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Abstract:

To resolve the conflict between our desire for a good smoothing effect and desire to give

additional weight to the recent change, a grey accumulating generation operator that can smooth

the random interference of data is introduced into the double exponential smoothing method.

The results of practical numerical examples have demonstrated that the proposed grey double

exponential smoothing method outperforms the traditional double exponential smoothing method

in forecasting problems.
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1. Introduction

The exponential smoothing (ES) method describes a class of forecasting methods. Each has the

property that forecasts are weighted combinations of past observations, where recent observations

are given relatively more weight than older ones. The double exponential smoothing (DES) is an

extension of ES designed for trend time series [1]. The Holt-Winters method (triple exponential

smoothing) takes into account both seasonal changes and trends. They provide good forecasts

with simple formulations, allowing the incorporation of error, trend and seasonal components in
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a comprehensive manner [2-5]. Their central place in time series analysis has been reinforced by

repeated successes against more sophisticated approaches. The manipulation with the importance

of the last elements on the sequence and coupled with different smoothing strategies are developed,

and these methods already demonstrated that predictors based on the evolutionary identification

of near-optimal algebraic skeletons (which are neither linear nor stationary) are well applicable for

non-linear and non-stationary sequences [6-8].

Many work have been done to enhance the prediction and simulation accuracy of ES. Some

typical examples are as follows, the joint estimation of initial conditions and smoothing parameters

can be achieved through maximum likelihood via box-constrained nonlinear optimization [9]. The

ES method is extended to the case where the observations can have different significance in the

smoothing process [10]. The interval-valued stock market time series are predicted by combining

Holt smoothing method with a neural network [11]. A method for identifying outliers in ES by

using innovations state space models has also been proposed [12].

DES is also known as Browns method. It is useful for series that exhibits a linear trend char-

acteristic. Gardner summarized the history of DES [13]. A new jitter reduction scheme based on

DES is proposed [14]. To resolve the conflict that exists between our desire for a good smoothing

effect and desire to give additional weight to the recent change, we incorporate the grey generating

operator into ES method in this paper. Grey generating operator is used to smooth the effect of

random interference on the system. The smoothing constant is used to give additional weight to

the recent change and to obtain minimal fitted error. Therefore, a novel grey ES method is put

forward in Section 2. The advantages of grey ES method over the traditional model are illustrated

by five real cases in Section 3. An empirical analysis of pig price in China is discussed in Section

4. Several conclusions are given in the last Section.

2. Grey exponential smoothing
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As we know, for the original time series X(0) = {x(0)(1), x(0)(2), · · · , x(0)(n)}, the single ES

method follows the equation:

x̂(0)(k + 1) = αx(0)(k) + (1− α)x̂(0)(k).

No formally correct procedure exists for choosing the smoothing coefficient, 0 ≤ α ≤ 1. Currently,

the judgment of the statistician is used to obtain an ideal α, which determines the level of response

to recent changes and the smoothing effect. When α is near 0, fewer responses to recent changes

are observed and the smoothing effect is greater. When α is close to 1, additional weight is given

to the recent changes and the smoothing effect is lower [4,5]. This conflict deserves to be resolved.

To solve this conflict, the following definition is given.

Definition 1 [15] For the original time series X(0) = {x(0)(1), x(0)(2), · · · , x(0)(n)}, an r-

order accumulated generating operator (AGO) sequence X(r) = {x(r)(1), x(r)(2), · · · , x(r)(n)}, r ∈

R+ can be generated by r-AGO as follows:

x(r)(k) =

k∑
i=1

(
k − i+ r − 1

k − i

)
x(0)(i); k = 1, 2, · · · , n.

Set

(
r − 1

0

)
= 1,

(
k − 1

k

)
= 0,

(
k − i+ r − 1

k − i

)
= (r+k−i−1)(r+k−i−2)···(r+1)r

(k−i)! . r-order inverse

accumulated generating operator (IAGO) of X(r) is expressed as follows:

X(−r) =(dre) X(dre−r) = {(dre)x(dre−r)(1),(dre) x(dre−r)(2), · · · ,(dre) x(dre−r)(n)}

where dre = min{n ∈ Z|r ≤ n},(dre) x(dre−r)(k) =(dr−1e) x(dre−r)(k) −(dr−1e) x(dre−r)(k − 1). The

IAGO is the inverse operation of AGO. In general, when 0 < r < 1, x(1)(k) =
k∑
i=1

x(0)(i)(k =

1, 2, · · · , n). The r-IAGO of X(r) is computed as follows:

X(−r) =(1) X(1−r) = {(1)x(1−r)(1),(1) x(1−r)(2), · · · ,(1) x(1−r)(n)}

where (1)x(1−r)(k) = x(1−r)(k + 1)− x(1−r)(k).

