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Abstract— Our research focuses on the use of sound to
enhance the control of an autonomous indoor helicopter -
Flyper. One of the many challenging problems in this project
is managing the uncertainty which is present in input data
and the control actions; this paper focuses on managing the
uncertainty in the input data. We present a fuzzy logic system
which infers how much confidence should be placed on a
control decision based on the data which was used to make
that decision. The input data is a supervised and sound based
position estimate of the flying robot. The output of the fuzzy
inference system provides us with a confidence parameter used
to attenuate the position control of the autonomous helicopter.
We performed test flights with and without the fuzzy confidence
parameter and with and without artificial disturbance in form
of concurrent speech. We employed a motion tracker to capture
the helicopter’s movement during all test flights. The analysis
of the data collected shows encouraging results.

I. I NTRODUCTION

The study of unmanned aerial vehicles (UAV) increased
considerably within the past decade [1]. UAVs are capable
of vertical take off and landing (VTOL), are versatile in
manoeuvrability and become more known and used in the
general public than ever before.

We developed a small autonomous helicopter platform
to experiment on. Our helicopter has only a small payload
to carry equipment but can be used indoors, is relatively
cheap, safe, and more flexible in its application than larger
helicopters. We call our helicopterFlyper - fly ing performing
robot (Figure 1).

In order to achieve stable control we first evolved the ex-
isting heading and altitude controllers, evaluating individual
solutions directly on the real helicopter [2]. In previous work,
we confirmed stable control in flight tests [3].

The lightweight helicopter has no sensors to provide it with
information about its current position which leads to gradual
drift over time. One possible solution would be to provide
the helicopter with more sensors to localise its position.
Unfortunately these would dramatically increase the payload
of this small helicopter as well as the cost of the system.
Rather than using additional sensors on-board the helicopter,
we introduce a system that uses a supervising computer to
analyse the helicopter’s intrinsic sound signature to localise
it and identify its current state.
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Fig. 1. Flyper with Vicon Motion Capture Markers

The sounds generated and emitted by the helicopter
present a huge source of information for the supervising
computer. We built and connected an array of 8 microphones
to the supervising computer. The microphone array records
and analyses the sound signature in real time. The super-
vising computer sends the extracted information back to the
helicopter to enable it to further stabilise its flight and correct
its position and flight path [4].

Part of this sound based information is the current po-
sition of the helicopter relative to the microphone array.
Unfortunately, this estimate is not always accurate. Noise
within the soundscape and larger distances between the
helicopter and microphone array can have negative effects
on the accuracy of our system. In this work we propose the
use of a confidence parameter to scale the control action
performed on the position error. In order to assess the level
of confidence we propose the use of a fuzzy logic system to
give confidence measure based on the level of background
noise and the estimate distance from microphone array. The
relationship between the ‘goodness’ of the control decision
and background noise and distance is highly nonlinear but
can be described with rules based on common sense, lending
itself to a fuzzy based solution [5], [6].

The paper is structured as follows: first we will discuss
related research in helicopter control, artificial audition, and
sound analysis in the background section. Then our sound
based position estimate is introduced in section III. Further
we propose and introduce a fuzzy logic based confidence
parameter to handle noise and uncertainty within our system



in section IV. This is followed by a detailed description of
our test setup in section V. Finally, results are presented in
section VI and conclusions are drawn in section VII.

II. BACKGROUND

In this paper we present a system where an autonomous
helicopter flies using sound based position estimates only.
This section will provide and discuss background information
on our autonomous helicopter, artificial audition, and the
helicopter’s sound signature, as well as related research in
these areas.

A. Autonomous Helicopter

Helicopters are highly versatile in their maneuverability
and have many advantages over aeroplanes. Unfortunately,
one of the biggest disadvantages is the fact that they are non-
linear and highly unstable systems, very sensitive to external
disturbances [7] and therefore are difficult to control. The
high complexity of helicopter control and the big demand
for UAVs in industry, military and the civil sector made this
a highly active research topic.

The helicopter used in this work is a Twister Bell 47
small indoor helicopter model. It has 3 translational de-
grees of freedom (DOF) called up/down, left/right and for-
wards/backwards as well as 3 rotational DOF called pitch,
roll and yaw. It is a coaxial rotor helicopter with twin
counter rotating rotors with 340 mm span, driven by two
high performance direct current motors and two servos to
control rotor blade angles. Our newest autonomous helicopter
prototype has a weight of approximately 190 grams without
battery. Its six degrees of freedom are controlled by four
inputs, the amount of lift with the speed of the two rotors,
the heading with the differential of the two rotors, and the
pitch and roll rotational angles by adjusting the rotor blade
angles that are depending on the rotors position.

