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Abstract Differential evolution (DE) is one of the most pow-
erful and effective evolutionary algorithms for solving glob-
al optimization problems. However, just like all other meta-
heuristics, DE also has some drawbacks, such as slow and/or
premature convergence. This paper proposes a new subset-
to-subset selection operator to improve the convergence per-
formance of DE by randomly dividing target and trial popu-
lations into several subsets and employing the ranking-based
selection operator among corresponding subsets. The pro-
posed framework gives more survival opportunities to tri-
al vectors with better objective function values. Experimen-
tal results show that the proposed method significantly im-
proves the performance of the original DE algorithm and
several state-of-the-art DE variants on a series of benchmark
functions.

Keywords Differential evolution · global optimization ·
subset-to-subset survivor selection · convergence

1 Introduction

Differential evolution (DE), which was first proposed by S-
torn and Price (Price et al., 2006; Storn and Price, 1995), has
become one of the most powerful stochastic real-parameter
optimization algorithms. Similar to other evolutionary algo-
rithms (EAs), DE employs three evolutionary operations:
mutation, crossover and selection to evolve the population
towards the global optimum. However, unlike traditional
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EAs, DE employs the difference of parameter vectors to ex-
plore different regions of the search space. In DE, a parent
vector from the current population is called the target vector,
a donor vector is obtained through the differential mutation
operator, and finally, an offspring is formed by recombining
the donor vector with the target vector, which is called the
trial vector. In addition, DE employs a one-to-one replace-
ment scheme during the selection process.

Several DE variants have secured high ranks in a num-
ber of IEEE Congress on Evolutionary Computation (IEEE
CEC) competitions, e.g., the 2006 IEEE CEC Competition
on Constrained Real Parameter Optimization (ranked the
first), the 2007 IEEE CEC Competition on Multi-objective
Optimization (ranked the second), the 2008 IEEE CEC
Competition on Large Scale Global Optimization (ranked
the third), the 2009 IEEE CEC Competition on Multi-
objective Optimization (the first rank was taken by a DE-
based multi-objective optimization EA with decomposition
(MOEA/D) for unconstrained problems), and the 2009 IEEE
CEC Competition on Evolutionary Computation in Dynam-
ic and Uncertain Environments (ranked the first) (Das and
Suganthan, 2011). DE has been successfully applied in real-
world complex engineering optimization areas during the
past two decades, such as electrical power systems (Cai
et al., 2008), electromagnetism (Qing, 2006), microwave en-
gineering (Massa et al., 2006), control systems (Cruz et al.,
2003), manufacturing industry (Yildiz, 2013), etc. A survey
on the state-of-the-art research for DE can be found in (Das
et al., 2016).

In the classical DE algorithm, one-to-one survivor se-
lection is employed to determine whether the target vector
or the trial vector survives to the next generation. Compar-
ing each trial vector to the best performing vector at the
same index retains not only the best vector at each index,
but also the very best-so-far solution at any index. This se-
lection strategy, however, can slow down DE’s speed of con-
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vergence. For example, a trial vector that is better than most
of the current population solutions will be rejected if its tar-
get vector is even better. Motivated by these findings, we
propose a subset-to-subset (STS) selection scheme to select
offspring for survival instead of the one-to-one offspring se-
lection scheme in this paper. In the proposed STS selection
scheme, the target and trial populations are randomly divid-
ed into a number of subsets. In the corresponding subset-
s, vectors are selected according to their fitness. By select-
ing the best vectors from corresponding subsets, this scheme
tries to keep better trial vectors into the next generation and
hence accelerates the convergence toward the optimal solu-
tion(s). By the selection between the corresponding subset
of parent population and child population, this framework
promotes efficient exploitation without substantially dimin-
ishing the exploration capability of population. We incorpo-
rate this selection framework to the classical DE and a num-
ber of important DE variants and carry out experiments to
observe the performance gains.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces the classical DE algorithm and
surveys related works on improving DE’s performance. In
Section 3, the proposed STS selection scheme is described
in detail. Experimental results on the well-known 13 high-
dimensional benchmark functions (Brest et al., 2006; Brest
and Maucec, 2009; Wang et al., 2013; Yao et al., 1999;
Zhang and Sanderson, 2009) (denoted as the basic test
bed in this paper) and benchmark problems used for 2014
IEEE CEC Competition on Single Objective Real-parameter
Numerical Optimization (denoted as the 2014 IEEE CEC
benchmark functions in this paper) are reported in Section 4.
Finally, Section 5 concludes this paper.

2 Classical DE Algorithm

The framework of the classical DE algorithm mainly con-
sists of four parts: initialization, mutation, crossover and se-
lection, which are described respectively below.

2.1 Initialization

DE starts with a population of NP D-dimensional parame-
ter vectors in the search space, where NP is the population
size and D is the problem dimensionality. The jth component
of the ith vector may be initialized as:

x0
i,j = xj,min + rand() · (xj,max − xj,min) (1)

where rand() generates a uniformly distributed random
number in the range [0, 1], xj,min and xj,max are the mini-
mum and maximum bounds of the jth component of a vector,
respectively.

2.2 Mutation

After initialization, for each vector XG
i at generation G, a

mutant vector V G
i is generated by a certain mutation strate-

gy. The most frequently used mutation strategies are defined
as follows:

– DE/rand/1:

V G
i = XG

r1 + F · (XG
r2 −XG

r3) (2)

– DE/best/1:

V G
i = XG

best + F · (XG
r1 −XG

r2) (3)

– DE/current-to-best/1:

V G
i = XG

i + F · (XG
best −XG

i ) + F · (XG
r1 −XG

r2) (4)

– DE/rand/2:

V G
i = XG

i + F · (XG
r2 −XG

r3) + F · (XG
r4 −XG

r5) (5)

– DE/best/2:

V G
i = XG

best +F · (XG
r1−XG

r2) +F · (XG
r3−XG

r4) (6)

where F is the scaling factor and the indices r1, r2, r3, r4
and r5 are mutually different random integers selected from
{1, 2, · · ·, NP}, which are different from the base index i.
XG

best is the best vector in terms of fitness value at the current
population G.

2.3 Crossover

After mutation, DE generates a trial vector UG
i = {uG

i,1, · · · ,
uG
i,D} by recombining XG

i = {xG
i,1, · · · , xG

i,D} and V G
i =

{vGi,1, · · · , vGi,D} as follows:

uG
i,j =

{
vGi,j if (randi,j(0, 1) ≤ Cr or j = jrand)

xG
i,j otherwise

(7)

where Cr is the crossover rate, randi,j(0, 1) generates a
random number in [0, 1], and jrand ∈ {1, 2, . . . , D} is a
randomly chosen index, which ensures that UG

i gets at least
one parameter from V G

i .

2.4 Selection

Finally, a greedy selection operator is used to determine
whether the target or trial vector survives to the next gen-
eration, which is described as follows:

XG+1
i =

{
UG
i if f(UG

i ) ≤ f(XG
i )

XG
i otherwise

(8)

where f(X) is the objective function (without lose of gen-
erality, we assume minimization problems in this paper).
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3 Related Work

In the past twenty years, DE has attracted many researchers’
attention and many DE variants are developed. The current
study of DE focus on three aspects: 1) adapting the control
parameters; 2) improving trial vector generation strategies;
3) improving the selection operation in the mutation and sur-
vival stages.

3.1 Adapting the Control Parameter Settings

Brest et al. (Brest et al., 2006) proposed a self-adaptation
scheme for the DE control parameters by encoding parame-
ters F and Cr into each individual and adjusting them dur-
ing the evolutionary process. Zhang and Sanderson (Zhang
and Sanderson, 2009) proposed an adaptive DE with an
optional external archive (JADE), where the scaling factor
F and the crossover rate Cr are generated according to a
normal distribution and a Cauchy distribution, respective-
ly. In the self-adaptive DE (SaDE) (Qin et al., 2009), the
parameter F is approximated by a normal distribution with
the mean value 0.5 and standard deviation 0.3, denoted by
N(0.5, 0.3), and Cr is adjusted gradually for a given prob-
lem according to the previous Cr values that have gener-
ated trial vectors successfully entered the next generation.
In addition, four effective trial vector generation strategies
are chosen to constitute a strategy candidate pool. A mu-
tation strategy is selected from the strategy candidate pool
according to the probability learned from its success rate
in generating better individuals within a certain number of
previous generations, called the learning period. FiADE, in-
troduced in (Ghosh et al., 2011), is a very simple yet very
efficient adaptation technique for tuning both F and CR,
during the run, without any user intervention. The param-
eter adaptation strategy is based on the objective function
values (fitness values) of individuals in the DE population.
The presented results showed that the performance of Fi-
ADE is very competitive with the best-known DE variants.
The Success-History based Adaptive DE (SHADE) (Tan-
abe and Fukunaga, 2013) is an improved version of JADE
(Zhang and Sanderson, 2009), which uses a different param-
eter adaption mechanism based on the history of success. In
(Tanabe and Fukunaga, 2014), Tanabe and Fukunaga pro-
posed a modified SHADE algorithm, denoted L-SHADE,
which incorporated a Linear Population Size Reduction (LP-
SR) scheme into SHADE. LPSR is a simple deterministic
population resizing method that continuously reduces the
population size in accordance with a linear function. The
experimental results over the 2014 IEEE CEC benchmark
functions show that L-SHADE is quite competitive in com-
parison with state-of-the-art EAs. jSO (Brest et al., 2017)
is an improved variant of the LSHADE algorithm with a
new weighted parameter Fw to adjust the vector XG

pbest. jSO

ranked 2nd place in 2017 IEEE CEC competition on Bound
Constrained Benchmark Set.

