

A Reengineering Approach to

Reconciling Requirements and

Implementation for Context - Aware

Web Services Systems

Ph.D. Thesis

Jianchu Huang

Software Technology Research Laboratory

De Montfort University

2012

To my wife, Jing Wu and my daughter, Phoebe Huang,

my parents, Guiwen Huang and Yuyun Li,

for their love and support

Acknowledgement

i

Acknowledgement

I am grateful to everyone who has made this thesis possible. First and foremost,

I would like to thank my first supervisor Prof. Hongji Yang, who has given me

enormous support, guidance and encouragement. It has been an honour and a

pleasure to be his PhD student.

Thanks must go to Prof. Hong Zhu, Dr. Francois Siewe, and Dr. Ali Al-Bayatti

for being my examiners and providing many valuable suggestions on my PhD

thesis. My research career will benefit tremendously from the research insight

that they grant me.

I also want to thank the colleagues at De Montfort University providing me

with their feedback, and establishing such a stimulating and friendly working

atmosphere. Especially, Prof. Hussein Zedan for being my advisor, Dr. Martin

Ward for being my second supervisor, Prof. Andrew Hugill, Dr. Feng Chen, Dr.

Shaoyun Li, Dr. Jian Kang, Dr. Helge Janicke, Miss Yingchun Tian. It is

fortunate for me to work and study with them.

On the personal front, I am thankful to my delightful wife Jing Wu for her

patience, love, understanding and support, who takes good care of me and my

little daughter – Phoebe, who never fails to bring joy to me and the family.

When I was stuck in my research, Jing has been always there to comfort me

and encourage me to go forward. Thanks to my father Guiwen Huang and

mother Yuyun Li who have never failed to support to me throughout my life.

Thanks also to my parents in law for their encouragement and patience for the

past few years.

Declaration

ii

Declaration

I declare that the work described in this thesis was originally carried out by me

during the period of registration for the degree of Doctor of Philosophy at De

Montfort University, UK from May 2006 to January 2012. Apart from the

degree that this thesis is currently applying for, no other academic degree or

award was applied by me based on this work.

Abstract

iii

Abstract

In modern software development, the gap between software requirements and

implementation is not always conciliated. Typically, for Web services-based

context-aware systems, reconciling this gap is even harder. The aim of this

research is to explore how software reengineering can facilitate the

reconciliation between requirements and implementation for the said systems.

The underlying research in this thesis comprises the following three

components.

Firstly, the requirements recovery framework underpins the requirements

elicitation approach on the proposed reengineering framework. This approach

consists of three stages: 1) Hypothesis generation, where a list of hypothesis

source code information is generated; 2) Segmentation, where the hypothesis

list is grouped into segments; 3) Concept binding, where the segments turn into

a list of concept bindings linking regions of source code.

Secondly, the derived viewpoints-based context-aware service requirements

model is proposed to fully discover constraints, and the requirements evolution

model is developed to maintain and specify the requirements evolution process

for supporting context-aware services evolution.

Finally, inspired by context-oriented programming concepts and approaches,

ContXFS is implemented as a COP-inspired conceptual library in F#, which

enables developers to facilitate dynamic context adaption. This library along

with context-aware requirements analyses mitigate the development of the said

systems to a great extent, which in turn, achieves reconciliation between

requirements and implementation.

Table of Contents

iv

Table of Contents

Acknowledgement ... i

Declaration .. ii

Abstract .. iii

Table of Contents ... iv

List of Tables .. xi

List of Figures .. xii

List of Acronyms ... xiii

Chapter 1 – Introduction ... 1

1.1 AREA OF STUDY .. 1

1.2 PROBLEM STATEMENT .. 2

1.3 RESEARCH OBJECTIVES ... 6

1.4 RESEARCH METHODOLOGIES ... 7

1.5 RESEARCH QUESTIONS AND PROPOSITIONS .. 8

1.6 ORIGINAL CONTRIBUTIONS .. 11

1.7 CRITERIA FOR SUCCESS ... 12

1.8 THESIS ORGANISATION ... 13

Chapter 2 – Background and Related Research ... 15

Table of Contents

v

2.1 SOFTWARE REENGINEERING .. 15

2.1.1 Legacy System .. 16

2.1.2 Reengineering Phases ... 17

2.2 REQUIREMENTS ENGINEERING ... 18

2.2.1 Requirements .. 18

2.2.2 Requirements Engineering Process ... 19

2.2.3 Requirements Engineering Challenges ... 20

2.3 GOAL-ORIENTED REQUIREMENTS ENGINEERING .. 21

2.4 SERVICES EVOLUTION VS. REQUIREMENTS EVOLUTION .. 22

2.5 WEB SERVICES-BASED CONTEXT-AWARE SYSTEMS .. 25

2.5.1 Context-Awareness ... 25

2.5.2 Web Services ... 27

2.5.3 Survey of Web Services-Based Context-Aware Systems ... 28

2.6 CONTEXT-ORIENTED PROGRAMMING .. 30

2.7 SUMMARY ... 32

Chapter 3 – Proposed Framework ... 34

3.1 OVERVIEW ... 34

3.2 THE PROPOSED REENGINEERING FRAMEWORK AND APPROACH .. 36

3.2.1 Services Candidate Discovery ... 40

Table of Contents

vi

3.2.2 Services Reimplementation .. 42

3.2.3 Services Integration .. 46

3.2.4 Forward Engineering in Proposed Reengineering Framework 47

3.2.5 The Differences and Consequences of the Proposed Reengineering Framework ... 50

3.3 SUMMARY ... 52

Chapter 4 – Requirements Recovery Framework for Services Candidate Discovery 55

4.1 OVERVIEW ... 55

4.2 CONTEXT-AWARE SYSTEM FRAMEWORK .. 56

4.2.1 The Problem .. 56

4.2.2 Layered Conceptual Framework for Context-Aware Systems 57

4.3 REQUIREMENTS RECOVERY FRAMEWORK AND APPROACH ... 65

4.3.1 Requirements Recovery – In a Nutshell .. 65

4.3.2 Requirements Recovery Framework ... 66

4.3.3 Requirements Elicitation Approach .. 69

4.3.4 Requirements Elicitation Approach for A Location-Aware System - A Brief Example

 ... 70

4.4 SUMMARY ... 73

Chapter 5 – Context-Aware Services Requirements Model and Requirements Evolution

Model .. 75

5.1 OVERVIEW ... 75

Table of Contents

vii

5.1.1 The Problem .. 75

5.1.2 Background ... 76

5.2 CONTEXT-AWARE SERVICES REQUIREMENTS MODEL .. 79

5.2.1 Concepts for Context-Aware Services ... 79

5.2.2 Customised Derived Viewpoints ... 81

5.2.3 Requirements Model for Context-Aware Services .. 84

5.3 REQUIREMENTS EVOLUTION MODEL FOR CONTEXT-AWARE SERVICES EVOLUTION 90

5.4 THE RELATION BETWEEN REQUIREMENTS EVOLUTION AND SERVICES EVOLUTION 94

5.5 AN EXAMPLE .. 95

5.6 SUMMARY ... 97

Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS Support 99

 To describe the requirements for the reimplementation 99

 To describe the architecture design for the reimplementation 99

 To discuss the reimplementation concerns and strategies 99

 To introduce the F# language and the development tools 99

 To introduce context-oriented programming and F# library ContXFS 99

 To demonstrate an example of such services reimplementation within the

proposed reengineering framework and the application of ContXFS 99

6.1 OVERVIEW ... 99

6.1.1 The Problem .. 99

Table of Contents

viii

6.1.2 The Background .. 100

6.2 REIMPLEMENTATION REQUIREMENTS .. 102

6.2.1 Requirements for Implementing Context-Aware Web Services 103

6.2.2 Requirements Mapping .. 106

6.3 ARCHITECTURE DESIGN ... 108

6.3.1 Client-Side ... 108

6.3.2 Web Services Applications .. 109

6.3.3 Server-Side .. 110

6.4 REIMPLEMENTATION CONCERNS AND STRATEGIES ... 113

6.4.1 Reimplementation Concerns ... 113

6.4.2 Reimplementation Strategies ... 117

6.5 INTRODUCTION OF F# AND DEVELOPMENT TOOLS ... 121

6.5.1 Background ... 123

6.5.2 Most Appreciated Features in F# .. 124

6.6 CONTEXT-ORIENTED PROGRAMMING AND MAIN FEATURES .. 143

6.6.1 Context-Oriented Programming ... 144

6.6.2 COP Main Features ... 144

6.7 CONTEXT-ORIENTED PROGRAMMING IN F# .. 146

6.7.1 Overview of ContXFS Development .. 146

Table of Contents

ix

6.7.2 Behavioural Variations in ContXFS ... 147

6.7.3 Context Switching On-The-Fly ... 150

6.7.4 Layers in ContXFS .. 151

6.7.5 Layers Composition in ContXFS ... 152

6.8 AN EXAMPLE OF REIMPLEMENTATION ... 153

6.9 SUMMARY ... 155

Chapter 7 – Case Study .. 158

7.1 OVERVIEW ... 158

7.2 OPENMOBSTER ... 161

7.2.1 Overview of Requirements Recovery Framework (RRF) Approach 161

7.2.2 RRF Approach on Openmobster.. 162

7.3 THE GEOLOCATION API .. 166

7.3.1 Overview of CASRM and Requirements Evolution Model 166

7.3.2 Requirements Evolution Model for The Geolocation API Applications 168

7.4 GEOCLUE ... 171

7.5 CONTEXTCHAT .. 173

7.5.1 Overview of COP and F# Agent-Based Programming Model 174

7.5.2 Reimplementation via ContXFS and F# Agent-Based Messaging Techniques 175

7.5.3 Quantitative Experiments ... 176

Table of Contents

x

7.6 DEVELOPMENT TOOLKIT ... 179

7.7 SUMMARY ... 180

Chapter 8 – Conclusions and Future Work ... 182

8.1 SUMMARY OF THESIS ... 182

8.2 ORIGINAL CONTRIBUTIONS REVISITING .. 184

8.3 EVALUATION .. 186

8.3.1 Answering Research Questions ... 186

8.3.2 Research Proposition Revisiting .. 189

8.3.3 Revisiting Criteria of Success ... 191

8.4 LIMITATIONS .. 193

8.5 FUTURE WORK ... 194

References .. 196

Appendix A Prototype Implementation of ContXFS and Its Test Samples 212

Appendix B List of Publications ... 217

List of Tables

xi

List of Tables

Table 3.1 A Sample of Refined Context-Aware Web Services Requirements 43

Table 4.1 Content of SCI and REQ in Services Pattern Module 71

Table 4.2 An Updated Knowledge-Based Library (KBL)................................ 72

Table 5.1 Requirements Modelling Techniques ... 78

Table 5.2 Definitions of Context-Aware Service from Both Perspectives 80

Table 5.3 Customised Derived Viewpoints from Users and Developers 82

Table 5.4 A fragment of Knowledge-Based Library (KBL) 96

Table 5.5 Services Requirements of ContextChange 96

Table 6.1 A Sample of Requirements for Context-Aware Web Services 105

Table 6.2 Reflected Requirements for Development 107

Table 6.3 F# Features and Advantages ... 116

Table 7.1 Attributes of Each Case Study .. 160

Table 7.2 A Snapshot of Initial SPM for Openmobster.................................. 163

Table 7.3 A Snapshot of Updated Content of KBL .. 164

Table 7.4 Services Requirements of PositionInformation 169

List of Figures

xii

List of Figures

Figure 2.1 A General Model for Software Reengineering [124] 18

Figure 2.2 A High-Level General Framework for Context-Aware Systems 26

Figure 3.1 CAWSRF Approach .. 39

Figure 4.1 The Proposed Layered Conceptual Framework for Context-Aware

Systems ... 60

Figure 4.2 Requirements Recovery Framework ... 68

Figure 5.1 Context-Aware Services Requirements Model (CASRM) 85

Figure 5.2 Requirements Evolution Model .. 91

Figure 6.1 Proposed Architecture Design ... 112

Figure 6.2 Events as First-Class Values ... 126

Figure 6.3 WPF in F# ... 142

Figure 6.4 Variations Composition of Variation_A and Variation_B 152

List of Acronymss

xiii

List of Acronyms

ARRE Associate Requirements Repository Engine

AST Abstract Syntax Tree

CASRM Context-Aware Services Requirements Model

CAWSRF Context-Aware Web Services Reengineering Framework

CCO Communication Computation Overlap

CLR Common Language Runtime

ContXFS A Context-Oriented Programming Library in F#

COP Context-Oriented Programming

DSLs Domain-Specific Languages

FCA Formal Concept Analysis

HB-CA Hypothesis-Based Concept Assignment

HTTP Hypertext Transfer Protocol

KBL Knowledge-Based Library

 LINQ

LIS

Language Integrated Query

Legacy Information Systems

MPI Message Passing Interface

P2P Peer-to-Peer

QoS Quality of Service

RPC Remote Procedure Call

RRF Requirements Recovery Framework

SaaS Software-as-a-Service

List of Acronymss

xiv

SCI Source Code Information

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPM Services Pattern Module

UML Unified Modeling Language

WPF Windows Presentation Foundation

WSDL Web Services Description Language

XML Extensible Markup Language

Chapter 1 – Introduction

 1

Chapter 1 – Introduction

Objectives

 To set the area of study and introduce the problem statement

 To describe the research objectives and the research methods

 To raise research questions and develop research propositions

 To state the thesis contributions and the criteria for success

 To outline the structure of the thesis

1.1 Area of Study

Any successful system is subject to evolution so that it survives beyond its

normal environments. Continuous modifications to software system have to

perform in order that new software functional and non-functional requirements

are fulfilled. Typically, the changes of non-functional requirements may recur

when the legacy software system entails an adaptation of a new computing

environment. The ever-increasing cost associated with software maintenance

vindicates the fact that software is difficult to maintain. Nevertheless, software

evolution [13, 72, 73, 124] is a way out. Being a preferred name to software

maintenance, software evolution can be seen as a sequence of software

reengineering [13] that embraces reverse engineering [27], functional

restructuring, and forward engineering. Specifically, during the conventional

activities in a software reengineering process, software is firstly comprehended

Chapter 1 – Introduction

 2

to create a higher level representation via identifying system’s components and

their relationships from the code level; secondly, depending on the categories

of solution for legacy software system problems, program transformation might

be carried out via restructuring or refactoring; finally, the software will be

implemented by resisting the traditional software development lifecycle. In fact,

further techniques may be utilised during the three steps above. For instance,

programming comprehensive and formal methods could be used to assist

reverse engineering work such as specifying and verifying the legacy software

systems.

Emerging computing requirements drive the demand of software evolution. In

the recent years of research, typically, context-awareness and Web services-

based computing post a great challenge for software evolution. In a largely

scalable Web services-based context-aware environment, context-awareness is

concerned with reasoning about the surrounding well-defined context and

adapting the interpreted services accordingly (almost) on the server-side, and

finally distributing the services to clients in a reliable way through trustworthy

network protocols. The underlying development challenge of such system lies

in not only the agile yet concise implementation of context-awareness that

entails well-defined context and context modelling (what functional

requirements the system will perform when context information varies), but

also the development of Web services-based computing that requires high

reliability and performance (how non-functional requirements the system will

meet).

1.2 Problem Statement

Conventionally, reverse engineering focuses on the code level analysis with

little further investigation on recovering stakeholders’ goals or requirements

Chapter 1 – Introduction

 3

towards the subject system [128, 129]. The basic aim of reverse engineering is

to identify system’s components and their relationships, and create a higher

abstract representation of the systems from source code. In general, the

artifacts, extracted via e.g., program slicing [119, 120, 121] and concept

assignment [15], are code segments with little implication of functional and

non-functional requirements behind them because code-related segments are

not always kept ‘in one piece’ which breaks the internal link of stakeholders’

requirements. As software continues to evolve, increasing software

reengineering activities will eventually deepen the understanding curve of the

evolved requirements, and which in turn leads to increasing difficulty in

eliciting the obscure requirements behind the modified code fragments.

On the other hand, requirements engineering [26, 67, 85, 102, 131]

accommodates many sound requirements elicitation methods for this issue, for

example, goal-oriented requirements elicitation method [28, 66] and scenario-

based requirements elicitation method [78]. In spite of a great deal effects that

have been made on exploring the questions such as “why the software is

needed”, tiny attention spans are concentrated on constraints (e.g.,

implementation requirements) [58]. Inevitably, software developers will

potentially face a choice of selecting proper programming languages for

reimplementation. Instead of choosing those mainstream languages within the

object-oriented programming paradigm, a general propose programming

language with attributes that facilitate Domain Specific Language (DSL)

design may be more appropriate than the former. For example, an

implementation of context-oriented programming [56] in Erlang can be used to

address implementation issues of context-awareness at run time. The fact that

many existing Web services-based context-aware systems are implemented in

object-oriented languages motivates us to seek alternative.

Chapter 1 – Introduction

 4

In effect, amidst software evolution of Web services-based context-aware

systems, the gap between software requirements and implementation is

becoming less likely conciliated. This proposed work is to identify the hidden

issues that lead to this fundamental gap. With regard to Web services-based

context-aware systems, functional and non-functional requirements are needed

to be clarified in the first place. Such requirements consist of the recovered

requirements from the source code and new requirements. Code-related

artifacts recovered from the source code can be used to assist the examination

whether the existing software system fulfils the current requirements as well as

the investigation whether current programming languages are capable of

addressing the programmatic problems without plethoric convoluted

development. Once the combination of requirements and code-related artifacts

are available, reimplementation will be carried out to mark once software

evolution. During this process, implementation issues and strategies are taken

into account. In practice, language choice is one of the most critical

implementation issues along with required platform and standard, because the

programming language itself may deeply impede software developer’s time

and effects on tackling the development tasks. Implementation strategies may

vary depending on the specific requirements and architectural design. It is

preferable for those general propose programming languages that embrace

desired programming models which can fulfil the relevant implementation

strategies. For instance, to reduce communication overhead of Web services

and applications, Message Passing Interface (MPI) [82] programming model is

an efficient choice. Therefore, those languages which embrace similar

programming models are very good candidates.

Thus, on top of the traditional reengineering framework, a novel software

reengineering framework for context-aware Web services-based systems is

introduced. The ultimate goal of the proposed framework is to reconcile the

Chapter 1 – Introduction

 5

underlying gap between requirements and implementation for the said systems.

The proposed software reengineering process emprises the following core steps:

 Legacy System Assessment which decides if the legacy system is

applicable.

 Services Candidate Recovery where requirements and code segments are

recovered.

 Services Reimplementation where a context-oriented programming

approach is applied.

 Services Integration where existing and newly built services are composed.

This proposed framework is founded on a subset of frameworks and models, as

well as language support of a context-oriented programming approach, i.e., a

requirements recovery framework which underpins the requirements elicitation

approach, a context-aware service requirements model that is a users’ and

developers’ derived viewpoint, a requirements evolution model which manages

the evolved requirements for services evolution, requirements mapping for

finding the right programming language candidates and an architectural design

model on which services reimplementation is based, and a context-oriented

programming library – ContXFS implemented in the language F# [45].

Chapter 1 – Introduction

 6

1.3 Research Objectives

The objectives of the thesis can be summarised as follows:

 To build a reengineering framework for Web services-based context-aware

systems

 To create a requirements recovery framework for requirements elicitation

approaches

 To design a context-aware service requirements model and a requirements

evolution model to support context-aware services evolution

 To develop a functional-first, context-oriented programming library to

facilitate the reimplementation concerns and strategies

The basic idea of the proposed research is to create a reengineering framework

for Web services-based context-aware systems to mitigate the increasing gap

between requirements and implementation during software evolution. It is

comprehensive, which covers redevelopment in the software reengineering

process; it is inspiring, where contributions can be made by developing a new

theory, framework, model or methodology. Nevertheless, considerable

software reengineering works remain in reverse engineering or restructuring

steps without further carrying out reimplementation to fulfil the whole

reengineering process. Our development of the said system adds empirical

research to the forward engineering step. Hence, this proposed work is a

completed software reengineering research that is practical and academically

rigorous.

Chapter 1 – Introduction

 7

1.4 Research Methodologies

The research field in this thesis falls into software engineering which aims to

generate the successful production of software. As the natural characteristics of

software engineering, constructive research is predominantly applied in

computer science. However, the new solution to problems always entails

empirical research. In other words, the combination of constructive and

empirical research enables academically rigorous and industrially practical.

Therefore, the basic research methodologies employed in this thesis are

classified as follows:

 Process: A process methodology is utilised to understand the processes

applied to accomplish tasks in software engineering. This methodology

is widely used in the areas of software reengineering where a typical

reengineering framework often consists of several phases to fulfil the

relevant reengineering tasks.

 Model: The model methodology, a means to defining an abstract

model for a real system, plays a central role in this work. Modelling

allows better understandings of the system. The proposed work

develops a requirements model for recovering requirements.

Specifically, it can guide requirements elicitation, provide a measure of

completeness of the elicitation, and visualise the requirements.

 Classification: The concept of classification underpins considerable

tasks related to this work. In software engineering, various

reengineering approaches are employed in terms of the functionalities

and features the system may own. For example, approaches may be

either concerned with architecture design or related to programming

Chapter 1 – Introduction

 8

language support during the forward engineering step. In this work,

language support is investigated further.

 Quantitative and Qualitative Methodologies: This research work

mirrors qualitative methods by discussing wh-related questions (e.g.,

why and what) in an exploratory phase, whilst how-related questions

(e.g., how many) reflect quantitative methods in an evaluation phase.

1.5 Research Questions and Propositions

Research questions motivate this proposed work and guide the structure of the

research work. The principle research question in this work is described as

follows:

How can a software reengineering approach be

developed in order to reconcile the gap between

requirements and implement for Web services-

based context-aware systems?

To answer the above question, a subset of smaller research questions is defined

below:

REQ1: What does the context-aware Web services candidate discovery

recover?

 What is the common architectural design of context-aware systems?

 How may requirements be extracted from source code in legacy

systems?

?

Chapter 1 – Introduction

 9

 How may other reengineering tasks benefit from the recovered

requirements-related and code-related artifacts?

REQ2: Why non-functional requirements (i.e., qualities and constraints) are

so important?

 How may software evolution be hindered by not fully evaluating

implementation decisions during the reengineering process?

 How may constraints be discovered during the reengineering process?

 How may software developer’s time and effects be impeded by

inappropriate language choice?

REQ3: How is services reimplementation carried out?

 What are the requirements for services reimplementation?

 How may the architectural design model be developed?

 What are the reimplementation concerns and strategies?

REQ4: How may domain specific language help in the reimplementation

process?

 Which language and language paradigm may be suitable for building a

domain specific language?

 Why may context-oriented programming be able to address the need

for context-aware adaption?

 How may context-oriented programming library be developed?

Chapter 1 – Introduction

 10

A range of research propositions is developed to address these research

questions. The underlying proposition of this thesis can be presented as follows:

Requirements elicitation during reverse

engineering and domain specific language support

during forward engineering can be combined in

order to reconcile requirements and

implementation for the said systems.

The principle proposition above is examined by requirements recovery and

services reimplementation in the course of the overall software reengineering

process. A subset of more detailed propositions can be further described as

follows:

PRO1: A combination of viewpoints-based requirements, as well as code-

related artifacts can be recovered from legacy systems. This proposition can

be tested by building a requirements recovery framework along with a set of

well-established reverse engineering techniques.

PRO2: The language choice makes a profound impact on the structure of

the development solutions as well as how software developers think of the

implementation issues. This proposition can be tested by examining the said

legacy systems implemented in mainstream languages belonging to object-

oriented programming paradigm. It is the fact that intricate code excessively

exists due to convoluted development for the fulfilment of non-functional

requirements particularly.

Chapter 1 – Introduction

 11

PRO3: Raising the importance of choosing language(s) for implementation.

This proposition can be tested via a comparison of various programming

features, requirements mapping, realising the architectural design model,

finally taking into account the reimplementation concerns and strategies.

PRO4: DSL allows software developers to quickly and efficiently develop a

software system which lead to easy understanding and reasoning about, as

well as low maintenance cost. This proposition can be tested by ContXFS, a

context-oriented programming library in F#, enables software developers to

facilitate the implementation of context-awareness at run time especially.

1.6 Original Contributions

A novel reengineering framework approach is proposed with a set of

frameworks and models including requirements recovery framework, a

context-aware service requirements model, a requirements evolution model,

and a context-oriented programming library. The primary contributions of this

thesis are:

C1: A novel software reengineering framework is created to mitigate the

increasing gap between requirements and implementation for the Web

services-based context-aware systems.

C2: Methodologies for eliciting context-aware service requirements in the

requirements recovery framework.

C3: A context-aware service requirements model is proposed to extract

existing requirements from source code and allows for conveniently

reconstructing new context-aware service requirements primarily based on

users’ and developers’ customised derived viewpoints.

Chapter 1 – Introduction

 12

C4: A requirements evolution model is built to manage evolved requirements

in order to support context-aware services evolution.

C5: A requirements mapping and a technique of choosing a programming

language candidate are presented.

C6: A functional-first programming approach to context-oriented

programming library is implemented in F# that natively supports concurrent

and parallel programming in distributed environments.

C7: An investigation of the effectiveness of the functional approach that

supports context-aware adaption at run time.

C8: A set case studies is carried out to evaluate the overall framework

approach.

1.7 Criteria for Success

The following criteria are given to judge the success of the research work

proposed in this thesis:

 The proposed approach should be able to reconcile the underlying gap

between requirements and implementation for the said systems.

 The requirements recovery framework approach should be able to elicit

users’ requirements and constraints that reflect the original

requirements.

 The context-aware service requirements model should be able to

reconstruct new requirements combining with existing requirements.

Chapter 1 – Introduction

 13

 The requirements evolution model should be able to manage the

services requirements and context in a way to support services

evolution.

 The architectural design model should be able to uncover

reimplementation concerns and strategies.

 The ContXFS should be able to address the reimplementation issues

and provide programmatic supporting for development.

 The implementation of a Web services-based context-aware system

should be able to realise the architectural design and meet the

combined requirements such as context-awareness, concurrency,

reliability, and scalability etc.

1.8 Thesis Organisation

The rest of the thesis is structured as follows:

Chapter 2 provides an overview of a wider related research background in

software reengineering and requirements engineering, and reviews a relevant

literature on goal-oriented requirements engineering, requirements elicitation,

requirements modelling, services evolution and requirements evolution, Web

services-based context-aware systems, and context-oriented programming.

Chapter 3 introduces the overall reengineering framework and its approach, as

well as further depicts the services candidate discovery, services

reimplementation, and services integration.

Chapter 4 firstly, describes the layered conceptual framework for context-

aware systems; secondly, describe the requirements recovery framework and

Chapter 1 – Introduction

 14

the associated approach; and finally, demonstrates an intermediate result of the

framework approach on a location-aware system.

Chapter 5 firstly, depicts the context-aware service requirements model;

secondly, presents the requirements evolution model; thirdly, discusses the

relation between requirements evolution and services evolution; and finally,

shows an example of the model of requirements evolution.

Chapter 6 firstly, discusses the requirements for the reimplementation;

secondly, describes the architecture design for the reimplementation; thirdly,

discusses the reimplementation concerns and strategies; then introduces F# and

its related programming features for reimplementation and ContXFS as a

library in F# is developed to allow for context-oriented programming; and

finally, demonstrates an example of such services reimplementation with

ContXFS support via the proposed reengineering framework approach.

Chapter 7 presents four case studies with different focuses to evaluate the

overall proposed reengineering approach.

Chapter 8 draws a conclusion in terms of the proposed frameworks and

approaches, as well as outlines the limitations. The prospective further work is

also discussed. Typically, the research questions will be revisited and answered.

Appendix A is the prototype implementation of ContXFS and its testing

samples as a guide to demonstrate the ways of using this library to facilitate the

implementations of other more sophisticated agents. ContXFS suggests that the

reimplementation strategies embrace an agent-based programming model and

ContXFS applications.

Appendix B lists all the associated publications written by the author in the

course of the PhD study.

Chapter 2 – Background and Related Research

 15

Chapter 2 – Background and Related

Research

Objectives

 To provide an overview of software reengineering and requirements

engineering

 To survey literature on goal-oriented requirements engineering

 To survey literature on services evolution and requirements evolution

 To survey literature on Web services-based context-aware systems

 To survey literature on context-oriented programming

2.1 Software Reengineering

On the day new a software system is put to work, it is certain that it will

become a legacy system one day. Legacy system poses many conventional

challenges [12, 81, 97, 100] to software maintainers. Nevertheless, in order to

reduce cost of software development, organisations have to maximise the

benefits from legacy assets (software system). Thus, maintaining

functionalities and keeping up with changing business or technical conditions

are considered as two important and urgent tasks.

Chapter 2 – Background and Related Research

 16

2.1.1 Legacy System

As legacy software systems no longer meet the needs from customer’s

requirements, emerging operating software and hardware environments, they

are subject to evolve. The maintenance scope has to cover not only

maintenance of the existing functions, but also modifications to the current

architecture and functions so that adding requirements will be fulfilled. In

addition to such changes, non-functional changes may also be considered

typically when software system entails adaption of a new computing

environment.

Bennett defined legacy systems informally as “large software systems that we

don't know how to cope with but that are vital to our organization [12]”, while

Brodie defined it as “any information system that significantly resists

modification and evolution” [18]. Whichever, a legacy system is the one that is

still valuable, but is difficult to maintain.

Legacy Information Systems (LIS) are currently posing numerous problems to

their host organisations. The most serious of these problems are [16]:

 LISs usually run on obsolete hardware that is slow and expensive to

maintain.

 Software maintenance can also be expensive, because documentation

and understanding of system details is often lacking and tracing faults

is costly and time consuming.

 A lack of clean interfaces makes integrating LISs with other systems

difficult.

 LISs are also difficult, if not impossible, to extend.

Chapter 2 – Background and Related Research

 17

Bennett [13] et al. pointed out: 1) current software with middleware support or

even within an enterprise framework is likely to be far more difficult to address;

2) legacy software is not so much a technological problem as an organisational

and management problem: solutions need to be addressed at a higher level of

abstraction than the software.

2.1.2 Reengineering Phases

Software reengineering, motivated by the need for new user-required

functionalities, is an important and promising approach to tackle legacy system

evolution problems. It is widely accepted that the process of software

reengineering generally includes three stages: 1) reverse engineering, 2)

functional restructuring, and 3) forward engineering. Each step carries out

different tasks and purposes. At large, software evolution can be regarded as a

process of conducting repeated software reengineering.

According to [27], Chikofsky et al. gave the following definitions:

 Reengineering is the examination and alteration of a subject system to

reconstitute it in a new form and the subsequent implementation of the

new form.

 Reverse engineering is the process of analysing a subject system to

identify the system’s components and their interrelationships and

create representations of the system in another form or higher level of

abstraction

 Restructuring is the transformation from one representation form to

another at the same relative abstraction level, while preserving the

subject system’s external behaviour (i.e., functionality and semantics);

Refactoring [87] is an object-oriented variant of restructuring that the

transformation happens at different abstraction levels, i.e., “the process

Chapter 2 – Background and Related Research

 18

of changing a object-oriented software system in such a way that it

does not alter the external behaviour of the code, yet improves its

internal structure” [44]. Having said that, refactoring can be also used

for other programming language paradigms [80].

 Forward engineering is the traditional process of moving from high-

level abstractions and logical, implementation-independent design to

the physical implementation of a system.

In terms of the above definitions, Figure 2.1 shows a general model for

software engineering in the course of software evolution.

Figure 2.1 A General Model for Software Reengineering [124]

2.2 Requirements Engineering

2.2.1 Requirements

For many years, software systems were successfully created without the

participation of requirements engineers. However, with the increasingly rapid

Chapter 2 – Background and Related Research

 19

software development, software specification or requirements engineering is

becoming more and more important. The success of a software system is

subject to how well it meets the needs of its users and its running environment.

Requirements analysis is the first phase in the software development life cycle

to study software requirements, i.e., what the system will do. The IEEE

Computer Society defines a requirement [62] as “a condition or capability

needed by a user to solve a problem or achieve an objective”, or “a condition or

capability that must be met or possessed by a system or system component to

satisfy a contract, standard, specification, or other formally imposed

documents”. The set of all requirements establishes the foundation for

subsequent development of the system.

2.2.2 Requirements Engineering Process

The scope of requirements engineering [131] is “the branch of systems

engineering concerned with real-world goals for, services provided by, and

constraints on a large and complex software-intensive system. It is also

concerned with the relationship of these factors to precise specifications of

system behaviour, and to their evolution over time and across system families."

The core processes involved requirements engineering is composed of the

following steps [67]:

 Domain Analysis: the existing system in which the software should be

built is studied. The relevant stakeholders are identified and

interviewed. Problems and deficiencies in the existing system are

identified; opportunities are investigated; general objectives on the

target system are identified.

 Elicitation: alternative models for the target system are explored to

meet such objectives; requirements and assumptions on components of

such models are identified, possibly with the help of hypothetical

Chapter 2 – Background and Related Research

 20

interaction scenarios. Alternative models generally define different

boundaries between the software-to-be and its environment.

 Negotiation and agreement: the alternative requirements/assumptions

are evaluated; risks are analyzed; ‘best’ tradeoffs that receive

agreement from all parties are selected.

 Specification: the requirements and assumptions are formulated in a

precise way.

 Specification analysis: the specifications are checked for deficiencies

(such as inadequacy, incompleteness or inconsistency) and for

feasibility (in terms of resources required, development costs, and so

forth).

 Documentation: the various decisions made during the process are

documented together with their underlying rationale and assumptions.

 Evolution: the requirements are modified to accommodate corrections,

environmental changes, or new objectives.