The autonomous helicopter consists of the helicopter
model without the original remote-control receiver but with
additional components such as an inertial measurement unit
(IMU), a sonar sensor, and a digital compass to gauge
its attitude and altitude, a microcontroller, and a bluetooth
module. A control program runs on a microcontroller which
reads all sensors and controls all actuators. The bluetooth
module provides a communication link between the micro-
controller and a host computer that acts as the base station.
The communication link includes a fail-safe emergency shut-
down functionality, transmission of flight telemetry from the
flying robot, and a transmission of sound based information
to the helicopter.

The program that runs on the microcontroller reads all
sensors and calculates the four actuator outputs using four
separate proportional, integral, and derivative (PID) con-
trollers. Others showed that PID controllers are very capable
of stabilising helicopters [8], [9]. Nevertheless, determining
good PID control parameters can be a challenging task [10].

We applied two genetic algorithms (GA) to tune the
heading and altitude PID controllers of the helicopter. Rather
than using a simulation of the system, we used the real

Fig. 2. Overview of the system and its asymmetric relationship.

helicopter to evaluate the fitness of individuals in the GA.
We have shown that the GA tuned heading controller evolved
towards more robust solutions due to naturally occurring
noise in the system [11].

B. Distributed Reasoning Framework

One consequence of the helicopter’s payload limitation is
the need for an asymmetric reasoning system. The helicopter
has some simple sensors and basic processing ability. A
supervising second computer has a more complex sensing
(the microphone array) and processing capability. The two
are linked through a bluetooth wireless data communication
link. The asymmetric relationship between these two is
depicted in Figure 2.

The helicopter makes control decisions using PID while
the fuzzy system presented in this paper works out how
much confidence can be placed in the control inputs. The
helicopter reduces the impact of positional control decisions
as the inferred confidence reduces.

C. Sense of Sound

Mammal binaural hearing is efficient and accurate. Nev-
ertheless, it is very difficult to reproduce these capabilities
on a robot using only two microphones. Fortunately robot
audition is not limited to two microphones only and much
research is being conducted on creating microphone arrays
that make audition simpler, faster and more accurate.

Kagami et al. present in [12] an array consisting of
128 microphones capable of localising sound sources. A
large number of microphones increases the computational
complexity and also the accuracy might not increase sig-
nificantly. Valin et al. state in [13] that they have not
seen much difference in localisation accuracy between using
seven or eight microphones. Valinet al. used an array of
eight microphones to accurately localise the direction to a
sound source within a few degrees. Detecting the distance
to a sound source has not been tested but initial simulation
showed less encouraging results. We chose a microphone
array of eight omnidirectional microphones connected in a



cube configuration1.
Much research has been done on sound source localisation

within the last decade [14]. Common and well understood
methods are time delay of arrival (TDOA), beam forming,
MUSIC, Maximum likelihood method, and many more [15],
[13], [16], [17]. These methods show a good accuracy
determining the direction of a sound source within a few
degrees. For full localisation the distance to the sound source
needs also to be determined. Other work showed distance
estimation to unknown sound sources to be a challenging
task where only little accuracy is obtained [18], [13].

Analysing a sound can not only provide the location
of the sound source but give information about its state.
State and fault detection is an area of research concerning
sound and vibration. The change of the typical sound of a
machine is often an indication of an incipient problem with
it. In [19] Samuel and Pines, and in [20] Pawar and Ganguli
present reviews on fault and state detection techniques for
helicopters.

In [21], the state of a turbo pump is detected by analysing
it’s sound signature. Westemeyeret al. first transform the
sound signature into the frequency domain and then use two
methods to identify the pumps state from the frequencies.
The first technique used was a feedforward neural network
where the inputs were the average of slots of frequencies.
Clearly this method was not able to detect the shift in
frequencies the pump is emitting when running up or down.
The second method used a heuristic approach where the
frequencies with the strongest signal are tracked over time
to determine the state. This technique showed adequate
accuracy.

D. Helicopter’s Sound Signature

Sound is a signal that naturally consists of a combina-
tion of multiple individual signals. The helicopter’s intrinsic
sound signature consists of a mixture of sounds produced by
the rotor blades, the air passing the helicopter body, motor
noise and servo movement. The motors, rotor blades and
the flybar generate specific sounds based on their current
speed and the power supplied to them. These sounds can be
recorded by a supervising computer which analyses them to
extract information about the helicopters location and state.

