application
is distributed all over the network, every part would use a tiny bit of the processing
power on each machine, and the overall load will not be disturbing.

Future Distributed Environment

LOCAL execution
advantages disadvantages

" no network delay during execu- * the time to download an applica-
tion tion can be unacceptably high

" when the local machine is running 0 installation may be required and
the application is running security becomes an issue

" depending on the application the 0 it is difficult to control access to
time to download an application the class once a copy has been

can be less than the transmission downloaded. For instance, class
of the results static variables which are shared

between all instantiated objects
for a class are more difficult to

control.

* the user will have to update and
maintain the application regu-
larly

Table 2.3: The Advantages and Disadvantages of local execution

Future Distributed Environment 18

REMOTE execution
advantages disadvantages

" the object may require hardware 9 delay during execution
which is only available where it is

* depends on the availability of the located
remote machine and the network

" the processing load is distributed connection during the whole exe-
cution

" easy access control

" the user has no maintenance re-
quirements to fulfil

" depending on the application the
time to transmit the results might
be less than to download the

whole application

Table 2.4: The Advantages and Disadvantages of remote execution

2.3 Distributed Environment for Software Devel-

oper

2.3.1 Essential Requirements in a Distributed Environment

To understand the problems of developing distributed object-based applications it
is useful to consider object based applications where all the class libraries are stored
locally. Typically a development environment tool such as Jbuilder [23] will be

used. Among other things the developer will need support from the development

tool to browse the class libraries in order to obtain precise information relating to the
functionality and interface of the class. If a distributed environment is considered
then clearly the class libraries will be distributed, possibly over the entire globe.
Thus it is not practical for the developer to find class details by browsing. Instead

the developer must find classes by searching. In some instances the developer will

Future Distributed Environment 19

know the name of the class, in which case the search is carried using the class name.
However, a more realistic scenario is that the developer will know only the function
that the class must provide. In this instance the search must be carried out by

using the name of the function required. For instance, the search may be for a class
providing a soTt function. In summary, classes other than local standard library

classes will typically be found using the class function search facility in contrast to
searching by class name.

In searching for classes, either by name or function, there are two related prob-
lems to be solved. One relates to the naming of the classes (or the class function)

and the other relates to structuring the distributed systems to facilitate the search.
These two problems are considered below.

2.3.2 Class Names and Class Function Names

Classes must be given globally unique names when they are made available for

use. Clearly replications of a given class must have exactly the same name. These

replications will exist at various locations identified by some addressing scheme, for

instance the one being used by the Internet. Note that the address is not part of
the class name, and therefore cannot be used in combination with the class name
to uniquely identify a class. Thus to find a class in a distributed environment, only
the class name is used in the search. The address, together with the class interface
details, is the information returned by the search. The need for unique names for

classes is widely recognised and solutions are discussed in e. g. [t, 41,44] to name
but a few.

In contrast, the name of a class functionality will not be unique because it is

expected that more than one class will provide the same identical functionality.

For instance, two different classes may provide a sort method. It is important that

classes providing the same functionality are given the same name in reference of their
functionality. This could be achieved by using a function classification scheme. One

such classification scheme is shown in Table 2.5. The structure of this classification
is similar in principle to the Domain Name Service (DNS) used in the Internet [43].

Future Distributed Environment 20

Application

or Object?

General Detail I Detail 2 Detail 3 Number

Financial

Entertain-

ment
Gardening

Race

Application Leisure Games Snap

Card Bridge Different

bridge

card game

applica-
tions

Poker

etc
Adventure

etc
Medical

Design

Sport

Statistic

Quick Sort
Object Mathe-

matics

Algorithm Sort Merge Sort Different

Merge Sort

objects
Bubble

Sort

Calculat-

ions

Multimedia

etc

Table 2.5: A possible classification / numbering containing the functionahty

The first characteristic of this classification describes if the element is an object

Future Distributed Environment 21

or a whole application. The second characteristic describes a general specification.
In the example shown in the table there are four different kind of applications and
three different kind of objects. The applications are divided by functionality: fi-

nancial, leisure, medical, design -application. The objects are divided into sport,
mathematics and multimedia -objects. The next characteristic describes the next
level of detail. Whereby the leisure application is divided into Entertainment, Gar-
dening and Games. The mathematical object is divided into statistics, algorithm
and calculations. The second level of detail divides the games in the category of
leisure application into race, card and adventure -games and the object mathematics
algorithm into sort algorithms. The third level of detail then divides the card games
into snap, bridge, and poker games as well as the sort objects into quick, merge and
bubble -sort algorithms. The last characteristic consist of a number to differentiate
different bridge card games and to differentiate different merge sort objects.

Before a class is made available for public use, it would be classified (allocated

a name to specify its functionality) according to the classification shown in Table
2.5. Clearly the actual classification would have to be standardised and adminis-
tered by a centralised body. However, authority could be delegated for sub-classes,
perhaps to the industries which typically produce software for this sub-class. For
instance, the world financial institutions could assume responsibility for standard-
ising the classification of functions relating to financial applications. The function

classification information could be encoded using markup description languages such
as eXtended Markup Language (XML). XML provides a way of describing the at-
tributes and content of information and is applicable to all types of information
including that held electronically. For example the Metalab group [30,33] uses
Metadata, which is a particular XML Document Type Definition (DTD), as a way
of cataloguing free software for LINUX. Developers catalogue and register their soft-

ware and subsequently users looking for LINUX software can search the register. In

the past it was difficult to locate LINUX Software, because although there was a
huge amount of free software available, there was no standardised way to find it.

2.3.3 Model to Structure Class Information to Facilitate
Searching

Having considered the problems of class naming and functional classification, the

, vx-ay in which this information is structured/ distributed to facilitate searching must

Future Distributed Environment 22

now be considered. Ultimately the objective is to provide a structure, which allows
classes matching a given name/ functionality to be found. There are a number of
ways in which this can be achieved and a simple taxonomy is to consider approaches
where the class summary details are stored separate from the actual class code and
where they are one and the same information.

2.3.3.1 Class Code and Class Summary Details are Separate

With this scheme the class code is made available by the developer and is typically

stored on a server (hereafter called a class-server) at the developers site. Class sum-

mary information (name function, address, etc) are registered with one, or more
location broker which exist at different sites. There are typically a small number
of location brokers and these will be shared between distributed systems. A search
engine is used to find the appropriate class at a location broker in much the same

way as search engines are used currently. The search engine is likely to be integrated

with the application development tools. Assuming that at least one location broker

has knowledge of the class then the summary information together with the class

address is returned and the development tool now uses this information to commu-

nicate directly with the appropriate class-server. The user can now browse the class
documentation as if it was stored locally.

With this approach the main problem is in deciding how to structure and dis-

tribute the location broker. One, centralised location broker is not feasible, for a

number of reasons. The reliability of centralised systems has always been a draw-

back. Moreover it would clearly represent a bottleneck because all accesses would be

through this one broker. It is possible to replicate the broker, over a number of sites

and this would solve these problems, however, it is unlikely that a location broker

would have the resources to store (and retrieve) details of all classes, efficiently. The

maintenance of replicated data is an additional problem. All the replicated location

brokers will have to have a consistent view of all available classes. Figure 2.4 shows
how a replicated location broker could be implemented.

Future Distributed Environment

/7
\

LOB = LocationBroker

Figure 2.4: Replicated Location Broker

23

The only realistic solution is to consider the location broker as a logical entity,

which can be partitioned and distributed throughout the distributed system. This
is how the Home Location Register (HLR) is defined by the Global System for
Mobility (GSM) standard [19]. The partitioning could for instance be by function-

ality, according to the classification discussed above. For example, all entries for

the financial classification could be stored in one place. The cost of providing and
maintaining this location broker could be borne by the professional body responsible
for maintaining the classification scheme and recovered by charging for access to the

Future Distributed Environment 24

information.

2.3.3.2 Class and Search Details are Integrated

With this approach the various sites can be viewed as a logical hierarchy as shown
in Figure 2.6. A class-server is resident at every site (network) in much the same

way as a web server. In Figure 2.6 these class servers are located at the bottom of
the hierarchy. For instance, the De Montfort University (DMU) Class-server is on
the DMU network and contain the class details made available publicly by DNIU-

Clearly the class servers are physical devices in the structure.
The class servers are grouped according to their geographical location and one

member of the group is nominated as the group leader. In Figure 2.6 for instance,

the DMU class-server is the nominated group leader for the Leicestershire region

which is shown in the shaded box in Figure 2.6. Note that Figure 2.5 gives a more

abstract view of this hierarchy.

East
Midlands

Leic,

DIMU

Figure 2-5: logical class server hierarchy in physical network

Future Distributed Environment

Europe
group leader

Germany
group leader

c
LU K

group leader
Spain

group leader
A

25

France
group lead

-A

Ireland England Scotland
)up leader roupleader group leader

ast. idlanýds
group leader group leader in one

A- level of the hierarchy

Leicester
rou g

Cott

gi
-p

Ilead: er)

C City Council LE Uni
Cliass server Class server

Ii
II

Workstation

IBM Compatible

Figure 2.6: hierarchy of class serven

The function of the group leader is to provide summary details of all the classes

available in the group. Thus the Leicestershire group leader has knowledge about

all classes stored in the City Council, DMU and LE Universities. Note that the

group lea-der is really an extra function provided by the class server, and clearly

not all class servers will be group leaders. Any number of levels can be created

Future Distributed Environment 26

in the hierarchy and a group leader must be elected for each group, at each level.
Essentially all group leaders provide the same function, albeit at different levels of
the hierarchy (for a geographical region). So for example, the England group leader

contains summary information from all class servers in England. Note also that the

group members at the level directly below will nominate the England group leader.
If this is followed through to the bottom clearly the device supporting the England

group leader function will also support the group leader function at the level below

etc, right back to the bottom level. Thus the England group leader function will
reside on a class-server located somewhere in the England region.

To understand how this supports the searching function consider what happens

when a class search is initiated by a developer. Note that developers are logged onto
hosts attached to networks. The search will begin at the local class server. Assume
for instance that a developer attached to the DMU network initiates the search. In
this instance the local DMU class server is contacted first. If the class is not known
here then the search continues one level up with the Leicester Group Leader. The
Leicester group leader will search its summary information and if the class details

are not found then the search continues at the next level up, which in this instance
is the East Midlands group leader. However if an entry for the class is found, it is

returned to the host which initiated the search. The host can then communicate
directly with the class-server.

As the search ascends the hierarchy, the search is covering a greater geographical
area. In theory it is possible to provide a hierarchy which covers the world, but
this may not be practical. For instance the amount of class summary information

which the world group leader would have to store would be excessive. Furthermore,

the communication costs increase as the hierarchy is ascended. However there are
a number of ways in which these problems can be solved or at least their effects
minimised. For instance, separate hierarchies could be provided for each major
function classification (discussed previously). Clearly separate group leaders would
exist for each of these functions. The various function group leaders could be located

on different class servers. This has the advantage of spreading the processing load

and the number of levels required in the hierarchy will be reduced. One major
advantage of the hierarchical method is that it is possible to limit the extent of the

search. It is possible for instance to limit the search to at most 2 levels, or to a
geographical region, for instance Europe. Hierarchies are similar to all tree like data

structures and therefore have many other advantages. Indeed Coulouris [10] states

Future Distributed Environment 27

that hierarchical algorithms/structures are the only ones which are scalable.

2.3.3.3 Summary

This section reviewed two very different ways in which the class information could
be structured in the distributed system to facilitate searching. Other structures are
possible. The main objective is to choose a structure which will always allow class
information stored in the distributed system to be found, efficiently.

2.4 Distributed Environment for Application Ex-

ecution
As was mentioned earlier a distributed application comprises a set of distributed

classes. Typically classes make calls on methods contained in other remote classes
and thus the application can be viewed as a hierarchy; Figure 2.1 showed such a
hierarchy. Before the application can be executed the classes comprising the appli-
cation must first be located and then bound together. By binding in this context

we mean the process of finding where in the network the classes are stored (and

is defined as Network Address Binding (NAB)). There are two obvious approaches
to binding. Binding can be carried out when the user invokes the application just
before the application begins execution. Alternatively, binding can be carried out
during execution. These two approaches are discussed and analysed below.

2.4.1 Binding

2.4.1.1 Network Address Binding at Invocation Time

Static binding is carried out just before execution of the application begins. Such

as setting up a virtual circuit in a connection oriented network such as ATM [1].

In ATM, for instance, the connection is built before any information is transmitted

and the user is given the opportunity of declining the connection (or renegotiating)
if the application QoS cannot be guaranteed.

Clearly the name of all classes comprising the application must be known and this
information can be extracted from the class source code, starting with the class at
the top of the application hierarchy. The top class is typically the name of the class
that the user provides for the runtime system. In Figure 2.1 for instance, the Class

F`uture Distributed Environment 28

TOPLevel makes calls to classes Level,, and LeveI12. Thus it needs to be identified
if classes Level,, and LeveI12 reside on the local machine otherwise the location must
be found in the distributed system. A paTtial bind table must be constructed by the

cla, ss-server for the class TOPLevel with entries for class Level,, and class LeVeI12

and their corresponding addresses. Class-servers for the second level classes (in this

example class Level,, and class LeVe-112) must be accessed next and the same process
of constructing a partial bind table must be executed. This recursive process must
be carried out until addresses have been found for all class references, at all levels.
As a result of this binding process every class in the hierarchy will have identified

all the remote class calls and corresponding class addresses, before the execution of
the application and this information is stored in the set of distributed bind tables.

Note that the network conditions, just before the choice between each of the

candidate classes is made, are known and, if there is a choice of candidate classes
(replications stored at different locations) then the network conditions can be used to
help in the selection process. However, it should be remembered that network condi-
tions can change rapidly, thus it is questionable whether this information should be

used in the class selection process, particularly if the application has a long execu-
tion time. One disadvantage of this scheme is that it delays the start of application
execution. Furthermore, all class references must be resolved, but at run time not
all classes are necessarily invoked. Thus this approach is potentially inefficient.

Note also that it is possible to bind at compile time. However, the disadvantage

of this approach is that the time lapse between binding and execution may be long,

meanwhile the class may have been removed from the location. It would not be

practical to maintain bind tables to reflect the movement of classes.

2.4.1.2 Network Address Binding at Run Time

With this approach classes are located and bound at runtime. Execution of the

application is started and a search for a class takes place only when it is invoked.

The actual process of finding the class locations however is identical to that used in

NAB at invocation time.
NAB at run time has a number of advantages. Firstly, only classes that are

actually invoked are located. Secondly, because classes are found just prior to their
invocation it is possible to take current network performance into consideration when

choosing bet,, N-een copies of the same class located in different places. However. a

Future Distributed Environment 29

major disadvantage is that the application execution is interrupted -while classes are
found. It is not possible to bound (predict) this extra delay and therefore it is not
possible to guarantee the application Quality of Service (QoS) requirements.

Problem Handling in Network Address Binding Whenever the location of
a class has to be found to bind its network address there exist a problem if no
corresponding location is found for this class. Obviously a distributed application
will not function when one of the needed classes does not exist. In this case a
message has to be sent to the service provider. The service provider might find

another way of creating the service with the help of different classes with similar
functionalities, otherwise the user of this service will be informed and the execution
is cancelled. Furthermore the service provider will inform all involved parties within
its knowledge. These parties, for example, are all location brokers responsible for

this class as far as the service provider has knowledge about these brokers and class
servers previously providing this class.

2.4.1.3 Summary

Because of the limitation with all of these structures, we integrate NAB at invocation

time and NAB at run time. First an initial distribution is created at invocation time
just before the start of the execution, and in case of any failure a reconfiguration is

triggered. This reconfiguration initiates a new search and network address binding
during execution.

Having defined how the searching for objects can be implemented and how they

can be brought together to built one entity, we need to look what other aspects are
needed for service-based computing.

Future Distributed Environment 30

2.5 User Requirements Through Contracts

Every user has different requirements. One might want a fast execution time and
is willing to pay for this service, whereby another user prefers to get the service for

the lowest possible cost, which automatically results in longer delays.

User's requirements in service-based computing paradigm need to be negotiated

with the system through a contract in much the same way as that between utility

providers and customers. A contract is modelled by a specialised state transition
diagram [7] called a contract diagram (see Figure 2.7). The actions to be taken in

every possible state of affairs are defined in contract clauses, including the contract's
fulfilment, cancellatton and vZolation. Each results in another state of affairs coming
into effect, ultimately the termination of the contract. The clauses oblige, permit or
forbid each party to perform processes in terms of the contract, where permission and

prohibition are types of authorisation. The appropriate process may be instantiated

in terms of the contract and, when completed, results in a new state of affairs.
The ability of XML [45] to structure a document, and to tag its contend with

semantic labels, provides the opportunity to integrate policies and the process by

which they are enforced. For example Listing 2.1 is a fragment of a contract with a
user who might want to use Service A.

Future Distributed Environment

USER I Service Provider I Location Broker I Comoonent Provider

'ý"check if service choose service request * provided

from
rs

reject

find all
components

not available check
availability

V-

ý7 find new location

available --

ýafl components' reject request . 4No -, available?

make offer

accept

react

negative react

-Yes

31

Figure 2.7: contract diagram

Future Distributed Environment 32

<Contract> Service Contract

<Party> entity. role. party. ServiceProvider

<Permit> USER NAME

<Description> The user may request if Service A is available.

5 This service can be offered with different

requirements, like cost and speed factors

</Description>
<Fulfill> Service A </Fulfill>
</Permit>

10 <Oblige> choose from offers
<Description> The User shall either accept or not

accept the offers
</Description>
<Fulfill> react </Fulfill>

15 <Violate> negative react </Violate>
</Oblige>
</Party>

</Contract>
Listing 2.1: Fragment of a contract with a user who wants to use Service I

Ponder [11,12,1 `1] defines a declarative, obj ect-oriented language for specifying

policies for the security and management of distributed systems. Separating the

policy from the implementation of a system permits the policy to be modified in

order to dynamically change the strategy for managing the system and hence modify
the behaviour of a system, without changing the underlying implementation. Ponder

supports an extensible range of policy types, however only the two main important

policies for this thesis are stated below:

Authorisation policies are essentially security policies related to access-control

and specify what activities a subject is permitted or forbidden to do, to a set
of target objects. Any request made by a subject can be defined in terms

of an action on an object. A positive authorisation policy defines the action
that a subject is permitted to perform on a target. A negative authorisation
policy specifies the actions that a subject is forbidden to perform on a target.
Negative authorisation are supported by many security platforms and can be

Future Distributed Environment 33

used to temporarily remove access rights from subjects. This way the access
to a distributed service-based application can be controlled and managed.
Example:

inst auth+
subject
target <sortFunction>

action
5}

selection Procedure
\user\sort;
\unlimited;

choose (), execute();

Listing 2.2: Ponder Positive Authorisation Example

Members of the domain sort, which is a subdomain of user are authorised to
choose from a "table of contents" any function within the sortFunction domain

and execute them on the remote location.

inst auth-
subject
target <sortFunction>

action
5}

selectionProceduref
\user\sort;
\unlimited;
downloado, removeo, disable();

Listing 2.3: Ponder Negative Authorisation Example

Members of the domain sort, which is a subdomain of user are forbidden to
download, remove or disable any function within the sortFunction domain.

Obligation policies specify what activities a subject must do to a set of target

objects and define the duties of the policy subject. Obligation policies are
triggered by events and are normally interpreted by a manager agent at the

subject. These obligation policies can help to built a service-based application
because every possible action occuring during execution can be specified. As

such the runtime behaviour can be fully defined. Negative obligation poli-

cies are not equivalent to negative authorisations. The main difference lies in

the fact that obligation policies are interpreted by subjects while authorisation

policies are interpreted by access control components on the target host. Thus,

negative obligation policies act as subject based filters specifying actions that

managers 'must refra, in' from performing.

Future Distributed Environment

Example:

34

inst oblig reconfigure ý

on timeout (locationA. objectB);

subj ect s=PerformanceMonitor;
target <children> t =locationA. objectB. child

size =locationA. obj ectB. child. size
do for(int i=O; i<size; i++)f

locationA. objectB. child [1]. stop

locationB. objectB. start

10
Listing 2.4: Ponder Obligation Example

This policy is triggered when a timeout occurs for objectB at location A. The

PerformanceMonitor will stop the execution of all objects originally instanti-

ated by objectB at locationA and will restart objectB on the new locationB.

2.6 Summary

This chapter has introduced the different perspectives a service-based computation

can be viewed of. In addition it states the issues needed for service based applications
compared to traditional centralised applications. It introduces an example structure

of such an application and two ways to implement the searching for application parts
have been proposed. Once the distributed objects have been found their network

addresses have to be bound together to build one entity. Three different architectures
have been introduced to bind the network addresses. Finally it is stated how user
requirements can be specified through contracts to specify the requirements for the

performance monitoring introduced in chapter 3.

Chapter 3

Architectural Design for
Performance Monitoring and
Reconfiguration

3.1 Introduction

The performance of an application must be monitored during execution to ensure
that the required Quality of Service (QoS) is satisfied. Failure to meet the necessary
QoS will necessitate a reconfiguration (or partial reconfiguration) of the application.
This may occur, for instance, if a class server fails and a replication of the class
located at a different class server must be substituted. Thus performance monitoring

and reconfiguration are inextricably bound together. In the following we discuss

various architectures that can support program execution, performance monitoring

and reconfiguration.
We distinguish between two separate but related application performance moni-

toring activities that must be undertaken in a distributed environment. The Perfor-

mance Monitoring- Client (PMC), which invokes another class, must implement the

performance monitoring activity. In contrast, the Performance Monitoring- Server
(PMS) which is invoked, plays a more passive role and is merely expected to respond
to requests and instructions issued by the PMC. For instance the PMC must have

the functionality to interrogate the PMS server side, for example, to find out current
values of given parameters. Furthermore, the PNIC must be able to send commands
to the PNIS, for instance a, command to change the execution priority. The P-NIC

35

Architectural Design 36

can, in theory, be located anywhere. However, because the PNIS must be able to

respond to requests and commands from the PMC, clearly it is best that it resides
on the class server where it is executing. In this thesis, the PNIS functionality is
included in the Additional Support for each class. The Additional Support as
shown in Figure 2.1 contains information about the functional classification, location

of invoked classes and the PMS, since each PMS is only responsible for the execu-
tion of one particular class. A number of alternative architectures for the PMC are
presented below.

3.2 Centralised Model for Performance

Monitoring- Client

As mentioned earlier the classes comprising a distributed application are located

and executed at class servers throughout the distributed environment. One simple
way in which the PMC can be designed in this environment is to locate it at the host
that invokes the application; Figure 3.1 presents this arrangement. In particular,
it shows the PMC integrated with user host. The reason to place the PMC on the

user-host is, when the host with the PMC fails the whole application would fail.
In case this failure is on the user host s/he will notice and has to restart anyhow.
Another alternative is to have one or better two replications of the PMC, synchro-
nised with the original and able to overtake the whole functionality in a failure case.
There exist numerous techniques in the literature on how to mirror hard disks e. g .
Baek et al [5] has presented a hierarchical Redundant Array of Independent Disks
(RAID) architecture with multiple controllers. It can offer performance and reliabil-
itY without exhaustive disk utilization, thus annihilates the drawbacks of traditional
disk arrays.

Furthermore it can be seen in Figure 3.1 and Listing 3.1 that the user first

negotiates a service with a service provider. After this the two parties have agreed
on a contract the service provider contacts one or more location broker to find all
needed class locations. The found network addresses are bound together (NAB at
invocation time as described in section 2.4.1) and saved in a bind table. Then the

execution is instantiated by contacting and sending the bind table to the PMC on
the user host. This P. MC is responsible to control and monitor the execution of the

whole application.

Architectural Design

C)
E_J

Q.
I-

a) Ca,

2= (1)
ý; OU) 2!

ti)

a

[L
r- 0

-m

mO)

c

---------- - CD
0
(T
(D

LU
- (I)

CD

AA

CC

m

(n En c
0
cl

c 0
Cý

(1)

1 9)
11)
9)

4q

lvý

37

Figure 3.1: Interaction between the PMC and PMS M centrahsed model

Architectural Design 38

user -> negotiates with service Provider

service provider -> contacts location broker for all class locations

service provider -> starts Performance Monitoring Client on user' sLjhost
PMC -> monitors the performance within the distributed

execution
PMC -> controls the distributed execution

PMC -> gets locations for class name (TopLevel)

out of bind table or

10 if not any more available from the location broker

PMC -> sends request to the PMS responsible
for the TopLevel Class

PMS -> invokes the TopLevel object
TopLevel object -> when it calls the next class

15 (Class Level,, and LeveI12)

it asks the PMS

PMS -> forwards request to PMC

PMC -> extracts class names (Level,, and LeveI12)

of services to be called
20 PMC

-> gets locations for class names
(Level,, and LeveI12)

out of bind table or
if not any more available from the location broker

PMC -> sends request to the PMS responsible

25 for the Class Level,, on class server II

PMC -> sends request to the PMS responsible
for the Class Level12 on class server IV

and so on ...
Listing 3.1: Centralised Model Scenario

When taking the example application shown in Figure 2.2 the RINIC extracts
details of the TopLevel class from the bind table (class name and location) sends

a request to start the execution for the TopLevel class to the responsible PNIS on

class server I (using RMI techniques). The PNIS invokes the TopLevel object, which

starts executing. As soon as this object reaches the point where it would have to

Architectural Design 39

call objects Level,, and Level12 it sends a message to its EMS with this request. The
PMS forwards this request to the PMC which gets the location for these objects out
of its bind table. It then sends a request to the PMS responsible for class Level,,

on class server II and in parallel a request to the PMS responsible for class Level12

on class server IV. Both these PMSs will invoke the corresponding objects and so
on. In this way, all class invocations are made centrally by the P'NIC.

The PMC typically will be implemented as a separate program and thus will
run as a process on top of the operating system. Figure 3.2 shows a wide area

network environment in the form of a set of class servers interconnected via a mesh
of WAN routers. Note that the classes incorporate Additional Support which, as
stated earlier, includes the PMS. This interface augments the class with the ability
to respond to requests from the PMC for performance information. Figure 3.2 also
shows how the classes comprising the example application shown in Figure 2.1 can
be distributed across class servers. For instance one class server supports classes
011) 0211 031

- In this example, the classes for the example application have been

distributed over 6 class servers as shown in Table2.1, but clearly any pattern of
distribution is possible. Figure 3.3 gives a more detailed view of a class-server and

attempts to clarify a number of points. Such as the close connection between the
PMS and the object. The PMS is part of the class and communication from/to

other classes is under the control of the centralised PMC.

3.2.1 Advantages

The function of the PMC relates specifically to a single execution of a given applica-
tion. Thus the PMC has an overall view of the performance of the application and
thus can more easily assess whether the performance satisfies the QoS requirements

specified by the user at run time. Furthermore, failure recovery and maintenance

are under central control.

3.2.2 Disadvantages

. Much communication is involved; this can be seen visually in Figure 3.2. In par-
ticular, all classes must report back to the PMC when execution has finished (or

when there are problems). Clearly the communication overhead depends on both

the location of the classes relative to the PMC function together with the number of

performance messages which must be exchanged during execution. The invocation

Architectural Design 40

of classes is also inefficient because the class server issuing the invocation must filter
it through the PMC. In case the PMC fails and no replication exist, all information

will be lost.

class server I class server 11
OTop

ývel 0

os

EEth ernetb/ -t
III F-11 F

R

2
rM class server IV R Ftei

user machine
Roý! r

0
12 class server V

os R ei
0

2'ý
032

I

Rei

os Ro ar

os

class server III
Lý 10-

os

class server VI

os

OS = Operating System
PM-C = Performance Monitor Client Side

Router
OTop

Level
= th e Top Level Object wi ch isf irst ca Iled

Oil = Object Level 11 0 23 Object Level 23
0 12

= Obj e ct L ev el 12 0 31 Object Level 31
0 21

= Object Level 21 0 32
0 bj ect Level 32

0 22 = Object Level 22 033 0 bj ect Level 33

Figure 3.2: Centralised Architecture for Performance Monitoring

Architectural Design

class server 11

PMS PMS pý

os

to I to

from ýO ýO .
22 from 33 from

0 TopLevel via-PMC 0 12 via-PMC 0 22
via-PMC via-PMC via-PMC

Figure 3.3: ServeT- Side PeTformance Monitoring in Centralised Model

41

3.3 Distributed Architecture for Performance Mon-
itoring

It is also possible to design performance monitoring in a, distributed manner. Two

alternative designs are considered here. They differ according to where the PMC is

located and thus the overall responsibility of the PMC. In the first design the PMC

is integrated with the class, while the second design has the PMC function located

in the class-server (host). These are referred to as PMC on a per class basis (class

model) and per host (network) basis (host model) respectively and the implications

are discussed in the following subsections.

