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Abstract—We present a concept including a set of tools for self-
management for patients suffering from axial spondyloarthritis
(SpA). This concept involves patient-recorded outcome measures,
both subjective assessment and clinical measurements, that are
used to present recommendations. We report from experiences
made while implementing a proof of this concept and analyse
it from several perspectives. Our work resulted in proposing a
self-management tool for the patient, improving the methodology
for clinical measurements of rotation exercises, and proof the
viability for using on-board sensors in smart phones. Further,
since sensors collect data in a medical setting, we present ethical
considerations.

Keywords—axial spondyloarthritis; self-management; health care;
self-assessment; evidence-based; mobile applications; sensors;
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I . I N T R O D U C T I O N

In our previous work [1], we presented a concept for
evidence-based self-management of patients suffering from
axial SpA. We have updated this concept and extended the
implementation of a smart phone and sensor-based system
that can give recommendations to the patients as support for
self-managing their condition.

For a variety of chronic diseases, patients managing the
condition themselves (self-management) can result in reduced
costs in the health care sector and an improved clinical
outcome [2]. Self-management encompasses methods where
the patients participate in managing their disease through
education and changes in behaviour and lifestyle [3] [4]. In
evidence-based self-management, elements such as clinical
assessment, collaborative priority and goal-setting, patient self-
efficacy, and active follow-up are essential [5]. We look closer
at self-management settings [6] where patients assess the
status of their disease using sensors and questionnaires on
their smart phones and report the results (i.e., patient-reported
outcome measures) [7] [8]. Based on these measurements and
self-reported outcomes patients receive non-pharmacological
recommendations from the self-management system to increase

their coping skills, help with pain management, adhere to their
medication regime, improve self-care behaviours, and enact
lifestyle changes.

Spondyloarthritis (SpA) describes a group of several related,
but phenotypically distinct rheumatic diseases, such as ankylos-
ing spondylitis (AS). The condition axial SpA is characterised
by inflammatory back pain and mainly affects the axial skeleton,
which is distinct from peripheral SpA where the symptoms
are mainly arthritis, entesitis, or dactylitis. In axial SpA, the
first appearance is mainly in young adulthood and can lead
to structural and functional impairments and a decrease in
health related quality of life. Although axial SpA is a chronic
condition, the symptoms and disease activity vary over time
[9] [10]. The primary goals for managing axial SpA are to
maximise long term health-related quality of life by managing
symptoms and inflammation, preventing progressive structural
damage in the spine, and normalising function and social
participation. Relevant medication and non-pharmacological
treatment such as physical training are recommended as the
foundation of the management of axial SpA [11] [12].

Currently, there are few evidence-based self-management
tools for axial SpA. Some tools for subjective assessment exist,
but sensor-based tools for objective assessment are not yet
available to the wider public. Also, there are obstacles to let
patient-assessed data be of use in a clinical setting [13].

This paper extends our concept for evidence-based self-
management of axial SpA. This concept is supported by an
implementation of a smart phone and sensor-based system that
can give recommendations to the patients. We report from
experiences from this implementation. We also perform an
ethics assessment and risk analysis of our concept.

The remainder of this paper is organised as follows: After
a brief presentation of related work (Section II) and present-
ing our concept of self-management for axial SpA patients
(Section III), we show details from the proof of concept
implementation involving subjective and sensor-based clinical
assessment and recommendations to the patient (Section IV).



Fig. 1: Concept for managing the disease with the three parts: self-management,
clinical assessment, and patient-health personnel communication.

Then, we present the results from a usability test (Section V).
Further, we look into regulatory issues, ethical challenges, and
perform an informal risk analysis that identifies functionality
that needs to be implemented before productification of our
concept can be done (Section VI). Finally, we discuss our
findings (Section VII) and conclude in Section VIII.

I I . R E L AT E D W O R K

For the management of most chronic illnesses the patients
and their carers have an extensive responsibility regarding
adherence to the treatment plan, life style changes, taking
preventive actions, etc. Newman et al. [14] presented a literature
review of self-management interventions for chronic illnesses,
here under arthritis, asthma, and diabetes. They reported about
the content of interventions as well as outcomes. Note that
since Newman et al.’s review in 2004 new concepts for self-
management have been developed, specifically those that make
use of emerging technologies, such as smart phones, sensors,
and actuators.

A. Self-Management

We find multiple definitions of self-management in the
literature. The term self-management covers all means of em-
powering individuals to cope with disease and experience a high
quality of life by developing self-efficacy. Self-management
also refers to an individual’s ability to manage the symptoms,
treatment, physical, psychosocial, and lifestyle changes inherent
in living with a chronic condition [15]. In this context, self-
efficacy is the individual’s level of confidence in succeeding
to cope with that individual’s chronic disease.

Intervention elements used in self-management often include
education, follow-up strategies, motivational counseling, and
individualised care plans. Johnston et al. [15] presented a
literature review showing success factors and limitations of
self-management.

Considerable work has been done on self-management
programs for chronic diseases with good results in terms of
quality of life, and reducing the need for care and cost efficiency
[16]. Programs such as The Chronic Disease Self-Management

Program have shown significant improvement in health distress
and increased perceived self-efficacy [17]. The motivation for
these programs is to provide people with chronic diseases the
tool to efficiently manage their own condition.

We prefer the definition of self-management by Barlow
et al. [18] “. . . the individual’s ability to manage the symptoms,
treatment, physical and psychosocial consequences and life
style changes inherent in living with a chronic condition.”
Barlow et al. stressed that monitoring one’s condition and the
effect of responses to daily life can lead to a dynamic and
continuous process of self-regulation.

B. Mobile eHealth Apps

The number of mobile health (mHealth) apps available to
consumers exceeded 165 000 in 2015 [19] and is still growing.
According to this report, two-thirds of these apps are related to
wellness management, i.e., fitness, lifestyle, diet, and nutrition.
Further, a quarter of these apps are related to disease and
treatment management; about 9% of the total number of apps
is disease-specific. About 6-7% of the disease-specific apps
relate to musculo-skeletal diseases, where SpA is placed.