It is quite common to transform a signal into the frequency
domain where individual but concurrent signals can more
easily be analysed. In this work we transform the recorded
sound into the frequency domain by applying a Fourier
transform. Any simple real world sound usually consists of a
fundamental tone and a number of overtones or harmonics.
The frequencies of the overtones are N times larger than
the original fundamental tone’s frequency. The helicopter’s
sound signature consists mainly of fundamental tones be-
tween 1.2 kHz and 2.4kHz as well as their corresponding
overtones.

1Microphone array kit and sound localisation tool box available as open
source from the ManyEars project, http://sourceforge.net/projects/manyears

III. SOUND BASED POSITION ESTIMATE

Our system analyses a combination of sounds and frequen-
cies to gather a variety of information. In this paper we will
focus only on the sound based position estimate.

In order to estimate the location of the helicopter the
direction to this sound source is determined by the super-
vising computer using a sound localisation technique called
frequency-domain beamformer1 [13]. This method provides
us with horizontal and vertical angles to detected sound
sources.

Pinpointing the actual location of the helicopter in 3
dimensions requires the direction as well as the distance
to it. Determining the distance to a sound source without
knowledge about its loudness is a challenging task [18], [13].

The loudness of the helicopter is relative to the distance
between helicopter and microphone as well as to the speed
of its motors and rotors. The motor and rotor speed can
be estimated by its correlation to a certain frequency peak
within the sound signature [3]. By taking this estimate and
the loudness of the helicopter, the distance to it can be
determined, since its intrinsic noise is consistent and thelevel
can be known.

IV. FUZZY CONFIDENCE

The sound based position estimate of the autonomous
helicopter uses specific frequency bands within the frequency
spectrum recorded by the microphone array and supervising
computer. If for example someone speaks at the same time
the system is in operation, the accuracy of the computed
estimate can suffer due to the added noise and disturbance
in the received signal. Noise is by definition a perturbationto
a wanted signal and cannot easily be modelled in the sound
based position estimation method.

We propose a fuzzy confidence parameter that enables
the helicopter to correct its position based on how confident
the system was about the accuracy of the estimate. A fuzzy
inference system is capable of modelling the human decision
making process and can be used to provide a level of confi-
dence with the estimate. The first input is the level of noise
identified by analysing the frequency bands not occupied
by the helicopter’s sound signature. The frequency range
occupied by the intrinsic sound is dynamic, changing with
the power applied to the rotors. We calculate the frequency
range of relative to this changing frequency range. Let the
fH be the frequency of the helicopter given in equation (1).

fH =
∑n

j=1 i f j f j

∑ f j
∀ j ∈ {1200,1202.93, . . . ,2400} (1)

Where i f j is the intensity in the frequency domain of fre-
quency f j . The level of background noisenl is given in
equation (2).

nl = ∑ f j ∀ j ∈ {293,295.93, . . . , fH −293} (2)

The second input is the distance identified by the posi-
tion estimate: the further the helicopter is away from the
microphone array the higher the error and thus the lower the
confidence in the estimate.
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Fig. 4. The fuzzy sets small, medium and large for the distance input.

We employed a standard Mamdani fuzzy system, with two
input variables: noise level and distance, and one output
variable: confidence. Each input domain had three fuzzy
sets: small, medium and large depicted in Fig. 3 and Fig.
4 respectively. The output domain had three fuzzy sets: low,
medium and high depicted in Fig. 5 The rule base of the
fuzzy system is given in Table I. The fuzzy AND was
implemented with product, the fuzzy OR with bounded sum
and the centroid was used for the defuzzification operator.
These were chosen as they gave a smooth and intuitive
control surface, which is depicted in Fig. 6.

It should be noted that while the maximum confidence
level possible is about 100%, the minimum confidence level
possible is about 10%. This is an important requirement to
garantee the system responds to all estimates.

At first glance this would appear to be a control problem,

TABLE I

THE RULE BASE FOR THECONFIDENCEFIS.

No. Rule
1 If noise level is large then confidence is low
2 If noise level is small then confidence is high
3 If distance is large then confidence is low
4 If noise level is large and distance is small then confi-

dence is not high
5 If noise level is small and distance is large then confi-

dence is high
6 If noise level is medium and distance is not large then

confidence is medium
7 If noise level is large and distance is small then confi-

dence is low
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Fig. 5. The fuzzy sets low, medium and high for the confidence output.