3.2 Improving Trial Vector Generation Strategies

In (Rahnamayan et al., 2008), the opposition-based DE
(ODE) employs opposition-based learning (OBL) for popu-
lation initialization and generation to accelerate DE’s con-
vergence speed. Das et al. (Das et al., 2009) proposed a
family of improved variants of the DE/target-to-best/1/bin
scheme using the concept of the neighbourhood of each
population member. In (Wang et al., 2011), the composite
DE (CoDE) was proposed to generate a trial vector by us-
ing three trial vector generation strategies and three con-
trol parameter settings. Experimental results showed that
CoDE is very competitive on the 2005 IEEE CEC bench-
mark functions. An ensemble of mutation strategies and
control parameters with DE, denoted EPSDE, was proposed
in (Mallipeddi et al., 2011). The performance of EPSDE
was evaluated on a set of bound-constrained problems and
competitive with conventional DE and several state-of-the-
art parameter adaptive DE variants. In (Wang et al., 2013),
a Gaussian bare-bones DE (GBDE) and its modified ver-
sion (MGBDE) were proposed, which are almost parameter
free. THDE (Peng and Wu, 2015) employs Taguchi method
to generate trial vectors based on orthogonal array. In (Yu
et al., 2014), the authors proposed an adaptive DE (ADE)
algorithm with a new mutation strategy DE/lbest/1, which is
beneficial to the balance between fast convergence and pop-
ulation diversity, and a two-level adaptive parameter control
scheme. DBDE (Peng et al., 2016) introduces the new di-
chotomous mutation and dichotomous crossover to solve 0-1
knapsack problem and multidimensional knapsack problem.
Peng (Peng et al., 2017) proposed a DE/neighbor/1 muta-
tion strategy in which one solution is selected from the best
one in the neighbors. Wang (Wang et al., 2016) eliminated
the restrained condition( mutually different indices) in muta-
tion strategy and suggested DE without restrained condition
may be useful in high dimensional search space. TSDE (Li-
u et al., 2016) utilizes the different trial vector generation
strategies combination at different stages.

More recently, much effort has been made to utilize
the cumulative correlation information already existing in
the evolutionary process. Li et al. (Li et al., 2015) pro-
posed a predictive approach, denoted DEEP, to the repro-
duction mechanism of new individuals for DE algorithms.
The DEEP framework offers advantages of both a distribut-
ed model (DM) and a centralized model (CM), hence sub-
stantially enhances DE’s performance. Two DEEP variants
were developed and illustrated in the paper. In (Wang et al.,
2014, 2016), Wang utilized the population distribution infor-
mation to establish an Eigen coordinate system and gener-
ated trial vectors in the Eigen coordinate system with a pre-
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defined probability. In (Segura et al., 2015), the authors pro-
vided a better insight into the reasons of the “curse of dimen-
sionality” and proposed techniques to alleviate this problem.
Computational results on a large set of scalable problems
with various complexities showed that the new proposal is
much better than the original DE scheme.

3.3 The Selection Operation in DE

There are primarily two stages in the evolutionary process
of a DE algorithm, where selection can be applied to a pop-
ulation, i.e., parent selection, which decides which vectors
will undergo recombination, and survival selection, which
chooses the vectors from the current target vectors and trial
vectors into the next generation (Price et al., 2006).

In (Gong and Cai, 2013), Gong and Cai proposed a
ranking-based mutation operator for DE, where some of
the parents in the mutation operation are proportionally s-
elected according to their rankings in the current popula-
tion. The higher ranking a parent obtains, the more oppor-
tunity it will be selected for mutation. Experimental result-
s indicate that the ranking-based mutation operator is able
to enhance the performance of the original DE algorithm
and other advanced DE algorithms. In (Epitropakis et al.,
2011), the selection of parents is based on the distance be-
tween the solutions in the current population. The solutions
with a small distance have higher probabilities to be select-
ed as parents. In (Guo et al., 2014), an effective and efficient
successful-parent-selecting framework was proposed to im-
prove the performance of DE by providing alternatives for
the selection of parents during mutation and crossover. The
proposed method adapts the selection of parents by storing
successful solutions into an archive, and the parents are se-
lected from the archive when a solution has not been contin-
uously updated for a certain number of times.

In addition to improving the parent selection operator,
the following approaches focus on survival selection. In (Se-
gura et al., 2013), the authors proposed a new survival selec-
tion scheme (DCN-THR-REF) to avoid the loss of diversi-
ty, in which the individual is evaluated by the fitness and
the distance to the closest neighbour (DCN) simultaneous-
ly. Certainly, the individuals with better fitness and larger
DCN are survived to the next generation by the diversity-
based multi-objective DCN-THR-REF method. Results in-
dicated that the proposed approach provides several advan-
tages in avoiding premature convergence. However, DCN-
THR-REF method produces a reduction in the convergence
speed and expensive computation cost for finding the better
individuals of two objectives. In (Tagawa, 2009), Tagawa
proposed five survival selection methods: Family Survival
Selection (CF), where the worse target vector is replaced by
the corresponding trial vector immediately; Worst Survival
Selection (CW), where the trial vector is always compared

with the worst individual in the population; Absolute Sur-
vival Selection (CA), where the worst individual in the pop-
ulation is replaced by the trial vector without the compari-
son; Closest Survival Selection (CC), where the trial vector
is always compared with the closest individual with it in the
population; Hybrid Survival Selection (CH), where the com-
bination of the closest survival selection and the worst sur-
vival selection. Authors pointed out that CW enhances the
convergence speed of DE, while CC improves the robust-
ness from the experiment report.

4 Subset-to-Subset (STS) Survival Selection

In this section, we first investigate the impact of one-to-one
survival selection on DE in Section 4.1, then present the pro-
posed STS operator in Section 4.2, and finally give the com-
putational cost of the STS operator in Section 4.3.

4.1 Impact of the One-to-One Survivor Selection Operator

In the classical DE algorithm, the survival selection deter-
mines whether the target or trial vector survives to the next
generation. The trial vector UG

i replaces the target vector
XG

i if it has an equal or better objective function value; oth-
erwise, the target vector retains its place in the population
for at least one more generation. The best performing vector
at the ith position is just the ith vector in the current popula-
tion, i.e., the target vector XG

i (Price et al., 2006). However,
this selection scheme has two shortcomings. The first one
is that a trial vector with a better objective function value
than most of other current population members will be re-
jected if its corresponding target vector is even better. The
other one, in contrast, is that a trial vector with a poor objec-
tive function value will survive to the next generation if its
corresponding target vector is even worse.

In order to clearly show the above phenomenon, we de-
fine the variable rtvG as the number of rejected trial vectors
in the Gth generation as follows:

rtvG =

NP∑
i=1

rGi (9)

where rGi is an indicator which shows whether the ith trial
vector is rejected or not, i.e.:

rGi =

{
1, if f(UG

i ) > f(XG
i )

0, otherwise
(10)

For each rejected trial vector UG
i in the Gth generation,

the number of vectors with a worse objective function value
than it in the current population is called its rejection error
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index (REI), denoted reiGi , which can be calculated by:

reiGi =

NP∑
j=1

eGij (11)

where eGij is an indicator which shows whether the ith trial
vector is rejected unfairly or not in comparison with vector
j in the current population, i.e.:

eGij =

{
1, if f(UG

i ) < f(XG
j ) j ∈ {1, 2, · · · , NP}

0, otherwise
(12)

The mean value of REI at generation G is defined as follows:

reiG =
( rtvG∑

i=1

reiGi
)
/rtvG (13)

If rtvG = 0, which means that all trial vectors are accepted,
we set reiG = 0 directly.

A higher value of reiG indicates that some trial vectors
with better objective function values than most other target
vectors in the Gth population are rejected inappropriately s-
ince their target vectors are better. If we can reduce the value
of reiG, the convergence of DE is expected to be accelerated
and the performance of DE is expected to be improved. This
motivates our STS selection operator which aims to appro-
priately accept trial vectors with better objective function
values and reject trial vectors with worse objective func-
tion values as many as possible by dividing the target and
trial populations into a number of subsets and employing
ranking-based selection in corresponding subsets.

4.2 Description of the STS Survivor Selection Operator

In the STS selection scheme, the vectors are organized
in a ring topology with respect to their indices, which is
motivated by (Das et al., 2009), and the number of sub-
sets to be formed depends on the subset size, denoted
SS, which is given in advance. The subsets are formed
as follows. Supposing that we have a target population
PG = {XG

1 , XG
2 , · · · , XG

NP } and a trial population TPG =

{UG
1 , UG

2 , · · · , UG
NP } in the Gth generation, we first ran-

domly select an index i ∈ {1, 2, · · · , NP} as the starting
point which is updated every new generation and then divide
both PG and TPG into n subsets immediately, denoted as
TASG

j and TRSG
j (j ∈ {1, 2, · · · , n}), respectively. From

each pair of subsets TASG
j and TRSG

j (j ∈ {1, 2, · · · , n}),
we select the best SS vectors to survive into the next gen-
eration. Obviously, the one-to-one selection operator of the
classical DE algorithm is a special case of STS with SS = 1.
The pseudo-code of the proposed STS selection is shown in
Algorithm 1.