3.3.1 On a Per Host (Network) Basis

Figure 3.4 shows the interaction between the PMC and PMS for the arrangement

where there is one PMC for every class-server. Comparing Figure 3.4 with Figure

3.1 shows that the beginning of the execution follows the same schema, only this

time the service provider has to contact the PMC located on the class server I
directly. Listing 3.2 explains the sequence of events. Furthermore Figure 3.5 shows
the arrangement in a wide area network environment. In this situation the PMC

Architectural Design 42

runs as a process and the PMS runs as a thread. Note however, if there is only
one class server on a network (in much the same way as there is one -, N, eb server
on a network) then this can also be described as on a per Network basis. In this
instance the PMC co-ordinates the performance monitoring activity for all remote
class invocations issued by a class server. Figure 3.6 shows the class-server in greater
detail.

Advantages

Communication is necessary at only one level in the application hierarchy. Only

one PMC function is required in the class server. This allows the PMC function

to co-ordinate the sharing of the resources of the class server between the various

executing classes, according to the requirements specified by the user. Note that the

operating system could be enhanced to provide this function. As long as there is

no reconfiguration required, the monitoring will not create any additional network
traffic.

3.3.1.2 Disadvantages

The major disadvantage of this design is that the PMC has to co-ordinate classes as-

sociated with different applications. No global knowledge relating to the application
is available. F'urthermore the first host accommodating a PMC in this application
hierarchy creates a weak point for failures. When this machine fails there is no re-

configuration possible unless this PMC is mirrored to at least one different location,

so that in case the first machine fails the mirrored PMC can take over the monitoring

smoothly.

Architectural Design

(D

CL
0

0
cc
3 L)

(D
x Cl)

W
Cl)
M

(D

a- 0)

0 CL

Z
cr
2

110

00 E
CL

CD
0

T3

>

uj

W D

wo

CD

En

c
0
CL

0
Q.
(n

cn
D

rr cr

0)

. -t 10,2 E

C

0
1)
C
C
0
0

I-
0

cl) C

43

Figure 3.4: Interaction between the PMC and PMS M host model

Architectural Design 44

user -> negotiates with service Provider

service Provider -> starts Performance Monitoring Clients

on every host
PMC -> monitors the performance on the host

where the monitor is located
PMC -> controls the execution started from this client

PMC (machine I) -> sends request to the PMS

10 responsible for the TopLevel Class
PMS -> invokes the TopLevel object
TopLevel object -> when it calls the next classes (Level,, and LeveI12)

it asks the PMS
PMS -> forwards request to PMC

15 PMC (machine 1) -> extracts class names (Level,, and LeveI12)

of services to be called
PMC (machine 1) -> gets locations for class Level,, and LeveI12

out of bind table or
if not any more available from the location broker

20 PMC (machine I) -> sends request to PMC for Level,, on machine II and

sends request to PMC for LeveI12 on machine IV in

parallel
PMC (machine Il)- > sends request to the PMS

responsible for Class Level,,

25

PMC (machine IV) -> sends request to the PMS

responsible for Class LeveI12

and so on
Listing 3.2: Host Model Scenario

Architectural Design

class server I

k-I D I, -) [JtjI CILII Iy Dy ýLtz! III

PM Performance Monitor
------------- ---

0 Top Level =the Top Level 0 bj ect wi ch is f irst cal led
Oil =Object Level 11 0 23 =0 bj ect Leve 123
012 = Object Level 12 0 31 =Object Level 31
0 21 = Object Level 21 0 32 =0 bj ect Level 32
0 22 = Object Level 22 0 33 =0 bj ect Level 33

class server li

45

Figure 3.5: Distributed Architecture for Performance Monitoring on a per host-
(network) Basis

Architectural Design

class server 11

cý

PMS PMS 2 P S

PMC

os

from ý to
io from to from

00
TopLevel 22 12 033 022

46

Figure 3.6: server and chent sZde performance monitoring on a per host- (network)
basis

3.3.2 On a Per Class Basis

When the PMC function is integrated with the invoking class, it runs as a thread.
Figure 3.8 shows how a distributed application is executed using this approach. Fig-

ure 3.9 gives a more detailed view of a class-server. Taking the application shown
in Figure 2.1 again as an example, it can be seen that the object TopLevel remotely
invokes the object Level,, (compare also Listing3.3 and Figure3.7). A communica-
tion channel must be established between the invoking and invoked classes so that

message relating to the performance can be exchanged between them. This is shown
in Figure 3.8 (the pink connection at the top of the diagram). Note that when a

class invokes another class on the same class server then no communication channel
is needed. For instance 01, invokes021. With this arrangement both the appli-
cation execution and the performance monitoring is distributed. Note also, in this
instance the bind table is also distributed. Listing 3.3 gives this example in pseudo

code.

Architectural Design

3.3.2.1 Advantages

47

The implementation of the PMC can be part of the additional support for each class.
since every PMC belongs to exactly one class.

3.3.2.2 Disadvantages

Potentially there could be an excessive number of PMC threads executing in a class-
server, and the operating system will have to co-ordinate the sharing of resources.
There is no communication between the PMC threads and no co-ordination between

them. No global knowledge relating to the application is available. As well as in

the other two models the first PMC in the application hierarchy will have to be

mirrored to a different location. Otherwise when this machine fails there will be no
reconfiguration possible.

Architectural Design

a, >

w'o
�n

0
(D x

cr p
o
(U
U)
c
0
Q.

4)

0 E
CL Ne 47; 2 -

C40,

C: 0
2

0

, 4v

1-0

LU
V)
D

0

C.)
a) C
C
0
C.)

I-
0

cl)
C

(D 0 41) 0
W

CD
u

-Ai

MD 1= 12

x (U
(1)

U)
:i- w 0, cn

CU
CL

0
CL
(n 0
fu

CD
n (D

:3 cr

0
E 0 E

0. a) CL 0)

0 0
'D 'a

0

C-)

C
C
0
C-)

0

C

48

Figure 3.7: Interaction between the PMC and PMS Zn class model

Architectural Design 49

user -> negotiates with service Provider

service Provider -> starts Performance Monitoring Clients
for every class on every host

PMC -> monitors the performance for each class

where the monitor is located
PMC -> controls the execution started from this client

PMC (TopLevel) -> sends local request to the PMS

10 responsible for the TopLevel Class
PMS (TopLevel) -> invokes the TopLevel object
TopLevel object- > when it calls the next classes

(Level,, and Leve112)
it asks the PMS

15 PMS (TopLevel) > forwards request to PMC (TopLevel)

PMC (TopLevel) > extracts class names (Level,, and LeveI12)

of services to be called
PMC (TopLevel) -> gets locations for class Level,, and LeveI12

out of bind table or
20 if not any more available from the location broker

PMC (TopLevel) -> sends request to PMC (Level,,) on machine 11 and
to PMC (Level12) on machine IV in parallel

PMC (Level,,) -> sends request to the PMS

responsible for the Level,, Class
25 PMC (Levell2) -> sends request to the PMS

responsible for the LeveI12 Class
PMS (Level,,) -> invokes object Level,,

PMS (LeveI12) -> invokes object LeveI12

and so on
Listing 3.3: Class Model Scenario

Architectural Design

class server I

PM
os

Route(

01, Object Level 11
012 Object Level 12
021 Object Level 21
0 22::

:: Object Level 22

023 Object Level 23
0 31 Object Level 31
0 32 Object Level 32
033 Object Level 33

OS = Operating System
PM = Performance Monitor
0 Top Level= the Top Level Object wich is

first called

50

Figure 3.8: Distributed Architecture for Performance Monitoring on a per class basis

Architectural Design

class server 11

PMS PN1S2 P MS3

PMC PMC 2 P ýjC-
3

os

from to from to from
000
TopLevel 22 0

12 33 022

Figure 3.9: server and chent side performance monitoring as part of an class

51

3.4 Prediction and trade offs of the Behaviour of
the Models

We have introduced three different architectures, where in a distributed system
the performance monitor should reside. As described earlier each of these models
has its advantages and disadvantages. It will not be possible to choose one of
these models and announce it to be "the best", since it depends strongly on the
individual conditions, like the type of application, the level of distribution and other

environmental parameters. However it is likely that the centralised model becomes a
big bottleneck for physically widely distributed applications. Furthermore the host

model should not create any extra traffic and performance monitoring is feasible for

every kind of application, whereby not as accurate as the centralised model, because

each monitor has no overview of the whole application. Last but not least the class

model loses a further part of the overview of the whole application and as such has

to rely even more on information about failures from outside its own PMC. The only

advantage for this model is, no extra installation is required, since the PMC can be
included in the additional support of each class.

The reason for the different performance monitoring architectures is to find an

appropriate architecture for an application. It is envisaged that not all three models

Architectural Design 59

behave in the same way. Comparing the past performance versus future perfor-
mance it is likely that the host model will have the fastest response time for widely
distributed applications and the centralised model for local execution.

3.5 Algorithms for Performance Monitoring

A performance monitor (written for distributed applications) specifically monitors
the performance of the executing application using the QoS defined by the user at
runtime. Failure to meet the necessary QoS will necessitate a reconfiguration (or

partial reconfiguration) of the application. The performance is considered unaccept-
able if the QoS is not satisfied. Performance monitoring must consider:

* what aspects of the performance are monitored and

o how this can be designed.

The system must also allow for the application to be partially reconfigured (which

will typically mean that under-performing objects are substituted) while it is run-
ning.

3.5.1 Measurements and their Implementation

When a service has a level of real time constraints, there are a number of non-
functional as well as functional requirements to be considered and monitored. As
for the non-functional requirements it is to monitor if an object is available and how

reliable it will be over the next period of time.
In addition a user of such a service-based application will have some functional

requirements. In contrast to an application installed on the local machine, a service-
based application will bring a different perspective on how to calculate the cost a

user (human or application) will have to pay to use this service. In addition the

user will be interested in some kind of feedback. One might want to know of the

progress, whereby another user, just wants to get the results as soon as possible

and is not interested in this detailed information. All this is negotiated within the

contract described in section 2.5. As soon as a network is involved in the execution

a factor of delay is created and needs to be monitored especially when real time

critical services are involved.

Architectural Design 53

The factor of delay can be separated in number of remote calls served, the corre-
sponding network speed for these remote calls, processing capabilities of the remote

servers, magnitude of inter process communication, and an overall worst case exe-
cution time.

In order to define the different techniques for measuring performance, we need
to differentiate between the time frames used for measuring the parameters. This
implies that measurement implementations for each parameter, before execution,

will be different from the implementation used, during execution of the remote calls.

Availability In case a host machine no longer provides a particular service, it will
be unregistered at the location broker responsible for this service. If this happens

prior to execution an alternative location is chosen. However when it happens during

execution a penalty for the provider of the host machine occurs, since the contract
is broken. Furthermore the location broker is able to inform every performance

monitor monitoring this particular service on the particular host and an alternative
location can be chosen.

However whether a host providing a service is available, prior to execution, is

easily discovered out when the performance monitor sends a request "Are you alive? "

In case an acknowledgement comes back the execution can start otherwise a repli-

cation of this service has to be detected. However even when a service was available

prior to execution it might fail during the execution. There are three different types

to monitor the availability during execution. The traditional way is not an option
in a large global system, because it would create far too much unnecessary traffic.

For this instance a kind of watchdog would keep sending requests to the service and

wait for the reply. As soon as this reply is missing the watchdog would know that

the service is not any more available and has to find a replacement. The second

option is a very cheap implementation, which can be used as long as no time crit-
ical applications are involved. In this case the performance monitor starts a timer

as soon as a service is called. When the reply does not arrive within the limit a

replication of the same service has to be started. Listing 3.4 shows this algorithm in

pseudo code. In addition every performance monitor will register with the location

broker responsible for the services used. This location broker detects early whether

a machine has failed and sends a message to all listening performance monitors, to

inform about the failure of a host machine. A pseudo code demonstrating this sce-

nario can be seen in Listing 3.5. Finally a more expensive but very accurate option,

Architectural Design . 54

for time critical application is called N-version programming [2]. This solution im-

plies starting replications of the same service on different location at the same time.
The results are taken from the service finishing first, as Listing 3.6 demonstrates.
However the performance of every single machine used will go down as we find in

chapter 4. To improve each of these solutions breakpoints [21] can be injected inside

of the object code and partial results can be created. It will then be possible to

restart an object right from the last valid state within it.

performance monitor -> start timer A

performance monitor -> start remote service I

service I - execute
<the machine I where service I is executing fails>

performance monitor -> timer A expires

performance monitor -> start reconfiguration
Listing 3.4: Failure detection triggered by time-out

performance monitor -> start timer A

performance monitor -> start remote service I

service I execute
<the machine I where service I is executing fails>
location broker -> detects failure of machine I where service I is

located
location broker -> send message to all performance monitors

interested in machine I

performance monitor -> receives message machine I has failed

io performance monitor -> start reconfiguration

performance monitor ->... (find alternative location

start timer B

start service I on machine II)

performance monitor -> timer A expires

15 performance monitor -> reconfiguration already started

timer A is ignored

Listing 3.5: Failure detection triggered from location broker

Architectural Design 55

performance monitor -> start service 1 on machine 1,11 and III
in three different threads

<service 1> -> execute on machine 1,11 and III

<machine I fails>

<service I> -> still executing on machine 11 and III

performance monitor -> receives results of service I from machine III

performance monitor -> stopps the execution of service I on machine 11

Listing 3.6: Failure handling for time-critical applications

Reliability Failure can occur, either due to software or hardware failure. Here we
assume only hardware failure. The reliability of a host machine prior to execution

can be predicted on the basis of statistical data about the failure of the object

maintained by the service provider. During every execution, these records can be

updated and used for the next invocation of the object. In addition to detect a delay

early during runtime, the estimated start and end time for every object is compared

with the actual time by the performance monitor, just before the call takes place.
Whereby it is to bear in mind, that here exist a problem of different times around the

globe and a synchronisation of timeservers will have to be implemented. Mills [341

explains the Network Time Protocol (NTP) used for Internet Time Synchronisation

and Lamport [27] describes one example to implement a time server by synchronising

all the node clocks, using the available information about Universal Time.

Before the start of the execution the distribution and estimated execution time

for every object is calculated. To reduce the execution time for the whole application
it is advisable to execute parts in parallel. However for objects executing in parallel,
it is not always advisable to use the fastest available machine, since every execution

will decelerate the machine speed (further information are given in Chapter 4),

this results in a requirement to distribute the parts of the application running in

parallel. The algorithm to calculate the estimated execution time for every object
is a challenging problem, since the behaviour of a machine, when changing the load,

needs to be predicted in advance.
For software failures, various techniques forward and backward error recovery

may be adopted [391.

Architectural Design 56

Number of Remote Calls The number of remote calls made by an application
prior to execution can be estimated in two ways. One of these is using statistics
maintained by the location broker for an earlier execution of the same distribution.
The other way is a prediction by the location broker, of the number of remote
calls possible for a particular object invocation. Both of these solutions are only
manageable with a certain level of precision. The location broker knows every object
location, however it is not able to predict the exact behaviour during runtime. Some
decisions like which object is to be called next are only made during runtime e. g.
one object calls the next only in case of one event happening and in case of another
event a third object will be called. Furthermore it might be necessary to reconfigure
the application during runtime by using replicated objects on different locations

and the whole structure of distribution changes. This would automatically change
the number of remote calls. However calculating the number of remote calls during

runtime is complex and an easy way to do it is to increment a counter for every
remote call made and review these statistics after the execution is over.

Network Delay The network delay can be measured as a function of delay be-

tween the call made and results obtained. Prior to execution, network delay can
be predicted on the basis of data collected from previous invocations. Chapter 4

describes how to estimate the execution time for every object used within the ap-
plication. The same estimation can be used for the delay created by a network

connection. During execution, the PMC saves the time before it calls a remote ob-
ject and as soon as this call return. The difference between these two times is the

execution time plus the network delay. Before the start of the execution this delay

has been estimated and can be used for an early warning algorithm (as described in

section 6.4.2). When an object finishes after the estimated end time it is clear that

a performance problem exist and a reconfiguration of each following object can be

initiated.

Cost The cost of the execution depends on the way the performance will be mon-
itored and if a failure occurs during execution. In case an N-version programming

algorithm is being implemented, there exist a cost for every replication executed.
Even though that only one solution will be used at the end, the other distributions

will create network traffic and use system resources. Furthermore additional service

providers might be involved and need to be paid.

Architectural Design 57

In case a failure occurs one must additionally differentiate between a hardware
failure (every object on the same computer will have to be migrated and restarted),
and a performance failure (only the next objects to be executed have to be migrated).
Before the execution such a cost can always only be estimated, however during

runtime it can be added up, so that after the execution has terminated, the exact
cost can be determined.

3.6 Summary

This chapter has introduced three performance monitoring architectures. Whereby
in each of these architectures the monitor is divided into two parts. The Perfor-

mance Monitoring Client (PMC) implements the monitoring activity. In contrast
the Performance Monitoring Server (PMS) plays a more passive role and responses
to requests and instructions issued by the PMC. The PMS is always a part of the

object which has to be monitored, whereby the difference between the architectures
is the location of the PMC. In the centralised model there exist only one PMC for

each application, whereby the other two models have even a distributed architec-
ture for the PMC. In one model there exist one PMC on every host used and in

the last model there exist for every PMS exactly one PMC. The advantages and
disadvantages for each of these architectures and a prediction of the behavioural.

difference between the models have been discussed. Furthermore several algorithms
to monitor the availability, reliability, number of remote calls and the network delay

created by these remote calls are presented.

Chapter 4

Estimating the Execution Time of
a Globally Distributed Application

4.1 Introduction

This chapter describes an algorithm, that estimates start and end times of dis-

tributed application parts that run in parallel on a heterogeneous network of work-
stations (NOW).

Objects are distributed to workstations inside a network (LAN or WAN), where
they represent data structures combined with methods operating on the data. The

workstations' behaviour is simulated by machine and operating system dependent

values (such as maximum speed and behaviour for pseudo parallel tasks) described

in Section 4.3.

The communication between machines is only of interest when communication
times between workstations are known values, and when estimating the execution
time. Though the described algorithm gives an idea of how connection load can be

simulated. Figure 4.1 shows a NOW, that is used in one of the later examples.

58

Estimating Execution Times

06

11

11
III

0

"I

0 ON 4
406. -., ir IV N%%",

N

Figure 4.1: Sample Network of Workstations

The machines throughout this chapter are identified by Roman numbers,

59

where uppercase letters denote objects. Figure 4.1 depicts the object distribution

and connections between four machines.
The algorithm for estimating execution times is gradually evolved from a re-

stricted application structure (tree structure, Section 4.4.3.1) to an application that
is represented by a directed acyclic graph (DAG, Section 4.4.4), which allows asyn-

chronous calls, parallel execution within objects and synchronisation. Section 4.2

describes the DAG and the application structure.

4.2 Representation of the globally distributed ap-

plication

4.2.1 Directed acyclic graph

The application is represented as a directed acyclic graph (DAG) [9]. The DAG

consists of vertices and arcs. A vertex represents an atomic part of the application,

where the arc represent communication between these parts. Atomic means that
during the execution of the vertex neither calls are made from the vertex itself nor

Estimating Execution Times 60

does the vertex receive messages or wait for other kind of events - it is computational
closed [46]. Both vertices and arcs are labeled. The label 0n at the vertex denotes
that n instructions are executed in service instance 0. The term object is used as
a synonym for service instance. The arcs are described as an ordered tuple of two
vertices (ni, nj) and labeled with the communication cost of the message c(ni, nj).

Arcs with r: costs If the c(ni, nj) is E the thread continues within the object itself,
therefore stays on the same machine', and is not measured. Arcs labeled with an E
cost must satisfy the following equation:

c(ni, nj) =E ni. o = nj. o

Where ni. o denotes the service instance of vertex ni.
c arcs also indicate that the object stays alive and is used by the same or another

thread later. A new object is created, if no c arc enters the vertex. The object is
destroyed after a vertex, that has no c arc leading from it, has executed and sent
messages.

Synchronisation in the DAG Each vertex ni waits for all messages Vnj(nj, ni)to
arrive, and then executes its instructions on the assigned machine. After all instruc-
tions have been executed all messages are sent asynchronously at the same time.

Figure 4.2 shows an example of a DAG. Note that, to keep the example simple,

we have only one thread executing instructions on one object (service instance) at
a time. We used the name of the object to identify the thread in Figure 4.3.

'persistent storage of objects and migration of objects during their lifetime is not discussed in
this thesis.

Estimating Execution Times

D200 DIOO

c(1,2

Entry

A200

B450 A

2- Zc
(3,16)

AIOO A300

61

cc (8,4)
cloo cloo

2

0. ý[
B50

c(12,10)
Te

(4,7)

A150 A50
Exit

Figure 4.2: Application structure

In this example the entry vertex executes 200 instructions, then splits of a new
thread, which calls n2- Meanwhile it executes 100 more instructions (n3) and then
forks again to call n6 and in parallel execute 300 instructions more (n5). n2 executes
450 instructions and then synchronises with vertex n8 to execute n4. n6 executes
500, forks to call n8, executes 100 instructions more in ng and waits

(n12) for the

separated thread to join again after this has executed n1l. Meanwhile n4 received
the synchronisation message from n8 and joins after 50 instructions in vertex n7 its

parent thread. So does the other remaining thread in n1o, which is the exit vertex

of this graph.

Figure 4.3 shows for all the threads, their execution and waiting phases.

Estimating Execution Times

D

C

B

A

Figure 4.3: Layers for the execution

62

The filled parts of the bars means that the thread is executing instructions, while
the outlined bar means that the thread is currently waiting. The dotted vertical lines

define level borders. From one level to the next the conditions in the system are

changing, because the number of parallel processing threads changes, however within

one level no changes can occur. The algorithm to estimate the execution time of the

distributed application is mainly finding these times and using them to compute the

total time of the application - which is the end time of the last level.

The DAG consists of vertices and arcs. ni identifies the vertex, where the ordered
tuple (ni, nj) is used to address the arcs connecting the vertices ni and nj.

Costs are the communication time of a call which is c(ni, nj) and the execution
time of a node ni which is denoted by w(ni), where the number of instructions

executed by the node is ni. i.

4.2.2 1'ree-structure as a specialised DAG

To introduce the algorithm on simple examples, a more restricted data structure is

chosen to represent the application. The algorithm will be evolved using the tree

structure, which is described below and is generalised to take a DAG as input at

2 : 3: 456789 10 : 11 12 13 '14: 15 : 16

Layers

. Estimating Execution Times

the end of each section.

63

The tree represents the application as follows: Each node represents one object
executed in its own thread. When a node starts, it executes all its instructions and
then starts each of its children in a new thread. The thread of the node joins all
threads of its children what we call termination of the node. Leaf nodes terminate

when they have executed all their instructions. The application terminates when
the root node terminates. If the communication cost is used, the labelled cost is

used twice, once for the call and once for the return.

Figure 4.4 shows a restricted DAG and the corresponding tree structure.

Entry

Exit

Entry

A(l 1000i

B(2) - 1500'
2

lb llýAý1ý10 b

E(2) - 2000i

up

C(3) - 750i D(4) - 5000i F(3) - 1000i G(2) - 1500i

Figure 4.4: simplified DAG (left), tree structure (right)

The DAG left and the tree on the right hand side of Figure 4.4 describe the
same application behaviour. Obviously the restriction that a node cannot execute
instructions after (one or more) of its children have terminated (n8, ng, nio are la-
belled with 0 instructions) is strong. But this restriction will be eliminated when
the algorithm is generalised later on. Note the other important restriction which is

necessary to represent a DAG as a tree structure is that the communication cost for

the return call is the same as for the invocation (e. g. c(4,8) = c(2,4)).
The term node is used when the tree structure is described, where we use vertex

for the description of the DAG. Further there is a distinction between the two terms
finish execution and terminating. A node finishes execution if it has executed all its
instructions and calls its children. Terminate is used to indicate that the focus is

Estimating Execution Times

returned to the parent node, as described above.

64

4.3 Representation of the resources
Resources The NOW consists of several host machines, which are heterogeneous.
This means that they can run different operating systems, have different amount of
processors and provide different speeds and memory resources. Machines are iden-
tified by their name, (which is throughout this chapter a Roman number). The
behaviour of a particular machine is simulated using a speed value and two parame-
ters (a and 0) which describe the behaviour of the machine when it executes threads
in (pseudo) parallel.

With ni. m we denote the machine which accommodates the node ni. Ams(m)

stands for the actual machine speed of the machine m, which is determined by the

machines absolute speed and its characteristic parameters a and 0.

m. speed
The machine speed in instructions per second. This is specified before the

algorithm executes. It may be the minimum/ maximum/ average or current

speed of a machine, dependent on what execution time should be estimated.

a
This parameter describes how the actual machine speed drops when two nodes
collide. A setting of 0 means no speed drop, where a setting of I means the

execCountth (Im. EJ) part of the speed.
Setting aE (0,1) can simulate a multiprocessor machine. A setting of a=0.5
for example means that if there are two nodes executing the machine is running

at full speed (simulates a machine with 2 equal processors). Setting a>I

means that for more than one executing service instance the speed drops more

rapidly. Obviously the described values are given under the assumption, that

the scheduling operating system on the machine does not use processor time

itself. Values that describe the real behaviour of a machine are in most cases

empirical.

...........
Similar to oz it describes the speed drop, but for waiting nodes. A setting of

Estimating Execution Times 65

0 means no speed drop, where a setting of I means the waitCountth (jm-ll'ý)

part of the speed.

The actual machine speed of a machine (ams(m)) can be computed by the
following formula:

I if EIAa>1

a* Im. El else

q (m)
IW1

(4.2)
0* IM. W1 else

d(m) p(Tn) + q(m) if p(Tn) + q(m) > (4.3)
1 else

ams (m) m. speed (4.4)
d(m)

p(m)/q(m) are the summands of the denominator which represent the speed drop
due to executing/waiting service instances. d(m) is the denominator representing the
total speed drop. Note that if the denominator P(m) + q(m) :ýI =ý- ams (m)

-= speed.
This means that the ams(m) is never faster than m. speed.

The different memory usage of objects (code size and memory allocation etc.)

and the time that is used for swapping is not taken into account. To simulate memory
effects the machines have to store additionally to the thread load a memory load,

which affects the actual machine speed. Although the estimation would benefit
from the simulation of a memory load it is not the goal of this thesis to simulate
different scheduling algorithms and the memory management of operating systems.
The more accurate simulation of heterogeneous machines does improve the accuracy
of the time estimation, and is part of the future work.

4.4 Estimating times

This section stepwise evolves the idea of execution time estimation from a sequential
to a parallel application. The estimation is necessary to judge whether the appli-

cation cýui terminate within a certain time. Performance monitors can use these

Estimating Execution Times 66

times to decide during the run if the remaining parts of an application run short in
time and try to reconfigure the distribution or priority of parts during the execution.
Furthermore it is possible to store the information of what is causing the speed drop

of machines (eg. several threads sharing resources) and optimise the distribution to
avoid these collisions. The optimisation algorithm described in Chapter 5 is based

on this information.

Some subsection refer to a setting2 of oz and 3 values. These values are used to

specify the effect the execution of parallel parts has on the executing machine when
using the algorithm that is introduced in Section 4.4.3.1.

Algorithm dependent data The algorithm keeps track of all executing and
waiting nodes. These nodes are stored in the sets E and W. Each node has a start
time (ni. startTime) and an end time (ni. endTime).

Additionally to detect collisions, each machine m stores its own set of execut-
ing and waiting nodes, which we denote by m. E and m. W. The actual load of a
machine is therefore Im. El executing and Im. W1 waiting threads. Of course this
is redundant information and could be retrieved from the sets E and W, but for

clarity and efficiency we avoid the search and store them separately.