Fig. 6. The control surface for the confidence FIS.

however, this is not the case. The fuzzy system employed
here is performing a human decision making task: how much
confidence should be placed in a control decision? The rules
in the system come from operator experience, for example
rule 1 states that if the level of background noise is high then
the confidence is low. This type of rule with a simple one
variable antecedent is rarely found in fuzzy control systems.

The sound based position estimate together with the fuzzy
confidence parameter are transmitted to the helicopter. The
helicopter then uses the confidence parameter directly to pro-
portionally scale the position correction command computed
from its position error.

V. FLIGHT STABILITY IN TEST FLIGHTS

The autonomous helicopter and its supervised sound based
positioning system have been tuned before the fuzzy confi-
dence parameter was introduced. Figure 7 shows the system
inputs and outputs during a test flight. Please note the rather
big heading errors during take off and landing are due to
magnetic distortions in the ground of the Vicon test lab.

In order to test the introduced fuzzy confidence technique
we performed multiple test flights where the autonomous
helicopter was instructed to hover in place above its take
off point marked with a helipad (figure 1) for 30 seconds.
To measure the amount of error from the setpoint the Vicon
motion tracking system was employed. The system uses a
number of high speed near-infrared cameras and infrared
spotlights to track highly reflective markers though the
cameras’ field of vision. Six lightweight reflector markers
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Fig. 7. Flyper control inputs and output commands in flight; without disturbance and without fuzzy confidence

have been attached to the helicopter in order to track its full
six degrees of freedom over the test flights.

Based on this test setup we chose to test four scenarios
where the fuzzy confidence parameter was tested against
artificial disturbance:

1) (NN) - No disturbance and no fuzzy confidence
2) (NF) - No disturbance and fuzzy confidence
3) (DN) - Disturbance and no fuzzy confidence
4) (DF) - Disturbance and fuzzy confidence
The disturbance to the sound based localisation system

was generated though playing back a previously recorded
audio file from a single location 90 degrees off and 2 metres
away from the microphone array. The test file contains three
identical sentences of the well known test phrase “The quick
brown fox jumps over the lazy dog” in increasing intensity
levels. The spoken sentence provides a complex disruption
through a variety of freuqencies and amplitudes. Playback

of this recorded sound effects and disrupts the sound based
rotor speed estimate, the loudness measurement, and thus the
distance estimate. The first sentence with low human voice
intensity was played 7 seconds after take off followed by the
normal intensity and loud sentences separated by 7 seconds
of silence each.

VI. RESULTS

For each of the four test scenarios there have been five
test flights recorded using the Vicon motion tracking system,
generating a total of 20 test flight data sets. Figure 8a shows
the position estimate from the Vicon motion tracking system
in an arbitrary pixel based unit. On the right hand side,
figure 8b shows the position estimate by the sound based
localisation method. Although at this stage we are unable
to compare the two localisation methods numerically due to
their difference in units and time base, there is a correlation
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Fig. 8. Flyper position estimates in test flight 1 of scenario without disturbance and without fuzzy confidence

that can be clearly seen.
In order to analyse the recorded data we calculated the

error as the euclidean distance between the helicopter’s
position, as identified by the Vicon system, and its setpoint
where it took off using equation 3.

err(t) =
√

(x(t)−xset)2 +(y(t)−yset)2 (3)

wherex andy are the helicopter position coordinates,xset

andyset the setpoint coordinates andt the discrete time index.
We calculated the root mean square error (RMSE) for each

test flight as shown in equation 4.

RMSE=

√

∑t=n
t=0 (err(t)2)

n
(4)

The root mean squared error, mean error and standard
deviation of each of the five test flights for all four test
scenarios are listed in table II. The root mean squared error
increases more for bigger position errors for a short time
period than for smaller errors for a long time period. The
mean error on the other hand tells us about how well in
average the autonomous helicopter was able to keep around
the setpoint. The standard deviation gives us information
about how consistent the helicopter kept its position witchis
not necessarily over the setpoint.

At a first glance, looking at the mean of the test scenarios
in table II, the original system without the fuzzy confidence
and without disturbance gives the best results just as ex-
pected, the system was designed and tuned to operate in
these perfect conditions. Also, the scenario without the fuzzy
confidence but with disturbance exhibits the worst results.
Interestingly, the tests with and without disturbance but with
fuzzy confidence seem to perform similar while being much
better than the tests with disturbance and without fuzzy
confidence and being slightly worse than the tests without
disturbance and without fuzzy confidence.