2.2.3 Requirements Engineering Challenges

Cheng and Atlee draw attention to nine requirements engineering research

hotspots [26], and claim that the solutions to those hotspots are likely to have

the greatest impact on software-engineering research and practice. Six of them

are future grand challenges, the other three hotspots focus on extending and

maturing existing technologies to improve requirements engineering

methodologies and requirements reuse and on increasing the volume of

evaluation-based research. Software scale is the first future challenge that

highlights the ‘scale factors’ such as complexity, degree of heterogeneity,

sensor numbers, and decision-making nodes and so on. These factors are

Chapter 2 – Background and Related Research

 21

becoming common in the Web services-based context-aware systems in the

Cloud; for example, complexity can be referred to services implementation of

parallelism or asynchronous computations; Cloud provides a high variety of

services for heterogeneous users and devices; context-awareness entails a large

scale of sensor deployment; finally, decentralised decision-making nodes share

part of the burden from server-side computations and in turn, deliver faster

services to end-users.

2.3 Goal-Oriented Requirements Engineering

Conventionally, requirements elicitation, as a means to identifying system

boundaries, is one of the most important activities in requirements engineering.

Requirements elicitation process consists of data interpreting, analysing

modelling and validating, whereas, goal-oriented requirements engineering is

concerned with the use of goals for eliciting, elaborating, structuring,

specifying, analysing, negotiating, documenting, and modifying requirements

[69].

Oyama et al. [89] develop a context-aware goal elicitation process by exploring

the aspects of data, information, knowledge and wisdom. The goal elicitation

process is composed of conceptualisation for a service problem, goal

identification, and conceptualisation for a service issues. In their work,

stakeholders’ intentions are defined as constrained sequences of user events to

achieve a goal, whereas goals in the context are defined as the steady states of

the system. A healthcare system is given to show the feature of intention

changes as the users’ intention is highly relevant to their health situation, which

is observable from the contexts of physiological data.

Finkelstein et al. [43] refer changing context and changing requirements as two

main challenges of requirements engineering in context-aware services. They

Chapter 2 – Background and Related Research

 22

propose a reflection-based framework for requirements engineering for

context-aware services. This framework views reflection as a mechanism

instead of a goal. The mechanism is for manipulating highly-dynamic services

in a clean and consistent way and eventually able to dynamically adapt

themselves to changing context and changing requirements. To summarise, this

work focuses on maintaining context representation of system behaviour at

runtime.

Yu et al. [128] apply reverse engineering to source code to recover requirement

structures. In their framework, the first step of their approaches relies heavily

on well-structured comments during the code refactoring; the second step is

converting the refactored code into an abstract structured program; the third

step is extracting a goal model from abstract syntax tree (AST); the forth step is

identifying soft goal (i.e., non-functional requirements). But this framework

does not extend to other reengineering activities other than reverse engineering.

Tun et al. [112] present an approach by applying concept assignment to recover

structures in the problem context. Their approach contains four steps:

extracting solution structures from sources; performing problem structures

analysis; computing a similarity metrics between problem structures, and

finally assessing new requirements based on the similarity metrics. This work

does not take into account the potential conflicts between users’ requirements

and constraints.

2.4 Services Evolution vs. Requirements

Evolution

Software evolution consists of a series of software reengineering tasks. Its aim

is to implement and revalidate the possible major changes to the system to

Chapter 2 – Background and Related Research

 23

satisfy new requirements. On the other hand, services are subject to changes in

order to meet new requests. Services of context-awareness are able to adapt

themselves to changing context. Services users can perceive the behaviours of

software system physically. To distinguish the terms of software evolution and

service evolution can be from various stakeholders’ perspectives [20], for

instance, from users’ perspective, service evolution is used to highlight the

nature of computer based applications to prevail nowadays; and from

developers’ perspective, software evolution is used to emphasise the

mechanism for evolving computer programs as enabler of service evolution.

Papazoglou [90] classifies two types of service changes, i.e., shallow changes,

where the change effects are localised to a service or are strictly restricted to

the clients of that service, for example, changes on the structural level and

business protocol changes; and deep changes, these are cascading types of

changes which extend beyond the clients of a service possibly to entire value-

chain, i.e., clients of these service clients such as outsourcers or suppliers, for

instance, operational behaviour changes and policy induced changes.

Chang et al. [20] present a situation-theoretic approach to human-intention-

driven service evolution in context-aware service environments. Other than

giving a definition of situation which is rich in semantics and useful for

modeling and reasoning human intentions and a definition of intention that is

based on the observations of situations, they also distinguish software

evolution and services evolution in terms of stakeholders’ perspectives. To

model and infer human intentions, they also propose a computational

framework that supports detecting the desires of an individual and capturing

the corresponding context values through observations.

Requirements evolution is still a research topic that somehow is not drawn

much attention in requirements engineering community [38], even though

Chapter 2 – Background and Related Research

 24

Cheng and Atlee [26] suggest that its importance is rising. Much research on

evolving requirements still remains at the initial stage in software lifecycle.

The challenge of requirements evolution had been first comprehensively

discussed by Harker et al [55]. They concentrate on the structure of

requirements and classify stable and changing requirements into the followings

types: Enduring Requirement (technical core of the business origin), Mutable

Requirement (environmental turbulence origin), Emergent Requirement

(stakeholder engagement in requirements elicitation origin), Consequential

Requirement (system use and user development origin), Adaptive Requirement

(situated action and task variation origin) and Migration Requirement

(constraints of planned organisational development origin).

Adopting Formal Concept Analysis (FCA), Fabbrini et al. [40] depict an

approach to improving requirements evolution management by making more

systematic and effective the identification of semantic inconsistencies between

different stages of requirements evolution. The process for validating evolving

requirements is done via an FCA-based requirements consistency assessment.

In the process, they focus on the source-outcome relationship between

requirements belonging to two different evolutionary stages of the

specifications.

Ernst et al. [38] predict that software of the future will consist of not only code

and documentation, but also requirements and other types of models

representing design, functionality and variability. They also point out important

reasons why requirements evolution is about to become a focal point for

research activity in requirements engineering.

By investigating the uncertain validity of requirements reengineer’s

assumptions as another cause of requirements evolution which can be divided

into types, i.e., autonomic and designer-supported requirements evolution, Ali

Chapter 2 – Background and Related Research

 25

et al. [4] describe an approach to monitor the assumptions in a requirements

model at runtime and to evolve the model to reflect the validity level of such

assumptions. They view requirements evolution as a continuous movement

from assumptions-based requirement to reality-based ones.

Felici [42] investigates the current understanding of requirements evolution

and propose a formal framework for requirements evolution.

Lormans [76] develop a requirements engineering framework that structures

the process of requirements evolution, and a methodology that improves the

traceability and monitoring of requirements.

2.5 Web Services-Based Context-Aware Systems

2.5.1 Context-Awareness

Context-awareness is concerned with reasoning about the surrounding well-

defined context and adapting the interpreted services accordingly. Depending

on the running environment the context-aware system is in, the services can be

distributed via a network protocol or locally. Each of context-aware system

architectures comes with a context-model of representing and sharing data. The

architecture of a context-aware system is mainly shaped by the context

acquisition approach.

Research with respect to context-awareness may include the followings:

definitions of context [1, 34], context acquisition and representation [133],

context modelling and reasoning [14], context interpreting [9]. Most modern

context-aware architectures are middleware-based or context server-based.

With such architecture, context-aware systems can be implemented in many

ways. Figure 2.2 represents a layered conceptual framework for modern

Chapter 2 – Background and Related Research

 26

context-aware systems [9]. Although it is a conceptual framework, it contains

the majority of the key research topics within context-awareness.

Application

Storage/Management

Processing

Raw Data Retrieval

Sensors

Figure 2.2 A High-Level General Framework for Context-Aware Systems

From low to high level, there are the following layers in the above framework:

 Sensors – To capture raw context retrieval, the sensors can be physical,

virtual, or logical.

 Raw data retrieval – Appropriate drivers are chosen for physical

sensors and APIs for virtual and logical sensors

 Processing – Responsible for reasoning and interpreting contextual

information.

 Storage/Management – Responsible for handling client’s requests. In

the majority of cases the asynchronous approach is more appropriate

than the synchronous approach due to rapid changes in the underlying

context.

 Application – The implementation of actual reaction on various events

and context instances. Agents may be used for communicating with the

context server and acting as an additional layer between the pre-

processing and the application layer [24].

Chapter 2 – Background and Related Research

 27

2.5.2 Web Services

The current best option for supporting Software-as-a-Service (SaaS) and

Service-Oriented Architecture (SOA) is Web services technologies [71]. The

composite concepts from context-awareness and Web services provide

enriched properties for future software. Ideally, a context-aware Web services

system can understand surrounding context information and share that context

information with other services. When comparing to context-aware systems,

the concept of Web services is a relatively new one. In terms of The World

Wide Web Consortium (W3C), a Web service “is a software system designed

to support interoperable machine-to-machine interaction over a network.”

All Web services communicate with other applications and Web services in a

machine-processable format (e.g., HTTP, SOAP and WSDL). Even though

some context-awareness techniques could be potentially sought-after in Web

services-based environments, it is not clear to which extent they are related and

how to apply them [109]. In fact, the research on identifying where context-

awareness techniques can be feasibly and applicably exercised is worthy

investigating.

Inspired by the traditional forward engineering methods, the fundamental

development method of Web services can be classified as bottom-up and top-

down approach, where bottom-up approach starts with existing systems,

discovers service interfaces from APIs, builds service contracts and compose

them together in terms of the business process requirements; whereas, top-

down approach starts with the business model, decomposes it into smaller

models until the models can be easily defined.

Chapter 2 – Background and Related Research

 28

2.5.3 Survey of Web Services-Based Context-Aware Systems

The following surveys are relevant to context-aware architecture and system:

an early survey can be found in the study from Chen and Kotz [23] that they

survey comprehensive types of context and models of context information, and

discover that systems are responsible for context collecting and disseminating,

whilst the changing context whereby applications adapt their behaviour.

Baldauf et al. [9] survey common architecture principles of context-aware

systems and a layered conceptual framework-based context-aware middleware

and frameworks. Bettini [14] surveys a variety of context modelling and

reasoning techniques and discuss a description and comparison of these

techniques. Focusing on model-driven and aspect-oriented approaches to

context adaptation, Prado et al. [92] survey a set of relevant approaches in such

area. Truong et al. [109] compare the state of the art of context-aware systems

and their environments, and claim that a survey of techniques and methods

suitable for the development of context-aware Web services is missing by that

time. Their survey concentrates on studying and analysing current techniques

and methods for context-aware Web services systems, discussing future trends

and proposing further steps on making Web services systems being context-

aware. Beside the above surveys, some individual research works are close

related to ours as well.

Ailisto et al. [2] present a five-layer model for structuring context aware

application, i.e., layers are physical, data, semantic, inference and application.

Many applications are built based on this five-layer model afterwards.

Keidl et al. [65] implement an open distributed Web service platform -

ServiceGlobe within a generic framework that accommodates development

support for context-aware adaptable Web services. ServiceGlobe provides

users with client services based on personalised behaviour. Context process is

Chapter 2 – Background and Related Research

 29

within a SOAP message. In this framework, two types of context processing

are depicted, i.e., explicit processing by Web services or clients, and automatic

processing by the context framework.

Omnipresent [5] is a service-oriented architecture (SOA) for context-aware

applications. Technically, it is mainly a location-aware service system based on

Web services. Users are able to access the location information via either

mobile devices or Web browsers. In addition to the primary location

information services, a reminder tool is offered.

Waldburger et al. [116] develop Akogrimo, which aims to radically advance

the pervasiveness of grid computing across regions by leveraging the large

base of mobile users. Akogrimo concentrates on core context that is related to

mobile users’ situations, such as user presence and location, and environmental

information. The core component is the context manager responsible for

collecting contextual information and delivers it to applications. It was

implemented in Java and C# within the object-oriented paradigm. It is not clear

whether Akogrimo is able to render its context manager responsive with

increasing users.

Athanasopoulos et al. [8] create CoWSAMI, a middleware-based context-

aware system that utilise Web services as interfaces to context sources. Context

collectors are responsible for acquiring context information. Reliability and

performance are subject to enhance.

The ESCAPE framework [108] is a P2P Web services-based context

management system designed for emergency/crisis situations. ESCAPE

services are composed of front-end and back-end systems which support

context sensing and sharing between Web services within the ad-hoc network,

and context information storage respectively. The context information executed

Chapter 2 – Background and Related Research

 30

in this P2P Web services are largely restricted by its domain specific

application.

Han et al. [54] present Anyserver, a client-proxy-server based architecture

which supports context-awareness in mobile Web services. The Anyserver

architecture utilises various types of context information, such as device

information, networks, and application type. Application specific proxy tailors

the original resource in terms of the mobile user’s context information.

Chen et al. [25] develop a Context-aware Service Oriented Architecture (CA-

SOA) which is a context model-based architecture. It is composed of three

parts: Web services based on surrounding contexts, an agent platform with

three types of agent: service, broker, and request agent; a service repository

that contains service profile and service ontology; and a semantic matchmaker

for context management. However, their work does not address the possibility

of deploy their services to the Cloud and potentially massive users will not able

to access appreciable context information in a responsive way.

2.6 Context-Oriented Programming

A domain-specific language (DSL) has a potential to make software

maintenance simpler [32]. A DSL provides a notation tailored towards an

application domain and is based on the relevant concepts and features of that

domain [33]. Although context-aware system development is becoming one of

increasingly important hotspots in software engineering community, there is

little DSL support for building an application with regard to context.

Now that context belongs to a domain-specific concept and its dependency is a

crosscutting concern for a system. As the context environment changes, the

applications need to behave differently accordingly. Many research works in

Chapter 2 – Background and Related Research

 31

this area still focus on architecture level, but when it comes to the

implementation, mainstream programming languages do not support

mechanisms that allow programs to dynamically adapt their behaviours due to

the changing context. In effect, context-aware adaptation can be greatly

facilitated by using programming languages that natively support high-level

features to deal with contexts, context changes, and context-aware behaviours

[51]. To avoid spreading over the application code with excessive conditional

statements, this demands a new programming paradigm or high-level native

language features to solve such issues.

Costanza and Hirschfeld [31] propose ContextL, an extension to the Common

Lisp Object System that enables programmers to do context-oriented

programming (COP) [56]. ContextL provides means to associate partial class

and method definitions with layers and these layers can be activated and

deactivated during run-time. Whether partial definitions belong to program

depends on the activation status of a layer. This implies that a program’s

behaviour can be varied in terms of the change in context. To summarise, COP

treats context explicitly, and provides mechanisms to dynamically adapt

behaviour in reaction to changes in context, even after system deployment at

runtime.

Lowis et al. [77] extend Costanza and Hirschfeld’s work by introducing two

additional language concepts: implicit activation of method layers, and the

introduction of dynamic variables.

Since COP extensions have been implemented for several languages,

Appeltauer et al. [6] represent a comparison of eleven COP implementations

according to their designs and performance.

To relieve programmers from explicitly specifying and managing context

awareness and the associated adaptation mechanisms particularly in pervasive

Chapter 2 – Background and Related Research

 32

computing environment, Rakotonirainy [93] proposes a context-oriented

programming approach that implemented in Python for pervasive systems.

While COP allows context as a first-class construct of a programming language,

the requirements for COP are discussed in [64].

As SaaS applications are becoming popular in Web services, Truyen et al. [110]

claim that cross-tier tenant-specific software variations can be easily integrated

into the single-version application code base via a COP model. They give a

case study based on a Cloud platform for building multi-tenant Web

applications to suggest that COP can be helpful for providing software

variations in SaaS.

2.7 Summary

 The software reengineering phases that consist of reverse engineering,

functional restructuring, and forward engineering are discussed. A

general model for software reengineering diagram has been described.

 The definitions of requirements and requirements engineering are

introduced. The general requirements engineering process is discussed,

i.e., domain analysis, elicitation, negotiation and agreement,

specification, specification analysis, documentation, and evolution. A

brief discussion of the challenges for requirements engineering is

included.

 Rolland [94] pointed out that the dominant concern in requirements

engineering is to move from requirements to code. This trend poses a

great challenge for requirements engineering and reverse engineering

research respectively. Fortunately, in recent years, some researchers

leap out of their boundaries and explore a wider range of investigations

Chapter 2 – Background and Related Research

 33

into requirements behind the source code. For example, reverse

engineering techniques can be applied to source code to assist the

recovery work of requirement structures. Research on recovering

requirements from source code via reverse engineering is presented.

 The processes of services evolution and requirements evolution

complement each other: requirements evolution helps to offer guidance

for evolution of context-aware services, and context-aware service

evolution helps to genuinely revalidate requirements evolution. In fact,

the failure in disclosing these hidden requirements will hamper

services evolution. The relation between the said evolutions has been

discussed.

 Context-aware system architecture in general can be envisioned as a

hierarchical layer-based structure and is driven by context acquisition

models. Components in different layers perform individual tasks and

communicate with components in other layers. A layered conceptual

framework is introduced. Web services-based context-aware systems

deliver appropriate services accordingly whilst treating applications as

a service. Such systems can be seen as a special type of context-aware

systems, yet they are so crucial that they will pave the way toward

ubicomp and Cloud computing development. A comprehensive survey

on Web services-based context-aware systems has been covered.

 Increasing software developers are now dealing with context-

dependent behaviour at run-time, yet many mainstream programming

languages have not been created for such propose. This leads to

convoluted programming, where programmers have to bend the

languages to facilitate the difficulties of run-time context flexibility.

Thus, COP is a promising approach to address such potential issues.

Chapter 7 – Proposed Framework Study

 34

Chapter 3 – Proposed Framework

Objectives

 To introduce the overall reengineering framework and its approach

 To depict the services candidate discovery

 To depict the services reimplementation

 To depict the services integration

3.1 Overview

Software reengineering is the primary technique for successful evolution of

software systems. In general, software reengineering is mainly composed of a

series of phases that further specific techniques are exercised in the course of

tasks of reverse engineering, functional restructuring, and forward engineering.

For instance, program comprehension techniques such as program slicing or

formal concept assignment may be utilised in reverse engineering step;

refactoring could be adopted during functional restructuring to achieve

program transformation; domain specific language extension/library can be

chosen for alleviating implementation tasks. Those traditional techniques

evolved in software reengineering process are fairly promising within

software-engineering community, yet reconciliation of requirements and

implementation remains one of the main issues within requirements

engineering community. Cheng and Atlee [26] suggest that the distinction

Chapter 3 – Proposed Framework

 35

between the problem space, i.e., requirements and solution space, i.e.,

implementation resides primarily in the fact that requirements descriptions are

written entirely in terms of the environments whilst other software artifacts are

written in the light of internal software entities and properties.

In effect, software evolution is partially impeded by the gap between what the

software is to do and how the proposed software is to do for the following main

reasons:

 Few research works on recovering requirements via reverse-engineering

related techniques;

 Many legacy software systems are written in inappropriate languages;

 Constraints are given less attention than other stakeholders’ particularly

during implementation stage.

Therefore, given such issues to address and the fact that software reengineering,

as a well-established and well-accepted technique, plays a key role in a

software lifecycle, a novel reengineering framework becomes necessary and it

is worthy investigating relevant approaches within the framework to aid the

software reengineering process for successful software evolution.

The success of a software system depends on not only how well it satisfies its

requirements but also how well it fits into its running environments. In essence,

change to environments can trigger software evolution. For example, deploying

a legacy information system to the Cloud entails a series of software

reengineering works. This research focuses on two environment changes, i.e.,

changes of context-awareness and changes of Web services. A services system

of context-awareness is capable of adapting its services to changing context

environments, while a Web service, in terms of The World Wide Web

Consortium, is a software system designed to support interoperable machine-

Chapter 3 – Proposed Framework

 36

to-machine interaction over a network. Nowadays, Web services-based

context-aware systems are more complex and heterogeneous distributed than

ever before. Such systems are composed of not only the essential components –

sensors, applications, and context (reasoning) managers, but also various types

of lightweight Web services that behave like agents. It is this property that

poses a series of great challenges for programming models in the

reimplementation stage in reengineering activities.

3.2 The Proposed Reengineering Framework and

Approach

Generally speaking, software reengineering emprises understanding the

existing software (i.e., what the system does) to decide what to modify in the

software in terms of the new requirements and environments, and how to

implement such modifications. To bridge the gap between these two tasks,

novel approaches are needed to leverage the traditional reengineering

framework and approach. For instance, many earlier systems may only contain

a vague requirements specification or may not have it at all. To recovery such

design documentation, e.g., requirements specification is essential. It will in

turn facilitate the evolution of the software system.

Figure 3.1 demonstrates the proposed Context-Aware Web Services

Reengineering Framework (CAWSRF). Other proposed frameworks and

models found on this overall reengineering framework will be briefly

introduced in this chapter; detailed discussion about them will be described in

the following chapters.

Typically, the proposed framework approach consists of the following core

phases:

Chapter 3 – Proposed Framework

 37

 Legacy System Assessment: This assessment of legacy systems from

imperative and OO language paradigms is responsible for judging the

applicability of CAWSRF approach and deciding if other

reengineering approaches should be performed.

 Services Candidate Discovery: It is carried out based on the proposed

Requirements Recovery Framework (RRF). The two core reverse

engineering techniques used are discussed as follows:

 HB-CA Performance: Applying Hypothesis-Based Concept

Assignment (HB-CA) [52], as one of plausible reasoning

techniques, onto the qualified source code with the content from

Services Pattern Module (SPM) found on Requirements Recovery

Framework (RRF). This will generate a list of event-linked

concepts as potential requirements each time and the hypothesis

source code information is not necessarily executable.

 Program Slicing: Static program slicing [107] techniques are

applied to decompose qualified source code reflected from the

results of SPM. This indicates code segments of interest for further

reengineering activities.

 Services Reimplementation: It is this stage that context-awareness

requirements are fulfilled in the Web services system. The avenues of

achieving context-awareness can be via a novel architectural design

and language programming support. In this thesis, the latter is adopted.

Requirements mapping will be exercised during requirements analysis

for context-aware Web services. Depending on domain specific

requirements, for example, some sought-after services will entail

implementing communication computation overlap (CCO) strategy, or

handling massive asynchronous requests (e.g., 1000 simultaneous

Chapter 3 – Proposed Framework

 38

requests), requirements in the specific implementation domain are

taken into account when choosing programming languages to

implement the desired services. Library – ContXFS is developed to

assist the implementation tasks by offering software developers with

efficient libraries to build the services components for further

integration.

 Services Integration: In this integration process, legacy services and

newly-built functional services are composed via connectors in order to

construct the target system. This can be implemented via wrappers and

code gluing techniques.

Chapter 3 – Proposed Framework

 39

Figure 3.1 CAWSRF Approach

Evolved

Requirements-

Driven

Implementation

No

Yes

Decision

Making

Services Candidate

Discovery

Imperative

and OO

Subject

Systems

Services

Reimplementation

Services

 Integration

Other

Reengineering

Approaches

Legacy

System

Assessment

Wrapping &

Gluing

Code

Segments

with

Requirements

Optimised

Services Code

Software

Services with

Legacy

Components

Reverse

Engineering

Services Pattern

Module

Process

Chapter 3 – Proposed Framework

 40

3.2.1 Services Candidate Discovery

The Services Candidate Discovery can be divided as two types of discovery:

 Code-related Artifacts Discovery (shallow recovery): Traditional

reverse engineering techniques are applied. Understanding a software

system generally requires comprehension of the domain specific

knowledge and the application itself. This task may embraces analysis

of detailed code knowledge, i.e., code algorithms, structures and

documentation including comments. Broadly speaking, program

slicing and concept assignment have been proposed as source code

extraction techniques [53]. Specifically, program slicing may be used

to decompose source code into segments of interest given the

extraction criteria are specified. Depending on the slicing techniques

[122], the extracted code segments may not be executable. Concept

assignment, on the other hand, may be use to relate information

regarding the problem and application domains, e.g., structures of the

program to fragments of source code. Other techniques such as

clustering analysis [35] and ontology [21] can be adopted for such

proposes.

 Requirements-related Artifacts Discovery (deep recovery):

Comparing to code-related artifacts discovery, requirements-related

artifacts discover tries to recovery deeper information from the source

code, i.e., recovering requirements behind the code typically when

requirements specification is not available during the reverse

engineering phase. For this kind of discovery, conventional reverse

engineering techniques are still applied, however techniques from other

research fields, e.g., requirements engineering are also taken into

Chapter 3 – Proposed Framework

 41

consideration. Essentially, recovering requirements from source code is

becoming far more important than ever before [38].

In practice, shallow recovery is more suitable for software migration when

legacy systems is to be moved to new environments that allow information

systems to be easily maintained and adapted to new business requirements,

while retaining functionality and data of the original legacy systems without

having to completely redevelop them [16]. In contrast, deep recovery is more

appropriate for dramatic redevelopment when the gap between existing code-

related artifacts and new requirements is too big or a new programming

language (model) is available for higher abstraction, which leads to more

concise implementation.

Our proposed services candidate discovery is based on the Requirements

Recovery Framework (RRF) [58]. The holistic framework composed of the

following parts is briefly described:

 Services Pattern Module (SPM): This module contains Knowledge-

Based Library (KBL), Source Code Information (SCI) including

comments, identifiers and keywords, and Requirements (REQ)

covering functional requirements and non-functional requirements.

 Concept Generator: It takes source code and SPM as input and

applies Hypothesis-Based Concept Assignment (HB-CA) method onto

them.

 Event Concepts: When concepts are available, concepts will be linked

with events (in the source code) as a tuple <Concept, Event>.

 Source Code Information (SCI): It embraces information directly

reflected from the source code including identifiers, comments, and

keywords. It is initially created along with requirements.

Chapter 3 – Proposed Framework

 42

 Requirements: It consists of functional requirements and non-

functional requirements.

 Knowledge-Based Library (KBL): It comprises lists of intermittently

enhanced tuples: <Concept, Event>.

The details of the requirements elicitation approach based on the above

framework will be discussed in the Chapter 4.

3.2.2 Services Reimplementation

Forward engineering is last step in the reengineering activities, yet it is the final

stage that software evolution is completely reflected and embodied. In most

cases, forward engineering revisits the traditional software engineering

processes based on the recovered code-related artifacts or requirements-related

artifacts from the source code. Typically, the forward engineering in our

proposed reengineering framework is the step of implementing the sought-after

software system against the evolved requirements with reusable components

from the legacy system.

Requirements analysis is the first step to understand “what the services are to

do”. In the context of the environments that are context-aware and Web

services-based, for example, some core requirements can be summarised to be

satisfied in terms of Galster’s taxonomy [47] for non-functional requirements

in a service-oriented context. Table 3.1 depicts a sample of detailed

corresponding requirements of a subject services system to meet.

Chapter 3 – Proposed Framework

 43

Requirements Types

Concrete

Requirements

CFR

Context-

Awareness

Concurrency

& Parallelism

(distributed system)

NFSR Reliability Scalability Evolvability

PR Implementation

Requirements

Composition Requirements

Table 3.1 A Sample of Refined Context-Aware Web Services Requirements

In Table 3.1, Core Functional Requirements (CFR) that consist of context-

aware, and concurrency & parallelism; from non functional requirements

perspective, Process Requirements (PR) covers implementation requirements

(e.g., .NET Framework), composition requirements (e.g., composable Web

services); Non Functional Service Requirements (NFSR) contains reliability,

scalability, and evolvability. These requirements are the result of evolved

requirements that synthesise the new requirements and the recovered

requirements. Further activities will not perform until these requirements are

available.

In most cases, the evolved requirements are generated by Context-Aware

Service Requirements Model (CASRM) [59] which is a derived viewpoints

based requirements model. The results of CASRM, from context-aware

services evolution perspective, are the requirements that mingle functional

requirements, non-functional requirements, interface requirements and context

requirements, which in turn, can be considered as the initial input of the said

Chapter 3 – Proposed Framework

 44

requirements evolution. The fast dynamic changes of context-aware Web

services system entails a requirements management model that is to address the

changes and impacts on the original services systems. Thus, a requirement

evolution model for context-aware service requirements evolution [59] is

proposed. By separating context-aware Web service requirements into Web

services requirements and context requirements, two possible triggers of

changing requirements are highlighted, i.e., changing Web services

requirements and context requirements. The components and steps to construct

context-aware service requirements and the details of the requirements

evolution model will be represented further in Chapter 5.

Emphasis of constraints can potentially reduce the costs and risks of re-

implementing a complete existing system. For instance, alleviating developers’

burdens can be done by providing developers with tools support, a guide as to

how to choose the appropriate programming languages, domain specific

libraries for efficient development support and so on. Therefore, different from

conventional requirements analysis, these requirements analyses carry out two

major analyses from users’ perspective and developers’ perspective in terms of

the requirements in SPM. Thus, both functional and non-functional

requirements from both perspectives will be traded off by stakeholders

involved. In practice, although this work is almost impossible to be automatic,

and users’ requirements are conventionally considered solely in this stage,

constraints from developers’ side should be primarily heard and considered as

valuable knowledge for implementations. Being distinct from some other

research, our approach offers more voice to developers as they also need to

ease their development burdens. It is in this stage that requirements and

implementation can be reconciled and evolved requirements and services code

segments are generated therefore.

Chapter 3 – Proposed Framework

 45

When the requirements analysis completes and the evolved requirements are

available, for most of cases, reimplementation is necessary. Although

migration and wrapping benefit from avoiding the long, costly and risky

process of implementing an entire legacy system, the target services system

will barely satisfy the continuing changing requirements, which leads to

unsuccessful services evolution eventually.

Since reimplementation is a must, choosing a programming language becomes

important. Most of current context-aware Web services-based systems were

built in mainstream object-oriented languages, e.g., Java and C#.

Notwithstanding, some critical and essential implementation techniques that

are other paradigm languages’ sweet pot are missing. Instead of excessively

adopting Design Pattern of ‘Gang of Four’ from object-oriented programming

paradigm, functional programming language [61] is embraced. It has been a

long history that Domain Specific Languages (DSLs) are conveniently created

in a functional programming language. DSLs enable software developers to

more concisely describe a problem itself, and use this custom language to solve

the problem. As few mainstream programming languages directly enable

software entities to adapt their behaviour dynamically to the current execution

context. Software developers will end up spending more time and effects on

bending the languages harsh enough to ‘hit the point’ by convoluted

development. Such time and effects can be saved by introducing a new

programming language with support of Context-Oriented Programming (COP)

[31] that facilitates implementation tasks. COP treats context explicitly, and

provides mechanisms to dynamically adapt behaviour in reaction to changes in

context, even after system deployment at runtime [56]. In the services

reimplementation, F# [104] library – ContXFS is developed to assist the

development. The reasons why F# is a better candidate to build the context-

oriented programming library will be expounded, along with the overall

services reimplementation will be discussed in Chapter 6.

Chapter 3 – Proposed Framework

 46

To summarise, the services reimplementation lies in the heart of services

evolution. The proposed approach at this stage employs conventional methods

in the course of software lifecycle with the evolved requirements and emphasis

on constraints, especially on design requirements and implementation

requirements. The evolved requirements consist of not only the context-

awareness requirements, but also requirements for Web services computing,

where ContXFS is developed to address the former issues, and an appropriate

programming language is selected to support an asynchronous agent-based

programming model in the concurrency and parallel computing environment.

Services evolution is incarnated through services reimplementation.

3.2.3 Services Integration

In general, Web services integration is fairly straightforward. The extracted

reusable services code can be wrapped and integrated into preferable service

architecture, e.g., Service-Oriented Architecture (SOA). In our case, legacy

services and newly-built context-aware Web services are composed via

connectors in order to construct the target system. This can be implemented via

wrappers and other code gluing techniques. The detailed integration will not

discussed in this thesis as this is more about implementation platform issues

(Web services in Microsoft ASP.Net and Java) rather than the core issues that

cause the underlying gap between requirements and implementation. In other

words, one of the implementation platform issues is that constructing Web

services and clients in the .NET Framework and in Java so that they are able to

interact with each other. Namely, a .NET Framework-based Web service is

invoked with a Java client or vice versa.

Chapter 3 – Proposed Framework

 47

3.2.4 Forward Engineering in Proposed Reengineering

Framework

Traditionally, software reengineering process focuses on reverse engineering

and functional restructuring; there is much research on how to extract artifacts

as well as to identify their internal relationships, and to apply relevant methods

to fulfil program transformation. Whilst in this thesis, the methodologies and

technologies of forward engineering within the proposed reengineering

framework are different from those applied in the conventional object-oriented

software process. From software developers’ prospective, the choice of

implementation languages during forward engineering largely affects their

abilities to solve the software problems [114]. A functional-first hybrid

programming language (e.g., F# [104]) is selected to address the specific issues

that Web services-based context awareness brings.

The differences of the proposed forward engineering can be summarised as

follows:

 Requirements: Requirements are achieved by synthesising the

recovered requirements from the legacy system and new requirements

from users for further evolution. Along with discussion about shallow

and deep recovery in Section 3.2.1, the recovered requirements can be

used by domain experts as a gauge to measuring the gap between

current and new requirements, which implies whether the current

system is more suitable for migration or redevelopment.

 Design: In object-oriented design, a software design can be

represented as a set of communicating objects. In other words, object-

oriented design process involves defining object classes and setting up

their relationships. In effect, design patterns are widely applied in

Chapter 3 – Proposed Framework

 48

object-orientation design/development. They are considered as

descriptions of interactive customised classes and objects that solve a

generic design problem in a specific context. Based on object-

orientation, UML is always adopted to specify their internal

relationships. While in functional design, functions play a key role. It

is not necessarily that functions must be wrapped into a class. The

independent existence of functions along with other constructs and

features from F# allow for more flexibilities. This implies many

concepts of design patterns could literally disappear (e.g. Lazy

Initialization and Builder) or be just idioms of that language (e.g.,

Factory Method is essentially a function returns an object.).

 Implementation: Object-oriented programming languages provide

constructs to design object classes, whilst F# accommodates constructs

with much higher abstraction that the importance of design patterns

fade away. For example, Lazy Initialization can be achieved via F#

lazy value or lambda function. Builder can be implemented by passing

optional arguments to a constructor in a class type definition.

Specifically, F# features asynchronous programming support with its

‘Async’ library. This can address many issues of requests from Web

services. Context-awareness is typically achieved through F#

constructs – discriminated union types and pattern matching without

spreading conditional statements. Obviously, other approaches such as

context-oriented programming can be implemented in F# for deeper

requirements that context-awareness entails.