Algorithm 1 Subset-to-subset (STS) selection
1: Input: the subset size SS
{/* Calculate the number of subsets: n */}

2: if NP%SS == 0 then
3: n := NP/SS
4: else
5: n := NP/SS + 1
6: end if
7: i := rand() × NP {/* Select randomly an integer in
{1, 2, . . . , NP} as the starting index */}

8: for j := 1 to n do
9: NR := NP −j×SS {/* Calculate the number of rest vectors

which have not undergone the survivor selection yet in the target
population */}

10: if NR > SS then
11: Take SS vectors from the target population PG and trial

population TPG as subsets TASGj and TRSGj respective-
ly starting from index i

12: Select the best SS vectors from the joint set
{TASGj , TRSGj } as PG+1

j

13: i := (i+ SS)%NP
14: else
15: TakeNR vectors from the target population PG and the tri-

al population TPG as subsets TASGj and TRSGj respec-
tively starting from the index i

16: Select the best NR vectors from the joint set
{TASGj , TRSGj } as PG+1

j

17: end if
18: end for
19: PG+1 :=

∑n
j:=1 P

G+1
j

𝑋1
𝐺  

𝑋2
𝐺  𝑋14

𝐺  

𝑋15
𝐺  𝑈15

𝐺  

𝑈14
𝐺  

𝑈1
𝐺  

𝑈2
𝐺  

Fig. 1 Ring topology of 15 vectors. The left and right figures are the
target and trial populations respectively. The black points indicate the
first pair of corresponding subsets, where the starting index i is 14 and
the subset size SS is 3.

Fig. 1 illustrates an example of dividing the pop-
ulation into a number of subsets, where the popula-
tion size is 15, the subset size SS is 3, and the s-
tarting index is 14. The proposed method selects the
best 3 vectors {XG+1

14 , XG+1
15 , XG+1

1 } from the set
{XG

14, X
G
15, X

G
1 , UG

14, U
G
15, U

G
1 } to the next generation and

performs a similar operation for other corresponding sub-
sets.

In the one-to-one selection of the classical DE algorith-
m, a trial vector with a better objective value than other
target vectors may be rejected unfairly. In the STS selec-
tion, a better trial vector will have a higher opportunity to
be accepted and hence the performance of DE may be im-
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Fig. 2 The accumulation of mean rejection error index of running
DE/rand/1/bin on the 30-dimensional Schwefel 2.21 function, where
NP = 100 and SS = 1, SS = 2, SS = 4, SS = 8 and SS = 16,
respectively.

proved. Fig. 2 shows the accumulation of mean REI of run-
ning DE/rand/1 with the proposed STS operator on the 30-
dimensional Schwefel 2.21 function over 5000 generations,
where NP = 100 and SS is set to 1, 2, 4, 8 and 16, re-
spectively. As shown in Fig. 2, the value of SS has a sig-
nificant impact on the mean REI (reiG), where a large SS

reduces the mean REI. In this paper, a DE algorithm with
the STS scheme integrated will be denoted with the prefix
“STS”. For example, the classical DE algorithm with the
STS scheme will be denoted as STS-DE.

To the best of our knowledge, DEGL (Das et al.,
2009) was the first attempt to utilize the concept of the
neighbourhood subset to provide an improved variants of
the DE/cuttent-to-best/1. Our proposed STS scheme differs
from DEGL in the following aspects.

– The concept of subset in this paper is used to improve
the selection of survivors, while the concept of subset
(neighbourhood) in DEGL is applied to improve the par-
ents selection.

– The division method is different. The subsets in this pa-
per are disjoint, while the subsets in DEGL are overlap-
ping.

4.3 The Computational Cost of the STS Selection Operator

In the proposed STS selection, target and trial populations
are divided into a number of subsets. In Algorithm 1, the
computational complexity of the STS selection depends on
the size of subsets (SS). To select the best SS individuals
from the corresponding subsets, we need 2 · SS · log(2 ·
SS) comparisons. Thus, the computational cost of the STS
selection is:

CostSTS = n·2·SS ·log(2·SS) = 2·NP ·log(2·SS) (14)

where n is the number of subsets and NP is the population
size. Obviously, the computational cost of the STS selec-
tion is a monotonically increasing function of SS. However,

the computational cost of algorithms is almost spent on the
calculation of the fitness function rather than the selection
operator, hence the STS selection operator does not signifi-
cantly increase the computational cost.

5 Experimental Study

5.1 Test Functions

In order to test the effectiveness of the STS operator on di-
verse test functions and analyze the integrated DE algorithm
with the STS operator, we choose two groups of benchmark
test functions. Group A includes high-dimensional function-
s (basic unimodal and multimodal functions), while Group
B includes shifted and/or rotated functions (unimodal, mul-
timodal, hybrid and composition functions).

5.1.1 Group A (Unimodal and Multimodal Functions)

As a starting point, the basic test bed is used to compare
STS-DE with DE. This basic test bed includes 13 well-
known benchmark functions, which have been widely used
in the literature (Brest et al., 2006; Brest and Maucec, 2009;
Wang et al., 2013; Yao et al., 1999; Zhang and Sanderson,
2009). The detailed description of these benchmark func-
tions is shown in Table 1. Here, f1 -f5 are continuous uni-
modal functions, of which f5 has a narrow valley from the
perceived local optimum to the global optimum, f6 is a dis-
continuous step function, f7 is the noisy quartic function,
and f8-f13 are multimodal functions with many local mini-
ma.

5.1.2 Group B (Shifted and/or Rotated Functions)

This group consists of the rotated and/or shifted bench-
mark functions used for the 2014 IEEE CEC Competition
on Single Objective Real-parameter Numerical Optimiza-
tion (Liang et al., 2013). They are defined as:

F (x) = cf(M(x− o)) (15)

where M is the orthogonal matrix and o is the shifted vec-
tor. Based on the characteristics of the basic functions, the
2014 IEEE CEC benchmark functions can be divided in-
to four classes: Functions cf1 − cf3 are unimodal, func-
tions cf4 − cf16 are simple multimodal functions, functions
cf17 − cf22 are hybrid, and functions cf23 − cf30 are com-
position functions with a huge number of local minima. A
thorough description of this suit is provided in (Liang et al.,
2013).
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Table 1 The basic test bed of 13 well-known benchmark functions

Name Test functions Initial range
Sphere f1(x) =

∑D
i=1 x

2
i [−100, 100]D

Schwefel 2.22 f2(x) =
∑D
i=1 |xi|+

∏D
i=1 xi [−10, 10]D

Schwefel 1.2 f3(x) =
∑D
i=1(

∑i
j=1 xj)

2 [−100, 100]D
Schwefel 2.21 f4(x) = maxi{|xi|} [−100, 100]D
Rosenbrock f5(x) =

∑D−1
i=1 [100(xi+1 − x2i )2 + (xi − 1)2] [−30, 30]D

Step f6(x) =
∑D
i=1bxi + 0.5c2 [−100, 100]D

Quartic with noise f7(x) =
∑D
i=1 i · x4i + random[0, 1) [−1.28, 1.25]D

Schwefel 2.6 f8(x) =
∑D
i=1−xi · sin(

√
|xi|) +D · 418.9829 [−500, 500]D

Rastrigin f9(x) =
∑D
i=1[x

2
i − 10cos2πxi + 10] [−5.12, 5.12]D

Ackley f10(x) = −20exp(−0.2
√

1
D

∑D
i=1 x

2
i )− exp(

1
D

∑D
i=1 cos(2πxi)) + 20 + e [−32, 32]D

Griewank f11(x) =
1

4000

∑D
i=1(xi)

2 −
∏D
i=1 cos(

xi√
i
) + 1 [−600, 600]D

Penalized 1 f12(x) =
π
D
{
∑D−1
i (yi − 1)2[1 + sin(πyi+1)] + (yD − 1)2 + 10sin2(πy1)} [−50, 50]D

+
∑D
i=1 u(xi, 10, 100, 4), yi = 1 + 1

4
(xi + 1)

u(xi, a, k,m) =


k(xi − a)m xi > a

0 − a ≤ xi ≤ a
k(−xi − a)m xi < a

Penalized 2 f13(x) = 0.1{sin2(3πx1) +
∑D=1
i=1 (xi − 1)2[1 + sin2(3πxi+1)] [−50, 50]D

+(xD − 1)2[1 + sin2(2πxD)]}+
∑D
i=1 u(xi, 5, 100, 4)

5.2 Relationship Between the Population Size and Subset
Size

A new parameter, the subset size (SS), i.e., the number of
individuals in a subset, is introduced in the proposed STS
selection operator. The value of SS affects the convergence
speed and solution accuracy. Obviously, a large SS acceler-
ates convergence by providing more chances for trial vectors
with better objective function values. However, the integrat-
ed DE algorithm may lose population diversity rapidly and
suffer from the problem of premature convergence. On the
other hand, a small SS retains population diversity, but the
integrated DE algorithm may converge slowly. In this sec-
tion, we would like to find out the proper subset size for the
STS operator to be integrated with the DE algorithm. In ad-
dition, it is necessary to analyse the relationship between SS

and the population size NP .
Table 1 lists the well-known benchmark functions, on

which we conduct experiments to compare STS-DE with
DE. The specific parameter settings in the experiments are
listed as follows: 1) The population size NP is set to 100,
150 and 200, respectively; 2) F = 0.5 and CR = 0.9; 3)
The mutation scheme is DE/rand/1; 4) An algorithm stops
when the number of fitness evaluations FEs reaches the al-
lowed maximum value, denoted MAX FEs, which is set
to 2.0E+05; 5) Each algorithm is run 30 times per function.

