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Abstract—This paper proposes a novel three-dimensional (3D)
cylinder geometry-based stochastic model (GBSM) for non-
isotropic multiple-input multiple-output (MIMO) Rice fading
channels in high-speed train (HST) wireless communications
under deep cutting scenarios. Using a validated approximation,
the closed-form expression of the space-time correlation function
(ST CF) of the proposed GBSM is obtained. Different from two-
dimensional (2D) channel models, in the 3D GBSM the elevation
angles and the height of the base station (BS) antenna relative
to the mobile station (MS) one are introduced.The numerical
results show the rationality of the approximation and how the
arrangements of antennas affect the ST CF.

Index Terms—Three dimensional cylinder model, cutting s-
cenario, channel modeling, high speed railway, multiple-input
multiple-output

I. INTRODUCTION

Channel modeling for HST wireless communication sys-
tems has attracted great interests recently, due to the rapid de-
velopment of HSTs. HSTs can operate across many scenarios
during its travel, such as viaduct, cutting (or U-shape groove),
tunnel, etc. Cutting, as one of the most common scenarios
of HST communications, is used for ensuring the train’s high
speed travel and the smoothness of rails. It is usually built on
uneven round or “cut” through hills. The depths and slopes
of the walls on both sides of the rail are almost the same [1].
Cutting can be further divided into two kinds: deep cutting
and low cutting, depending on whether the upper eave of
the cutting is higher than the antennas of the train or not.
In this paper, we focus on the deep cutting scenario, as the
deep cutting results in lots of reflection and scattering from
the walls, therefore the propagation characteristics are very
different from other HST scenarios. Fig. 1 shows a detailed
structure of a deep cutting scenario.

Although some measurement campaigns [1]–[4] have been
conducted for cutting scenarios, little work on channel model-
ing of cutting has been undertaken. The existing well-known
models such as WINNER II [5] and LTE-R [6], do not cover
cutting scenarios. In [7], a one-ring model was proposed
for HST channels in cutting scenarios. The scatterers were
assumed to be distributed on a ring around the MS. In [8],
[9], ellipse models were introduced, where time-varying model
parameters and non-stationarity characters were considered.
However, all the aforementioned models for HST channels
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Fig. 1. The geometry of a deep cutting HSR scenario

assumed that the waves are traveling from BS to MS in the
horizontal plane only. This assumption is valid for rural or
viaduct but it is impractical for the deep cutting scenario where
the trains’ antenna arrays are located close to and lower than
the walls of the cutting. Scattered waves may propagate by
diffraction from both side walls, up or down to the antennas
of the train and thus not travel in the horizontal plane only.
Consequently, 3D channel models are needed.

A channel model for cutting based on 3D ray-tracing was
proposed in [10]. The scatterers were modeled by rectangular
boxes, where the dimensions of the boxes were generated
statistically. As the channel parameters are described in a
completely deterministic way, the model is accurate but very
complicated. To avoid such a high complexity without a signif-
icant accuracy loss, a semi-deterministic model for cutting was
proposed in [11], where only large-scale fading was considered
and small-scale fading was neglected. In [12], a 3D one-sphere
model was introduced to describe the scatterers in urban and
suburb scenarios of HST systems. The model of cutting in the
paper was also generated in a deterministic way. To the best
of the authors’ knowledge, there is no regular-shaped GBSM
(RS-GBSM) for HST cutting scenarios yet. RS-GBSM has
widely been used for channel modeling due to the convenience
for theoretical analysis of channel statistics [13]. In this paper,
based on the characteristics of deep cutting, a 3D RS-GBSM
is proposed.



Vertical cylinder [14]–[16] is chosen to model the scattering
surfaces and diffracting edges of the deep cutting. Though the
steep walls are not straight vertical surfaces, walls are usually
covered by grass and reinforced concrete, where diffuse re-
flectance occurs. Compared with the distance between BS and
MS, the length of the slope is very small. Both sides of walls
have the same depths and slopes, making a “canyon” form.
Cylinder has been proved efficiently to model a “canyon” [15].

The rest of paper is organized as follows. The details of
the proposed 3D model are described in Section II. The ST
CF of the model is derived in Section III. Section IV presents
the numerical results. Finally, some concluding remarks are
highlighted in Section V.

