

An Observation Model to Detect Security Violations in
Web Services Environment

K. Aldrawiesh

De Montfort University,

Leicester LE1 9BH, UK,

 Khalid@dmu.ac.uk

F. Siewe
De Montfort University,

Leicester LE1 9BH, UK,

 fsiewe@dmu.ac.uk

H. Zedan
De Montfort University,

Leicester LE1 9BH, UK
hzedan@dmu.ac.uk

ABSTRACT

Growing violation activity makes monitoring of information
technology resource systems day by day necessity. As a matter of
importance, the popularity of surveillance systems increases with
its associated systems. The security of such surveillance systems
plays a critical role as their compromise has a technical impact
and the need for them is increasing. The complexity of
surveillance systems is growing as the system architecture and
application must fulfill various requirements of ever demanding
project scenarios. The surveillance system is a tool that observes
the service behaviour as the e-observer technique works. This
paper is proposed an enhanced observer model which maintains a
list of its dependents, and then automatically reports any changes
in state to an evaluator model, by calling one of their methods.
The e-observer is concerned with the state of service behaviour to
determine whether it obeys, using its intended behaviour or policy
rules; these policies are used to refer to the specific security rules
for particular systems. However, web services have become more
sophisticated in recent years. WSs are being used successfully for
interoperable solutions across various networks.

Categories and Subject Descriptors

D.3.2. [Observe]

D. Web services and Security

Subject descriptor: Observer

General Terms
Security

Keywords

Security policy, requirements, web services and Observation

1. INTRODUCTION
The nature of computing has changed tremendously in the last
decade. As heterogeneous computer software, systems, services,
visionaries and technologies have become smaller and more
powerful; they have also become more complex.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISWSA’11, April 18–20, 2011, Amman, Jordan.
Copyright 2011 ACM 978-1-4503-0474-0/04/2011…$10.00.

These technologies seemed visible in the field of information
revolution. Most of these technologies and systems are connected
together over networks. The computer systems and their
associated architecture have been developed quickly. Because of
these technologies and their resources, security has become
coherent and crucial issue to protect these technologies whenever
possible. As security is becoming a significant requirement for
many organizations, formal methods are being used increasingly
to protect and address security issues in the field of development,
since confidentiality, integrity and availability of information are
paramount, security is the first line of protection of information or
resources in a system. Also, it should be addressed against events
that can result in loss of availability, unauthorized access, or
modification of data.

On the other hand, an observation framework has been used for
many purposes. The concept of observation has been developed
quickly by many enterprises. The observation framework consists
of some components that have been joined to adhere service
behaviour whenever interactions have occurred with the expected
results of these interactions, by making an aggregation of the
results to achieve our system goals. The observers are used in
many systems and enterprises in a wide variety of ways with high
efficiency. They are simply monitors that used for years in
selected industries with complex mathematics. However, Web
Services (WS) are identified as computing systems that are used
in a wide variety of organizations, for a wide range of reasons. As
shown in Fig 1, WSs are a group of emerging and established
communication protocols that include Extensible Markup
Language (XML), Simple Object Application Protocol (SOAP),
Universal Description Discovery and Integration (UDDI) and
Web Services Description Language (WSDL) over Hyper Text
Transfer Protocol (HTTP). Further, WSs permit a number of
solutions/applications to be integrated faster, more easily and
cheaply than ever before. They are expressed as a WSDL which is
an XML-based language[1,2]

The paper is organized as follows: Section 2 states the problem.
Section 3 describes an observation framework. Section 4 shows an

enhanced observer implementation. And then, the evaluator and
enforcer models have briefly stated. Finally, the concluding
remarks and results are given in section 5.

2. Problem statement and contributions
This paper will primary deal on how to support and protect our
observation model from threats by controlling service behaviour,
and also, how security policies should be enforced against any
defection that has different aspects and changeable. Hence our
contributions are:

� The proposal and development of an observation model that
increased the surveillance by evaluating outcome results via
the evaluator model after processing them.

� The taming of the design complexity of the observation
model by leaving considerable degrees of freedom for their
structure and behaviour and by bestowing upon them certain
characteristics, and to learn and adapt with respect to
dynamically changing environments.

