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Abstract 

The potential for small self-contained grid systems to provide electricity for currently unserved regions of the 

developing world is widely recognised.  However planning and managing the electrical demand that will be 

supported, so that a mini-grid system is not overloaded and its available resource is used as fully as possible, is 

actually more difficult than for a large scale grid system.  This paper discusses the mathematical reasons why 

this is the case, and describes a practical software tool for mini-grid demand estimation and planning that is 

complementary to the widely used HOMER software.  This software tool is made available for download on an 

open source basis.  Finally a conclusion is offered that mini-grid systems should aim to serve at least 50 

households so that demand variability is more manageable and economies of scale can be realised.     
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1. Introduction 

There remains 18% of the world’s population without access to electricity (IEA 2014). 

Substantial progress has been made through innovations such as the solar home system 

(Komatsu et. al. 2011), but the full potential of electricity for lifting people out of poverty can 

only be achieved when it is available at the cost and capacity levels needed for commercial 

applications such as processing or storage of agricultural produce.  The obvious way to drive 

down the cost and increase the availability of electricity is through the economy of scale 

provided by some form of grid supply.  However, conventional grid connection is not a 

practical or economic solution for a substantial proportion of this population, particularly in 
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Africa (Szabo et al. 2011). Also, arguably the architecture of large scale fossil fuelled 

generation, accompanied by high voltage high capacity transmission and distribution 

networks, is no longer universally appropriate given the need to avoid carbon emissions by 

employing renewable energy sources that are geographically dispersed.  The emergence and 

growth of localised electricity generation and distribution in developed economies reflects 

this reality (DECC 2014).  These arguments make mini- or micro-grids attractive as the way 

forward for rural electrification (ARE 2011).  Such grids will serve a local community and 

either have no connection to a national grid system at all (hence off-grid) or have a 

connection that may be either severely limited in capacity relative to the local demand or 

unreliable.  The potential for mini-grids to meet the needs of this unserved population has 

been shown by many practical demonstration projects (Yadoo and Cruickshank 2012) and 

start-up enterprises (Access:energy 2015), but large scale rollout of mini-grid technologies 

has not yet happened. 

One of the barriers to exploitation of this potential is the need to sustain a balance 

between electricity supply and demand, which begins at the planning and design stage of a 

mini-grid project and then must be achieved continuously in subsequent operation.  For a 

national grid system this is performed by the System Operator
1
 (SO).  Their role is recognised 

as critical, and they will expect to invest in a range of costly and sophisticated tools to help 

them discharge this function.  For a mini-grid exactly the same role has to be performed, but 

with resources scaled down accordingly and often with the additional constraints arising from 

a remote or rural location.  The purpose of this paper is to describe and make available a 

simple software tool that can assist mini-grid designers and operators in this difficult task.  It 

allows the peak, average, and variability of demand to be predicted from a given population 

of consumers and appliances, and it presents results in a form that is compatible with the 
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popular HOMER software package that is widely used for mini-grid research, planning and 

design (Lambert et al. 2006, Mondal and Denish 2010). 

2. Prediction of electricity demand 

 The aggregate electrical demand
2
 presented at any time to the generator of a mini-grid 

will be composed of a number of individual loads arising from particular devices and 

appliances that have been switched on, and will be switched off, at times determined either 

by a human user or by some automated control responding to the environment of the power-

consuming appliance.  While there will be some correlation of operating times for loads with 

related functions, such as lighting coming on in the evening, as long as the decision taking 

processes that determine times of operation of each load are independent, the precise 

population of operating loads at any given time will be uncertain.  For a few households with 

limited electricity consuming devices (perhaps progressing from solar home systems to a 

shared PV-powered micro-grid) it is likely that at some time all will switched on and the 

maximum possible demand will be the sum of the loads drawn by all the available appliances.  

However, this will be unusual, and as the number of power-consuming households and 

businesses rises, and they start to collect a range of appliances for different purposes, the 

likelihood of every available appliance being presented simultaneously becomes negligible.  