During the evolution of the algorithm from a simple example we need more
data structures. We will describe them when they are used the first time. Though

Appendix A shows an overview over all used data structures.

4.4.1 Sequential execution

Entr
c(1,2) c (2,3) c(3,4) Exit 123

B150 A200 BIOO A300

Figure 4.5: DAG for a sequential application

2a and ý3 are used to compute the actual machzne speed. See Section 4.3

Estimating Execution Times 67

Figure 4.5 shows the DAG of a sequential application. Here we have two different

objects A and B which the single executing thread uses alternatingly. The C arcs
in this DAG are necessary to indicate that the object A in n, is the same as in n3-
For the other two vertices it is the same with object B. The c arc will cause n3, and
therefore n3-0 (which is A) to wait for the incoming message (n2, n3)-

If all nodes are executed serially, the estimation of the time used for execution is
fairly simple: the times each node takes to execute is simply added. If N is defined

to be the sequence of all vertices and T the set of arcs between these vertices, the
total execution time of the application is:

SL = 1: w(n) +E c(t)
VncN WET

(4.5)

the total execution time of the application
N;............... the sequence of all vertices

w (n) ; the execution time of node n
T;............. the arcs between vertices and

C (t) ; is the communication time

w (n) =
n. z

assuming m. 0 is 0 (4.6)
n. m. speed

4.4.2 Parallel execution without slow down

If nodes can be executed in parallel the computation is more sophisticated. To

simplify the algorithm we use the tree structure of the application, which of course
is only a very small subset of the possible DAGs. We also specify that the execution

of a service instance does not affect the machines speed and memory load where it

is executed. This is equivalent to a=0=0, which means the machine provides

Estimating Execution Times

constant speed. In this very artificial case the time can be computed as follows:

time(ni) =
ni. z

n. ams(ni. m)
MAX(f 01 Uf time(c) IcE ni. childrenj)

+2* c(parent(ni), ni)

68

(4.7)

Note: ams =- speed when a=0=0 as assumed. ni. children is the set of all
children of node ni. The communication c(parent(ni), ni) is counted twice, once for
the call and once for the return. For the root node (parent(root) does not exist) we
define c(- root) = 0. We define the maximum/ minimum of a set as:

MAX(S) S: sE SAVX, x E S, As >x (4.8)

MIN(S) S: sE SAVXIX E S7 As <x (4.9)

This assumption leads to the question, what happens when a and 3 are values in
R+. This means both executing and waiting service instances are slowing down the

machine while they are running. In this case the equation 4.7 is insufficient, because

the actual machine speed (ams(m)) is changing during the algorithm according to

the load on the particular machine. This side effect demands to adjust the speed

at well defined points during the execution of the application. These points are as

mentioned before the layers shown in Figure 4.3.

4.4.3 Parallel execution affecting machines

To simulate a speed drop of a machine depending on its load, we set the values
a=I and 0=0. All executing service instances share the speed in equal parts,
and waiting instances do not slow down the machine. This attempt comes closer
to the behaviour of a real application than the equations used in preceding subsec-
tions. This section will introduce an algorithm to find the estimated start and end
times for the tree structure. In Section 4.4.3.1 we describe the estimation for the

tree structure, whereby we omit the times that are needed for the calls from one

node to another one. The next Section shows the estimation for the example tree

shown in Figure 4.4. Before introducing the communication for the algorithm in Sec-

tion 4.4.3.5 we describe how collisions can be detected and stored in Section 4.4.3.3

Estimating Execution Times 69

and 4.4.3.4.

4.4.3.1 Estimating times for a tree without communication

This section describes the most restricted (and therefore simplest) version of the al-
gorithm. It is assumed, that the application is represented by a tree structure as de-

scribed in Section 4.2.2. Furthermore no communication cost/time (c(ni, nj) = Oms)
is taken into account.

For the algorithm it is assumed that each machine is providing a constant speed
(m. speed), which is only affected by the number of its waiting or executing nodes.
For this number is only changed when a new node is started, or one has terminated,
the simulated actual machine speed needs only adjusting at these well defined points.
Between these machine condition changes all nodes can execute instructions at the

constant actual machine speed. We will describe the algorithm using a combination
of structure diagrams and sets.

Additional attributes For this algorithm n. ei stores the currently executed in-

structions of node n. Furthermore each node stores its status which can be INI-
TIALISED, EXECUTING, WAITING or TERMINATED. The start and end time

of each node is stored in ni. startTime and ni. endTime

For each Nassi- Schneiderman diagram [35] a short informal description is given
below.

Initialise E with the root node, and then start the root node. For the estimation
of more than one tree all root nodes have to be started before the loop is entered.
This allows to simulate the effects of other applications which run at the same time.
Then the main algorithm is:

Estimating Execution Times 70

main

start(root)

EU W =7ý

first EEI MIN(execTime(o E E)) = execTime(f irst)

execute(first)

After initialisation the loop continues until all service instances are executed.
The first loop statement assigns to first the node, which under current conditions
finishes its execution first. This one is executed. If there is more than one node
fulfilling the condition, one is taken randomly. The others remain for the next loop

iteration.

start (n: node) : void -

n. m. W +- n. m. W\f nj

n. m. E <-- n. m. E U fnj

W4-W\fnl

E ýnj

n. state <-- EXECUTING

If the node is waiting it is removed from the waiting sets and added to the

executing sets. When start has been called, the node is set to be executing.

Estimating Execution Times

wait(n: node) : void -

71

n. m. E <-- n. m. E \f nj

n. m. W +- n. m. W Uf nj

E <-- E\ fnj

W <-- WU fnj

n. state +- WAITING

If the node is executing it is removed from the executing sets and added to the

waiting sets.

terminate(n: node) : void

n. m. E +- n. m. E \ fnj

n. m. W +- n. m. W \ fnj

E\ fnj

W+-W\ýnj

n. state <-- TERMINATED

The node is removed from the executing and waiting sets.

execTime(n : node) : long -

return (long) ((n. i - n-ei) / ams(n. m) + 0.5)

This method computes the time the passed service instance will take, under cur-

rent conditions, to finish its execution. The returned time is rounded.

Estimating Execution Times

execute(n : node)

72

time <-- execTime(n)

f or each eEE

run(e, time)

n has children ?
y

--ý ZZN

wait(n) terminate(n)

n. ei = n. i n has a parent ZZN y
ýý

Set C <-- n. children ready(n. parent) finished...

f or each cC
root tenntnates

c. startTime <--

n. endTime

c. endTime

n. endTime

start(c)

All other currently executing objects run for the time the passed object takes
for its execution. They run under the current conditions. If the node has children
it updates its machine properties, which means changing the runtime conditions.
Then the children are started, changing their machine properties and updating the

set of executing service instances. If the node is a leaf it terminates; updating the

set of executing service instances and informing its parent.

Estimating Execution Times

run(n: node, time: long)

73

n. endTime += time

n. ei += (long) (ams(n. m) * time + 0.5)

This method updates the end time and the current instruction count of the ob-
ject. Rounding errors do not affect the algorithm. But the more often conditions
change during the execution of a service instance the more inaccurate the result of
the end time becomes. If a guarantee is needed that the end time is never estimated
to low you should modify execTime/I method so it always rounds up (other solu-
tions: measure times in double values and/or use interval arithmetic).

ready(n: node)

Yý
Vc E n. children, c-state = TERMINATED

n-endtime +- MAX(fc. endtime IcEn. childrenj)

terminate(n)

Yn
has a parent ZIN

ready (n. parent) finished... root terminates

If all children are ready the machine properties are adjusted, and the node ter-

minates - informing its parent. There is no check necessary if the node has children,
because this method is only called from a child.

4.4.3.2 Example for the tree structure

The application is defined by the tree shown in Figure 4.4. Each node represents
one object, and therefore the execution time of a node is equivalent to the lifetime

Estimating Execution Times

of the object.

74

For the example we have 4 machines that are identified by Roman numbers.
Table 4.1 shows the attributes for the machines. The services list can be ignored for

this example. It is used to indicate that not every node can be scheduled for every
machine - which is important for the optimisation algorithm discussed later.

Machine Speed Services
1 100 11 21 3
11 200 3ý 4
111 300 114
IV 200 21 3

Table 4.1: Machine speeds/ ser-

Instance I Service I Machi

A I III
B 2 IV
C 3 IV
D 4 111
E 2 IV
F 3 IV
G 2 IV

vices Table 4.2: greedy schedule

Table 4.2 shows a greedy schedule for all nodes. All nodes take the fastest

machine, where their corresponding service is provided.
The algorithm results are shown in Figure 4.6. The y axis shows different ma-

chines and their scheduled nodes. The x axis shows the time in milliseconds. A

filled bar means again executing, whilst a outlined bar means waiting. Note that

the calls are omitted in this diagram.

Estimating Execution Times

IV

III

11

I

machines

: IF7,

---------------- -------------------------------

3333 18333 ý 27083 37083
23333 : 35000

34583

Figure 4.6: Time flow greedy

75

time
in ms

After A finishes execution B and E are started on machine IV. They both share
the machine speed in equal parts. After B, the nodes C and D are started. While D

is running at full machine speed, node Chas to share the resources with E. At time

- 23333 E calls its children F and G on machine IV. Now all nodes on machine IV

are running at a third of the machine speed. After C terminates, only nodes F and
G are sharing their resources. Node G is the last to finish, about 37 seconds after
the applications start.

4.4.3.3 Detection of collisions in the tree

Definition of a collision: Two nodes (n, N) collide, when they are executing

and/ or waiting on the same machine at the same time. We refer to wait colliston

of n if N was waiting when the collision occurred and execute collision, if N was

................................

...............................

executing. Therefore n has a wait collision with N if and only if N is waiting at

Estimating Execution Times

this time.

76

In the algorithm described in Section 4.4.3.1 the machines conditions are ad-
justed in the start/1, wait/1 and terminate/1 functions. When it is necessary to

store which collisions occur (e. g for an optimisation which tries to avoid collisions)
we only need to modify these three methods.

Additional attributes A coffiston is stored as a tuple of (N, s, e, w). Table 4.3

shows the meaning of the tuple members.

N The node which collides with.
S The start time of the collision in ms.
6 The end time of the collision in ms.
W. flag indicating whether N is executing or waiting.

true means waiting.

Table 4.3: Description of a collision tuple

Collisions are stored in two separate sets within the node structure. Set n. EC

stores the collisions that occur during ns execution and n. WC stores those while n
was waiting.

Below are the modified structure diagrams of the start/1, wait/1 and terminate/1
functions.

Estimating Execution Times

start(n: node) : void

f or all eEn. m. E U n. m. W

endCollision(e, n, n. endTime)

n. state <-- EXECUTING

n. m. W +- n. m. W \ fnj

W +- W\ fnj

f or all eEn. m. E U n. m. W

startCollision(e, n, n. endTime)

startCollision(n, e, n. endTime)

n. m. E +- n. m. E U fnj

E <-- EU fnj

The first loop ends all wait collisions (and all collisions of n) that have started,
but not yet ended. The second loop starts execute collisions for all other nodes, and

also the appropriate collisions for the node itself.

Estimating Execution Times

wait(n: node) : void -

78

f or all eGn. m. E U n. m. W

endCollision(e, n, n. endTime)

n. state <-- WAITING

n. m. E <-- n. m. E \ fnj

E <-- E\ fnj

f or all eEn. m. E U n. m. W

startCollision(e, n, n. endTime)

startCollision(n, e, n. endTime)

n. rn. W +- n. rn. W U fnj

W +- WUf nj

As described in start/1 the first loop ends all execute collisions (and all collisions

of n). The second loop starts all wait collisions.

is E-timating Execution Times

terminate(n: node) : void

79

f or all eEn. m. E U n. m. W

endCollision(e, n, n. endTime)

n. m. E n. m. E \ fnj

n. m. W n. rn. W \f nj

E <-- E\ fnj

W <-- W fnj

n. state TERMINATED

Ends all collisions.

Additionally we need two more functions, that handle the collision start and
end. Because these functions deciding on the nodes state (n. state) and are used
often within the start/l, wait/l and terminate/l functions we separated them.

start Collision (n : node, c: node, time : long)

n. state

WAITING EXECUTING else

entrySet n. WC entrySet +- n. H7 error

entrySet entrySet Uf (c, time, -, c. state = WAITING)l

When called this method decides on which set to operate depended on the nodes

own state. To the chosen set a new collision tuple is added.

Estimating Execution Times

endCollision(n : node, c: node, time : long)

80

n. state

WAITING EXECUTING else

entrySet n-WC entrySet +- n. Rý' error

nc N x Ix

Vi E fx E entrySet I x-e is not setj iE fx E entrySet I x. N cl

i. e +- t ime z. e +- time

Decides on which set to operate depending on the nodes own state. If n equals

c it means that the node n itself is causing a configuration change. In this case

all pending collisions (those which have not ended yet) must be terminated. If the

passed node is different, only the collision which contains this node has to terminate.
The end attribute of a collision is only set once.

4.4.3.4 Example for collisions

When the modified algorithm is run on the previous greedy example we encounter

several collisions. Table 4.4 shows the collisions during the nodes execution and

waiting time. The contents of the table is divided into blocks for each node A to

G. These blocks are grouped into execute collisions (w =f alse) and wait collisions
(w = true). Inside these groups the collided nodes are sorted alphabetically.

Estimating Execution Times 81

during execution while waiting
Node Tstart I

end
I

wait Node I
start

T
end

Fwait

Coffistons for Sermce instance A

no collisions
1 1D -7 18333 1 35000 f alse

Coffistons for Service instance B

E 3333 18333 false C 18333 27083 false

E 18333 23333 false

F 23333 34583 false
G 23333 35000 false

E 23333 35000 true

CoffisZons for Service instance C

E 18333 23333 false

F 23333 27083 false
G 23333 27083 false no collision
B 18333 27083 true
E 23333 1 27083 1 true

CollMions for Service instance D

A 18333 35000 ýtrue I-
no collision

CoffisZons for Sermce Mstance E

B 3333 18333 false C 23333 27083 false

C 18333 23333 false F 23333 34583 false

B 18333 23333 true G 23333 37083 false

11 B 23333 35000 1 true

Coffimns for Service instance F

C 23333 27083 false

G 23333 34583 false no collision
B 23333 34583 true

E 23333 34583 true

CoffisZons for Sermce Mstance G

C 23333 27083 false

F 23333 34583 false no collision
B 23333 35000 true

E 23333 37083 true

Table 4.4: Collisions for the greedy example

Estimating Execution Times 82

Obviously there are no collisions while the root node is executing and no collisions
for waiting leaf nodes (they are never waiting). Of more interest is the occurance
of two collisions with node E while B is waiting (see Coffistons for ServZce instance
B). The first one is an execute collision (E is executing from 18333 until 23333) and
the second one a wait collision (E waits for F and G from 23333 until 37083). 'Note

that for this wait collision the end time is only 35000 which is the time when B

stops waiting for D. When comparing Table 4.4 with the Figures 4.4 and 4.6 this

case occurs several times.

4.4.3.5 Communication in the tree

The only points where communication occurs is when starting or terminating nodes.
The point to modify the algorithm described in Section 4.4.3.1 is the execute/1 and

ready/1 function, this is where nodes are started and terminated.
Additionally the main method needs a modification. Because we have to delay

the calls, we need a new set T which stores all messages, that are currently processed.
The minimum search in main needs to be adjusted to find the minimum time, when
the first node in E will finish execution and the first message which will reach its

addressee. Depending on whether the minimum is found for a node or a message

main has either to execute/l the node or invoke the message.

Additional attributes As mentioned above the set T to store all currently pro-

cessed messages. To store the progress of a message transmission we store the time

that has already been used in the attribute (ni, nj). time. The remaining transmis-

sion time therefore is c(ni, nj) - (ni, nj). time.

Estimating Execution Times 83

- main

start(root)

EUWUT =ý

f irstNode D MIN(f execTime(o) I Vo C= EJ)

exe cTime (f irstNode), f irstNode c: E

f irstMess E) MIN(f c(t) - t. time I Vt E TI) = c(f irstMess)), f irstMess cz T

execTime(firstNode) < c(firstMess) -
firstMess. time

Z'4

execute(firstNode) Itransmit(firstMess)

Find the first node that finish execution under current conditions. Find first

message that arrives. If the node finishes before the next message arrives, execute
it otherwise transmit the message.

Estimating Execution Times

transmit((ni, nj))

84

time <-- c(ni, nj) - (ni, nj). time

for each eCzE

run(e, time)

for each tEET

c(t) <-- t. time + time

T +- T\f (ni, nj)l

nj. startTime <-- ni. endTime + c(ni, nj)

nj. endTime +- nj. startTime

start(n. j)

All executing nodes can safelY run for the time the message transmission took.
After that time the conditions are changing, because a new node will be started.
The start and end times of the called node are set and the node is started. This is

correct for a tree, where each node has only one message calling it.

If a message has started transmission and a node is executing we have to take

care, that the transmission time is decreased Therefore we need to modify the

execute/l method.

Estimating Execution Times

execute(n : node) -

85

time <-- execTime(n)

f or each eCE

run(e, time)

f or each tET

c(t) <-- t. time + time

Yn
has children ?N

Y

wait(n) terminate(n)

n. ei = n. i n has a parent
Yý

T <-- TU f (n, nj) I nj

n. childrenj
ready (n. parent) finished...

root termffiates

The end time of a parent node has to be adjusted according to the communication
time, too. In the tree structure we assume that the call to a child takes the same
amount of time as the return call to the parent takes.

ready(n: node) -

Y
Vc E n. children, c. state - TERMINATED

zZIN

endtime <-- MAX(f c. endtime + c(n, c); I Vc E n. childrenj)

terminate(n)

n has a parent
Y

ready (n. parent) tree finished... root termZnates

If all children of a node have terminated, then the node can terminate itself.

Estimating Execution Times 86

The end time of the node is therefore the maximum of the endtime of its children
plus their communication cost. The node in this case informs its parent that is has
terminated. If n is the root node the application terminates.

4.4.4 Generalisation of the times estimation

This section shows how the existing algorithm can be generalised to take a DAG

as an application structure. We only show which methods need to be modified to
adjust the behaviour, for all others it is sufficient to replace the passed node by a
vertex. Each vertex stores the same information as the nodes do for the tree struc-
ture.

To compare the DAG and the tree structure, we need to define the terms parent
and child for the DAG:

Parent ni is parent of nj when (ni, nj) exists. A node in the DAG can have more
than one parent.

Child ni is child of nj if nj is parent of ni.

Ancestor ni is ancestor of nj if either ni is parent of nj or it exists a nk such that
nk is parent of nj and ni is ancestor of nk-

Descendant ni is descendant of nj if nj is ancestor of ni.

The main differences between the DAG and the tree structure are:

* Control flow does never return from a child to its parent.

eA node can have more than one parent.

As can be seen in Figure 4.4 the return through the tree is realised through the

vertices (n8, ng, nio). In the algorithm for the tree structure the return is realised
through the ready/1 method. If we convert from the tree structure to the DAG the

ready/1 method has to be removed, because the implicit return is now explicitly

signed in the application structure.

Estimating Execution Times

execute(n : node)

87

time +- execTime(n)

f or each eGE

run(e, time)

f or each tET

c(t) ý-- t. time + time

n has children ? Lý
ZZN

n. ei = n. i

T <-- TUf (n, nj) I nj c n. childrenj

terminate(n)

Now the ready/1 is never called and can therefore be removed for the DAG

algorithm. The second point is that a vertex unlike a node can have more than

one parent. As mentioned in Section 4.2.1 the vertex must not be started before all

messages from its parents have arrived. This can be accomplished by modifying the

transmit/l function.

Additional attributes For each message (arc) in the DAG it has to be stored
if it has already been transmitted. This boolean flag we denote as (ni, nj). used. If

true the message had already been transmitted. We use the notation used instead

of (ni, nj, used) to denote the extension to the previously explained parts of the

algorithm.

Estimating Execution Times

transmit((ni, nj))

88

time <-- c(ni, nj) - (ni, nj). time

f or each eGE

run(e, time)

f or each tET

c(t) <-- t. time + time

(ni
, nj) -used <-- true

T 4- T\f (ni, nj)l

y
Vk, (nk, nj). used true

AN

nj. startTime
"

nj. state INITIALIZED
AN

y Lý
ni. endTime +

c(ni, nj)
.

wait(nj)

nj. endTime <--

ni. startTime

start(nj)

After an arc has been transmitted its used flag is set. The destination vertex is

only started if all incoming messages have arrived. Otherwise the destination vertex
is set to be waiting after the first message arrival (but only once).
Obviously we are now able to estimate the times for a DAG in the same way as for

the tree structure. Even the collision detection introduced in Section 4.4.3.3 does

store the collisions of each vertex. The interpretation of these collisions is not as

easy as it has been for the tree, but Section 5.5 does describe how this data can be

used when defining the object context of a vertex for the optimisation.

Estimating Execution Times

4.4.4.1 Example for the DAG algorithm

89

In Figure 4.3 the qualitative diagram for the threads and their waiting and executing
time is shown. For we now have the algorithm to compute this times we can label
the layers with times to get a better impression of the concurrency within the appli-
cation. For this example two machines are used, both have the characteristic values
oz =I and 13 = 0. Table 4.5 lists the machines speed and the object distribution.
To keep the example easy to follow there exist only one thread accessing nodes that
belongs to one object.

machine accommodates speed
A) D instr

M'S
11 B, C nstr 2 -' m8

Table 4.5: Machines and distribution for DAG example

All non c transitions take 10 ms time before they arrive. Figure 4.7 shows the

start and end time of nodes and messages.

D

C

B

A

Figure 4.7: Time flow for the DAG example

The data for the times was calculated using the previously described algorithm,
but without storing collision data. For each of the 27 iterations (12 nodes, 15

210 : 310 600 :: 735 : 1940 '114-5 time in ins : 695 930 1120:
200 '300 '560 '685 905 1110:

895 : 1060
1050 1195

Estimating Execution Times 90

transitions) in the main part of the algorithm appendix A. 1 provides a table. which
shows the actual machine speed, the remaining times for all executing nodes and
currently transmitted messages. In table 4.6 the data for one sample iteration is
shown.

Iteration 0:

ams(I) =1 i/ms

ams(II) =2 i/ms

first = nl in 200ms

exec(nl):

accommodates only ni

not used

the initial value

execute ni - run for 200ms

Sets: // sets after execution
E= ýl

T= ý(nl, n2), (nl, n3)1
I. E =
II. E =

E Nodes:

the listing of nodes

with their properties
W Nodes:

T Nodes:

nl: start= Oms, end= 200ms, ei= 200i

calls:
(n1, n2): c= 10ms, time= Oms
(n1, n3): c= Oms, time= Oms

c ... total call time

time ... time since start

Table 4.6: Iteration sample

After the execute/1 or transmit/1 decision the tables give an overview over
the used sets. The sets and node attributes contain the values at the end of the
iteration (after the execute/1 or transmit/1).

We marked some interesting points in the diagram (Figure 4.7) with red dots.

1. Node n7waits for n4 to terminate.

2. Node n4waits for n8 to terminate.

3. Node nj-) waits for n1l to terminate.

Estimating Execution Times 91

4. Nlessage (nl2, nio) arrives before n7 terminates. Therefore n12 starts waiting
from 1120ms for n7 to terminate.

4.5 Summary

This chapter has gradually evolved an algorithm for the estimation of the execution
time of a distributed application. First a simple application with sequential execu-
tion has been introduced. Then the application was evolved to execute in parallel,
first without a slow down of the machine speed and then with a slow down. The slow
down of a machine speed depends of the behaviour of a machine, taking into account
that each machine runs a different operating system, has not the same number of

processors and provides different speeds and memory resources.

Chapter 5

Optimisation of the Execution
Time of a Globally Distributed
Application

5.1 Introduction

This chapter describes an algorithm to optimises the distribution of objects to the

machines in the NOW (explained in Chapter 4). Machines are not able to accommo-
date all objects. We restrict each object to be of a specific type, the service. Each

machine provides a set of services, and can run several instances of those at a time.
The algorithm has similarities with Ant Colony Optimisation (AC 0) -algorithms
[16], though it does not rely on global knowledge.

It is explained why an optimisation is desirable and it sketches the idea of the

algorithm. The shown structure diagrams, can guideline an implementation. Several

examples and pictures are provided, to explain the algorithm and its behaviour.

Parallel tasks within an distributed application compete. The execution time

of those parts is highly dependent on the executing machine and the amount of
instructions used to accomplish this task. In Section 5.2 we show that the greedy

attempt described in Chapter 4.4.3.2 is not a good solution and how it is possible
to find a better schedule. The static scheduling for an application represented by

an DAG is proved to be an NP hard problem [26] even in an homogeneous system,

where each processor executes only one vertex at a time. Facing this complexity we

use a dynamic algorithm which has similarities with the ACO algorithm [16]. As
92

Optimising Execution Time 93

in the previous section the algorithm is explained first for the tree-structure and
then generalised to the DAG. Section 5.3 describes the idea of the optimisation in

an informal way, which is then explained in Section 5.4 in more detail.

5.2 Distributing to slower machines
The greedy schedule (schedule shown in Table 4.2) tends to locate all nodes on the

same (fastest) machine. Due to this load the machine's speed will break down, and
nodes will only have small part of the machine's speed to execute their instructions.
This section shows a configuration where collisions are to be avoided, even if it meant
to use a much slower machine. Table 5.1 and the flowchart in Figure 5.1 shows this

more distributed version of the application.

Instance I Service ý Machine

A I III
B 2 IV
C 3 11
D 4 111
E 2
F 3
G 2 IV

Table 5.1: Distribution

In this configuration there are no collisions between executing nodes. The four

collisions involving waiting nodes:

1. B waiting collides with G executing.

2. G executing collides with B waiting.

A waiting collides with D executing.

4. D executing collides with A waiting.

Optimising Execution Time

machines
------------ -------------------

IV

.................. I

III

IA

D

................... ..
11 FEW

................... ------ -------------- ------- --- -- -------------------

E
time
in ms

3333 14583 30835
10833 28335

27500
23333

Figure 5.1: Timeflow more distributed

94

can be ignored if the machines 0 is 0. In this case all nodes have the full

machine speed to execute. When comparing Figure 4.6 and 5.1 the distributed

version terminates about 6 seconds earlier than the greedy configuration. Therefore
it really makes sense to optimise the distribution. Actually this solution is the best

possible distribution when machines provide only the services shown in Table 4.1

and the settings for a=1,3 = 0.

5.3 Idea

First the optimisation for the tree structure described in Section 4.2.2 is discussed.

Therefore each node represents one object. This section gives an informal descrip-

tion of the algorithm and is intended to be an easy way to understand the basic idea.

Think of the parallelised application as a relay. The parallel parts are repre-

sented by the different competitors, while the serial parts are represented by the

runners of one team. Each runner wants his team to win, which means reaching
the goal (which is the termination of the last part in the series) first. Even if the

runners in our example are not human the idea is to have them behaving in the

Optimising Execution Time 95

same (non Olympic) manner: Losers get angry because they were slower than the

winners. Each runner keeps in memory with whom he run on the gravel (each part
of the application remembers with which other part it had to share resources - or so
to say: collided). In the next run losers (longer execution time) will try to displace
the previous winners. The more angry they are (the greater the time difference) the
harder they will try to push them to an outer lane (means: slower machine). Every

runner has to decide for himself, whether to take a faster lane (being pushed harder)

or a slower one.

As ACO algorithms use pheromones to represent the memory of all ants, the

bruises of each runner are used to represent the memory of how much others wanted
him to take a slower lane. Bruises, as pheromones, vanish with the time, which
means the information is stored only for a certain amount of time. Runners in our
algorithm are quite unforgiving. If they are now slower than the one that displaced

them, they push back (regardless, whether they are colliding or not!). How hard

they push is determined by three values:

* The amount of races, that have been run since.

o How heavy the push was.

* The current difference in their (execution) time.

The main difference, between this algorithm and ACO is that there is no global
knowledge like pheromones, which affects all competitors.

5.4 Structure

This section gives an overview of the main structure of the optimisation. The par-
ticular actions are described in the following sections in more detail.

The algorithm starts with an initial solution s. It runs for a specific amount of

n steps, and stores the best found solution in b.