II. THE THREE DIMENSIONAL CHANNEL MODEL

Considering a downlink MIMO channel, the numbers of
BS antennas and MS antennas are denoted by LT and LR,
respectively. The number of antenna elements are 1 ≤ p ≤
p′ ≤ LT and 1 ≤ q ≤ q′ ≤ LR. Here, we take a 2× 2 MIMO
channel as an example.
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Fig. 2. The 3D cylinder GBSM for a HST communication system under
deep cutting scenarios.

Fig. 2 shows the proposed model with the geometry of line-
of-sight (LoS) and the single-bounce (SB) components. There
are N effective local scatterers lying on the lateral surface of a
cylinder with radius R around the MS and the nth scatterer is
denoted by S(n). BS antennas are free of local scatters since
they are high enough. The parameters in Fig. 2 are defined in
Table I.

Based on the GBSM described in Fig. 2, the channel
impulse response (CIR) hpq of the channel is a superposition
of the LoS and non-LoS (NLoS) rays. The CIR can be
expressed as

hpq(t) = hLoS
pq (t) + hSB

pq (t). (1)

For LoS component,

hLoS
pq (t) = Ωpq

√
K

K + 1
e−j 2π

λ εpqej2πtfmax cos(αLoS−γR). (2)

For NLoS components,

hSB
pq (t) = Ωpq

√
1

(K + 1)N

× lim
N→∞

N∑
n=1

ej(ψn− 2π
λ εpq,n)

× ej2πfmaxt cos(α
(n)
R −γR) cos(β

(n)
R ) (3)

where Ωpq denotes the power transmitted through the sub-
channel pq, K is the Rice factor of the sub-channel pq, λ is
the carrier wavelength and fmax is the maximum Doppler fre-
quency of MS. The phase ψn is a random variable, uniformly
distributed in the interval [−π, π) and independent from angles
of arrival (AoA) [14].

The distances εpq, εpn, εnq , which are functions of the
random variables αLoS , α

(n)
R , and β

(n)
R , can be expressed as

εpq ≈ H

sinβB
− LT + 1− 2p

2 cosβB
δT cos θT cosψT

− LR + 1− 2q

2 cosβB
δR cosψR cos(αLoS − θR)) (4)

εpn ≈ H

sinβB
− (LT + 1− 2p)δT cosψT

2 cosβB

× (cos θT +Δsin θT sinα
(n)
R ) (5)

TABLE I
DEFINITIONS OF THE KEY PARAMETERS USED IN THE CYLINDER GBSM

IN FIG. 2.

D The distance between the BS and
the centers of MS cylinders.

R The radius of the MS cylinder.
δT , δR Antenna element spacings of MS and BS
θT , θR Orientation of the BS

and MS antenna array.
ψT , ψR Elevation of the BS

and MS antenna array
αLoS , α

(n)
R Azimuth angle of arrival (AAoA) of the LoS and

of the wave scattered from S(n)

H The height of the BS antenna elements relative to
the one of the MS antenna elements

β
(n)
R Elevation angles of arrival (EAoA)

of the waves scattered from S(n)

εpq Distances between antenna element p and q
εpn, εnq Distance between antenna p and the scatter S(n)

distance between the scatter S(n) and antenna q



εnq ≈ R− (LR + 1− 2q)δR
2

× [cosψR cos θR cosα
(n)
R cosβ

(n)
R

+ cosψR sin θR sinα
(n)
R cosβ

(n)
R

+ sinψR sinβ
(n)
R ] (6)

where βB is the elevation angle of the BS relative to
the x − y plane, βB = arctan(H/D). Note that Δ ≈
arcsin(R/D). Here, R/D is a narrow angle of spread, when
max{δT , δR} << R << D. The approximations in (4)-(6) are
due to small angle approximations, i.e., sinα ≈ αand cosα ≈
1 for small α [14].

III. STATISTICAL PROPERTIES OF THE PROPOSED GBSM

A. Normalized ST CF

Under the wide-sense stationary uncorrelated scattering
(WSSUS) condition, the ST CF between two sub-channels
hpq(t) and hp′q′(t) is defined as [15].