The challenge then is to decide what maximum demand can be expected from a given 

population. The ratio between the maximum demand likely to occur in practice and the total 

possible demand is known as the diversity factor, which is often expressed as a percentage.  

When planning electricity distribution supplied from a conventional grid system, the 

calculation of diversity has traditionally used a combination of heuristic formulae and 
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engineering judgement.  As the classic work by Fred Porges on electricity distribution in 

buildings (Porges 1974) puts it: 

“One can apply a diversity factor to the total installed load to arrive at the maximum 

simultaneous load. To do this, one needs an accurate knowledge of how the premises are 

going to be used, which one can get by a combination of factual knowledge and 

intuition......A general knowledge of life and how buildings are used may be of more help 

than theoretical principles”    

This reflects the difficulty in quantitative characterisation of the aggregate demand 

expected from a given population of electrical appliances and people.  The goal in applying 

mathematics to this problem must be to guide and clarify the human judgement that is 

essential to arrive at a design or management decision.   This challenge is particularly evident 

to the designers and operators of a mini-grid in the developing world where the available 

generating resource is unlikely to match the latent demand and there is a strong incentive to 

generate cash flow from new consumers and loads.  Managers are often under pressure to 

maximise income to repay capital cost or to meet battery or diesel generator replacement 

costs.  This can easily lead to overload with consequences such as brownouts which reduce 

consumer confidence in the service (Quetchenbach et. al, 2013) or excessively deep discharge 

of batteries which results in shorter lifetimes and higher costs.   

3. Modelling methods 

The central limit theorem provides a useful model of the aggregate demand arising 

from a population of loads each of whose power consumption expressed as a time series is 

intermittent and stochastic.  It states that the means of n independent samples drawn from any 

distribution with mean m and standard deviation σ will have an approximately normal 

distribution with a mean equal to m and a standard deviation equal to σ/√n.  This implies that 



5 
 

as the number of electricity-consuming appliances n served by a grid increases, the variability 

(standard deviation) of their total electricity consumption will decrease by a factor of 1/√n.  

Figure 1 illustrates the radical effect of this in practice. It shows the results of multiple 

simulations of a number of refrigerators or freezers running with a 20% compressor duty 

cycle over a year, with randomisation of their relative operation as would occur in practice. 

This is referred to as a Monte Carlo simulation.  It was performed in Matlab using the 

methods described in detail later in the paper.  Each round point shows the maximum demand 

presented at any time during a simulated year of operation by that number of refrigerators, 

expressed as a fraction of the total demand that would occur if all their compressors operated 

simultaneously.  The much higher proportionate demand presented for numbers below 20 is 

clear.  Each square point shows the standard deviation observed during a simulation, again 

the much higher variability for lower numbers is evident. This highlights the challenge faced 

by the SO of a micro-grid serving perhaps 20 homes where the variability of demand is much 

higher than that faced by a national scale SO.  

 

Fig. 1.  Effect of number of power-consuming appliances on observed peak demand as 

a proportion of maximum possible demand 

Number of refrigeration appliances 

Normalised 

maximum 

demand and 

standard 

deviation 
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This form of Monte Carlo simulation is the basis of the demand prediction software 

tool described in this paper. However, before moving onto the detail of the software tool it is 

useful to review the heuristic methods of demand prediction routinely used in the electricity 

industry for national scale grids to show why they are unsuitable for micro- and mini-grids.  

The key parameter normally employed for sizing on-grid distribution network components is 

“After Diversity Maximum Demand” (ADMD), which is based on a methodology generally 

attributed to Boggis (1953), who recognised the phenomenon illustrated in Figure 1 and 

sought to derive simple approximations that could be used by network planners at a time 

when computer resources for simulation were limited.  ADMD is defined as the maximum 

observed demand per consumer, as the number n of connected consumers, each consuming 

Ei, approaches infinity: 

            
 

 
   

   
            (1) 

ADMD is usually obtained by measuring demand over a year at a point of aggregation 

such as a transformer or transmission node and identifying the maximum observed for a 

particular time of day, then dividing by the number of consumers.  Ideally the aggregation is 

of 1000 or more reasonably homogenous consumers.  Over time distribution network 

operators have accumulated measured ADMD values from a range of network segments and 

use them to set predicted ADMD values in corporate engineering policy documents with 

rules for their application in the design of new network extensions – for example Smith 

(2003).  The predicted ADMD (A) is then multiplied by the number n of consumers and a 

diversity-related factor k introduced to allow for the smaller population in the extension.  