 Evaluation/Maintenance: Object-oriented programming languages

often come with ‘high ceremony’ that OO programmers are so

customised to that suggests they do not realise how inefficient their OO

code is. On the other hand, F# is a succinct and expressive functional-

Chapter 3 – Proposed Framework

 49

first language. Thus, the F# code is always shorter than OO code for a

same implementation. Less code infers lower maintenance. Moreover,

F# is so expressive that it maps the problem solving process of human

being more directly into the implementation with appropriate

constructs.

In summary, the benefits of using such as F# for forward engineering are

twofold. The differences can be depicted from design problems and

implementation problems respectively. From design prospective, design

patterns are commonly applied to abstract the way of factoring object into

classes, defining class interfaces and inheritance hierarchies, and establishing

relationships among them in a particular context. In F#, functions can take any

argument as an input and return an object; it provides developers with more

flexibilities. On the other hand, from implementation prospective, design

patterns can be used to specify object interfaces and object implementations.

F# does not have the object-oriented constraints that everything is wrapped into

a class. Function can fulfil many of similar tasks. For example, F#’s constructs

– discriminated union type and object expression and the feature of pattern

matching are pleasant combination of completing many of programming tasks.

Eventually, from maintenance prospective, by building up with less code lines,

components will be much easier to maintain than those implemented via

inheritance. The implementation inheritance will often make the supper types

more complex and it is against the maintenance essence. Nevertheless, F#

partially implementation types can be implemented via delegation with object

expressions within a concrete type.

Chapter 3 – Proposed Framework

 50

3.2.5 The Differences and Consequences of the Proposed

Reengineering Framework

The main differences of this proposed framework and approach can be

classified as follows:

 Requirements Recovery in Services Discovery: Significant research

works of reengineering merely focus on code segments extraction [53,

70, 112, 132], whilst the proposed framework is designed to further

recover the underlying requirements. In effect, recovered code

segments are more suitable for migration, while redevelopment entails

new requirements. The availability of recovered requirements along

with the code segments can provide a better understanding of the

legacy components and their relationships, which in turn assists the

reimplementation during later activity – forwarding engineering.

 Forward Engineering: In software reengineering, not much research

works investigate the implementation details in forward engineering.

Even a reengineering framework approach that clearly embraces a

forwarded engineering phase, the methodologies and technologies

applied to implementation are still based on object-oriented platform

[134]. Fixed programming paradigm hinders efficiency. This proposed

framework approach however highlights the importance of

implementation languages choices and implies that the method of

selecting appropriate programming languages.

Based on the differences discussed above, the primary advantages of this

proposed framework and approach can be depicted as follows:

 Complete Requirements: Requirements recovery is the centre of

requirements analysis in the holistic framework approach. Extracted

Chapter 3 – Proposed Framework

 51

code segments should be consistent with the legacy technologies

applied in forward engineering, yet the proposed framework is

designed to recover the relevant requirements to be analysed and

synthesised with new requirements for further redevelopment.

Extracted code segments may be not always coherent with new

technologies of design and implementation. Therefore, requirements

recovery can be a complement.

 Different Reimplementation: Choosing appropriate methodologies

and technologies to fulfil the requirements of context-awareness and

Web services is crucial. For example, functional programming

techniques can be used to better express the problem domain and map

it into the salutation domain. Thus, software developers might be able

to spend more time in focusing on the hardest parts of the development

(e.g., asynchronous and parallel programming) than only arranging

classes and objects into an appropriate abstract level.

The primary disadvantages of this proposed framework and approach can be

described as follows:

 Manually Generated Requirements: Automated and semi-automated

mechanisms in software reengineering always attract lots of research

attention. Although some works can be implemented in a (semi-)

automated way, the majority of stages involves fairly much manual

work from domain or software engineering experts. This because

recovering deep requirements and managing requirements evolution

during services evolution is a systematic process. In order to obtain

correct and practical results, recovering and maintaining frequently

changing requirements may make manual work inevitable.

Chapter 3 – Proposed Framework

 52

 Cost of Reimplementation: In terms of the assumption of the need of

migration, conventional reengineering approaches mainly highlight

reverse engineering and functional restructuring. Reimplementation

during the forward is the last option for reengineering work due to the

high cost and risk that it may pay for. Nevertheless, in the case of

reengineering context-aware Web services-based systems,

reimplementation may be a better solution to reuse the legacy system

yet be able to deliver the sought-after services. For example, it is

almost certain that there are few design patterns specific for functional

programming paradigm because of a number of historical reasons

[115].

3.3 Summary

In this chapter, a novel software reengineering framework for Web services-

based context-aware systems has been proposed. The core reengineering steps

can be summarised as follows:

 Services candidate recovery, traditionally, this is the process of

identifying reusable code-related artifacts from the legacy systems, e.g.,

a set of class structures or the algorithm of certain code segments.

Notwithstanding, without further recovery of requirements behind the

source code, this will hinder services evolution in future. The proposed

services candidate discovery belongs to requirements-related artifacts

discovery (deep recovery) whose process is a requirements elicitation-

based approach. One of the main reasons for such a deep recovery is

that requirements of context-aware Web services change as the

environment (context information) changes dynamically.

Chapter 3 – Proposed Framework

 53

 Services reimplementation corresponds to forward engineering during

the proposed reengineering framework approach. To guarantee the

evolved requirements are completed requirements, a context-aware

services requirements model is proposed, Furthermore, a requirements

evolution model is built to maintain the requirements evolution during

the reengineering process.

 F# is functional first and object-oriented second programming

language that enables developers to more directly map their

implementation process into the relevant language constructs.

Furthermore, F# code is much shorter than OO code which in turn

reduces the potential cost of maintenance and evolution in the future.

 Typically, emphasis on constraints during services reimplementation

stage is crucial since services evolution will be impeded when

inappropriate programming languages are chosen for implementation.

Moreover, to facilitate development task, an F# library – ContXFS that

allow for context-oriented programming is developed. It embraces

efficient libraries for building context-aware Web services-based

components.

 Services integration is the finally stage that newly built services and

the existing services integrate together to deliver the entire services to

customers.

 The proposed framework involves fairly much manual work relying on

the knowledge from domain or software engineers. Qualitative

methods of this work are mainly reflected by the requirements

recovery step where ‘why’ and ‘what’ related questions are discussed,

whilst quantitative methods of this work are primarily suggested by the

Chapter 3 – Proposed Framework

 54

reimplementation step of the said systems where programming

language support is discussed.

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 55

Chapter 4 – Requirements Recovery

Framework for Services Candidate

Discovery

Objectives

 To discuss the layered conceptual framework for context-aware

systems

 To describe the requirements recovery framework

 To discuss the framework approach

 To show an intermediate result of the framework approach on a

location-aware system

4.1 Overview

In modern software development, software requirements and implementation

are not always reconciled. This leads to difficulties for software evolution tasks

in future. Typically, for modern Web services-based context-aware systems,

changes of stakeholders’ requirements and context environments imply that

existing services system is subject to modifications as current implementation

is no longer sufficient to meet the new requirements. On the other hand,

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 56

reverse engineering, a well-known method used within software engineering

community, aims to understand the functions and behaviour of a subject system

from source code. In effect, many reusable code-related artifacts are extracted

without recovering the system’s requirements behind the source code. However,

the fact that requirements recovery from source code is necessary and has far-

reaching implications is being recognised. Therefore, a requirements recovery

framework is built. Based on this framework, a requirements elicitation

approach is developed. This framework approach is further claimed to

reconcile the gap between software requirements and implementation for

context-aware Web services evolution within the overall reengineering

framework explored in Chapter 3.

4.2 Context-Aware System Framework

4.2.1 The Problem

Context awareness is a key property of ubicomp systems that reasons about the

surrounding information to adapt applications accordingly. Since the concept

of context-awareness [95, 117] debuted, several models, conceptual

frameworks, and architecture have been developed to represent, process and

model context. For example, context model is designed to define and store

context data. In fact, many existing context models are constrained by their

pre-defined requirements. Nevertheless, as user intentions can change at

arbitrary time and context models may not be capable of handling all possible

circumstances. In other words, context models have limited capability in

involving human intentions for self-adaptability [89].

Specifically, this research focuses on the context-aware systems where context-

aware middleware or context server is the software that provides services of

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 57

context-awareness. Stakeholders’ intentions are not always well captured in the

early stage of development process due to lack of formal languages support.

For instance, at design stage, system customers may not be articulate enough to

express all the functionalities they need, or at implementation stage, same will

happen when revisiting conventional software development lifecycle in the

process of reengineering; software engineers may choose a programming

language that is not abstract enough to express the common programming

patterns to support the implementation of customers’ functionalities, which

causes software maintainers have to spend much more time and effects on

understanding the convoluted programming that is not necessary provided an

appropriate programming language were chosen for development in the first

place.

In consequence, these discrepancies will hamper the context-aware service

evolution tasks. In order to conciliate these, this thesis proposes a context-

aware requirements elicitation approach to reconcile the gap between software

requirements and implementation for context-aware service evolution based on

the proposed reengineering framework approach discussed in Chapter 3. Hence,

in this chapter, the paramount job is to further our traditional practice [124] on

reengineering activities to recover the requirements from source code in order

for navigating other reengineering activities, e.g., functional restructuring and

forward engineering.

4.2.2 Layered Conceptual Framework for Context-Aware

Systems

Context-aware systems can be implemented within various frameworks and

every framework owns its context models. Although context model is

responsible for representing and sharing context data, in many cases, the

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 58

architecture style of a context-aware system is shaped by the architectures of

context acquisition and context management. For instance, by summarising the

design approaches to existing context-aware systems, Baldauf et al. [9]

conclude that the architectural style of a context-aware is mainly driven by the

context acquisition method. Thus, the approaches to context acquisition and

context management are vital during the design period of context-aware

systems.

While context acquisition is an important topic, this chapter focuses on context

management because it exposes itself to functional requirements and non-

functional requirements. Apparently, abstraction functionality can be

implemented by an application directly in a context-aware system; nevertheless,

the frequent changes of user’s requirements and context make such assumption

unreasonable. As software developers are unable to predict what changes

would be made. Thus, the implementation of abstraction functionality should

be encapsulated and put into a middleware, in this case, a context server. The

overall benefit of such arrangement is that the development of applications in

the client side can be facilitated.

Although middleware-based or context server based context-aware systems can

be implemented in different ways, the hierarchy of a common framework often

consists of the following parts from low level to high level: sensors; raw data

retrieval; pre-processing; storage/management; application. Various layers are

responsible for different tasks, for example, sensors in the sensor layer are to

capture the raw context information before further aggregation and

interpretation; context storage in the management layer is to maintain a

database of context information for user query; application is developed in

application layer to fulfil the functional requirements, whilst context server in

the middleware layer achieve the non-functional requirements.

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 59

With over nearly two decades’ evolution of context-aware systems, nowadays,

context-aware systems become far more complex. For example, Web services-

based context-aware system poses great challenges of not only context-

awareness, but Web services-related issues, such as concurrency, parallelism,

scalability and so on. Amidst this evolution, a layered conceptual framework

for this kind of systems primarily based on [2, 9, 14, 19, 57] is proposed. This

framework is depicted in Figure 4.1 as below:

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 60

Figure 4.1 The Proposed Layered Conceptual Framework for Context-Aware Systems

Applications

Context Middleware

Context Server

Context

Aggregating

Context

Interpreting

Context

Reasoning

Sensors

Application Layer

Context Management Layer

Capture Layer

Middleware Metadata

Comprise

Translate

Process

Metadata

Communicate

Application

Application

Metadata

Application

Metadata

Context

Independent

Context

Dependent

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 61

Figure 4.1 demonstrates a layered conceptual framework for middleware-based

context-aware systems. The components of this framework are introduced as

follows:

 The Sensors in Capture Layer: They are responsible for raw context

retrieval. Although sensor is tightly associated with sensing hardware,

it may include every data source that provides appropriate context

information. The context information will be sent to upper level for use.

These sensors can be further classified as follows:

o Physical Sensors, which are capable of capturing physical data, such

as image, motion, light, audio, temperature, touch, and location and

so on. In practice, the communication between physical sensors and

context middleware/server accounts for the main input to realise

context-awareness.

o Virtual Sensors, which detect the context data captured from

software applications or services. For instance, by querying a login

user account on a computer system, sensors can tell who are using

the computer systems in office although it might be not as accurate

as physical sensors. For example, a user account could be misused

or stolen.

o Logical Sensors, which synthesise and analyse raw physical data

and virtual data to reason about higher abstract level tasks. For

example, a logical sensor can be deployed to infer a person’s social

hobbies by analysing the history of location information of where

(s)he has been and activities on their personal devices, e.g., laptop,

smart phone etc.

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 62

 The Middleware/Server in Context Management Layer. Context

server facilitates the stored information needed for performing

synchronous or asynchronous computations. Predefined short-running

requests may usually complete in a synchronous manner, i.e., it sends a

request for some kind of data and pauses until it receives the server’s

response, whereas the asynchronous approach may be more preferable

because of continuous changes in the underlying context and

increasing requests from users. Thus, from development prospective,

context-aware applications that respond to events raised on main thread

or worker thread by registering event handlers with their context-aware

middleware or context server, i.e., event handlers are registered in

middleware/server that detects the environment changes and dispatches

message to application to perform actions to respond to the underlying

context changes. This also implies that context-aware application is a

concurrent program.

Furthermore, a typical context server consists of the following

components to account for the context management functions:

o Context Aggregating, where an aggregation of context atoms

either to combine all context data relevant to a particular entity

or to create a higher level context object. This process is

essential as a simple individual sensor value is always not useful,

whilst combined context data may contain wider context

information that is of interest. This the first stage where raw

context data is captured and combined for next stage.

o Context Interpreting, as sets of context data are available, they

will be interpreted in a form that the clients can understand.

Context interpretation, along with Application Metadata (shown

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 63

in Figure 4.1), builds a mechanism to provide the relevant

processed context information for applications’ polling. This is

the second stage where context data is transformed into an

interpreted form.

o Context Reasoning, where context is abstracted from low-level

context data by building a new model layer that gets the sensor

perceptions as input and generates or triggers system actions

[14]. This enables services to take a decision whether any

adaptation to a change is necessary. This is the third stage where

interpreted context data is reasoned in terms of rules within the

system. The resulted context data is delivered to clients.

o Middleware Metadata, Middleware Metadata in the context

management layer comes from the translation from the context-

dependent part of Application Metadata (discussed in the

Application Layer below). This metadata relates to the

application’s non-functional requirements. For instance, in a

highly scalable Web services-based context-aware system,

context server handle thousands of client requests in an

asynchronous computation way rather than a synchronous way.

Scalability is a core issue for such kind of system.

Although context servers are now frequently used for acquiring and

managing context information, most applications do not make use of

any form of support (for instance, programming toolkits or

infrastructure) for interpreting and making decisions about context [9].

The context gathering layer acquires context information from sensors

and then processes this information, through interpretation and data

fusion (aggregation), to bridge the gap between the raw sensor output

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 64

and the level of abstraction required by the context management

system.

The Applications in Application Layer: where the actual event

handling code is implemented to react on specific context changes

reported by the context-aware middleware or context server. It is this

layer where the client is realised. Application Metadata in this layer

consists of two types of metadata, i.e., context independent metadata

and context dependent metadata. For example, context independent

metadata can be associated with interface requirements while context

dependent metadata can relate to specific constraints. Application

Metadata is used to instruct the application on how it should behave

under what circumstances, in other words, this metadata relates to

functional requirements.

In essence, this entire framework suggests that performing long-running

computations is inevitable due to the nature of context-aware systems, thus,

asynchronous computing is needed, in fact is crucial, otherwise, it may render

the middleware unresponsive. It is the middleware that takes control of

maintaining a valid representation of the context; whenever a change to user’s

need and context is detected, the metadata commands the application adapt its

computation. Apparently, middleware metadata is dynamic updated as the

user’s requirements and context change. It is this holistic mechanism that

drives the software evolution for context-aware system, and users are able to

behold the service evolution as a result of it.

To summarise, the proposed layered conceptual framework is a simplified

version of more complex architecture of context-aware systems. This

architecture is design for multiple users where simultaneous requests are made.

The main drawback of this framework is that the design of this kind of context-

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 65

aware systems is based on client-server architecture. In other words, in the case

of this research, the implementation of the context-aware systems needs to

realise this design architecture during forward engineering.

4.3 Requirements Recovery Framework and

Approach

4.3.1 Requirements Recovery – In a Nutshell

In requirements engineering, requirements are often classified as two levels of

details in requirements document. Customers need a high-level statement of the

requirements, whereas software developers require a more detailed software

specification. In fact, a requirement is only one of the possible means to

achieving a goal. Compared to requirement, goal is a relatively steady concept.

Goals can be referred to as intentions since they are related and complementary

concepts. However, although it is possible to recover stakeholders’ goals from

implementation [69], attempting to elicit their requirements is valuable for

software evolution proposes [37, 74].

In reality, requirements documents are always poorly written or out-of-date,

even not available. Requirements recovery is an essential task for better

understanding a legacy system; navigating the later activities, e.g., re-design

and re-development in a reengineering process. The studies to recovery

requirements from source code have been carried out for multiple purposes.

Yang et al. [125] point out that ontology is a useful source for understanding

and reengineering a legacy system; Liu [75] presents a semiotic approach to

requirement engineering; recently, Chen et al. [22] depict an ontology-based

reengineering approach to recovering requirements from existing systems by

matching domain ontology and program ontology.

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 66

4.3.2 Requirements Recovery Framework

In this recovery framework, this study focuses on two kinds of requirements,

i.e., users’ requirements and constraints. Requirements can be divided into

functional requirements and non-functional requirements, for instance, user

may have this goal: “to search a destination online”, which is a very abstract

objective. Then, requirements engineers may parse this to “providing a search

button on a webpage” as the functional requirement, and "the page should be

highly responsive during searching” as non-functional requirements. For

example, providing a cancel searching button and a pause searching button

could allow users to have more control on search without having to wait the

whole search to complete. There are some other elements that may affect our

work, such as users may be classified as novice users, advanced users, and

professional users, so are developers. But those factors are not considered in

this paper.

It is assumed that users’ requirements are fused into implementation code and

in turn, the code implies them. For services evolution purposes, a requirements

recovery framework is created to assist requirements elicitation task based on

the framework presented in Figure 4.1. Whilst Figure 4.2 describes this

requirements recovery framework as below:

 Services Pattern Module: This module contains Knowledge-Based

Library (KBL), Source Code Information (SCI) including comments,

identifiers and keywords, and Requirements (REQ), i.e., Functional

Requirements (FR) and Non-Functional Requirements (NFR). The

module underpins the requirements elicitation and an initial service

pattern module is created by domain experts and software engineers as

a prerequisite. As the requirement recovery framework approach is

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 67

exercised, the content of SPM can be updated and improved as a result

of enhancements.

 Concept Generator: It takes source code and SPM as an ‘input’ and

apply Hypothesis-Based Concept Assignment (HB-CA) method [52].

HB-CA is one of plausible reasoning techniques and it is not tailored

particularly to certain language, such as COBOL II. It is composed of

three stages, i.e., Hypothesis Generation, Segmentation and Concept

Binding. Each stage takes the output of the former one as its input. The

overall output is a list of concepts, associated with regions of source

code. Detailed stages will be described in the Requirements Elicitation

Approach discussed later.

 Event Concepts: When concepts are available, with tool support,

concepts will be linked with events (in the source code) as a tuple

<Concept, Event>. Domain experts and software engineers fulfil the

enhancement to further enhance the content of services pattern module.

These event-linked concepts are the most likely users’ functional

requirements.

 Source Code Information (SCI): It embraces information directly

reflected from the source code including identifiers, comments, and

keywords. It is initially created along with requirements.

 Requirements (REQ): REQ consists of functional requirements and

non-functional requirements.

 Knowledge-Based Library (KBL): KBL comprises of lists of

intermittently enhanced tuples: <Concept, Event>.

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 68

Figure 4.2 Requirements Recovery Framework

Source

Code

Concept

Generator

HB-CA Concepts

Services Pattern

Module

(SPM)

Event

Concepts Enhance

Source

Code

Information

(SCI)

Requirements

(REQ)

Functional

Requirements

Non-Functional

Requirements

Non-Functional

Requirements

Functional

Requirements

Knowledge-

Based

Library

(KBL)

HB-

CA

Apply

Process

Comprise

Users’

View

Developers’

View

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 69

4.3.3 Requirements Elicitation Approach

An initial SPM must be created by domain experts and software engineers in

order that informal information (comments, identifies, keywords) and

requirements can be stored. In general, concept assignment techniques are

applied to relate information about domain problems to portions of source code.

Specifically, applying HB-CA method to the input of the qualified source code

and pre-established SPM can generate three stages:

 Hypothesis Generation: This involves assigning the source code

information tokens; mapping these tokens to correspondences in

service pattern module. This step aims to generate the source code

information (identifiers, comments, and keywords) in SPM. This

hypothesis source code information forms a list and is not necessarily

executable.

 Segmentation: The hypothesis list is grouped into segments in terms

of whether potential exists can form clusters. Selected segments at

length form a hypothesis segment list.

 Concept Binding: In order to bind the most likely hypotheses concepts,

the segments in the list are determined by their occurrence frequencies.

When a concept is selected, the segment is labelled with the name of

that concept. The result of this stage is a list of concept bindings

linking regions of source code.

The event concepts will be generated as a tuple <Concept, Event> by domain

experts and software engineers, which in turn will enhance SPM by modifying

the existing content.

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 70

The framework approach presented in this chapter is based on RRF, and

highlights two viewpoints of user and developer. Liu et al. [74] proposed a

semiotic approach to recover requirements through studying the legacy

system’s behaviour. Their approach contains investigation activities at three

major stages. SMP lies at the heart of the proposed framework approach, which

consists of three stages, i.e., hypothesis generation, segmentation, and concept

binding. Chen et al. [22] apply ontology-based reengineering approach to

recovering requirements, whilst, hypothesis-based concept assignment is

adopted in the proposed framework approach. El-Ramly et al. [37] present a

data mining approach called CelLest process in order to discover patterns of

frequent similar episodes in run-time traces of user-interface behaviour. The

proposed approach to requirements recovery in this chapter emphasise users’

and developers’ viewpoints as they are the key models for discovering the

requirements gap between the legacy system and the subject system.

Nevertheless, there are other viewpoints that are not included in the framework,

which might contribute the requirements gap, such as viewpoints of system

deployment and system integrators.

4.3.4 Requirements Elicitation Approach for A Location-Aware

System - A Brief Example

This is a short example performed on UW Campus Navigator (UWCN) [113]

which is an open source location-aware application. The application aims to

provide new students with location-aware services around The University of

Washington campus. It was developed in C# within the Microsoft .NET

framework.

An initial services (location-awareness) pattern module is created by domain

experts and software engineer after UW Campus Navigator passed the

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 71

assessment. The SPM should contain some initial information (historical

information related to location-aware systems) and requirements associated

with location-aware systems. The following table presents the sample of the

content of SCI and REQ in the initial Services Pattern Module:

Source Code Information

(SCI)

Identifier positionIButton

Keywords public; class

Comments wrapper of iButton

Requirements

(REQ)

FR location-polling

NFR high responsiveness

Table 4.1 Content of SCI and REQ in Services Pattern Module

It is assumed that a concept named – Get|CurrentPosition with an event –

positionIButton exist. Thus, <Get|CurrentPosition, iButton> as a tuple of

<Concept, Event> will be stored in the KBL for further matching and updates.

To discover services candidates, firstly this approach creates a SPM, and

constructs a KBL accordingly. For instance, 6 instances in the SPM and 6

corresponding tuples of <Concept, Event> in the KBL are created. The list of

tuples in knowledge-based library is: [<MapLocation, getCurrentPosition>;

<Magnify, getZoomingSize>; <Shrink, getZoomingSize>; <SearchLocation,

getDestination>; <Tracking, track_Click>; <POI, getNewDestination>]. Owing

to personal independence and preference of concept naming, the final KBL

might appear rather different. Based on our research background, the concept

terms more related to software engineering are created rather than those from

other specific domains.

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 72

Once the services pattern module and knowledge-based library both are

constructed, HB-CA is applied along with the content of SPM to 4 source files:

Map.cs, POI.cs, mainForm.cs and PreferForm.cs. In this stage, strict matching

criteria is not adopted, instead, flexible matching is allowed (i.e., sub-string

matching or ambiguous matching). The result list of matching tuples of

concepts and events is very similar with the one built above, but with an

updated tuple, i.e., <Navigation, getGPSInformation>. The results are

demonstrated in this stage in Table 4.2 Below:

KBL elements Identifiers Events in Source

<MapLocation,

getCurrentPosition>
picMap picMap.MouseDown

<Magnify, getZoomingSize> lblMagnify lblMagnify.Click

<Shrink, getZoomingSize> lblShrink lblShrink.Click

<SearchLocation,

getDestination>
cbSearch cbSearch. SelectedValueChanged

<Tracking, track_Click> menuTrack menuTrack.Click

<POI, getNewDestination> menuPOI menuPOI. MenuItems.Add

<Navigation,

getGPSInformation>
buttonNav buttonNav.Click

Table 4.2 An Updated Knowledge-Based Library (KBL)

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 73

The content in KBL indicates the location of concept segments. Once this work

is done, static program slicing techniques are applied to decompose the

qualified source code reflected from the results of SPM further. Slicing is

particularly useful when the code segments are too big. This at length generates

code segments of interest. For example, the following code could be of our

interest:

private void picMap_MouseDown(object sender, System.Windows.Forms.MouseEventArgs e)

 { // Stop Tracking When Map is Clicked

 map.Tracking = false;

 menuTrack.Checked = false;

 map.Recenter(e.X, e.Y);

 picMap.Refresh();

 }

When the target code is available, the phase of services reimplementation is

reached, which will be discussed in Chapter 5.

4.4 Summary

In this chapter, requirements-related artifacts discovery is discussed as code-

related artifacts discovery is rather conventional approach within reverse

engineering research field. Hence, the methodologies for SPM are explored at

the early stage in our proposed reengineering framework. The content covered

in this chapter can be concluded as follows:

 The framework for context-aware systems in general is composed of

three layers, i.e., sensors layer for context acquisition, context

management layer for fulfilling non-functional requirements by

instructing what application should behave upon the changes to user’s

requirements and context, and application layer to satisfy functional

requirements.

Chapter 4 – Requirements Recovery Framework for Services Candidate

Discovery

 74

 The context-aware systems framework gives insight of where

functional requirements and non-functional requirements reside in the

framework. It suggests that functional requirements are satisfied in the

application layer, whilst non-functional requirements are met in the

middleware/context management layer. This provides a guide for

where requirements recovery should be carried out from the legacy

system in the requirements recovery framework.

 The Services Pattern Module (SPM) in the requirements recovery

framework consists of knowledge-based library, source code

information and requirements. It underpins the requirements elicitation;

while concept generator applies methods onto the content in services

pattern module and generates event concepts which are the tuples of

<Concept, Event>.

 The requirements elicitation approach uses a Hypothesis-Based

Concept Assignment (HB-CA) method to generate a list of event-

linked concept in knowledge-based library.

 A small location-aware system is used to evaluate to show the

intermediate result of the requirements elicitation approach at the

services candidate recovery stage.

 The requirements recovery framework provides one possible way of

eliciting requirements behind the source code for further reengineering

activities. It cannot be implemented (semi-)automatically since this

process contains some sub-processes which require manual work for

making decisions.

Chapter 5 – Context-Aware Services Requirements Model

 75

Chapter 5 – Context-Aware Services

Requirements Model and Requirements

Evolution Model

Objectives

 To describe the context-aware services requirements model

 To describe the requirements evolution model

 To discuss the relation between requirements evolution and services

evolution

 To demonstrate an example of the model of requirements evolution

5.1 Overview

5.1.1 The Problem

Typically, services requirements and context are evolving constantly, services

providers may not be able to pick up the changing pace, that is, they may fail to

satisfy the emerging requests. For instance, with respect to context-aware Web

services-based technologies, Web server inevitably needs to perform some

Chapter 5 – Context-Aware Services Requirements Model

 76

long-run computations. If the server is not implemented in an asynchronous

and parallel way, it may be unresponsive due to intensive context changes. On

the other hand, changes of services requirements and context are two primary

triggers of services evolution. Specifically, services evolution is expressed

through the creation and decommission of its services version behind software

evolution.

Context-aware services are concerned with reasoning about surrounding

context and adapting services accordingly, whereas few research works focus

on supporting context-aware services evolution via requirements modelling

techniques. Furthermore, requirements engineering conventionally focuses on

users’ requirements, e.g., elicitation for high-level goals [68], whilst constraints

usually do not received much attention in the course of services evolution. In

this chapter, to fully discover those constraints, a derived viewpoints-based

Context-Aware Service Requirements Model (CASRM) is proposed; to

maintain and specify the requirements evolution process, a requirements

evolution model is developed for supporting context-aware service evolution.

A medium sized open source case study is carried out for evaluation in the end

of this chapter.

5.1.2 Background

Requirements analysis is critical to the success of a software system

development. Out of question, requirements evolution may result in changes to

later artifacts. In fact, economically speaking, defects are cheaper to remove if

found earlier, namely, late changes have bigger impacts on work already done.

From evolutionary perspective, the changes in requirements occurring after

deployment can be referred to requirements evolution. In [41], requirements

evolution is pictured as an intermediate viewpoint between architecture

evolution and computer-based system evolution in the evolutionary space. In

Chapter 5 – Context-Aware Services Requirements Model

 77

fact, requirements evolution can be seen as a task in an umbrella concept –

requirements management which studies as to how to control the impacts of

changes on requirements. Yet, software reengineering for context-aware

systems is about re-implementing the current software solution to continuously

meet the needs of its stakeholders and the context constraints in a new

environment. Hence, managing requirements evolution is an increasing

important research field particularly in requirements engineering. The

challenges of requirements engineering in the area of context-aware services

are the continuously changing services requirements and context. Comparing to

conventional requirements evolution that focus on the evolving users’

requirements, constraints much be given sufficient priorities during the process

of services evolution.

A good solution to a system can only be developed given the engineer has a

correct understanding of the problem. In modern software system development

era, modelling and eliciting a large set of essential requirements and context

parameters are the fundamental jobs that have to be done before the late

activities in software development lifecycle, in other words, requirements

modelling plays a very central role in requirements engineering. Nevertheless,

in context-aware computing era particularly, the constantly varying context

poses a huge challenge to requirements engineering. Not only does context

influences software, but it makes an impact on stakeholders’ goals and their

choices to meet to them [3].

Based on different modelling purposes, some major techniques used in

common requirements modelling are covered in Table 5.1. For example,

KAOS [66], a goal modelling technique, provides a multi-paradigm

specification language and a goal-directed elaboration method. The i*

modelling framework [127] introduces some aspects of social modelling and

reasoning into information system engineering methods, especially at the

Chapter 5 – Context-Aware Services Requirements Model

 78

requirements level. The i* modelling can be considered as an organisation

modelling. Non-functional requirements modelling can be found in [28].

MODELLING OBJECTIVE TECHNIQUES

Enterprises Modelling

Goal Modelling

Organisation Modelling

Functional Requirements Modelling

OO Analysis

Structured Analysis

Formal Methods

Non-Functional Requirements Modelling

Quality Tradeoffs

Specific NFRs

Table 5.1 Requirements Modelling Techniques

Requirements evolution is still a research topic that somehow is not drawn

much attention in requirements engineering community, even though Cheng

and Atlee [26] mention the rising popularity of it. The challenge of

requirements evolution had been first comprehensively discussed by Harker et

al [55]. They concentrate on the structure of requirements and categorise

requirements into the followings types: Enduring, Mutable, Emergent,

Consequential, Adaptive and Migration Requirement. Adopting formal concept

analysis, Fabbrini et al. [40] depict an approach to improving requirements

evolution management by making more systematic and effective the

Chapter 5 – Context-Aware Services Requirements Model

 79

identification of semantic inconsistencies between different stages of

requirements evolution.

Much research on evolving requirements still remains on the initial stages in

software lifecycle, whilst post-development requirements evolution should be

paid sufficient attention in order to facilitate software evolution related

activities. For instance, changes to requirements may be dictated by new

programming languages that require a paradigm shift. Such changes largely are

put forward by software developers and they should have their voices for these

kinds of changes. Ernst et al. [38] predict that software of the future will

consist not only of code and documentation, but also requirements and other

types of models representing design, functionality and variability.

5.2 Context-Aware Services Requirements Model

5.2.1 Concepts for Context-Aware Services

Before introducing our definitions to context-aware service, firstly, the concept

of services requirements is recurred. A services requirement can be viewed as a

requirements collection of functionalities, non-functional properties and

interfaces. Functionalities are the basis of services and a set of functions

required to perform in a program to accommodate a certain type of service.

Non-functional properties indicate the quality of delivered services, yet they

are harder to define, e.g., performance, scalability, reliability, security and so

on. Interfaces provide users with a customised user-friendly environment

although interfaces might not be necessary in many cases, e.g., clients may

only want to query the server for certain services only via the publish/subscribe

communication paradigm. All the said requirements are composed of a services

requirement. Thus, a services system is designed to meet all the sub-

requirements to delivery satisfied services.

Chapter 5 – Context-Aware Services Requirements Model

 80

Utilising the above definition of service requirements based on users’ and

developers’ views, a context-aware service can be defined according to

providers’ perspective and requesters’ perspective as below. Although there are

other viewpoints concerned with, for example, system deployment and system

integrators, these definitions are created to facilitate the understandings of the

relation between context requirements and services requirements particularly

during services evolution. Table 5.2 depicts a definition of context-aware

service from providers’ and requesters’ perspectives:

Context-Aware Service

Perspectives Definitions

From providers’ perspective

a context-aware service is a group of

associate functionalities decided to perform

subject to current context settings

From requesters’ perspective

a context-aware service is an abstract

resource that adapts a capability of achieving

goals based on current context settings

Table 5.2 Definitions of Context-Aware Service from Both Perspectives

In a nutshell, a service is a software system. According to the definitions above,

a context-aware service embraces abstract information that users require and

system behaviours that providers offer. In other words, context-aware services

enable users to behold the services provided without being aware of the

underlying implementation by providers. To summarise, software evolution

was reified through services evolution, while context changes to services are

incarnated during the services evolution. Services evolution can be referred to

the continuous reengineering to services systems through a series of consistent

and unambiguous changes. Last but not least, a context change is another

trigger to invoke a set of functions to deliver sought after services. This chapter

focuses on how the context evolves rather than how they can be described in

high-level description languages.