AGO is widely used in grey models for its ability to smooth the randomness of original data

[15-19]. By means of IAGO, the prediction value can be transformed back to the original se-
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quence. Through AGO, the disorderly data may be converted into regular form. For example,

X(0) = {1, 2, 1.5, 3}, the 1-AGO sequence is X(1) = {1, 3, 4.5, 7.5}. The lines of these sequences

are illustrated in Figs.1 and 2 respectively. Comparing the two lines, it is clear that the trend of

sequence X(1) in Fig.2 is more obvious than the sequence X(0) in Fig.1.

[Insert Fig.1 about here]

[Insert Fig.2 about here]

The following theorem is provided to discuss the mathematical property of AGO.

Theorem 1 Assume that X(0) = {x(0)(1), x(0)(2), · · · , x(0)(n)} is a nonnegative sequence.

X(r) = {x(r)(1), x(r)(2), · · · , x(r)(n)} is the r-AGO sequence. If r ≥ 1, x(r)(k) is the increasing

function of k(k = 1, 2, · · · , n).

Proof For convenience, set r = 1, X(1) = {x(1)(1), x(1)(2), · · · , x(1)(n)} = {x(0)(1), x(0)(1)+

x(0)(2), · · · , x(0)(1) + x(0)(2) + · · · + x(0)(n)}. Obviously, x(1)(n) > x(1)(n − 1) > · · · > x(1)(2) >

x(1)(1). If r = 2, X(2) = {x(2)(1), x(2)(2), · · · , x(2)(n)} = {x(0)(1), 2x(0)(1)+x(0)(2), · · · , nx(0)(1)+

(n−1)x(0)(2) + · · ·+x(0)(n)}. Obviously, x(2)(n) > x(2)(n−1) > · · · > x(2)(2) > x(2)(1). Actually,

k∑
i=1

(
k − i+ r − 1

k − i

)
x(0)(i)−

k−1∑
i=1

(
k − 2− i+ r

k − 1− i

)
x(0)(i) = x(0)(k) +

k−1∑
i=1

(
k − 2− i+ r

k − i

)
x(0)(i) > 0,

i.e, x(r)(k) > x(r)(k − 1). Thus, x(r)(k) is the increasing function of k(k = 1, 2, · · · , n).

Actually, If 0 < r < 1, x(r)(k) may be the increasing function of k(k = 1, 2, · · · , n). For

example, an irregular sequence X(0) = {6, 4, 7, 5, 6, 4, 10, 9, 11, 10}, the 0.6-AGO sequence of X(0)

is X(0.6) = {6, 7.6, 12.28, 13.61, 16.27, 16.48, 23.29, 26.80, 32.02, 35.18}. We can see that x(0.6)(k)

is the increasing function of k(k = 1, 2, · · · , 10). By using AGO, the disorderly sequence may

be converted into an approximately increased sequence. An irregular and increased sequence can

be predicted by using Holt’s linear method (double exponential smoothing). Then we give the

following definition:

Definition 2 For the original time series X(0) = {x(0)(1), x(0)(2), · · · , x(0)(n)}, r-AGO is
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given in Definition 1. Grey double exponential smoothing (GDES) follows the equations

S
′
(k) = αx(r)(k) + (1− α)S

′
(k − 1)

S
′′
(k) = αS

′
(k) + (1− α)S

′′
(k − 1)

bk =
α

1− α
(S

′
(k)− S

′′
(k))

ak = 2S
′
(k)− S

′′
(k)

where S
′
(k) and S

′′
(k) are the single and double exponential smoothing values for time k respec-

tively. The forecasting form is x(r)(k) = ak + kbk.

If r = 0, GDES is the traditional double exponential smoothing. The process of calculating

GDES can be summarized as follows:

Step 1: Set the order number r and obtain the r-AGO sequence ofX(0) according to Definition

1;

Step 2: Calculate the parameters (ak and bk) by using Definition 2;

Step 3: Compute the predictive value using the following equation x̂(r)(k +m) = ak +mbk,

where m is the out-of-sample size;

Step 4: Transform the prediction value back to the original sequence by means of IAGO.