Dimensions of app-functionality include a) to inform, b) to
instruct, c) to record, d) to display, e) to guide, f ) to remind,
and g) to communicate [19]. For evidence-based concepts,
aspects c to g are of most relevance.

We have found management support for some chronic
conditions using information and communication technology
(ICT). These include: a self-management application called
SoberDiary for alcoholism [20], a programme for quitting
smoking [21], a programme for psychology support [22], a
mobile application for diabetes that integrates with personal
smart watches [23], a virtual coach for chronically ill elderly
[24], a smart phone app for rheumatic diseases management
[25]. There are also generic apps for integrating vital signs into
personal health devices or electronic medical record systems
[26].

A review of the effectiveness of multiple European eHealth
initiatives concluded that while eHealth can be very effective,
certain criteria need to be fulfilled for the success of such
interventions [27].

Within axial SpA there are ICT apps like SpA Helper [28]
that supports to monitor the disease. When SpA Helper is used,
the results from the monitoring are not part of a feedback cycle,
such as the treat-to-target principle (see Section III-A). There
are also a variety of web-based calculators that implement the
subjective clinical indices.

C. Sensors

There is extensive research on using sensors for tracking
physical activity that ranges from physiological wearable
sensors to the using mobile phones for tracking activities
[29]. In recent years, we observed an increase in the number
of dedicated activity trackers like FitBit Charge or Garmin
Vivosmart. Research and user-testing have been conducted to
monitor physical activity in a non-obtrusive manner, but more



research is needed to investigate which methods and devices
work best for different demographics [30].

In general, sensors can only measure physical or physiolog-
ical data that represent the patient’s physiological reactions or
data from the environment, i.e., context information about the
user. Subjective data still need be retrieved using questionnaires
or similar methods. Note that technologies such as brain-
computer interfaces (BCI) [31] are too obtrusive. Further, the
BCI technology is still in an early state.

Often sensors measuring factors that can determine emotions
(such as cameras, sound analysis, or skin conductance in the
research field of affective computing [32]) can be used for
well-being applications. Such technologies have been used to
assess emotions of visitors in science centers [33]. However,
for the purpose of assessing a single person’s state, there is
only a statistical correlation between mood recognised by an
algorithm and a person’s real state. Thus, such measurements
cannot be used as input for medical decisions in the treatment
of axial SpA.

I I I . A S Y S T E M A R C H I T E C T U R E F O R
S E L F - M A N A G E M E N T

Our concept is based on medical principles that are applied
to a computer-based system with several components: sensors,
smart phone, a health cloud, patient records and communication
between these components. The system architecture addresses
medical principles, restrictions caused by technical reasons,
and policies by the stakeholders.

A. Integrating Treat-To-Target

A treat-to-target method [34] has been developed for treating
axial SpA. This evidence-based method is used after diagnosis
and early treatment, when the disease has reached a stable
state (Fig. 1). At this stage, an individual treatment plan has
been created for the patient. This method uses a treatment
goal (target) for a treatment plan. Following the treatment plan
and regularly assessing the patient’s status provides evidence
about how the disease develops. When the patient’s status
moves away from the treatment target to a worse condition,
health personnel, in discussion with the patient, might adjust
the treatment plan or target.

As part of an evidence-based, self-management setting, the
treat-to-target method is extended so the patient can perform
self-assessment to gather evidence about the current disease
condition by performing assessments, answering questionnaires,
and following the progress from the patient diary. The patient
diary data can be used for patient-health personnel communi-
cation by making it available to the clinical personnel, either
regularly or when needed (e.g., a patient visit).

Fig. 2 shows how treat-to-target can be aligned with self-
management. The upper unshaded part of the drawing is
the health personnel domain. This is where health personnel
perform clinical assessments and decide the treatment target and
treatment plan. The lower shaded part is the patient’s domain.
This is where the patient can perform assessments, compare
with the target, and adjust some elements of the treatment.

Fig. 2: Treat-to-target in a self-management setting, showing tasks to be
performed by patient and health personnel, respectively.

Fig. 3: Architecture of a self-management system including three parts: self-
management, clinical assessment, and data exchange.

B. An Architecture for axial SpA Treatment

Our concept (Fig. 3) builds on a) a solution for self-
management, b) better quality and effectiveness of clinical
assessment, and c) enhanced patient-health personnel commu-
nication.

The solution for self-management lets the patients use tools
at home to manage the disease. It includes patient-reported
outcome measures [8], the assessment of ample parameters,
the use of a patient diary [35], patient guidance with respect
to the treat-to-target principles, and alerts in case of changes
in the patient’s condition or physical function.

The concept also enhances the quality and effectiveness of
clinical assessment; assessment methods developed for self-
management are made available for clinical assessment.

The concept includes a foundation for patient-health person-
nel communication. Self-reported assessments can be used for
patient-health personnel communication to explain or visualise
the development of the disease and data transfer to the hospital.

C. The Health Cloud

Our concept uses a health cloud to facilitate persistent
storage, and as a means to communicate data to the health
care personnel. Although this is an extra component, there
are several reasons for this health cloud: a) persistence and
storage of health data and keep data consistent over several
devices the patient might use; b) give the patient ownership
over the patient data and the possibility to structure these after
the patient’s own decisions; c) give the patient the possibility
to exchange clean data to the health authority’s system (e.g.,
patient records) at the patient’s discretion; and d) give the



patient the possibility to store data also when health authorities
have not (yet) implemented such possibilities.

Although we have considered exchanging data between the
health cloud and the patient records, we have not implemented
this functionality even though this would have been possible in
Norway. Extra costs that were not funded during the research
project are the main reason for this. However, issues like
data quality, data ownership, security, privacy, policy, and
standardisation need to be considered before implementing
such data exchange.