� Propose an enforcement technique to detect and control any
violation activity by addressing security policy system using
a systematic approach that can be leveraged by the model
requirement within the Web context.

3. OBSERVATION FRAMEWORK
An observation framework is addressed and animated most
security problems to enhance protection for resources; thus an
idea of security in this paper is to state an insight into the
techniques of the model that can be used to mitigate threats. The
e-observer technique[3] addresses most problems, and governs
and provides a proven solution that is reusable in similar contexts.

As illustrated in Fig. 2, the e-observer is the main component that
controls flow data based on system policy. It has the responsibility
for appropriate surveillance and feedback. The System Observer
Model (SOM) has a sensor and actuator at the heart of the
architecture. A control closed loop is created on top of the SOM
to rotate the states/services. Furthermore, e-observer [3] observes
behaviour through sensors by comparing results with
expectations; it then decides what action is necessary and controls
the SOM with the best known action through the enforcer but
after assessing results by the evaluator model. This framework
consists of other components that are used to assist and manage
the data flow of observation. These components can typically be
found in security systems that are based on surveillance.

 As a consequence, some criteria are assumed to be used when
observing, e.g. comparing expectation knowledge of historical,
current data and the rules. The e-observer’s task is measured to

quantify and predict emergent behaviour with basic metrics of
QoS, for instance, time, availability and security.

As pointed out in [3], the observer collects and aggregates
information of the SOM, and then the aggregation values are
reported to the processor; the evaluator model assesses the
situation and takes appropriate action on the enforcer model to
influence the SOM. Because the observation behaviour itself is
variable, our e-observer model influences the observation
procedure by selecting certain detectors or certain attributes of
interest. The feedback from the e-observer to the evaluator directs
attention to certain observables of interest in the current context.
Based on the aggregate results by the e-observer model, the
evaluator can benchmark the data with an objective function and
either knows or learns which actions are best to guide the SOM in
the desired direction by informing the enforcer model which acts
as a switcher to detect the violation.

3.1 Policy
Policy is a main component that constrains our observation model
and its associated parts. Because policy is a big issue, it constrains
the behaviour of system components. Policy[4, 5] becomes an
increasingly popular approach to the dynamic adjustability of
applications and management. In addition, policies [6] which are
derived from the goals of management express the desired
behaviour of distributed heterogeneous systems and networks.
They are often requested to apply to automate network
administration tasks, such as configuration, security and QoS. In
our model, policies manage and control the system behaviour.
They work as a key to permit those who can access the model.

3.2 An Enhanced Observer model
An e-observer works by combining the knowledge and
information of services, like behaviour, parameters, attributes and
feedback, in order to extract actions that are superior to those
which can be obtained and detected. The purpose of an e-observer
is to combine measured feedback with knowledge of SOM
components to be reported to an evaluator by a processor. The e-
observer can be used to enhance system performance and security.
It can be more accurate than sensors or can decrease the phase lag
inherent in the sensor. E-observer technology is not a panacea, but
it can be worked with assistant tools. It adds complexity to the
system and requires computational resources, such as high cost
setting.

In the meantime, the observation as a technique has become an
art, and has been adopted by several enterprises and organizations
to enhance performance and control their ability to examine, in
close detail, service behaviour. In addition, design an e-
observer[7] model is an extremely powerful tool for developers
and designers actively engaged in any development project. The
e-observer model ensures that common problems are considered
and addressed via well-known and accepted highly efficient
solutions. The primary strength of paradigms rests with the fact
that it is likely that most technical problems have been
encountered and solved by other individuals or development
teams. Therefore, paradigms provide a mechanism for sharing
workable solutions among developers, designers and enterprises.
In spite of where these paradigms find their genesis, paradigms
leverage this collective knowledge and experience. This ensures
that correct codes are designed more rapidly, reducing the
possibility that a mistake will occur during design or
implementation. Furthermore, the presenting of common
semantics during design paradigms takes place between members

of an engineering team, since, as anyone who has been included in
a large-scale development project knows, knowing and having a
general set of design terms and principles is important for
achieving completion of the project.

3.2.1 Definition of e-observer
Logically, an e-observer system is not a good enough solution: it
needs technical tools to work perfectly. It is used to regulate an
enormous variety of services, software and processes. It controls
and manages the attributes, parameters and interactions of service
behaviour. Moreover, it is common to use the concept of the e-
observer to address certain problems relating to application design
and architecture. The definition of the e-observer model is often
difficult to convey with any level of accuracy warranted by the
concept, so a proposal of observation are conventional means.