The following theorem is provided to discuss the mathematical property of GDES.

Theorem 2 Assume that X(0) = {x(0)(1), x(0)(2), · · · , x(0)(n)} is a time series. X(r) =

{x(r)(1), x(r)(2), · · · , x(r)(n)} is the r-AGO sequence and r is not an integer. Construct GDES

according to the above steps. m is the out-of-sample size, then x̂(r)(k) is the weighted linear

function of one variable k(k = 1, 2, · · · , n, n+1, · · · , n+m), and the monotonicity of the predictive

value x̂(0)(k)(k = n, n+ 1, · · · , n+m) is uncertain.

Proof For convenience, set r = p
q , p

q -AGO can be expressed as follows:
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[x(
p
q )(1), x(

p
q )(2), · · · , x(

p
q )(n)] = [x(0)(1), x(0)(2), · · · , x(0)(n)]



1 C1
p
q
· · · Cn−2p

q+n−3
Cn−1p

q+n−2

0 1 · · · Cn−3p
q+n−4

Cn−2p
q+n−3

...
...

...
...

...
0 0 · · · 1 C1

p
q

0 0 · · · 0 1


Therefore, p

q -IAGO can be expressed as follows:

[x̂(0)(1), x̂(0)(2), · · · , x̂(0)(n)] = [x̂(
p
q )(1), x̂(

p
q )(2), · · · , x̂(

p
q )(n)]



1 −C1
p
q
· · · (−1)n−1Cn−1p

q

0 1 · · · (−1)n−2Cn−2p
q

...
...

...
...

0 0 · · · −C1
p
q

0 0 · · · 1



= [a1 + b1, a2 + b2, · · · , an + bn]



1 −C1
p
q
· · · (−1)n−1Cn−1p

q

0 1 · · · (−1)n−2Cn−2p
q

...
...

...
...

0 0 · · · −C1
p
q

0 0 · · · 1


The predictive value of p

q -IAGO can be expressed as follows:

[x̂(0)(1), x̂(0)(2), · · · , x̂(0)(n), · · · , x̂(0)(n+m)]

= [a1 + b1, a2 + b2, · · · , an + bn, an + 2bn, · · · , an +mbn]



1 −C1
p
q
· · · (−1)n+m−1Cn+m−1p

q

0 1 · · · (−1)n+m−2Cn+m−2p
q

...
...

...
...

0 0 · · · −C1
p
q

0 0 · · · 1


From the above equation we conclude that the predictive sequence x̂(0)(k)(k = n, n+1, · · · , n+

m) is a weighted linear model and that these weights are changeable. Therefore, the monotonicity

of the predictive value x̂(0)(k)(k = n, n+ 1, · · · , n+m) is uncertain.

In this paper, the predictive values are calculated by using different α
′
s. The α that produces

a small mean square error for the fitted values and shows an expected future growth is chosen. We

assumed that S
′
(0) and S

′′
(0) are equal to the initial historical values.
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3. Comparison of traditional exponential smoothing and GDES

The effectiveness of the GDES model is evaluated via five real cases in this section. Mean

absolute percentage error (MAPE = 100% 1
n

n∑
k=1

|x
(0)(k)−x̂(0)(k)

x(0)(k)
|) compares the actual values with

the forecasted values to evaluate the precision.

Case 1: The example for the series N8 from the M3 forecasting competition

Take the series N8 from the M3 forecasting competition as example. The last 6 observations

is not be used to calculate the forecasts but to evaluate their accuracy. The forecasting results and

the growth values are shown in Table 1.

Table 1 The results of different models

Year Actual value Holt growth value DES growth value GDES growth value
α = 0.51 α = 0.51

1989 8809.8 9809.8 10994.5 7184.6

1990 8953.5 12517.9 2708.1 12421.3 1426.8 7105.2 -79.4

1991 7991.01 15225.9 2708.1 13848.2 1426.8 7170.0 65.8

1992 7294.08 17933.0 2708.1 15275.0 1426.8 7270.5 99.5

1993 7163.37 20642.0 2708.1 16701.8 1426.8 7378.5 108.0

1994 7478.31 23350.1 2708.1 18128.6 1426.8 7486.0 108.5

MAPE 114.7 87.0 8.8

It is noted that the growth values of forecasting results by GDES are changeable. But the

growth values of forecasting results by DES (Holt) are constant. Therefore, GDES can obtain

the smallest MAPE and reflect the real system with different growth situations. This is a major

innovation of GDES.