Chapter 5 – Context-Aware Services Requirements Model

 81

5.2.2 Customised Derived Viewpoints

A basic framework of requirements model that consists of a collection of

viewpoints is described in this section. The definition of viewpoints can be

found in [84]. Viewpoints are objects that are loosely coupled, locally managed,

distributable. Each viewpoint comprises three kinds of software engineering

knowledge: representation knowledge, specification knowledge, and software

development process knowledge. Moreover, a key principle of viewpoints is

that viewpoints organise software development knowledge based on separation

of concerns [86]. That is to say, different stakeholders’ interests are expressed

in different viewpoints, such as a viewpoint that captures a software

developer’s concern or a viewpoint that expresses interests of user

representative. As a viewpoint may represent various areas of concern within a

project, the notations for particular stakeholders’ perspective vary. Hence,

requirements models provide maintainer with guidance and motivation for

requirements engineering activities.

In Chapter 4, a requirements elicitation approach has been proposed in a

context-aware system software engineering framework. The requirements

recovery framework itself contains a SPM which is created by domain experts

and software engineers. Its content is dynamically updated and it underpins the

requirements elicitation. In this chapter, as the requirements elicitation

approach targets users’ and developers’ perspectives, the intermediate results

can be utilised in requirements recovery framework and build an associate

customised derived viewpoints based on combination viewpoints from

traditional users’ and developers’ viewpoints.

This novel requirements model focuses on synchrony of users’ requirements

and constraints in a services evolutionary view. The requirements model is

depicted in Table 5.3 below.

Chapter 5 – Context-Aware Services Requirements Model

 82

USERS DEVELOPERS

Service Domain Implementation Domain

functionalities

non-functional properties

interfaces

functionalities

implementation

non-functional properties

interfaces implementation

Context Context

context constrains predicates

History History

previous service ->

current service

previous implementation ->

current implementation

Specification Specification

Table 5.3 Customised Derived Viewpoints from Users and Developers

Chapter 5 – Context-Aware Services Requirements Model

 83

The model in Table 5.3 presents a combined customised derived viewpoint that

consists of derived users’ and developers’ viewpoints. For users’ viewpoints,

they comprise the following elements:

 Service Domain is a description that expresses the detailed

components (i.e., functionalities, non-functional properties and

interfaces) of a particular service and its context constraints that trigger

the series of functionalities to perform.

 History is a work record of changes. It embraces the previous services

description and current services description.

 Specification used to indicate the contents as the users make changes.

Diagrams or other notations may be used.

For developers’ viewpoints, they contain the following elements:

 Implementation Domain is a description that expresses the detailed

components (i.e., implementation of the relative functionalities, non-

functional properties and implementation of corresponding interfaces)

of a particular service implementation and its predicates that assert

performance of associate functionalities.

 History is a work record of changes. It embraces the previous

implementation description and current implementation description.

 Specification used to indicate the contents as the developers make

changes. Diagrams or other notations can be used here.

In some cases, the inadequate communications between requirements engineers

and end-users leads an increasing gap between requirements and

implementation. In fact, different viewpoints can be treated as dialogues

Chapter 5 – Context-Aware Services Requirements Model

 84

between the relevant stakeholders’ to reduce the discrepancy of their

communications. While some viewpoints are essential to other actors, e.g.,

system deployment and system integrators, viewpoints from users’ and

developers’ perspectives are more related to our aim, i.e., to reconcile

requirements and implementation during the reengineering activities as

services evolve.

5.2.3 Requirements Model for Context-Aware Services

Based on the derived viewpoints discussed above, a context-aware service

requirements model is developed. The components and steps to construct

context-aware service requirements are represented in Figure 5.1.

Chapter 5 – Context-Aware Services Requirements Model

 85

Figure 5.1 Context-Aware Services Requirements Model (CASRM)

Services Pattern

Module

(Requirement Recover

Framework)

Comprises

Composed of

Contributes

Users’

Viewpoints

Developers’

Viewpoints

FR

Associate

Requirements

Repository

Engine

Events

Context-Aware

Services

Requirements

Interface

Requirements

S C I

K B L

R E Q

NFR

Described as

Chapter 5 – Context-Aware Services Requirements Model

 86

Benefiting from our previous work on requirement recovery framework (RRF)

that discussed in Chapter 4, this Context-Aware Service Requirements Model

(CASRM) extracts current requirements from source code level and

reconstructs new context-aware service requirements primarily based on users’

and developers’ customised derived viewpoints. The main components are

detailed as below:

 Services Pattern Module (SPM), this is one of the major components

of Requirements Recovery Framework (RRF) that supports

requirements elicitation approaches to capturing existing context-aware

service requirements. As discussed in Chapter 4, this module embraces

the following components (as described in ‘Comprises’ arrow in Figure

5.1) Source Code Information (SCI), i.e., comments, identifiers and

keywords; Knowledge-Based Library (KBL), which holds a list of

concept bindings and Requirements (REQ), i.e., functional and non-

functional requirements. The overall output of an elicitation approach

is a list of concept bindings with linking to regions of source code. The

bindings are kept in the format of event concepts, i.e., a tuple of

concept and event (<Concept, Event>) in KBL. From developers’

perspective for example, this first element of the tuple represents the

implemented functionality, while the second element of the tuple

indicates the predicate that asserts the performance of this functionality.

This entire framework takes advantage of the fact that the

implementation of context-aware services most likely is done via

event-driven programming.

 Users’ Viewpoints and Developers’ Viewpoints are derived

viewpoints and the content items are introduced in Table 5.3. The

detailed contents can be found and drawn from KBL and REQ. They

are the primary contributors for both viewpoints. Changes may be

Chapter 5 – Context-Aware Services Requirements Model

 87

dictated not only by those that are caused by users who keep changing

their mind, but also by the availabilities of new techniques that

developers would raise the needs to consider adopting alternative

implementation strategies or paradigms. The two viewpoints need to be

in phase.

 Events locate in the second element of the desired tuple <Concept,

Event> in KBL, which in turn, it is part of the result of RRF approach.

Events are triggered whenever context changes. Event can be described

as a context constrain or predicate depending on viewpoints from users’

or developers’ perspective. In context-aware programming, in many

cases, short-live computation requests entail services providers to

perform asynchronous computations in order that the context-aware

server renders in a prompt responsiveness. Technically, when a

services provider receives an asynchronous request, the context-aware

application responds to the corresponding events by registering event

handlers with its middleware or context server. Inherently, this

suggests that it is a concurrent application which performs

asynchronous computations.

 FR and NFR, the abbreviation of Functional Requirements (FR) and

Non-Functional Requirements (NFR). FR, such as temperature-

awareness in a smart room, location-awareness in a campus; NFR, so

called soft goal in requirements engineering. NFR may include

performance, scalability, and reliability etc. For example, Web services

should be delivered to end-users in a promptly responsive way.

 Associate Requirements Repository Engine (ARRE) is a synthesis

(as depicted as ‘Composed of’ in Figure 5.1) of traditional users’ and

developers’ viewpoints, and context constrains and predicates that

Chapter 5 – Context-Aware Services Requirements Model

 88

assert the requirements are satisfied. Viewpoints, not only

conventionally make changes consistent, but build a relation between

both viewpoints and reveal constraints to improve the evolving

implementation in order to mitigate the pain of software evolution. It is

ARRE that constraints are fully discovered and given the same priority

as users’ functional requirements. For instance, in forward engineering

stage, developers would face a choice to select a proper programming

language to implement the overall requirements. Instead of choosing

mainstream object-oriented languages, a general programming

language, which enables programmers to build a domain specific

language easily, e.g., an implementation language with abilities of

context-oriented programming [56], may be more appropriate than the

former. Created by domain experts and seasonal software engineers,

ARRE synchronises both derived viewpoints and provides suggestion

of modification to functional requirements.

 Interface Requirements is one of the traditional requirement elements

of context-aware services requirements where user experience needs

are expressed. In fact, in the context of a Web services computing

environment, these requirements are less necessary to fulfil as clients

often access sought-after services via HTTP, SOAP etc without using a

Web browser. User interface requirements along with ARRE are

composed of the ultimate desired requirements.

 Context-Aware Services Requirements are the ultimate desired

requirements that the target software system is to meet. For each time

the context-aware services requirements are generated, they will serve

as the initial requirements input for the proposed requirements

evolution model that will be described later.

Chapter 5 – Context-Aware Services Requirements Model

 89

To summarise, as described in Figure 5.1, SPM comprises of SCI, KBL and

REQ. Moreover, KBL and REQ contribute information to two viewpoints. The

content of viewpoints and Events are composed of ARRE while Events can be

described in the viewpoints. Therefore, in the context of context-aware services

evolution, a nourished knowledge-based output is indirectly extracted from

RRF which underpins the future composition of context-aware services

requirements. These requirements that mingle FR, NFR, interface requirements

and context requirements are actually the initial input of the said requirements

evolution. Clearly, this work is based on post-development, i.e., after the

current services are put into operation or services have been evolving for

period of time. The results suggest that requirements evolution model is needed

to maintain those evolved requirements and address the impacts on the original

services system.

The obvious advantage of the requirements model presented is that focusing on

only user’ and developers’ viewpoints can gain better understanding of the

original requirements for the legacy system and in turn disclose the

implementation limitation to fulfil those requirements. Separating less

important interface requirements allow better implementation of functional

requirements and non-functional requirements. One of the disadvantages of this

model is the building of SPM, as it evolves manual effects from domain

experts and software developers. The other limitation is that further extraction

techniques are needed to draw information from the two viewpoints for ARRE

to process. Therefore, the future work can be (semi-)automating SPM

construction and techniques to fetch details from viewpoints.

Chapter 5 – Context-Aware Services Requirements Model

 90

5.3 Requirements Evolution Model for Context-

Aware Services Evolution

In order to better the explanation as to how CASRM can fit into the holistic

picture of context-aware services evolution, a requirements evolution model to

specify the evolution process is described in Figure 5.2. In this process model,

the context-aware services requirements are distilled into services requirements

and context requirements, and investigate two possible triggers, i.e., the

changing services requirements and context requirements.

Services requirements and context requirements have different evolution

process with different modifying rules. The interaction of these two

requirements is indispensable and they influence each other. Separating this

services requirements and context requirements in the proposed model allows

for applying different modifying rules. Moreover, the feedback system

guarantees the quality of requirements via reasonable acceptance criteria and

eventually generates combined evolved requirements. In fact, requirements

management entails a collection of activities that consists of tasks for such

management in details. Zagajsek et al. [130] present a requirements

management process model for software development based on legacy system

functionalities. In their proposal, the link between requirements and expected

software change management is realised mainly by the documentation

associated with the requirements. To manage such a broad concept of

requirements is difficult. Their proposal does not split the requirements into

more specific requirements, for example, services requirements and context

requirements rather than more traditional division – functional requirements

and non-functional requirements. However, the proposed requirements

evolution model in this chapter separates requirements into two types of

requirements at the beginning; distilling each of requirement further into more

Chapter 5 – Context-Aware Services Requirements Model

 91

specific requirements along with modifying rules and a feedback system;

finally, these requirements are combined together into guaranteed evolved

requirements. While modifying rules are not comprehensive and required new

rules in the future, this model clarifies requirements evolution process greatly.

Figure 5.2 Requirements Evolution Model

The model for context-aware services requirements evolution comprises three

working stages:

Services

Requirements

Functional

Services Requirements

Non-Functional

Services Requirements

Interface

Requirements

ModifyRuleF

ModifyRuleNF

ModifyRuleI

Context

Requirements
ModifyRuleC

Evolved Context-

Aware Services

Requirements

Test

Test

Evolved
Context

Requirements

Evolved
Services

Requirements

Feedback

Feedback

Flow to

Interact Distill

Chapter 5 – Context-Aware Services Requirements Model

 92

 Initial Requirements of Services and Context is the input services

and context at initial stage where current context-aware services are

discovered by RRF. The requirements of services and context are

separated in the first place due to different modification rules for them

at a later stage.

 Defined Requirements of Services and Context is the key stage of

the entire requirements evolution. Services requirements will be

divided further into three parts: Functional Requirements, Non-

Functional Requirements and Interface Requirements. The

corresponding modifying rules are ModifyRuleF, ModifyRuleNF and

ModifyRuleI. Basic modifying rules include add, delete, edit, replace,

compose and so on. The modified requirements are subject to test with

reasonable acceptance criteria before release. Quality of Service (QoS)

is adopted for each test case. QoS is defined as Quality (Q, S) |=

Constraint (C). Feedback will be sent back to each initial requirement

for evaluation. A case study will be performed later to exercise this

defining phase.

 Released Requirements of Context-Aware Services refer to the final

version of the desired context-aware services requirements to be

fulfilled in the late services reengineering activities. The requirements

combine the evolved services requirements and evolved context

requirements. They will be eventually become initial requirements

upon the next requirements evolution.

Services requirements and context requirements are closely related. Services

requirements are described in a particular context environment, in other words,

context requirements constraint services requirements, e.g., in a healthcare

context-aware application, patients’ appearance (e.g., by image) can be

Chapter 5 – Context-Aware Services Requirements Model

 93

detected upon the hospital, their names and full health records will be shown

on reception. On the other side of the coin, services requirements should be

flexible enough to take into account generic context as it evolves. For example,

besides patients’ images, their fingerprints should be also an acceptable avenue

to accessing their health records.

In conclusion, the requirements evolution model aims to reconcile the gap

between requested context-aware service requirements and current context-

aware service requirements. From services evolution point of view, once the

evolved context-aware services requirements are available, software engineer

will carry a series of reengineering techniques to fulfil those requirements. The

evolved requirements can be exploited for various services evolution

frameworks. However, the basic of services reengineering process can be

classified as follows:

 Context-Aware Services Discovery: This is the first foremost

essential task needed to carry out. Reengineering techniques candidates

may embrace formal concept assignment, programming slicing,

programming refactoring and restructuring and so on.

 Context-Aware Services Implementation: Traditional forward

engineering techniques will be applied in this phase to fulfil the

evolved requirements.

 Context-Aware Services Integration: In this integration stage, code

gluing and wrapping techniques are often applied to integrate the

exiting components (services) and desired services in the new system.

Chapter 5 – Context-Aware Services Requirements Model

 94

5.4 The Relation between Requirements

Evolution and Services Evolution

When it comes to reengineering a system, it is widely accepted that the first

most crucial step during the holistic reengineering activities is reverse

engineering that understands the subject system’s components and creates

higher level representations of the system. Essentially, software engineers and

developers play a key role at this stage; their expertise and knowledge about

the subject system back a sound series of software evolutions. Notwithstanding,

along with the traditional top priority in users’ needs, constraints (e.g., design

requirements and implementation requirements) are always de-emphasised by

taking the implementation issues are far more natural for granted.

In some cases, developers are forced to give in their needs to compromise users’

needs. Hence, inefficient implementation will make services evolution much

more difficult. For example, context-aware services computing always requires

sophisticated parallel and asynchronous computing. Many existing modern

general programming languages are not primarily designed for such computing

issues back to when they were invented. Although great effects have been

made to evolve these mainstream programming languages to able to address

the said issues in a much concise way, the realistic situation is not that

optimistic. Perhaps the object-oriented paradigms restrict themselves too deep

to extend to other programming paradigms easier and further. As a result of

that, the implementation of asynchronous computing concept for example is

unavoidably hard-wired in the languages, yet other relatively new

programming languages (e.g., F#, Erlang, and Scala) are capable of addressing

those issues via their high-level features from languages themselves without

considering adopting some concepts from Design Pattern. Consequently, it will

take much longer time to figure out what the ad-hoc code does in the legacy

Chapter 5 – Context-Aware Services Requirements Model

 95

system implemented in inappropriate languages, which in turn leads to the fact

that maintainers have to pay higher cost to maintain this type of legacy systems.

At length, it will only exacerbate the severity of the software system heading to

service stage [13]. Therefore, conventional emphasis only on users’

requirements hinders software evolution directly and services evolution

subsequently.

5.5 An Example

This short case study is carried out based on The Java Context Awareness

Framework (JCAF) [10], a Java-based open source context-awareness

infrastructure and API for creating context-aware software applications. JCAF

contains some libraries that facilitate context-aware application development.

The class ‘ContextEvent’ which defines a generic event that indicates that

context has been changed. It has the following five bespoke public methods:

getEntity(); getEventTye(); getItem(); getItemType(); getRelationship(). From

their examples, a “ContextChanged” service is selected to evaluate our process

model. The following code indicates the one of a generic implementation of

this service:

public void contextChanged(ContextEvent event) {

 System.out.println("context changed: ");

 Entity entity = event.getEntity();

 System.out.println(entity.toXML());

 }

Chapter 5 – Context-Aware Services Requirements Model

 96

In terms of our RRF approach, it is assumed that initially, domain experts or

software engineers have a generic SPM in place. For instance, the following

table can be seen as a snapshot of Knowledge-Based Library (KBL).

KBL Identifier Event

<ContextChange, getCurrentContext> contextChanged buttonEve.Click

<Navigation, getGPSInformation> buttonNav buttonNav.Click

 Table 5.4 A fragment of Knowledge-Based Library (KBL)

When SPM is available, under CASRM depicted in Figure 5.1, a table is

created to constitute different services requirements. The table below

represents the services requirements of ‘ContextChange’:

CA Services Requirements Description

Functional Requirements Concrete Context Changed

Non-Functional Requirements High Responsiveness (no long delay)

Interface Requirements Relative Environment Changed

Context Requirements New Context Accepted

Table 5.5 Services Requirements of ContextChange

The context-aware services requirements then are separated into services

requirements and context requirements for different modifying rules. For

instance, users may want to conduct a social habit experiment and keep a

Chapter 5 – Context-Aware Services Requirements Model

 97

record of a series of old context information instead of discarding the pervious

context. In this case, the ‘edit’ modify rule is taken, and this related functional

requirements will be edited as “Concrete Context Changed” and “Keep a Copy

of the Points Where Context is Changed”. Then the modified requirements are

subject to test in terms of the formula: Quality (Q, S) |= Constraint (C) in a

specific context. Finally, feedback will be sent back to initial related

requirements with corresponding actors, in our case, the users and developers

for ultimate confirmation. As our model is tested with more cases, they suggest

some promising results on context-aware services requirements analysis

particularly during the reengineering activities. Side of our findings is that

constraints tend to be increasing vital, which entails not only a better

specification of the system conventionally, but also emerging new techniques

that are sought after.

5.6 Summary

In this chapter, a derived viewpoints-based context-aware services

requirements model and requirements evolution model are presented. The

relationship between context-aware services evolution and requirements

evolution is discussed. Finally, an example is described to show the

management of requirements evolution.

 The fact that users’ requirements and constraints are not always given

the same priority in requirements evolution hinders software evolution

directly and services evolution subsequently.

 Changes of services requirements and context are two primary triggers

of services evolution; evolved services requirements and evolved

context requirements are composed of the initial requirements for the

requirements evolution model.

Chapter 5 – Context-Aware Services Requirements Model

 98

 The derived viewpoints-based Context-Aware Services Requirements

Model (CASRM) is proposed to fully discover the importance of

constraints, i.e., design requirements, implementation requirements,

and interface requirements, which paves the way for the third stages of

reengineering process – reimplementation; whereas the requirements

evolution model is developed to maintain and specify the requirements

evolution process for supporting context-aware services evolution.

 An example is given to show how the evolved requirements generated

by CASRM are managed in the requirements evolution model to

achieve requirements evolution.

 This work in this chapter extends the application of requirements

recovery approach and ensures the elicited requirements can be well-

maintained with requirements evolution models. One limitation of this

chapter’s work is that quantitative methods are not discussed with full

contents even though qualitative methods are presented in more details

with Figure 5.1 and Figure 5.2.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

 99

Chapter 6 – Context-Aware Web

Services Reimplementation with

ContXFS Support

Objectives

 To describe the requirements for the reimplementation

 To describe the architecture design for the reimplementation

 To discuss the reimplementation concerns and strategies

 To introduce the F# language and the development tools

 To introduce context-oriented programming and F# library ContXFS

 To demonstrate an example of such services reimplementation within

the proposed reengineering framework and the application of

ContXFS

6.1 Overview

6.1.1 The Problem

When the requirements engineering is completed, the design and

implementation is the next stage where an executable software system is

developed in the overall proposed reengineering framework approach. Based

on the recovered requirements and code-related artifacts, along with the new

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

100

requirements, software design can be used to identify the software components

and their interrelationship, whereas software reimplementation is a process to

develop a program to fulfil the combination of requirements by realising the

relevant envisioned design. In effect, software design and implementation

influence each other. For instance, adopting an object-oriented programming

language for implementation can suggest that Unified Modelling Language

(UML) would be chosen to document the software design.

Typically, in a largely scalable Web services-based environment, context-

awareness is concerned with reasoning about the surrounding well-defined

context and adapting the interpreted services accordingly (almost) on the

server-side, and finally distributing the services to clients in a reliable way

through trustworthy network protocols. Most of Web services-based context-

aware systems are either partially or completely implemented within the

object-oriented programming paradigm based on their middleware or

frameworks [109]. In order to highlight the implementation part in this chapter,

an assumption is made that the combined requirements and code-related

artifacts have been available and are corresponding to the development, which

is discussed in the previous chapters. A functional programming approach is

proposed with library support to services reimplementation. The supporting

libraries will be discussed in details in Chapter 6. This functional approach in

this chapter embraces methods that address functional requirements and non-

functional requirements by taking into consideration implementation strategies,

e.g., overlapping communication computation on the server-side.

6.1.2 The Background

When it comes to Web services-based context-aware system development, the

properties from other emerging software paradigms share a similarity. More

recently, a portmanteau term ‘Internetware’ has caught many researchers’ eye,

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

101

particularly in China. Internetware [123], a new software paradigm, distils and

synthesises the original concept of ‘internet as a computer’. This evolving

software paradigm entails some issues to be addressed: firstly, a software

model is created to abstract the behaviours of the Internetware entities, that is,

these entities should be wrapped as components (servers), acting as agents,

interoperating as services and running on demand manner. Secondly, a

middleware is designed to seamlessly bind the higher level Web

services/applications and lower level supporting components/tools together.

Internetware entities are governed by the middleware. Thirdly, an engineering

methodology is proposed to develop Internetware entities. Fourthly, a quality

evaluation framework [79] is needed to assure the software quality.

Upon the above key properties that Internetware beholds, it is very natural to

discover the similarities shared between Internetware and context-aware Web

services. Both require a supporting programming model to abstract the detailed

implementation complexities; both accommodate a middleware to manage

Internetware entities/context information properly; both use a series of

(re)engineering methodologies to develop every artifact and maintain the

evolvability of the holistic system; and last but not least, both emphasise the

non-functional requirements of the overall system to highest level.

Nevertheless, the concept of Internetware is expressed in a more abstract way

than that of context-aware Web services.

In summary, the similarities between Internetware and context-aware Web

services that discussed above are not coincident, but a natural outcome of

software evolution [124]. There are not many fully implemented context-aware

Web services that truly fulfil some of the core non functional requirements per

se. Furthermore, most of the implementation approaches are based on object-

oriented techniques as discussed later. By extending our proposed work on

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

102

services recovery in Chapter 3, this chapter focuses on server-side development

with some implementation strategies and explore how programming languages

can assist the development of the Web services-based systems.

6.2 Reimplementation Requirements

In our proposed framework, the redevelopment requirements are composed of

the recovered requirements from the source code and the new requirements.

This entails requirements analysis that decides the final requirement candidates

to be satisfied. The recovered code-related artifacts from the source code can

be used as a reference to identify if the current requirements are fully fulfilled

or if another programming language is more capable of addressing the

implementation issues. For example, to exercise asynchronous programming

for concurrency, without asynchronous programming models supporting in

many object-oriented programming languages (in fact, in the time of writing,

influenced by F#, asynchronous mechanisms will be added in C# 5.0), software

developers will end up hard-wiring the chosen languages to carry out

convoluted development. Although program comprehension is a well-studied

research topic within software engineering community, it will inevitably lead

to more difficulties in comprehending the programs in the mentioned systems,

let alone extracting reusable code segments from the source code. This will

result in higher maintenance costs in the future. Therefore, during the

reengineering process, constraints should be given same priority as users’

requirements. For instance, a more suitable programming language would be

the one with a higher abstraction expression in the language itself even though

the language is from a different programming paradigm.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

103

6.2.1 Requirements for Implementing Context-Aware Web

Services

In Web services-based context-aware system development, from the context-

awareness perspective, a clarified and consistent context definition is a

prerequisite that underpins the architecture of context, whilst a context model is

designed to reason and interpret all dynamic evolving types of context data,

even when encountering undefined context, the model is still able to deliver

results in an unobtrusive way. From the Web services perspective, concurrency

is a long-time topic studied in programming for distributed system. Scalability,

reliability, and evolvability are traditionally symbolised as non functional

requirements. In fact, in the context of service-oriented systems development,

non-functional requirements are often referred to as Quality of Service (QoS).

In general, the requirements for developing context-aware Web services-based

systems can be classified as functional requirements and non-functional

software requirements. Functionalities are the backbone of the services systems,

that is, a set of functions (in programs) invoked to accommodate some types of

services that clients request. While satisfying functional requirements plays a

central role in achieving sought-after goals of the Web services systems, the

exponentially increasing clients’ requests driven by the open and dynamic

internet power make non-functional requirements more difficult to meet than

functional requirements [28]. It entails its non-functional requirements to tip at

the top implementation priority. For example, when more than 10,000 clients

are simultaneously requesting the desired context information from services,

how the servers ensure the data propagated to the correct clients without letting

them wait too long for it. In other words, despite a context-aware Web service

fulfil all the essential functional requirements, as long as some of the critical

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

104

non-functional requirements are not met, it will fail to satisfy clients’ needs and

even though context is appreciable per se.

The list of requirements for context-aware Web services development can be

carefully drawn from the requirements for context-aware systems and Web

services developments respectively, but it is not the best solution as some of

them are not close related. Instead, the current characteristics of Web services-

based context-aware systems are depicted in Chapter 3 to select the

requirements that are crucial but not commonly met or difficult to be met. To

categorise these concrete requirements, Galster’s taxonomy is adopted, which

is only for non-functional requirements in a service-oriented context. The

taxonomy implements three main categories of non functional requirements: a

process requirements, non-functional external requirements, and non-functional

services requirements. Based on the fact that the taxonomy does not cover

functional requirements and functional requirements are in general less

difficult to fulfil than non-functional requirements, two most prominent of

them are chosen, i.e., context-awareness and concurrency. Along with the

challenges and requirements studies on [96, 111], a table is created to detail the

corresponding requirements as follows:

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

105

Requirements
Types

Detailed Requirements

CFR
Context-

Awareness

Concurrency

(distributed

system)

Asynchrony Parallelism
Reactive

Computing

NFPR
Standard

Requirements

Composition

Requirements

Implementation

Requirements

Solution

Constraints

Documentation

requirements

NFSR Reliability Scalability Performance Interoperability Evolvability

Table 6.1 A Sample of Requirements for Context-Aware Web Services

Table 6.1 depicts our analysis results of the current concerned requirements

that are crucial yet not fully satisfied. From the table, the following

requirements types contain: Core Functional Requirements (CFR), Non-

Functional Process Requirements (NFPR), and Non-Functional Service

Requirements (NFSR). Specially, Core Functional Requirements (CFR) consist

of context-awareness, concurrency, Asynchrony, Parallelism, and Reactive

Computing; from non-functional requirements perspective, Non-Functional

Process Requirements (NFPR) covers Standard Requirements (e.g., the

development of a Web services-based context-aware system has to be ISO9000

conformant), Composition Requirements (e.g., composable Web services),

Implementation Requirements (e.g., .NET Framework), Solution Constraints

(e.g., the legacy system has to be integrated with newly built the Web services-

based context-aware system), and Documentation Requirements (e.g.,

Documentation has to be created during the ad-hoc programming); Non

Functional Service Requirements (NFSR) contains Reliability, Scalability,

Performance, Interoperability, and Evolvability. The summarised requirements

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

106

over the critical functional and non functional requirements must be addressed

as a small case study is carried out in last section in this chapter.

6.2.2 Requirements Mapping

A good design of the said systems prior to implementation can considerably

reduce the implementation difficulties, yet the current situation is that the

majority of the said services are implemented within the object-oriented

paradigm, which some critical and essential implementation issues can be

better solved by other paradigm languages which allow software developers to

abstract the implementation problems in a higher abstract level. In reality,

programming using object-oriented languages to fulfil some of the

requirements described in Table 6.1 can be very hard as certain requirements

(e.g., concurrency, parallelism, scalability and so on) will inevitably force the

object-oriented programming developers to bend the language harsh enough to

tackle the implementation issues by convoluted development (it is well-known

that mutability is ‘enemy’ of concurrency!). For this reason, it is effective and

efficient to map the implementation requirements to the programming language

features or properties by comparing the results with the current pervasively

used languages can offer.

With the requirements analysis discussed above and comparing the language

support from three main programming paradigms (i.e., imperative, object-

oriented and functional), Table 6.2 can be created, which contains features

which facilitate the implementation issues. In the light of requirements that this

table suggests, the desired characteristics of the potential languages can be

easily found. For instance, when the context are defined, discriminated union

type and pattern matching offered in functional programming languages can be

used to easily express the relationship between different strong type of context

values and their behaviours.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

107

Desired Characteristics Terms in Language

Strongly typed Strongly typed system

Arbitrarily matching any type of value Pattern matching

Event can be used as value First-class event

Create types with well-organised behaviour Discriminated union data type

Immutable value Immutability

Support asynchronous Asynchronous programming model

Interoperability Uniform framework

Table 6.2 Reflected Requirements for Development

Table 6.2 implies that the more terms can be found in a programming language,

the higher possibility in general it will become the candidate for

implementation language. For example, the asynchronous programming model

in F# [105] provides an ‘async’ library to facilitate the asynchronous

programming; pattern matching in F# supports arbitrarily matching any type of

value; discriminated union data type enables programmers to create types with

well-organised behaviour and so on. Further comparison between language

choices will be described in later section.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

108

6.3 Architecture Design

Traditionally, the client-server architectural model consists of a set of servers, a

set of clients, and the network that underpins the communication between the

servers and clients. However, the proposed architecture design for context-

aware Web services can be divided as Client side, Web services Application

side, and Server side. This architectural model is not comprehensive, while it

covers the essence of the evolving Web services-based context-aware systems.

Figure 6.1 describes the details of the components in this model.

6.3.1 Client-Side

In our proposed design model from the clients’ side, users can access the

context-aware Web services via HTTP or mobile devices via SOAP. Other

communication protocols may also be supported, e.g., Web Services

Description Language (WSDL). The context-aware sensors communicating

with sensors on the server side are either embedded into the devices or

mounted around users’ premises. For example, visitors’ smart phones

connected to school’s local network can be used to as a location-aware system

to provide them with the direction in a campus. Hence, clients may have to

know the names of the available servers and the services that they offer. In a

nutshell, the main function of the applications on client-side is to search the

sought-after services that satisfy a range of parameters.

Historically, due to promising language features that JavaScript can provide,

JavaScript has been used for client-side Web development for many years. For

instance, functions in JavaScript can be passed as arguments to another

functions and returned as values; other functional features like, anonymous

functions and closures are commonly adopted, combinator operations such as

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

109

mapping and folding over lists are also widely used. Moreover, with

frameworks and libraries support, JavaScript makes itself a very strong

candidate to be chosen for Web development on the client-side. Yet the

development of Web services-based context-aware systems also require the

language to express content-awareness in a concise way, the combination of

Discriminated Union Data Type and Pattern Matching is the way forward. In

other words, it enables programmers to arbitrarily match any type of value,

whilst such type is with well-organised behaviour that addresses a problem in a

concise way. These operations are frequently applied to the functional

programming language values.

6.3.2 Web Services Applications

The context-aware Web services application is augmented in the proposed

design model in order to highlight the implementation issues. Typically,

various Web services applications are asynchronously or synchronously

communicating with the context-aware Web services that reside in the server

side via given network protocols. Clearly, the variety of functionalities of

applications can be implemented within the application themselves and it could

empower the capability of the application on client side. However, in order to

mitigate the development from client side, such implementation should be

moved to the server side where far more computing resources are available.

This is one of the reasons why the context management component is placed in

the serve side as a middleware for encapsulation, which enhances the

application reusability. Because the heterogeneity of functionalities pervasively

appears in the applications from the client side, it is impossible for software

developers to predict such degrees of functionalities. Context server fits well in

the client-server architectural design model.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

110

To summarise, although the actual reaction to different events and context

instances is implemented on the client side, the context server on the serve side

manages desired services delivery and fulfils context-awareness requirements

behind the scenes. The context management as a conceptual layer has been

discussed in Figure 5.1 in Chapter 5. The next section will describe the further

components on the server side.

6.3.3 Server-Side

On server side in Figure 6.1, it has the following four main parts:

 Context Sensor, its main task is to capture incoming context. Certain

sensors may perform some context aggregating work depending on the

type of sensors and the context server in the context management layer.

 Context Management which is the engine of processing incoming

context data before delivering to the end-clients. The tasks include

aggregating, interpreting, and reasoning the incoming context data. For

instance, to aggregate context data, programmers may find creating a

type that represents different type of more concrete context data more

appealing than the object-oriented programming techniques such as

inheritance. Discriminated union data type exactly accommodates such

need.