The results achieved by DE/rand/1 and STS-DE/rand/1
are summarized in Table 2. The best mean error for each
function within a given population size is shown in the un-
derline format. To highlight the algorithm with the best pa-
rameter setting, the overall best mean error for each function
across different population sizes is also shown in boldface.
For example, when NP = 150, the best mean error for f3 is

obtained by STS-DE/rand/1 with SS = 16, which is shown
as 1.34e− 03 in Table 2. But, for f3, the overall best mean
error is obtained by STS-DE/rand/1 with NP = 100 and
SS = 16, which is shown boldfaced as well as underlined
as 1.68e-09.

When SS = 1, the STS variant is the classical
DE/rand/1. Based on the results, the STS variant with SS >

1 achieves better results than DE/rand/1 on 9, 11 and 12
functions when the population size (NP ) is 100, 150 and
200, respectively. It is obvious that the STS operator has
greater effect on convergence accuracy when the population
size is increasing. The reason is that the original algorith-
m is under strong selection pressure when the population
size is small. Among the 13 testing functions, DE/rand/1
and STS-DE/rand/1 both get the best results on f6, while
STS-DE/rand/1 obtains the best results for the rest function-
s. In these functions, f6 is a step and discontinuous func-
tion, moreover all testing algorithms reach the best result on
this function. Under the condition NP = 100, every STS-
DE/rand/1 algorithm with SS > 1 obtains better results on
9 functions, and worse results on 2 functions from Table 2.
Meanwhile, STS-DE/rand/1 obtains the best results on 1, 5,
5, 8, and 5 function(s) with SS set to 2, 4, 8, 16 and 100, re-
spectively. Considering the computational cost, it is a wise
choice to set SS in the interval [4, 8] when NP = 100.
In the testing group of NP = 150, every STS-DE/rand/1
with SS > 1 wins on 11 functions and does not lose on
any functions. Meanwhile, STS-DE/rand/1 obtains the best
results on 1, 2, 6, 6 and 3 function(s) when SS was set to 2,
4, 8, 16 and 150, respectively. So, it is reasonable to set SS
in the interval [8, 16] for NP = 150. When NP = 200, it is
advisable to set SS = 16 because the STS-DE/rand/1 with
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Table 2 The error values for different population sizes at D = 30, after 200,000 fitness evaluations

NP = 100
SS = 1 SS = 2 SS = 4 SS = 8 SS = 16 SS = NP

Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
f1 5.51e-20 4.69e-20 4.93e-25(+) 4.80e-25 5.43e-42(+) 4.62e-42 1.35e-42(+) 2.20e-42 2.62e-43(+) 2.31e-43 1.25e-59(+) 2.67e-59
f2 4.86e-10 2.25e-10 2.01e-12(+) 1.20e-12 1.16e-20(+) 1.05e-20 6.59e-17(+) 3.36e-16 1.64e-17(+) 8.39e-17 1.52e-31(+) 2.10e-31
f3 9.63e-03 7.01e-03 1.83e-04(+) 1.39e-04 4.47e-09(+) 3.83e-09 1.79e-09(+) 1.94e-09 1.68e-09(+) 2.61e-09 2.10e-05(+) 1.82e-05
f4 7.06e-02 1.43e-01 4.02e-01(−) 6.23e-01 5.65e-01(−) 1.06e+00 1.30e+00(−) 2.11e+00 5.76e-01(−) 8.99e-01 1.23e+00(−) 9.90e-01
f5 1.13e+01 1.04e+00 1.63e+01(−) 1.74e+00 1.53e+01(−) 2.50e+00 1.81e+01(−) 1.85e+00 1.84e+01(−) 1.38e+00 2.11e+01(−) 3.00e-01
f6 0.00e+00 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00
f7 6.27e-03 1.65e-03 5.43e-03(+) 1.45e-03 2.96e-03(+) 7.85e-04 2.97e-03(+) 9.31e-04 3.14e-03(+) 7.83e-04 5.23e-03(+) 1.14e-03
f8 7.11e+03 3.12e+02 6.60e+03(+) 6.19e+02 6.66e+03(+) 6.45e+02 6.55e+03(+) 4.88e+02 6.49e+03(+) 7.63e+02 6.98e+03(+) 4.00e+02
f9 1.63e+02 2.09e+01 1.46e+02(+) 1.92e+01 1.02e+02(+) 2.53e+01 1.06e+02(+) 3.35e+01 9.78e+01(+) 3.27e+01 1.14e+02(+) 1.40e+01
f10 6.00e-11 2.11e-11 2.50e-13(+) 1.31e-13 4.00e-15(+) 1.58e-30 4.00e-15(+) 1.58e-30 4.00e-15(+) 1.58e-30 4.00e-15(+) 1.58e-30
f11 2.74e-04 1.40e-03 2.74e-04(=) 1.40e-03 2.74e-04(=) 1.40e-03 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00
f12 3.16e-21 3.53e-21 5.26e-26(+) 5.38e-26 1.57e-32(+) 0.00e+00 1.57e-32(+) 0.00e+00 1.57e-32(+) 0.00e+00 1.21e-28(+) 1.12e-28
f13 2.88e-20 2.03e-20 6.38e-25(+) 1.10e-24 1.35e-32(+) 2.74e-48 1.35e-32(+) 2.74e-48 1.35e-32(+) 2.74e-48 3.25e-28(+) 2.11e-28

Total number of (+/=/-): 9/2/2 9/2/2 9/2/2 9/2/2 9/2/2

NP = 150
SS = 1 SS = 2 SS = 4 SS = 8 SS = 16 SS = NP

Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
f1 2.09e-09 1.01e-09 3.98e-12(+) 2.66e-12 2.30e-21(+) 2.11e-21 5.22e-22(+) 3.37e-22 3.44e-22(+) 2.85e-22 2.71e-29(+) 2.37e-29
f2 7.90e-05 2.37e-05 1.71e-06(+) 5.81e-07 1.39e-10(+) 6.71e-11 6.81e-11(+) 3.69e-11 4.78e-11(+) 2.11e-11 8.49e-15(+) 4.99e-15
f3 9.70e+00 3.48e+00 1.02e+00(+) 4.32e-01 2.41e-03(+) 1.58e-03 1.50e-03(+) 9.77e-04 1.34e-03(+) 8.51e-04 2.52e-01(+) 1.23e-01
f4 4.73e-02 1.37e-02 7.87e-02(+) 3.47e-01 8.86e-02(+) 4.10e-01 4.61e-05(+) 1.49e-05 1.48e-04(+) 5.46e-04 3.60e-02(+) 3.56e-02
f5 1.81e+01 6.96e-01 1.64e+01(+) 7.19e-01 8.14e+00(+) 1.51e+00 7.96e+00(+) 9.22e-01 9.01e+00(+) 1.64e+00 1.61e+01(+) 2.00e-01
f6 0.00e+00 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00
f7 1.28e-02 3.95e-03 8.98e-03(+) 2.64e-03 9.63e-03(+) 2.00e-03 5.43e-03(+) 1.56e-03 5.43e-03(+) 1.56e-03 4.79e-03(+) 4.25e-04
f8 7.29e+03 3.04e+02 7.28e+03(=) 2.80e+02 7.16e+03(=) 2.50e+02 7.15e+03(=) 3.07e+02 7.14e+03(=) 2.54e+02 7.17e+03(=) 2.05e+02
f9 1.86e+02 8.41e+00 1.81e+02(+) 1.18e+01 1.78e+02(+) 1.00e+01 1.67e+02(+) 1.09e+01 1.69e+02(+) 8.42e+00 1.75e+02(+) 1.00e+00
f10 1.46e-05 4.38e-06 5.57e-07(+) 2.07e-07 2.98e-07(+) 1.08e-07 7.41e-12(+) 2.47e-12 4.72e-12(+) 1.78e-12 6.16e-08(+) 1.64e-08
f11 2.74e-04 1.40e-03 1.91e-11(+) 2.57e-11 3.97e-12(+) 3.73e-12 0.00e+00(+) 0.00e+00 2.34e-11(+) 1.46e-11 1.51e-13(+) 8.50e-15
f12 2.74e-10 1.88e-10 4.55e-13(+) 2.85e-13 1.01e-13(+) 7.81e-14 4.55e-23(+) 3.76e-23 3.47e-23(+) 3.39e-23 7.68e-15(+) 2.62e-15
f13 1.54e-09 9.53e-10 2.28e-12(+) 1.39e-12 1.49e-21(+) 1.56e-21 1.66e-22(+) 1.69e-22 1.66e-22(+) 1.69e-22 2.04e-14(+) 1.18e-14