Case 2: The example for the incidence of Hepatitis B [18]

This example is from paper [18]. The in-sample data and out-of-sample data are the same as

the paper [18]. The actual value and the errors of five models are shown in Table 2. On the one

hand, DES yields the lowest MAPE among the five in-sample models, but yields the higher MAPE
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among the out-of-sample models. On the other hand, GDES yields the lower MAPE among the

five in-sample models, but the lowest MAPE among the out-of-sample models. It implies that

GDES can mitigate the drawbacks of DES and can produce better forecasting results by capturing

the characteristics of recent data.

Table 2 The fitting values and MAPE of different models

Month Actual value GM(1,1) Improved model[18] Holt-Winters[18] GDES DES
Jan 162818

Feb 214523 200801 214523 214523 228120 224864

Mar 201184 193817 188870 201184 221737 215062

Apr 155942 187077 178600 155942 161127 154207

May 183216 180571 173594 183216 183707 177824

Jun 165935 174291 171250 162818 167469 162806

Jul 175836 168229 170520 216749 177048 173411

Aug 170885 162379 170885 174242 172907 170040

MAPE 6.5 4.6 3.4 3.2 2.8
Sep 162818 156731 172054 126074 173099 168790

Oct 133160 151281 173849 152772 162379 167541

Nov 190779 146019 176156 131799 173792 166291

Dec 178907 140941 178897 182929 174323 165041

MAPE 15.5 11.0 17.6 9.9 12.5

Case 3: The numeric example [20]

Li used this numeric example to discuss the conflict between our desire for a good smoothing

effect and desire to give additional weight to the recent change [20]. Despite explaining the existence

of this conflict, Li did not suggest a method for solving such a conflict. To compare the smoothing

effect of GDES, the smoothing constant of Li (α = 0.8) is used. The results of three models are

shown in Table 3. As shown in Table 3, the MAPE of GDES is the smallest among the three
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models. This shows that GDES can mitigate the drawbacks of the traditional single exponential

smoothing and double exponential smoothing method.

Table 3 The results of different models

Time Actual value Traditional single ES[20](α = 0.8) GDES(α = 0.8) DES
1 6

2 4 6 3.9 2.8

3 7 4.4 9.1 8.2

4 5 6.5 5.0 4.5

5 6 5.3 6.6 6.3

6 4 5.9 3.2 3.0

7 10 4.4 13.3 13.1

8 9 8.9 10.1 9.9

9 11 9.0 12.5 12.4

10 10 10.6 10.1 10.0

MAPE 25.8 12.2 14.1

Case 4: The gas content forecasting example [21]

He et al. used the linear double exponential smooth method to predict gas content in vertical

depth with an interval of 50m in a mining area [21]. Their results showed the linear double

exponential smooth method with a smooth constant (α = 0.8) achieved a high prediction accuracy.

To compare the smoothing effect of GDES, the smoothing constant of Reference [21] (α = 0.8) is

used. The results of the four models are shown in Table 4. As shown in Table 4, GDES(α = 0.4)

achieves the lowest MAPE among the four models, which implies that GDES can obtain better

results than the other models.

9



Table 4 The results of different models

Order Actual value DES[21](α = 0.8) GDES(α = 0.8) GDES(α = 0.4) GM(1,1)
1 5.35

2 5.82 5.82 6.13 5.62 4.21

3 6.68 6.10 7.36 6.58 5.18

4 5.41 7.33 4.95 5.98 6.37

5 7.99 4.93 9.29 7.77 7.83

6 8.32 9.27 9.16 8.74 9.63

7 11.56 9.15 13.81 11.63 11.84

8 16.6 13.80 20.62 16.70 14.56

MAPE 16.5 11.8 3.1 16.3

Case 5: The examples for the series N1, N2, N3, N4, and N5 from the M3

forecasting competition

The series N1, N2, N3, N4 and N5 are from the M3 forecasting competition. The last 6 obser-

vations are not be used to calculate the forecasts but to evaluate their accuracy. The forecasting

results of the series N1, N2, N3, N4 and N5 are listed in Table 5, Table 6, Table 7 Table 8 and

Table 9, respectively. The lines of these sequences are illustrated in Figs.3-7 respectively.