 Context Database is for context data storage and query, and it is

connected with context management component. To facilitate the

implementation of accessing context database, F# [104] is a good

candidate as it is capable of leveraging the functionality provided by

Language Integrated Query (LINQ) in .NET Framework and related

component for heterogeneous execution [103] in a concise way.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

111

 Context-Aware Web Services that act as agents communicating with

other Web services from the same side and client side. These

heterogeneous Web services along with the context management lie in

the heart of the server side. This chapter emphasises the crucial

requirements for developing such Web services with open and dynamic

nature throughout this chapter. Specifically, the context server on the

server side facilitates concurrently a large amount of queries and

performs context aggregation, interpretation, and reasoning to ease the

computation task from the client side. It is more likely that the context

server often handles the demanding requests from the client side in an

asynchronous way than the synchronous way. To facilitate the

implementation of such type of computations, a language able to carry

out asynchronous programming is required. Languages such as F# are

good candidates that embrace asynchronous programming model.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

112

C

L
IE

N
T

S

W
E

B
 S

E
R

V
IC

E
S

A
P

P
L

IC
A

T
IO

N
S

W
E

B
 S

E
R

V
IC

E
S

Figure 6.1 Proposed Architecture Design

Double-Direction
Communication

Single-Direction
Communication

H
T

T
P

LBS

Service

Presentation

Service

Routing

Service

Context

Sensors

Context

Management

DATA-

BASE

A
g

g
r
eg

a
ti

n
g

In
te

r
p

r
e
ti

n
g

R
e
a

so
n

in
g

S
O

A
P

Mobile

Devices

Context

Sensors

Client

Browser

ASP.NET

Services-
Applications

Communication

Sensors-Sensors
Communication

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

113

In Figure 6.1, the black double-arrow lines represent communication between

Web services and Web applications. The black single-arrow dashed lines

indicate that communications between context-aware sensors to sensors and

Web services to sensors (Web services ask context data from sensors). The big

yellow double-arrow indicates the context data transfer between context

management and context database. Context server is augmented here to

emphasise the tasks that it performs. The context server can be implemented

either for each service or for multiple services.

6.4 Reimplementation Concerns and Strategies

Following the discussion on requirements and architecture design for context-

aware Web services-based systems in the previous Sections 6.2 and 6.3, the

concerns and strategies of reimplementation will be discussed in this section. A

brief comparison of both object-oriented approach and functional approach for

Web services-based context-aware systems will strike out the discussion. To

summarise, in the case of the implementation of prospective systems, choosing

an appropriate implementation language is a direct and effective way to free

software developers from the restrictions by some conventional popular

programming languages during redevelopment process.

6.4.1 Reimplementation Concerns

The reimplementation issues discussed in this section focuses the

reimplementation on the server side. The concerns can be classified as follows:

 Performance Issues, more often, the context server that resides on the

server side handles multiple concurrent requests from the client side.

This further recurs to the non-functional requirements: scalability and

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

114

reliability. Specifically, the throughput of application brings scalability

up front to be a crucial issue, as context server has to be designed to

handle increasing requests in an appropriate way. Moreover, reliability

is a conventional issue that Web services need to ensure. In reality, the

context server in Web services can be designed to perform

asynchronous computation that deals with such demanding amount of

requests. Hence, a programming language is needed to facilitate

asynchronous programming.

 State Sharing Issues, with a high numbers of clients accessing to the

Web services, shared state is evitable. Yet, maintaining mutable state is

a notorious programming issue that gives many programmers a

headache. Nevertheless, functional programming languages embrace

immutability without shared states. This provides software developers

a better solution dealing with mutable states.

 Long-Running Operation Issues, Web services sometimes need to

perform computations that take a relatively long time to complete, e.g.,

reading a file from a file system. To cut down on the processing time,

Web services need to offer a mechanics to processing requests in a

parallel way.

The list of issues above is not comprehensive. Clearly, the range of issues

depends on the existing code-related artifacts that have been recovered, the

recovered requirements and new requirements, as well as the details in

architectural design model. Notwithstanding, F# makes three primary

contributions to parallel, asynchronous and reactive programming in the

context of a VM-based platform such as .NET [106]:

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

115

 Functional programming greatly reduces the amount of explicit

mutation used by the programmer for many programming tasks.

 F# includes a powerful ‘async’ construct for compositional reactive

and parallel computations, including both parallel I/O and CPU

computations.

 ‘async’ enables the definition and execution of lightweight agents

without an adjusted threading model on the virtual machine.

In the same vein, Bloch [17] points out, “Classes should be immutable unless

there is a very good reason to make them mutable. Immutable classes provide

many advantages, and their only disadvantage is the potential for performance

problems under certain circumstances…If a class cannot be made immutable,

limit its mutability as much as possible.” Immutability is a core concept in

functional programming languages. In general, shared-memory concurrency is

a hard and complex issue. Using immutable values avoids many programmatic

issues in parallel and asynchronous computing, e.g., immutable values can be

passed between multiple threads without unsafe concurrent access to those

values. In other words, race conditions are exempted.

It is the set of functional concepts that functional languages prove themselves

as a better candidate than those from object-oriented programming paradigm.

Furthermore, F# offers extra yet prominent programming features that are a

good fit in our solution domain. Therefore, a more comprehensive table can be

drawn, which lists sought-after characteristics in F# and their advantages over

other mainstream programming languages. Table 6.3 depicts the details below:

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

116

General Language Features Advantages

Strongly Typed System Safety

Type Inference Succinctness/Code Reduction

Immutability Mitigating Concurrent Programming

Higher Order Functions Functions as Parameters or Return Results

Closures Capture Scoped Variables

First Class Events Events Used as Values

Discriminated Union Types Creating Types with Well-Organised Behaviour

Pattern Matching Matching Any Type of Value Arbitrarily

Function Composition Compositing Functions

General Language Features Advantages

Asynchronous Programming

Model

Supporting Asynchronous Programming

Agent-Based Programming Supporting Agent-Based Programming

Computation Expressions Enabling Ad-Hoc Programming

DSLs-Enable Facilitating DSL implementation

Table 6.3 F# Features and Advantages

In summary, F# functional features facilitate DSL implementation that fulfils

the context-awareness requirements, whilst the F# asynchronous related

programming models make itself a good fit for handling concurrency and

parallel computing in Web or Cloud computing development. In fact, the

language chosen affects how software developers think about the

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

117

programmatic problems, as well as the structures of the solutions they come up

with. Rather than spending considerable time and effects on arranging the

classes and objects to the right abstraction in the object-oriented programming

paradigm, why not spare the time and effects to address the core issues that

really matter such as processing data in parallel. No wonder Vinoski came to

understand the impedance and said, “After pondering this problem for years, I

finally concluded that our efforts were ultimately most impeded by the

programming languages we chose” [114]. Hence, choosing an appropriate

programming language can largely alleviate software developers’

programming burdens before reimplementation is carried out.

6.4.2 Reimplementation Strategies

The reimplementation strategies on server side vary in different

redevelopments. For example, communication overhead hampers the

performance in high-performance computing system [99]. To mitigate the

negative impact of communication, overlapping communication and

computation [101] via asynchronous communication primitives is a one of the

widest accepted approaches. Conventionally, however asynchrony often makes

code more intricate and reduces code readability due to much efforts have been

put on writing more complex parallel code.

In the implementation domain, the well-studied architecture - Communication

Computation Overlap (CCO) is applied in the programming strategy towards

our development [60]. The method of overlapping communication computation

has been long studied in distributed systems [11] and applied to parallel

computing [98] for throughput improvement. The basic idea is to allow CPUs

process to perform some independent computational tasks, while

communications infrastructure performs I/O request, e.g., message passing.

This technique is not new but particularly appreciable in our implementation

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

118

domain for it addresses the most fundamental issue of Web services

programming – concurrency and parallelism to a large extent.

To implement CCO, many (or hybrid) programming models have been

proposed. The Message Passing Interface (MPI) programming model is a good

example which has been the widest recognised efficient programming model

on distributed-memory architectures. The basic concept of this model is that

processes perform computations on their local data and use communication

primitives to share data when needed. Asynchronous (also, non-blocking)

communication calls are provided in MPI. Essentially, MPI is based on the

simpler asynchronous programming model applicable in many communication

paradigms. For example, publish/subscribe [39] is the basic communication

paradigm that has pervasively been adopted in Web services-based applications

due to the loosely coupled nature of distributed systems. Subscribers register

their interest in an event, and wait asynchronously until publishers generate the

corresponding events.

Since the language chosen for reimplementation is F# [104], which primary is

a functional language that supports multi-language paradigms targeting

for .NET Framework. One of the prestigious features is the F# asynchronous

programming model [105] mentioned above. In the F# ‘async’ library, the

module contains primitives to perform asynchronous operations (e.g., to create,

execute, and return an asynchronous computation etc). The foundation of F#

asynchronous programming is the type: ‘Async<T>’ that indicates an

asynchronous computation, that is, it represents a program block that will

generate a value of type 'T at some point in the future. ‘Async<’T>’ largely

abstracts the complexity of writing continuation-passing or callback programs.

With the asynchronous workflow, programmers are able to write a standard

control flow code to exercise asynchronous operations without worrying about

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

119

the callbacks. For instance, the following code shows how to write an ‘async’

block (asynchronous workflow): an ‘async’ block with ‘async {…}’ is created;

within the block, the code firstly prints a string then uses “do!” to perform an

asynchronous operation, finally prints the last string (comments start with ‘//’

below).

 let sleepLoop() = async {

 printfn "Waiting for request.."

 //mock an async operation

 do! Async.Sleep 3000

 printfn "Request received."}

 //To run and wait for results

 Async.RunSynchronously(sleepLoop())

To run the ‘async’ block, programmers can use either

‘Async.RunSynchronously’ (to start an asynchronous operation and await the

results) or ‘Async.Start’ (to start an asynchronous operation and without await

the results). The key to understanding how the workflow works in the ‘async’

block lies in this expression: ‘let! var = expr in body’, which means perform

the asynchronous operation ‘expr’ and bind the result to ‘var’ when the

operation completes, finally continue by executing the rest of the computation

body.

The F# asynchronous workflows are literally designed to allow non-blocking

execution of sequential code, but from the ‘async’ library, they also support

parallel programming by using ‘Async.Parallel’ and ‘Async.StartAsChild’. In

spite of the power that asynchronous workflows offer, they are not part of the

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

120

core syntax of the F# language. It actually an instance of more abstract concept

called Computation Expressions in F# (or Monads in Haskell).

In F#, it is supported as a type of ‘MailboxProcessor<’Msg>’ that represents

agents. It exists as a class type in the F# control namespace. The body of the

agent is written as an asynchronous workflow, in other words, agent-based

programming is based on asynchronous programming and agent is lightweight.

The following code demonstrates how agent can be written in F# code: firstly

this code creates a type abbreviation for ‘MailboxProcessor<’T>’ which is

‘Agent<’T>’, then uses static member ‘Agent.Start’ to create and start an agent,

the body of the agent generates an asynchronous operation executed by the

agent.

//type abbreviation

type Agent<'T> = MailboxProcessor<'T>

 let agent = Agent.Start(fun agent -> async {

 while true do

 //agent waits asynchronously until a message arrives

 let! msg = agent.Receive()

 printfn "Hello %s" msg})

 //sending a message to agent

 agent.Post "hello!"

The following explains how code above works in .NET Framework: the body

function (fun agent -> async {…}) generates an asynchronous computation

executed by the agent. In our case, it repeatedly asynchronously waits for

messages, and prints each message when it receives. Upon the asynchronous

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

121

computation execution, it starts life as a work item in the .NET thread pool;

when the asynchronous computation reaches ‘agent.Receive()’, a continuations

request is made and the continuations are registered as I/O completion actions

(callbacks) with some object allocations held by the agent in the .NET thread

pool. The thread that runs the agent is released back to the thread pool. In other

words, no thread is used during the request is made. Finally, when a message

arrives, i.e., a request completes; a callback is triggered in the thread pool. The

continuations will carry on but possibly is run on other thread than the original

one. Technically, a message processing with agent can be envisioned as a state

machine that embraces an initial state and some recursive functions where each

of them defines an asynchronous computation.

While the set of the F# language features is a good fit in Web services

development, the functional concepts in F# enable software developers easily

create a DSL. ContXFS, as a context-oriented programming approach

implemented in F#, broadly speaking is a domain specific library. ContXFS

will be further described in Chapter 6.

6.5 Introduction of F# and Development Tools

Context-awareness enables systems to dynamically adapt to context changes.

Context-awareness techniques have been widely applied in various types of

applications although many systems remain in relatively small scale computing

environments. As Web services technologies establish wider application,

context-aware Web services systems have been capable of exchanging context

information in larger scale environments such as Cloud computing and

ubiquitous computing environments, that is, it enables Web services-based

systems to utilise different types of context information to adapt their services

and behaviour to dynamic changes, even at runtime. Until now,

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

122

notwithstanding, methods and techniques directly addressing the development

issues of Web services-based context-aware are few. In this chapter, from

implementation perspective, a new programming approach – Context-Oriented

Programming (COP) [56] is introduced and ContXFS, the first programming

language library for F#, is developed as an approach to COP. The notion of

COP was first presented in the ubiquitous computing research arena [48, 64].

COP treats context explicitly, and provides mechanisms to dynamically adapt

behaviour in reaction to changes in context, even after system deployment at

runtime [56].

On the other hand, context server or middleware acts as a mediator between

services provider and services user. Context information in context server plays

a crucial role in the development of system. Thus, modelling context

information [34] is an essential research topic. Nevertheless, the said software

system must adapt its services to the changing context anytime, and has to

change even while it is running. This property entails a novel programming

feature due to missing attributes from the mainstream programming languages

along with their development environments, in other words, those languages

are not competent candidates for such kind of development. This leads to the

fact that software developers have been burdened with this development issue.

Although some mainstream programming languages such as C# are ‘stretching’

themselves to including some relevant programming models to support this

kind of dynamic change, the restriction of their programming paradigm and

development environments limits their ability to extend further. This eventually

would force software developers to come out with intricate designs and

convoluted implementation to address various dimensions of variability.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

123

In this chapter, benefiting from the promises that COP and F# are able to bring,

ContXFS is implemented to address the implementation issues for the

development of Web services-based context-aware systems.

Before introducing ContXFS, The Microsoft F# programming language and its

development tools will be discussed in this section.

6.5.1 Background

Functional programming has long inspired researchers and programmers for its

novelty, succinctness and expressiveness power. Yet, for some historical

reasons [115], applying functional programming languages into the real world

problems has not attracted much attention. However, a new generation of some

strongly typed functional languages such as F#, Erlang and Scala is reaching

maturity. Nowadays, a decent number of substantial applications implemented

in functional languages can be easily encountered. For instance,

IntelliFactory’s flagship product – WebSharper Platform(TM) [118]

implemented in F#, The ‘Path of Go’ [91] Xbox Live Arcade Game from

Microsoft is also written in F#, and Yaws [126] (Yet another Web server) is a

Web server written in Erlang.

With the increasing rediscovery of the essence and power of functional

languages, real world industry now restarts thinking how they can leverage

their legacy systems into a new environment where they can benefit from the

sweet spots that functional programming languages bring. The trend is mainly

driven by the net software development paradigm such as Cloud computing

and context-aware Web services computing.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

124

6.5.2 Most Appreciated Features in F#

6.5.2.1 F# and History

F# is a strongly typed functional programming language for the .NET

Framework and it also supports imperative and object-oriented programming.

F# was invented in 2002 as a research project in Microsoft, where ML

approach was adopted to pragmatic but theoretically-based language design

found a high-quality expression for the .NET platform. Influenced by Ocaml

from ML family of programming languages, Haskell and C#, F# now is a first-

class citizen in Microsoft Visual Studio 2010. As a result of this, F# can call

and be called from other .NET languages (e.g., C# and VB) easily within .NET

Framework. In a nutshell, F# is a succinct, expressive and efficient functional

and object-oriented language for .NET which helps you write simple code to

solve complex problems [45].

6.5.2.2 Functions and Events as First-Class Values

The basic building block in F# functional programming is function values.

Functions and events can be passed as arguments to other functions and stored

in data structures as return values. The following example demonstrates how to

use function values to transform one list into another.

 //first-class function using pattern matching (non-tail recursive version)

 let rec map f = function

 | [] -> []

 | h :: t -> f h :: map f t

//function map takes a lambda function and list as arguments

let res = map (fun x -> x.ToString()) [1;2;3;4;5]

//function map’s type signature

val map : ('a -> 'b) -> 'a list -> 'b list

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

125

//result

val it : string list = ["1"; "2"; "3"; "4"; "5"]

The inferred signature tells us the function ‘map’ accepts a function value f as

the first argument and a list as the second argument, and it returns a new list of

desired elements as a result. The function argument f can have any type ‘a ->‘b,

and the elements of the input list must have a type ‘a. The notations of ‘a and

‘b are called type parameters, and the functions ‘map’ and f that accept type

parameters are called generic.

The simple example below is using MouseMove event as a first-class value:

 //open namespaces

 open System.Windows.Forms

 open System.Drawing

 //first-class event composition

 let form = new Form(Visible=true, TopMost=true, Text="First Class Event")

form.MouseMove

//return a new event that passes values transformed by the given lambda function

|> Event.map (fun args -> (args.X, args.Y))

//return a new event that passes values filtered by the given lambda function

|> Event.filter (fun (x, y) -> x > 150 && y > 150)

//run the given lambda function each time when event triggered

 |> Event.add (fun (x, y) -> printfn "(%d, %d)" x y)

 //form’s signature

 val form : Form = System.Windows.Forms.Form, Text: First Class Event

 val it : unit = ()

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

126

Figure 6.2 Events as First-Class Values

The above example shows that IEvent<MouseEventHandler, MouseEventArgs>

can be passed around just as any other value. The code above used the standard

combinators such as Event.map; Event.filter and Event.add from the Event

module in Microsoft.FSharp.Control namespace.

In fact, the .NET type system when was first designed did not support generics

as they would be used by F#. Thus, it uses delegates instead of function types.

This leads each kind of function type given cumbersome names. Fortunately,

function values to represent functions as first-class values are idiomatically

used in F# as the two code samples above suggest. Yet, mainstream languages

such as C# where functions are in general not first-class still allow writing

higher order functions through delegates. In order to call other .NET languages’

APIs that expect delegates, F# enables us to define Delegate type and create a

delegate that represents a function call as an object where .NET Common

Language Runtime (CLR) looks after the transmission. In fact, every .NET

delegate type has a corresponding F# function type. For example, the F#

function type for the .NET delegate type System.EventHandler<'T> is obj -> 'T

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

127

-> unit. The following code demonstrates how to define and use a delegate

type.

 //define a delegate type (int -> int option)

 type Delegate = delegate of int -> int option

 //attach the delegate to static method - AppDele

 type ListAssociations =

 static member AppDele (l: int List, d: Delegate) =

 l |> List.tryPick(fun i -> d.Invoke i)

//static method expecting a compatible delegate type

//consumed by a lambda expression as an argument

ListAssociations.AppDele ([1;2;3;4;5;6], (fun i -> if i % 2 = 0 then Some i else None))

//type signatures

type Delegate = delegate of int -> int option

type ListAssociations =

 class

 static member AppDele : l:List<int> * d:Delegate -> int option

 end

//return an option as result

val it : int option = Some 2

Delegate types are used in special contexts such as interoperating with

other .NET languages, but they have limitations, for example, they do not

support compositional operations such as pipelining and forward composition.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

128

6.5.2.3 Computation Expressions (Workflows)

F# accommodates a succinct and compact syntax called Sequence Expressions

that specify sequence values. Aggregate operations such as map, filter, and

concat can be used to transfer these values. They are also applicable in lists and

arrays. A simple example of sequence expressions is depicted below:

//a simple sequence expression

seq { for i in 0 .. 3 -> (i, i+i) }

//result

val it : seq<int * int> = seq [(0, 0); (1, 2); (2, 4); (3, 6)]

The form of this construct is ‘seq { for pattern in seq -> expression }’. The

input seq can be a seq<type> or any type supporting a GetEnumerator method

(i.e., flexible type #seq<type>).

In effect, sequence expressions are just one special instance of a more general

construct called Computation Expressions (also Workflows). Computation

Expressions are the F# equivalent of monadic syntax in the programming

language Haskell. Monads are a powerful and expressive design pattern and are

characterized by a generic type M<'T> combined with at least two operations:

bind : M<'T> -> ('T -> M<'U>) -> M<'U>

return : 'T -> M<'T>

These operations: bind and return correspond to the primitives let! and return in

the F# computation expression syntax. They are the fundamental primitives

that can be used to implement other more ad-hoc operations. In fact, the syntax

of computation expressions allows us to construct sequences and other non-

standard computations. The general form of a computation expression is

‘builder-expr { comp-expr }’ which translates into [46]:

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

129

 let b = builder-expr in b.Run (b.Delay(fun () -> {| cexpr |}C))

For a fresh variable b, the type of b must be a named type after the checking of

‘builder-expr’. If no method ‘Run’ exists on the inferred type of b when this

expression is checked then that call is omitted. Likewise if no method ‘Delay’

exists on the type of b when this expression is checked then that call is omitted.

This expression is then checked. This translation implicitly places type

constraints on the expected form of the builder methods. Some main constructs

in computation expressions and their corresponding de-sugaring are available

in [104].

Three most important applications of computation expressions in F#

programming are as follows [104]:

 General-purpose programming with sequences, lists, and arrays

 Parallel, asynchronous, and concurrent programming using asynchronous

workflows

 Database queries, by quoting a workflow and translating it to SQL via

the .NET LINQ libraries

The example below is an implementation of a workflows builder called

‘SumOfSquaresMonoid':

 // Define SumOfSquaresMonoid type

 type SumOfSquaresMonoid() =

 // Combine two values

 // sm.Combine («cexpr1», b.Delay(fun () -> «cexpr2»))

 member sm.Combine(a,b) = a + b

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

130

 // Zero value

 // sm.Zero()

 member sm.Zero() = 0

 // Return a value

 // sm.Yield expr

 member sm.Yield(a) = a

 // Delay a computation

 // sm.Delay (fun () -> «cexpr»))

 member sm.Delay(f) = f()

 // For loop

 // sm.For (expr, (fun pat -> «cexpr»))

 member sm.For(e, f) =

 Seq.fold(fun s x -> sm.Combine(s, f x)) (sm.Zero()) e

 // Create one global instance of each such monoid object

 let sosm = new SumOfSquaresMonoid()

 // Build a SumOfSquaresMonoid value(function)

 let sumOfSquares x = sosm {for x in 1 .. x do yield x * x}

 // Evaluation

 sumOfSquares 5

 // The signature of SumOfSquaresMonoid

 type SumOfSquaresMonoid =

 class

 new : unit -> SumOfSquaresMonoid

 member Combine : a:int * b:int -> int

 member Delay : f:(unit -> 'b) -> 'b

 member For : e:seq<'a> * f:('a -> int) -> int

 member Yield : a:'c -> 'c

 member Zero : unit -> int

 end

 val sosm : SumOfSquaresMonoid

 // Signature of SumOfSquaresMonoid function value

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

131

 val sumOfSquares : int -> int

 // Evaluated result

 val it : int = 55

From the above example, computation expressions can be used for customising

the meaning of a block of code by encapsulating the most complicated logic

which might be difficult to construct directly. And the compostable nature of

computation expressions offers more flexibilities of implementation.

6.5.2.4 F# Asynchronous Workflows

One of the most powerful applications of F# is Asynchronous Workflows, a

powerful set of techniques for structuring asynchronous programs in a normal

control flow way, i.e., using ‘if’, ‘for’, and ‘while’ and so on. The computation

represented by expression runs asynchronously, that is, when asynchronous

operations are performed, it will not block the current computation thread.

Asynchronous computations are often started on a background thread while

execution continues on the current thread. The type of the expression is

‘Async<'a>’, where 'a is the type returned by the expression when the return

keyword is used. The code in such an expression is referred to as an

asynchronous block, or async block.

From object-oriented programming paradigm perspective, ‘Async’ class

provides a few methods that support asynchronous programming. The general

approach is to create ‘Async’ objects that represent the asynchronous

computation(s), and then start these computations by using one of the

triggering functions depending on which thread you want to use, whether is

a .NET Framework task object or whether to run continuation functions after

computation completes.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

132

One of the highly asynchronously examples is an implementation of a

‘fetchWebPageAsync’ function that fetches the html text asynchronously and

executes multiple asynchronous operations in parallel.

 //open namespaces

 open System

 open System.Net

 //define an async funtion that fetches web page contents

 let fetchWebPageAsync(name: string, url: string) =

 async {

 let uri = new Uri(url)

 let webClient = new WebClient()

 let! html = webClient.AsyncDownloadString(uri)

 printfn "%s has %d characters" name html.Length

 }

 //web page repository, list of tuples (name, url)

 let urlList = ["Google Search", "http://www.google.com"

 "BBC News" , "http://news.bbc.co.uk"

 "De Montfort U", "http://www.dmu.ac.uk"

]

 //run the given list of urls asynchronously

 let runAllAsync() =

 urlList

 |> Seq.map fetchWebPageAsync

 |> Async.Parallel

 |> Async.RunSynchronously

 |> ignore

 //evaluated the results

 runAllAsync ()

 //the results

 De Montfort U has 14992 characters

 Google Search has 10782 characters

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

133

 BBC News has 86709 characters

 val it : unit = ()

Within the asynchronous workflow expressions, the language construct ‘let!

var = expr’ in body means “perform the asynchronous operation expr and bind

the result to var when the operation completes. Then, continue by executing the

rest of the computation body [104].”

The following describes what ‘fetchWebPageAsync’ does:

 It gets the instance of Uri with specified uri synchronously.

 It creates the instance of ‘WebClient’ synchronously.

 It downloads the html text asynchronously by calling

‘AsyncDownloadString(uri)’ function after the synchronous Web requests

complete.

 After the download completes, it prints the symbols (names) of the Web

page and the total number of characters have been downloaded

synchronously. Then, a list (i.e., urlLst) of url as the input Web page

repository was defined.

Finally, a ‘runAllAsync()’ function was called by composing a series of

pipeline operations:

 Firstly, a map function from module ‘Seq’ which maps the given ‘urlList’

of input into the ‘fetchWebPageAsync’ function, sure enough, it returns a

sequence of three asynchronous operations (i.e., seq<Async<unit>>),

 Secondly, ‘Async.Parallel’ function takes the sequence of the Async

objects (i.e., Async<unit>) and sets up the code for each Async task object

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

134

to run in parallel, and returns an Async object (i.e., Async<unit []>) that

represents the parallel computation.

 Thirdly, ‘Async.RunSynchronously’ was called to execute an

asynchronous operation and wait for its result.

 Finally, used ignore function to throw away the result of the whole

computation.

Typically, Async<'T> values are essentially a way of writing continuation-

passing or callback programs explicitly. Async<'T> computations call a

success continuation when the asynchronous computation completes and an

exception continuation if it fails. They provide a form of managed

asynchronous computation, where managed means that several aspects of

asynchronous programming are handled automatically [104]:

 Exception propagation is added for free.

 Cancellation checking is added for free.

 Resource lifetime management is fairly simple.

To unveil the techniques used to implement asynchronous computations,

consider the following simple async block:

async {

 let uri = new Uri("http://ieeexplore.ieee.org")

 let webClient = new WebClient()

 let! html = webClient.AsyncDownloadString(uri)

 html

 }

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

135

The above is essentially shorthand for the following code:

 async.Delay(fun () ->

 let uri = new Uri("http://ieeexplore.ieee.org")

 let webClient = new WebClient()

 async.Bind(webClient.AsyncDownloadString(uri), (fun html ->

 async.Return html)))

It is important to note that asynchronous programming library is not built

directly into the F# language. Rather, it is implemented by using computation

expressions discussed previously as a general purpose feature for writing ‘non-

standard’ computations.

To wrap up, the values of type ‘Async<'T>’ are effectively identical to the

following type:

type Async<'T> = Async of ('T -> unit) * (exn -> unit) -> unit

Where, the functions are the success continuation ('T -> unit) and exception

continuations (exn -> unit), respectively. Each value of type Async<'T> should

eventually call one of these two continuations. The async object is of type

‘AsyncBuilder’ and supports the following methods, among others.

The async object is of type ‘AsyncBuilder’ and supports the following methods,

among others:

type AsyncBuilder with

 member Return : 'T -> Async<'T>

 member Delay : (unit -> Async<'T>) -> Async<'T>

 member Using: 'T * ('T -> Async<'U>) -> Async<'U> when 'T :> System.IDisposable

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

136

 member Bind: Async<'T> * ('T -> Async<'U>) -> Async<'U>

6.5.2.5 Type Inference

F# is a statically typed and strongly typed language. For statically typed, the

type of every value and expression are checked during compile-time before any

code is executed, that is, many type errors can be caught early in the

development cycle. Although F# is static typed language, the types of values

rarely need to be specified explicitly thanks to type inference. The F# compiler

analyses the code to collect constraints by assigning types to identifiers as they

are defined. The assigned types are based on the type information the compiler

already knows. It works through the program from top to bottom, left to right,

and outside in. The code below show the result of type inference:

 //records with type variables

 type Car<'a,'b> =

 {Maker: 'a

 Year: 'b

 }

 // instantiate the record type

 let polo = {Maker = "VW"; Year = 2003}

 //the type Car’s signature

 type Car<'a,'b> =

 {Make: 'a;

 Year: 'b;}

 //types are inferred automatically, i.e., Car<string, int>

 val polo : Car<string,int> = {Make = "VW";

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

137

 Year = 2003;}

F# is also strongly typed which leads to type safe code. The type system

guarantees that a program cannot contain certain kinds of errors (e.g., you

cannot use a function with a value that is inappropriate).

The code below attempts to use function ‘add’ to take two integers as

arguments, while the function add’s signature is ‘string -> string -> string’.

 //constraint argument a to string type leads to string -> string -> string

 let add (a: string) b = a + b

//try to add two integers, but the compiler tells us an error in compile-time

//this expression was expected to have type string but here has type int

 add 1 2

 val add : string -> string -> string

 ThesisCode.fs(282,5): error FS0001: This expression was expected to have type

 string

 but here has type

 int

Although in occasional cases, type annotation is required for clarifying

ambiguity of types, type inference and statically typed enabling types of values

are automatically inferred during compile time dramatically reduces code

clutter and source code size. With strongly typed feature, F# tends to be a

language which is safer than many popular statically typed languages (e.g., C,

C# and Java) and often more expressive than dynamically typed languages

(e.g., Python).

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

138

6.5.2.6 Immutability by Default

Immutable data structures are sometimes called persistent or simply functional.

Values and data structures in F# programming are completely immutable by

default such as tuple values, option values, records, lists, sets, and maps.

Immutability offers many advantages: On one hand, code using immutable

basic types is often relatively easy to reason about, this eases of the

maintenance cost. On the other hand, immutability allows you pass immutable

values between multiple threads without worrying about unsafe concurrent

access to the values, which in turn makes parallelisation a lot easier.

 //immutability

 type Person =

 {Name: string; Age: int}

 //create a new value of type Person

let john = {Name = "John"; Age = 31}

printfn "%s is %d years old." john.Name john.Age

John is 31 years old.

val it : unit = ()

Any attempt to modify John’s age causes an error:

John.Age <- 30

ThesisCode.fs(51,5): error FS0005: This field is not mutable

F# is not purely functional language as mentioned above, so mutability can be

applied to values by using the keyword – ‘mutable’. The code below is to make

record type Person’s age field mutable.

type Person =

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

139

 //make the field Age mutable

 {Name: string; mutable Age: int}

John.Age <- 30

John is 30 years old.

val it : unit = ()

Some restrictions related to mutable values are applied.

 //mutable variables cannot be captured by closures

 let generateNumbers() =

 let mutable n = 0

 let incrN() = n <- n + 1

 incrN()

Error may be raised for capturing mutable variables by closures:

 “ThesisCode.fs(291,23): error FS0407: The mutable variable 'x' is used in an

invalid way. Mutable variables cannot be captured by closures. Consider eliminating

this use of mutation or using a heap-allocated mutable reference cell via 'ref' and '!'.”

As suggested, using a ref cell to store the mutable data on the heap solves the

compile error.

 let generateNumbers =

 //use ref cell to store the mutable data on the heap

 let number = ref 0

 (fun () -> incr number; !number)

generateNumbers()

 val generateNumbers : (unit -> int)

 val it : int = 1

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

140

val it : int = 2

…

Immutable values are common in functional languages and offer many

advantages. For example, by knowing values are immutable, you can pass such

values to routines as they are immutable. In concurrent context, passing

immutable values among multiple threads will be safe. Even in object-oriented

languages such as Java, classes by default should be immutable unless there is

a very good reason to make them mutable [17].

6.5.2.7 Interoperability between Other .NET Languages

Although there are many powerful techniques available inside F#, the true

value of F# also expands to the connection of the outside world. F# is compiled

on .NET Framework and connected to many of the significant programming

techniques available on major computing platforms. Therefore, .NET libraries

are available in F# (e.g., dot notation (.) and assignment notation (<-) are

available) and in turn, you can use F# libraries in any .NET languages (e.g., F#

libraries are fully accessible from C# though occasionally small adjustments

require in the light of F# Component Design Guidelines [45]).