The e-observer can be a monitor that catches and checks the
interaction and execution of communication of the service
behaviour, and meets properties in accordance of its policy.
Observing allows a tool or user to monitor and analyze, to recover
detected faults, which may lead to catastrophic failure to an
evaluator. Thus, the e-observer is a component of software or
hardware that observes interactions and events of the service
behaviour, or any interactions between services, but does not
participate in these interactions. In addition, it is a piece of the
system that supervises and watches the communication between
any events of the services, and then reports to the evaluator by
processor, based on its regulation but with the requirements of the
model. Also, it is a technique which is used to confirm that the
security practices and controls in place are being adhered to and
are effective.

E-observer monitors the interception of communications,
interacting in the checking of our systems the logging, recording,
inspecting and auditing of data. Hence, the e-observers are digital
algorithms that observe interactions of service behaviour with
knowledge of the observation policy to provide results and
information superior from SOM to traditional structures, which
rely wholly on the processor and then the evaluator model.

However, as a technical definition, the e-observer model is used to
maintain consistency between related objects while minimizing
their coupling and maximizing reusability of the objects. Usually
this type of paradigm is used to implement a distributed event
handling system.

 3.2.2 Aggregator:
An aggregation part is a main component of the e-observer model
of the observation framework, which aggregates existing
information with complex calculations of QoS metrics, and then
reports to the evaluator model by the processor. The e-observer
model has some components that can support and control the data
flow, and sequence of information, such as an aggregator. The
aggregator [3] is the main outcome part of e-observer that receives
some results and feedback and then makes aggregation. Next, it
sends the outcomes to the evaluator model to be evaluated, after
processing them. It has a memory to store current values; their
history is also stored, forming a set of data vectors. These vectors
are needed to perform filtering, as, for example, a smoothing of
the results to remove the effects of noise. Furthermore, it delivers
and sends a set of filtered current and previous values to the
evaluator model via the processor. In some sense of a technical
system, the e-observer plays the key roles of the limbic system.

It monitors the external environment via the sensory input and
also the internal behaviour of the low level execution unit, and
manipulates it in various ways. The major aim of the e-observer is
to perform an aggregation of obtainable information and data
about the SOM in the form of indicators to give a global
description of the state and the dynamics of the underlying
system.

4. E-Observer Implementation
As programmatically, the observer paradigm has been provided
and support by several computer programming languages such as
C#, PHP, C++ and Java. Observer paradigms have been supported
by Sun Microsystems. Java has adopted observer paradigms
directly. Also, it supports observer paradigms by providing a
concrete observable class and an observer interface in the package
java.util. This implementation offers a loosely coupled
relationship where observers are implemented as an interface and
observables must inherit from a base class. So, observables are
coupled to an interface rather than directly to observer instances.
The observer paradigm is a behavioural OO design that has been
defined as the broadcaster-listener subscriber paradigm. This OO
design scheme ensures that an observer object or a set of observer
objects automatically performs appropriate actions when required
to do so by an observable object. Observers register their interest
with one or more observable objects, and are notified when an
event or interaction that satisfies this interest is recognized by an
observation’s policy. The observer paradigm also supports a
fundamental OO design heuristic by facilitating loose coupling
between communicating objects[8, 9].

Nevertheless, as required in our model to state the policy when
implementing the observation on state at SOM, the policy in Fig 3
is illustrated as:

As shown in fig 4 and fig 5, the e-observer, evaluator and enforcer
have run by using a simulation tool to control and manage our
model. The simulation tool is the Attributed Graph Grammar
(AGG). AGG is directed mean graph of conveying the structure
and operation of many types of systems. AGG is a technical tool
that has been used by number of developers and designers for
attributed graph transformation systems to support an algebraic
approach to graph transformation. It particularly, purposes for
rapid prototyping applications with complex, graph structured
data. Thus, as shown this tool to illustrate our approach by
adapting the requirements on system rules to state the view of the
capabilities of the system [11].