Note that without such communication, the health personnel
can get access to the patient data either by accessing the data on
the patient’s smart phone or by accessing the health cloud via a
specifically authorised interface. We also note that introducing
a further interface beyond the patient records will probably
not be a success criterion in the introduction of our concept.
To our experience, health personnel will not be willing to take
further interfaces into use. Colleagues of some of the authors at
Diakonhjemmet Hospital and the Hospital of Southern Norway
were interviewed, and they made it clear that introducing further
special purpose interfaces would distract them from their daily
work. Thus, implementing the API between the health cloud
and the health records will be the only long-term option.

D. Development Methodology

The concept and implementation of our prototype was per-
formed interdisciplinarily as an innovation project in the public
sector, where major parts of the health care sector in Norway
belong. The development team included health care personnel
specialising in rheumatology and physiotherapy at hospitals.
They could also draw on the expertise of their colleagues. The
development team also included two representatives from the
Norwegian Rheumatology Association to give the team a user-
centred design focus. Further, computer scientists, programmers,
and developers were involved in the work that also included
technical and medical evaluations.

I V. P R O O F O F C O N C E P T F O R A X I A L S PA
S E L F - M A N A G E M E N T

The parts of this architecture that include data exchange
between a health cloud or a patient’s devices and the electronic
health record (EHR) system are beyond the scope of our work.
These are parts that rely on policies defined by public health
care providers. So, we focused on implementing tools for
clinical assessment and self-management.

A. Medical Assessment Methods for axial SpA

Medical self-assessment is essential for evidence-based self-
management. So, these self-assessment methods should be
based on medical assessment methods since evidence for their
effectiveness is documented.

The AS Disease Activity Score (ASDAS) is used for
measuring and monitoring disease activity in axial SpA. It
is based on a composite score of domains relevant to patients
and clinicians, including both self-reported items and objective
measures [36].

The Bath indices [37] present outcome measures for use
with axial SpA patients, and consist of four indices: the Bath
AS Metrology Index (BASMI), the Bath AS Functional Index
(BASFI), the Bath AS Disease Activity Index (BASDAI), and
the Bath AS Patient Global Score (BAS-G). These indices are
designed to give a good clinical assessment using a minimum
number of measurements or questions to be answered. The
BASMI is five simple clinical measurements; the other indices
consist of a number of questions that are answered on a numeric
scale from zero to ten [38].

Østerås et al. [39] described a set of assessment tests as
candidates for axial SpA self-assessment. These exercises are:
lateral spinal flexion, modified Schober’s, cervical rotation,
occiput to wall distance, tragus to wall distance, intermalleolar
rotation around the vertical axis, lumbal and thoracic rotation,
six-minutes walking test, stair climb test, sit-to-stand test,
fingertip-to-floor test, and maximum grip strength test.

B. Requirements for Sensor-based Self-assessment

Clinical measurements for self-assessment must, ideally, be
implemented in a way that allows the patient to operate the
measurement at home and without assistance. As patients with
axial SpA have or may develop a restricted range of motion,
the equipment needs to be designed so that it is possible for the
target group to use and setup any devices without assistance.

Further, the measurements must be designed so that in-
correct operation by the patient is unlikely when performing
the exercises and measuring. If possible, deviations should
be recognised by the system, indicated to the patient, and
transferred measurement results should be marked as invalid.

To implement these measurement processes, we can use a
variety of sensor types, such as inertial sensors for movements,
magnetic sensors, cameras, and microphones. Sensors built
into, e.g., smart phones or smart-watches, can be used for
such measurements if this is practical. External devices, often
connected via a wireless medium, e.g., Bluetooth, can be better
adapted to certain types of measurements and, thus, deliver
more precise results. Further, there are specific external devices
for measurements where suitable sensors are unavailable in
standard smart phones, e.g., sensors for diabetes. For some
exercises, training equipment with built-in sensors (spinning
machine) could be used. Most specific sensors could be imple-
mented with connectivity to a smart phone (e.g., communication
protocols using Bluetooth, ANT+, or similar).

For some types of measurements, the built-in sensors of
smart phones could be used, e.g., the measurement of the heart
rate of a person using the LED-flash and camera of a smart
phone [40]. Further, inertial and magnetic sensors, camera, and
microphone could be used to implement measurements [41]
[42]. There is a variety of training-related apps that make use
of both internal sensors as well as external sensors and training
armbands. As a note, the use of GPS-positioning seems less
useful for self-management for axial SpA patients.

Consumer devices that are currently available include smart-
watches and bracelets. Some of these are programmable and



have ample sensors on-board. Such devices are unobtrusive
and can be used in most daily-life situations.

We foresee that new unobtrusive devices and sensors will be
developed and integrated into textiles and spectacles that can be
worn by the person. Alternatively, they may even implanted into
the person. But with these new devices arise ethical problems
that could violate the rights of the person or third parties. Thus,
suitable counter-measures need to be taken to avoid this.

C. Implementing Exercises for Self-Assessment

Considering the exercises to assess axial SpA conditions,
we can consider classes of exercises where the form factor
needs to be adapted for the specific exercise.

1) Limb Movements and Position: Exercises that assess the
relative position of limbs after a movement (e.g., the spinal
lateral flexion or the fingertip-to-floor test) can be implemented
using an inertial sensor. For the assessment, the sensor is
attached to the limb, the position is assessed in the reference
position, the movement is performed, and the position after the
movement is assessed. The distance between these positions is
reported. Challenges for such assessments is how to attach the
sensors and the user interface (how to trigger the assessment).

Using a camera and employing image processing algorithms
would be another solution [43]. Zhao et al. [44] presented such
a system to track health workers’ positions while carrying out
their work with patients. However, placement of the camera,
lighting conditions, and physiological conditions (body shape)
can result in challenges and reduced accuracy.

2) Rotation Exercises: Exercises that include circular move-
ments of body or limbs (e.g., cervical, lumbal, thoracic
movements; intermalleolar rotation around the vertical axis)
can be implemented using an inertial sensor and, to a certain
degree, a magnetic sensor. For the assessment, the sensor is
attached to the body part to be rotated, a reference position is
assessed, the movements are performed, and, at each of the
extreme points, the relative movement is assessed.