Optimising Execution Time 96

- Overview

s <--- initial; b <-- s

for i=O; i<n; i++

calm down nodes

push back

expel nodes

decide where to go

t evaluate (s)

t<b. endTime

bsI

With n it is possible to adjust the effort that is made to find a good solution. This

algorithm does converge only for specific parameter settings, it does not necessarily

mean that a higher n leads to a better result. But the solution found in more steps
is guaranteed to be at least as good as solutions found in less steps.

5.4.1 Calm down

Each node n stores in a punishment value Pn, m (double), how much they have

been pushed away from a machine, for each machine m where it can be executed
(fm I n. service E m. Sj). This value represents the fear of the node to go back to

this machine. This memory is decreased using the following function:

i-*i+ll (5-1) Pn, m ' (AOPn, m)

Optimising Execution Time 97

Ao factor in 1, LO:
11

AO describes the percentage of the memory that is used for the next iteration 1*.
A setting of AO =1 means that the memory is never declining, where a setting of
AO =0 means there is no memory at all. Ao is comparable to the evaporation of
pheromones in ant algorithms.

Additionally to the punishment value we store the maximum punishment value
that has ever occurred. If p,,, is set it is tested if Pmax,,, rn < Pn, m -

In this case Pmax,, rn
is assigned to the new higher value. Even the memory of the hardest punishment is

allowed to fade with the time. Instead of using the same factor A for all evaporation
factors it is distinguished to see the different behaviours. The hardest punishment

value is decreasing with the factor A,.

Pmaxn, m
i-*i+l ' (/ýlPmaxn,

m)
(5.2)

A, must be a value in [Ao, 1]

The third type of memory are the push back lists, which are explained in the

next section in more detail. Each of these lists stores a collision instruction count
Cin, m, Nwhich represents the maximum number of collision instructions that have

occurred between the nodes n and N on machine m. This value is used for the push
back, and decreased in each iteration by the factor A2 E [0,1].

Cin, m, N
(A2CZn,

m, N) (5-3)

For the push back list that is constantly growing a lower limit 6"j, for Cin, m, N
is maintained. If a collision instruction stored in the push back lists is decreased

below cZ, j,, this entry is removed from the list.

Optimising Execution Time 98

- calm down

for each node in s

for all mc fm I n-service G m-Sj

Pn, m +- AOPn, m

Pmaxn,
m +- AlPmaxn,

m

Cin, m, N ý-- /\2Cin, m, N

5.4.2 Push back

Each node stores for each machine a list of nodes which had previously tried to
displace it. For each node in the list the maximum number of collision instructions
(Cin,

ni, N) is maintained. Push back means the attempt to expel all nodes that are

stored in the list for machines that are faster than the current location. Addition-

ally the other node has to be accommodated by this machine in the last run. When

expelling other nodes from their location the number of collision instructions to

determine the weight is used. For a push back this information is not available,
because both nodes are not necessarily located on the same machine. To determine

the weight of the push back we use the stored maximum number of collision instruc-

tions in the push back lists (Cin, m, N). The actual push back is performed using the

equation described in Section 5.4.3. The reason why the push back was introduced

is discussed in Section 5.6.

5.4.3 Expel

Before a new evaluation all competitors try to displace the others to slower ma-

chines. How successful the attempt to expel the faster node is, is determined by

equation 5.4. Let ni try to expel n2 provided that nl. endTime > n2. endTime. Then

cl is the number of instructions that nl has executed during the collision of nj and n2-

If it is a push back then the saved maximum number of collision instructions (Ci,
j, m, n2)

for node 1? 2 is used instead of the cl value.

Optimising Execution Time

Pn2, ni. m '-- Pn2, ni. m + Cl n endTime - n2. endTime
root. endTime

99

(5.4)

root-endTime is the endtime of the whole application. The time difference is
divided to relativise it to the total execution time. This means if the whole applica-
tion takes 20000 ms to execute a time difference of 10 ms between two nodes does
not weight as much as if the applications execution time was 100 ms.

If the new punishment valuepn2, ni. m is greater than the stored maximum pun-
ishment valuePmaXn2,

nj. m the new higher value is stored as the maximum:

Pmaxn2,
nl. m '-- l"X(Pmaxn2,

nl m lPn2, ni. m) (5.5)

Furthermore we have to store the collision in the push back list:

C"2, ni. m, ni +- MAX (Cin2,
ni. m, ni) Cl) (5.6)

5.4.4 Decide where to go

The most difficult question is, what is the best machine for a node to be executed.
Each node tries to find the answer for itself, taking in account its displacement value
on this machine (p.,,,,) and the maximum speed of the machine compared with the

maximum possible speed.

maxspeed = MAX(m-speed E fm E MI n. service c m. Sj)

minspeed = MIN(m. speed G fm E MI n. service E m. Sj)

.11
f (111) =am.

speed - minspeed
-Y

Pn, m (5.7)
(

maxspeed - minspeed) PmaXn,
m

Optimising Execution Time 100

n the node that decides

Ce
factor in [0; 1]

.............. exponent in (0;)r-)

..................
factor in [0; 1]

.............. exponent in (0; Dc)

a and -y are factors that adjust how greedy the node chooses a fast machine,
where -y represents how frightened the node is to go back to a specific machine.
These factors only allow a linear adjustment. For exponential behaviour one has to

adjust the 0 and 6 parameters. The higher the value is the higher the influence of
the summand becomes.

The special case that m. speed = maxspeed = minspeed, which means that there is

only one machine speed for the execution of the node n we define the fraction

m. speed - minspeed 0

maxspeed - minspeed 0

to be 1. Analogous to this definition we define the second fraction to be 1 if there

is no punishment value for the machine (p,,, = 0) and therefore no maximum

punishment value (Pmaxn,
m

ý 0)*

Pn, m
Pmaxn,

m

Each node chooses the machine m where f (m) has the highest value.

n. m <-- m E) f (m) = MAX (f (mi) I n. service G mi - services, mi E M)

Where M is the set of all machines.

5.5 Generalisation of the optimisation

Transferring the optimisation described in Section 5.4 to the DAG means that all

vertices will compete with each other. This might lead to unexpected resultsl when

a vertex tries to expel another vertex, which operates on the same object (to say

expels itself). These considerations lead to transfer collisions and times from their

vertex context to their object context.

Optimising Execution Time

object. start Time

object. endTime

obj ect. EC

object. WC

MIN(fn. startTime I n. o objectl)

MAX (f n. endTime I n. o obj ect 1)

U fc (E n. EC I c. N. o =ý n. ol
n, n. o=object

U fc G n. WC I c. N. o =, 4 n. ol
n, n. o=object

101

(5.8)

(5-9)

(5-10)

(5.11)

The set of collisions of an object is the union of all collisions that occur in vertices
that operate on this object, without those colliding with other vertices corresponding
to the same object. The latter is the case if two vertices execute at the same time

on the same object.
We assume that the threads represented by the vertices join at the end of the

application again. If threads run into an open end, and therefore the initial ob-
ject is destroyed before the application finishes we cannot say if the object context
represents the application in a decent way.

As mentioned at the beginning, this thesis does not cover the persistent storage
of objects and the migration during their lifetimes. If this possibility would exist
the vertex context of the collisions would be appropriate - however to measure the
time an object migration takes needs to be specified.

Running the optimisation using the object context behaves similar for the DAG

as it does for the tree structure.

5.6 To push or not to push - cycles
The push back is introduced in the algorithm to prevent cycles. Figure 5.2 shows
how cycles occur for the tree example with reasonable parameter settings. The di-

agram in Figure 5.3 depicts how the push back changes the period of the cycles.

Optimising Execution Time

55--

45-
-Z- -4-

40 -

35--,

_T
0

37-085

W 2U 30
Iterations

Figure 5.2: Without push back

ck = 0.7 3=I -Y =16=1 Ao = 0.7 AI = 0.95 A2 =0n= 50

40

102

Without push back The distributions between iteration 3 and 8 cyclic behaviour.
The reason for this is, that the fraction Pn, m for the chosen machine in iteration P-axn'M

3 is the same as in iteration 8. For the machines speed does not change we make
the same decision we did already in iteration step 3, again. For this cycle will never
lead to new solutions we could stop the optimisation process at iteration 8 when we
detected the cycle without changing the end result.

In this example this would be a good decision because we have already found the
best solution, but unfortunately we can build up cycles that do not contain the best
known optimum. The example for the completely greedy behaviour (Figure 5.5)

shows the extreme version of the cycle with a period of 1. To avoid these cycles, we
introduced the push back.

55

50

45

-52
40

35

30

ce = 0.7 ß=j -y ý16=1 XO = 0.7 \l = 0.95 \2 = 0.2 n= 50

130.835

50

53.33

30.835

10 20 30 40 50
Iterations

Figure 5.3: Push back with A2= 0.2 over 50 iterations

Optimising Execution Time 103

Using the push back Within the first 50 iterations we can not determine a cycle
for the same parameter settings (excluding A2). But if we take a closer look and
iterate further we see that we have only stretched the period of the cycle. Figure 5.4

depicts the cycle. The cycle period (41) is quite large in comparison to the number

of different distributions (3 * 2' = 192) we have for this example. But still we did

not achieve the set goal.

55

50

zi 45

40

: 35

30

0.7 ß=1 -y =16=1 Äo = 0.7 Xj = 0.95 Ä2 = 0.2 n= 100

53-33

30.835

0 20 40 60 SO 100
Iterations

Figure 5.4: Push back with cycle over 100 iterations

Cycles can only occur if the relation P', ' is the same as for a previously pro- Pmaxn, m

cessed equal distribution. Our experience is the period of cycles can be stretched

by decreasing the a value - (nodes behaving less greedy, or increase the push back

memory (-ý2)). Still cycles are the main problem of this algorithm and it is a chal-

lenging task to give the exact conditions that are responsible for cycles.

The use of the push back must still be questioned, because even if it can increase

the period of cycles, it does not rectify the effort that is made to store and update

the Cin, m, Nvalues. Our experience is that even without it the algorithm is able to

find reasonable good results within a small number of iterations.

5.7 Adjusting the parameters
The algorithm for the optimisation takes 8 parameters, a set of available machines

and an application represented by a graph as input. This section describes the pa-

ranieters and their relationship, as well as our experimental settings.

Optimising Execution Time 104

5.7.1 Adjusting the greediness and fear

As described in Section 5.4.4 the oz and 0 value adjusts how greedy the algorithm
looks for a fast machine. The values -y and 6 specify how frightened an object is to
choose a machine, were it was previously expelled from. The Oz and -ý values allow a
linear adjustment, which is discussed first. Good results were observed, when a more
frightened setting (a < -y) was chosen, which allowed the usage of slower machines to
avoid collisions. We adjusted the linear factors rather than the exponents, because

we noticed a heavier impact on the behaviour of the algorithm.

Linear adjustment First is the extreme settings for the a and 3 parameters
described, were the algorithm behaves totally greedy, which means it always takes
the machine providing the fastest speed and the totally frightened version, which
tries to find a distribution without collisions. The exponents 0=I and 6=I are
set so that they do not have any influence on the decision.

Totally greedy Setting a=I and -y =0 means that the second summand in

equation 5.7 is always zero. Therefore the punishment values do not weight in the
decision of the new location - its behaviour is totally greedy. All nodes strive to

choose the fastest possible machine. Figure 5.6 depicts the estimated times for this

case.

37

36.5

T 36

35.5

35

a-1 ß_ 1 Äo =M Äl = 0.95 >l2 - 0.7 n= 50

37.085

35.0

0 10 20 30 40 50
Iterations

Figure 5.5: Totally greedy behaviour (a = 1,0)

Because we already start the algorithm with a greedy solution it is interesting

to see that the algorithm picks another solution and keeps it. If we only look at the

machine speed for object 4, we see that its service is provided by three machines (1,11

and IV see Table 4.1). Machine I is the slowest with a speed of 0.1 Ln-s-r where II and MS

Optimising Execution Time 105

IV have the same speed (0.2l-t-). For the greedy solution, it does not matter if the

algorithm takes 11 or IV to execute object 4. In this particular case we have chosen
MS

the better one, just because it was checked first. This is the reason why we see two
different distributions in Figure 5.5. Figures 5.6 and 5.7 show the distribution and
estimated times for the initial greedy solution and the greedy solution chosen by the
optimisation.

ei =1ß=j -(-06=1X () = 0.7 \l = 0.95 Ä2 = 0.7 n= 50

V9
V8
V7
V6
V5
V4
V3
V2
vi
VO

three
L foliT

four

four

four

thre e
four

f our
four

three

0 10 20 30
Time in seconds

Figure 5.6: Initial greedy solution (a = 1, -y = 0)

V9
V8
V7
V6
V5
V4
V3
V2
vi
vo

a=13=1 -y ý0ý=1X () = 0.7 Xj = 0.95)12 = 0.7 n= 50

three
f our

folir
four

two
thre e

two
four

four

t, It re. e.

10 ýO
Time in seconds

- obj(-ct'3(l)

- object'0(2)

- objcx-t'1(2)

- object'5(2)

- object'4(3)

- object'2(4)

- object'6(3)

- object'l (2)

- object'0(2)

- object'3(l)

- object'3(l)

- object'0(2)

- object'l (2)

- object'5(2)

- object'4(3)

- object'2(4)

- object*6(3)

- object'1(2)

- object'0(2)

- obje(t'3(l)

Figure 5.7: Found totally greedy solution (a = 1, -y = 0)

Totally frightened If we have a look at the reverse parameter setting, a=0 and

-y =I we experience that the objects try to avoid each other at all cost. This setting
leads to the solution, which has the least collisions (the weight of a collision is given

in equation 5-4). Figure 5.8 depicts the behaviour for this settings.

Optimising Execution Time

60

W. -
40

Iterations

Figure 5.8: Totally greedy behaviour (a = 1, -y = 0)

77.5

37.085

10

106

With these linear factors the objects do not care about the speed of the accom-
modating machine at all. This configuration is highly distributed, but has also a
execution time which is far away from the optimum. Figure 5.9 shows the distribu-
tion and time estimation for the third iteration.

ck =106=1 X() - 0.7 Xj = 0.95 -\2 = 0.7 n= 50

V9
V8
V7
V6
V5
V4
V3
V2
vi
VO

one
fo ur

Ofic
n o e

fo

two
f our
one

four

one

20 40 60
Time in seconds

Figure 5.9: Totally frightened solution (a = 0, -y = 1)

- object'5(l)

- object'4(2)

- object'6(2)

- object'3(2)

- object*0(3)

- object'2(4)

- object*1(3)

- object*6(2)

- object'4(2)

- object"5(l)

Reasonable settings for a and 0 Neither the greedy nor the frightened attempt
leads to satisfying results. Our "best" values for the parameter settings are a values
between 0.55 and 0.8, where we set -ý = 1.

The more greedy the algorithm is, the higher is the probability to have short

cycles. We experienced, that without the push back and with aa>0.85 and -1, =1
the period of the cycles often leaves little freedom to find a close to optimal solution.
We chose for the examples a values between 0.55 and 0.8, where we set -ý = 1.

ei =1j -y =06=1 XO = 0.7 Xj = 0.95 \2 = 0.7 n= 50

Optimising Execution Time 107

Exponential adjustment The concrete behaviour for the exponents .3 and 6

are not analysed. Even without using these parameters it is possible to find good
solutions in a small number of iterations. Further work will be to analyse the
influence of the exponents on the results. They can be used to stress constellations
which lead to an extreme value for greedy and/or fear summand. If the influence is

not significant it would highly increase the performance of the compensating function
to remove them.

5.7.2 Adjusting the evaporation factors

The choice of the evaporation parameters has a high influence on the behaviour of
the algorithm. The best results are experienced, for AO between 0.5 and 0.9. The

choice for A, was close below I which means that the memory of the total punish-
ment value does fade slowly. The difference between A, and Ao specifies how greedy
the algorithm becomes over the iterations. A, must be greater than AO because oth-
erwise it cannot be guaranteed to keep the right summand (fear summand) within
the interval [0,1].

For the evaporation of the push back memory we usually used low values. Typical

settings were between 0 and 0.5. But as mentioned in Section 5.6 the push back is

not necessarily needed and is one of our first choices to save computation time.

5.8 Comparison with random distributions

If we take a look at the different distributions that were evaluated during the iter-

ative optimisation, one can get the impression that a randomly chosen distribution

could lead to comparable results. Even if the diagrams shown in this section are not

statistically reliable we think that they show that the knowledge of the nodes and
the compensating function (equation 5.7) lead to good results.

Figure 5.10 shows the results for a bigger example. The DAG for this example

consists of 24 vertices which are corresponding to 7 objects. Each object is available

on 4 different machines. This makes a total of 2 14 possible distributions. The red
line in Figure 5.10 shows the estimated times of the described algorithm, where the
black line shows the first 100 distributions chosen of a random sequence.

Optimising Execution Time

ci = 0.69 3=1 -ý =16=1 Ao = 0.815 \, = 0.98 ý2 = 0-19 n= 100

108

3.214 (Nvorst)

3

2.5

41

cc

1.5

1

IIIIIIIIIII ri IIIIIII1 1111 1111H avi 1ý0 III Fl 111111 av a

rký

ý

-i
HI

p avg comp. Imý

ýL

--4, j -,, 7-L ý-t ff R-"- T ! It LýJJMUU Lm 0.894 (best)

0 20 40
Iterations

60 80 100

Figure 5.10: Random distributions versus the algorithm choices

We marked the best possible solution, the average time of all possible distribu-

tions, the average of the used random sequence and the worst possible distribution.

Since 100 random distributions are not at all representative, we have generated a

sequence of 1000 distributions and picked the subjective lowest interval out of this

sequence. Figure 5.11 shows the comparison between these two sequences.

a=0.69 0=I -Y =16=1 A0 = 0.815 Al = 0.98 1\2 = 0-19 n= 100

3

2.5

2

1.5

1

3.214 (worst)

HR $%bjective] 100

avg comp.

0.894 (best)

0 20 40 60 80 100
Iterations

Figure 5.11: Random distributions versus the algorithm choices

Ifl

u l d A ý

LU 1117, ILJ

Optimising Execution Time 109

In appendix A. 2 the estimated execution times for the best found distribution
(894 ms) and the worst possible distribution (3214 ms) is printed. We printed only
one of the 63 distributions which have an estimated time of 894 ms, and one of the
worst choices (there are two possibilities).

5.9 Properties of the algorithm
This section gives an 0-notation [3] for the optimisation algorithm.

Let v be the number of vertices, that are corresponding to n objects and a be
the number of calls that are made between the vertices. The number of available
machines is m. If x is the number of iterations we have for each iteration:

fcalm down (n, m)

fpush back (n
, m)

fexpel (n)

fdecide (n) m)

festimate (v
, a)

fsave
solution

(n)

= O(n * m)

= 0(n'* m)

= O(n 2)

= O(n * m)

= 0((v + a)2)

= O(n)

Then the total time is:

Foptimise(n, m, v, a, x) =x* (O(m *n
2) + 0((v + a)2))

We assumed, that all set operations can be made in a constant time 0(l). Ad-
ditionally to this information we need to find the average case, which is challenging.
For festimate(v, a) for example we can easily say that if a vertex executes at most all
other vertices and arcs are being processed. For the average case in comparison we
need information about the application structure, eg. how many vertices (n,) are at

most processed in parallel to a particular vertex v can be expressed more specific:

n I, n -I vertices\ fvi C vertices I parent(vi, v) Vparent(v, vi) I

Optimising Execution Time 110

5.10 Summary

This chapter has described a static optimisation algorithm to schedule application
parts. In case every application part will be executed on the fastest possible machine,
the overall execution time might slow down enormously, because a vast number of
nodes will execute in parallel and as such collide during their execution. The op-
timisation algorithm described in this chapter minimises the execution time where
different nodes collide by changing the distribution of these nodes. The algorithm
described in Chapter 4 is used to estimate the execution time for the whole appli-
cation and the distribution with the minimal execution time is chosen. However

the algorithm presented in this chapter will not necessarily find the absolute opti-
mal distribution, since scheduling represented by a DAG is proved to be a NP hard

problem [26].

Chapter 6

The Simulation Model

6.1 Introduction

The simulation models a largely distributed application. It is written in Java, re-

quires a JRE version 1.3 or higher to run, and contains the architectures described

in Chapter 3. The purpose of this simulation is to compare the results of the three

different models with each other.
Within the simulation there exist actually three different distributed systems.

1. the application itself,

2. the performance monitoring within the models

3. the location broker can be located on a different machine as well.

A general overview of the Grid Performance Software is shown in Figure 6.1. A

short overview of the main features of the graphical user interface (GUI) is given
in Section 6.2, while a complete user guide is given in Appendix B. Furthermore,

Section 6.3 describes the implementation of the performance monitoring, and the
handling of hardware and performance failures is demonstrated in Section 6.4. Fi-

nally, the scalability of the system is discussed in the last Section.

III

The Simulation Model

Figure 6.1: General overview of the Grid Performance Software

6.2 The Graphical User Interface

112

The Graphical User Interface (GUI) is divided into several parts as can be seen in
Figure 6.2.

The menu bar The tool bar

ýMlik Hw,
File-Tree Settings Testing Help

RUN Reset HostMachines

V

SepAces Machines Appl. Structure Connection Model

/Apph

Number Name Min-Instruction
0 Service 0 100

.1 Service 1 100
i 2 Service 2 100
3 Service 3 100

The tabbed pane

- ICII

Max Instructions Avg Instruction
500 350
500 350
500 350
500 350

add Service delete Service

Actual LOB: hope threadcaunt =9

The StItLIs bar

Figure 6.2: The Overview of the Graphical User Interface

Before any settings within the Graphical User Interface (GUI) the location of the

The Simulation Model 113

location broker (LOB) responsible for this application has to be chosen as described
in Appendix B. I.

6.2.1 Machine Panel

Figure 6.3 represents the machine panel, it allows the adding, removing and changing
of machine registrations on the actual LOB. The information about the speed of a

machine displayed are collected from the Speedserver, which has to be started on
every machine beforehand.

File Tree Settings Testing Help

RIJN Reset HostMachines

Seri-Aces Machines Objects 1 Connection Application Object Diagrams Model Performancemonitor data,

Add machine Delete machine

Available machines

i Available Services
5 (Service 5)
4 (Service 4)
3 (Service 3)

o2 (Service 2)
Runtime Data
* total instr. =0
* failure instr. = 1000000

ýl Speed
" current Speed = 184501

.0
instrfsecond

" min Speed 300 instrisecond
" max Speed 263157 instrfsecond

I Settings
" timezone = GMT
" location = Leicester

I& forquet. cse. dmu. ac. uk (1099 1 mac-forquet)
Available Services

ýl Runtime Data
total instr. = 0
failure instr. = 9223372036854775807

0,1 Speed
0,1 Settings

-0- -Not
available machines

Machine details Costs

Selecteklhoslri. i ý si

Register Senvice Unregister Sermce

Instructions

Failure instructions 1_1 000000

Total instructions 0 Reset

Estimation values

Alpha 1.0 Beta 0.0

..................................
Speed diaquam

Actual Ii(, ý, - ýi Curwrtl 119: 32: 38: 91ý3

Figure 6.3: The Machine Panel

The Simulation Model

6.2.2 Application Structure Panel

114

The application structure panel is used to create a simulated application with all
its parameters as can be seen in Figure 6.4. The application structure is shown

as a tree. This tree structure can be altered by adding or removing nodes. Nodes

in this tree represent an object (service instance) which is part of the application.
During runtime of the simulated application the status of each object will change.
This status will be identified by a coloured bullet in front of the related node. The

different colours and their meaning are explained in Appendix B. 1.3.3.

File Settings Testing Help

Services Machines Appi. Structure Connection Model Application Object Diagrams

Expand Tree Pre estimate Times

.0 service: 0 [@ 0] Max. allowed coAs
service: 4 [@ 11

service: 1 [@ 21

o service: 5 [@ 31

,o service: 5 [@ 4]

.. 00 service: 5 [@ 51

,, o service: 5 [@61

,., o se rvi c e., 3 [@ 71

o service: 3 [@ 8]

,. o service: 2 [@ 9]

'o service: 5 [@ 101

service: 5 [@ 111
le service: 5 [@ 12]

service: 4 [@ 13]

service: 5 [@ 141
IS service: 2 [@ 151
IS service: 4 [@ 16]

0 service: 3 [@ 171

service: 5 [@ 18]
I& service: 2 [@ 191

show no times

Ac 15

Max. allowed timp: 00 05 ý 00 000 ilII)ArIFn: S-;: SSS)

Startclale: 30 10 2002 ýI '1,0: M M. YYYY)

stamirtle: 10 21 : 00 000 hh: tT)rT): ss: SSS)

J Mio attr. Hosts M IL r

,# nrAiing selected

Object No.

Position No.

Hostrnachine

Min instr. NA Max instr. NA

Real instr. to exectde

: Exectited instr. NA

Figure 6.4: The Application Structure Panel

The Simulation Model

6.2.3 Connection Panel

115

The connection panel allows to add and remove connections between machines and
change the data of these connections on the current LOB. This is to simulate a large

global distributed system even when a local area network is used. Connections have

a origin and destination address, a min- and max-delay between these connections
in milliseconds and an availability in percent.

File Tree Settings Testing Help

Reset HostMachines

Services Machines Appl. Structure Connection Model Application Object Diagrams

Select Origin of Connection 192.172.226.24

Destination I Min. Delay (ms) Max. Delay(ms) Availability in %
128.223,2 20 56 109,213 142 162 100.0
128.8.7.4 80.621 94.39 100.0
141.142.121.4 79.718 106.863 100.0
192.203.230.250 29.365 152.296 100.0
193.0.0.11 182.35 209.469 100.0
203.181.248.27 246.759 273.369 100.0
204.152.184.98 17.406 26.924 80.0
204.29.239.23 22.034 39.263 95.0
205.189.33.78 102,709 129.823 99.0
216.16&227.250 96.111 174.816 100.0

Actual LOB: hope

w

time co st sin if min
00: 00-01: 00 1.0
01.00-02: 00 1.0
02: 00-03: 00 2.0
03: 00-04: 00 5.0
04: 0 0-05: 00 1ý0
05,00-06: 00 1.0
06: 00-07: 00 1.5
07: 00-08: 00 3.0
08: 00-09: 00 1.0
09: 00-10: 00 0.5
10: 00-11: 00 1.0
11: 00-12: 00 1.0
12: 00-13: 00 4.0
13: 00-14: 00 2.0
14: 00-15: 00 5.0 il
5: 00-16: 00 O.. P-.

--

Add Connection Remove Selected Connection

threadcount = 12

Figure 6.5: The Connection Panel

The Simulation Model

6.2.4 Model Panel

116

To execute an application one of the three performance monitoring models (see Fig-

ure 6.6) described in Chapter 3 have to be chosen. Each of these models determines

the location of the performance monitor.

File Tree Settings Testing Help

RUN Reset HostMachines

Services Machines Appl. Structure Connection Model Application Object Diagrams

Centralised Model Hostmachine Model Class Model

Additional flata voi mouel

Hosiname where the performance monitor is located forquet. cse. dmu. ac. uk

Port of rmiregistry 1099

Name in rtniregistry PMCI! ent____.

Actual LOB: ossi threadcount =8

Figure 6.6: The Model Panel

The Simulation Model

6.2.5 Object Diagrams Panel

117

The Object Diagrams Panel shown in Figure 6.7 shows information about an exe-
cuted application. The diagrams show graphically the behaviour during execution
of each node. Each diagram has a vertical axis labeled with percentage values for
the amount of instructions this node has to execute and a horizontal axis labeled
with times.