Using .NET libraries from F#: The code below is use Windows Presentation

Foundation (WPF) in F# as depicted in Figure 6.2:

open System

open System.Windows

 open System.Windows.Controls

 //create an application

 let app = Application()

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

141

 //create a window

 let win = Window()

 //set width and height

 win.Width <- 100.0

 win.Height <- 120.0

 //create a stackpanel which contains a textblock and button

 let sp = StackPanel()

 //create a textBlock

 let txt = TextBlock(Text = "Hello World")

 sp.Children.Add txt |> ignore

 //create a button

 let bt = Button(Content = "Click me")

 //add a callback

 bt.Click.Add(fun _ ->

 txt.Text <- "Clicked!")

 sp.Children.Add bt |> ignore

 //assign the stackpanel to window’s content

 win.Content <- sp

 //Run the application

 [<STAThreadAttribute>]

 do app.Run(win) |> ignore

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

142

Figure 6.3 WPF in F#

F# function in module ‘PhDThesisSampleCode’. Fibonacci

namespace PhDThesisSampleCode

module Fibonacci =

 let rec fib n =

 if n <= 2 then 1

 else fib (n-1) + fib (n-2)

Using F# function in C# application:

using System;

namespace PhDThesisCode_InterOp

{

 class CSharpInterOp

 {

 static void Main(string[] args)

 {

 //call F# PerBalTree library

 Console.WriteLine(PhDThesisSampleCode.Fibonacci.fib(10));

 }

 }

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

143

6.5.2.8 Conclusion

There are many other F# features which are not covered in this chapter, e.g.,

units of measure, tuples, discriminated union data types, pattern matching,

active patterns, composition functions, partially applied functions, collections

modules, language oriented programming and so on.

Functional programming languages typically appear to specify ‘what to do’

rather than ‘how to do’. F# is a hybrid programming language that enables

developers to choose appropriate programming paradigms for better

implementation. In other words, F# allows for encapsulation via object-

oriented approaches as well as much more concise code via modern functional

approaches. For instance, parallel programming becomes easier because of

immutability; delegating members to other underlying objects within a class;

uniformly abstracting the complexity of asynchronous operations etc.

To wrap up, F# enables developers to solve complex problems (e.g., Cloud

computing, parallel and asynchronous computing) in a more declarative way

comparing to other object-oriented languages. It nicely embraces most of the

best features from the main programming paradigms, which makes it a better

candidate for services reimplementation.

6.6 Context-Oriented Programming and Main

Features

Functional programming languages have enjoyed a long-time connection with

implementation of domain specific languages since functional features or

properties are more suitable for creating parsers and compilers. This relation

motivates the implementation of ContXFS.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

144

6.6.1 Context-Oriented Programming

Context-Oriented Programming (COP) is a new programming approach that

provides a means of enabling software entities to adapt their behaviour

dynamically to the current execution context [56]. In other words, COP allows

for the expression of behavioural variation depending on context at run time.

While it is largely independent of commitments to programming style, many

COP extensions actually have been implemented within object-oriented

programming paradigm [6].

COP can be seen as an alternative approach to addressing issues of context-

awareness rather than a relatively traditional approach on software architecture

level. Although context-awareness in ubiquitous computing environments,

software evolution, and execution context dependencies can be considered as

the related application domains of COP, in effect, COP are able to address

some implementation issues for the development of Web services-based

context-aware applications. By adopting a right programming paradigm,

distribution, concurrency, and parallelism implementation issues can be better

addressed.

6.6.2 COP Main Features

The essential language properties to support COP can be summarised as

follows [56]:

 A means to specify behavioural variations,

 A means to group variations into layers,

 Dynamic activation and deactivation of layers based on context, and

 A means to explicitly and dynamically control the scope of layers.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

145

Therefore, approaches to COP should at least address the following properties

[56]:

 Behavioural variations: Variations typically consist of new or

modified behaviour, but may also comprise removed behaviour. They

can be expressed as partial definitions of modules in the underlying

programming model such as procedures or classes, with complete

definitions representing just a special case.

 Layers: Layers group related context-dependent behavioural variations.

Layers are first-class entities, so that they can be explicitly referred to

in the underlying programming model.

 Activation: Layers aggregating context-dependent behavioural

variations can be activated and deactivated dynamically at runtime.

Code can decide to enable or disable layers of aggregate behavioural

variations based on the current context.

 Context: Any information which is computationally accessible may

form part of the context upon which behavioural variations depend.

 Scoping: The scope within which layers are activated or deactivated

can be controlled explicitly. The same variations may be

simultaneously active or not within different scopes of the same

running application.

In a nutshell, as an extension to object-oriented programming, COP

accommodates means for concise specification as well as dynamic activations

and composition of behavioral variations [6]. In the next section, nevertheless,

context-oriented programming in F# (ContXFS) will be discussed. Although

F# is a multi-paradigm programming language as discussed in previous

sections, ContXFS is a COP library implemented within an F# functional

model.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

146

6.7 Context-Oriented Programming in F#

6.7.1 Overview of ContXFS Development

Modern development of Web services-based context-aware systems demands

dynamic adaptation and context-awareness that poses a great challenge not

only to architecture design, but also programming language support. COP

addresses the need for applications to behave differently accordingly to the

changing run-time context in which they are embedded. This goal is achieved

by providing the abstractions that enable application context-awareness without

hard-wired conditional statements that spread over the application code, which

exempts a need to scatter context dependent behaviours throughout a program.

COP accommodates dynamic activation and composition of behavioural

variations. Generally, behavioural variations are grouped in layers and adaption

is obtained through layer activation. Asynchronous message passing and

processing is a common foundation for concurrent programming in some

functional programming languages, e.g., Erlang.

In general, COP can be seen as a language extension for object-oriented

programming paradigm. A considerable numbers of COP implementations can

be found in [30]. For example, ContextJ [7] is not merely an extension to Java

programming language, but also a new compiler and possibly an extension of

Java Virtual Machine. It is a compiler-based COP implementation for Java that

introduces COP's layer concept into the Java type system. In addition to the

implementation by statically typed programming languages, ContextErlang [51]

is one of COP that are implemented in dynamically typed programming

languages. Benefiting from Eralng type system, it is claimed that applying

COP in Erlang known as a language that natively supports distribution and

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

147

concurrency can obtain effectiveness of the approach to support dynamic

context-aware adaptation.

Inspired by the implementations of ContextJ and ContextEralng, ContXFS is

primarily implemented in a functional model while adopting appropriate

object-oriented programming techniques for code encapsulation and constructs.

In fact, this implementation itself demonstrates one of the most major

advantages of choosing F# for COP implementation.

In ContXFS, the notion of ‘context’ can be referred to a complete set of

behavioural variations that are dynamically bound to the given application.

Because variation activations are implemented when context-enabled module

reacts to layer activations. In the following sections, the language constructs,

semantics, and implementation of ContXFS will be discussed.

6.7.2 Behavioural Variations in ContXFS

The ability of enabling behavioural variations is one of the core properties of

COP. In practice, the means to introducing context dependent behaviour into a

program can be obtained via excessively inserting conditional statements, e.g.,

if statements throughout the program. Alternatively, behaviour variations can

be achieved by scattering context dependent behaviour into different objects

that can be replaced subject to the changing context. Both low level approaches

will lead to high maintenance cost during software evolution in the future.

ContXFS is COP-inspired conceptual F# implementation for Web services-

based context-aware systems. As F# asynchronous message passing is suitable

for no shared memory concurrent systems, F# agent-based programming model

is adopted to support agent paradigm.

In practice, message handling, error handling, and fault tolerance are context

independent. In other words, an agent must handle every message when they

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

148

arrive. Moreover, such message processing shares relatively fixed patterns.

Nevertheless, COP entails that the target system is able to change its behaviour

at run time. Thus, a component should contain a generic message control which

deals with the incoming messages, and upon the arrivals of the messages, a

user context-enabled process invokes activated set of functions to implement

behavioral variation at execution time. Therefore, a typical component in a

ContXFS application contains two conceptual modules, i.e., a generic control

module that provides functionalities for message passing, error handling, and

fault-tolerance, as well as a server action module that implements specific

functionalities the server is to perform at run time upon a context change

request. In fact, for a small ContXFS application, both conceptual modules can

be included in a single F# module.

In order to expound this approach, a simple example is described here. In a

Cloud computing environment, a mobile app can access to a public Cloud and

its private Cloud. It is assumed that there are two mobiles apps from different

private Clouds where private Cloud_1 is accessible for App_1 and private

Cloud_2 is accessible for App_2. For some reasons, App_2 attempts to access

private Cloud_1 although it will fail by trying directly. Instead, App_2 can use

App_1 as an intermediator for specific services. It can be done under a security

agreement. However, such kinds of messages are always ignored as the

situation is not always possible. Thus, App_2 will behave differently according

to the incoming message and external context, i.e., upon a request message

from App_1, App_2 can either accept the message and process the services

delivery for App_1 or reject the request by simply dropping all the messages.

In ContXFS, typically, a type extension is implemented for the type

‘MailboxProcessor<'Msg>’ with a static member ‘SpawnAgent’ which takes

two parameters, i.e., message handler and initial state, and optional parameters,

e.g., timeout handler and error handler.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

149

 type MailboxProcessor<'T> with

 static member SpawnAgent<'State>(messageHandler: 'T -> 'State -> 'State,

 initialState: 'State,

 ?timeout: 'State -> int,

 ?timeoutHandler: 'State -> AfterError<'State>,

 ?errorHandler: exn -> 'T option -> 'State -> AfterError<'State>

) : MailboxProcessor<'T> = …

The message can be classified as user message and control message where user

message holds the value of the message while the union – ‘SetAgentHandler’

of discriminated union type – ‘ControlMessage’ holds the state and value of the

message. The two types of messages can be easily extended by adding more

unions to the union type. The following code describes the concept:

 type internal ControlMessage<'T, 'State> =

 | Continue

 | Stop

 | Restart

 | GetState of 'State

 | SetState of AsyncReplyChannel<'State>

 | SetAgentHandler of ('T -> 'State -> 'State)

 …

 type internal Message<'T, 'State> =

 | UserMsg of 'T

 | ControlMsg of ControlMessage<'T, 'State>

 …

 type AfterError<'State> =

 | ContinueProcessing of 'State

 | StopProcessing

 | RestartProcessing

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

150

To summarise, server action module enables behaviour variations. A variation

contains all the function declarations, these functions are invoked when the

variation is activated, i.e., variation activation is bound to the application

dynamically (at run time).

6.7.3 Context Switching On-The-Fly

Switching context can be obtained via a ‘SetAgentHandler’ message which is a

union of a generic control message represented as discriminated union type.

The following code is to demonstrate how to implement context switching on-

the-fly.

 let counterAgent = MailboxProcessor.SpawnAgent((fun msg state -

> printfn "TupleBefore = %A" (msg, state); msg+state), 0)

counterAgent.Post(1)

val it : unit = ()

> TupleBefore = (1, 0)

 counterAgent.Post(SetAgentHandler(fun msg state -

> printfn "TupleAfter %A" (state, msg); msg+state))

counterAgent.Post(2)

val it : unit = ()

> TupleAfter = (1, 2)

When the counter agent is created via static member ‘SpawnAgent’, it posts a

message of integer 1 to a mailbox queue. When counter agent receives a

‘SetAgentHandler’ message, it dynamically switches from a ‘TupleBefore(msg,

state)’ agent to a ‘TupleAfter(state, msg)’ agent. In other words, it allows

program code to be updated in a running system without turning it down. The

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

151

messages that arrive after that switch will perform multiplication of the

message and the state. One of the advantages of such switch is that the state is

preserved while behavioural variations. Such feature is desirable as Web

services-based context-aware systems always need to be at ever running states.

6.7.4 Layers in ContXFS

In object-oriented programming paradigm, layers can be implemented as

named first-class entities that can be referred to explicitly at runtime [56].

Behavioral variations can be grouped in layers. The adaptation to a context is

achieved by layer activation. In other words, ad-hoc code constructs guarantee

that the partial definitions inside a layer are activated at run time and therefore

can change the behaviour of the program accordingly.

Two layer declaration strategies have been implemented so far in literature, i.e.,

‘layer-in-class’ and ‘class-in-layer’. Each strategy has its own advantages over

the other. For example, the advantages of ‘layer-in-class’ may include that

layers can be well encapsulated through private fields in class and specific

layers can be easily added to a new class. On the contrary, the main advantage

of ‘class-in-layer’ may contain that a specific variation being implemented in a

single module can largely improve the adaptability in an evolving application.

In ContXFS, layers are built on top of variations. In other words, layers can be

referred to a set of variations. Depending on if a layer is activated, the

activation is able to affect all the relevant components in an application.

Specifically, layer activation is a synchronous operation, i.e., once a layer is

activated, the related code block is executed immediately.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

152

6.7.5 Layers Composition in ContXFS

Inspired by the implementation of ContextErlang, variations can be arranged in

a layer. Variations are activated in a special order; they are kept in a stack

conceptually. Layers refer to a set of variations that are activated. Figure 6.4

simply shows an example of the process of activation of multiple variations.

Figure 6.4 Variations Composition of Variation_A and Variation_B

In Figure 6.4, Variation_A contains three functions: function_1, function_2,

and function_3. While Variation B contains other three functions: function_2,

function_3, function_4. When Variation_A is activated only, all three

functions, i.e., function_1, function_2, and function_3 are directly invoked.

However, once context switching occurs, for example, Variation_B is activated.

Variation_B will be added on top of Variation_A. In this case, when a message

Variation_A

Funciton_1
Function_2
Function_3

Variation_B

Funciton_2
Function_3
Function_4

Variation_A

Funciton_1
Function_2
Function_3

Variations
Activation

A Single Variation

Variations Composition

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

153

is received to call function_1, it will behave as same as before Variation_B is

activated. Nevertheless, when a message is arrived to call function_2 or

function_3, those functions implemented in Variation_A will be overridden by

the same name function_2 and function_3 in Variation_B, that is, the

function_1 will fail, and the Variation_B version of function_2 and function_3

will be executed. Apparently, a call to function_4 occurs, then it will be

executed as it is implemented in Variation_B which is current activated.

6.8 An Example of Reimplementation

The purpose of this case study is twofold: to validate if the CCO strategy is

implemented and if the refined requirements fulfilled by the implementation

using the chosen programming language models. On the programming

language choice, the language F# is selected for our implementation benefiting

from the refined requirements in Table 6.1 and programming models

explanation in Section 6.6 and Section 6.7.

To walk through all the refined requirements generated in Table 6.1 is

exhaustive. Thus, a few of them will be covered, i.e., discriminated unions;

pattern matching; first-class events; asynchronous programming model;

asynchronous agent-based programming model. Based on the architecture

design proposed in Figure 6.1, an ‘HTTPServiceAgent’ type is defined to listen

for incoming HTTP requests and handle them using the ‘async’ body. Given

the specific url, the agent server starts and asynchronously waits for the HTTP

requests.

type Agent<'T> = MailboxProcessor<'T>

//define an HTTPServiceAgent that listens for HTTP requests and handles them

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

154

type HTTPServiceAgent (url, f) as this =

 let tokenSource = new CancellationTokenSource()

 //(f this) used as an asynchronous workflow

 let agent = Agent.Start(…)

 let server = async {

 use lis = new HttpListener()

 …

 while true do

 //create an asynchronously computation, when it is run, perform BeginAction, while the

callback has been registered, when the callback is invoked, the EndAction to get the overall

results

 let! context = Async.FromBeginEnd(lis. BeginGetContext, lis.EndGetContext)()

 agent.Post(context) }

 //performs actions when the object is constructed

 do Async.Start(server, cancellationToken = tokenSource.Token)

The type of context can be expressed using a discriminated type, and pattern

matching gives it a concise way to match against the proper behaviours. The

type ‘AsyncReplyChannel’ is to post a response to reply channel and continue.

type internal Message =

 | GetContent of AsyncReplyChannel<string>

 | SendMessage of string

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

155

First-class events facilitate the way of raising an event back to GUI thread

[106]:

type SynchronizationContext with

 //A standard helper extension method to raise an event on the GUI thread

 member syncContext.RaiseEvent (event: Event<_>) args =

 syncContext.Post((fun _ > event.Trigger args),state=null)

Although our project is still ongoing, the intermediate results give us a very

promising feedback that the basic concept of CCO can be fairly straightforward

implemented in F# and the refined requirements constructed guide us to choose

the right language candidate.

6.9 Summary

In this chapter, context-aware Web services reimplementation is described.

Requirements for such services reimplementation are concluded by comparing

to mainstream object-oriented programming languages. This chapter also

points out the reimplementation concerns in the solution domain. The

reimplementation strategies vary because of domain specific issues. On the

other hands, this chapter briefly introduces programming language F#, and the

concept of context-oriented programming (COP), and the development of

ContXFS. ContXFS is an F# library for COP.

 Non-functional requirements for context-aware Web services

reimplementation are more difficult to fulfil than the functional

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

156

requirements. Requirements mapping is used to associate the desired

programming characteristics with the language features. A sample of

functional and non-functional requirements is depicted in Table 6.1.

 Web services reimplementation concerns the following issues:

performance issues (e.g., scalability and reliability etc), state sharing

issues (e.g., avoiding race conditions), and long-running operation

issues (e.g., asynchronous agent-based programming and performing

parallel computing).

 A conclusion of F# general and specific features and its advantages is

presented based on a brief comparison between object-oriented and

functional language paradigm.

 The reimplementation strategies depend on the legacy system’s

requirements, e.g., overlapping communication and computation

strategy and domains special language support.

 A small example of a HTTP service agent is showed. This server

utilises asynchronous agent-based programming and other F# related

features such as discriminated union and pattern matching.

 The work in this chapter describes the methods and steps of re-

implementing the said systems. Detailed approaches are depicted in

Section 6.2.2, 6.3 and 6.4 which contribute to the major quantitative

methods of this thesis.

 F# is a succinct, expressive and efficient functional and object-oriented

language targeting .NET Framework. It aims to adopt the ‘best’

programming concepts and attributes from functional and object-

oriented programming paradigms.

 Chapter 6 – Context-Aware Web Services Reimplementation with ContXFS

Support

157

 Typically, COP offer mechanisms to associating partial class and

method definitions with layers as well as activate and deactivate the

layers explicitly at run time.

 Server action module enables behaviour variations. A variation that

activated contains all the relevant functions to be executed, that is,

variation activation is bound to the application at run time.

 F# enables itself to specify behavioural variations by object-oriented

programming encapsulation, union types, and pattern matching; group

variations into layers by first-class functions with built-in data

structures.

 ContXFS is a COP-inspired conceptual library in F# with an aim to

facilitate the development of Web services-based context-aware

systems with no shared memory feature.

Chapter 7 – Case Study

158

Chapter 7 – Case Study

Objectives

 To demonstrate the way of applying the overall proposed

reengineering approach to reconciling requirements and

implementation gap for different types of legacy systems

 To illustrate the development toolkit for the propose approach

7.1 Overview

Software reengineering approach is a practical solution for the problems of

evolving legacy systems. Reverse engineering and forward engineering are the

two key methods that enable software evolution. As appropriate methods and

techniques for the development of Web services-based context-aware systems

are not yet mature, validation work in reengineering for such systems is

difficult. Therefore, four case studies have been selected carefully and

combined as the validation method.

In order to simplify the overall claim of this thesis, three further detailed claims

are classified as follows:

Chapter 7 – Case Study

159

 The first claim: the overall approach should be able to facilitate the

services candidate discovery tasks. This claim is associated with the

effectiveness criteria. For instance, the RRF approach can recover the

code-related artifacts along with the requirements-related artifacts.

 The second claim: the overall approach should be able to manage the

evolved requirements. This claim is associated with the generic usability

criteria. For example, when the current requirements from source code

level extracted from CASRM, reconstructing new context-aware services

requirements is straightway and ease.

 The third claim: the overall approach should be able to address the

redevelopment issues for the said systems. This claim is associated with

the efficiency criteria. For instance, COP and appropriate programming

languages can greatly mitigate the development burdens.

To validate the above claims, the proposed approach is applied to four further

case studies. These case studies are chosen to investigate specific research

questions and focus on corresponding claims discussed above, while some case

studies may validate the same claims as others. Table 7.1 gives an overview of

attributes of each case study. The details of the four case studies can be

described as below:

 The first case study is performed on an open source platform for

integrating mobile applications with Cloud services. This case study helps

to illustrate detailed process of RRF approach. The claim of effectiveness

can be evaluated through this case study which accommodates guidance

for readers to adopt derived approaches in their own practice.

 The second case study is a location-aware based application that enables a

Web application to obtain a user's geographical position. This case study

Chapter 7 – Case Study

160

focuses on the claim of usability. CASRM and the requirements evolution

model will be used to carry out this case study.

 The third case study is a framework aims to enable integration of location-

awareness techniques in Linux platform applications. The claim of

efficiency and effectiveness will be evaluated through this case study.

 The fourth case study is a chat prototype implemented with a context-

oriented programming approach. The claims of effectiveness, efficiency

and usability are evaluated by this case study. Context-oriented

programming methods implemented in F# and the natively supported

programming language features will be applied in the redevelopment of

this case study.

The properties of the four case studies above are represented in the following

Table 7.1. The table summarises the claim of each study that focuses on in the

proposed approach, as well as the basic attributes of each study. The first

column describes the name of the subject case study. The second columns

depict the programming language(s) used to implement the original case study.

The rest of columns represent the three core claims of this thesis.

Case Study Language(s) Usability Effectiveness Efficiency

Openmobster Java × ×

Geolocation API JavaScript × ×

Geoclue C × ×

ContextChat Erlang/Java × × ×

Table 7.1 Attributes of Each Case Study

Chapter 7 – Case Study

161

7.2 Openmobster

Openmobster [88] is an open source platform for integrating mobile

applications with Cloud services. It aims to facilitate the development of

mobile applications that resides in the Cloud via an infrastructure. It has the

following features:

 Sync Platform: Automatic bidirectional data sync between the devices

and the Cloud.

 Push Notifications: A platform-agnostic Cloud-initiated push notification

system.

 Location Aware Applications: A framework for creating end-to-end

location aware applications.

 Mobile RPC (Remote Procedure Call): A simple name/value pair based

method for invoking service components in the Cloud.

 Management Console: A GWT/SmartGWT based application to

administrate the system.

7.2.1 Overview of Requirements Recovery Framework (RRF)

Approach

The RRF contains Services Patterns Module (SPM), Concept Generator, and

Event Concept. SPM contains Knowledge-Based Library (KBL), Source Code

Information (SCI), and Requirements (REQ). SPM underpins the requirements

elicitation and an initial services pattern module is created by domain experts

and software engineers as a prerequisite. Concept Generator uses Hypothesis-

Based Concept Assignment (HB-CA) method, which consists of further three

stages: Hypothesis Generation, Segmentation and Concept Binding. A list of

concepts associated with regions of source code will be generated. Event

Chapter 7 – Case Study

162

Concepts is the phase that domain experts and software engineers fulfil the

enhancement to further enhance the content of services pattern module where

concepts are linked with associated events. KBL is a library that maintains lists

of intermittently enhanced tuples: <Concept, Event>. SCI is composed of

information directly reflected from the source code including identifiers,

comments, and keywords. REQ comprises functional requirements and non-

functional requirements.

7.2.2 RRF Approach on Openmobster

Location information can be accommodated by using the functions from

Location Module of OpenMobster platform. In OpenMobster, the business

components are encapsulated with this location information. The components

then have easy access to the location data and can easily integrate it with the

business data.

Based on our proposed CASSR approach, once legacy Openmobster passes the

assessment, an initial SPM is created by domain experts and software engineer.

This SPM should contain some initial information (e.g., historical records

related to location-aware systems) and requirements associated with location-

aware systems, e.g., Context, ContextTypes, ContextUsers, LocationContext,

LocationService, ServiceHandler, Map, Location, Person, Methodxception,

RequestData, SendMail, Retrieval, Widget, Condition, Callbacks,

ValueChanged, Attributes, CommunicationServer, CommunicationClient,

CommunicationHandler and their corresponding keywords, comments and

requirements so on.

Table 7.2 presents an example of the content of SCI and REQ in the initial

SPM for the location application example – LocationSampleApp in

Openmobster:

Chapter 7 – Case Study

163

SCI Identifier getAddress

Keywords public; Address

Comments Return the address associated
with this context

REQ

FR address-polling

NFR high responsiveness

Table 7.2 A Snapshot of Initial SPM for Openmobster

According to Table 7.2, a concept named – Get|CurrentAddress with its

corresponding event – getAddress should be in an initial SPM. Therefore, <

Get|CurrentAddress, iButton> as a tuple will be stored in the KBL for further

matching and updates. To discover services candidates, firstly a SPM is created,

and constructed a KBL accordingly.

In this case study, six instances are in a SPM and six corresponding tuples of

<Concept, Event> are in the KBL. The list of tuples is: [<Address,

getAddress>; <Longitude, getCurrentLongitude>; <Place, getPlaceDetails>;

<NearbyPlaces, getNearbyPlaces>; <Position, getPosition>; <MapAttribute,

getMapAttribute>]. Because of individual preference of concept naming, the

final KBL might appear rather different. A more clarified concept naming

mechanics could be introduced to address this problem.

When SPM and KBL are constructed, HB-CA will be applied on 5 source files

(.java): HomeScreen, LoadAddressMapCommand, LoadMyMapCommand,

LocationMapActivity, and MyItemizedOverlay. At this stage, strict matching

criteria is not applied, in effect, flexible matching is allowed (i.e., sub-string

matching or ambiguous matching). The results at this point are demonstrated

in Table 7.3.

Chapter 7 – Case Study

164

KBL Elements Identifiers Events in Source

<Address, getAddress> LoadAddress clickEvent.getAddress

<Longitude,

getCurrentLongitude>
getAttribute clickEvent.getAttribute

<Place, getPlaceDetails> getPlaceDetails clickEvent.getPlaceDetails

<NearbyPlaces,

getNearbyPlaces>
getNearbyPlaces clickEvent.getNearbyPlace

<Position, getPosition> getPosition clickEvent.getPosition

<MapAttribute,

getMapAttribute>
getMapAttribute clickEvent.getMapAttribute

Table 7.3 A Snapshot of Updated Content of KBL

The content in KBL indicates the location of concept segments. When KBL is

available static program slicing techniques are used to further decompose the

qualified source code reflected from the results of SPM. In fact, program

slicing is particularly useful when the code segments are too big. This process

generates code segments of interest. For instance, the following code could be

of our interest:

public void postRender()

 {

 //Get an instance of the currently active Activity

 ListActivity listApp =

(ListActivity)Services.getInstance().getCurrentActivity();

 //Populate the List with Actions to be performed

 String[] ui = new String[]{"Map by Address","Map by My Location"};

 listApp.setListAdapter(new ArrayAdapter(listApp,

 android.R.layout.simple_list_item_1,

 ui));

Chapter 7 – Case Study

165

 ListItemClickListener clickListener = new ClickListener();

 NavigationContext.getInstance().addClickListener(clickListener);

 }

Once the target code is extracted, the next step – services recode begins. It is

this stage that some of the constraints may be fully fulfilled. Since this

functional requirement is well addressed by the comments in this code

(sometimes, it is not the case), software engineers can exercise their domain

knowledge to play a key role for optimising the code. On the non-functional

requirement side, the above code implies the need to perform asynchronous

computing for better responsiveness. Nevertheless, the existing programming

paradigm might not be able to express it straight forward. User experience will

pose this demand sooner or later for other control buttons to achieve more

responsiveness. It is this point when software developers reflect their

approaches for maintaining the services evolution stage. Finally, in services

integration stage, with the help of some wrappers and code gluing techniques,

reengineered services and newly-built functional services are composed via

connectors in order to construct the target system. Such steps will be evaluated

in the following case studies.

In summary, from usability perspective, the availability of the recovered code-

related artifacts and requirements-related artifacts enables reusability of

components of the legacy system as well as a comparison of existing

requirements and new requirements that navigates further strategies of redesign

and reimplementation in the course of forward engineering. From effectiveness

perspective, not only are code-related artifacts are extracted, but requirements-

related artifacts are recovered for reimplementation in the downstream of

reengineering activities. By comparing the recovered requirements and sought-

after requirements, new redevelopment technologies can be discovered, e.g.,

there could be another programming language that translates the problem

domains into the solution domains far more expressively.

Chapter 7 – Case Study

166

7.3 The Geolocation API

The Geolocation API [50] enables a Web application to obtain a user's

geographical position. Specifically,

 Obtain the user's current position, using the ‘getCurrentPosition’ method.

 Watch the user's position as it changes over time, using the ‘watchPosition’

method.

 Quickly and cheaply obtain the user's last known position, using the

‘lastPosition’ property.

The Geolocation API provides the best estimate of the user's position using

location providers. These providers may be onboard (e.g., GPS) or server-

based (e.g., a network location provider). The ‘getCurrentPosition’ and

‘watchPosition’ methods support an optional parameter of type

‘PositionOptions’ specifying which location providers to use.

7.3.1 Overview of CASRM and Requirements Evolution Model

Based on SPM and the derived viewpoints, CASRM is developed to build

context-aware services requirements. The items included in the derived

viewpoints are described in Table 5.3. The detailed contents can be found and

drawn from KBL and REQ. Changes may be caused not only by users who

keep changing their mind, but by availabilities of new programming techniques

that developers would raise the demand to consider adopting alternative

implementation strategies or methods. The two viewpoints must be in phase.

Viewpoints, not only conventionally make changes consistent, but build a

relation between both viewpoints and stress two types of constraints – design

and implementation requirements in order to mitigate the pain of software

evolution.

Chapter 7 – Case Study

167

ARRE is a synthesis of conventional users’ and developers’ viewpoints, and

context constrains and predicates that assert the requirements are satisfied. For

example, during forward engineering phase, developers could face a decision

to select proper programming languages to implement the overall requirements.

ARRE, built by domain experts and seasonal software engineers, synchronises

both derived viewpoints and provides suggestion of changes to functional

requirements.

Interface requirements become less important when accessing desired services

via protocol such as HTTP and SOAP without using an interface (e.g., a Web

browser). User interface requirements and ARRE are composed of the ultimate

desired requirements. For each time the context-aware services requirements

are generated, they will be seen as the initial requirements for the proposed

requirements evolution model that will be described in the following section.

The proposed requirements evolution model contains following states: initial

requirements, defined requirements, and released requirements. The initial

requirements of services and context are discovered via RRF approach. Based

on the modification rules, services requirements can be decomposed into

functional requirements, non-functional requirements and interface

requirements. The modified requirements are subject to Quality of Services

(QoS). Feedback will be sent back to each initial requirement for evaluation.

When the final version of the desired context-aware services requirements is

obtained in the following services reengineering activities, it reaches the third

state. The combined requirements of the evolved services requirements and

evolved context requirements will be seen as initial requirements upon the next

requirements evolution.

Chapter 7 – Case Study

168

7.3.2 Requirements Evolution Model for The Geolocation API

Applications

As the previous case study has shown the steps of creating SPM, which

contributes to the main components in CASRM, this case study focuses on the

steps of managing context-aware services requirements evolution process. The

case study is carried out based on the sample application – RunningMan [50]

from one of The API Geolocation’s applications, which is a JavaScript

application that uses The Geolocation APIs on Android. RunningMan is a

location-aware stopwatch that measures both the time and route taken for a

journey, showing the journey on a map. It utilises the modules (i.e., Database,

Desktop shortcuts, Geolocation, and LocalServer) from The Geolocation API.

When the corresponding SPM is available, services requirements of each code

related artifact can be highlighted. Table 7.4 describes the services

requirements for improving the summary of position information. The context-

aware services requirements of function ‘PositionInformation’ are separated

into services requirements and context requirements for different modifying

rules.

Chapter 7 – Case Study

169

PositionInformation Description

Functional Requirements Saving Historical Position Information

Non-Functional Requirements Reliable Useful Information

Interface Requirements Relative Environment Changed

Context Requirements New Position Information Accepted

Table 7.4 Services Requirements of PositionInformation

Now that the description displayed in the journeys screen contains the number

of positions saved, as well as the distance and the average speed travelled. In

fact, function ‘PositionInformation’ in model.js depicted as below:

/* For a given row, returns distance travelled, average speed,

 * and number of positions saved

 * /

function positionInformation(rowID) {

 var distance = 0;

 var prevLat = null;

 var prevLon = null;

 var firstTime = 0;

 var lastTime = 0;

 var nbPositions = 0;

 var rs = global.db.execute('SELECT Latitude, Longitude, Date ' +

 'FROM Positions WHERE TimeID = (?) ' +

Chapter 7 – Case Study

170

 'ORDER BY Date', [rowID]);

…

 var secTime = (lastTime - firstTime) / 1000;

 var averageSpeed = ((distance * 3600) / secTime);

 var roundedDistance = (((distance*1000)|0)/1000);

 var roundedSpeed = ((averageSpeed*1000)|0)/1000;

 var description = " (" + roundedDistance + " km)";

 description += "
Average speed: " + roundedSpeed + " km/h";

 description += "
" + nbPositions + " positions saved";

 return description;

}

In order to further improve the history information saved for future use, for

instance, users may want to review the routes that they have taken to the

previous destinations. In such case, the ‘add’ modifying rule is adopted, and

this related functional requirements will be edited as “Including previous routes

to destinations” and non-functional requirements will be added “Adding former

detailed routes to destinations in order to improve the use experience”. Later,

the modified requirements are subject to test based on the formula: Quality (Q,

S) |= Constraint (C) in a specific context. Finally, feedback will be sent back to

initial related requirements with corresponding actors, in his case, the users and

developers for ultimate confirmation. As our model is evaluated with more

cases, it is reported that they imply some promising results on context-aware

services requirements analysis particularly during the early reengineering

activities.

In conclusion, based on the initial results of RRF, raw requirements are

generated. They are kept in KBL with SCI. CASRM is built in terms of user’

and developer’s viewpoints and the content of KBL can be described through

these two viewpoints. In effect, the separation of context requirements and

Chapter 7 – Case Study

171

services requirements provides a concise way of applying different modifying

rules to maintain the quality of the evolved requirements. Each generation of

context-aware services requirements evolves continuously. The proposed

Requirements Evolution Model generates the latest evolved requirements

which are available either for comparison against the new requirements or

these are the requirements to be fulfilled in forward engineering. It is efficient

in the way that requirements are always in place for reimplementation.

7.4 Geoclue

Geoclue [49] is a modular geoinformation service built on top of the D-Bus [36]

messaging system. The goal of the Geoclue project is to create location-aware

applications as simple as possible and to facilitate integration of location-

awareness techniques in Linux desktop applications. It also provides a C

library and exposes its functionality through D-Bus.