3) Exercises that Need Specific Devices: For several of
the exercises the assessment requires either specific sensors
or external assistance. The modified Schober’s assessment
measures differences in the length of the spine. This mea-
surement cannot be performed without the assistance of a
physiotherapist. However, the fingertip-to-floor test is correlated
with the modified Schober’s test [45].

Assessment of the distances of the tragus or occiput to the
wall could be implemented using some specific device, e.g.,
using a ruler; this, however is beyond the scope of our project.
Further, the assessor needs to ensure that both heels and back
touch the wall for a correct assessment [38].

The maximum grip strength test is used to determine muscle
strength. Currently, it can only be implemented using specific
sensors or devices such as a dynamometer.

4) Tests for Health-Related Physical Fitness: Exercises that
assess health-related physical fitness seem at first glance rather
easy to implement. But as we shall see, there are several issues
with these tests.

Fig. 4: Drawing of the APERTUS sensor used for axial movements.

For the sit-to-stand test (also called the 30-second Chair
Stand Test or 30s CST), the patient is given 30 seconds to
complete as many full stands as possible starting from a seated
position with arms folded across the chest. Such assessments
can use the same principle as the limb movements, counting
the number of up- and down movements. However, with this
method it is not evident whether these movements have been
only partially performed. We note that this test could be used
for self-management due to its simplicity.

The six-minutes walking test (6MWT) is an inexpensive and
simple walking test that can be used as a predictor of aerobic
fitness or for assessing the sub-maximal level of functional
capacity. Following the American Thoracic Society guidelines
[46], patients are instructed to walk as fast as possible back
and forth between two cones 15 meter apart on a flat, hard
surface for six minutes. The walking distance is measured in
meters. During the test, the heart rate is recorded with a heart
rate monitor, and perceived exertion can be measured with
Borg’s rating of perceived exertion (RPE) [47].

The test is claimed to be most useful in patients with at
least moderately severe impairments while other more well-
functioning populations may exhibit a ceiling effect since the
test is limited to a patient’s walking speed.

While there is a variety of sensors that could be used to
implement an assessment, including indoor positioning, inertial
sensors, step counters, the most important question is whether
the necessary space to perform such an exercise is available in
the patient’s home. If available, e.g., some patients might have
access to a corridor to perform the exercise, patients might not
want to use this in a space that is not private.

In the stair climb test (ST) [48], the patient is asked to ascend
and descend 50 normally sized steps with three landings in-
between as quickly as possible, also measuring the heart rate.
This test could be implemented using step counters or intertial
sensors. Note that not all patients might have access to suitable
stair steps.

D. Sensor-based Clinical Measurements

APERTUS developed a sensor that can measure rotation
around the vertical axis such as cervical rotation, thoracic
rotation and hip abduction (measured in the supine position).
The Apertus sensor was developed by engineers in close
collaboration with health professionals and patients with axial
SpA in a process with discussions, development of prototypes
and (re-)testing.

The result can be transmitted via a wireless connection to
a receiver, such as PC, tablet, or smart phone. This inertial
sensor is packaged in a small box (Fig. 4) that can be attached



to the body. The size of the device is 55mm× 35mm× 3mm.
The sensor contains radio technology that follows Bluetooth
standards that might influence electronic devices in 2.4 GHz
ISM, but to a significantly lower degree than mobile phones.

Compared with other technology such as lasers or optical
sensors, this sensor’s advantages include its high precision and
being cheaper, smaller, and lighter than the other solutions.
Compared to the traditional way of measuring rotation with a
goniometer or myrinometer (e.g., compass) the sensor provides
more precise measurements. The sensor is a simple way to
achieve satisfactory measurements in acceptable use of time
and without health personnel assisting.

The Apertus sensor was tested in a laboratory setting and the
data collected was compared with Cybex 6000 simulation data
as gold standard. The sensor was mounted to the cybex with a
bracket in six different positions, 1) straight up; 2) straight
down; 3) up, tilted 30◦ around the frontal axis; 4) down, tilted
30◦ around the frontal axis; 5) up, tilted 30◦ around the frontal
axis, 20◦ around the sagittal axis; and 6) down, tilted 30◦

around the frontal axis, 20◦ around the sagittal axis. Reference
angles were set at approximately 10, 30, 60, 90 and 120
degrees. From a center position the sensor was moved from
left to right (one cycle) by manual force at the speed allowed
(60◦ s−1) until stop brackets were reached. Criterion validity
and reliability for single measures and for the mean of three
trials (left, right or cycle) was evaluated with two ways mixed
interclass correlation coefficient (ICC). Limits of agreement
(LoA) (Bland and Altman method), and smallest detectable
change (SDC95%) with 95% CI were calculated to evaluate the
measurement error of the sensor. The sensor showed excellent
criterion validity and reliability for rotation around the vertical
axis in the range of motion from 10◦ to 120◦. The angle can be
measured with a precision of ±0.87 for one measure and 0.80
for the mean of three measures. When assessing a single cycle
or the average of three cycles, a change of 1 degree is needed
for real change beyond measurement error. These findings
justify proceeding with further evaluations of the sensor for
this kind of measurements [49] [50]. A clinical trial of the
rotation measurements with 60 patients suffering from axial
SpA is currently under evaluation.

We developed a suitable user interface for the assessment
process with the sensor. The assessed data are stored locally
in the patient diary and forwarded to the health cloud for
permanent storage.

E. Smartphone-based Self-Management Measurements

Self-management based on smart phone platforms carries
some benefits over dedicated third-party measuring devices. The
user is likely to be more familiar interacting with a personal
phone than any new measuring instruments. Moreover, the
convenience of using a device already carried may significantly
increase user acceptance and on-boarding. Further, by taking
advantage of accurate high quality built-in sensors already
available on smart phone platforms, the extra cost of acquiring
measuring instruments can be avoided.