File Tree Settings Testing Help

RUN Reset Hostfulachines

chines Appl. Structure Connection Model Application Object Diagrams

and tree

Tree Diagram

100.0%
80.0%
60.0%

service: 0 [@ 0] 40.0%
20.0%
0.0%

1: 00: 30: 070

Op C:] service: 3 [@lj

100.0%
80.0%
60.0%
40.0%
20.0%
0.0%

1: 00: 30: 070

(p se rvi c e: 4 [@ 2]

100.0%
80.0%
60.0%
40.0%
20.0%
0.0%

1: 00: 30: 070

Dse rvi c e. 2 [@ 3]

100.0%
80.0%
60.0%
40.0%
20.0%
0.0%

1: 00: 30: 070

D service: 0 [@ 4]

Selected Object: sepAce: 4 [@ 2]

Actual LOB: hopeO

100.0%
80.0%
60.0%
40.0%
20.0%
0.0%

Time: 01: 00: 00: 000

(hreadcount =9

Used host: no data

01: 00: 30: 070 ';

Figure 6.7: The Object Diagrams Panel

The Simulation Model

6.3 The Implementation

118

Every remote call within the simulation is implemented with the help of Java Remote
Method Invocation (RMI). RMI is part of the Java 2 platform. This framework
enables communication between Java objects on different virtual and/or physical
machines. An RMI application has usually two different parts: a client and a server.
A typical server application creates objects (called remote objects) and when the
client has a reference to the remote object it is able to invoke the methods out of
these objects. The server usually registers a remote object in the RMI-registry. The
client is then able to get the reference for the remote object out of the RMI-registry

via a lookup. RMI uses stub and skeleton classes as proxies to simulate a reference
on clients. However RMI does not allow any kind of location transparency which is
highly required for a service-based application. This transparency is realised with
the architecture of the Performance Monitoring Client and Server as described in
Section 6.3.3 and 6.3.4. Further information about RMI can be found in [22].

6.3.1 Simulation of a Large Global Distributed System

The simulation is actually distributed over several machines within the local area
network. However it is to simulate a large global distributed system. The addi-
tional delay created from the distance between far remote machines are stored in a
"Connections" class and added with the help of some real measurements. These mea-
surements are taken from [8] further information are available in Appendix B. 3.1.
These data always represent a traceroute between two machines on different loca-
tions on the globe. It represents the different delay at different times of the day as

well as the failure rate, when it was not possible to reach the remote location.

6.3.2 The Simulated Application

The original location of every SAObjectl has been specified by the user interface
(compare Section B. 1) and additionally with the help of an optimisation algorithm
as described in chapter 4.

Pressing the run button in the user interface starts the execution of the simula-
tion. This button is visible on the top left corner in Figure 6.2. As a first instance a

class specified for the chosen model is called. This class only prepares the simulation,
'Simulated Application Object

The Simulation Model 119

starts the required performance monitors and calls the first performance-monitoring
client (PMC) responsible for the root class of the simulated application.

The PMC' sends a request to the performance monitoring server (PMS)' respon-
sible for the root class. This PMS instantiates the first SAObject in the hierarchy.
Every SAObject within the simulation is identical. It receives as a parameter, the

number of simulated instructions it should execute and which SAObjects it will call
as a child, whereby it will call all its children in parallel, only after all instructions
have been fully executed. The execution will take place with conventional termina-
tion in the way that every parent of an object call is a synchronisation point. That

means an object is only returning and terminates itself when every child it has called
has been terminated itself. The execution follows an asynchronous communication
protocol in the sense of an pu bhsh- subs crZbe order.

A SAObject' will call its children only indirectly. In the sense that it sends

a request, containing the information about the child it wants to call, to the PMS

which originally has invoked itself. The PMS then decides if the original distribution
demands a remote call or if it is scheduled for execution on the same machine.
Depending on which performance monitoring model is currently running it will call
the corresponding PMC. In case of the centralised model the whole application is

monitored by only one PMC as can be seen in Figure3.1, whereby in the host model
there exist for every different machine its own PMC as Figure3.4 presents and in

the class model every different service on every machine will have its own PMC

(compare Figure3.7).

6.3.3 Performance Monitoring Client

The Performance Monitoring Client (PMC) has to fulfil several tasks. The SAObjects

are distributed over a large distributed sYstem and an SAObject has no knowledge

about the location of other SAObjects. To realise this transparency between the
SAObjects a middleware is inserted between the SAObject calls. In this case the

middleware is realised within the PMC. One of the responsibilities of a PMC is

the knowledge about the SAObjects locations. The PMC has the knowledge about

every SAObjects location specified before the start of the execution. However during

runtime the situation might change and a different location is to be found. This

2 More Information about the RNIC are available in Section 6.3.3
3 More Information about the PNIS are available in Section 6.3.4
4Simulated Application Object

The Simulation Model 120

leads to the second purpose of the PMC which is the detection of failures. As soon as
a host is not available anymore the PMC starts enquiring for alternative locations
of all objects running on this host. The last purpose of the PNIC is the actual
reconfiguration 5. Every SAObject failing during runtime need to be restarted on a
different location. Furthermore the PMC prevents the start of an SAObject on a
machine not functioning in a way it was originally planned.

The PMC consists of four classes as can be seen in Figure 6.8. The class PM-
Client is responsible for remote access and as such extends UnicastRemoteObject and
implements PMClientlntf and Host Mach i neListener. The interface PMClientlntf con-
sist all the methods needed for remote access and the interface HostMachinelListener
consist of the notify method for the LocationBroker to inform the PNIC of events
happening with a host machine the PMC has registered interest in.

Every call to a PMClient object contains an identifier for the application. In case
this PMClient has never before dealt with the execution of this application it will
create a new instance of the class PMC-Appl and keeps a reference inside a Hashtable.
In case this PMClient was already involved in the execution of this application it will
find a reference in this Hashtable and is able to call the object PMC-Appl again.

For every call made from this client a new instance of the PMClientLogic is

created. In depends of the model and the location of the SAObject to be called, the
PMClientLogic will either call directly the PMServer or it will call another PMClient

on the remote machine.
A failure can be detected either in the PMClientLogic because of an Remote-

Exception, or because the PMClient got informed via the notify method from the
LocationlBroker or from other PMClients detecting this failure.

In all three models, when the machine, where the PMC calling the root SAObject

is located, fails no detection and reconfiguration will be possible. However this

problem can be overcome when the root PMC is either located on the user's machine,
because when this machine fails the user will notice and he or she is not interested in

the results anymore. Another way to overcome this disadvantage is a replication for

the root PMC. This replication needs to keep track of everything happening within
the original PMC so that it can take over the work as soon as this machine fails.

5see also Section 6.4

The Simulation Model 121

Figure 6.8: Class Dwgrarn for the Performance Monitoring Client

The Simulation Model 122

6.3.4 Performance Monitoring Server

For every different SAObject class there exist exactly one Performance Monitoring
Server (PMS) on every machine. The main function of a PNIS is to allow remote
access to the SAObjects. Each time a new SAObject is called the PMS creates a new
instance of this class.

The PMS consist of three classes as can be seen in Figure 6.9. The class PM-
Server is responsible for remote access and as such extends UnicastRemoteObject and
implements PMServerlntf and HostMachineListener. The interface PMServerlntf con-
sist all the methods needed for remote access and the interface HostMachineListener

consist of the notify method for the LocationBroker to inform the PNIS in case the
HostMachine this machine runs on has created a simulated machine failure. In case
of a simulated machine failure every functionality of the PMS or the SAObject is

stopped immediately.

When the PMServer receives a request to start an SAObject it would create a new
instance of the class PMServerLogic. The PMServerLogic stores all the information

needed for this call and creates a new instance of the SAObject class. The SAObject

creates for every call to its children a new Thread PMServerCal ling. This allows the

execution of all children in parallel. The PMServerCalling Object has a reference to
the PMServerLogic and as such always calls the PMC from where it was originally
called. And the PMC decides if a reconfiguration' is necessary and if another PMC

or PMS will have to be called.
6see also Section 6.4

The Simulation Model 123

Figure 6.9: Class Diagram for the Performance Monitoring Server and SimulatedAp-

plicattonObject

6.3.5 Simulated Application Object

The SAObject itself has not much functionality. It is a dummy object which calls the
HostMachine Class to execute its instructions and only afterwards it will call each
of its children in a new thread. As soon as every child has returned the " results",
which has no meaning for this dummy object, it will terminate itself and return the
focus back to the PMServerLogic it had been called from.

The Simulation Model

6.4 Reconfiguration

124

There exist several reasons why a reconfiguration might be required. It is always
possible that during execution an outage of hardware occurs. Whereby this failure

can occur either on the network or on the machine where objects are being executed.
Reason for reconfiguration are described in Section 6.4.1. Furthermore hardware or
even software might be malfunctioning. Even though this is a serious problem
this thesis assumes this type of failure will never occur. Finally during execution
it might become clear that the contract originally finalised between the user and
the service provider is at risk because of a delay within the execution. This delay

might occur because of congestion or transmission errors within the network or
because of machines being overloaded. Section 6.4.2 introduces an early warning
reconfiguration schema to avoid a delay for further SAObjects execution before it
becomes a problem for the whole application.

6.4.1 Reconfiguration due to a hardware failure

A hardware failure, either on the machine the object runs on or on the network
connecting the machines, results in a failure of every object on this machine.

In case of a network failure the objects are still executing on a remote machine,
however the connection is lost and as such there is no use for the rest of the applica-
tion. When this machine becomes available after a reconfiguration has already been

started, the PMC and PMS located on this machine will receive a notify method
and are able to stop every still ongoing execution.

The simulation is able to react on real hardware failures. However it is possible
to specify in the GUI that a HostMachine will fail after a certain amount of instruc-

tion executed on this machine. When these instructions have been executed the
HostMachine throws a RemoteException in the same way as the Exception would
be thrown when the machine fails in reality.

A hardware failure is detected in four different ways. Either the remote call

creates an RMI RemoteException, the location broker detects the failure and sends

a message to the corresponding performance monitors, or one of the other perfor-

mance monitor detects the failure itself and send a message to all other performance

monitors it knows of. Every PNIC who has knowledge about other PMCs will inform

each of them as soon as it has detected a failed machine. In this case every PNIC

The Simulation Model 125

saves valuable time to start the reconfiguration. Furthermore a hardware failure

can be detected by a time-out. Each time before a remote call a specified timer
is started, and in the normal case this timer will expire after the remote call has

already returned. However when the timer expires and the call has not yet returned
it results, the PMC realises that it has to react and starts a reconfiguration.

In case a hardware failure is only simulated, the PMC, which first detects this
failure, has to stop every object (the PMC, PMS and every SAObject) on this ma-
chine. Furthermore every PMC who has originally started one or more SAObject

called from an SAObject on a failed machine need to be stopped. This PMC has to
decide if this object will have to be restarted. Not every SAObject will have to be

restarted, because when an SAObject has been called from an SAObject on the failed

machine, this SAObject will automatically be restarted, when the previous SAObject

reached the point in its execution to call this SAObject again. Only this time the

performance monitor might choose a different location for all following SAObjects.
Since the reconfiguration already has wasted valuable time the rest of the execution
will have to speed up its execution time.

For example Figure 6.10 shows an application

where object A is located on machine 1, objects B,
D, F and C are located on machine 11, objects C and
H are located on machine III and object E is located

on machine IV. Let us now assume machine 11 fails

while executing all of its objects. Consequently ob-
jects B, C, D, F and G have already started their execu-
tion and the results will be lost, and only objects B, F

and C will have to be restarted. As a conclusion dur-

ing runtime object B will call object C and D again.
Only this time the performance monitor might choose

rA)

E IV

F, G "'H

Figure 6.10: example applz-

catzon

a different location for object C, since the time for the execution, which has to be

repeated, will have to be regained. The difference now is that the machines restart-
ing the execution should run faster in case the overall time left for the execution
is already at risk. Therefore these objects will have to speed up their execution.

The performance monitor which has the knowledge about every call done from this

particular object has to choose the location of the following objects very carefully,

to assure that they will reduce their execution time.

To decide which SAObject has to be restarted and which SAObject simply has to

The Simulation Model 126

stop its execution, a history of every HostMachine is passed between every P-MC.
This history is simply a vector which stores the host name of a machine. Before

every remote call this vector is copied and the new location is added to this vector
and passed as an argument to the next PMC or in case of the centralised model to
the next PMS.

6.4.2 Early Warning Performance Monitoring

An early detection of a delay within the execution results in a migration of all SAOb-
jects, which have not yet started their execution, and will benefit from a migration.
Whereby a delay can be caused when a machine runs low of memory, or simply is

overloaded.
As described in Chapter 4 before the start of the execution it is estimated at

what time every SAObject will terminate. Since every object has been called from

a PMC it will return there after termination. The PMC then has to compare the

estimated execution time with the actual time when the object has finished. If

an object finishes after the estimated time a delay is detected and the PMC can
find an alternative location for objects which haven't started their execution yet as
demonstrated in Listing 6.1.

Because the reconfiguration takes time itself, it is advisable to continue execut-
ing as originally scheduled and at the same time run an optimisation algorithm as
described in Chapter 5. The PMC which detected the delay will start a new Thread

to optimise every SAObject which has not started executing, and when the results
of the optimisation returns it then has to decide if these SAObjects have already
started or even finished their execution. The PMC then informs all other PMC's of
its knowledge (if there are any) about the rescheduling. And every SAObject started

afterwards takes advantage of this rescheduling.

The Simulation Model 127

begin
tinit tinit= time when execution starts
run
for (i=O; i<totalObjects; i++)f

5 object' term

get tt time when ob *ect' terminates erm
tterm

tworking = tter7n - tinit

if tworking< WCT' then

continue // WCT' = worst case execution time for object'
10 else

reconfigure all not started objects
I

end
Listing 6.1: The Early Warning Algorithm

6.4.3 Creation of Results

The purpose of this simulation is to compare the results of the centralised model with
the host model and the class model'. To create these results the same application

with the same distribution and the same time constraints is executed for a number

of times for each model. All information collected during runtime, will be used to

create statistical data for every model. These data allow to compare the different

models with each other and are analysed in Chapter 7.

6.5 Scalability

As Colouris [10] states a system is described as scalable if it will remain effective

when there is a significant increase in the number of resources and the number of

users.
The centralised model as described in Chapter 3 is not fully scalable, because

every remote call has to go through one performance monitor. For very large ap-

plications the performance monitor becomes a huge bottleneck and as such will be

'The three different models are described in Chapter 3

The Simulation Model 128

overloaded. However the performance monitoring algorithm in the host and the
class model is scalable, since there is no central control anywhere in the sý-stem-

As for the current implementation, the performance monitor reconfigures the
system directly at the failed object. Every object executed after the failed object
in the hierarchy will be terminated, and a new instance will be created from the
replacement of the failed object. This reduces the scalability for large applications,
however this problem is easily overcome, when persistent storage is implemented.
The persistent storage would save all results created during runtime of an object, so
that this information is not lost, in case the execution would have to be repeated.

6.6 Summary

This chapter has described the Grid Performance Software designed and developed
to simulate a large global distributed system. The user interface is described briefly

and further information is provided in Appendix B. In addition this chapter intro-
duced the implementation of the performance monitoring software, this includes the

relationship between the performance monitoring client and server and the simulated
application objects. Furthermore the reconfiguration of hardware and performance
failures were described. Finally we have discussed the aspects of scalability in the

system.

Chapter 7

Case Study (e-learning)

7.1 Introduction

This chapter gives an illustrative example of a service which can be used distributed

over a large global network. The choice of this example was motivated considering
the fact that it has to be clear to a reader unfamiliar with the presented environment.
Furthermore it proves the hypothesis introduced in Chapter 3.

As Dorai [15] et al states web based learning is rapidly emerging as an alternative
to traditional classroom-based education, whereby a useful course/lecture browsing

system would enable cross-referenced access to all the materials pertaining to a

course in a synchronised manner. Graves [18] furthermore explains the technology

to learn at anyplace-anytime to take some of the friction out of the delivery of

academic and student administrative services.
On the other hand such an e-learning course could use additionally some more

traditional ways. Assume a university in England would provide online courses,

whereby each module could be provided at different locations around the world. A

lecturer, e. g. somewhere in Germany, would start the lecture for a duration of

thirty minutes to an hour. During this time the students would have to be logged

into the system. However they are located all over the world, and enrolled at the

university in England. This is also called distant learning via the Internet.

This scenario has the advantage of being completely independent of its location,

everything is distributed (see Figure 7.1). And it is even conceivable to support

as many as 2000 students logged in at any one time. Figure 7.2 shows that every

student is connected to each of the different services, whereby each of them will not
129

Case Study 130

notice where this service is located and not everybody needs to be connected to the
same server.

Let us assume a virtual university offers a computer science degree as an e-
learning course. The students would electronically enrol at this university. And

access the course from wherever they are in the world. The virtual university may
subcontract modules within the course from other well established departments or
groups. Each of these modules may have a different quality and cost.

7.2 Requirements

The requirements for performance monitoring in the case study of e-learning are
defined in the following.

Initial session setup
Before a student can subscribe to a service, the infrastructure needs to be

checked to be able to guarantee the minimum quality of service required. In

case these requirements are not fulfilled the student needs to be rejected from

the beginning.

For example, when a student lives somewhere in a desert and s/he connects to
the e-learning course with a 64Kbyte Modem, s/he can not expect a real-time
voice connection to the computer at home.

Quality of delivery (transmission)
It is necessary to detect as soon as somebody logs in the system, to guarantee
that this person will have the minimum transmission rate negotiated when

s/he subscribed to this course. This requires monitoring so that the quality of
the transmission will be guaranteed and does not dramatically decrease during

connection time.

E. g. a student will not be satisfied when s/he can hear the lecturer but does

not understand him or her because the quality of the voice transmission is not

good enough.

Availability
Rirthermore it needs to be guaranteed, that even when a service fails during

runtime there , N-ill always be a replacement available somewhere.

Case Study

chapter
Networking

Enrolment

Induction

Distributed
Systems Zýx

To wTr

I
Tow box

Towerbox

Tower (chapter
Math

Towerbox

chapter Logic
chapter C++

Phase Test

chapter Java

Examination

Operating
Systems

131

Figure 7.1: e-learning distributed over the entZre globe

Case Study 132

des university ovides universi unr univypfgiý provides
rpiý IS li our

university phwýi, ýprovides ive , Provcides
math courses--,, - networking c rses rogrammi g courses operatin s ses disýýeuted system courses , ystem

Performance Monitor location broker

service loca Won _j
math Brazil

networking Alaska
programming Madagascar

operating system Madagascar
distributed system Alaska

students

Figure 7.2: e-learning service connections

Case Study

7.2.1 Hypothesis

Earlier it has been predicted that:

133

9 The centralised model becomes a big bottleneck for physically widely dis-
tributed applications.

The host model should not create any extra traffic and performance mon-
itoring is feasible for every kind of application, whereby not as accurate as
the centralised model, because every monitor has no overview of the whole
application.

The class model loses a further part of the overview of the whole application
and as such has to rely even more on information about failures from outside
its own PMC.

Comparing the past performance versus future performance it is likely that
the host model will have the fastest response time for widely distributed ap-

plications and the centralised model for local execution.

In the following an application is introduced, which will be executed with GTZPS for

each of the different performance monitoring architectures described and the results
are being compared. Furthermore it is explained why the above assumptions are
correct.

7.3 Application

After the students have enrolled to their course they will start their first unit.
This unit begins with an induction course where the most basic knowledge of
the course will be conveyed. Afterwards they will need some in depth knowl-

edge about other subjects such as math, programming languages, operating

systems, networking and soon. These subjects are available from different service

providers.
Services under Grid Performance Software (GriPS) are in a tree structure. Figure

7.3 shows the structure of the tree for this e-learning service. This Figure uses the

same structure ýis other applications before: every node in the tree represents one

service instance. As explained before an object or in this particular case a service

Case Study

A

B

Machine Services
ossi 01 11 21 31 4ý 51 6

forquet 0,1,2,3,4,5,6
garfield 31 4
sienna 21 31 6

Figure 7.3: The e-learning exam- Tabl,
ple application vices

134

Table 7.1: Distribution of e-learning ser-

instance consist of data and allocated memory defined by one class and as such every
student executing this application will create his/her own service instance. When

one student has to restart the application one service instance terminates and for

the next run a new service instance will be created.
The service defined by the service instance are defined in Table 7.2. This table

also shows how many fake instructions each of these service instances are suppose to

execute before calling their children, if there are any, whereby one fake instruction
is defined in Listing B. I. Finally the table shows the distribution for this particular

example, i. e. the machine on which each service instance is being executed. Addi-
tionally Table 7.1 shows what services are available on which machines. In case one
of the machines fails an alternative location is taken from this table.

Service Instance I Service Instructions ý XIachin

A 0 Enrolment 250 forquet

B I Start year one 350 forquet

C 2 Induction 450 forquet

D 3 Math 3500 garfield
E 4 Programming 5000 ossi
F 5 Operating systems 800 ossi
C 6 Networking 1000 sienna

Table 7.2: E-Learning Scheduling

Gri*PS produces a time diagram of the first year study as shown in Figure 7.4.

This diagram shows for every service instance on the y axis the total amount of

Case Study 135

instructions in percentage and on the x axis the time in seconds for the whole
application. It can be seen that the students start with their induction course only
after they have enrolled and the year has started. Only after the induction course
has been fully completed they will start with the different subjects in parallel.

GriPs uses real-life data for the connection between different machines. Since
this simulation is executed in a local area network, the real connection time is
comparably small and can as such be neglected. GriPs reads the connection data
out of a file and uses a replacement file to translate the information for the real
machines used. The data used for the connection are described in Appendix B-3-1.
Table 7.3 shows the real machine used in this example and the IP address and the
location of the machine it is simulating. Figure 7.5 shows the delay in milliseconds
added between the different machines. The delays in the diagram are rounded to
the nearest millisecond, however GriPs uses the connection data up to microseconds.
Some of the connections do not show a difference between the minimum delay and
the maximum delay, this is when the difference only appears within microseconds.

real specification of the ma- Simulated IP Location of Simulated

machine chine address machine
name
forquet HP model C3000 (PA- 128.8.7.4 College Park, MD, US

8500 CPU), 2GB mem- (University of Mary-

ory, O/S: HP-UX 11.00 land)

ossi Pentium 450Mhz, 216-168.227.250 Herndon, VA, US

256MB memory, Win (Verisign)

NT4.0

garfield Sunblade 150, Ul- 203.181.248.27 Tokyo, Kanto, JP

traSparc Ili 650Mhz, (APAN)

256Mb memory, Solaris

8 (108528-16)

sienna Sunblade 150, Ul- 193.0-0-11 Amsterdam, North

traSparc Hi 550Mhz, Holland, NL (RIPE)

128Mb memory, Solaris

8 (108528-16)

Table 7.3: Connections used in this example

Case Study

10 12 14

Networking

Operating'systems

Programming

Math

ot"
C-

Induction

Start, yeal., 0110

Ellroliliclit

sienna. dmu. ac. uk

ossi

0 4 r.
ossi

0 garfield
I
dmu. ac. uk

I

0
forquet. c se. dmu-ac. u

Ik

0
forquet. c

I
se. dmu. ac. u

Ik

0
forquet. c

I
se. dmu. ac. u

Ik
468 10 12 14

Time in seconds

Figure 7.4: First year study course

136

00%

7C 0
machine
00%

ý1(0
machine
DO%

hC

machine
00%

machine
00%.

machine
00%

machine
0070

machine

Case Study

min, 209ms
max: 209ms c

(f 1,

min: 209ms
max: 209ms

vp

min: 105ms
max. 106ms

ege Park, MD, US
uet. cse. dmu. ac. ul

min: 003ms
max: 004ms

137

min: 211 ms
max: 237ms

min: 204ms A
c c Tokyo, Ktnto, JP max: 212ms emdon, VA, US

(garfield. dmu. ac. uk) min: 332ms min: 086ms (ossi. dmu. ac. uk) max: 672ms max: 087ms

min: 332ms min: 085ms
max: 645ms max: 090ms

Amsterdam, North Holland, NL
(sienna. dmu. ac. uk)

min: 105ms
max: 106ms

rrin ,
003ms

maxý 004ms

Figure 7.5: The connection speed between the used machines

Case Study

7.4 Analysis

138

All results presented in this chapter are created by GriPS when executing this
distribution 100 times. Because of the time involved running the application the
execution time for each course is limited to a couple of seconds. In a real e-learning
class surely every course would have to execute more instructions, however the
behaviour would be the same. First the three models and their results are being

presented and at the end the results of all three models are compared in Section
7.4.4.

The results for each model contain the minimum, average and maximum execu-
tion time, the delay created by the connection between the remote machines and
the minimum, average and maximum total execution time for the whole application,
whereby the total time includes, the connection delay and the execution time. The

time is given in the format hours: minutes: seconds: miliseconds.

7.4.1 Centralised Model

Let us assume the performance monitor client (PMC) is located on the same host
(ossi (Herndon, US)) as the graphical user interface and the operating systems
course. Each execution starts with an initial distribution. When the performance
monitor does not trigger a reconfigurahon this distribution will not change. Figure
7.6 shows a sequence diagram of the interconnections between the different services

and the performance monitor. It can be seen that every new service call has to go
through the centralised performance monitor client. This results for this distributed

example application in II remote calls.
Since it was predicted that the centralised model depends on the type and dis-

tribution of an application a second example is given. This time we place the PMC

on the same machine as the networking course, which is sienna (Amsterdam,

North Holland, NL), for all the other courses and the GUI the distribution stays
the same.

For the first example Figure 7.6 shows that most of the communication time
is between f orquet (College Park) and ossi (Herndon, US). The delay between

these two locations is the minimum between all machines and is between 3ms to 4ms.

When moving the PNIC to sienna (Amsterdam, NL) the delay increases between

105ms to 106ms. Furthermore this distribution has to do one extra remote call and

Case Study 139

Figure 7.6: Sequence Diagram of an e-learning course in the centraltsed model

Case Study

Centralised Model
PMC on ossi

Centralised Model
PMC on sienna

amount remote calls 11 12
min connection delay

(hh: mm: ss: MMM)
00: 00: 00: 328 00: 00: 01: 451

max connection delay 00: 00: 00: 362 00: 00: 01: 777

min execution time 00: 00: 07: 060 00: 00: 08: 813
average execution time 00: 00: 08: 685 00: 00: 09: 295

max execution time 00: 00: 11: 076 00: 00: 10: 626

min total time 00: 00: 07: 388 00: 00: 10: 264
average total time 00: 00: 09: 032 00: 00: 10: 909

max total time 00: 00: 11: 438 00: 00: 12: 403

140

Table 7.4: Results for the Centralised Model (all times are given in the format
hours: minutes: seconds: miliseconds)

has as such a total of 12 remote calls altogether. The results of both distributions

are presented in Table 7.4.

Case Study

7.4.2 Host Model

141

GriPs executes the host model with exactly the same data and distribution only
this time there exist one performance monitoring client for every host machine. A

sequence diagram of the same application in this model can be seen in Figure 7-7.
The host model saves remote calls to the centralised performance monitor and can
connect directly to the machine of the next service, which results for this distribution
in 4 remote calls all together. Table 7.5 shows the results for this model.

Host Model
amount remote calls 4
min connection delay 00: 00: 00: 321
max connection delay 00: 00: 00: 323

min execution time 00: 00: 08: 433
average execution time 00: 00: 09: 053

max execution time 00: 00: 10: 375

min total time 00: 00: 08: 754
average total time 00: 00: 09: 375

max total time 00: 00: 10: 698

Table 7.5: Results for the Host Model (all times are given in the format
hours: minutes: seconds: miliseconds)

Case Study 142

Figure 7.7: Sequence Diagram of an e-learning course in the host model

Case Study

7.4.3 Class Model

143

In the class model every service has its own performance monitoring client as can
be seen in Figure 7.8. The rest of the services and distribution is exactly the same.
The GUI connects directly to the PMC responsible for object A on f orquet. The
PMC then contacts the PMS which creates a new instance of object A. When object
A is calling child object B it creates a new thread which calls its PMS and waits till

all children (in this case it is only one) has finished executing. The P. NIS contacts
the PMC it was called from, and the PMC calls the PMC responsible for object B

and so on. Table 7.6 shows the results for this model.

Class Model

amount remote calls 4

min connection delay 00: 00: 00: 321

max connection delay 00: 00: 00: 323

min execution time 00: 00: 08: 642

average execution time 00: 00: 09: 651

max execution time 00: 00: 16: 784

min total time 00: 00: 08: 963

average total time 00: 00: 09: 999

max total time 00: 00: 17: 107

Table 7.6: Results for the Class Model (all times are given in the format
hours: minutes: seconds: miliseconds)

Case Study 144

Figure 7-8: Sequence Diagram of an e-learning course in the class model

Case Study 145

7.4.4 Comparison of the three models without a failure

Comparing the connection time between the different models shows an astonishing
behaviour. The centralised model with the PMC on host ossi (Herndon, US)
does 11 remote calls and the delay for the connection is between 328ms and 362ms.
Compared to the host or class model with only 4 remote calls but a delay between
321ms and 323ms it does not seem to be realistic.