Smith (2003) uses the linear approximation proposed by Boggis by assigning a constant k = 

18kW for each distribution network branch, then calculating maximum demand Dm for the 

branch as:    
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               (2) 

Boggis (1953) also proposes as alternatives that reflect the asymptotic curve in Figure 1: 

         
 

 
        (3) 

or: 

         
 

  
        (4)   

where k is a factor determined from measurement to fit a particular population of consumers.  

It can be seen that the large n premise in the definition of ADMD makes it a 

questionable approach to mini-grid design.  None of equations (2) - (4) is easily applicable at 

the planning stage for a mini-grid because reliable values for A are unlikely to be available, 

while the k factor is only obtainable by experience and is inherently less accurate for small n. 

Another issue is the practical need for prediction of maximum demand at different times of 

day so that the overall daily demand profile and generation resource utilisation can be 

assessed.  This implies a need for multiple values of ADMD and k to create a profile using 

this method.    

McQueen et al. (2004) have shown that a Monte Carlo simulation provides results that 

are consistent with this conventional method and can provide more accurate predictions of 

demand, particularly for the small consumer populations typical of mini-grids.  They take 

measured demand profiles and disaggregate them into randomised loads from each consumer. 

The approach taken for the software tool described here is to simulate the aggregate 

consumer demand on a bottom up basis from three data elements: 

 the population of each main type of electricity-consuming device or appliance 

available to the prospective or actual consumers; 
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 the typical load presented by each type; 

 an assessment for each device type of the probability that it will be in use at the 

given time of day.  

It is envisaged that the population data will come from a survey conducted during the 

planning process, or could comprise an initial set of devices such as light fittings that might 

be supplied as part of the mini-grid introduction.  Alternatively it can be an estimate by the 

system manager based on the number of connected consumers and the typical appliance fit in 

their homes or workplaces.  The loads presented by each type of appliance can be readily 

obtained by sample measurement or published data.  The probability of use p must initially be 

a judgement which can be clarified over time by observation – this is where the “intuition” 

mentioned by Porges is needed.  The simulation simply takes each device in the population, 

and at each time interval determines randomly whether it is “on” or “off” with a probability p 

and power consumed when on E.  A binomial distribution of on and off states for each 

appliance Xi is created over nt trials (time intervals): 

                      (5) 

Then the time sequence of aggregate demand D is simply the sum of these distributions 

over all N appliances: 

       
   
           (6) 

The maximum demand Dm is the maximum value in D within the given number nt of 

time intervals.  The simulation computes the standard deviation of all the values of D in the 

set, and the mean demand Dme given by: 

          
   
           (7) 
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The duration of the simulation set by nt is significant because as the length of the 

simulation increases the probability of picking up combinations of loads in the tail of the 

binomial distribution increases and hence the maximum observed demand rises 

asymptotically.  Figure 2 illustrates the effect of increasing length on a simulation of the 

evening demand arising from 80 appliances of various types including lighting, refrigeration, 

and televisions with a total plated demand of 6kW.   Each round point plots the maximum 

demand observed in a single simulation of the length indicated.  Five simulations were 

performed at each length.  The increasing average value (indicated by a square point) of the 

five runs with length and their narrowing spread are evident.  

 

 

 

Fig. 2.  Effect of increasing simulation length on maximum observed demand 

The time interval that is chosen to be represented by a single binomial trial defines the 

time granularity of the simulation. As Figure 2 shows, for a simulation of length nt there will 

always be a risk that a larger nt representing the same overall time duration T will reveal a 
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higher maximum demand occurring over the shorter time interval T /nt.  Since a brownout 

lasting one minute is probably tolerable in a mini-grid if it is infrequent, the simulation tool 

proposed here takes one minute as the default time granularity.  The usefully improved 

accuracy of 1-minute granularity over half-hourly is confirmed by McQueen et al. (2015).  A 

value of nt = 100,000 then corresponds to about 69 days of operation.   