ρpq,p′q′(τ) =
E{hpq(t)h

∗
p′q′(t+ τ)}√

E{|hpq(t)|2}E{|h∗
p′q′(t)|2}

(7)

where E{∗} is the statistical expectation operator and ∗
denotes complex conjugate operation. Since hLoS

pq (t) and
hSB
pq (t) are independent zero-mean complex Gaussian random

processes [13], (7) can be expressed as a summation of the
ST CFs of the LoS component ρLoS

pq,p′q′(τ) and SB components
ρSB
pq,p′q′(τ), i.e.,

ρpq,p′q′(τ) = ρLoS
pq,p′q′(τ) + ρSB

pq,p′q′(τ). (8)

As max{δT , δR} � D, we can obtain that αLoS ≈ π
and (4) can be simplified. Then, ρLoS

pq,p′q′ and ρSB
pq,p′q′ can be

expressed as

ρLoS
pq,p′q′(τ, δT , δR) =

e
j2π

λ cos βB
(δT cosψT cos θT−δR cosψR cos θR)

× ej2πτfmax cos γR (9)

ρSB
pq,p′q′(τ, δT , δR) =

lim
N→∞

N∑
n=1

E{e−j2πτfmax cos(α
(n)
R −γR) cos(β

(n)
R )

×e
j2πδT cosψT

λ cos βB
(Δ sin(θT ) sinα

(n)
R +cos θT )

×e
j2πδR

λ cosψR cos β
(n)
R (cosα

(n)
R cos θR+sinα

(n)
R sin θR)

×e
j2πδR

λ sinψR sin β
(n)
R } (10)

where βmax is the maximum elevation angle of random
scatterers. Assuming that the scattering environment is non-
isotropic, the Von Mises probability density function (PDF)

and the Parson PDF are used for describing the scatterer’s az-
imuth and elevation angles of arrival αR and βR, respectively.

The Von Mises PDF [17] is,

f(θ) = exp[k cos(θ − μ)]/2πI0(k) (11)

where θ ∈ [−π, π), μ ∈ [−π, π) is the mean angle at which
the scatterers are distributed in the horizontal plane, I0(∗) is
the zeroth-order modified Bessel function of the first kind, and
k is a positive real value that denotes the spread of scatterers
around the mean angle μ. As k increases, the scatterers become
more non-isotropic.

The Parson PDF is defined as [18]

y =

{ π
4|ϕmax| cos(

π
2

ϕ
ϕmax

), |ϕ| < |ϕmax| < π
2

0, otherwise
(12)

where ϕmax in the range of [0, 20◦], is the maximum ele-
vation angle. Such a maximum elevation angle is typical for
the “street-canyon” type of propagation [15]. In this paper,
the deep cutting is a typical “street-canyon” for the HST,
so the Parson PDF is adopted. According to the equality∫ π

−π
ea sin(c)+b cos(c)dc = 2πI0(

√
a2 + b2) [19]. The normal-

ized ST CF of the SB components can then be simplified as

ρSB
pq,p′q′(τ, δT , δR) =

∫ βmax

−βmax

π

4βmax

I0(
√
(a1)2 + (b1)2

I0(k)

× cos(
πβR

2βmax
)ej

2π
λ δR sinψR sin βR

× e
j 2π
λ cos βB

δT cosψT cos θT dβR (13)

with

a1 =− j2πτfmax sin γR cosβR

+ j
2π

λ cosβB
δT cosψTΔsin θT

+ j
2π

λ
δR cosψR sin θR cosβR + k sinμ (14)

b1 =− j2πτfmax cos γR cosβR

+ j
2π

λ
δR cosψR cos θR cosβR + k cosμ. (15)

In (13), the ST CF of SB components has to be eval-
uated numerically as there is no closed-form solution of
the integrals. In deep cutting scenarios, the maximum of
βR is small enough to use the small angle approximations
cosβR ≈ 1and sinβR ≈ βR. Consequently, the ST CF in
(13) can be approximated as

ρSB
pq,p′q′(τ, δT , δR) ≈

I0(
√
(a11)2 + (b11)2

I0(k)

∫ βmax

−βmax

π

4βmax

× cos(
πβR

2βmax
)ej

2π
λ δRβR sinψR

× e
j 2π
λ cos βB

δT cosψT cos θT dβR (16)



with

a11 =− j2πτfmax sin γR

+ j
2π

λ cosβB
δT cosψTΔsin θT

+ j
2π

λ
δR cosψR sin θR + k sinμ (17)

b11 =− j2πτfmax cos γR

+ j
2π

λ
δR cosψR cos θR + k cosμ. (18)