However the centralised model makes only remote calls between ossi (Hern-
don, US) and every other machine, whereby the host model connects directly to
the different locations irrespective of the connection cost. As Figure 7.5 shows a
connection between f orquet (College Park, US) and sienna (Arnsterdwn, NL)
has a delay of 105ms to 106ms. Whereby a connection from f orquet (College

Park, US) to ossi (Herndon, US) has a delay of 3ms to 4ms and a connection
from ossi (Herndon, US) to sienna (Amsterdarn, NQ has a delay of 86ms to
87ms. Together it adds up to a delay of 89ms to 91ms much below the direct

connection delay of 105ms to 106ms.

The situation looks much different when the performance monitoring client in the

centralised model is placed not on the same machine as the graphical user interface
but on machine sienna (Arnsterdam, NQ. This results in 12 remote calls with a
delay between Is 451ms and Is 777ms.

As predicted at the beginning it shows that the centralised model becomes a bot-
tleneck for widely distributed applications. Whereby when the performance monitor
is located at a strategic place within the distributed application the increase in net-

work traffic does not need to increase the overall execution time noticeable.
Furthermore it was predicted that the host model does not increase any network

traffic and it is feasible for every kind of application as can be seen in Figure 7.9,

because it even reduces the connection delay. Comparing the behaviour of the

centralised model and the host model, the centralised model takes the route over

at least two hops whereby the host model does take the direct route, which does

take longer, however in designing a routing algorithm it is important to cater for

the heavy load situation thus minimum hop is the most useful combined with Load

Balancing for multi-service networks [40].

In case the application runs through without any failure and as such no recon-
figuration is needed all three models behave at their optimum. In what follows fault

treatments are dealt with.

Case Study

Total Execution times

18000

16000

14000

12000

E 10000

6000

6000

4000

2000

0

ModelType

146

EI Min-totaý
a avg-total
Ei Max-total

Figure 7.9: Chart about the total execution time

central host obj central sienna

Case Study

7.5 Failure recovery

147

Three types of failure recovery are considered. First we explain the failure recovery
after a time-out. This is clearly not the best solution for a time critical appli-

cation like this e-learning example, however even this example demonstrates the
behaviour clearly. The following subsection describes the early warning recovery of
a performance failure. The next subsection then describes a failure recovery for a
time-eritical application.

7.5.1 Failure recovery after a time-out

GriPS has the ability to let a machine fail after a specified number of instructions
(i. e. fault injection). This allows to reproduce exactly the same failure for all the

three models and for every time the application is executed. Figure 7.10 shows the

same execution as shown in Figure 7.4 only this time machine sienna failed after it

has executed 500 instructions.

Case Study

10 12 14 16 18

Networking

Operating'systenis

Programming

Math

Induction

Start*year . one

Enrolment

000007

sienna. dmu. ac. uk forquet. cse. dmu. ac. uk

-

-,

1111111ýý` 11111111111ýýýýýýýýýýýýýýýýýýý111111111111ýýýýýýýýýýýýýýýýýý111111111ýýýýýýýýýýýýýýýýýýýýýýýýýýl----ý

0 q Zb

ossi

ossi

4! - - 0, - F.
garfield. d mu. ac. uk

0,
forquet. cse. dmu. ac. uk

01 .v ro forquet. cse. dmu. ac. uk
111111111

- 1 ji

0 0 111 forquet. cse. dmu. ac. uk
111111111
2468 10 12 14 16 18

Time in seconds

Figure 7.10: First year study course in case machine sienna failed

148

007C,

7C

machine
30%

70

machine

-z' ho
70

machine
0%

Yo
inachine

) OY. I.

0
machine

Y(C,
machine

)O(YO

x

machine

Case Study 149

Failure detection and recovery in the centralised model In this example
the PMC is located on ossi (Herndon, US) as this was the best solution for the

centralised model. As soon as the performance monitor detects that machine sienna
has failed it triggers a reconfiguration. In this case the failure is detected because
Java RMI throws an exception as soon as it is not able to connect to the remote
machine within a certain amount of time. When the performance monitor, which
has triggered this remote call, receives an exception, instead of the return value it

was waiting for, it sends a request to the location broker. For the moment GriPs

only handles one location broker at a time. However it is possible to extend this

architecture e. g. with an hierarchical structure of location brokers. Information

about these architectures can be found in Chapter 2.3.3.
Figure 7.11 shows a sequence diagram of the interconnections between the dif-

ferent services and the performance monitor. Furthermore it can be seen that the

performance monitor, after it has received an alternative location to execute the

networking course from the location broker, will start this course right from the
beginning again. This results for this distributed example application in 12 remote

calls. The results for this model are presented in Table 7-7.

Centralised Model

amount remote calls 12

min connection delay 00: 00: 00: 331

max connection delay 00: 00: 00: 366

min execution time 00: 00: 09: 023

avg execution time 00: 00: 10: 560

max execution time 00: 00: 15: 712

min total time 00: 00: 09: 354

avg total time 00: 00: 10: 908

max total time 00: 00: 16: 078

Table 7.7: Results for the Centralised Model in the failure case (all times are given
in the format hours: minutes: seconds: miliseconds)

Case Study 150

Figure 7.11: Sequence Diagram of an e-learning course in the centrahsed model when
one host fails during execution

01-10
Case Study 151

Failure detection and recovery in the host model In case of the host model
the situation is similar. The performance monitor on host f orquet which has called
the failed machine will detect this failure and sends a request to the location broker

which is situated on machine ossi in this example. The location broker will return
f orquet, since this is the best alternative between the possible solutions. It is

necessary to contact the location broker first because there might be a better solution
to execute this course. And the performance monitor has no global information

about which other hosts providing this course or what their current runtime situation
might be. After the performance monitor has received the new location it will start
this course again. Furthermore the PMC will send a message in a different thread
to all other PMCs it knows of to inform them about this failure.

Figure 7.12 shows a sequence diagram of the interconnections between the differ-

ent services and the performance monitor and Table 7.8 presents the results created
when executing this model.

Host Model

amount remote calls 5

min connection delay 00: 00: 00: 325

max connection delay 00: 00: 00: 327

min execution time 00: 00: 09: 453

avg execution time 00: 00: 10: 580

max execution time 00: 00: 13: 109

min total time 00: 00: 09: 778

avg total time 00: 00: 10: 906

max total time 00: 00: 13: 436

Table 7.8: Results for the Host Model in the failure case (all times are given in the

format hours: minutes: seconds: miliseconds)

Case Study 152

Figure 7.12: Sequence Diagram of an e-learning course in the host model when one
host fails during execution

/-I -- Case Study 153

Failure detection and recovery in the class model In the class model the
PMC-2 will detect the failure first, and contacts the location broker on ossi. Be-

cause the client has no overall knowledge about the whole application it will have to
inform all other clients running on its machine about the failure. In case any other
client has already called the failed host or is about to call it. This early message
gives the opportunity to react on the failure even before it will detect it itself. In
both other models this calls will not be necessary because the client knows about
every failure detected by this host automatically. However the class model will also
send a message to all other clients it knows about on other hosts, to inform them

about the failure. This is done in a separate Thread and as such does not disturb the
normal program flow. Figure 7.13 shows a sequence diagram of the interconnections

between the different services and the performance monitor and Table 7.9 presents
its results.

Object Model

amount remote calls 5

min connection delay 00: 00: 00: 325

max connection delay 00: 00: 00: 327

min execution time 00: 00: 10: 725

avg execution time 00: 00: 11: 923

max execution time 00: 00: 19: 789

min total time 00: 00: 11: 050

avg total time 00: 00: 12: 249

max total time 00: 00: 20: 116

Table 7.9: Results for the Class Model in the failure case (all times are given in the

format hours: minutes: seconds: miliseconds)

Case Study 154

Figure 7.13: Sequence Diagram of an e-learning course in the class model when one
host fails during execution

Case Study 155

Comparison of the three models in case of a machine failure

In this example the failure occurs on one machine where only one service is being

executed and this service does not call any service itself. In this case only the PMC

which calls the failed machine has to react on the failure, and the failure detection is
identical in all three models. However the PMCs within the host- and class- model
do not realise this special condition because they do not have an overview of the

whole application and as such have to inform all other PMCs about this failure.
This is done in a separate thread and as such influences the applications execution
only in the sense that the machine has some extra load to deal with, as explained
in Chapter 4.

Generally the centralised model has the widest overview of the whole application

and as such can react slightly faster than the other two models in case of a failure

as can be seen in Figure 7.14. However the centralised model creates so much more
remote calls that this advantage is singled out by the host model.

As predicted the reconfiguration after a time-out delays the execution noticeably.
In case of a real failure (and not just a simulated one) this delay might even be higher.
Since within the simulation the exception is thrown immediately, whereas in case
of a real failure the timeout, before this exception is thrown, might be much higher

and as such the whole failure detection process will consume far more time. For soft
real-time applications, this problem of a delay might be overcome when a buffer is

used at the receiver's end. However for real time-critical application this delay is

not acceptable. Imagine a life threatening operation where in the middle suddenly a

couple of seconds no new information arrives. The next two sections illustrate how

the performance can be improved for time critical- applications.

rl".
Case Study

Total execution time in a failure case

25000

20000

15000

E

E

10000

5000

0

156

0 min-total
" avg-total

max-total

Figure 7.14: Chart about the total executton time in the failure case

cetltlci, Muokel ýo. t rriudel obj model
ModelType

Case Study 157

7.5.2 Early Warning Recovery of a Performance Failure

It is conceivable that one of the machines involved in the execution might run low

on memory or is simply overloaded, which causes a delay in the execution of ever 'y
object on this machine. However the situation might already improve when one or
more objects will be migrated to another machine. To detect this kind of situation
the execution time of every object is estimated before the execution starts (Chapter

4).
Let us assume that an other user start running some applications on machine

ossi. This results in the performance breaking down. The course on operating
systems will terminate after it has executed 800 instructions. It has been estimated
that this course should have finished after 8s and 840ms. But in this case the time
taken directly after the execution indicates an execution time of 9s and 200ms. It is

clear that the machine ossi has some performance problems. And in case there is

a machine available who provides the programming course on a faster machine, it

makes sense to simply migrate this course to this faster machine. This would allow
the whole e-learning application to finish within the estimated time limit of 22s and
840ms, hence satisfying user-contract agreement.

7.5.3 Failure Recovery for a time-critical Application

The programming course is the last to finish for the whole e-learning course, this

makes it the most performance-critical course. As long as there is no user interaction

during the execution of this course it makes sense to execute it on different machines

at the same time and only transfer the results from the one finishing first. The

execution of all other replications can be stopped as soon as one finishes successfully.
However when choosing the location for the replication it is to bear in mind that

every additional execution on a particular host will slow down the execution of every

other object running on that host. For the moment this feature is not implemented

within GrZPS.

7.6 Summary

This chapter has introduced a case study on e-learning. One example application

has been presented which was executed 100 times for each model on GrZPS. The

Case Study 158

results created during this execution where compared. Like predicted beforehand the

centralised model becomes easily a bottleneck for widely distributed applications.
Depending on the application and its distribution the centralised model has also
the ability to create some usable results, since it has the overview of the whole
application. However in general the host model is more likely to create reasonable
results independently of the distribution. It keeps a fairly good overview and has

the advantage of a direct connection to the next object.

Chapter 8

Conclusions and further research
and development

8.1 Vision

A traditional application need to be bought, installed, updated and maintained by

the user. On the other hand service-based computing is a new computing paradigm
where an application is not sold, but made available for remote usage. It can be

executed from all over the world on the machines where it is installed. This thesis
has first introduced future distributed environments, where this research is built

on. It has been explained how the object oriented programming paradigm helps to
build service-based distributed applications. The advantages and disadvantages of
local and remote execution have been discussed, with the result that this research

concentrates on remote execution. When using objects distributed over a large

network it is inevitable to search for these objects before they are executed. Various

solutions of how to resolve this searching have been discussed, and mechanisms to

support the search either with the help of the class names or its functionality are

given. However, to allow any successful search in a large distributed system several

architectures for location brokers have to be introduced. To have only one centralised
location broker would result fairly quickly into a bottleneck, which has to be avoided.
This bottleneck can be avoided by using a hierarchical structure of location brokers.

After an object has been found it is discussed at what time the different object

addresses are bound together. It is possible to bind the addresses either at invocation

time or at runtime. The solution used in this research is a combination of both

159

Conclusions and Further Work 160

options. First an initial static distribution is created at invocation time just before
the start of the execution, and in any failure case a dynamic reconfiguration and
as such a new process of NAB (Network Address Binding) will be initiated during
execution. Furthermore to built a service-based application a user, a service provider
and the developer will each have a different interest in such an application. These
interests have been discussed and resulted in the fact, that before the execution these
requirements have to be specified in a contract between the user and the service
provider. Additionally a service-based application needs some further development
in the area of security, accounting, naming, location management, network and fault

configuration as well as performance monitoring. Each of these have been introduced

whereby the focus of this research lies on performance monitoring.

8.2 Achievement

8.2.1 Performance Monitoring Client and Server

The performance monitor introduced in this thesis is divided into two parts. The
Performance Monitoring Client (PMC) implements the monitoring activity. In con-
trast the Performance Monitoring Server (PMS) plays a more passive role and re-
sponds to requests and instructions issued by the PMC. In all the introduced ar-
chitectures the PMS is always executed on the same machine where the objects are

executed. Indeed every PMS is responsible for only one class and instantiates ev-

ery object out of this class, whereby different architectures for the location of the
PMC are presented. In the centralised model there exist only one PMC for each

application, whereby the other two models have even a distributed architecture for

the PMC. In one model there exist one PMC on every host used and in the last

model there exist for every PMS exactly one PMC. For each of these models the

advantages and disadvantages have been discussed. Several algorithms to monitor
the availability, reliability, number of remote calls and the network delay created
by these remote calls are presented. Whereby one of these algorithms relies on an

estimation of the execution time before the actual start of the execution.

Conclusions and Further Work

8.2.2 Algorithm for Time Estimation

161

The estimation process of times has been evolved step by step from a sequential
towards a parallel executing application. When executing several tasks on the same

machine this machine will slow down and as such it is not advisable to use always
the fastest possible machine for an object. A machine, which is slower before the

execution starts, might be faster during the execution. It is not possible to predict
the exact run-time behaviour of a machine because a machine might also be used
for other application - parts. However this estimation provides the performance

monitor with enough information to notice shortfalls and react to compensate.

8.2.3 Algorithm for Optimisation of Execution Time

The static optimisation to schedule an application has been described. This schedul-
ing represented by a DAG is proved to be a NP hard problem [26]. As such the

ophmtsahon of the object distribution presented in this thesis will not necessarily
find the absolute optimal distribution, however the results created by this algorithm

are still better than choosing the distribution randomly.

8.2.4 Grid tool for Performance Monitoring

The Grid Performance Software developed to simulate a global distributed appli-

cation takes as an input an application represented in a tree structure. It can be

freely chosen where in the network each part of the simulated application should be

executed. Furthermore a simulated machine failure can be injected on one or more

of the used machines after it has executed a certain number of instructions. When

these instructions have been executed the HostMachine throws a Remote Exception

in the same way as the Exception would be thrown when the machine fails in real-
ity. Moreover it was explained how the reconfiguration from such a failure or indeed

from a performance point of view has been dealt with.

0 8.2.5 Eva uation

A case study about e-learning is given as an example. The same e-learning appli-

cation has been executed 100 times for each model and a comparison of the three

different performance monitoring architectures is given. Like predicted the cen-

tralised model becomes a bottleneck for widely distributed applications. However,

Conclusions and Further Work 162

depending on the application and its distribution even the centralised model pro-
duces some acceptable results, since it keeps the overview of the "N-hole application.
However the host model can be used more in general since it still is able to keep a
fairly good overview and has the advantage of a direct connection to the next object.

8.3 Further Work

There are various aspects in which the work can be extended.

Location Management

As for the location management it has been explained why a centralised man-
agement is not appropriate for a large global system. Some ideas have been

presented how a hierarchical model can be implemented. However these ideas

are clearly not at a stage to be put into practice. Who will be responsible for

the naming of a new object? In case the naming is be done by its functionality

clearly different people might come up with a different functionality for the

same object. Will it be possible for the developer to decide every possible way
this object might be used in its lifetime?

Dynamic Reconfiguration and Failure
Furthermore the reconfiguration algorithm can be extended to include failure

because of malfunctioning hard- or software. The detection of such a failure

is a challenging problem, imagine an object which returns a call even though

that it has not terminated its execution, and as such these results are not

valid. Or even a machine, which keeps sending not valid messages over the

network, and as such congest the network unnecessary.

Response Time
The response time for the performance monitoring can be improved by in-

jecting breakpoints into the code [21] and using persistent storage for partial

results.

A mechanism to introduce the measurement of memory load on machines and
the speed drop of heavily used connections. Where the usage of connection

resources can be realised in the same way we presented for the machines re-

sources.

Conclusions and Further Work 163

Billing
How can this "pay as you go" computing be implemented and an appropriate
contract between the service provider and the user being accomplished?

Security

Last but not least security will play a major role for any service-based com-

putation. The system has to be protected against attacks like eavesdropping,

masquerading, tampering, denial of service, Spam and viruses.

Appendix A

Data structures

E Set of executing nodes
W Set of waiting nodes
M machine

Tn. E Set of execution nodes on machine m

M. W Set of waiting nodes on machine m

M. G parameter specifying the speed drop

m. ý3 parameter specifying the speed drop

m. speed the maximum speed of the machine

m. services the set of services that are available on the machine

ams(m) the actual machine speed of m
(ni, nj) message (edge) from node ni to node nj

c(ni, nj) costs (in ms) of message (ni, nj)
(ni

, nj). time already transmitted ms
T Set of currently transmitting messages

ni a node in the DAG

ni. o The related object of the node

ni. i The total instructions that have to be executed by this

node

ni. ei The instructions that already have been executed

ni. startTime The start time of this node in ms

iii. endTime The end time of this node in ms

n. state The state of this node (INITIALISED, EXECUTING.,

WAITING, TERMINATED)

164

Appendix: Time Estimation 165

(N, s, e, w) a collision tuple.
N is the colliding node.

s is the start time.

e is the end time.

w stores if N was waiting or executing.
n. EC Set of collisions that occured while n was executing
n. WC Set of collisions that occured while n was waiting

A. 1 Data tables for the time estimation in the
DAG

** ***** **** * ******* ********* ****** ** ** ** *

Initial values: alpha = 1, beta =0 for I and II

ams(I) =1 i/ms

ams(II) =2 i/ms

Sets:

E

T

I. E fn11

II. E fl

E Nodes:

nl: start= Oms, end= Oms, ei= Oi

W Nodes:

T Nodes:

calls:

Iteration 0:

ams(I) =1 i/ms

ams(II) =2 i/ms

first = nl in 200ms

exec(nl):

Appendix: Time Estimation

Sets:

E

T

I. E

II. E

E Nodes:

W Nodes:

T Nodes:

nl: start = Oms, end = 200ms, ei = 200i

calls:
(1,2): c= 10ms, time= Oms
(1,3): c= Oms, time= Oms

*** **** *** ****** * **** **** *** *** **********

Iteration 1:

ams(I) =1 i/ms

ams(II) =2 i/ms

first = (1,3) in Oms

transmit((1,3)):
Sets:

Ef n3l

Tf (1,2)1

I. E f n3l

II. E*

E Nodes:

n3: start = 200ms, end = 200ms, ei = Oi

W Nodes:

T Nodes:

nl: start = Oms, end = 200ms, ei = 200i

calls:
(1,2): c= 10ms, time= Oms

166

Iteration 2:

Appendix: Time Estimation

ams(I) =1 i/ms

ams(II) =2 i/ms
first = (1,2) in lOms
transmit((1,2)):

Sets:

E W, n3l
T fl

I. E Wl

II. Ef n2l

E Nodes:

n3: start= 200ms, end= 210ms, ei= 10i

n2: start= 210ms, end= 210ms, ei= Oi

W Nodes:

T Nodes:

nl: start = Oms, end = 200ms, ei = 200i

calls:

* ** ** ** ** * ***** *********** *** *********** *

Iteration 3:

ams(I) =1 i/ms

ams(II) =2 i/ms

n3 (ri= 90i) (rt= 90ms)

n2 (ri= 450i) (rt= 225ms)

first = n3 in 90ms

execute(n3):
Sets:

E fn2l

T ý(3,5), (3,6)1

I. E *

II. E fn2l

E Nodes:

n2: start= 210ms, end= 300ms, ei= 180i

W Nodes:

T Nodes:

167

Appendix: Time Estimation

nl: start = Oms, end = 200ms, ei = 200i

n3: start= 200ms, end= 300ms, ei= 100i

calls:

(3,5): c= Oms t= Oms
(3,6): c= 10ms t= Oms

** ** * *** * ** ** *** ****** ************* *** **** *

Iteration 4:

ams(I) =1 i/ms

ams(II) =2 i/ms

n2 (ri= 450i) (rt= 225ms)

(3,5) (rt= Oms)

(3,6) (rt= lOms)

first = (3,5) in Oms

transmit((3,5)):

Sets:
E ýn2, n5 I

Tf (3,6)1

I. E ýn5l

II. E ýn2l

E Nodes:

n2: start= 210ms, end= 300ms, ei= 180i

n5: start= 300ms, end= 300ms, ei= Oi

W Nodes:

T Nodes:

nl: start = Oms, end = 200ms, ei = 200i

n3: start= 200ms, end= 300ms, ei= 100i

calls:
(3,6): c= 10ms t= Oms

Iteration 5:

ams(I) =1 i/ms

ams(II) =2 i/ms

n2 (ri= 450i) (rt= 225ms)

168

Appendix: Time Estimation

n5 (ri= 300i) (rt= 300ms)
(3,6) (rt= lOms)

first = (3,6) in lOms

transmit((3,6)):

Sets:
E ýn2, n5, n6l
T ýl

I. E f n5l
II. E fn2, n6l

E Nodes:

n2: start= 210ms, end= 310ms, ei= 200i

n5: start= 300ms, end= 310ms, ei= 10i

n6: start= 310ms, end= 310ms, ei= Oi

W Nodes:

T Nodes:

nl: start = Oms, end = 200ms, ei = 200i

n3: start= 200ms, end= 300ms, ei= 100i

calls:

** ** ************** *** ***** * **** *** *** *** **** ** *

Iteration

ams(I)

ams(II)

n2 (ri=

n5 (ri=

n6 (ri=

6:

=1 i/ms

=1 i/ms

250i) (rt = 250ms)

290i) (rt = 290ms)

500i) (rt = 5OOms)

f irst = n2

execute(n2):

Sets:

E ýn5, n6l

T ý(2,4)1

I. E ýn5l

II. E ýn6l

169

Appendix: Time Estimation

E Nodes:

n5: start= 300ms, end= 560ms, ei= 260i

n6: start= 310ms, end= 560ms, ei= 250i

W Nodes:

T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

calls:
(2,4) c=O, t=O

*** **** ** * ****** ************ ** * ***** *** **

Iteration

ams(I)

ams(II)

n5 (ri=

n6 (ri=

(2,4) (

7:

1i /MS

2 i/ms

40i) (rt = 40ms)

250i) (rt = 125ms)

rt= Oms)

first = (2,4) in Oms

transmit(2,4)

Sets:
E= In5, n6l

w= ýn4l

T ýl

I. E ýn5l

II. E ýn6l

II. W ýn4l

E Nodes:

n5: start= 300ms, end= 560ms, ei= 260i

n6: start= 310ms, end= 560ms, ei= 250i

W Nodes:

n4: start= -, end= -, ei=O

T Nodes:

170

Appendix: Time Estimation

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

calls:

** * ***** ******* **** * ********* ***** * ********* **** ***

Iteration 8:

ams(I) =1 i/ms

ams(II) =2 i/ms

n5 (ri= 40i) (rt = 40ms)

n6 (ri= 250i) (rt = 125ms)

first = n5 in 40ms

execute(n5)

Sets:
E ýn6l

w ýW

T ý (5,7)

I. E = fT

II. E = fn6l

II. W = f n4l

E Nodes:

n6: start= 310ms, end= 600ms, ei= 330i

W Nodes:

n4: start= -, end= -, ei=O

T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

calls:
(5,7) c= Oms, t= Oms

171

Iteration 9:

Appendix: Time Estimation

ams(I) =1 i/ms
ams(II) =2 i/ms
n6 (ri= 170i) (rt = 85ms)
(5,7) (rt= Oms)

first = (5,7)

transmit (5,7)

Sets:

E= ýn6l

w= ýn4, n7l
T

I. E

II. E= ýn6l

I. W = ýn7l

II. W = ýW

E Nodes:

n6: start= 310ms, end= 600ms, ei= 330i

W Nodes:

n4: start= end= ei=O

n7: start= end= ei=O
T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

calls:

** ** ** ******* ** * *** *************** ** ***** * **** ********

Iteration 10:

ams(I) =1 i/ms

ams(II) =2 i/ms

n6 (ri= 170i) (rt = 85ms)

first = n6

execute(n6)

179

Sets:

Appendix: Time Estimation

E

w n4, n7l
T ý(6,8), (6,9)1

I. E fj

II. E fj

I-W fn7l

II-W fn4l

E Nodes:

W Nodes:

n4: start= end= ei=O

n7: start= end= ei=O
T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

n6: start= 310ms, end= 685ms, ei= 500i

calls:
(6,8) c= 10ms t= Oms
(6,9) c= Oms t= Oms

* *** ** ******* *************** * ***** ******** ********* ***

Iteration 11:

ams(I) =1 i/ms

ams(II) =2 i/ms
(6,8) (rt= lOms)
(6,9) (rt= Oms)

first = (6,9)

transmit(6,9)

Sets:

E= ýn9l

w= ýn4, n7l

T

I. E

II. E ýn9l

173

Appendix: Time Estimation

I-W = fn7l

II-W = ýn4j

E Nodes:

n9: start= 685ms, end= 685ms, ei= Oi

W Nodes:

n4: start= end= ei=O

n7: start= end= ei=O
T Nodes:

nl: start

n3: start=

n2: start=

n5: start=

n6: start=

calls:
(6,8) c= 11

Oms, end =
200ms, end=
210ms, end=
300ms, end=
310ms, end=

Oms t= Oms

200ms, ei= 200i

300ms, ei= 100i

560ms, ei= 450i

600ms, ei= 300i

685ms, ei= 500i

Iteration 12:

ams(I) =1 i/ms

ams(II) =2 i/ms

n9 (ri= 100i) (rt= 50ms)

(6,8) (rt= lOms)

first = (6,8) in lOms

transmit(6,8)

Sets:
E= f n9, n8l

w= ýn4, n7l

T fl

I. E f n8l

II. E f n9l

I. W f n7l

II. W f n4l

E Nodes:

n9: start= 685ms, end= 695ms, ei= 20i

174

Appendix: Time Estimation

n8: start= 695ms, end= 695ms, ei= Oi

W Nodes:

n4: start= end= ei=O

n7: start= end= ei=O
T Nodes:

nl: start

n3: start=

n2: start=

n5: start=

n6: start=

calls:

Oms,

200ms,

210ms,

300ms,

310ms,

end =

end=

end=

end=

end=

200ms, ei= 200i

300ms, ei= 100i

560ms, ei= 450i

600ms, ei= 300i

685ms, ei= 500i

Iteration 13:

ams(I) =1 i/ms

ams(II) =2 i/ms

n9 (ri= 80i) (rt= 40ms)

n8 (ri= 200i) (rt= 200ms)

first = n9 in 40ms

execute(n9)

Sets:
E= ýn8l

w= ýn4, n7l

T= ý (9,12)

I. E = f n8l

II. E fl

I. W W1

II. W fn4l

E Nodes:

n8: start= 695ms, end= 735ms, ei= 40i

W Nodes:

n4: start= end= ei=O

n7: start= end= ei=O

T Nodes:

17 5

nl: start = Oms, end = 200ms, ei= 200i

Appendix: Time Estimation

n3: start=

n2: start=

n5: start=

n6: start=

n9: start=

calls:
(9,12) c=O

200ms,

210ms,

300ms,

310ms,

685ms,

t=O

end=

end=

end=

end=

end=

300ms, ei= 100i

560ms, ei= 450i

600ms, ei= 300i

685ms, ei= 500i

735ms, ei= 100i

Iteration 14:

ams(I) =1 i/ms

ams(II) =2 i/ms

n8 (ri= 160i) (rt= 160ms)

(9,12) (rt= Oms)

first = (9,12)

transmit(9,12)

Sets:
E ýn8l

w fn4, n7, nl2j

T fT

I. E fn8l

II. E = fj

I. W = fn7l

II-W = fn4, n121

E Nodes:

n8: start= 695ms, end= 735ms, ei= 40i

W Nodes:

n4: start= end= ei=O

n7: start= end= ei=O

n12: start= -, end= _, ei=O

T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

176

Appendix: Time Estimation

n6: start= 310ms, end= 685ms, ei= 500i

n9: start= 685ms, end= 735ms, ei= 100i

calls:

Iteration 15:

ams(I) =1 i/ms

ams(II) =2 i/ms

n8 (ri= 160i) (rt= 160ms)

first = n8 in 160ms

execute(n8)

Sets:

E fl

w ýn4, n7, nl2j
T f(8,11), (8,4)1

I. E

II. E

I. W fn7l

II. W fn4, n121

E Nodes:

W Nodes:

n4: start= end= ei=O

n7: start= end= ei=O

n12: start= -, end= -, ei=O

T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

n6: start= 310ms, end= 685ms, ei= 500i

n9: start= 685ms, end= 735ms, ei= 100i

n8: start= 695ms, end= 895ms, ei= 200i

calls:
(8,11) C=O, t=O

(8,4) c=10, t=O

177

Appendix: Time Estimation

Iteration 16:

ams(I) =1 i/ms

ams(II) =2 i/ms

(8,11) (rt= Oms)

(8,4) (rt= lOms)

first = (8,11) in Oms

transmit (8,11)

Sets:

E W11

w ýn4, n7, nl2j
T ý(8,4)j

I. E W11

II. E ýl

I. W ýn7l

II. W ýn4, n121

E Nodes:

n1l: start= 895, end=895, ei= Oi

W Nodes:

n4: start= end= ei=O

n7: start= end= ei=O

n12: start= end= ei=O

T Nodes:

nl: start

n3: start=

n2: start=

n5: start=

n6: start=

n9: start=

n8: start=

Oms, end =

200ms, end=

210ms, end=

300ms, end=

310ms, end=

685ms, end=

695ms, end=

200ms, ei= 200i

300ms, ei= looi

560ms, ei= 450i

600ms, ei= 300i

685ms, ei= 500i

735ms, ei= looi

895ms, ei= 200i

calls:
(8,4) c=10, t=O

178

Appendix: Time Estimation

Iteration 17:

ams(I) =1 i/ms

ams(II) =2 i/ms

nll (ri= 100i) (rt= 100ms)
(8,4) (rt= lOms)

first = (8,4) in lOms

transmit(8,4)

Sets:

E= W1, n4l
w= ýn7, n121
T *

I. E W11

II. E ýW

I. W ýn7l

II. W W21

E Nodes:

n1l: start= 895, end= 905, ei= 10i

n4: start=905, end= 905, ei= Oi

W Nodes:

n7: start= -, end= -, ei=O

n12: start= -, end= -, ei=O

T Nodes:

nl: start

n3: start=

n2: start=

n5: start=

n6: start=

n9: start=

n8: start=

calls:

Oms, end =
200ms, end=

210ms, end=

300ms, end=

310ms, end=

685ms, end=

695ms, end=

200ms, ei= 200i

300ms, ei= looi

560ms, ei= 450i

600ms, ei= 300i

685ms, ei= 500i

735ms, ei= looi

895ms, ei= 200i

** ** ** ** ******** *** * ******

Iteration 18:

ams(I) =1 i/ms

ams(II) =2 i/ms

179

Appendix: Time Estimation

nll (ri= 90i) (rt= 90ms)

n4 (ri= 50i) (rt= 25ms)

first = n4 in 25ms

execute(n4)

Sets:

E W11

w ýn7, n121
T ý(4,7)j

I-E W11

II. E ýj

I. W ýn7l

II. W W21

E Nodes:

n1l: start= 895, end= 930., ei= 35i

W Nodes:

n7: start= -, end= -, ei=O

n12: start= -, end= -, ei=O
T Nodes:

nl: start

n3: start=

n2: start=

n5: start=

n6: start=

n9: start=

n8: start=

n4: start=!

= Oms, end =
200ms, end=
210ms, end=

300ms, end=

310ms, end=

685ms, end=

695ms, end=

905, end= 93,

200ms, ei= 200i

300ms, ei= looi

560ms, ei= 450i

600ms, ei= 300i

685ms, ei= 500i

735ms, ei= looi

895ms, ei= 200i

0, ei= 50i

calls:
(4,7) c=10ms t=Oms

Iteration 19:

ams(I) =1 i/ms

ams(II) =2 i/ms

nll (ri= 65i) (rt= 65ms)

(4,7) (rt= lOms)

180

Appendix: Time Estimation

first = (4,7) in lOms

transmit (4,7)

Sets:

E W1, n7l
w W21

T ýl

I. E = ýnll, n7l
II. E =
I-W =
II. W = W21

E Nodes:

n1l: start= 895, end= 940, ei= 45i

n7: start= 940, end= 940, ei= Oi

W Nodes:

n12: start= -, end= -, ei=O
T Nodes:

nl: start

n3: start=

n2: start=

n5: start=

n6: start=

n9: start=

n8: start=

n4: start=!

Oms, end =
200ms, end=
210ms, end=
300ms, end=
310ms, end=

685ms, end=

695ms, end=

)05, end= 93,

200ms, ei= 200i

300ms, ei= looi

560ms, ei= 450i

600ms, ei= 300i

685ms, ei= 500i

735ms, ei= looi

895ms, ei= 200i

), ei= 50i

calls:

* **** *** * ** **** * *** *** ****** ***** * ***** *

Iteration 20:

ams(I) = 0.5 i/ms

ams(II) =2 i/ms

nll (ri= 55i) (rt= 110ms)

n7 (ri= 150i) (rt= 300ms)

first = 110ms

execute(nll)

181

Appendix: Time Estimation

Sets:

E= ýn7j

w= ýnl2l

T f (11,12)1

I. E fn7l

II. E fj

I. W fj

II. W Inl2l

E Nodes:

n7: start= 940, end= 1050, ei= 55i

W Nodes:

n12: start= -, end= -, ei=O
T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

n6: start= 310ms, end= 685ms, ei= 500i

n9: start= 685ms, end= 735ms, ei= 100i

n8: start= 695ms, end= 895ms, ei= 200i

n4: start=905, end= 930, ei= 50i

n1l: start= 895, end= 1050, ei= 100i

calls:
(11,12) c=10, t=O

Iteration 21:

ams(I) =1 i/ms

ams(II) =2 i/ms

n7 (ri= 95i) (rt= 95ms)

(11,12) (rt= lOms)

first = (11,12) in lOms

transmit(11,12)

Sets:

E jn7, n121

182

Appendix: Time Estimation

w

T

I. E= ýn7j

II. E = W21

I. W =
ii. w =

E Nodes:

n7: start= 940, end= 1060, ei= 65i

n12: start= 1060, end= 1060, ei= Oi

W Nodes:

T Nodes:

nl: start

n3: start=

n2: start=

n5: start=

n6: start=

n9: start=

n8: start=

n4: start=

n1l: start:

calls:

Oms, end = 200ms, ei= 200i

200ms, end= 300ms, ei= 100i

210ms, end= 560ms, ei= 450i

300ms, end= 600ms, ei= 300i

310ms, end= 685ms, ei= 500i

685ms, end= 735ms, ei= 100i

695ms, end= 895ms, ei= 200i

905, end= 930, ei= 50i

= 895, end= 1050, ei= 100i

** * ******** ** *** ** ** ****** **** * ****** ******* ***

Iteration 22:

ams(I) =1 i/ms

ams(II) =2 i/ms

n7 (ri= 85i) (rt= 85ms)

n12 (ri= 100i) (rt= 50ms)

first = n12 in 50ms

execute(nl2)

Sets:

E ýn7l

w ýl

T ý(12,10)1

I. E ýn7j

183

Appendix: Time Estimation

II-E = fj

I. W = fj

ii. w = fj

E Nodes:

n7: start= 940, end= 1110, ei= 115i

W Nodes:

T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

n6: start= 310ms, end= 685ms, ei= 500i

n9: start= 685ms, end= 735ms, ei= 100i

n8: start= 695ms, end= 895ms, ei= 200i

n4: start=905, end= 930, ei= 50i

n1l: start= 895, end= 1050, ei= 100i

n12: start= 1060, end= 1110, ei= 100i

calls:
(12,10) c=10, t=O

Iteration 23:

ams(I) =1 i/ms

ams(II) =2 i/ms

n7 (ri= 35i) (rt= 35ms)

(12,10) (rt= lOms)

first = (12,10) in lOms

transmit(12,10)

Sets:

E = fn7l

w = InlOl

T ýl

I. E Wl

II. E ýl

I. w ýnlOl

184

Appendix: Time Estimation

ii. w = ýj

E Nodes:

n7: start= 940, end= 1120, ei= 125i

W Nodes:

nlO: start= -, end= -, ei=
T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

n6: start= 310ms, end= 685ms, ei= 500i

n9: start= 685ms, end= 735ms, ei= 100i

n8: start= 695ms, end= 895ms, ei= 200i

n4: start=905, end= 930, ei= 50i

n1l: start= 895, end= 1050, ei= 100i

n12: start= 1060, end= 1110, ei= 100i

calls:

** *** ** ** ** *** * *** ****** ******** *** ********* *

Iteration 24:

ams(I) =1 i/ms

ams(II) =2 i/ms

n7 (ri= 25i) (rt= 25ms)

first = n7 in 25ms

execute(n7)

Sets:
E

w W01

T (7,10)

I. E

II. E

I. W ýnlOl

ii. w ýl

185

E Nodes:

Appendix: Time Estimation

W Nodes:

nlO: start= -, end= -, ei=
T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

n6: start= 310ms, end= 685ms, ei= 500i

n9: start= 685ms, end= 735ms, ei= 100i

n8: start= 695ms, end= 895ms, ei= 200i

n4: start=905, end= 930, ei= 50i

n1l: start= 895, end= 1050, ei= 100i

n12: start= 1060, end= 1110, ei= 100i

n7: start= 940, end= 1145, ei= 150i

calls:
(7,10) in Oms

Iteration 25:

ams(I) =1 i/ms

ams(II) =2 i/ms

(7,10) (rt= Oms)

first = (7,10) in Oms

transmit(7,10)

Sets:
E W01

w

T

I. E WOT

II. E fl

I. W fT

ii. w fT

E Nodes:

nlO: start= 1145, end= 1145, ei= 0

W Nodes:

186

Appendix: Time Estimation

T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

n5: start= 300ms, end= 600ms, ei= 300i

n6: start= 310ms, end= 685ms, ei= 500i

n9: start= 685ms, end= 735ms, ei= 100i

n8: start= 695ms, end= 895ms, ei= 200i

n4: start=905, end= 930, ei= 50i

n1l: start= 895, end= 1050, ei= 100i

n12: start= 1060, end= 1110, ei= 100i

n7: start= 940, end= 1145, ei= 150i

calls:

Iteration 26:

ams(I) =1 i/ms

ams(II) =2 i/ms

nlO (ri= 50i) (rt= 50ms)

first = nlO in 50 ms

execute (nlO)

Sets:

E

w

T

I. E

II. E

I. W

ii. w

E Nodes:

W Nodes:

T Nodes:

nl: start = Oms, end = 200ms, ei= 200i

n3: start= 200ms, end= 300ms, ei= 100i

n2: start= 210ms, end= 560ms, ei= 450i

187

AppendIX: Time Estimation

n5: start= 300ms, end= 600ms, ei= 300i

n6: start= 310ms, end= 685ms, ei= 500i

n9: start= 685ms, end= 735ms, ei= 100i

n8: start= 695ms, end= 895ms, ei= 200i

n4: start=905, end= 930, ei= 50i

n1l: start= 895, end= 1050, ei= 100i

n12: start= 1060, end= 1110, ei= 100i

n7: start= 940, end= 1145, ei= 150i

nlO: start= 1145, end= 1195, ei= 50

calls:

A. 2 Distributions for the 24 Vertex DAG

a=0.69 ß=1 -y =16ý1 \o ý 0.815 Xi = 0.98 \q ý 0.19 n= 100

V9
V8
V7
V6
V5
V4
V3

V23
V22
V21
V20

V2
V19
V18
V17
V16
V15
V14
V13
V12
Vil
vio

vi
vo

one

0 0.2 0.4 0.6 0.8
Time in seconds

object*0(1)
object 6(l)

object 3(l)

object 0(l)

object 6(l)

object 0(l)

object 2(4)

object'l(l)
objectl(l)
object'l(l)
object*5(3)
object*0(1)
object 4(3)

object 5(3)

object 4(3)

object 5(3)

object 4(3)

object 5(3)

object'4(3)
object l(l)

object 6(l)

object 3(l)

object'6(l)
object 0(l)

188

Figure A. 1: Best possible distribution

Appendix: Time Estimation

v9
v8
V7
v6
v5
vli
V3

V23
V22
V21
V20

V2
,ZV 19

v18
V17
v16
v15
VII
V13
V12
Vil
vio

vi
vo

2
Time in seconds

object I (I)

object*4(l)

object'3(i)

object l(l)

object'4(l)

object'l (1)

object'2(4)

object 0(l)

object *0(1)

object 0(l)

object'5(3)

object'l(l)

object 6(3)

object 5(3)

object 6(3)

object'5(3)

object 6(3)

object 5(3)

object*6(3)

object *0(1)

object 4(1)

object*3(l)

object 4(l)

object l(l)

189

Figure A. 2: Worst found solution

Appendix B

Grid Performance Software

B. I The Graphical User Interface
Figure 6.1 demonstrates the structure of the Grid Performance Software (GriPS) used for
the Simulation. The Graphical User Interface (GUI) relies on information it receives from
SpeedServer and LocationBroker described in the following. Both programs have to be

started before using the GUL All parameters used for the simulation are specified within
the GUI and as soon as the simulation is started a class specifically for the model type is
instantiated and the corresponding performance monitoring client is called.

The SpeedServer:
The SpeedServer is measuring the speed of the machine where it is running on. Listing

(B. 2, B. 3) shows how the SpeedServer is started from a console window. It is using a small
code block that represent a faked instruction and measures the time this code will need
to execute. This faked instruction is also used when an object executes on this machine.
One faked instruction executes the following code block:

long d=O;
for (int i=O; i<100; i++)

d += i+ i*i + i*i*i + i*i*i*i;
I

Listing B. 1: Fake instruction

start rmiregistry

staxt java SpeedServer

Listing 13.2: ý; tart the Spee%gver from a windows console

Appendix: Grid Performance Software 191

rmiregistry &

java SpeedServer &

Listing B. 3: Start the SpeedServer from a Unix console

The LocationBroker:
The LocationBroker is a data structure that provides the simulation and its graphical

user interface (GUI) with environmental data such as HostMachines, Connections and
Services. A HostMachine provides information about the minimum, average and maximum

speed, this machine has reached during its lifetime, additionally the actual speed. Since

the LocationBroker keeps checking the speed information of the HostMachine in regular
intervals, it is able to notice quickly when a HostMachine is not anymore available. Under

normal circumstances (when no failure occurs) the HostMachine will unregister itself from

the LocationBroker before it is shut down. In addition the HostMachine class does the

actual execution of instructions for every SimulatedApplicationObject (SAObject). This

way it is feasible to artificially let one machine fail after it has executed a certain number

of instructions.

The LocationBroker also implements the association between ServiceDetails and Host-

Machine, as well as a mapping from HostMachines to Connections. For convenient storage

of a HostMachine object the MachineRegistration class is used. This is necessary, because

if the connection to one HostMachine breaks down, there is no chance to get the data

needed for a lookup. The MachineRegistration class therefore stores copies of the nec-

essary attributes that are needed, even if the machine is unreachable. On one computer

there is exactly one MachineRegistration for one HostMachine, though RMI creates copies

of it when returning or passing it as parameter.
Furthermore the LocationBroker provides a feature to inform an object interested in

a particular HostMachine if the status of this machine has changed. Whereby the status

of a HostMachine can be: available, not available, registered or unregistered. Within the

simulation every PMC registers itself at the LocationBroker to listen for an event of every

HostMachine it has called. Listing (B. 4, B. 5) shows how the location broker is started

from a console window.

start rmiregistry

sta, rt java sim. LocationBroker

Listing t5.4: btart the LUb trom a winc[ows console

Appendix: Grid Performance Software 192

rmiregistry &

java sim. LocationBroker &

Listing B. 5: Start the LOB from a Unix console

The GUI has to connect to a LOB as explained in section B. 1.4.1.

The GUI Structure

The GUI is divided into four parts as can be seen in Figure 6.2.

The menu bar
The menu options like loading, saving, exporting, importing of data, creation of

applications and changing of settings are accessible. The menu bar is described in

detail in Section B. I. 2.

The tool bar
Contains two buttons one is used to start a simulated application and the other to

reset the total executed instructions of all machines.

The tabbed pane
Contains different panels to create the application and to view the results. These

panels can be accessed by pressing on the corresponding tab and are described in

detail in Section B. 1.3.

The status bar
Displays the actual LOB and the number of threads currently running in this virtual

machine.

B. 1.2 The menu bar

The menu bar contains five main menus.

File Options to clear, load, save, export and import data, as well as quitting the program

can be found here.

Clear Clear or remove the data of services, machines, connections and application

or all.

Appendix: Grid Performance Software 193

Load Load data of services, machines, connections, application, settings or all.
It is also possible to load only above parts out of a file that contains all data.

Load settings, or all will ask you, if you want to use the saved LOB or register
the loaded data on the current LOB.

Save Save the data of services, machines and connections of the current LOB,

application, settings or all.

Export app. -data The application data is exported into a CSV (Comma Sep-

arated Values) file. The file contains the used model, the number of remote

calls, total number of instructions executed, the minimum and maximum delay

of all used connections, the duration of the application and a list of machines
with a triplet of executed object, service number and instructions.

Export Obj. -diagram data Exports the data of the Object Diagrams panel (s.

Section B. I. 3.7).

Three files are created during the export. The data file, which contains the

pure data of times and percentage of total instructions per object as well as
the data when which machine was executing which object.
The second file is a MetaPost (. mp)- file to create from the data a simple PS-

file. (see [20]).

The last file is a TOC-file to create a document (PDF, DVI, PS, etc) file to

view the data. (see [28])

More information how to work with these files is displayed in Appendix B. 2.5

Import Connections Importing connections from several files with the addition-

ally option to replace host names or IP-addresses by a replacement string read

out of a file. (see Section B. 1.3.4, AppendixB. 3.1 and B. 3.2)

Exit Quitting the program.

TI-ee Option to create and fill the simulated application tree.

Create Random T! ree A random application tree is generated. The current ap-

plication tree is lost. The number of objects (nodes) and the maximum depth

of the tree, as well as the seed for the random generator can be specified in a

dialog.

The objects axe filled with a randomly chosen service out of all available ser-

vices. More about the application structure in Section B. 1.3.3.

Fill in fastest machines Assign the fastest possible machine to the objects.

Fill in random machines Assign a random machine to the objects. The seed for

the random generator can be specified in the Settings-Dialog B. I. 4.

Appendix: Grid Performance Software 194

Reset application Reset all objects of the simulated application to the state ini-

tialised and their executed instructions count to 0.

Settings Change the default settings and log options.

Change settings Opens the Settings Dialog.

Object Diagram logging If selected the data needed to export object diagram
data is logged. (If unchecked data export is not available!).

Testing Used only for testing purposes.

Help A small about dialog.

B. 1.3 The different panels
There are seven main panels in the GUI that can be selected by pressing on the tab with
the name of the panel.

* The Service Panel to add, remove and change services

* The Machine Panel to add, remove and change machines and their services

o The Application Structure Panel to create a simulated application and to set some

parameters

9 The Connection Panel is used to add, remove and change connections

o The Model Panel where the performance monitoring model can be chosen

9 The Application Panel displays some data of the application's results

* The Object Diagrams Panel visualises the execution of objects in diagrams.

The different panels are described in the following subsections.

B. 1.3.1 The Service Panel

The service panel is used to add, remove or change service registrations on the actual LOB.

A service has a unique service number (when newly created it is one more then the last

available number), a name, a minimum, a maximum and average number of instructions

to execute.

Appendix: Grid Performance Software 195

File Tree Settings Testing Help

RUN Reset HostMachines

Serx4ces Machines Objects Connection Application Object Diagrams Model Performancernonitor data

Number Name Min_Instructions Max-Instructions Avg_ Instructions
0 Service 0 100 500 350
i Service 1 200 850 350
2 Service 2 150 3000 350
3 Service 3 1000 5000 3500
4 Service 4 100 500 350
5 Service 5 100 500 350

add Serx4ce delete SenAce

Actual LOB: ossi CUFFeHt time I, 9: JU: 12: 409

Figure B. 1: The Graphical User Interface Service Panel

A service can be added by pressing the add-button. A default service is created and
can be altered by selecting the field in the table and typing the new values. Confirm the

new value by pressing ENTER.

To delete a service, mark the service in the table and press the delete-button. The actual

version does not allow to delete multiple services at a time (the service which was selected
last is deleted).

The default values of a service can be altered in the Settings-Dialog (see Section B. 1.4).

B. 1.3.2 The Machine Panel

The machine panel allows the adding, removing and changing of machine registrations on
the actual LOB.

Machines and their properties are shown in a tree structure on the left side of the

panel. A machine is either in the available or not available branch of the tree. The

available branch shows for each machine:

* Which services are provided

* Runtime data such as the total executed instruction count and the failure instruction

where the machine will simulate a failure (crash)

9 The speed data such as the current, minimum and maximum speed

e Settings like the time zone and location.

Appendix: Grid Performance Software

ga Registering a machine

Please enter the data to connect to a SpeedServer

Hostname I IP nemesis

Portnumber 1099

Service Name mac_nemesis

Register I Cancel I

Figure B. 2: Adding a machine

Not available machines show only the registered services of this machine.

196

Whether a machine is available or not is determined by the LOB which is checking regis-
tered machines in intervals.

To add a machine one can either press the add- machine -button, which opens a dialog
(Figure B. 2) to enter the data necessary to connect to the remote machine, or use the

right mouse-button which is described later.
To connect to a remote machine the machine name or its IP-address, the port num-

ber of the rmiregistry and the name how the machine is registered in the rmiregistry are

needed.
To remove a machine, select it in the tree and press the rem ove- machine- button.

On the right side of the machine panel two tabs are located which show detailed

information on the machine which is selected in the tree. One is Machine details, the

other one is Costs.
The Machine details tab allows to:

o register and unregister services

* set the instructions after which the machine will fail

9 shows the actual executed instructions

The Reset button resets the actual executed instructions to 0 (Available for all

machines) -

Appendix: Grid Performance Software 197

* Change the alpha and beta of the machine. (a and 0 axe used for estimating the

start and end times of objects see Chapter 4).

* Add or remove services to/from a machine using the register-service or unregister

service button.

The Co8ts tab shows the information about the costs in specified times. This is up to

now not editable in the GUI but can be altered in the property file of the SpeedServer.

Last but not least on the lower right side of the panel is a diagram showing the actual
speed data provided by the SpeedServer. A right mouse click on this diagram allows the

user to change the settings for this diagram. How to change data in the dialog is described
in Appendix B. 2.
Note: Using a right click on the tree pops up a menu, where most of the above actions
are available. Additionally one can choose which data is displayed in the machine-tree.

B. 1.3.3 The Application Structure Panel

The application structure panel is used to create a simulated application with all its

parameters.
This panel as shown in Figure 6.4 is divided in three parts. On the left side there is

the application structure shown in a tree. This tree structure can be altered by adding or

removing nodes. Nodes in this tree represent an object (service instance) which is part of

the application.
At the upper right side are information shown, based on the user - provider contract for

the application. The lower right side gives additional information about the selected node.

To add a new node, select the node where you want to add a child-node or sibling to and

press the Add Node button. This will display a dialog, where you can choose to add the

new node as a child or sibling. A sibling can be added above or below the selected node.
To delete a node, select it and press the Delete Node button. This will delete this node

and all its children.
These options are also available by pressing the right mouse button on the application-tree.

Additionally there is a button to expand the tree and one to pre- estimate the times

(as described in Chapter 4) for the application (using the selected speed setting from the

Settings dialog). In the combo box below the tree, one can choose which time should be

displayed in the tree (No time, pre-estimated time and estimated time).

Appendix: Grid Performance Software 198

For every object in this tree the right service instance has to be specified. This is done
by selecting the node (which represents an object) and choose the machine and service
in the Major Attributes tab. Another possibility is to fill in the machines automatically
(Further information are available in Section B. 1.2.) The number of faked instructions
the node executes before calling its children are specified to the average instruction of
the service specified in the Service Panel. However this number can be altered manually
and it only should remain between the minimum and the maximum instructions specified
for this particular service. More information about the Service Panel are in Section B. 1.3.1.

The other tabs are of no further interest, because the underlying performance monitor
structure is not providing any data for it anymore.

In the upper right part is the general information of the whole application. It is possible
to enter the maximum allowed costs and the maximum allowed time that the application
is allowed to use. Also the start time/date when the application is simulated to start can
be set.

The application structure panel shows during runtime of the simulated application the

status of each object. This status will be identified by a coloured bullet in front of the

related node. The different colours and their meaning are explained in the following:

9 Red bullet: In this object some data such as the service or the machine for this

service is not available or not selected.

o Blue bullet: The object is correctly initialised.

* Yellow bullet: The object is started and executing or waiting on its children to
terminate.

o Green bullet: The object has terminated.

B. 1.3.4 The Connections Panel

This panel allows to add and remove connections between machines and change the data

of these connections on the current LOB.

Appendix: Grid Performance Software 199

File Tree Settings Testing Help

Reset Hostfulachines

Sersvices Machines Appl. Structure Connection Model Application Object Diagrams

Select Origin of Connection 192. 172.226.24

De-s. tinat-io, n-------M,, -i-n. De-lay,
_(nns)

Max. DelayCrns)_ Availabililyin % time costs in k1min
128 223,22&56 1W213 142.162 _ 1010 100: 00-01: 00 - 1.0
128.8,7.4 80.621 94.39 100.0 : 01: 00-02: 00 1.0
141142.121.4 79.718 106.863 100.0 0 2: 00-03: 00 2.0
1 92ý203,230,250 29.365 152.296 10&0 ; 03: 00-04,00 5.0
193.0.0.11 182.35 209.469 100.0 0 4: 00-05: 00 1.0
203.181.248.27 246.759 273.369 10&0 0 5: 00-06: 00 1.0
204.152.184.98 17.406 26.924 80.0 0 6: 00-07: 00 1.5
2 04.29.239.2 3 22.034 39.263 95ýO ý07: 00-08: 00 3.0
205.189.33.78 102,709 129.823 99.0 ý08: 00-09: 00 1.0
216.168.227.250 96.111 17CB16 100.0 '09: 00-10: 00 0.5

ý1 0: 00-11: 00 1.0
11: 00-12: 00 1.0
12: 00-13: 00 4.0

113: 00-14,00 2.0
14: 00-15,00 5.0
15: 00-16: 00 0.0

Add Connection Remove Selected Connection

Actual LOB: hope threadcount = 12

Figure B. 3: The Connection Panel

Connections have a origin and destination address, a min- and max-delay between

these connections in milliseconds and an availability in percent.
A subset of Connections can be selected by choosing the origin in the combo box at

the top of Figure B-3. All connections having the selected origin are shown in the table

below (the combo box on the left). Select one connection in the table will show the costs

of these connections over the time in the table on the right hand side. To add a connection

press the Add Connechon button.
A dialog pops up as shown in Figure BA. The source and destination machine of the

connection are to be entered. An already registered machines from the lists in the top can
be entered or a name can be entered in the text fields below. If something is entered in

the text fields, this value will be used. The min- and max-delay of the connection as well

as the availability are set to default settings and can be edited.