 

4. The ESCoBox mini-grid load model 

An example screen presented by our simulation tool is shown in Figure 3.  It is branded 

ESCoBox as that is the title of one of the sponsoring projects. This project has the goal of 

helping mini-grid operators to manage demand more effectively and thereby lower the cost 

and improve the availability of electricity to their consumers.  The tool is used as follows.  A 

list of appliance types is presented that is embedded within the tool and aims to cover all the 

common options.  Additional types can be manually added at the bottom of the list.  For each 

appliance type the power it uses when operating is shown in the Power Used column – this is 

a default typical figure that can be changed manually, and must be entered for new appliance 

types that are added to the list.  The user then enters the number of each appliance type 

expected to be operating, and selects the expected duty cycle from values between 0.1 and 1.0 

offered by a drop-down menu.  Since the applicable population of appliances and their 

probability of use will often change during the day, any evaluation using the model must be 

associated with a time of day and probably a day of week where there is significant weekday 

dependency. 
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Fig. 3.  Example screen of load model 

The drop-down value can be interpreted in two ways.  Where the appliance is operating 

continuously, such as a refrigerator, the value is the duty cycle of the compressor that 

provides the significant load.  An irrigation pump filling a tank might similarly operate 

intermittently under the control of a level switch.  Where the appliance is under human 

control, then the value is the probability that the appliance will be switched on during the 

time interval being considered. This probability may either reflect the probability of use, such 

as a light that may or may not be on in the evening, or intermittency of use, such as a hair 

drier that is employed for a few minutes at a time by a hairdresser.    

The “Run model-month” and Run model-year” buttons initiate the simulation with nt 

values of 44,640 and 535,680 respectively – these values are the number of minutes in an 

average month and in a year.  Each run returns the observed maximum, mean, and standard 

deviation of demand.  Table 1 shows the time taken to execute simulations for a range of 

scenarios on a Microsoft Surface laptop computer with i5 processor (1.7Ghz, 4GB RAM) 
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running Windows 8.  Each scenario is based on the appliance types and duty cycles shown in 

Figure 3, which is intended to represent evening operation of a 20-home micro-grid (with 

some use of higher power appliances in the “other appliance” category).  The 200-home and 

2000-home scenarios were the same as that visible in Figure 3, but with appliance 

populations multiplied by 10 and 100 respectively. 

Table 1.  Run times in minutes and seconds for a range of mini-grid simulation sizes 

Simulation length 

and size 

20-home  200-home 2000-home 

Month (nt = 44640) 3s 14s 2m 7s 

Year (nt = 535,680) 18s 2m 12s 19m 50s 

 

The ESCoBox load model is coded in Python 2.7.  The code is published on an open 

source basis for inspection and download on GitHub (Boait 2015) with installation 

instructions.  The usual caveat for open source software applies, that it is offered in the hope 

that it is useful but no assurance of fitness for purpose is given.  

5. Use of the ESCoBox mini-grid load model with HOMER 

The use of this tool in conjunction with HOMER is illustrated by the data entry screen 

for HOMER shown in Figure 4.  The “Load” table on the left hand side requires average 

demand for each hour of the day and random variability percentages to be entered in the 

“Day-to-day” and “Time-step-to-time-step” fields.  The effect of these variability values is 

defined in the HOMER documentation (HOMER 2015) as follows: 

“1.       For each day, HOMER draws a random number from a normal 

distribution with mean of zero and standard deviation equal to the daily noise value.  

That’s the ‘daily perturbation factor’. 
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2.       For each hour, HOMER draws another random number from a normal 

distribution with mean of zero and standard deviation equal to the hourly noise value.  

That’s the ‘hourly perturbation factor’. 

3.       For each hour, HOMER multiplies the unperturbed load value by (one plus 

the daily perturbation factor for that day plus the hourly perturbation factor for that 

hour).” 