Geoclue provides three interfaces for querying current situation, i.e.,

Position, Address and Velocity. Each contains a method and a signal to acquire

the information in question along with the time and accuracy of the

measurement. For instance, ‘position-example.c’ is taken into account, which

uses ‘Position client API’. ‘Position-example.c’ contains an asynchronous

method call – ‘geoclue_position_get_position_async()’ with a callback –

‘position_callback()’, details are represented below [49]:

void geoclue_position_get_position_async (

GeocluePosition *position,

GeocluePositionCallback callback,

gpointer userdata);

Function returns immediately and calls ‘callback’ when current position is

available or when D-Bus timeouts.

Chapter 7 – Case Study

172

 position : A GeocluePosition object

 callback : A GeocluePositionCallback function that should be called when

return values are available

 userdata : Pointer for user specified data

In F#, there is a more concise way in writing asynchronous call method via

natively supported asynchronous programming model. For example, the above

code can be rewritten in F# as follows:

 module GeoclueCaseStudy

 //define a type that contains position information

 type GeocluePosition(fileds: GeocluePositionFields, timestamp: int, latitude: float, longitude: float, alti

tude: float, accuracy: GeoclueAccuracy) =

 member p.Fileds = fileds

 member p.Timestamp = timestamp

 member p.Latitude = latitude

 member p.Longitude = longitude

 member p.Altitude = altitude

 member p.Accuracy = accuracy

 member p.AsyncGetPosition() : Async<seq<GeocluePositionFields, int, float, float, float, GeoclueA

ccuracy>> =

 //define an async operation

 (...)

 //define an async operation that works on multiple positions

 let asyncGetPositions(p: GeocluePosition) =

 let completed = ref false

 async {

 while not(!completed) do

 let! position = p.AsyncGetPosition()

 if p.Fields && p.Latitude && p.Longtitude then

 //do something with this position value

 ...

 else

 completed := true }

The type – ‘GeocluePosition’ contains detailed position information as well as

expose a callback method, i.e., ‘AsyncGetPosition’ where an asynchronous

operation is defined. Finally, function – ‘asyncGetPositions’ is called to work

on multiple positions asynchronously. Comparing to the original

implementation of ‘position-example.c’, the F# implementation is able to

magically express the uniformed abstraction (e.g., abstracting callback

functions) through writing asynchronous workflows which enables developers

to write normal control flows for asynchrony. Due to the computing needs of

Chapter 7 – Case Study

173

Web services-based context-aware applications, performing asynchronous

computation is evitable and essential.

To summarise, using F# asynchronous programming model can at large

facilitate the implementation of this kind of applications, which in turn,

software developers will benefit from the decision of making a correct choice

of programming languages soon after the context-aware services requirements

are available and before the implementation. For example, the lines of code are

69 excluding comments, whilst the lines of the translation code in F# are 53.

The F# counterpart provides same asynchronous behaviour as the original code,

though the performance of the F# code is in theory slower than the C code.

However, once the program reaches much more lines of code, the performance

is not the main issues. Instead, the maintenance cost of the giant code is crucial

and essential.

7.5 ContextChat

ContextChat [29] is a chat prototype implemented in ContextErlang [51]. Users

in the systems are represented as context-adaptable agents. User conditions (e.g.

online/offline), logging, remote backup are represented as context and

dynamically activated on each agent. In addition, ContextErlang is an Erlang

extension for COP. It combines the COP concepts along with the effective

Erlang concurrency model. Specifically, variations enable alteration of the

behaviour of context-aware agents, that is, behavioural components that can

be activated on the agent. Composing the active variations with basic

behaviour leads to the actual behaviour of the agent.

Chapter 7 – Case Study

174

7.5.1 Overview of COP and F# Agent-Based Programming

Model

COP is a new programming paradigm that enables software entities to adapt

their behaviour to the current execution context. This goal is achieved by

providing abstractions that enable application to have context-awareness

behaviour without excessively using local-level conditional statements in the

source code. To support COP, programming languages entail the following

properties [56]:

 Means to specify behavioural variations,

 Means to group variations into layers,

 Dynamic activation and deactivation of layers based on context, and

 Means to explicitly and dynamically control the scope of layers.

In other words, COP languages and environment extensions should be able to

provide mechanisms for expressing, activating and composing layers at

execution where contextual information is related. Therefore, at least five

properties are addressed [56], i.e., Behavioural Variations, Layers, Activation,

Context, Scoping.

While COP facilitates the development of context aware systems, the

implementation complexity of Web services-based context aware systems can

be greatly reduced by combining COP with native language support for

asynchronous and parallel programming.

In F#, agent-based programming model is part of the language. It uses a type of

‘MailboxProcessor<’Msg>’ to represent agents. The body of the agent is

written as an asynchronous workflow, in other words, agent-based

programming is based on asynchronous programming and agent is lightweight.

Chapter 7 – Case Study

175

More details about the type of ‘MailboxProcessor<’Msg>’ has been discussed

in Chapter 6.

7.5.2 Reimplementation via ContXFS and F# Agent-Based

Messaging Techniques

ContextChat is implemented using ContextErlang which is an Erlang extension

to support COP. While ContXFS is F# library to allow COP, the F# native

high-level features enable it to be a good candidate to embrace COP features

concisely. When evolved requirements are available, F# library ContXFS can

be used to fulfil those requirements.

The following piece of code shows an example of enabling message awareness

via F# message passing and mailbox processing:

 ///define an internal union type of messages for the agent

 type internal Message =

 | SendMessage of string

 | GetMessage of AsyncReplyChannel<string>

 ///Agent alias for MailboxProcessor

 type Agent<'T> = MailboxProcessor<'T>

 ///define a type that enables message awareness with an asynchronous method of getting messages

 type Chat() =

 let agent = Agent.Start(fun agent ->

 let rec loop messages =

 async {

 let! msg = agent.Receive()

 match msg with

 | SendMessage textMsg ->

 return! loop (textMsg)

 | GetMessage replyChannel ->

 do replyChannel.Reply messages

 return! loop messages }

 loop " ")

 member c.SendMessage(msg) =

 agent.Post(SendMessage msg)

 member c.AsyncGetMessage(?timeout) =

 agent.PostAndAsyncReply(GetMessage, ?timeout=timeout)

Immutable data types are commonly used in functional programming paradigm.

Values defined in F# are immutable by default, although F# supports

mutability as well. Specifically, as F# is a .NET framework language, the CLR

makes sure that an initialisation of a value is thread-safe. When the

Chapter 7 – Case Study

176

initialisation completes, the value is defined as immutable and this property

enables thread-safe operations. On the other hand, instead of using threads to

meet the requirements for shared-memory concurrency, F# uses agents as an

alternative implementation of message-passing concurrency. Using agents in

turn can avoid race conditions and deadlocks that mutability causes. F# agent-

based programming model is built based on asynchronous workflow. In other

words, F# agents do not block threads while waiting. Furthermore, agents are

lightweight, which can scale an application with hundreds of thousands of

agents.

7.5.3 Quantitative Experiments

Based on the claims expounded in Section 7.1 and 7.5.2 and, an experiment is

carried out. A list of questions that this experiment is expected to answer is

drawn as follows:

 Do F# and ContXFS facilitate usability?

In F#, an agent can be encapsulated into a class type (i.e., a Class in OO

programming paradigm) and it often has a loop that asynchronously waits for

incoming messages and processes them. F# comes with a library

implementation of in-memory agents – MailboxProcessor. This library

accommodates many primitives for asynchronous programming and agent-

based programming. The agent encapsulates a message queue that supports

multiple-writers and a single reader agent. Moreover, delegation can be applied

as a compositional technique for reusing fragments of implementations. For

example, in asynchronous agent-based programming, delegating members in

the defined class type to the underlying agent provides a replacement for OO

implementation inheritance that often complicates the hierarchical relations

between types. The following piece of code demonstrates the delegation

technique:

Chapter 7 – Case Study

177

type WorkerAgent<'T>() =
 let agent = Agent.Start(fun agent ->
 // Message processing
 (...)

 // Delegating AsyncOp1 member to agent
 member x.AsyncOp1(t:'T, ?timeout) =
 agent.PostAndAsyncReply((fun ch -> Op1(t, ch)), ?timeout=timeout)

 // Delegating Op2 member to agent
 member x.Op2(t:'T) =
 agent.Post(t)
 })

Agent can be reused for generic proposes. For example, in terms of Microsoft

Developer Network Platforms, reusable agents such as BlockingQueueAgent

(see below) and application-specific agents provide basic building blocks for

agent-based concurrent applications. The agents often communicate by some

common scheme. The code below was modified from [83] .

/// Agent that implements an asynchronous blocking queue
type BlockingQueueAgent<'T>(maxLength) =
 let agent = Agent.Start(fun agent ->

 let queue = new Queue<_>()
 /// State machines
 let rec emptyQueue() = async {…}

 and fullQueue() = async {…}

 and runningQueue() = async {…}

 and enqueueAndContinue (value, reply) = async {…}

 and dequeueAndContinue (reply) = async {…}

 and chooseState() = async {…}
 // Enter the initial state – an empty queue

emptyQueue())

Furthermore, in ContXFS, the type of MailboxProcessor is extended with a

static member SpawnAgent. It formalises continuation as well as timeout and

error handlers in the parameters list for SpawnAgent and wraps underlying

static Start method inside the extension type. Along with other static extended

members, these methods empower the agent to perform more interesting

computations.

Chapter 7 – Case Study

178

 Do F# and ContXFS facilitate effectiveness?

Effectiveness can be reflected by the asynchronous workflow and agent-based

programming model that supports asynchronous and parallel programming.

The above example has already depicted the adequate ability of asynchronous

computation. In effect, F# supports multiple active evaluations (e.g., CPU-

bound computations) and waiting reactions (e.g., I/O bound computations) in

parallel. For example, the code below describes the CPU-bound computations

in parallel:

// Define a sequence of async blocks
let sequenceInput num = seq {for i in 0 .. num do yield async {return i * i}}

// Evaluate the sequence using Async.Parallel
let results = sequenceInput 100 |> Async.Parallel |> Async.RunSynchronously

The sample code presented in Section 6.5.2.4 has demonstrated the capability

of fetching the content of multiple Web pages in parallel.

 Do F# and ContXFS facilitate efficiency?

Both posting and receiving messages are very efficient in F# because of the

implementation of message-passing. Posting one million messages

approximately takes 0.125 second, and receiving all the messages takes about

11.850 seconds on a machine with specifications of Intel Core duo 2.0 GHz,

2.0GB memory, and 32-bit Windows 7. The code below shows the results.

// Define a Agent<T> - an alias for the MailboxProcessor<T> type
type Agent<'T> = MailboxProcessor<'T>

// Number limit
let max = 1000000

// Arry initialisation
let arr = [|1 .. max|]

// create a stopWatch object
let stopWatch = System.Diagnostics.Stopwatch()

let agent = Agent<int>.Start(fun inbox ->
 async {
 while true do
 // Get elapsed time of receiving all messages

Chapter 7 – Case Study

179

 // Watch starts
 stopWatch.Start()
 let! msg = inbox.Receive()
 // Watch stops
 let elapsedTime = stopWatch.ElapsedMilliseconds
 if msg = max then printfn "Finished! with elapsedTime: %d" (elapsedTime
) else ()
 })

// Get elapsed time of posting all messages
#time
arr |> Array.iter(fun i -> agent.Post(i))

The lines of code may also well reflect that the efficiency of combination of F#

and the ContXFS. For example, F# code is always more concise and shorter

comparing to C# code. Typically, the following comparison of F# and C# code

demonstrate the difference.

// F#
type Currency = Sterling of float

// C#
public abstract class Currency { }

public abstract class BritishCurrency : Currency
{
 public Amount Amount {get; private set}
 public BritishCurrency(Amount amount)
 {
 this.Amount = amount
 }
}

In summary, the overall reimplementation in F# and the ContXFS support the

claims of usability, effectiveness, and efficiency.

7.6 Development Toolkit

The section focuses on the supporting toolkit for reimplementation of a subject

Web services-based context-aware systems. The implementation environment

is Microsoft Visual Studio 2010 Professional where F# is the primary

programming language to implement the redevelopment projects. Specifically,

WebSharper
TM

2010 Platform is used to facilitate the Web development part of

the subject system. Now WebSharper is open source. This versatile F#

Chapter 7 – Case Study

180

HTML5/Mobile development tool is developed by IntelliFactory [63], a

software and consulting company specialising in F# programming language.

The aim of WebSharper

is to enable developers to program only F# code to

build Web services applications based on the latest Web development

techniques without using extra programming languages for other specific Web

development tasks. It potentially fills the blank where F# code cannot be

generated for UI designer.

Technically, WebSharper
TM

 compiles F# code to JavaScript, and it exposes

extensions to JavaScript libraries. The main benefits of developing

JavaScript/HTML5/mobile applications with F# as the development language

is driven by the strengths of F#, e.g., along with the high-level abstraction of

modern typed functional programming language, .NET interoperability, full

intellisense, type inference, asynchrony all count for the advantages of

developing in F#.

7.7 Summary

In this chapter, four case studies have been selected to evaluate that the

fundamental gap between requirements and implementation can be reconciled

via the proposed reengineering approach, which in turn, to validate the main

claims in this thesis.

 Openmobster case study helps to illustrate the detailed phases of

applying RRF approach.

 The Geolocation API case study demonstrates the efficiency of

CASRM as well usability of the proposed requirements evolution

model.

 Geoclue case study can be seen as one of typical examples of the

importance of fulfilling constraints. For example, choosing better

Chapter 7 – Case Study

181

implementation languages that mitigate the development burden is

critical because implementation requirements must be satisfied for

reducing maintenance issues.

 ContextChat case study describes how to apply COP and F# agent-

based programming model to facilitate the redevelopment of the legacy

system.

 The quantitative experiment demonstrates that F# is a very good

candidate for the reimplementation task. And the ContXFS library

presents a concise way of implementing F# domain specific library.

 Development toolkit mainly consists of Microsoft Visual Studio 2010

and WebSharper.

Chapter 8 – Conclusions and Future Work

182

Chapter 8 – Conclusions and Future

Work

Objectives

 To summarise the whole thesis

 To revisit and extend the original contributions

 To evaluate this work with answers to the key research questions; by

reviewing the research propositions and the criteria of success

 To illustrate the limitations of this work

 To outline the future work

8.1 Summary of Thesis

The reconciliation between requirements and implementation is an important

research topic in requirements engineering community. A set of software

reengineering methods can be potentially adopted to address the problem

during the conventional requirements engineering process. Based on this

assumption, this work has provided an excellent combined approach to

reconciling the underlying gap between requirements and implementation for

Web services-based context-aware systems. The aim of this work is to

strengthen the capabilities of traditional software reengineering methods with

Chapter 8 – Conclusions and Future Work

183

relevant novel techniques in order that they are able to address the increasingly

critical reconciliation issues in the evolution of Web services-based context-

aware systems. The basic idea is to improve reverse engineering techniques to

recover the underlying users’ and constraints from legacy systems, and to

develop context-oriented programming approaches to mitigate the burdens of

reimplementation for the legacy systems. Typically, in the midst of this

software reengineering process, constraints are always emphasised, and on the

top priority.

Several general research methods are employed in this proposed research work.

Modelling plays a central role in this work as it can guide requirements

elicitation, provide a measure of completeness of the elicitation, and visualise

the requirements. Classification guarantees that software development is

consistent and systematic. Quantitative and qualitative methods, reasoning, and

DSL design are also adopted. The primary research subjects in this work are

requirements engineering, software reengineering, and domain specific

language design (specifically, context-oriented programming language

extension). The proposed framework approach consists of the following four

core phases, namely, legacy system assessment, services candidate discovery,

services reimplementation, and services integration. Legacy system assessment

is an assessment of the subject legacy system from imperative and OO

programming paradigms that is responsible for judging the applicability of

Context-Aware Web Services Reengineering (CAWSRF) approach and

deciding if other reengineering approaches should be performed. Services

candidate discovery is carried out based on the proposed Requirements

Recovery Framework (RRF). Hypothesis-Based Concept Assignment (HB-CA)

and programme slicing are applied. Services reimplementation is the process to

redevelop the legacy system in the light of synthesised requirements-related

artifacts and code-related artifacts, this process contains requirements mapping

and ContXFS development. Finally, services integration enables legacy

services and newly-built functional services are composed via connectors in

Chapter 8 – Conclusions and Future Work

184

order to construct the target system. This can be implemented via wrappers and

code gluing techniques. In Appendix A, a prototype context-aware chatting

application is implemented in F# with ContXFS support to evaluate the overall

proposed framework approach.

8.2 Original Contributions Revisiting

This work aims to enhance the traditional software reengineering methods to

reconcile the increasing gap between requirements and implementation for

Web services-based context-aware systems. This section will revisit and extend

the eight original contributions described in Chapter 1.

C1: In Chapter 3, a novel reengineering process is created to mitigate the

underlying gap between requirements and implementation for the Web

services-based context-aware systems. This proposed framework approach

consists of legacy system assessment, services candidate discovery, services

reimplementation, and services integration.

C2: In Chapter 4, a requirements recovery framework (RRF) has been

described. Concept assignment and programming slicing techniques are

applied within the framework.

C3: In Chapter 4, requirements elicitation approach has been depicted.

Hypothesis-based concept assignment (HB-CA) is applied into the elicitation

process.

C4: In Chapter 5, a context-aware services requirements model (CASRM) is

proposed to recover requirements-related artifacts and code-related artifacts

from source code.

C5: In Chapter 5, a combined users’ and developers’ customised derived

viewpoint is described. The recovered requirements and new context-aware

Chapter 8 – Conclusions and Future Work

185

services requirements can be easily synthesised to restructure the requirements

for services reimplementation.

C6: In Chapter 5, a requirements evolution model is developed to manage the

evolved requirements in order to facilitate context-aware services evolution.

C7: In Chapter 6, a requirements analysis prior to services reimplementation is

carried out via requirements mapping. A table of desired characteristics and

reflected terms in a programming language has been created.

C8: In Chapter 6, a novel of server/client architectural design model is

proposed, and implementation issues and strategies for services

reimplementation are discussed.

C9: In Chapter 6, F# features and advantages for services reimplementation are

presented within a table.

C10: In Chapter 6, relevant language attributes and features in F# have been

discussed and introduced.

C11: ContXFS as a library in F# that allows for context-oriented programming

(COP) is developed. ContXFS adopts COP paradigm to functional

implementation model in F# that natively supports concurrency and parallelism.

C12: An investigation of context-aware adaption has been carried out.

ContXFS provides programmers with libraries that assist the development of

Web services-based context-aware systems. Typically, ContXFS enables

software developers to facilitate the implementation of context-awareness at

run time while the programming models natively supported in F# allow for

Web services development.

C13: In Chapter 7, four further case studies are carried out to evaluate the

overall the overall framework approach.

C14: In Appendix A, a prototype implementation of ContXFS and the testing

samples of applying this library are given.

Chapter 8 – Conclusions and Future Work

186

8.3 Evaluation

8.3.1 Answering Research Questions

The principle research question in this work has been described in Chapter 1:

How can a software reengineering approach

be developed in order to reconcile the gap

between requirements and implement for

Web services-based context-aware systems?

The brief answer to this question has been addressed with recovering

underlying requirements along with code segments from the source code in a

legacy system and developing a context-oriented programming language

extension/library for facilitating redevelopment tasks. In addition to the two

fundamental approaches, constraints are always on the top priority in the

course of the software reengineering process. Specifically, deep recovery

(requirements-related artifacts discovery) is more appropriate for dramatic

redevelopment when the gap between existing code-related artifacts and new

requirements is too big, and furthermore, a new programming language (model)

could be available for higher abstraction, which allows for more concise

implementation. Typically, ContXFS enables developers to facilitate context-

oriented programming (COP) for dynamic context-awareness while F# is a

good fit for Web services-based system development in a late reengineering

process.

A range of detailed research questions has been defined accordingly to refine

this holistic question as follows:

REQ1: What does the context-aware Web services candidate discovery

recover?

Chapter 8 – Conclusions and Future Work

187

Two types of artifacts discovery can be recovered: requirements-related

artifacts discovery and code-related artifacts discovery. (Section 3.2.1)

 What is the common architectural design of context-aware systems?

Traditionally, the client-server architectural model consists of a set of servers, a

set of clients, and the network that underpins the communication between the

servers and clients. (Section 6.3)

 How may requirements be extracted from source code in legacy systems?

Underlying requirements may be extracted by applying HB-CA method into

the proposed Requirements Recovery Framework (RRF) to enable the

requirements elicitation approach. (Section 4.3)

 How may other reengineering tasks benefit from the recovered

requirements-related and code-related artifacts?

Benefiting from the two discovery artifacts via requirements elicitation

approach, Context-Aware Services Requirements Model (CASRM) extracts

current requirements from source code level and reconstructs new context-

aware services requirements primarily based on users’ and developers’

customised derived viewpoints. (Section 5.2.3) These artifacts may also

facilitate the services reimplementation. (Chapter 6)

REQ2: Why non-functional requirements (i.e., qualities and constraints) are

so important?

Emphasis on constraints can potentially reduce the costs and risks of re-

implementing a complete existing system. (Section 3.2.2)

 How may software evolution be hindered by not fully evaluating

implementation decisions during the reengineering process?

Developers are always forced to give in their needs to compromise users’ needs.

Hence, inefficient implementation will make services evolution much more

difficult in the future. (Section 5.4)

Chapter 8 – Conclusions and Future Work

188

 How may constraints be discovered during the reengineering process?

The derived viewpoints-based Context-Aware Services Requirements Model

(CASRM) is proposed to fully discover the importance of constraints. (Section

5.2.3)

 How may software developer’s time and effects be impeded by

inappropriate language choice?

Software developers always face language choice as it is one of the most

critical implementation issues as programming language itself may deeply

impede software developer’s time and effects on tackling the development

tasks. (Chapter 5 and Chapter 6)

REQ3: How is services reimplementation carried out?

The services reimplementation follows the traditional software development

process in terms for the new and recovered requirements, architectural design

model, as well as implementation issues and strategies. (Chapter 6)

 What are the requirements for services reimplementation?

The redevelopment requirements are composed of the recovered requirements

from the source code and the new requirements. Requirements analysis is to

map the implementation requirements to the programming language features or

properties by comparing the results with what the currently used languages can

offer. (Section 6.2)

 How may the architectural design model be developed?

The proposed architecture design for context-aware Web services systems

highlights the Web services application development by introducing another

layer. (Section 6.3)

 What are the reimplementation concerns and strategies?

The reimplementation issues on the server side can be basically classified as:

performance issues, state sharing issues, and long-running operation issues,

Chapter 8 – Conclusions and Future Work

189

whilst the reimplementation strategies are domain-specific. It depends on the

architectural design and the target computing environments after

implementation. (Section 6.4)

REQ4: How may domain specific language help in the reimplementation

process?

Domain specific language mitigates the developer’s burdens by developing a

custom language to express implementation problems and solve the problems.

(Chapter 6)

 Which language and language paradigm may be suitable for building a

domain specific language?

Functional programming languages have had a long-time connection with

development of domain specific languages since functional features or

properties are suitable for creating compilers. (Section 6.5 and Section 6.6)

 How may context-oriented programming be able to address the need

for context-aware adaption?

COP addresses the fundamental need for Web services-based context-aware

applications that they should behave accordingly subject to the changing

context at rum time. Instead of spreading excessive raw conditional statements

over the source code, higher level abstractions embedded in the target

programming language can greatly facilitate the functionality of context-

awareness. (Section 6.6)

 How may a context-oriented programming library be developed?

ContXFS is developed in F# based on the properties that COP must own, i.e.,

behavioural variations, layers, activation, context, and scoping. (Section 6.6)

8.3.2 Research Proposition Revisiting

The underlying proposition of this work has depicted in Chapter 1 as:

Chapter 8 – Conclusions and Future Work

190

Requirements elicitation during reverse

engineering and domain specific language

support during forward engineering can be

combined in order to reconcile

requirements and implementation for the

said systems.

Requirements elicitation approach and ContXFS have been developed to show

that this proposition is sounded. A subset of propositions can be further

described as follows:

PRO1: A combination of viewpoints-based requirements, as well as code-

related artifacts can be recovered from legacy systems.

A requirements elicitation approach based on the proposed requirements

recovery framework have been developed, which shows that this proposition is

sounded.

PRO2: The language choice makes a profound impact on the structure of the

development solutions as well as how software developers think of the

implementation issues.

The recovered code-related artifacts suggest the existence of convoluted

development in the legacy system, which shows that this proposition is

sounded.

PRO3: Raising the importance of choosing language(s) for implementation.

A comparison of various programming features and their corresponding

advantages towards services reimplementation through requirements mapping

has been presented; the architectural design model implies that the

communication between Web services and Web applications has to be largely

implemented in an asynchronous way; reimplementation concerns and

strategies demand native programming language support, all of which show

this proposition is sounded.

Chapter 8 – Conclusions and Future Work

191

PRO4: DSL allows software developers to quickly and efficiently develop a

software system.

ContXFS, as an F# library allowing for COP, provides libraries to facilitate

context-awareness implementation and enable developers to embrace F#

programming models and other features for Web services development, which

shows the proposition is sounded.

8.3.3 Revisiting Criteria of Success

A set of measures of success has been defined in Chapter 1. These predefined

criteria will be revisited as follows:

 The proposed approach should be able to reconcile the underlying gap

between requirements and implementation for the said systems.

The proposed work is able to recover the underlying requirements from source

code through a combination of techniques of reverse engineering and

requirements modelling, and is able to mitigate the software developer’s

burdens by application of ContXFS for facilitating context-awareness

reimplementation and Web services-based systems redevelopment via a range

of F# high-level features and programming models.

 The requirements recovery framework approach should be able to elicit

users’ requirements and constraints that reflect the original

requirements.

The proposed RRF and CASRM are derived users’ and developers’

viewpoints-based framework and model respectively. The CASRM found in

RRF is able to recover users’ underlying requirements and constraints.

 The context-aware Web services requirements model should be able to

reconstruct new requirements combining with existing requirements.

Chapter 8 – Conclusions and Future Work

192

The content of SPM in the proposed CASRM is well maintained in a table.

New requirements along with their corresponding information can be easily to

add to the table. The Associate Requirements Repository Engine (ARRE) in

the proposed context-aware services requirements model (CASRM) contains a

synthesis of traditional users’ and developers’ viewpoints, and context

constrains and predicates that assert the requirements are satisfied, which are

easily combined with new requirements that share the structure of

corresponding viewpoints.

 The requirements evolution model should be able to manage the

services requirements and context in a way to support services

evolution.

The requirements evolution model is able to distill context-aware services

requirements into services requirements and context requirements, and

maintain such requirements. The changing services requirements and context

requirements are two triggers of services evolution. As long as the evolved

context-aware services requirements are available, software engineers are able

to carry out a series of reengineering processes to fulfil those requirements.

 The architectural design model should be able to uncover

reimplementation concerns and strategies.

The proposed architectural design model presented in Section 6.3 is based on

conventional server-client architectural model. It highlights the communication

between Web server and Web applications. The actual action that handles

different kinds of events is implemented in the Web applications, while the

middleware - context server is implemented on Web services side to manage

context-awareness.

 The ContXFS should be able to address the reimplementation issues

and provide programmatic supporting for development.

Chapter 8 – Conclusions and Future Work

193

ContXFS is an library to F# which allows for context-oriented programming

(COP). ContXFS is implemented in language F# and fulfils all the five core

properties of COP, which itself enables software developers to facilitate

implementation of context-awareness at run time. Moreover, F# is a good fit

into Web services development. Particularly, F# provides various kinds of

native programming models for addressing the non-functional implementation

issues. In addition, high-level features from F# make source code more much

concise than most of the current mainstream programming languages.

 The implementation of a Web services-based context-aware system

should be able to realise the architectural design and meet the

combined requirements such as context-awareness, concurrency,

reliability, and scalability.

The prototype of the context-aware chat application is developed in the light of

the proposed architecture design model with support of ContXFS and F#

programming models. Specifically, it fulfils a range of implementation issues,

e.g., context-awareness, concurrency, asynchrony, parallelism, and high

scalability.

8.4 Limitations

Following the original contributions and measures of success, the limitations of

this work can be described below:

 Requirements extraction via RRF approach and requirements

management via the requirements evolution model may demand

manual work and become time consuming.

It may involve fairly much manual work relying on domain or software

engineering experts, in practice, some key tasks may be unlikely to be

Chapter 8 – Conclusions and Future Work

194

automatic. Because of the complexity and depth of requirements-related

recovery, it cannot be implemented (semi-)automatically. Managing

requirements during services evolution entails a systematic maintenance of

requirements evolution. Typically, context-aware systems have a potential

application in parallel computing. For example, the rate of underlying context

changes rising dramatically due to rapid multi-core development; the

scalability to scale services up to even more users. In order to achieve correct

and practical results, recovering and maintaining such frequently changing

requirements may make manual work inevitable.

 F# reimplementation may be not as efficient and effective as others.

In effect, some F# implementation cannot as concise and expressive as other

language implementation due to lack of certain higher abstractions from F#.

Nevertheless, due to the natural implementation issues and strategies of the

said system, F# is still a better candidate for the development. In addition to its

interoperability with other .NET languages, F# lends itself to multi-paradigms

where it enables appropriate ‘polyglot programming’ to solve the practical

problems.

8.5 Future Work

In this thesis, a novel reengineering approach is proposed to reconcile the

underlying gap between requirements and implementation for Web services-

based context-aware systems. In terms of the discussions with respect to the

research questions, the research propositions, the original contributions, the

criteria of success, and the limitations, the following conclusions can be drawn.

The proposed context-aware Web services reengineering framework

(CAWSRF) is an overall framework on which other proposed frameworks and

models are found, i.e., Requirements Recovery Framework (RRF), Context-

Chapter 8 – Conclusions and Future Work

195

Aware Services Requirements Model (CASRM), requirements evolution model.

During the reimplementation process, context-oriented programming concept is

adopted. ContXFS as a library in F# is developed to facilitate this task.

Typically, the overall proposed framework approach consists of the following

core phases: legacy system assessment, services candidate discovery, services

reimplementation, and services integration.

The four case studies in Chapter 7 demonstrate that the overall reengineering

process is able to achieve reconciliation to a great extent. Nevertheless, the

research work in this thesis is not the terminus. Further work can be suggested

to be enhanced based on the current work.

 Due to the individuality of naming approaches to binding concept

discussed in Section 4.3.3 and Section 7.2.2, the initial and final

content names in SPM might appear rather different. A more clarified

concept naming mechanics (e.g., with ontology support) could be

introduced to address this problem.

 The modifying rules for the requirements evolution model in Figure

5.2 and Section 5.3 can be added some more concrete rules to improve

the efficiency of maintaining changing requirements.

 In addition to context-awareness and concurrency functional

requirements, the implementation of a Web services-based context-

aware system should be able to realise an architectural design and to

meet more combined requirements such as, reliability, scalability,

security, and portability.

 Further case studies are necessary to evaluate the present work as this

novel reengineering approach to evolution of the said systems is still at

a fairly early stage.

References

196

References

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P.

Steggles, “Towards a Better Understanding of Context and Context-

Awareness”, Handheld and Ubiquitous Computing, vol. 1707, pp. 304-

307, 1999.

[2] H. Ailisto, P. Alahuhta, V. Haataja, V. Kyllnen, and M. Lindholm,

“Structuring Context Aware Applications: Five-Layer Model and

Example Case”, In Proceedings of The Ubicomp Workshop on

Concepts and Models for Ubiquitous Computing, Göteborg, Sweden,

2002.

[3] R. Ali, F. Dalpiaz, and P. Giorgini, “A Goal-Based Framework for

Contextual Requirements Modeling and Analysis”, Requirements

Engineering, Vol. 15, Nr. 4, pp. 439–458, 2010.

[4] R. Ali, F. Dalpiaz, P. Giorgini, and V. E. S. Souza, “Requirements

Evolution: from Assumptions to Reality”, In Exploring Modelling

Methods for Systems Analysis and Design, 2011.

[5] D. R. de Almeida, C. de S. Baptista, E. R. da Silva, C. E. C. Campelo,

H. F. de Figueirêdo and Y. A. Lacerda, “A Context-Aware System

Based on Service-Oriented Architecture”, Proceedings of the 20th

International Conference on Advanced Information Networking and

Applications - Volume 1, pp. 205-210, IEEE Computer Society. 2006.

[6] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid,

“A Comparison of Context-Oriented Programming Languages”, In

International Workshop on Context Oriented Programming, pp.1-6,

2009.

References

197

[7] M. Appeltauer, R. Hirschfeld, M. Haupt and H. Masuhara, “ContextJ:

Context-oriented Programming with Java”, Computer Software, Vol.28,

No.1, pp. 272-292, 2011.

[8] D. Athanasopoulos, A. Zarras, V. Issarny, E. Pitoura, and P. Vassiliadis,

“CoWSAMI: Interface-Aware Context Gathering in Ambient

Intelligence Environments”, Pervasive Mob. Comput. , 4 (3), pp. 360-

389, 2008.

[9] M. Baldauf, S. Dustdar, and F. Rosenberg, “A Survey on Context-

Aware Systems”, International Journal of Ad Hoc and Ubiquitous

Computing, 2(4), pp.263–277, 2007.

[10] J. E. Bardram, “The Java Context Awareness Framework (JCAF) - A

Service Infrastructure and Programming Framework for Context-Aware

Applications,” Proceedings of the 3rd International Conference on

Pervasive Computing, Lecture Notes in Computer Science, Munich,

Germany, Springer Verlag. May 2005.

[11] F. Baude, D. Caromel, N. Furmento and D. Sagnol, “Overlapping

Communication with Computation in Distributed Object Systems”, In

Proceedings of the 7th International Conference on High Performance

Computing and Networking, pp. 744-754, Amsterdam, Netherland,

April 1999.

[12] K. H. Bennett, “Legacy Systems: Coping with Success”, IEEE Software,

1995.

[13] K. H. Bennett and V. Rajlich, “Software Maintenance and Evolution: A

Roadmap”, ICSE - Future of SE Track, pp.73-87, 2000.