Total number of (+/=/-): 11/2/0 11/2/0 11/2/0 11/2/0 11/2/0

PopSize = 200
SS = 1 SS = 2 SS = 4 SS = 8 SS = 16 SS = NP

Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
f1 5.66e-05 2.00e-05 7.50e-07(+) 3.27e-07 5.70e-13(+) 3.13e-13 1.67e-13(+) 8.22e-14 1.15e-13(+) 7.42e-14 2.90e-14(+) 1.38e-14
f2 1.02e-02 2.40e-03 6.63e-07(+) 7.74e-07 9.70e-07(+) 2.25e-03 9.49e-07(+) 3.00e-07 8.93e-07(+) 2.54e-07 5.90e-07(+) 1.05e-07
f3 1.79e+02 4.18e+01 4.79e+01(+) 1.57e+01 9.86e-01(+) 2.77e-01 9.76e-01(+) 2.93e-01 8.28e-01(+) 4.68e-01 4.17e+01(+) 9.50e+00
f4 7.45e-01 1.38e-01 2.40e-01(+) 6.31e-02 8.86e-03(+) 2.59e-03 7.34e-03(+) 2.29e-03 7.23e-03(+) 2.17e-03 1.17e-01(+) 1.80e-02
f5 2.40e+01 5.37e-01 2.09e+01(+) 6.34e-01 1.26e+01(+) 8.92e-01 1.29e+01(+) 7.79e-01 1.28e+01(+) 8.89e-01 1.93e+01(+) 5.50e-01
f6 0.00e+00 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00
f7 1.91e-02 4.75e-03 1.45e-02(+) 4.09e-03 9.10e-03(+) 2.34e-03 9.02e-03(+) 2.57e-03 9.46e-03(+) 1.92e-03 1.25e-02(+) 1.35e-03
f8 7.39e+03 2.79e+02 7.18e+03(+) 2.59e+02 7.28e+03(+) 2.20e+02 7.19e+03(+) 4.26e+02 7.22e+03(+) 2.74e+02 7.29e+03(+) 1.00e+01
f9 1.91e+02 1.13e+01 1.91e+02(=) 7.00e+00 1.80e+02(+) 1.07e+01 1.77e+02(+) 1.10e+01 1.80e+02(+) 9.00e+00 1.90e+02(+) 1.50e+00
f10 2.34e-03 4.36e-04 2.87e-04(+) 7.05e-05 2.13e-07(+) 6.21e-08 1.47e-07(+) 4.12e-08 1.07e-07(+) 2.85e-08 9.32e-05(+) 1.90e-06
f11 2.49e-04 4.18e-04 2.32e-06(+) 1.37e-06 1.53e-12(+) 1.19e-12 8.28e-13(+) 1.16e-12 5.80e-13(+) 4.31e-13 1.82e-07(+) 5.80e-08
f12 1.09e-05 5.89e-06 1.05e-07(+) 5.42e-08 5.94e-14(+) 3.60e-14 1.95e-14(+) 1.13e-14 1.98e-14(+) 1.50e-14 6.66e-09(+) 3.10e-10
f13 4.41e-05 2.14e-05 7.13e-07(+) 4.19e-07 3.29e-13(+) 1.84e-13 1.65e-13(+) 9.21e-14 1.14e-13(+) 8.02e-14 4.71e-08(+) 9.55e-09

Total number of (+/=/-): 11/2/0 12/1/0 12/1/0 12/1/0 12/1/0

SS = 16 obtains best performance on 6 functions (f3, f4,
f6, f10, f11, f13) in this testing group.

From above discussion, the STS operator promotes DE’s
ability of finding high accuracy solutions not only on u-
nimodal but also on multimodal functions, and a proper
SS/NP ratio lies in the range 4%-10%.

5.3 Acceleration of the Convergence Speed

To compare the convergence speed of DE/rand/1 and STS-
DE/rand/1, we run them with different SS values when
NP = 100. We select a threshold value for the objective
function for each test function, which is listed in the third
column of Table 3. Each algorithm is terminated when the
best fitness value so far is below the predefined threshold
value or the number of fitness evaluations reaches the maxi-

mum value MAX FEs = 2.00E + 06. For each test func-
tion of Group A, the algorithms were run 50 times. Here, we
define the acceleration rate (AR) to show the improvement
of algorithm B over algorithm A in terms of the convergence
speed, as follows:

ARB/A =
Mean FEsA
Mean FEsB

(16)

Table 3 shows the results of the mean number of fit-
ness evaluations (Mean FEs), the success rate of converg-
ing to the predefined threshold, and the AR between STS-
DE/rand/1 and DE/rand/1. The best result among the com-
pared algorithms for each function is shown in boldface.
As shown, STS-DE/rand/1 shows faster convergence on u-
nimodal and multimodal functions except function f5. f5
is a specific function with strong relations among variables
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Table 3 Results of the mean number of fes and successful rate under predefined accuracy level (threshold)

Prob. Threshold SS=1 SS=2 SS=4 SS=8 SS=16
Mean FEs SR Mean FEs AR SR Mean FEs AR SR Mean FEs AR SR Mean FEs AR SR

f1 1.00e-10 1.21e+05 100% 1.01e+05 1.20 100% 9.53e+04 1.27 100% 9.36e+04 1.29 100% 9.25e+04 1.31 100%
f2 1.00e-10 2.09e+05 100% 1.75e+05 1.19 100% 1.65e+05 1.27 100% 1.61e+05 1.30 100% 1.60e+05 1.31 100%
f3 1.00e-10 4.38e+05 100% 3.47e+05 1.26 100% 3.30e+05 1.33 100% 3.23e+05 1.36 100% 3.18e+05 1.38 100%
f4 1.00e-10 NA 0% NA NA 0% NA NA 0% NA NA 0% NA NA 0%
f5 1.00e-10 4.63e+05 100% 5.87e+05 0.79 100% 9.23e+05 0.50 100% 1.18e+06 0.50 100% 1.36e+06 0.34 100%
f6 1.00e-10 3.21e+04 100% 2.70e+04 1.19 100% 2.55e+04 1.26 100% 2.47e+04 1.26 100% 2.43e+04 1.32 100%
f7 1.00e-02 1.29e+05 100% 1.08e+05 1.19 100% 9.80e+04 1.32 100% 9.71e+04 1.32 100% 9.95e+04 1.30 100%
f8 1.00e+03 8.14e+05 100% 6.47e+05 1.26 100% 5.80e+05 1.40 100% 5.49e+05 1.48 100% 5.70e+05 1.43 100%
f9 1.00e-10 NA 0% NA NA 0% NA NA 0% NA NA 0% NA NA 0%
f10 1.00e-10 1.98e+05 100% 1.63e+05 1.21 100% 1.54e+05 1.29 100% 1.51e+05 1.29 100% 1.50e+05 1.32 100%
f11 1.00e-10 1.26e+05 100% 1.04e+05 1.21 100% 9.84e+04 1.28 98% 9.63e+04 1.28 96% 9.56e+04 1.32 100%
f12 1.00e-10 1.13e+05 100% 9.31e+04 1.21 100% 8.73e+04 1.29 100% 8.58e+04 1.29 100% 8.53e+04 1.32 100%
f13 1.00e-10 1.20e+05 100% 9.88e+04 1.21 100% 9.31e+04 1.29 100% 9.14e+04 1.29 100% 9.06e+04 1.32 100%

and a narrow valley. From Table 3, the STS-integrated al-
gorithm maintains a high convergence speed when it has a
larger subset. The main reason is that better solutions have
more probability to survive into the next generation because
the algorithm is under heavy selection pressure when SS is
large. It is noteworthy that the algorithm is easy to fall into
local optima when the selection pressure is too heavy.

5.4 Analysis of Exploration and Exploitation

An important issue when applying EAs is to balance the ex-
ploration and exploitation capabilities. In this section, we
demonstrate that the proposed STS selection scheme at-
tempts to strengthen the exploration ability at the early stage
of evolution and the exploitation ability at the late stage.

To demonstrate this, we employ the rejection error index
(REI), the population diversity (pd), the population fitness
(pf ) and the number of recently successful updates (nu) to
measure the exploration and exploitation capabilities. The
population diversity in the Gth generation is calculated as
follows:

pdG =

NP−1∑
i=1

NP∑
j=i+1

D(XG
i , XG

j ) (17)

where D(XG
i , XG

j ) is the Euclidean distance between the
ith vector and the jth vector at generation G.

Similarly, the population fitness in the Gth generation is
calculated by:

pfG =

NP∑
i=1

f(XG
i ). (18)

In most cases, an algorithm enhances the search ability
if it can constantly generate successful solutions. This phe-
nomenon can be shown by evaluating the number of recently
successful updates nuG in the Gth generation, which is cal-
culated as follows:

nuG =

NP∑
i=1

qGi , (19)

where

qGi =

{
1, if XG

i is updated

0, otherwise
(20)

If the parameter nuG is in a high level, it means that the
algorithm maintains a high update possibility and has the
ability of generating successful solutions.

Obviously, an algorithm tends to successfully explore
the search space if it has a high level of population diversity
and a high possibility of successful updates. Furthermore, it
tends to well exploit if it has a low level of population fitness
and maintains a high amount of successful updates.

Fig. 3 presents the accumulation of REI , pd, pf and
nu of running DE/rand/1 with the STS operator on the 30-
dimensional multimodal functions (f8-f13) in the testing
group A. As shown in Fig. 3, the value of SS has a sig-
nificant impact on REI value, where a big value of SS > 1

reduces REI . More specifically, compared with the original
one-to-one survivor selection operator, which is the special
case of the STS selection with SS = 1, the proposed STS
method with SS > 1 does not seriously reduce the popula-
tion diversity. This means that the DE with the STS operator
integrated still has the exploratory capacity competitive to
the DE without the STS operator. In addition, it is noticeable
that STS-DE/rand/1 with SS > 1 maintains a higher num-
ber of successful updates (nu) than DE/rand/1. The average
fitness is decreased by using the STS operator with SS > 1,
which demonstrates that the DE algorithm with the STS op-
erator has a strong ability of finding potential solutions and
balancing between exploration and exploitation.

5.5 Comparison of Five Survival Selection Schemes

In this section, the STS selection scheme is compared with
the other four survival selection methods, namely, the worst
survival selection (CW), which is outstanding in the con-
vergence speed, the closest survival selection (CC) Tagawa
(2009), which is excellent in the robustness, DCN-THR-
REF Segura et al. (2013) and tournament selection (TS)
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Fig. 3 The accumulation of REI, population diversity, population fitness and number of successful updates of running DE/rand/1/bin on the
30-dimensional multimodal functions of Group A, where NP = 100 with SS = 1, SS = 2, SS = 4, SS = 8 and SS = 16, respectively.