4.1 Observer Manager (OM)
An observer manager [9] is the chief of the e-observer model that
can allow and control the surveillance. The proposed solution to
the implementation challenges created by the OM includes a class
that manages the lifecycles of observer and observable instances.
Observers are added and removed to observables by OM, which
also ensures that updates are performed correctly. This OM class
recursively updates registered observers while avoiding multiple
updates and cyclical behaviour. The OM updates, controls and
notifies all registered observers of a particular observable when an
update is required. Where an observer is also an observable, the
method recursively processes all of its observables and their
dependencies. Multiple updates and cycles are controlled and
avoided by viewing the update process as a graph traversal which
sustains and maintains a list of visited objects. An argument
parameter and a reference to the observable implement both the
push and pull models of event notification. In the following
section, the observer manager runs and updates all registered
observers in fig 6.

The observer manager is implemented using entries in a Java hash
map consisting of an observable key and a corresponding list of
observers. An iterator processes all observers for a particular
observable, while the recursive call handles all cases where an
observer also functions as an observable.

Although Java [8] simplifies memory management for the
programmer, it is still possible to create memory leaks via live
references. Any reference to a listener that remains within a sys-
tem after attempting to remove the listener will inhibit the Java
garbage collector and create a memory leak. Ensuring that all
references are removed where an observer may be referenced
from multiple observables can be a non-trivial operation.
However, as seen above in Figs. 7 and 8, a typical structure of an
e-observer which has presented a view to distinguish sequence by
UML. It defines 1: M dependency between objects so that when
one object changes state, all its dependents are notified and
updated automatically. It has one subject and potentially many
observers. Observers register with the subject, which notifies the
observers whenever events occur.

4.2 Finite State Machine
In this stage we will examine the modelling of the software using
the Finite State Machine (FSM) and how this tool supports the
model to be implemented. The FSM is a model that defines the
required behaviour of an implementation; it is important to verify
the implementation against the FSM. It comprises a data structure
that is used to show actions with a sequence of events. In Java
applications, an FSM is able to activate and deactivate certain
behaviours in time. This part will define how to describe a finite
state machine using JFLAP and then the coding using Sun
Java[10].

4.2.1 JFLAP
JFLAP-Java Formal Languages and Automata Package- are
instructional software used to experiment with grammar automata.
It also allows experimentation with applications and proofs. The
main feature of JFLAP is that it can experiment with grammars
and theoretical machines. JFLAP allows the building and running
of user-defined input on pushdown automata, finite automata and
regular grammars[10].

Figs. 7 and 8 Illustrates sequence diagram for e-observer task.

Fig.5 states the simulation of observation

Fig. 6 shows an updating by observer manager.

Fig.4 states the relationship of observation components

4.2.2 JFLAP WITH Design FSM
This stage will examine the design of an FSM which has five
states. As shown below, the first state is the beginning of the
search of services/objects; more than one can be searched at the
same time. Afterwards, the search will send all outcomes to a
monitor state which is logically divided into 2 sections: e.g.
system data and individual data. Then, the modulation state will
broadcast to all states that are connected with it. Next, the
aggregate state sends the results to the evaluator state for
processing.

The step by state helps to run our model by using state by state by
moving to another state: if green, eventually to a final state of
green; if there are any problems between each state, these will be
indicated by red.

3.3 Evaluator model
A concept of an evaluator system is to find the risk analysis that
can be carried out by detection tools. The intention is to carry out
fast evaluation to identify risks and problems. Furthermore, the
evaluator is a model that receives the results from the e-observer
model to evaluate and process them, to decide whether they
adhere to the evaluator policy. The evaluator model has three
interfaces, as follows: the aggregated data are obtained from the e-
observer. The objectives are imposed on the evaluator by the
observation system using the second interface. This is used for the
evaluation routine of further actions. It contains all the
information needed for the interaction and reconfiguration of the
SOM. Every evaluation system provides a number of different
parameters and interfaces for manipulation. Then the last decision,
called the action selector, and the mechanisms will respond to the
enforcer model to take action on the SOM.