 

Fig. 4. HOMER load input screen 

A normal distribution as employed by HOMER is a good approximation to a binomial 

distribution as used by the present model, as long as the population X of load-presenting 

appliances is large enough such that the steps in aggregate demand resulting from an 

individual appliance turning on or off are not significant.  This will be the case for most 

practical purposes.  A more important limitation in the HOMER method is the relatively 

small number of trials nt.  A randomised value for demand in a given hour in a day is only 

taken once per day in the simulation, so an nt of 365 represents a year.  As Figure 2 shows, 
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this may not reveal the maximum demand likely to occur, particularly if, as is assumed in this 

paper, peaks with a shorter duration than an hour are of interest.  However, there is no 

question that HOMER is effective in illustrating the impact of demand variability.  Figure 5 

plots the peak demand calculated by HOMER for a range of values entered into the 

variability fields, using a real-life load dataset from a micro-hydro mini-grid (the Day 2 

values shown in Figure 6).  

 

Fig. 5. Effect of HOMER variability factors on peak demand 

The way in which HOMER splits the variability into two components means that their 

combined effect is less than the arithmetic sum of the two standard deviations
3
, unless one of 

the components is zero.  So, for example, if 50% is entered for both, this gives a total 

variability of about 71%.  The x-axis in Figure 5 indicates the total of both components, and 

the two plots respectively show the peak demand when the total variability is divided equally 

between components and when it is all allocated to day-to-day variability and the time-step-

to-time-step value is zero. 
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To use the ESCoBox model with HOMER, the first step is to perform multiple runs of 

ESCoBox to provide an average daily demand profile for the load column in HOMER. Table 

2 shows an example set of 7 ESCoBox models used to provide values for HOMER for each 

hour of the day.  These were generated by multiplying the appliance numbers in Figure 3 by 

10 to represent a mini-grid with 200 consuming households and adjusting the duty cycle and 

power values to reflect likely use at that time of day.  These models give a demand profile 

roughly similar to those shown in Figure 6.  It can be seen that standard deviation varies 

during the day reflecting the different probabilities of appliance use – lower probabilities 

result in higher standard deviation.  Because of the way the HOMER variabilities are 

combined and the small nt as described above, there is no exact mapping between ESCoBox 

standard deviations and HOMER variabilities.  So interpreting the set of ESCoBox standard 

deviation values to provide the two variability values for HOMER requires judgement. 

If HOMER is being used to design the engineering aspects of a mini-grid the critical 

parameter once the average demand profile has been determined is peak demand.  So the 

variability values need to be set in HOMER such that peak predicted by ESCoBox is 

obtained.    However, in general to obtain a realistic model in HOMER values for both day-

to-day and timestep variability should be entered.  The lowest level of standard deviation 

seen in the ESCoBox profile provides an estimate of day-to-day variability since all hours of 

the day then have at least that level of variability.  It is then logical to put the highest standard 

deviation from ESCoBox in the timestep value to ensure the worst-case timestep variability is 

represented.  If this is done for the example in Table 2 HOMER gives a peak demand of 

38.17 kW which is a good match for the ESCoBox estimate of peak demand - 38.08 kW at 

hours 17-19.  This close result may not occur in all cases - the two HOMER variabilities 

should be adjusted if necessary, keeping a realistic balance between them, until the estimates 

of peak demand match.  
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Table 2.  Use of the ESCoBox model to simulate a demand profile for HOMER    