To remove a connection select one in the left table and press the Remove Selected

Connection button. Adding and deleting multiple connections is not supported in the

current version. There is a possibility to import connections from several files, by using

AppendlX: Grid Performance Software

xh
Select the origin host

hope
nemesis

Select the destination host

, hope
nernesis

or type new hostmachi... or type new hostmachine

Min Delay, 190.0

Max DeIW. 200.0

Availabilityin%

The costs are taken from your default-settings. You are
available to change the values later.

Add Connection Cancel

Figure BA: Adding a connection

200

Appendix: Grid Performance Software 201

the menu File and pressing Import Connechons in there. It is additionally possible to
replace names or IP-Addresses of these files by writing a replacement file and speciýving
it in the import dialog. Examples of how these files are formatted are shown in Appendix
B. 3.1 and B. 3.2.

B. 1.3.5 The Model Panel

The model panel allows to specify the performance monitor model used to execute the
application.

The panel as shown in Figure 6.6 is divided into two parts. The upper part allows to
choose the model, where the in the lower model dependent data for the selected model
can be specified.

There are 3 models to choose as described in Chapter 3:

9 Centralised Model

* Hostmachine Model

9 Class Model

To choose one specific model click on the button labelled with the name of the model.
A picture above each button describes the structure of this model. To see the picture
more detailed double click on it. The main difference between these models is the lo-

cation and the number of performance monitors (PM). The centralised model has only
one performance monitor for the whole application, the host model has one performance
monitor per used machine and the class model has one performance monitor per service
instance. In the host and class model the location of performance monitor is specified by

the distribution of the objects. The centralised model has only one performance monitor

and therefore its location needs to be specified (bottom panel). For the centralised model

enter the hostname where the PM is located, the port of the running rmiregistry on this
host and the name of the PM with which it is bound in the rmiregistry.

B. 1.3.6 The Application Panel

This panel as shown in Figure B. 5 gives information about the application.

Appendix: Grid Performance Software 202

TIMI . 1" --'

File Tree Settings Testing Help

RIJN Reset HostMachines

Services Machines Appl. Structure Connection Model Application Object Diagrams
Application: Appihope_1038304877765

Starttime 10: 00: 00: 000 Used Model Centralised model
Endtime 10: 00: 17: 125 Remote Calls 0

Pre estimated values

Instructions

Preestimated instr. 0

Execution Times

Preestimated time 00: 01: 05: 358
Max. time 00: 01: 00: 000

simngs -00: 00: 05: 358

Costs

Connection costs 0,000 1
+ Machine costs 0,000 f

Total costs 0,000 f
Max. costs 0,000 k

Sarvings 0,000 1

Connection data

Min. Delay 00: 00: 00: 000

Actual LOB: hope

Estimated values Current values
Instructions Instructions

Estimated instr. 0 Executed instr. 0

Execulion Times

Estimated time 00: 01: 05: 358
Max. time 00: 01: 00: 000

SaNnngs -00: 00: 05: 358

Exectition Times

Elapsed time 00: 00: 17: 125
Max. time 00: 01: 00: 000

Sarvings 00: 00: 42: 875

Costs

Connection costs 0,000 1

+ Machine costs 0,000 f

Total costs
Max. costs

0,000 1

0,000 r,

Savings 0,000 X

Max. Delay 00: 00: 00: 000

threadcount =9

Costs

Connection costs 0,000 f

+ Machine costs 0,000 f

Total costs 0,0001

Max. costs 0,000 1

Sarvings 0,000 1

Figure B. 5: The Application Panel

It is divided in five major parts. The whole panel is only interesting during execution

or afterwards because these values are set or being adjusted only during runtime. Before

execution all values are initialised with the default values. The following list describes the

five parts of the panel.

Application:

The label of this part shows the name of the application which has the following

syntax: Appl-HOSTNAME-STARTTIME. In detail: HOSTNAME is the name of the host

machine where the GUI is running and STARTTIME is the real start time (millisec-

onds after 1970) of this particular application. This means that the name for an

application changes as soon as you restart the execution because the system time

has changed.
Contents:

Start Time
Is set at the start of the execution to the value specified in the application-

Appendix: Grid Performance Software 203

structure panel described in Section B. 1.3.3. By default it is 01: 00: 00: 000
(hh: mm: ss: SSS). This time format is used throughout the application.

o End Time
Is set when the application has executed. The time is calculated by adding the

real execution time to the start time.

e Used Model
It represents the model which would be chosen in the model panel described

in Section B. 1-3.5 to execute the application. It will be set just at the start of
the application. Before execution it has the value no data.

9 Remote Calls
This is the number of remote calls which were needed to execute the applica-

tion. This value is adjusted during execution.

Pre estimated values
Before executing an application the times and cost for this particular application

can be estimated as described in Chapter 4. We refer to this estimation before the

start as pre estimation. How to estimate these times see section B. 1.3.3.

Instructions

9 Pre estimated ilistr. 1

Will show the total number of instructions needed to terminate the application.

Execution times
These values are only set if times were pre-estimated.

9 Pre-estimated time
The estimated time that it will take to execute the application with the current

settings.

* Max time
The time which is allowed to execute the application. This time is specified in

the application structure panel.

Savings

This time is the difference between the Max time and the Pre-estimated time.

A positive number means that the application can be executed in time. A

negative number (red digits) means that the execution time will take longer

'Not implemented

Appendix: Grid Performance Software 204

as it is allowed. The contract can not be accomplished.

Costs

* Connection costs
Every connection has cost depending on the start time and the duration of
the connection usage. The shown value represents the pre-estimated sum of
all connection cost.

* Machine costs
The cost for a machine is time dependent, too. This value represents the sum
of all machine cost which will be used to execute the application with the
current settings.

e Total cost
This is the sum of machine and connection cost.

Max costs
The cost which is allowed to execute the application. This value is specified in
the application structure panel.

0 Savings

This cost is the difference between the Max cost and the Total cost. A positive
number means that the application can be executed cheaper than the maximum
cost provided by the contract. A negative number (red digits) means that the

execution cost will be higher - The contract can not be accomplished.

Estimated values
While executing an application other programs (eg. Performance Monitors) observe
the behaviour of this application. For example if a host machine crashes this observer
tries to execute parts of the application on another host. This reconfiguration costs
time and as a result the execution time has to be estimated again. The values in this

part can change during execution. Just after starting an application they are the

same as the pre-estimated values. During execution these values will be adjusted in

a later version of this software when a part of the application runs faster or slower as

expected. At the end of the execution this values should be close to the real values.

Current values
This are the real values (cost, instructions, elapsed time) for the execution and
therefore show only information about executed parts. After execution this values
represents the real values for the execution.

Appendix: Grid Performance Software

Connection data

205

'U-
For all connections which can be used there exist statistical data. To add or modify
a connection see Section B. 1 . 3.4.

* Min Delay

This value represents the sum of all min delays of the used connections. This

value will be adjusted during the execution. Before the start it has the value
00: 00: 00: 000.

9 Max Delay

This time value represents the sum of all max delays of the used connections.
This value will be adjusted during execution. Before the start it has the value
00: 00: 00: 000.

The real time value for building up all is between Min Delay and Max Delay.

B. 1.3.7 The Object Diagrams Panel

The object diagram panel as shown in Figure 6.7 also shows information about an exe-
cuted application.

The panel is divided in two parts labeled with Tree respectively Diagram. It is possible
to change these parts from the left side to the other and vice versa by dragging the labels

to the other side. The tree part shows the application structure. To fully expand the
tree click the expand button in the upper left corner of the panel. For each node there

exists a diagram in the diagram part. The diagram shows graphically the behaviour

during execution. Each diagram has a vertical axis labelled with percentage values and a
horizontal axis labelled with times. It can happen that there are too many labels at the

axis that it is impossible to read. To change the look of the diagram right click on one.
This will pop up a dialog which is described in the Appendix B. 2. Changes in this dialog

affect all diagrams - It is not possible to change only the look of one particular diagram.

The default type of the diagram is Stairs and takes the executed instructions dependent

on the time into account. This can also be modified in the dialog which was mentioned
above. Diagrams can be exported by clicking on the Export Obj . -diagrain data button

in the menu bar (see Section B. 1.2).

B. 1.4 The Settings Dialog

The settings dialog allows the user to specify default values, timer settings and which
LocationBroker is to be used.

Appendix: Grid Performance Software 206

The Settings dialog can be opened by selecting Settings - Change Settings in the menu bar.

Tab LocationBroker

The LocationBroker Tab is shown in Figure B. 6 and specifies a LocationBroker.

ýIbSettings X1

LocationBroker Objects Timer Diagram Connection Serx4ce

LocationBroker Settings

Host localhost

Port 1099

Service locationbroker

update LOB

Close Settings___

Figure B. 6: Setting the LocationBroker

A LocationBroker is specified by the IP-address or name of the machine, a port number

of the rmiregistry on the given machine and the name how the LocationBroker is bound in

the rmiregistry.
Pressing the Update LOB button tries to connect to the LocationBroker.

If the connection was successful the status bar of the main window will show the name of

the machine as the actual Location Broker (Actual LOB).

B. 1.4.2 Tab Objects

The objects panel (Figure B. 7) specifies the settings for a random tree and the settings
for pre-estimating the times of the application.

Appendix: Grid Performance Software

LocationBroker Objects ; TWW Diagram Connection Service
Default-Settings for Object Details

Random Tree Generator

Node count 20

Max. depth of tree 5

Random seed for tree creation 0

Random seed for filling in machines 0

Update Data

Execution Times
Select speed for pre estima(e execution times Minimum speed

using default alpha and beta with following default values

Close Settings

Figure B. 7: Setting of object parameter

207

The settings for the random tree consist of four parameters. First the node count of
the randomly chosen tree, second the maximum depth of the tree, third the seed for the

random generator for creating the tree and last the seed for the random generator when
filling in the machines randomly.
In the pre-estimation part one can select which machine speed should be used, like the

minimum, maximum, current, the cached current or a constant speed of 1000 instructions

per second. Further the alpha and beta settings off all machines can be overridden by

using the default alpha and beta settings, that can be specified here as well.

B. 1.4.3 Tab Timer

The timer panel as shown in Figure B. 8 is up to now only used for the cache timer.

Appendix: Grid Performance Software

X

LocationBroker Objects Timer Diagram Connection Service
Timer Settings

Settings for the Cache-Timer

Update-intervall 500

maximum lookup time 500

I- - Vl Using Machine-Cache

Update Cache Timer

Settings for the Repaint-Timer

Close Settings

Figure B. 8: Setting the timer

208

The cache timer specifies in which intervals data is cached. The maximum lookup

interval specifies the time the caching of one data snapshot is allowed to take. This value

should be less than the update interval.

If Using Machine-Cache is selected the speed diagrams are active.
There is space reserved for the repainting time of the GUL But up to now it is not
implemented to change this value.

B. 1.4.4 Tab Diagram

This panel (Figure B. 9) is responsible to set the values for all speed diagrams of the ma-

chine panel.

Appendix: Grid Performance Software

Ilk Settings I
- tluy. 6ýwl: ý' X

LocationBroker Objects Tinier Diagram Connection SepAce

Diagram scaling Graph policies Axis & Grid Misc

X scaling

Incremental Increment 50.0
Units per Pixel

Exac(fit

Y scaling

auto scale Upper boundary 1.01

Lower boundary
- -0. -0

Close Settings

Figure B. 9: Setting the speed diagram settings

These values can be changed for only one machine (see Section B. 1.3.2).
For a description of the dialog see Appendix B. 2.

B. I. 4.5 Tab Connection

209

This panel (Figure B. 10) allows to set the default values for the creation of connections
like min- and max-delay (in milliseconds), the availability (in percent) and the costs in

specified times (in pounds per minute).

Appendix: Grid Performance Software

fk Settings
LocationBroker Objects Tmw Diagrarn Connection Service
Delays

Xi

Minimum Delay 100.0

Maximum Delay 200.0

Availability in % 100.0

Update DelaY

Costs

Time costs in V min
100: 00-01: 00 10.0
101: 00-02: 00 10.0
02*00-03*00 10.0
ý03: 00-04: 00 10.0
! nA nn. fas--na. 1nn

Update Costs

Close Settings

Figure B. 10: Setting default values for connections

B. 1.4.6 Tab Service

210

This panel (Figure B. 11 allows the user to change the default values that are used when

creating a new service.

Appendix: Grid Performance Software

LocationBroker Objects Timer Diagram Connection SepAce

X1

Defauftname of services
_Servi

Ce

Minimum Instructions 100

Maximum Instructions 500

Average Instructions 350

These changes have only affect on new created services

Update SeMces

Close Settings

Figure B. 11: Setting default values for services

211

The service name, the minimum, maximum and average instructions can be changed
here.

Appendix: G UI Diagram Information

B-2 Diagram Settings
A right click on a diagram will show the Diagram Settings dialog.
This panel is used to change the look of the diagram. There are several options for the
axes, the colours, the scaling, how grids are displayed etc..
To use the changed settings, press the use Values button. To discard changes press the
cancel button.

B. 2.1 Diagram Scaling

212

Change settings

,5 Diagram scaling Graph policies Axis & Grid Misc

X scaling

Incremental Increment 50.01

Units per Pixel
Exact fit

Y scaling

ýv,, aulo scale Upper boundary 1.0

Lower boundary 0.011

use values Cancel

Figure B. 12: Scaling values of the diagram

This pane allows to change the scaling of the axis.
The first part is for the x-axis. It can be choosen between the options incremental and

exact fit.
Incremental means, that only the part is shown, which fits into the diagram panel size.
How big this part is depends on the increment value. A value of 50 Units per pixel means

Appendix: G UI Diagram Information 213

that each pixel of the diagram in x-orientation represents 50 milliseconds on the x-axis.
Exact fit will show the whole data from the minimum x-value to the maximum x-value in
the diagram.
The second part is for the y-axis. It can be selected whether to use auto scale, so that all
values between the minimum y-value and the maximum y-value are shown, or specify the
borders by hand.

B-2.2 Graph Policies

Create drawing policies for the graphlines.
Policies are used in the order they appear in the list.
If you don't specify policies the default is used.

acthre policy.

Display style Colors & Stroke

visible Fill color

Polygon Fill Line color

Stairs Outline Stroke

ý--. Dots

_use
values Cancel

Figure B. 13: Policy values of the diagram

Policies are rules how to draw the data of the diagram.

If no policy is specified the default values are used to draw the data.

The policies have an order, how they are used on a data set of the diagram.

A data set has one x-value but can have more then one y-value. In case of the speed

diagrams we have three y-values. The first one is the maximum speed, the second the cur-

rent speed and the third the minimum speed. The object diagrams have only one y-value

which is the executed instructions as a percentage of the total instructions.

ýAjIV,

Appendix: G UI Diagram Information 214

The first policy is used for the first y-value, the second policy for the second and so on.
A policy has a display style how to draw the data. There it is possible to choose between

polygons, stairs and dots (dots is not implemented up to now). Additional attributes are
the filling of the stair/polygon and/or outlining it. If a y-value should be shown or not
can be toggled by the vistble check box.
Furthermore the fill- and line-colour and the width of lines can be specified by clicking on
the colour or stroke field. This will open a colour chooser where you can choose the new
colour, or opens a dialog to enter the width of the stroke.

B. 2.3 Axis& Grid

X1

Diagram scaling Graph policies--Iý -Axis-&--G-rid- Misc

visible

X-Axis

Major tick every

Minor tick every

Size of a major tick

50_00.0

500.0
1 6: 1

Size of a minor tick 3

'eil Show values on X-Axis

Y-Axis

Major tick every

Minor tick every

Size of a major tick

Size of a minor tick

100000.0

50000.0

6
3

,v Show values on Y-Axis

Gridlines

V, X major gridlines

X minor gridlines

Y major gridlines

Y minor gridlines

Major gridline color

Minor gridline color

Major gridline stroke

Minor gridline stroke

I-u-s--e-V---a-l-u--e's Cancel

Figure B. 14: Axis and grid values of the diagram

Options related to the axes and grid.

The major and minor ticks on the axes, the size of the ticks (in pixel) and if labels are

displayed can be specified.

Grid lines can be switched on or off and the colour and line width can be chosen.

Appendix: G UI Diagram Information 215

B. 2.4 Misc

IL Change settings

Diagram scaling Graph policies Axis & Grid Misc

Boundaries
v autoscrolls

left 601
use additional space.

right 20 1

upper ____20]
scrollbar as needed

bottom 29
grid on top

ki frame diagram

use Values Cancel

Figure B. 15: Miscellaneous values of the diagram

This are miscellaneous options of the diagrams like the boundaries, if it should auto scroll

to the latest dataset (highest ordinate), if an additional space to the right of the diagram

should be used, if the grid is drawn on top of the data and if the diagram should be framed.

For example setting the boundaries to 0 will fit the complete diagram into the visible size,

without any space. The left border is then the y-axis and the bottom is the x-axis.

If you want to examine data that was long ago in a speed diagram, switching auto scrolls

to off is a good idea.

B. 2.5 MetaPost and TFX

When exporting the object diagram three files are created. One datafile storing the times

and percentage values of the executed instruction, as well as a table showing when which

Appendix: G UI Diagram Information 216

object used which machine. The created MetaPost- and TEX-file have the same name as
the datafile where only the extension mp and Jex is added. If your system has a version
of T)EXinstalled, it is common that MetaPost is installed as well. In the first step the
MetaPost file has to be executed with the command for MetaPost. This can be

mp filename. mp or
This will create a PS-file with the name f ilename. 0
PDF-document with a command like

pdflatex filename. tex

or other commands specified by your TFXversion.

B. 3 Example Files

B. 3.1 The Connection-Data file

mpost filename. mp
The next step can be to create a

"The data used in this research was collected as part of CAIDA's skitter initiative,
http: //www. caida. org Support for skitter is provided by DARPA, NSF, and CAIDA mem-
bership. " The file must have following format:

Key Source Destination Time RTT Count hopl hop2

Whereby the Key can be:

C Complete The destination and all intermediate hops in the path all replied. The

RTT to the destination is valid.

I Incomplete skitter got a reply from the destination, but did not receive a reply from

every intermediate hop on the path. The RTT to the destination is valid.

N No reply no reply was received from the destination although a partial path may
have been recorded. The RTT has no meaning in this case.

The source and destination are IP addresses or host names.
The time is a UNIX time stamp in milliseconds from 01/01/1970.

The RTT is the round trip time in milliseconds.
Count specifies how many hops where in between and then the hops are following.

For importing the data, only the lines that have aC or IT as key are used and is creating

connections between source and destination address with the min- and max- delay based

on the RTT.

Appendix: G UI Diagram Information

short example of a connection data file:

KEY SOURCE DESTINATION TIME RTT COUNT HOPS ...
reading: .. /skitterData/result/a-root. 20020315 and look for IP: 203.181.248.27

c 216.168.227.250 203.181.248.27 1016156250 216.874 14 216.168.227.1 ...
c 216.168.227.250 203.181.248.27 1016166239 212.155 14 216.168.227.1 ...
c 216.168.227.250 203.181.248.27 1016176226 210.753 14 216.168.227.1 ...
c 216.168.227.250 203.181.248.27 1016186235 213.538 14 216.168.227.1 ...
c 216.168.227.250 203.181.248.27 1016196240 210.757 14 216.168.227.1 ...
c 216.168.227.250 203.181.248.27 1016206265 236.666 14 216.168.227.1

c 216.168.227.250 203.181.248.27 1016216280 236.928 14 216.168.227.1

c 216.168.227.250 203.181.248.27 1016226293 236.764 14 216.168.227.1 ...
c 216.168.227.250 203.181.248.27 1016236299 236.849 14 216.168.227.1 ...
reading: .. /skitterData/result/caida. mae. net. 20011231 and look for IP: 203.181.248.27

c 204.29.239.23 203.181.248.27 1009775669 247.176 17 204.29.239.1 ...
c 204.29.239.23 203.181.248.27 1009838024 247.240 17 204.29.239.1 ...
reading: ..

/skitterData/result/champagne. 20020315 and look for IP: 203.181.248.27

c 141.142.121.4 203.181.248.27 1016151311 189.608 9 141.142.121.254 ...

217

Appendix: G UI Diagram Information

B-3.2 The Replacement file

A short example of a replacement file:

This is a replacement file.

Format must be:

original replacement
Example:

127.0.0.1 nemesis. dmu. ac. uk
The Ip-adress 127.0.0.1 will be replaced to nemesis. dmu. ac. uk

Ottawa, CA - 205.189.33.78

College Park, MD, US (University of Maryland) - 128-8.7.4

Herndon, VA, US (Verisign) - 216.168.227.250

Tokyo, Kanto, JP ýAPAN) - 203.181.248.2-(

Amsterdam, North Holland, NL (RIPE) - 193.0.0.11

Eugene, OR, USA (University of Oregon) - 128.223.220.56

128.8.7.4 = forquet. cse. dmu. ac. uk

216.168.227.250 ossi

128.223.220.56 liverpool. dmu. ac. uk

205.189.33.78 buda

203.181.248.27 garfield. dmu. ac. uk

193.0.0.11 = sienna. dmu. ac. uk

218

Appendix C

Optimization Software

To test the algorithm and their behaviour we have designed and implemented a graph-
ical user interface, which allows to draw graphs quickly. The source code is written in

Java and requires the JRE1.4. An initial distribution has to be specified for the designed

graph. This distribution can then be optimised using the algorithm described in this paper.

Additionally to an extensive logfile it is possible to export the data gathered during the

optimisation run into a MetaPost [20] file, which can be easily included in T)EX-documents.

It is also possible to export the graph into a MetaPost. Figure CA shows the graphical

user interface of the test application.

219

AppendIX: Estimation Software 220

. 'R xi

LýJ)

0
1 (2000)

Arcs

Vl -> V4

: V6 V7

ýVO VI

iVI -> V3

ýVO V2

; V5 V7

ýV2 V6
ýV7 V9

: V2 V5

: V4 V8

IVI - epsilon -> VS

Figure C. 1: Screen shot of the test application

Bibliography

[1] http: //www. atmformum. com/atmforum/specs/approved. html.

[2] Algirdas Avizienis. The N-Version approach to fault-tolerant software. IEEE Rans-

actions on Software Engineering, SE-11(12): 1491-1501, December 1985.

[3] Paul Bachmann. Analytische zahlentheorie (1894), 1894.

[4] Jean Bacon. Concurrent Systems Operating Systems, database and Distributed Sys-

tems: An Integrated Approach. Addison Wesley, second edition edition, 1998.

[5] Sung Hoon Baek, Bong Wan Kim, Eui Joung Joung, and Chong Won Park. Reliability

and performance of hierarchical RAID with multiple controllers. In Proceedings of
the twentieth annual ACM symposium on Principles of distributed computing, pages
246-254. ACM Press, 2001.

[6] T. P. Baker. A stack-based resource allocation policy for realtime processes. In

Proceedings of the 11th IEEE Real-Time System symposium. IEEE Press, 1990.

[7] Booch, Jacobson, and Rumbaugh. Using UML Software Engineering with Objects

and Components. Addison Wesley, updated edition edition, 2000.

[8] http: //www. caida. org/tools/measurement/skitter/sample-code/.

[9] D. Coudert and X. Muoz. How graph theory can help communications engineering.

citeseer. nj. nec. com/481792. html-

[10] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems Concepts

and Design. Addison Wesley, 3rd edition edition, 2001. ISB-N 0201-61918-0.

[11] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and -Morris Sloman. Ponder: A

language for specifying security and management policies for distributed svstems -
the language specification. Technical report, Imperial College Research Report DoC

2000/1, October 2000.
9.)l

References 222

[121 Nicodemos Damianou, Naranker Dulay, Emil Lupu, and -Morris Sloman. The pon-
der policy specification language. Lecture Notes in Computer Science, 1995: 18-39.
January 2001.

[13] Nicodemos C. Damianou. A Policy Framework for Management of Distributed Sys-
tems. PhD thesis, Imperial College of Science, Technology and Medicine, University

of London, Department of Computing, February 2002.

[14] Daniel S. Diamond and Lee L. Selwyn. Considerations for computer utility pricing
policies. In Proceedings of the 1968 23rd ACM national conference, pages 189-200.
ACM Press, 1968.

[15] Chitra Dorai, Parviz Kermani, and Avare Stewart. ELM-N E-Learning media naviga-
tor. In A CM Proceedings of the International Conference on Multimedia, September
2001.

[161 Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The Ant System: Optimiza-

tion by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics Part B: Cybernetics, 26(l): 29-41,1996.

[17] Bruce Eckel. Thinking in Java. Prentice Hall PTR, 3rd edition edition, 2002. ISBN

0131002872.

[18] William H. Graves. The new challenges of E-Learning. UBIQUITY A CM IT Magazine

and Forum, 1(43), January 2001.

[19] http: //www. etsi. org/.

[20] John D. Hobby. Drawing graphs with metapost. Computing Science Technical Report

no. 164, AT&T Bell Laboratories, Murray Hill, New Jersey, 1993.

[21] Christine R. Hofmeister and James M. Purtilo. Dynamic reconfiguration in distributed

systems: Adapting software modules for replacement. In Proceedings of the 13th

International Conference on Distributed Computing Systems, IEEE Computer Society

Press, May 1993.

[22] http: //java. sun. com/j2se/1.3/docs/guide/rmi/index. html.

[23] http: //www. borland. com/ibuilder/.

[24] Mathai Joseph, editor. Real-Time Systems Specification, 1erification and Analysis.

Prentice Hall International (UK) LTD, 1996. ISBN' 0-13-455297-0.

References 223

[25] A. King and R. Hunt. Protocols and architecture for managing TCP/IP network
infrastructures. Computer Communications, 23(16): 1558-1572, September 2000.

[26] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating di-

rected task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4): 406-
471,1999.

[271 Leslie Lamport. Synchronizing time servers. Technical report, Systems Research
Center Palo Alto, California 94301, June 1987.

[28] Leslie Larnport. DYkX-. A Document Preparation System. Addison-Wesley, 1994.

[29] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic scheduling algorithm: exact
characterisation and average case behavior. In Proceedings of the 10th IEEE Reall-
Time System Symposium, IEEE Computer Society Press, 1989.

[30] http: //rpmfind. net/linux/rpm2html/mirroring. html-

[31] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM (JACM), 20(l): 46-61,1973.

[32] Paul McKee. Enabling distributed services. Presented to CDS Club meeting, Topics

in Distributed Systems, December 1998.

[33] http: //www. ibiblio. org/pub/Linux/LSMTEMPLATE. html.

[34] David L. Mills. Internet time synchronization: The network time protocol. IEEE

Transactions on Communications, 39(10), October 1991.

[35] Ike. Nassi and Ben Shneiderman. Flowchart techniques for structured programming,

August 1973.

[36] Neumann. Monitoring and controlling suspicious activity in real-time with IP-

Watcher. In IEEE 11th Annual Computer Security Applications Conference, 1995.

[37] Jr. Paul K. Harter. Response times in level-structured systems. ACM Transactions

on Computer Systems (TOCS), 5(3): 232-248,1987.

[38] Amelia Platt. Final report on CORBA, internal report submitted to mobility cam-

paign group. British Telecom, 1996/97.

[39] B. Randell, P. Lee, and P. C. Treleaven. Reliability issues in computing system design.

ACM Compuhng Surveys (CSUR), 10(2): 123-165,1978.

224 References

[40] Akos L. Redey. A novel Routing Strategy for Public, Wide Area ATM Networks. PhD

thesis, De N'lontfort University, 1997.

[41] Klaus Schmaranz. DOLSA -a robust algorithm for massively distributed. dynamic

object-lookup services. submitted to J. UCS, 2002.

[42] Jon Siegel. CORBA 3 Fundamentals and Programming. John Wiley and Sons, Inc,

second edition edition, 2000.

[43] Zaw-Sing Su and Jon Postel. The domain naming convention for internet user appli-

cations, August 1982.

[44] Andrew S. Tanenbaum and Maarten von Steen. Distributed Systems (Principles and
Paradigms). Prentice Hall, 2002. ISBN 0-13-088893-1.

[45] http: //www. w3. org/XML.

[46] Hussein. S. M. Zedan. Distributed Computer Systems, chapter Reliable systems in

occam, pages 132-148. Butterworths, 1990.