3.4 Enforcer model
An enforcer executes unpleasant tasks for a superior. It enforces
threats that it will not cooperate with the observation policy. It can
excel at detecting adversary attempts to violated security on a
host. Furthermore, it receives a final evaluated action and
aggregation via the evaluator model to perform the best trigger to
the states/services that are determined and controlled to influence
in accordance with the evaluation policy. However, in technical
terms, it is an online monitoring tool that takes action on security
violations in the SOM. In addition, it uses the defined evaluation
policy as input, creates a separate process as a thread for each
state/service and runs parallel activities to detect security
violations. However, the major theme behind the evaluator is that
the proactive detection and dynamic policy priority features of the

evaluator are the additional strengths which then inform the
enforcer for effective detection of security violations.

5. Conclusion
Our observation framework has been portrayed. It has shown that
the e-observer architectural paradigm is a natural way of
implementing surveillance. It has become an active topic in
research and development in recent years. Also, it serves the
purpose of keeping emergent behaviour within predefined limits,
hence enhancing the security of the architecture. It is a highly
traditional technique that has been used by different developers
and designers for a long time, but it has been enhanced and
adopted by many enterprises and organizations, such as Java
which designed and supported the observer paradigm directly.

However, the observer manager has facilitated the creation of a
software architecture that allows active notification between
loosely coupled objects. By forcing inheritance on observable
implementations, the native Java implementation highlights the
distortions created by OO languages that do not support multiple
inheritances. A single inheritance language is enforced to achieve
functionality at the expense of semantic clarity. Class Observable
in java.util distorts the relationship that defines inheritance. So far,
the use of the e-observer has eased the attachment and detachment
of monitoring objects to software probes, and decreased the
complexity of information distribution. Therefore, this model is
responsible for actually changing the internal behaviour and
structure of the processes. The e-observer, evaluator and enforcer
ensure that the model cycle and flow data are safe by estimating
the threats that could affect the model; should this happen, the
detection by the enforcer model will prompt appropriate actions to
adhere to the SOM. However, using the FSM and JFLAP has
supported the implementation that shows how the program will
work and declare each state as a class. JFLAP has much strength,
but it is still under development by researchers and designers,
which will help FSM to be more specific and useful.

6. REFERENCES

[1] Al-ajlan, A., 2008. Service Oriented Computing for Dynamic
Virtual Learning Environments (Moodle), in STRL. 2008,
De Montfort: Leicester. p. 328.

[2] Newcomer, E.,2002. Understanding Web Services: XML,
WSDL, SOAP and UDDI. 2002: Addison-Wesley
Professional; 1 edition.

[3] J"rgen, B., et al, 2006. Organic Computing - Addressing
Complexity by Controlled Self-Organization, in Proceedings
of the Second International Symposium on Leveraging
Applications of Formal Methods, Verification and
Validation. 2006, IEEE Computer Society.

[4] Andrew, T.C., C. Geoff, and H. David, 1994. A Multimedia
Enhanced Transport Service in a Quality of Service
Architecture, in Proceedings of the 4th International
Workshop on Network and Operating System Support for
Digital Audio and Video. 1994, Springer-Verlag.

[5] Rajan, R., et al., 1999. A policy framework for integrated and
differentiated services in the Internet. 1999.

[6] Gorton, S., and, and S. Reiff-Marganiec, 2007 .Policy-driven
Business Management over Web Services., in Integrated

Fig. 9 Test step-by-step of an e-observer

Network Management. 2007: IFIP/IEEE International
Symposium. 2007, IEEE.

[7] Purdy, D., and, and J. Richter, 2002. Exploring the Observer
Design Pattern, 2002, Microsoft Corporation & Wintellect. p.
21.

[8] Aldrawiesh, K. et al., 2009. A comparative study between
computer programming languages for developing distributed
systems in web environment, in Proceedings of the 2nd
International Conference on Interaction Sciences:
Information Technology, Culture and Human. 2009, ACM:
Seoul, Korea.

[9] Eales, A., 2005. The Observer Pattern Revisited, in
Educating, Innovating & Transforming: Educators in IT:
Concise paper. 2005, NACCQ05.

[10] Yazed, A.-S. et al,2009. The Development of Multi-agent
System Using Finite State Machine, in Proceedings of the
2009 International Conference on New Trends in
Information and Service Science. 2009, IEEE Computer
Society.

[11] A. Al-Ajlan, 2010. Devise a Policy-Based Technique for
Enforcing the Security Environment of VLEs, in Proceedings
of 2010 International Conference on security systems,China.