(Abbas et al., 2015). Again, we integrate the five selec-
tion methods into the DE/rand/1 mutation strategy, denot-
ed STS DE, CW DE, CC DE, DCN-THR-REF DE and T-
S DE, respectively. The scaling factor F and crossover rate
CR are set to 0.5 and 0.9, respectively. Depending on the
analysis in Section 5.2, the subset size SS is set to 4%×NP

for the STS selection scheme. Each algorithm was run 30 in-
dependent times for every function. The results are reported
in Table 4.

A close inspection in Table 4 indicates that the perfor-
mance of STS DE is clearly and constantly superior to the

other four survival selections in most of the unimodal and
multimodal functions.The proposed STD DE has 11 best
average fitness performances for unimodal functions f1- f7
and multimodal functions f9, f10, f12, f13. CW DE has
the second best average fitness performance for unimodal
function f6 and multimodal functions f8, f12, f13. Com-
pared with STS DE, CW DE performs worse on 7 func-
tions, similarly on 5 functions and only outperforms on
one function f8. CC DE does not obtain the best average
fitness on any testing functions and exhibits worse on al-
l functions in Wilcoxon’s test with STS DE, so it performs
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Table 4 The error values for different survival selection schemes at NP = 100, SS = 4, D = 30, after 200,000 fitness evaluations

STS DE CW DE CC DE DCN-THR-REFS DE TS DE
Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

f1 5.43e-42 4.62e-42 4.31e-34(−) 5.91e-34 2.30e-01(−) 4.09e-02 1.03e+04(−) 3.17e+03 8.06e-28(−) 1.05e-27
f2 1.16e-20 1.05e-20 6.89e-17(−) 4.05e-17 3.96e+00(−) 2.10e+00 2.41e-07(−) 4.80e-07 5.47e-14(−) 3.52e-14
f3 4.47e-09 3.83e-09 5.86e-06(−) 6.70e-06 5.19e+03(−) 1.06e+03 1.37e+04(−) 5.13e+03 2.80e-05(−) 4.07e-05
f4 5.65e-01 1.06e+00 1.14e+00(−) 1.52e+00 3.40e+01(−) 2.79e+00 1.02e+00(−) 1.42e+00 7.59e-01(=) 7.35e-01
f5 1.53e+01 2.50e+00 1.75e+01(−) 1.58e+00 5.72e+02(−) 1.01e+02 1.08e+07(−) 5.15e+06 2.13e+01(−) 1.01e+00
f6 0.00e+00 0.00e+00 0.00e+00(=) 0.00e+00 3.33e-02(−) 1.80e-01 9.05e+03(−) 2.88e+03 0.00e+00(=) 0.00e+00
f7 2.96e-03 7.85e-04 4.65e-03(−) 1.28e-03 4.76e-02(−) 1.22e-02 5.21e-03(−) 1.68e-03 4.84e-03(−) 1.56e-03
f8 6.66e+03 6.45e+02 6.60e+03(+) 6.27e+02 7.42e+03(−) 2.60e+02 6.80e+03(−) 1.87e+02 6.74e+03(−) 5.09e+02
f9 1.02e+02 2.53e+01 1.41e+02(−) 2.63e+01 2.16e+02(−) 9.97e+00 1.52e+02(−) 1.13e+01 1.43e+02(−) 2.20e+01
f10 4.00e-15 1.58e-30 4.95e-15(=) 1.57e-15 2.21e+00(−) 1.83e-01 3.05e-13(−) 1.21e-13 8.26e-15(=) 2.14e-15
f11 2.74e-04 1.40e-03 2.47e-04(=) 1.33e-03 7.96e-01(−) 5.94e-02 0.00e+00(=) 0.00e+00 0.00e+00(=) 0.00e+00
f12 1.57e-32 0.00e+00 1.57e-32(=) 2.74e-48 2.28e+01(−) 5.68e+00 1.46e+07(−) 9.49e+06 2.86e-29(−) 2.86e-29
f13 1.35e-32 2.74e-48 1.35e-32(=) 5.47e-48 8.44e+01(−) 9.53e+01 6.52e+07(−) 1.57e+07 4.79e-28(−) 6.21e-28

Total number of (+/=/-): 1/5/7 0/0/13 0/1/12 0/4/9

worst in this survival selection test. In the comparison with
STS DE, DCN-THR-REF DE exhibits similar performance
on one function f11. TS DE, which uses the common se-
lection method in genetic algorithm, exhibits similar perfor-
mance on 4 functions, worse performance on other 9 func-
tions. From above discussion, STS DE is a reliable selec-
tion scheme although it greedily selects the better individu-
als from the target subset and the corresponding trail subset.

5.6 Enhancing the Performance of DE Algorithms

To further verify the performance of the STS operator, it is
integrated into six state-of-the-art DE algorithms, which are
listed below:

1. ODE Rahnamayan et al. (2008) with NP = 100, F =

0.5, Cr = 0.9, Jr = 0.3;
2. JADE Zhang and Sanderson (2009) with an external

archive, NP = 100, c = 0.1, p = 0.05;
3. DEGL/SAW Das et al. (2009) with NP = 10×D, F =

0.8, Cr = 0.9;
4. EPSDE Mallipeddi et al. (2011) with NP = 50;
5. FiADE Ghosh et al. (2011) with NP = 50;
6. MGBDE Wang et al. (2013) with NP = 100.

To make a fair comparison, all parameters of DE variants
above were kept the same as used in their original literature.
According to the discussion of Section A and the computa-
tional cost, the subset size SS is set to 4% × NP . For the
2014 IEEE CEC benchmark functions, the maximum num-
ber of function evaluations was set to 10000 × D. Each al-
gorithm was executed independently 30 times to obtain the
mean solution error and standard deviation. Similarly, the
Wilcoxon’s rank-sum test at the 0.05 significance level is
employed to judge the performance difference between the
original DE algorithms and their corresponding STS vari-
ants. The experimental results regarding the error values are

given in Tables 5, 6 and 7. Figs. 4, 5, 6 and 7 show the con-
vergence curves of the six DE algorithms and their corre-
sponding STS variants on Group B functions cf1, cf5, cf17
and cf30, respectively.

For the opposition-based DE, one can observe that STS-
ODE outperforms ODE in 7 cases (cf2, cf3, cf6, cf22, and
cf28−cf30) and exhibits similar performance in 21 function-
s. JADE is substantially enhanced by the STS operator. STS-
JADE exhibits significantly better or similar performance in
26 out of the 30 functions. More specifically, in the unimodal
functions cf1−cf3, STS-JADE exhibits similar performance
to JADE. In the simple mutilmodal and hybrid functions
cf4 − cf22, STS-JADE exhibits either better or similar per-
formance except for cf4 and cf22. For the composition func-
tions, STS-JADE outperforms JADE in three cases (cf27,
cf29, cf30) and exhibits similar performance in cf23, cf26
and cf28. STS-DEGL/SAW either outperforms DEGL/SAW
or performs equally well. In more detail, DEGL /SAW is im-
proved by the STS operator in 13 functions, while the per-
formance of the two algorithms is not statistically different
in 17 functions (i.e., cf5, cf7, cf9 − cf15, cf18, cf20 and
cf23 − cf28). STS-EPSDE outperforms EPSDE in 14 func-
tions. Specifically, STS-EPSDE achieves significantly bet-
ter performance on two unimodal functions (cf1 and cf3)
and eight multimodal functions (cf5 − cf6 and cf8 − cf13).
EPSDE outperforms STS-EPSDE in 8 functions, cf4, cf7,
cf17− cf18, cf20− cf22 and cf24, most of which are hybrid
functions. Similarly, STS-FiADE shows better performance
in 17 functions and similar performance in 6 functions. STS-
MGBDE demonstrates either similar or significantly better
performance in 19 functions, among which STS-MGBDE
attains a statistically significant performance improvement
for 11 functions.

In order to further compare the performance of all con-
sidered algorithms on the 2014 IEEE CEC benchmark func-
tions, we employ the Friedman’s test as done in Garcı́a et al.
(2009, 2010). Table 8 shows the average rankings of the six
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Table 5 The error values of ODE, STS-ODE, JADE and STS-JADE on the 30-dimensional 2014 IEEE CEC benchmark functions