[14] C. Bettini, O. Brdiczkab, K. Henricksenc, J. Indulskad, D. Nicklase, A.

Ranganathanf and D. Riboni, “A Survey of Context Modelling and

Reasoning Techniques”, Pervasive and Mobile Computing, 6(2), pp.

161- 180, 2010.

References

198

[15] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, "The Concept

Assignment Problem in Program Understanding", In Proceedings

International Conference on Software Engineering, Baltimore,

Maryland, pp. 482 – 498, 1993.

[16] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy Information

System Migration: A Brief Review of Problems, Solutions and

Research Issues”, IEEE Software, vol. 16, no. 5, pp. 103-111,

September/October 1999.

[17] J. Bloch, “Effective Java”, Prentice Hall, First Edition, June 2001.

[18] M. Brodie and M. Stonebraker, “Migrating Legacy Systems: Gateways,

Interfaces, and the Incremental Approach”, Morgan Kauffman, March

1995.

[19] L. Capra, W. Emmerich, and C. Mascolo, “Reflective Middleware

Solutions for Context-Aware Applications”, in Proc. of REFLECTION

2001. The Third International Conference on Metalevel Architectures

and Separation of Crosscutting Concerns, Kyoto, Japan, vol. 2192 of

LNCS, pp. 126–133, September 2001.

[20] C. K. Chang, H. Jiang, H. Ming, and K. Oyama, “Situ: A Situation

Theoretic Approach to Context-Aware Service Evolution”, IEEE

Transactions on Services Computing, vol. 99, no. PrePrints, pp. 261–

275, 2009.

[21] F. Chen, Z. Zhang, J. Li and H. Yang, “Service Identification via

Ontology Mapping”, 33rd Annual IEEE International Computer

Software and Applications Conference, Seattle, WA, pp. 486-491, 2009.

[22] F. Chen, H. Zhou, H. Yang, M. Ward, and W. C. Chu, “Requirements

Recovery by Matching Domain Ontology and Program Ontology”,

IEEE 35th Annual Computer Software and Applications Conference,

pp.602–607, July 2011.

References

199

[23] G. Chen, and D. Kotz, “A Survey of Context-Aware Mobile Computing

Research”, Hanover, NH, USA, Dartmouth College, 2000.

[24] H. Chen, “An Intelligent Broker Architecture for Pervasive Context-

Aware Systems”, PhD thesis, University of Maryland, Baltimore

County. 2004.

[25] I. Y. L. Chen, S. J. Yang, and J. Zhang, “Ubiquitous Provision of

Context Aware Web Services”, Proceedings of the IEEE International

Conference on Services Computing, pp. 60-68, Washington: IEEE

Computer Society. 2006.

[26] B. H. C. Cheng and J. M. Atlee, “Research Directions in Requirements

Engineering”, In Future of Software Engineering, IEEE Computer

Society Washington, DC, USA, pp. 285-303, 2007.

[27] E. Chikofsky and J. Cross, “Reverse Engineering and Design Recovery:

A Taxonomy”, IEEE Software, vol. 7, no. 1, pp. 13-17, January 1990.

[28] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non-Functional

Requirements in Software Engineering. Boston: Kluwer Academic

Publishers. 2000.

[29] ContextChat, “ContextChat”,

http://home.dei.polimi.it/salvaneschi/software/contexterlang/contexterla

ng.html [Retrieved: Jan 2012].

[30] COP Implementations, “COP Implementations of Language Extensions

Such as ContextJ, ContextJS, ContextS, ContextL, and ContextPy”,

http://www.swa.hpi.uni-potsdam.de/cop/ [Retrieved: Oct 2011].

[31] P. Costanza and R. Hirschfeld, “Language Constructs for Context-

Oriented Programming: An Overview of ContextL”, In Proceedings of

the Dynamic Languages Symposium, co-organised with OOPSLA'05,

New York, NY, USA, ACM Press, 2005.

http://home.dei.polimi.it/salvaneschi/software/contexterlang/contexterlang.html
http://home.dei.polimi.it/salvaneschi/software/contexterlang/contexterlang.html
http://www.swa.hpi.uni-potsdam.de/cop/

References

200

[32] A. van Deursen and P. Klint, “Little Languages: Little Maintenance?”

ACM SIGPLAN Workshop on Domain-Specific Languages. 1997.

[33] A. van Deursen and P. Klint, “Domain–Specific Language Design

Requires Feature Descriptions”, Journal of Computing and Information

Technology, 10(1), pp. 1–17, 2002.

[34] A. K. Dey, “Understanding and Using Context”, Personal and

Ubiquitous Computing, vol. 5, pp. 4-7, 2001.

[35] G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and U. De

Carlini, “Comprehending Web Applications by a Clustering Based

Approach”, In Proc. of the 10th International Workshop on Program

Comprehension, pp. 261–270, Paris, France, June 2002.

[36] D-Bus, “D-Bus”, http://www.freedesktop.org/wiki/Software/dbus

[Retrieved: Jan 2012].

[37] M. El-Ramly, E. Stroulia, and P. Sorenson, “Recovering Software

Requirements from System-User Interaction Traces”, In Proceedings of

the 14th international conference on Software engineering and

knowledge engineering, pp. 447–454, 2002.

[38] N. A. Ernst, J. Mylopoulos, and Y. Wang, “Requirements Evolution

and What (Research) to Do about It”, In Design Requirements

Engineering: A Ten-Year Perspective, volume 14, chapter 3, pp. 186-

214, Springer Berlin Heidelberg, 2009.

[39] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec, “The

Many Faces of Publish/Subscribe”, ACM Comp. Surveys, vol.35, no.2,

pp.114-131, 2003.

[40] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “Controlling

Requirements Evolution: A Formal Concept Analysis-Based Approach”,

In International Conference on Software Engineering Advances. 2007.

http://www.freedesktop.org/wiki/Software/dbus

References

201

[41] M. Felici, “Taxonomy of Evolution and Dependability”, In Proceedings

of the Second International Workshop on Unanticipated Software

Evolution, USE, Warsaw, Poland, pp. 95–104, 5-6 April 2003.

[42] M. Felici, “Observational Models of Requirements Evolution”, PhD

thesis, Laboratory for Foundations of Computer Science, School of

Informatics, The University of Edinburgh, 2004.

[43] A. Finkelstein and A. Savigni, “A Framework for Requirements

Engineering for Context-Aware Services”, First International

Workshop from Software Requirements to Architecture, 23d

International Conference on Software Engineering, 2001.

[44] M. Fowler, “Refactoring: Improving the Design of Existing Programs”,

Addison-Wesley, 1999.

[45] F#, “F# at Microsoft Research”, http://research.microsoft.com/en-us/

[Retrieved: Oct 2011].

[46] F# Language Specification, “The F# 2.0 Language Specification”, April

2010. http://research.microsoft.com/en-us/ [Retrieved: Oct 2011].

[47] M. Galster and E. Bucherer, “A Taxonomy for Identifying and

Specifying Non-Functional Requirements in Service-Oriented

Development”, In Proceedings of the IEEE Congress on Services - Part

I, pp. 345–352, Washington, DC, USA, 2008.

[48] M. L. Gassanenko, “Context-Oriented Programming”, In EuroForth'98,

Schloss Dagstuhl, Germany, April 1998.

[49] Geoclue, “Geoclue”,

http://www.freedesktop.org/wiki/Software/GeoClue [Retrieved: Jan

2012].

http://research.microsoft.com/en-us/
http://research.microsoft.com/en-us/
http://www.freedesktop.org/wiki/Software/GeoClue

References

202

[50] Geolocation, “The Geolocation API”,

http://code.google.com/apis/gears/api_geolocation.html#overview

[Retrieved: Jan 2012].

[51] C. Ghezzi, M. Pradella, and G. Salvaneschi, “Programming Language

Support to Context-Aware Adaptation - A Case-Study with Erlang,”

Software Engineering for Adaptive and Self-Managing Systems,

International Workshop, ICSE 2010.

[52] N. Gold and K. H. Bennett, “Hypothesis-Based Concept Assignment in

Software Maintenance”, IEEE Proceedings Software, 149(4): pp. 103–

110, 2002.

[53] N. E. Gold, M. Harman, D. Binkley, and R. M. Hierons, “Unifying

Program Slicing and Concept Assignment for Higher-Level Executable

Source Code Extraction”, Software Practice and Experience 35 (10), pp.

977–1006, 2005.

[54] B. Han, W. Jia, J. Shen, and M. C. Yuen, “Context-Awareness in

Mobile Web Services”, Parallel and Distributed Processing and

Applications, pp. 519-528, Springer-Verlag. 2008.

[55] S. D. P. Harker, K. D. Eason, and J. E. Dobson, “The Change and

Evolution of Requirements as A Challenge to The Practice of Software

Engineering”, In: IEEE International Symposium on Requirements

Engineering, pp. 266–272, 1993.

[56] R. Hirschfeld, P. Costanza, O. Nierstrasz, “Context-Oriented

Programming”, Journal of Object Technology 7(3), March/April 2008.

[57] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, and J.

Altmann, “Context-Awareness on Mobile Devices – The Hydrogen

Approach”, In Proceedings of the 36th Annual Hawaii International

Conference on System Sciences, pp. 292–302, 2002.

http://code.google.com/apis/gears/api_geolocation.html#overview

References

203

[58] J. Huang, H. Yang, and L. Liu, “Reconciling Requirements and

Implementation via Reengineering for Context-Aware Service

Evolution”, IEEE 35th Annual Computer Software and Applications

Conference Workshops, pp.464–469, July 2011.

[59] J. Huang, H. Yang, L. Xu, B. Xu, and H. Zhang, “Supporting Context-

Aware Service Evolution with A Process Management Requirements

Model”, Knowledge and Service Technology for Life, Environment, and

Sustainability, International Workshop, SOCA 2011.

[60] J. Huang and H. Yang, “A Functional Implementation Approach for

Web Services-based Context-Aware Systems”, (Submitted to

Compsac2012).

[61] P. Hudak, “Conception, Evolution, and Application of Functional

Programming Languages” ACM Computing Surveys 21(3): pp. 359–411,

September 1989.

[62] IEEE Standard Definition of Software Engineering, “IEEE Standard

Collection: Software Engineering”, IEEE Inc., New York, 1997.

[63] IntelliFactory, “IntelliFactory”, http://www.intellifactory.com/

[Retrieved: Oct 2011].

[64] R. Keays and A. Rakotonirainy, “Context-Oriented Programming”, In

Proceedings of the 3rd ACM international workshop on Data

engineering for wireless and mobile access, pp. 9-16, ACM Press, New

York, NY, USA, 2003.

[65] M. Keidl, and A. Kemper, “Towards Context-Aware Adaptable Web

Services”, In: Proc. of 13th Int. World Wide Web Conference, New

York, pp. 55–65, 2004.

http://www.intellifactory.com/

References

204

[66] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing Conflicts

in Goal-Driven Requirements Engineering”, IEEE Transactions on

Software Engineering, 24(11): pp. 908-926, 1998.

[67] A. van Lamsweerde, “Requirements Engineering in the Year 00: A

Research Perspective”, In Proceedings of the 22nd International

Conference on Software engineering, pp. 5–19, Limerick, Ireland, 4-11

June 2000.

[68] A. Van Lamsweerde and E. Letier, “Handling Obstacles in Goal-

Oriented Requirements Engineering,” IEEE Transactions on Software

Engineering, 26: pp. 978-1005, 2000.

[69] A. van Lamsweerde, “Goal-Oriented Requirements Engineering: A

Guided Tour”, Proc. of the 5th International Symposium on

Requirements Engineering, pp. 249- 262, 2001.

[70] F. Lanubile and G. Visaggio, “Extracting Reusable Functions by Flow

Gragh-Based Program Slicing,” IEEE Transactions on Software

Engineering, vol. 23, no. 4, pp. 246-259, April 1997.

[71] P. A. Laplante, J. Zhang, and J. Voas, “What’s in a Name?

Distinguishing between SaaS and SOA”, IT Professional, 10(3), pp.

46–50, May-June 2008.

[72] M. M. Lehman, and J. F. Ramil, “Software Evolution – Background,

Theory, Practice”, Inf. Process. Lett. 88 (1-2), 2003.

[73] K. J. Lieberherr, and C. Xiao, “Object-Oriented Software Evolution”,

IEEE Trans. Software Eng. 19 (4), 1993.

[74] K. Liu, A. Alderson, and Z. Qureshi, “Requirements Recovery from

Legacy Systems by Analysing and Modelling Behaviour”, in the

proceedings of International Conference on Software Maintenance, pp.

2-12,1999.

References

205

[75] K. Liu, “Requirements Reengineering from Legacy Information

Systems Using Semiotic Techniques”, Systems, Signs and Actions –

The International Journal on Communication, Information Technology

and Work, vol. 1 (1), pp. 36–61, 2005.

[76] M. Lormans, “Monitoring Requirements Evolution Using Views”, In

Proceedings of the European Conference on Software Maintenance and

Reengineering, pp. 349–352, 2007.

[77] M. von Lowis, M. Denker, and O. Nierstrasz, “Context-Oriented

Programming: Beyond Layers”, In Proceedings of the International

Conference on Dynamic Languages, volume 286 of ACM International

Conference Proceeding Series, pp. 143-156, ACM Press. 2007.

[78] N. Maiden, “CREWS-SAVRE: Scenarios for Acquiring and Validating

Requirements”, Automated Software Engineering, 5(4): pp. 419-446,

1998.

[79] H. Mei and X. Liu, “Internetware: An Emerging Software Paradigm for

Internet Computing”, Journal of Computer Science and Technology,

Volume 26, Number 4, pp. 588-599, 2011.

[80] T. Mens, and T. Tourwé, “A Survey of Software Refactoring”, IEEE

Trans. Software Engineering, 30(2) pp.126–162, February 2004.

[81] A. Monden, S. Sato, K. Matsumoto, and K. Inoue, "Modeling and

Analysis of Software Aging Process", Lecture Notes in Computer

Science, Vol. 1840, pp. 140 - 153, 2000.

[82] MPI, “The Massage Passing Interface Standard”, http://www-

unix.mcs.anl.gov/mpi [Retrieved: Oct 2011].

[83] MSDN, “Microsoft Developer Network Platforms”,

http://msdn.microsoft.com/en-us/default.aspx [Retrieved: Jan 2012]

http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi
http://msdn.microsoft.com/en-us/default.aspx

References

206

[84] B. Nuseibeh, “A Multi-Perspective Framework for Method Integration”,

PhD Thesis, Department of Computing, Imperial College, London,

October 1994.

[85] B. Nuseibeh and S. Easterbrook, “Requirements Engineering: A

Roadmap”, In Proceedings of the Conference on The Future of

Software Engineering, pp. 35-46, New York, NY, USA, ACM, 2000.

[86] B. Nuseibeh, J. Kramer, and A. Finkelstein, “ViewPoints: Meaningful

Relationships are Difficult!” In Proceedings of the 25th International

Conference on Software Engineering, Portland, Oregon, USA. IEEE

Computer Society, 2003.

[87] W. F. Opdyke, “Refactoring: A Program Restructuring Aid in

Designing Object-Oriented Application Frameworks”, PhD thesis,

University of Illinois at Urbana-Champaign, 1992.

[88] Openmobster, “Openmobster”, http://code.google.com/p/openmobster/

[Retrieved: Dec 2011].

[89] K. Oyama, C. Chang, H. Jaygarl, A. Takeuchi, J. Xia, and H. Fujimoto,

“Requirements Analysis Using Feedback from Context Awareness

Systems”, In Proc. Computer Software and Applications Conference,

pp.625—630, 2008.

[90] M. P. Papazoglou, “The Challenges of Service Evolution”, In

Proceedings of the 20th international conference on Advanced

Information Systems Engineering 2008.

[91] Path of Go, “The Path of Go”, http://research.microsoft.com/en-

us/projects/pathofgo/ [Retrieved: Jan 2012].

[92] A. G. de Prado and G. Ortiz, “Context-Aware Services: A Survey on

Current Proposals”, The Third International Conferences on Advanced

Service Computing, Service Computation 2011.

http://code.google.com/p/openmobster/
http://research.microsoft.com/en-us/projects/pathofgo/
http://research.microsoft.com/en-us/projects/pathofgo/

References

207

[93] A. Rakotonirainy, “Context-Oriented Programming for Pervasive

Systems”, Technical Report, University of Queensland, September

2002.

[94] C. Rolland, “Panel on Requirements Engineering for Services”, the

33rd Annual IEEE International Computer Software and Applications

Conference, 20-24 July, pp.19-24, 2009.

[95] B. Schilit, and M. Theimer, “Disseminating Active Map Information to

Mobile Hosts”, IEEE Network, 8(5) pp. 22-32, 1994.

[96] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing

Applications”, 1st International Workshop on Mobile Computing

Systems and Applications. pp. 85-90, 1994.

[97] N. F. Schneidewind and C. Ebert, “Preserve or Redesign Legacy

Systems”, IEEE Software, Vol. 15, No. 4, pp. 14 - 17, July/August

1998.

[98] A. Shet, P. Sadayappan, D. Bernholdt, J. Nieplocha, and V. Tipparaju,

“A Framework for Characterizing Overlap of Communication and

Computation in Parallel Applications”, Cluster Computing, vol. 11, no.

1, pp. 75–90, March 2008.

[99] A. Sivasubramaniam, “Reducing the Communication Overhead of

Dynamic Applications on Shared Memory Multiprocessors”, Technical

Report CSE-96-047, Dept. of Computer Science and Engineering, The

Pennsylvania State University, July 1996.

[100] H. Sneed, “Planning the Re-engineering of Legacy Systems”, IEEE

Software, vol. 12, no. 1, pp. 24 – 34, January 1995.

[101] A. Sohn, J. Ku, Y. Kodama, M. Sato, H. Sakane, H. Yamana, S. Sakai,

and Y. Yamaguchi, “Identifying the Capability of Overlapping

Computation with Communication”, In Proceedings of ACM/IEEE

References

208

Conference Parallel Architectures and Compilation Techniques, pp.

133-138,1996.

[102] I. Sommerville and P. Sawyer, “Requirements Engineering”, Wiley,

1997.

[103] D. Syme, “Leveraging .NET Meta-Programming Components from F#:

Integrated Queries and Interoperable Heterogeneous Execution”, In

Proceedings of the ACM SIGPLAN Workshop on ML and its

Applications, pp. 43-54, 2006.

[104] D. Syme, A. Granicz, and A. Cisternino, “Expert F# 2.0”, Apress, 2010.

[105] D. Syme, T. Petricek, D. Lomov, “The F# Asynchronous Programming

Model”, In Practical Aspects of Declarative Languages, pp. 175-189,

2011.

[106] D. Syme, “Don Syme's WebLog on F# and Related Topics”,

http://blogs.msdn.com/b/dsyme [Retrieved: Oct 2011].

[107] F. Tip, “A Survey of Program Slicing Techniques”, Journal of

Programming Languages 3, pp. 121–189. 1995.

[108] H. L. Truong, L. Juszczyk, A. Manzoor, and S. Dustdar, “ESCAPE -

An Adaptive Framework for Managing and Providing Context

Information in Emergency Situations”, Smart Sensing and Context,

Second European Conference, EuroSSC, pp. 207-222, Springer-

Velag.2007.

[109] H. L. Truong and S. Dustdar, “A Survey on Context-Aware Web

Service Systems,” International Journal of Web Information Systems,

5(1): pp. 5–31, 2009.

[110] E. Truyen, N. Cardozo, S. Walraven, J. Vallejos, E. Bainomugisha, S.

Günther, T. D’Hondt, W. Joosen, “Context-Oriented Programming for

Customizable SaaS Applications”, (accepted paper) The 27th

http://blogs.msdn.com/b/dsyme

References

209

Symposium On Applied Computing, Cloud Computing Track, Italy,

March 2012.

[111] W. Tsai, Z. Jin, and X. Bai, “Internetware Computing: Issues and

Perspective”, Int J Software Informatics, Vol.3, No.4, pp. 415-438,

December 2009.

[112] T. T. Tun, Y. Yu, R. Laney, and B. Nuseibeh, “Recovering Problem

Structures to Support the Evolution of Software Systems”, Technical

report, The Open University, 2008.

[113] UWCN, “University of Washington Campus Navigator”,

http://uwcampusnav.sourceforge.net [Retrieved: Mar 2011].

[114] S. Vinoski, “Welcome to the Functional Web”, IEEE Internet

Computing, pp. 102–104, January 2009.

[115] P. Wadler, “Why No One Uses Functional Languages”, ACM SIGPLAN

Notices, pp. 23-27, 1988.

[116] M. Waldburger, C. Morariu, P. Racz, J. Jähnert, S. Wesner, B. Stiller,

“Grids in A Mobile World: Akogrimo’s Network and Business Views”,

IFI Technical Report No.05, University of Zurich, 2006.

[117] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge

Location System”, ACM Transactions on Information Systems 10(1) pp.

91-102, 1992.

[118] WebSharper, “WebSharper”, http://www.websharper.com [Retrieved:

Jan 2012].

[119] M. Weiser, “Program Slices: Formal, Psychological, and Practical

Investigations of an Automatic Program Abstraction Method”, PhD

thesis, University of Michigan, Ann Arbor, 1979.

http://uwcampusnav.sourceforge.net/
http://www.websharper.com/

References

210

[120] M. Weiser. “Programmers Use Slices When Debugging”,

Communications of the ACM, 25(7): pp. 446–452, 1982.

[121] M. Weiser, “Program Slicing”, IEEE Transactions on Software

Engineering, 10(4): pp. 352–357, 1984.

[122] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A Brief Survey of

Program Slicing”, SIGSOFT Software Engineering Notes, 30, 2, pp. 1-

36, 2005.

[123] F. Yang, J. Lv, and H. Mei, “Technical Framework for Internetware:

An Architecture-Centric Approach”, Science in China Series F:

Information Sciences. pp. 610-622, 2008.

[124] H. Yang and M. Ward, “Successful Evolution of Software Systems”,

Artech House Publishers, January 2003.

[125] H. Yang, Z. Cui and P. O'Brien, “Extracting Ontologies from Legacy

Systems for Understanding and Re-engineering”, 23rd Annual

International Computer Software and Applications Conference,

Phoenix, AZ, October 1999.

[126] Yaws, “Yaws”, http://yaws.hyber.org/ [Retrieved: Jan 2012].

[127] E. S. Yu, “Towards Modelling and Reasoning Support for Early-Phase

Requirements Engineering”, 3rd IEEE Int. Symp. On Requirements

Engineering, pp. 226-235, 1997.

[128] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, and J. C.

S. do Prado Leite, “Reverse Engineering Goal Models from Legacy

Code”, In 13th IEEE International Conference on Requirements

Engineering, pp. 363–372, 2005.

[129] Y. Yu, J. Mylopoulos, Y. Wang, S. Liaskos, A. Lapouchnian, Y. Zou,

M. Littou, and J. C. S. P. Leite, “RETR: Reverse Engineering to

http://yaws.hyber.org/

References

211

Requirements”, In 12th Working Conference on Reverse Engineering,

7-11 November 2005, Pittsburgh, PA, USA, pp. 234-234, 2005.

[130] B. Zagajsek, K. Separovic, and Z. Car, “Requirements Management

Process Model for Software Development Based on Legacy System

Functionalities”, 9th International Conference on Telecommunications,

pp.115-122, 2007.

[131] P. Zave, “Call for Papers and Associated Classification Scheme”, IEEE

International Symposium on Requirements Engineering, 1995.

[132] Z. Zhang, H. Yang, and W. Chu, “Extracting Reusable Object-Oriented

Legacy Code Segments with Combined Formal Concept Analysis and

Slicing Techniques for Service Integration”, IEEE Proceedings of 6th

International Conference of Software Quality (QSIC), pp. 385–392,

2006.

[133] A. V. Zhdanova, J. Zoric, M. Marengo, H. van Kranenburg, N. Snoeck,

M. Sutterer, C. Räck, O. Droegehorn, and S. Arbanowski, “Context

Acquisition, Representation and Employment in Mobile Service

Platforms”, Proceedings of 15th IST Mobile & Wireless

Communications Summit 2006.

[134] Y. Zou and K. Kontogiannis, “Migration to Object Oriented Platforms:

A State Transformation Approach”, In ICSM Proceedings of the

International Conference on Software Maintenance (ICSM’02), pp.

530– 539, 2002.

Chapter 0 A Prototype Implementation of ContXFS and Its Testing Smaples

212

Appendix A Prototype Implementation

of ContXFS and Its Test Samples

This section presents a prototype implementation of ContXFS and the test

samples of using this library. This agent-based ContXFS implementation is

inspired by ‘A simpler F# MailboxProcessor
1
’. Since it is a demonstration of

ways in implementing a potential system, it does not cover all the components

necessary to build a whole context-aware Web services application.

namespace MyPhDThesis

module ContXFS =

 //Messages for Control Purpose

 type internal ControlMessage<'T, 'State> =

 | Continue

 | Stop

 | Restart

 | GetControlState of 'State

 | SetControlState of AsyncReplyChannel<'State>

 | SetAgentHandler of ('T -> 'State -> 'State)

 //Messages

 type internal Message<'T, 'State> =

 | UserMsg of 'T

 | ControlMsg of ControlMessage<'T, 'State>

 | GetUserState of 'T

 | SetUserState of AsyncReplyChannel<'T>

 //Operations when errors occur

 type AfterError<'State> =

 | ContinueProcessing of 'State

 | StopProcessing

 | RestartProcessing

1
 http://blogs.msdn.com/b/lucabol/

http://blogs.msdn.com/b/lucabol/

Chapter 0 A Prototype Implementation of ContXFS and Its Testing Smaples

213

 //MailboxProcessor extension

 type MailboxProcessor<'T> with

 //Construct message-passing state agents

 static member SpawnAgent<'State>(messageHandler: 'T -> 'State -> 'State,

 initialState: 'State,

 ?timeout: 'State -> int,

 ?timeoutHandler: 'State -> AfterError<'State>,

 ?errorHandler: exn -> 'T option -> 'State -

> AfterError<'State>

) : MailboxProcessor<'T> =

 //Initialise the optional arguments

 let timeout = defaultArg timeout (fun _ -> -1)

 let timeoutHandler = defaultArg timeoutHandler (fun state -

> ContinueProcessing(state))

 let errorHandler = defaultArg errorHandler (fun _ _ state -

> ContinueProcessing(state))

 //Wrap MailboxProcessor

 MailboxProcessor.Start(fun agent ->

 let rec loop(state) = async {

 let! controlMsg = agent.TryScan((fun msg -

> if (msg.GetType().IsAssignableFrom(typeof<ControlMessage<_,_>>)) then Some (

async.Return msg)

 else None), 0)

 match controlMsg with

 | Some m -> return! loop(state)

 | None -> return! loopAll(state)

 }

 and loopAll(state) = async {

 let! userMsg = agent.TryReceive(timeout(state))

 try

 match userMsg with

 //If timeout, timeoutHandler is called according to error types

 | None ->

 match timeoutHandler(state) with

 | ContinueProcessing(newState) -> return! loop(newState)

 | StopProcessing -> return ()

 | RestartProcessing -> return! loop(initialState)

 //If successful, handler the message

 | Some m -> return! loop(messageHandler m state)

 with

 //If exception is thrown, errorhandler is invoked

 | ex -> match errorHandler ex userMsg state with

 | ContinueProcessing(newState) -> return! loop(newState)

 | StopProcessing -> return ()

 | RestartProcessing -> return! loop(initialState)

 }

 loop(initialState)

Chapter 0 A Prototype Implementation of ContXFS and Its Testing Smaples

214

)

 //Construct stateless agents, i.e.,workers

 static member SpawnWorker(messageHandler, ?timeout, ?timeoutHandler, ?error

Handler) =

 let timeout = defaultArg timeout (fun _ -> -1)

 let timeoutHandler = defaultArg timeoutHandler (fun _ -

> ContinueProcessing ())

 let errorHandler = defaultArg errorHandler (fun _ _ -> ContinueProcessing ())

 MailboxProcessor.SpawnAgent((fun msg _ -

> messageHandler msg; ()), (), timeout, timeoutHandler,

 (fun ex msg _ -> errorHandler ex msg))

 //Construct worker agents for parallel computing

 static member SpawnParallelWorker(messageHandler, workerNums, ?timeout, ?t

imeoutHandler, ?errorHandler) =

 let timeout = defaultArg timeout (fun _ -> -1)

 let timeoutHandler = defaultArg timeoutHandler (fun _ -

> ContinueProcessing ())

 let errorHandler = defaultArg errorHandler (fun _ _ -> ContinueProcessing ())

 MailboxProcessor.SpawnAgent((fun msg (agentWorkers: array<MailboxProce

ssor<_>>, index) ->

 agentWorkers.[index].Post msg

 (agentWorkers, (index+1) % workerNums)),

 (Array.init workerNums (fun _ -

> MailboxProcessor<_>.SpawnWorker(messageHandler, timeout, timeoutHandler, err

orHandler)), 0))

 //Facilitate agent Post method

 let public (<--) (a:MailboxProcessor<_>) msg = a.Post msg

Test1 sample is to demonstrate the ways of building other agents by using the

extended static method:

module Test1 =

 open ContXFS

 //An abbreviation for MailboxProcessor

 type Agent<'T> = MailboxProcessor<'T>

 //Messages for agent to process

 type internal Message = MultiplePlus of int * int | AsyncGetContent of AsyncReply

Channel<int> | Stop | Restart (*control messages and user's messages mix up*)

 //Define an F# exception type

 exception Exp

Chapter 0 A Prototype Implementation of ContXFS and Its Testing Smaples

215

 //Use extended static member SpawnAgent to create a new agent

 type NumberAgent() =

 let counter = MailboxProcessor.SpawnAgent((fun msg n ->

 //process message accordingly

 match msg with

 | MultiplePlus (m, p) -> (m*p)+n

 | Stop -> raise (Exp)

 | Restart -> raise (Exp)

 | AsyncGetContent reply ->

 do reply.Reply n

 n

),

 0, (*initial state*)

 (fun s -> if s=8 then 1000 else -1), (*timeout condition*)

 (fun _ -> printfn "Restar"; RestartProcessing), (*handler timeout*)

 (fun _ _ _ -> printfn "Stop"; StopProcessing)) (*handler error*)

 //Use agent counter to build NumberAgent object

 member a.MultiplePlus n = counter.Post(MultiplePlus n)

 member a.Stop() = counter.Post(Stop)

 member a.Restart() = counter.Post(Restart)

 member a.AsyncGetContent() = counter.PostAndReply(fun reply -

> AsyncGetContent reply)

 //Create an NumberAgent()

 let counter' = NumberAgent()

 //(1*2)+0

 counter'.MultiplePlus(1,2)

 //2

 counter'.AsyncGetContent()

 //(2*3)+2

 counter'.MultiplePlus(2,3)

 //8, then Restar is printed as the timeout condition is fulfilled

 counter'.AsyncGetContent()

 //Stop

 counter'.Stop()

 //Restart

 counter'.Restart()

Chapter 0 A Prototype Implementation of ContXFS and Its Testing Smaples

216

Test2 sample takes the code example from the F# research website [45] and the

code sample is rewritten based on ContXFS.

module Test2 =

 open System.Xml.Linq

 open ContXFS

 type Agent<'T> = MailboxProcessor<'T>

 exception Exp

 //ChatMessage for agent to process

 type internal ChatMessage =

 | SendMessage of string

 | GetMessage of AsyncReplyChannel<string>

 //Create a new agent

 type ChatRoom() =

 //Only messagehandler and initial state are given

 let agent = Agent.SpawnAgent((fun msgs lst ->

 match msgs with

 | SendMessage m ->

 let m = XElement(XName.Get("li"), msgs)

 m :: msgs

 | GetMessage reply ->

 let html = XElement(XName.Get("ul"), msgs)

 do reply.Reply(html.ToString())

 msgs), [] (*other handlers can be implemented here*)

)

 //Build members via delegation

 member x.SendMessage(msg) = agent.Post(SendMessage msg)

 member x.AsyncGetMessage(?timeout) = agent.PostAndAsyncReply(GetMessag

e, ?timeout=timeout)

 member x.GetMessage() = agent.PostAndReply(GetMessage)

 //Asynchronously get messages without cancellationToken

 member x.GetMessageAsync() =

 Async.StartAsTask(agent.PostAndAsyncReply(GetMessage))

 //Asynchronously get messages with cancellationToken

 member x.GetContentAsync(cancellationToken) =

 Async.StartAsTask(agent.PostAndAsyncReply(GetMessage), cancellationTok

en=cancellationToken)

Appendix B List of Publications

217

Appendix B List of Publications

[1] Jianchu Huang and Hongji Yang, “A Functional Implementation

Approach for Web Services-based Context-Aware Systems”, IEEE 36th

Annual Computer Software and Applications Conference Workshops,

July 2012.

[2] Jianchu Huang, Hongji Yang, Lei Xu, Baowen Xu, and He Zhang,

“Supporting Context-Aware Service Evolution with A Process

Management Requirements Model”, Knowledge and Service

Technology for Life, Environment, and Sustainability, International

Workshop, SOCA 2011.

[3] Jianchu Huang, Hongji Yang, and Lei Liu, “Reconciling Requirements

and Implementation via Reengineering for Context-Aware Service

Evolution”, IEEE 35th Annual Computer Software and Applications

Conference Workshops, pp.464–469, July 2011.

[4] Jian Kang, Jianzhi Li, Jianchu Huang, Yingchun Tian, and Hongji Yang,

“Automating Business Intelligence Recovery from a Web-based

System”, 21st International Conference on Software Engineering and

Knowledge Engineering, pp. 262-267, July 2009.

[5] Jian Kang, Jianjun Pu, Jianchu Huang, Zihou Zhou, and Hongji Yang,

“Business Intelligence Recovery from Legacy Code”, IEEE 32nd

Annual Computer Software and Applications Conference, pp. 765-770,

July/August 2008.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kang:Jian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pu:Jianjun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhou:Zihou.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yang:Hongji.html