TABLE II

RESULTS OF ALL TEST FLIGHTS IN TERMS OF ROOT MEAN SQUARED

ERROR(RMSE),MEAN ERROR, AND STANDARD DEVIATION .

Test Setup Test Run RMSE Mean Std.Dev.

No disturbance,
No fuzzy
confidence
(NN)

1 44.9 36.1 26.7
2 57.3 50.2 27.7
3 73.7 61.6 40.6
4 53.3 46.7 25.8
5 82.5 76.7 30.3

mean 62.3 54.2 30.2

No disturbance,
Fuzzy
confidence
(NF)

1 92.1 84.9 35.9
2 113.2 106.4 38.6
3 65.5 62.9 18.4
4 88.7 80.9 36.5
5 60.5 52.0 31.0

mean 84.0 77.4 32.1

Disturbance,
No fuzzy
confidence
(DN)

1 94.8 88.9 33.0
2 187.1 170.0 78.4
3 131.6 116.1 62.1
4 94.6 86.6 38.1
5 73.7 67.8 29.1

mean 116.4 105.9 48.1

Disturbance,
Fuzzy
confidence
(DF)

1 75.5 64.0 40.2
2 151.1 143.4 48.0
3 70.0 64.7 26.7
4 57.3 50.4 27.3
5 58.5 53.1 24.8

mean 82.4 75.1 33.4

In order to further analyse these results we performed a
ranking of the test flights regarding their root mean square
error. The best flight got the highest rank of 1 while the worst
flight got the lowest rank of 20. Table III presents the results
with a mean rank of the twenty test flights.

The mean rank confirms our initial analysis. Another way
of analysing the data is to plot its root mean squared error for
each scenario in a diagram together with the average mean
of each test setup (Figure 9). The bar graph shows more
intuitively the distribution of the test results.

A direct comparison of the results of the disturbance



TABLE III

MEAN RANK OF ALL FOUR EXPERIMENTAL TEST SCENARIOS

Experimental Run Mean Rank
No disturbance, no FIS (NN) 5.4
Disturbance, FIS (DF) 9.4
No disturbance, FIS (NF) 11.4
Disturbance, no FIS (DN) 15.8

DF NF DN NN
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Fig. 9. The RMSE of each experimental run.

and no fuzzy confidence test scenario with the disturbance
and fuzzy confidence test scenario confirm the enhanced
performance. Although the inter-scenario results do vary
the tendency is clear. Even if the worst flight of the non-
fuzzy confidence would be declared an outlier, the mean
performance would be far worse than in the fuzzy confidence
based scenario.

This is somewhat different in the other two scenarios. If
the one rather bad test flight of the disturbance and fuzzy
confidence test scenario is declared an outlier, the mean
performance is similar to the non-disturbed and no fuzzy
confidence test scenarios performance. In the future we will
conduct further research to investigate into this specific case.

VII. C ONCLUSIONS

In this paper we introduced a system to provide us with a
level of confidence for noisy and uncertain data. This con-
fidence parameter is generated by a fuzzy logic system that
models this human reasoning process. The system is used on
an autonomous helicopter which gets its position information
through sound analysis on a supervising computer. Flight
tests were conducted to test the fuzzy confidence system in
combination with disturbance.

Although sound can present a huge source of information
for machines, noise and uncertainty can cause problems when
relying on this source of information. The use of an addi-
tional parameter to represent the level of confidence for the
provided information can enhance the system performance.
As confidence is a quite subjective matter the experience of
a human operator is invaluable. Fuzzy logic is well known
for its ability to model human reasoning and suits our needs
to model our confidence system from operator experience.

The analysis of the recorded test flight data confirms
the fuzzy confidence parameter to enhance the stability of
the autonomous helicopter when adding disturbance. The
performance of the fuzzy confidence system in non-disturbed
situations is similar to the performance when disturbed.

Although 20 test flights have been made, recorded, and
analysed, the results are not always consistent due to a
high level of variance in the test data. Further tests would
be valuable to gain a more detailed understanding of the
performance differences. In the future, we will conduct more
extensive tests to further analyse the sound based position
estimate in a variety of scenarios. This will include a larger
number of tests with a variety of individual sound based
disturbances as well as for multiple distant position setpoints.
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