(a) Measurement screen. (b) History plot screen (c) History data screen.

Fig. 5: Screen shots from the MOSKUSapp proof of concept for rotational
exercises.

As a proof of concept, an Android app has been developed
that allows the user to measure cervical rotation, thoracic
rotation and hip abduction using the phone’s internal gyroscope.
When starting a new measurement the phone can be positioned
on the forehead (using, e.g., a regular head band) or in a pocket
on the torso or on the hip. When activated, the app gives sound
queues at regular intervals indicating when the user should turn
forward, turn left, turn forward, turn right, and turn forward
again. The sound queues allow for the use of the app during
rotational exercises when the screen is not visible to the user.
At the end of the measurement the user is presented with the
results and given an option to save the data, allowing tracking
of trends over time. The basic elements of the user interface
are shown in Figure 5.

Low sensor accuracy and lack of uniformity represent poten-
tial drawbacks of the smart phone approach when compared
to the use of dedicated sensors. A gyroscope sensor has been
available on the Android platform since version 2.3 (API 9). In
contrast to the iPhone, where hardware is largely homogeneous
and standardised, the quality of sensors on an Android phone
can differ greatly between manufacturers. However, some
universal requirements exist for licensed Android smart phones.
As of 2016, gyroscopes on licensed Android 7.0 devices
are required to be calibrated, persistent between reboots,
temperature compensated, have a resolution of at least 12
bits and a variance of no greater than 1× 10−7 rad2 s−1 (or
approximately 0.02 deg/

√
s). However, all gyroscopes will

exhibit a drift over time, and on low-end devices this drift can
potentially influence angle measurements.

To quantify the potential inaccuracy when using built-in
smart phone gyroscopes for the measurement of cervical
rotation, a simple experimental procedure was carried out.
The prototype app was installed on four different smart phones
of varying age: Sony D5803, Sony D6603, Samsung S3 and
Samsung S8. The newest phone in the test was the Samsung
S8 (released April 2017) and the oldest was the Samsumg S3
(released May 2012). The phones were rotated 30◦, 60◦, and
90◦ at a radius of 0.1 m with a rotation time from the neutral



TABLE I: The bias and standard deviation of the measurement error in degrees
using the proof of concept Android app with gyroscope for measuring cervical
rotation of 30◦, 60◦, and 90◦ with different phones.

30◦ 60◦ 90◦

Phone Θ̄ STD Θ̄ STD Θ̄ STD

Sony D5803 -0.33 0.68 -0.72 0.96 -0.74 0.68
Sony D6603 -0.60 0.81 -0.35 0.82 0.09 0.61
Samsung S3 -1.01 1.08 -1.09 1.22 -2.50 1.48
Samsung S8 0.12 0.92 -0.15 0.84 0.23 0.77

Overall -0.65 0.86 -0.72 1.00 -1.05 0.92

TABLE II: The bias and standard deviation of the measurement error in degrees
using the proof of concept Android app with accelerometer for measuring
cervical rotation of 30◦, 60◦ and 90◦ with different phones.

30◦ 60◦ 90◦

Phone Θ̄ STD Θ̄ STD Θ̄ STD

Sony D5803 15.0 8.59 10.45 19.57 9.51 20.71
Sony D6603 23.98 9.10 42.05 8.94 107.7 32.53

Overall 19.5 8.84 26.25 14.26 58.61 26.62

position of about 1 s. The rotation was alternated between left
and right and the experiment was repeated 10 times per device.
In each case the difference in the angle measured by the app,
Θi, and the known angle of rotation, Θ0, was recorded. Table
I shows the bias

Θ̄ =
1

N

N∑
i=1

(Θi −Θ0) (1)

and the standard deviation

STD =

√√√√ N∑
i=1

(
Θi − Θ̄

)2
(2)

in degrees when using the different Android devices.
The results shown in Table I indicate that the overall measure

error when using smart phone built-in gyroscope is of a
comparable magnitude as the error reported in the sensor-
based clinical measurements. Overall, the error was measured
to be 0.61◦ to 1.48◦. As expected, the error (STD) is somewhat
larger for greater rotation angles and for the older of the phones
tested (Samsung S3).

We observed also that some devices seem to produce useful
results for angles up to 90◦, but show large deviations for
angles above. This is one of the reasons why we changed the
measurement procedure for the rotation exercises to measure
maximum 90◦, rather than up to 180◦ as done in our first
implementation.

While more rigorous testing is required before such a
mobile application can be put into use, our tests indicate a
clear potential of using smart phone built-in gyroscopes for
measurement of cervical rotation.

Some (older or less sophisticated) smart phones come
without a built-in gyroscope. For such cases one can consider
using the phone’s accelerometer to estimate the arc length when
rotating the phone, and calculating the rotation angle using
an assumed radius. The angular inaccuracy for this approach

was estimated using two different smart phones and the same
experimental setup as used previously. Table II shows that the
inaccuracy caused by accumulated accelerometer noise when
using such a method renders this approach unfeasible. As a
note, we also tested other smart phones such as the Samsung
S3 and S8, but the results were entirely unusable and, thus,
omitted from the table. It should be noted that the results
when using accelerometer will to some degree depend on the
algorithm used to compute the angle and may be improved
upon. In this test a first-order Euler integration was carried out
to get the arc length when rotating. The angle was obtained
assuming the 0.1 m rotation radius.

In summary, a number of the self assessment tests identified
by Østerås et al. [39] can, potentially, be carried out using
a smart phone platform. For example, one can envisage
the measurement of the six-minutes walking test, the stair
climb test and the sit-to-stand test using the phone’s built-
in accelerometer combined with voice instructions. Future
work includes extending the proof of concept self-management
Android app to also include some of these features.