Table 5 The results of different models

Year Actual value GM(1,1) ARIMA DES(α = 0.98) GDES(α = 0.98)
1989 5379.75 5564.0 5553.26 6037.4 6035.5

1990 6158.68 6248.3 6246.45 6587.5 6582.5

1991 6876.58 7016.7 7026.18 7137.7 7128.9

1992 7851.91 7879.6 7903.23 7687.9 7674.8

1993 8407.84 8848.7 8889.77 8238.1 8220.2

1994 9156.01 9936.9 9999.45 8788.3 8765.2

MAPE 3.5 3.7 5.2 5.2

[Insert Fig.3 about here]
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[Insert Fig.4 about here]

[Insert Fig.5 about here]

[Insert Fig.6 about here]

[Insert Fig.7 about here]

Take the series N1 from the M3 forecasting competition as an example. According to Table

5 and Fig.3, GM(1,1) has the smallest MAPE among the four models. Therefore, the series N1

shows an evident exponential trend. The error rate of GDES model is very close to DES model.

Thus, the series N1 is unsuitable for GDES.

Table 6 The results of different models

Year Actual value ARIMA DES(α = 0.1) GDES(α = 0.1) Auto-ANN
1989 4793.2 4287.75 4949.6 4908.7 4391.67

1990 5602 4346.3 5048.1 4958.3 4513.11

1991 5065 4405.64 5146.6 5014.5 4604.32

1992 5056 4465.79 5245.0 5075.8 4672.83

1993 5067.2 4526.76 5343.5 5140.9 4724.29

1994 5209.6 4588.57 5442.0 5209.1 4762.95

MAPE 13.4 4.7 2.7 10.0

Table 7 The results of different models

Year Actual value ARIMA DES(α = 0.8) GDES(α = 0.8) Auto-ANN
1989 3070.2 3558.91 3790.44 3464.11 3230.66

1990 3601.6 3592.94 3933.13 3437.34 3232.3

1991 3407.4 3627.3 4075.81 3432.16 3231.2

1992 3500.6 3661.98 4218.49 3434.63 3230.75

1993 3437.8 3697 4361.17 3441.41 3231.25

1994 3007 3732.35 4503.85 3451.22 3231.24

MAPE 9.8 24.9 5.8 7.0

11



Table 8 The results of different models

Year Actual value ARIMA DES(α = 0.52) GDES(α = 0.52) Auto-ANN
1989 4656 4878.4 4961.9 4725.90 4132.45

1990 5228.52 5137.57 5235.05 4865.27 4079.99

1991 5656.72 5410.51 5508.16 5021.65 4072.9

1992 5077.02 5697.95 5781.27 5181.69 4071.91

1993 5403.4 6000.66 6054.37 5341.91 4071.77

1994 5009.52 6319.45 6327.48 5501.14 4071.75

MAPE 10.1 10.3 5.4 20.7

Table 9 The results of different models

Year Actual value näıve2 DES(α = 0.13) GDES(α = 0.13)
1989 5250.9 5488.8 5238.3 4782.5

1990 4899.2 5488.8 5228.9 4598.2

1991 4317.9 5488.8 5219.5 4511.5

1992 4007.9 5488.8 5210.2 4463.2

1993 4323.4 5488.8 5200.8 4435.3

1994 4819.4 5488.8 5191.4 4419.9

MAPE 20.2 14.3 6.9

From the results of the series N2, N3, N4 and N5. It is very clear that the accuracies of GDES

models are better than the conventional models’. The results validate the effectiveness of GDES.

Compare Table 6-9 with Table 5, we conclude that the series N2, N3, N4 and N5 are suitable

for GDES and the series N1 is unsuitable for GDES. Compare Fig.4-7 with Fig.3, the area of GDES

applicability is the linear trend with some fluctuating data.

4. Pig price forecasting in China

Pork is an important element in the Chinese food culture. On average day in China, approx-

imately 1703975 pigs are consumed. According to a report by the United States Department of

Agriculture, Chinese consumed 51 million metric tons of pork in 2006, roughly half of the total pig
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consumption in the world. Although pork accounts for just 3 percent of the products used to mea-

sure CPI, huge fluctuations in pork price can significantly change CPI. Therefore, CPI has often

been referred to as “the China Pork Index”. Over the recent years, pig price have demonstrat-

ed abnormal fluctuations that have raised widespread concern in China. Therefore, the accurate

forecasting of pig price is very important.