Hour 

of day 

ESCoBox model Average 

kW 

Peak 

kW 

Standard 

deviation 

0 200-home-9-appliance-night 7.11 9.77 8.00 

1 200-home-9-appliance-night 7.11 9.77 8.00 

2 200-home-9-appliance-night 7.11 9.77 8.00 

3 200-home-9-appliance-dawn 8.00 10.74 7.40 

4 200-home-9-appliance-dawn 8.00 10.74 7.40 

5 200-home-9-appliance-morning 11.80 22.87 15.20 

6 200-home-9-appliance-morning 11.80 22.87 15.20 

7 200-home-9-appliance-morning 11.80 22.87 15.20 

8 200-home-9-appliance-mid_day 7.15 9.69 8.20 

9 200-home-9-appliance-mid_day 7.15 9.69 8.20 

10 200-home-9-appliance-mid_day 7.15 9.69 8.20 

11 200-home-9-appliance-mid_day 7.15 9.69 8.20 

12 200-home-9-appliance-mid_day 7.15 9.69 8.20 

13 200-home-9-appliance-mid_day 7.15 9.69 8.20 

14 200-home-9-appliance-mid_day 7.15 9.69 8.20 

15 200-home-9-appliance-late_afternoon 10.15 16.70 13.80 

16 200-home-9-appliance-late_afternoon 10.15 16.70 13.80 

17 200-home-9-appliance-evening_peak 24.98 38.02 9.40 

18 200-home-9-appliance-evening_peak 24.98 38.02 9.40 

19 200-home-9-appliance-evening_peak 24.98 38.02 9.40 

20 200-home-9-appliance_late_eve 18.77 27.82 9.60 

21 200-home-9-appliance_late_eve 18.77 27.82 9.60 

22 200-home-9-appliance-night 7.11 9.77 8.00 

23 200-home-9-appliance-night 7.11 9.77 8.00 

 

Once a mini-grid is in operation, the system manager can use their knowledge of the 

number of appliances in use and their likely duty cycle at each time of day to adjust the data 

entered into the ESCoBox model so that the peak demand predicted by the model is similar to 
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the observed peak demand.  The manager then has an approximate model of his consumer 

population.  The value of this is that they can use it to predict the effect of taking on more 

customers by adding their expected appliance use into the model and only accept additional 

loads that will not cause the peak demand to exceed the capacity of the system, thereby 

minimising the risk of brownouts or excessive battery discharge.  Typically when operation 

of a new mini-grid has been stabilised so that peak demand is at the maximum that can be 

supported, the daily profile of demand will be similar to the two daily profiles shown in 

Figure 6.  These are taken from a micro-hydro system in Malawi.  This kind of demand 

profile on a generator-limited system results in a utilisation factor (i.e. the proportion of 

potential generation that is actually used) of 40-50%.  Similar utilisation figures can arise for 

a photovoltaic-powered system in favourable seasons when there is a surplus of PV power in 

the middle of the day. 

The economic benefit from a mini-grid system can therefore be increased if additional 

loads can be accepted in the middle of the day between morning and evening peaks.  The 

ESCoBox Load Model can be used to assess whether a given commercial load, such as an 

intermittently-operating power tool or mill, can be accepted.  There will also have to be some 

means of constraining the operation of such appliances to the mid-day period – the 

technology to achieve this is also being addressed by the ESCoBox project.     

 

 

 

 

 



18 
 

 

Fig. 6. Daily demand profiles from a micro-hydro system (data courtesy of Practical 

Action)  

 

Conclusion 

For mini- and micro-grids to realise their potential for rural electrification in developing 

countries they need to be designed and managed so that the service they provide is reliable 

and economically sustainable.  This requires demand and supply to be optimally matched in 

planning and operation, with an understanding of the peaks in demand that are likely to occur 

so that their potential to be disruptive to the service provided and to system reliability can be 

managed effectively.  Because the stochastic behaviour of demand is actually less favourable 

for mini- and micro-grids than it is for a national electricity system, planning and delivering 

this optimal match is a more difficult engineering and management challenge than is 

generally recognised.  To address it a range of low cost and accessible tools is required for 

designers and operators to assist them in their task – the popularity of HOMER for system 

design confirms this need.  The ESCoBox Load Model aims to fill another niche by 
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supporting the prediction and management of demand.  It is also the case that, as Figure 1 

shows, the variability of aggregate demand reduces quite rapidly as the number of households 

or businesses served rises.  So a mini-grid with numbers of consumers greater than, say, 50, is 

more likely to be sustainable than one with 20 because of the greater diversity between 

households and the lower variability of demand it enjoys.           
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