F. Self-Assessment of Subjective Conditions

For the assessment of the subjective conditions for BASDAI
and BASFI we implemented suitable user interfaces in our
prototype (Fig. 6). We also implemented a questionnaire for
ASDAS, a composite score including subjective evaluation
and the inflammatory markers C-reactive protein (CRP) and
erythrocyte sedimentation rate (ESR). Patients answer the
questions on a scale from zero to ten by tapping on the
appropriate number. We did not choose sliders because we
assumed that tapping on the appropriate field would be easier
for the target group with their possible movement restrictions.
Note that the use of a numeric rating scale is recommended
by ASAS [12].

After the form is finished, the data are stored locally. An
estimate of the current health condition is shown to give the
patient feedback along with the possibility to report these data
to the health cloud for permanent storage.

Questionnaires can be scheduled using the mobile device’s
calendar by creating calendar entries with a specific syntax.
The calendar then reminds patients to perform assessments at
a given time.

G. Self-Management and Recommendation

Development of the self-management was based on the
ASAS-EULAR management recommendation for axial SpA
[12] taking into account the opinion of health professionals
working within the field of rheumatology, patients with axial
SpA, a psychologist and developers of the diary app.

A self-management system needs to support the patient
in the following ways: a) deciding the type and degree of
adjustments for non-pharmacological changes in a treatment
plan, such as diet, training, lifestyle, or other minor adjustments;
b) identifying significant deviations from the expected progress
and present these deviations to the patient and health personnel;
c) advising changes of treatment plan to the health personnel;



(a) The ASDAS/ BAS-
DAI menu.

(b) The BASFI menu. (c) The result page.

Fig. 6: Screenshots for the data collection module.

(a) The diary login
screen.

(b) The diary patient
view.

(c) The diary history view
for BASDAI.

Fig. 7: Screenshots from the patient diary app.

and d) suggest changes of patient’s target to the health
personnel. Qi et al. [51] present an approach for how to make
decisions that are presented to the patient. We use a diary in
our solution.

The diary shows the disease’s development visually, devia-
tions from the treatment plan, and gives recommendations using
trend labels. The patient view (Fig. 7b) shows the patient’s
birth year, the current left and right cervical rotation, and the
current scores for ASDAS, BASDAI, and BASFI, including
their targets. Each of these scores can have historical data; this
is shown in the patient history view (Fig. 7c) and summarised
in the trend labels (Fig. 8) to the right of the value. There
are five trend labels: (a) disease activity is increasing, but

(a) (b) (c) (d) (e)

Fig. 8: Trend labels for the patient view.

below target; (b) disease activity is increasing; (c) no change
in disease activity; (d) disease activity is decreasing, either
below or heading towards target; and (e) disease activity is
decreasing, but still very high and needs more treatment.

H. Heuristic Decision Support Based on Medical Expertise

We created simple rules to guide patients and health
personnel. These rules are based on the values from ASDAS,
BASDAI, and BASFI.

The values derived in ASDAS and BASDAI indicate the
amount of disease activity. Machado et al. [52] define cutoff
values for disease activity measured using ASDAS: a) under
1.3 – the disease is inactive; b) between 1.3 and 2.1 – disease
activity is moderate; c) between 2.1 to 3.5 – disease activity
is high; and d) over 3.5 – disease activity is very high. A
change on the ASDAS scale of 1.1 or more is considered a
clinically important change while 2.0 or more is considered a
major change. Based on this work, we indicate the trend of the
scores (up, down, or steady), as well as the severity (colour).
The thresholds can be personalised for patients where health
personnel defines alternative values.

Braun et al. [53] propose a similar approach for BASDAI by
calculating a trend line that uses BASDAI targets for cutoffs.
Situations where the BASDAI is above 4.0 – indication of
high disease activity – or changes of the BASDAI over 50%
or a factor of two also generate a warning to contact health
personnel.

BASFI indicates the disability level. Wariaghli et al. [54] ran
a large survey with Moroccan patients and defined the target
values depending on the patient’s age in three age ranges. We
use similar rules as above for determining the trend based on
the patient’s target or age information, depending on what is
available.

Recently, Kviatkovsky et al. [55] proposed cutoff values
for the patient-acceptable symptom state (PASS) for BASDAI
and BASFI to be 4.1 and 3.8, respectively. For the minimum
clinically important improvement (MCII) the values were 0.7
and 0.4, respectively. However, for patients with an active
disease, the MCII values are 1.1 and 0.6, respectively.

V. U S A B I L I T Y T E S T O F T H E P R O T O T Y P E S

Usability, how easy something is to use, is an important factor
for adoption and continuous use of a system or application.
Motivated by this, we performed a usability test of the two
developed prototypes. We wanted to see how appropriate the
apps are for their purpose, and to get feedback on the usability.
We employed the System Usability Scale (SUS) developed
by Brooke [56]. The SUS consists of ten questions that are
rated by the participants on a five point or a seven point Likert
scale [57]. The ratings are used to calculate a score on a scale
from 0 to 100 where 70 is the average score. Additionally,
we added six questions on related matters that are not part of
the SUS scale, e.g., the need for the apps, satisfaction, and
whether participants would recommend the apps to others.

For the usability test, we recruited eighteen individuals
with Android smartphones among members of the Norwegian



TABLE III: SUS scores for the collection module app and patient diary app
with highest and lowest scores removed.

Average Median

Collection module 73.73 80.20
Patient diary 74.05 74.35

Rheumatology Association (Norsk Revmatikerforbund). We
asked the eighteen to download the two apps and sign up for
the usability test. Of the invited participants, fourteen followed
the procedure, downloaded the apps, and registered at the health
cloud site. The individuals received the link to the surveys
after they had downloaded the apps and a text message with
instructions. Of the eighteen individuals, nine used the apps
and completed the test.

With only nine respondents, the usability test is more a
pilot study. If an application has major usability weaknesses,
these will likely be revealed with small sample sizes also. Our
test did not indicate major weaknesses. We did not perform
statistical analysis of the data beyond calculating SUS scores.