Given the limited historical data is available, traditional regression analysis is unsuitable for

forecasting pig price. Instead, the grey forecasting model and ES method can be used to predict

pig price [22]. However, the grey forecasting model is an exponential curve and DES method is a

linear model. These two methods are not suitable for forecasting pig price, because the pig price

usually represents an abnormal surge. Therefore, given the non-deterministic and limited-samples

condition, we use GDES to predict the pig price.

The data consist of yearly pig price in China from 2004 to 2010. These real data were collected

from http://www.caaa.cn. The original time series is shown as follows:

X(0) = {8.70, 8.05, 7.21, 11.84, 14.87, 11.25, 11.50, 16.88, 15.20, 14.56}.

The 0.75-AGO sequence is expressed as follows:

X(0.1) = {8.70, 8.92, 8.49, 13.34, 17.02, 14.12, 14.49, 20.08, 19.12, 18.78}.

We calculate ak = 2S
′
(k)− S′′

(k), bk = α
1−α (S

′
(k)− S′′

(k)), where

S
′
(k) = 0.75x(r)(k) + (1− 0.75)S

′
(k − 1), S

′′
(k) = 0.75S

′
(k) + (1− 0.75)S

′′
(k − 1).

Therefore, we obtain an = 18.88, bn = 0.13.

X̂(0.1) = {8.70, 9.03, 8.35, 15.66, 20.33, 14.41, 14.43, 22.84, 20.38, 19.01, 19.14, 19.27, 19.39}.

X̂(0.1)(0.9) = {8.70, 16.86, 23.91, 38.08, 56.03, 67.14, 78.34, 97.84, 113.91, 128.36, 142.84, 157.29, 171.71}.

Then

X̂(0) = {8.70, 8.16, 7.05, 14.17, 17.95, 11.11, 11.20, 19.50, 16.07, 14.45, 14.48, 14.45, 14.42, 15.04}.
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Table 10 The results of different models

Year Actual value GDES(α = 0.75) GM(1,1)
2004 8.70

2005 8.05 8.16 9.14

2006 7.21 7.05 9.82

2007 11.84 14.17 10.56

2008 14.87 17.95 11.35

2009 11.25 11.11 12.19

2010 11.50 11.20 13.11

2011 16.88 19.50 14.08

2012 15.20 16.07 15.14

2013 14.56 14.45 16.27

MAPE 6.98 14.72

The simulative values and their errors are shown in Table 10. According to Table 10, GDES

has a strong performance in forecasting of pig price in the context of short term or small sample,

because the MAPE is more smaller than GM(1,1), which is a remarkable advantage of GDES.

Thus we use GDES to predict short-term pig price. The results are listed in Table 11.

Table 11 The forecasting results of Pig price in China

Year GDES(α = 0.75) value
2014 14.48

2015 14.45

2016 14.42

2017 15.04

The results of Table 11 shows that the pig price will demonstrate small fluctuations, which

closely reflect the actual situation in the country. Judging by the current state of the domestic pig

farming industry, the pig prices in China will remain stabilized for a specific period, because China

possesses a national pork reserve. Unless a new disease breakout leads to a steep cull of pig stocks,
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the pork prices in China will not experience huge fluctuations. If the pig price in China has been

pushed up. According to the Ministry of Commerce, there are 200000 tonnes of pork in reserves

in 2011, which will be released into the market as and when needed. If the pig price continues to

decrease, driving the food CPI below zero. The government will launch a round of domestic frozen

pork purchases to prevent any further drops in the pork price, as well as to protect the interest of

farmers.

5. Discussion and Conclusion

r can change the smoothing effect of GDES as well as determine the linear trend of r-AGO.

The smoothing constant can provide additional weight to the recent changes. Although favorable

results have been obtained from the six cases, r may not be optimal. The performance of the

GDES still could be improved by further advancement of algorithms used to determine r. More

computational experiments are needed to make conclusions on the performance of different orders.

How to simply obtain the optimal r that can produce a minimum error is a problem that deserves

to research in the future. It is quite probable that the forecasting accuracy of the GDES can be

improved by introduction of external-internal-mixed smoothing.

The government has begun to stockpile frozen pork to stabilize pig prices and to protect pig

breeders from losses and frustration when the price of pig has fallen. The government will release

part of the central government’s frozen pork into the market to cap the increasing prices when

the pig price has fallen. Therefore, the pig price will demonstrate a stabilized trend in the short

term, and the results of GDES are proven accurate. GDES is eventually validated as a better

forecasting model for pig prices and may be used to predict in other real cases. This model can

also be extended to triple exponential smoothing in the future.
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