ODE STS-ODE JADE STS-JADE
Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 1.05e+05 5.93e+04 1.05e+05 8.77e+04 = 1.27e+04 1.02e+04 1.45e+04 1.30e+04 =
cf2 4.78e-13 6.85e-13 1.60e-14 2.14e-14 + 0.00e+00 0.00e+00 9.87e-24 2.72e-23 =
cf3 2.21e-16 2.03e-16 2.04e-17 2.38e-17 + 8.49e+01 7.00e+01 2.30e+02 3.86e+02 =
cf4 4.86e-01 2.63e-01 2.96e+00 1.21e+01 − 3.82e-07 1.64e-06 2.17e-01 2.45e-01 −
cf5 2.06e+01 1.35e-01 2.06e+01 1.56e-01 = 2.03e+01 3.00e-02 2.01e+01 4.82e-02 +
cf6 2.04e-01 8.56e-01 5.59e-01 2.46e+00 + 1.15e+01 1.08e+00 3.16e+00 2.48e+00 +
cf7 1.78e-16 1.69e-16 2.18e-16 1.71e-16 = 4.89e-07 2.57e-06 3.45e-03 5.87e-03 =
cf8 1.56e+02 1.46e+01 1.59e+02 1.80e+01 = 2.81e-13 1.42e-13 0.00e+00 0.00e+00 +
cf9 1.87e+02 7.98e+00 1.85e+02 9.33e+00 = 3.11e+01 3.98e+00 2.69e+01 6.10e+00 +
cf10 2.85e+03 6.12e+02 3.49e+03 8.76e+02 − 1.95e-01 5.55e-02 2.96e-01 3.10e-01 =
cf11 4.21e+03 1.25e+03 4.26e+03 1.16e+03 = 1.69e+03 2.41e+02 1.60e+03 4.01e+02 +
cf12 6.94e-01 3.22e-01 7.93e-01 3.24e-01 = 2.81e-01 2.86e-02 1.48e-01 4.40e-02 +
cf13 3.57e-01 4.53e-02 3.66e-01 3.97e-02 = 2.35e-01 3.38e-02 1.62e-01 3.85e-02 +
cf14 2.74e-01 3.54e-02 2.70e-01 3.67e-02 = 2.26e-01 2.83e-02 2.42e-01 4.19e-02 =
cf15 1.62e+01 1.07e+00 1.59e+01 8.80e-01 = 3.83e+00 4.93e-01 3.28e+00 9.38e-01 +
cf16 1.17e+01 6.48e-01 1.16e+01 8.71e-01 = 9.49e+00 2.81e-01 8.61e+00 6.50e-01 +
cf17 1.52e+03 1.75e+02 1.53e+03 1.45e+02 = 2.39e+05 3.70e+05 6.84e+04 1.14e+05 +
cf18 5.68e+01 4.90e+00 5.61e+01 5.85e+00 = 3.60e+03 5.57e+03 4.12e+02 1.02e+03 +
cf19 4.63e+00 3.29e-01 4.65e+00 2.83e-01 = 4.94e+00 8.42e-01 3.89e+00 7.17e-01 +
cf20 3.84e+01 4.44e+00 3.70e+01 3.93e+00 = 4.98e+03 2.52e+03 5.15e+03 4.78e+03 =
cf21 8.14e+02 1.08e+02 8.32e+02 1.22e+02 = 1.36e+05 8.88e+04 7.79e+04 9.68e+04 +
cf22 8.98e+01 8.49e+01 5.94e+01 5.60e+01 + 1.92e+02 6.24e+01 2.85e+02 1.32e+02 −
cf23 3.15e+02 0.00e+00 3.15e+02 0.00e+00 = 3.15e+02 0.00e+00 3.15e+02 0.00e+00 =
cf24 2.17e+02 9.27e+00 2.17e+02 9.55e+00 = 2.25e+02 1.78e+00 2.27e+02 3.13e+00 −
cf25 2.00e+02 0.00e+00 2.00e+02 7.48e-01 = 2.07e+02 2.42e+00 2.10e+02 2.45e+00 −
cf26 1.00e+02 0.00e+00 1.07e+02 2.49e+01 = 1.00e+02 0.00e+00 1.00e+02 0.00e+00 =
cf27 3.54e+02 8.49e+01 3.81e+02 6.03e+01 = 3.72e+02 4.68e+01 3.47e+02 3.91e+01 +
cf28 6.35e+02 2.63e+02 5.46e+02 2.84e+02 + 8.68e+02 2.74e+01 8.56e+02 4.62e+01 =
cf29 4.13e+02 2.32e+02 3.09e+02 2.23e+02 + 1.34e+03 4.88e+02 9.12e+02 3.45e+02 +
cf30 7.51e+02 1.91e+02 6.96e+02 1.69e+02 + 2.10e+03 5.80e+02 1.74e+03 4.27e+02 +

Total number of (+/ = /−): 7/21/2 Total number of (+/ = /−): 16/10/4
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Fig. 4 The convergence curves of the six DE algorithms and their corresponding STS variants on 2014 CEC benchmark functions of unimodal
function cf1.a)The convergence curves of ODE, STS-ODE, JADE and STS-JADE on cf1. b)The convergence curves of DEGL/SAW, STS-
DEGL/SAW,EPSDE, STS-EPSDE on cf1. c)The convergence curves of FiADE, STS-FiADE, MGBDE and STS-MGBDE on cf1

state-of-the-art DE variants and their STS versions over the
30-dimensional 2014 IEEE CEC benchmark functions. The
best ranking is shown in bold face. As seen, the best average
ranking is obtained by the STS-L-SHADE and L-SHADE.
Furthermore, all STS versions outperform the non-STS ver-
sions except L-SHADE.

6 Conclusions

In this paper, an effective and efficient STS survival selec-
tion operator is proposed to enhance the performance of DE
algorithms. The STS operator aims to appropriately accept
trial vectors with better objective function values and reject
trial vectors with worse objective function values as many
as possible. This selection scheme divides the target and tri-
al populations into a number of subsets and then selects the
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Table 6 The error values of DEGL/SAW, STS-DEGL/SAW, EPSDE and STS-EPSDE on the 30-dimensional 2014 IEEE CEC benchmark func-
tions

DEGL/SAW STS-DEGL/SAW EPSDE STS-EPSDE
Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 1.33e+04 1.94e+04 3.48e+03 4.89e+03 + 1.37e+06 6.37e+05 4.48e+04 2.93e+04 +
cf2 1.32e-05 6.80e-05 1.50e-11 7.01e-11 + 0.00e+00 0.00e+00 1.11e-22 2.77e-22 =
cf3 3.30e-09 1.77e-08 1.86e-14 9.27e-14 + 7.89e-20 7.17e-20 5.06e-24 1.16e-23 +
cf4 2.11e+00 1.14e+01 5.23e-05 2.10e-04 + 8.05e-02 7.14e-02 3.10e-01 2.10e-01 −
cf5 2.09e+01 5.96e-02 2.09e+01 5.96e-02 = 2.07e+01 5.59e-02 2.05e+01 8.62e-02 +
cf6 3.08e-02 1.25e-01 6.28e-02 2.35e-01 + 2.09e+01 1.43e+00 2.39e+00 2.48e+00 +
cf7 2.38e-03 5.15e-03 3.04e-03 5.52e-03 = 0.00e+00 0.00e+00 2.30e-03 4.26e-03 −
cf8 1.65e+02 9.59e+00 1.59e+02 9.18e+00 + 3.01e+01 2.69e+00 1.60e+01 4.10e+00 +
cf9 1.78e+02 1.22e+01 1.75e+02 1.13e+01 = 1.26e+02 7.64e+00 4.84e+01 1.35e+01 +
cf10 6.06e+03 2.48e+02 6.06e+03 2.70e+02 = 1.01e+03 1.47e+02 2.42e+02 1.32e+02 +
cf11 6.74e+03 3.19e+02 6.75e+03 2.89e+02 = 4.87e+03 3.35e+02 2.77e+03 5.53e+02 +
cf12 2.47e+00 2.58e-01 2.39e+00 3.10e-01 = 1.03e+00 1.46e-01 3.10e-01 1.38e-01 +
cf13 2.81e-01 6.16e-02 2.94e-01 4.24e-02 = 3.45e-01 3.00e-02 1.76e-01 4.85e-02 +
cf14 2.53e-01 3.65e-02 2.50e-01 4.03e-02 = 2.57e-01 3.17e-02 2.43e-01 3.47e-02 =
cf15 1.52e+01 8.83e-01 1.48e+01 9.58e-01 = 1.23e+01 1.08e+00 4.18e+00 1.25e+00 =
cf16 1.24e+01 2.56e-01 1.22e+01 2.11e-01 + 1.15e+01 2.48e-01 1.02e+01 7.71e-01 =
cf17 1.18e+03 4.00e+02 1.07e+03 2.27e+02 + 2.97e+03 1.16e+03 9.19e+03 1.07e+04 −
cf18 5.84e+01 1.23e+01 5.26e+01 6.86e+00 = 6.79e+01 6.89e+00 9.45e+02 3.29e+03 −
cf19 4.61e+00 5.35e-01 4.32e+00 5.55e-01 + 5.30e+00 8.59e-01 3.37e+00 7.01e-01 +
cf20 3.53e+01 5.88e+00 3.38e+01 4.96e+00 = 3.38e+01 5.02e+00 3.80e+02 8.01e+02 −
cf21 7.61e+02 1.88e+02 6.39e+02 1.67e+02 + 8.65e+02 1.57e+02 7.72e+03 1.42e+04 −
cf22 2.49e+02 1.17e+02 1.88e+02 1.41e+02 + 1.32e+02 7.38e+01 4.59e+02 1.90e+02 −
cf23 3.15e+02 0.00e+00 3.15e+02 0.00e+00 = 3.15e+02 0.00e+00 3.15e+02 0.00e+00 =
cf24 2.20e+02 7.87e+00 2.21e+02 7.09e+00 = 2.23e+02 9.52e-01 2.25e+02 3.22e+00 −
cf25 2.03e+02 0.00e+00 2.03e+02 0.00e+00 = 2.05e+02 7.72e-01 2.04e+02 8.46e-01 +
cf26 1.00e+02 0.00e+00 1.00e+02 0.00e+00 = 1.00e+02 0.00e+00 1.03e+02 1.80e+01 =
cf27 3.63e+02 4.62e+01 3.50e+02 5.00e+01 = 3.69e+02 4.86e+01 3.68e+02 5.07e+01 =
cf28 7.98e+02 6.95e+01 8.06e+02 7.74e+01 = 9.70e+02 2.84e+01 8.79e+02 3.88e+01 +
cf29 3.14e+02 2.56e+02 2.54e+02 2.33e+02 + 1.03e+03 1.54e+02 5.56e+02 2.06e+02 +
cf30 6.04e+02 2.42e+02 4.30e+02 8.45e+01 + 1.30e+03 1.89e+02 1.49e+03 6.37e+02 =

Total number of (+/ = /−): 13/17/0 Total number of (+/ = /−): 14/8/8
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Fig. 5 The convergence curves of the six DE algorithms and their corresponding STS variants on 2014 CEC benchmark functions of unimodal
function cf5.a)The convergence curves of ODE, STS-ODE, JADE and STS-JADE on cf5. b)The convergence curves of DEGL/SAW, STS-
DEGL/SAW,EPSDE, STS-EPSDE on cf5. c)The convergence curves of FiADE, STS-FiADE, MGBDE and STS-MGBDE on cf5

best vectors from the corresponding subsets to survive into
the next generation.