We performed separate tests for each app. The average and
median from the SUS are presented in Table III with the highest
and lowest scores eliminated. The SUS scores of the apps are
around 74, which is just above average. As the prototype
apps have several known weaknesses, this is what we can
expect. Note that the app for smartphone-based measurements
of rotation exercises was developed after this test has been
finished; thus, the SUS scores for the measurement app are
not available.

V I . E T H I C S , R E G U L AT O RY I S S U E S , A N D R I S K
A N A LY S I S

Using devices, sensors, and supporting health care systems
may create a variety of ethical issues that need to be analysed
and addressed before a system using these is used by patients.
Further, there is a variety of regulatory issues that must be
addressed.

The ensemble of devices, sensors, and supporting health
care systems is also referred to as the health-related Internet
of Things. (IoT) which refers to uniquely identifiable objects
(things) and their virtual representations in an Internet-like
structure. This term was first used in 1999 by Ashton [58].
Other definitions of IoT have appeared as technology progresses.
A thing is a real or virtual object, e.g., a device or a web
service, offering one or more services. The IoT is today a
rather common platform for the deployment of health services.
While our work makes use of sensors and networks, we focus
on the concept for self-management rather than proposing a
full deployment of our concept in the IoT.

A. Ethics Assessment

Mittelstadt [59] presents a literature review of ethics in the
health-related IoT for devices, data protocols, and mediated
care. These aspects can arise from both implementation and
deployment. These aspects include: i) personal privacy;
ii) obtrusiveness, stigma, and autonomy; iii) informational

privacy; iv) data sharing and autonomy; v) consent and
the uncertain value of data; vi) ownership and data access;
vii) social isolation; viii) decontextualisation of health and
well-being; ix) care quality and user well-being; and x) risks
of non-professional care. Berman and Cerf [60] comment on
rights to privacy in the IoT and accountability for decisions
made by autonomous systems. Hence, the ethical properties
of algorithms need to be investigated. Mittelstadt et al. [61]
categorise the ethical aspects of algorithms into xi) quality of
evidence, divided into inconclusive, inscrutable, and misguided
evidence; as well as xii) unfair outcomes; xiii) transformation
effects; and xiv) traceability.

B. Regulatory Issues

Our presented framework consists of a variety of technical
devices that are supposed to support the patient. As these
devices and algorithms potentially could put the patient at
risk, we need to consider the regulatory issues regarding
medical devices. According to Boulos et al. [62], both the
EU and the U.S. regulations define what a medical device
is and whether certifications (e.g., according to the European
Medical Device Directive MDD 93/42/ECC) would be required.
Apps that archive and retrieve data from, e.g., patient records,
support decisions informed by medical databases representing
known facts, or perform straight-forward simple calculations are
usually not considered as medical devices. In contrast, apps for
diagnosis, dosage calculation, interpretation and interpolation
of assessed data outside a clinician’s supervision need to be
certified as medical devices. Then, developers of such apps
need to undertake a controlled test and risk assessment.

Considering the apps developed in our project for patients
with axial SpA, the current implementation offers assessment
of subjective and objective data, calculates indices according
to the published definitions, transfer data to a health cloud, and
presents trends for the patient to make a decision. According
to the above considerations, these apps are not considered as
medical devices. Note also that the patient recognises potential
problems also without the apps; immediate danger for life due
to the conditions cannot be expected.

We also note that the device for clinical measurements
presented in Section IV-D would need certification as a medical
devices since it is used in a clinical setting.

C. Ethics and Risk Analysis

We evaluate the fourteen ethics characteristics i to xiv for the
currently implemented prototype. TABLE IV shows elements of
this informal ethics assessment. According to this assessment,
there are no critical issues; however, the implementation and
deployment of the self-management system needs to be made
carefully, and the issues mentioned in the assessment table
need to be addressed.

We perform an informal risk analysis for our system that is
similar to the work by Leister et al. [63]. From a system
model, e.g., the one presented in Fig. 3, we can extract
the functionality, communication channels, and list possible
risks, sources of failure, weaknesses, exploits, and attacks.



TABLE IV: Informal ethics assessment for characteristics i to xiv.

# Ethics aspect Properties and comments
i Personal privacy Make sure that only authorised persons can access device.
ii Obtrusiveness, stigma, autonomy Apps and sensors can be used in private space; smartphones and sensors are not obtrusive.
iii Informational privacy Make sure that information security measures are implemented.
iv Data sharing Data sharing only when client permits; controlled by regulations.
v Consent Patient can give consent.
vi Data ownership, data access Ownership by patient regulated by law in Europe; data access by regulations.
vii Social isolation Reduces number of clinical consultations; it is unlikely that this will lead to social isolation.
viii Decontextualisation Patient initiates questionnaires and assessments; patient can delete unwanted values; however,

mishaps can occur.
ix Care quality Patients are under clinical supervision, but number of clinical consultations is reduced.
x Non-professional care Patients are under clinical supervision.
xi Quality of evidence Machine learning is not yet applied; system gives recommendations to educated patients; when

patients enter wrong data or perform exercises in wrong manner, results and recommendations
will be affected; hardware-dependence possible.

xii Unfair outcomes n/a
xiii Transformation effects Health-care system will change; number of planned consultations will be reduced in the

long run.
xiv Traceability Yes, for current implementation; weaker when machine learning is applied.

For these, we consider severity and probability, as well as
countermeasures. One could formalise this even more as
demonstrated by Leister et al. [64], but we consider this not
necessary for an overview.

Risks can occur due to various reasons, including the
following: a) attacks on information security and privacy,
affecting both devices and communication channels; b) issues
with technical safety when operating the devices; c) issues with
correctness of decisions and results; d) malfunction of device or
algorithms; e) operation errors caused by the user; f ) reduced
availability; and g) organisational issues and policies.

D. Analysis of the MOSKUS Apps

Since the self-management system is complex, the results
shown by the device might be wrong. For example, wrong input
values might result in displaying an incorrect status and wrong
recommendations. This, in turn, might result in non-optimal
treatment. For recommendations for axial SpA, this will not
cause life-threatening situations. Further, the patients using
the MOSKUS apps are supposed to be educated to manage
their own disease without the app and will seek for medical
assistance also when technology should fail.