Finally, solving the integrals in (16), we can get an approx-
imated closed-form expression of ST CF as

ρSB
pq,p′q′(τ, δT , δR) ≈

I0(
√

(a11)2 + (b11)2)

I0(k)

× cos( 2πλ βmaxδR sinψR)

1− ( 4δRβmax sinψR

λ )2

× ej2πδT cos θT cosψT . (19)

B. Spatial cross correlation function (CCF)

We can get the spatial CCF from ST CF by imposing τ = 0
in (9) and (13), i.e.,

RLoS
pq,p′q′(δT , δR) =

e
j2π

λ cos βB
(δT cosψT cos θT−δR cosψR cos θR) (20)

RSB
pq,p′q′(δT , δR) =

∫ βmax

−βmax

π

4βmax

I0(
√
(ac1)2 + (bc1)2

I0(k)

× cos(
πβR

2βmax
)ej

2π
λ δR sinψR sin βR

× e
j 2π
λ cos βB

δT cosψT cos θT dβR (21)

with

ac1 =j
2π

λ cosβB
δT cosψTΔsin θT

+ j
2π

λ
δR cosψR sin θR cosβR + k sinμ (22)

bc1 =j
2π

λ
δR cosψR cos θR cosβR + k cosμ. (23)

IV. NUMERICAL RESULTS

In all the results illustrated in this section, the following
model parameters are used, which are obtained based on
measurements in cutting scenarios [1]. The BS antennas have
a height of 28 m. The MS antennas are 3 m lower than the
edge of the walls of cuttings. So, H = 31 m, R = 30 m, and
βmax = arctan(3/15). We compare the approximated ST CF
in (19) with the ST CF in (13) numerically to illustrate the
validity of the approximation. Fig. 3 shows absolute values of
the ST CFs in (13) and (19) with D = 500 m. The results show
in general very good agreement between the exact values and
the approximate ones, except discrepancy at certain values.
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Fig. 3. Absolute values of the ST CF in (13) and (19), assuming the
parameters ψT = ψR = π/4, θT = θR = 2π/3, k = 3 δT = 0.5λ.

The cylinder model can easily be reduced to a 2D ring
model when βR = 0. Fig. 4 shows the absolute values of
the spatial CCFs of the 2D and 3D models. It is clear that
the spatial CCF of the 3D model is lower than that of the
corresponding 2D model. This is due to the fact that spatial
diversity in reality includes both horizontal and vertical parts,
while the 2D model ignores the vertical part which leads to
an overestimation in the spatial CCF. This agrees with the
conclusion reported in [20]
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Fig. 4. Absolute values of the CCF, assuming the parameters ψT = ψR =
2π/3, θT = θR = 2π/3, k = 3 δT = 0.5λ.

Compared with the 2D model, in the 3D model the elevation
angles of BS and MS antenna arrays ψT and ψR are intro-
duced. Fig. 5 shows how the ST CF is affected by ψT and ψR.
To elaborate the effects of the elevation angles of both BS and
MS antenna arrays, the 3D plot is provided. It is shown that
the absolute values of the resulting ST CF decrease rapidly
as the elevation angle of MS antenna arrays ψR increases
when ψR > 0. The absolute values of the ST CF increase



as the elevation angle of MS antenna arrays ψR increases
when ψR < 0. The absolute values of the ST CF change
slowly as the elevation angle of BS antenna arrays changes.
Furthermore, we note that the ST CF has a minimal value.
We can calculate the minimal value and the corresponding
coordinates numerically.

Fig. 5. Absolute values of the ST CF of the elevation of BS and MS antenna
arrays, assuming the parameters δT = δR = 0.5λ, θT = θR = 2π/3, and
k = 3.

V. CONCLUSIONS

A novel 3D RS-GBSM for HST communication systems
under deep cutting scenarios has been proposed. Based on the
proposed MIMO channel model, the closed-form expression
of the ST CF between two arbitrary sub-channels has been
derived and analyzed. It has been shown that the 3D channel
model results in lower CCF values than the corresponding 2D
channel model. Low correlation can be obtained when the BS
and MS antennas are carefully designed.
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