First of all, we conducted the research on the relation-
ship between the population size and the subset size and
the analysis of exploration and exploitation. Then, we com-
pared the STS operator with the other four survival selec-
tion schemes. The results show that the proposed approach
is a reliable selection scheme although it greedily selects

the better individuals from the target subset and the corre-
sponding trail subset. At last, we incorporated this STS s-
election scheme with six state-of-the-art DE variants. The
experimental results show that the proposed STS operator
improves the performance of considered DE algorithms in
terms of the solution error measure. To conclude, the pro-
posed STS selection operator accelerates the convergence
of DE algorithms by keeping more promising solutions.
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Table 7 The error values of FiADE, STS-FiADE, MGBDE and STS-MGBDE on the 30-dimensional 2014 IEEE CEC benchmark functions

FiADE STS-FiADE MGBDE STS-MGBDE
Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 2.03e+07 4.65e+06 4.31e+06 1.27e+07 + 3.85e+06 2.08e+06 2.22e+04 2.28e+04 +
cf2 1.95e-03 1.03e-03 4.52e+04 1.71e+05 = 2.45e-17 9.35e-17 1.10e-21 1.63e-21 +
cf3 5.32e+00 4.35e+00 3.55e+03 5.41e+03 − 3.36e-09 1.10e-08 3.10e-17 2.19e-16 +
cf4 1.26e+02 1.39e+01 2.21e+01 3.82e+01 + 5.19e+01 3.35e+01 2.03e+01 3.28e+01 +
cf5 2.09e+01 5.42e-02 2.08e+01 1.45e-01 + 2.09e+01 4.46e-02 2.07e+01 1.57e-01 +
cf6 2.09e+01 1.22e+00 7.44e+00 4.49e+00 + 3.17e+00 2.35e+00 6.87e+00 2.66e+00 −
cf7 1.73e-02 7.54e-02 5.75e-04 2.18e-03 + 5.12e-03 7.47e-03 9.51e-03 8.26e-03 −
cf8 1.81e-05 9.82e-06 2.45e+01 5.79e+00 − 4.70e+00 2.34e+00 3.93e+01 1.14e+01 −
cf9 1.12e+02 1.03e+01 9.60e+01 2.05e+01 + 7.10e+01 3.84e+01 7.06e+01 2.31e+01 +
cf10 3.97e+00 1.52e+00 2.98e+02 1.27e+02 − 3.10e+01 4.85e+01 6.10e+02 2.92e+02 −
cf11 4.08e+03 1.89e+02 4.40e+03 9.86e+02 = 4.73e+03 1.27e+03 3.86e+03 9.75e+02 +
cf12 1.01e+00 1.07e-01 4.41e-01 1.43e-01 + 1.87e+00 1.95e-01 6.94e-01 4.04e-01 +
cf13 4.85e-01 4.79e-02 3.44e-01 5.81e-02 + 3.09e-01 4.35e-02 3.64e-01 9.93e-02 =
cf14 2.69e-01 2.99e-02 3.23e-01 8.22e-02 − 2.61e-01 8.70e-02 3.36e-01 1.06e-01 −
cf15 1.33e+01 8.72e-01 9.54e+00 3.70e+00 + 1.25e+01 2.59e+00 7.76e+00 3.38e+00 +
cf16 1.23e+01 2.44e-01 1.02e+01 1.09e+00 + 1.17e+01 3.00e-01 1.13e+01 7.54e-01 +
cf17 7.21e+05 2.13e+05 2.09e+05 5.16e+05 + 2.01e+05 1.64e+05 7.46e+03 5.23e+03 +
cf18 1.20e+04 5.30e+03 2.30e+03 3.86e+03 + 3.28e+03 3.46e+03 2.59e+03 3.11e+03 +
cf19 1.01e+01 7.88e-01 8.32e+00 1.60e+01 + 5.60e+00 1.21e+00 4.65e+00 1.12e+00 +
cf20 5.83e+02 2.40e+02 1.04e+04 7.13e+03 − 7.90e+01 1.43e+01 5.26e+02 8.72e+02 −
cf21 8.29e+04 3.29e+04 8.52e+04 9.21e+04 = 1.38e+04 1.17e+04 5.16e+03 1.82e+04 +
cf22 2.40e+02 6.42e+01 5.88e+02 1.70e+02 − 1.90e+02 9.32e+01 3.83e+02 1.77e+02 −
cf23 3.15e+02 0.00e+00 3.15e+02 1.80e-01 = 3.15e+02 0.00e+00 3.15e+02 0.00e+00 =
cf24 2.25e+02 6.80e-01 2.26e+02 3.57e+00 = 2.26e+02 4.11e+00 2.32e+02 6.82e+00 =
cf25 2.10e+02 9.52e-01 2.05e+02 1.83e+00 + 2.05e+02 1.38e+00 2.07e+02 2.82e+00 −
cf26 1.00e+02 4.90e-01 1.00e+02 1.80e-01 = 1.08e+02 2.69e+01 1.08e+02 2.69e+01 =
cf27 4.40e+02 1.22e+01 4.24e+02 4.80e+01 + 3.90e+02 5.02e+01 4.68e+02 8.09e+01 −
cf28 1.04e+03 4.61e+01 9.41e+02 5.95e+01 + 8.16e+02 4.95e+01 9.46e+02 9.99e+01 −
cf29 2.02e+03 2.48e+02 1.17e+03 4.06e+02 + 1.11e+03 3.09e+02 6.34e+02 2.17e+02 +
cf30 3.60e+03 9.45e+02 4.10e+03 3.44e+03 = 1.48e+03 5.30e+02 2.19e+03 8.04e+02 −

Total number of (+/ = /−): 17/7/6 Total number of (+/ = /−): 15/4/11

0 . 0 5 . 0 x 1 0 4 1 . 0 x 1 0 5 1 . 5 x 1 0 5 2 . 0 x 1 0 5 2 . 5 x 1 0 5 3 . 0 x 1 0 5
1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

1 0 1 0

 

 

Fit
ne

ss

F E s

 O D E
 S T S - O D E
 J A D E
 S T S - J A D E

0 . 0 5 . 0 x 1 0 4 1 . 0 x 1 0 5 1 . 5 x 1 0 5 2 . 0 x 1 0 5 2 . 5 x 1 0 5 3 . 0 x 1 0 5
1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

 

 

Fit
ne

ss

F E s

 D E G L / S A W
 S T S - D E G L / S A W
 E P S D E
 S T S - E P S D E

0 . 0 5 . 0 x 1 0 4 1 . 0 x 1 0 5 1 . 5 x 1 0 5 2 . 0 x 1 0 5 2 . 5 x 1 0 5 3 . 0 x 1 0 5
1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9
 

 

Fit
ne

ss

F E s

 F i A D E
 S T S - F i A D E
 M G B D E
 S T S - M G B D E

a) b) c)

Fig. 6 The convergence curves of the six DE algorithms and their corresponding STS variants on 2014 CEC benchmark functions of unimodal
function cf17.a)The convergence curves of ODE, STS-ODE, JADE and STS-JADE on cf17. b)The convergence curves of DEGL/SAW, STS-
DEGL/SAW,EPSDE, STS-EPSDE on cf17. c)The convergence curves of FiADE, STS-FiADE, MGBDE and STS-MGBDE on cf17

One possible future work includes the application of the
proposed work to the other population-based EAs such as
particle swarm optimization and more classic/complex mul-
timodal low dimension problems. In addition, it is notewor-
thy that the STS operator does not improve the performance
of L-SHADE significantly, which also remains a challenge
for future work.
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Fig. 7 The convergence curves of the six DE algorithms and their corresponding STS variants on 2014 CEC benchmark functions of unimodal
function cf30.a)The convergence curves of ODE, STS-ODE, JADE and STS-JADE on cf30. b)The convergence curves of DEGL/SAW, STS-
DEGL/SAW,EPSDE, STS-EPSDE on cf30. c)The convergence curves of FiADE, STS-FiADE, MGBDE and STS-MGBDE on cf30

Table 8 Average rankings achieved by the Friedman test on the 30-
dimensional 2014 IEEE CEC benchmark functions

Algorithms Average Rankings
STS-JADE 3.46

STS-DEGL/SAW 4.3
STS-EPSDE 4.3

JADE 4.53
STS-ODE 4.60

ODE 4.66
DEGL/SAW 4.7

EPSDE 5.16
STS-MGBDE 5.63

MGBDE 6.00
STS-FiADE 6.66

FiADE 7.53
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Brest J, Greiner S, Bošković B, Mernik M, Zumer V (2006).
Self-adapting control parameters in differential evolution:
a comparative study on numerical benchmark problems.
IEEE Trans. Evol. Comput. 10(6): 646–657
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