Reasons of the apps showing misguiding results might be
the following:

1) When using the questionnaires, the patient might enter
wrong data. This may happen either voluntarily (cheating)
or involuntarily by accident. In either case, when wrong
values are entered, the resulting indices – such as ASDAS,
BASDAI or BASFI – will be biased, leading eventually
to wrong recommendations.
To avoid incorrect data, one can make a sanity check of
the entered values and ask the patient when unusual data
are entered. Such mechanisms have not been implemented
in the prototypes, but this would be necessary for a final
product. Further, educating the patient in the purpose and
use of the apps would have a positive impact.

2) When performing the exercises, the patients might perform
these in a wrong manner; e.g., they might move parts of
the body that are supposed to be fixed or they might have
misunderstood the exercise entirely. If this happens, the
measurements from the exercises and the resulting indices
(e.g., BASMI) will be biased.
To avoid this, educating the patients might be essential.
Further, mechanical aids and fixtures, as well as sanity
check of the exercises using extra sensors or recording
more values might be necessary. Moreover, some patterns
in movements during the exercises might indicate that
exercises are not performed correctly. Such patterns can
be detected in a preprocessing step to avoid submitting
erroneous data. In the current prototypes, such measures
have not been implemented.

3) Malfunction of the device or its sensors may happen. E.g.,
when using the smart phone as a measurement device for
the exercises: the accelerometer could experience noise, the
gyroscope could drift or be inaccurate, or the magnetometer
might be influenced by magnetic fields. Indeed, in the tests
carried out in this work, we observed that older smart
phones may not be as accurate as required.
To avoid this, calibration steps and sanity checks of the
sensors and devices need to be performed regularly and, if
possible, without the intervention of the patient. If this is
not possible, the apps should give out warnings in case of
strange results during such calibration steps.
The consequences from malfunction of sensor or device
will be no or unusable measurement values. This might
result in incorrect recommendations given by the app.

There are further risks that can arise. Breaches of information
security and privacy might compromise the privacy of the
patient. Further, exploits might alter or destroy data and have
an impact on the integrity of the data. As a consequence, this
might lead to wrong recommendations or system failure (e.g.,
denial of service).



Suggested counter-measures are similar to those described by
Leister et al. [63], i.e., to secure the communication channels by
using security functions such as authentication, authorisation,
access control, and encryption. Access to devices and sensors,
as well as to the health cloud and the patient records by
unauthorised persons needs to be restricted using the suitable
measures. Note that security and privacy policies developed by
the stakeholders are necessary, as for every other IT system.

Data loss can happen due to various reasons, e.g., unavailable
services, destroyed hardware, power outage, theft, protocol
errors, or routines not performed according to policies. The
usual countermeasures for these situations apply, for example
backing up important data.

Although smart phones and sensors can be considered as
personal devices, it can happen that other persons, e.g., friends
and family can get access to the MOSKUS app. For example,
friends and family might be interested in the technology and
try the app. To avoid that the data set is contaminated with
data from other persons, the app needs to offer functionality to
remove such data sets both from the smart phone, health cloud,
and patient records. Additionally, a sanity check of the data
can detect such unwanted data and suggest them for removal.

To summarise, the above informal analysis covers the
some major risks that could lead to unusable data, privacy
breach, data loss, and data inconsistency. However, there are
several measures that can help avoid many of these risks
becoming a threat to the patient. These measures include
a) analysis of collected data and evaluation whether these
data fit into the patient’s usual pattern; b) analysis of the
quality of exercises using extra sensors and data analysis;
c) implementation of warnings when data are inconsistent or
do not fit into the patient’s pattern; d) possibility to remove
data sets that are inconsistent, inaccurate or are form other
sources than the patient; e) implementation of suitable security
protocols; and f ) possibility to back up data. Such measures and
functionality need to be added before starting productification
of the MOSKUS prototype.

V I I . D I S C U S S I O N

The proposed concept for self-management is based on a
feedback loop which involves the patient. Axial SpA does not
require immediate attention when the condition worsens, but
an appointment with a clinic needs to be scheduled. Also, not
adhering to the self-management regime does not have other
side-effects beyond not adhering to the treatment, and these
patients need to keep the conventional frequency of clinical
follow-ups. Note that other chronic diseases might require
immediate attention in some situations or not adhering to the
self-management regime might worsen the patient’s condition.
Thus, an evaluation is needed for other conditions than axial
SpA to see if our self-management architecture can be applied.

Data assessed in self-management are usually not complete
or might be of a different nature in terms of the clinical indices.
For example, the values extracted from blood samples might
not be available, only selected values from the BASMI might
be available, or the patient assesses alternative measurements

that are not part of the established indices. To support
recommendations in these cases, it is necessary to predict an
individual’s axial SpA disease condition based on a combination
of physiological, behavioural and subjective (self-reported)
features. To achieve this, Schiboni et al. [65] have proposed a
fuzzy rule-based evidential reasoning (FURBER) approach for
multiple assessment fusion. But this approach requires enough
real patient data as training data to be considered for real
treatment.

The medical indices for axial SpA and the data retrieved
from the FURBER method are only suited to give an indication
of the disease conditions at one moment. For predicting the
probable development of the patient’s health condition and
whether actions need to be taken requires temporal reasoning.
Modelling the disease development as a stochastic process to
optimise the treatment recommendations could be done by a
Markov Decision Process (MDP) [66]. Yet a large sample size
could make this approach less viable [67]. Alternatively, the
patient profiling method described by Lutz et al. [68], could
be feasible.

The new assessment methodology for rotation exercises
using sensor technology will also impact clinical use as it will
save time and provide better results. Today, health personnel
use goniometer or compass-based measurements that have
acceptable accuracy. The trials in a clinic have shown this
new methodology simplifies clinical measurements, greatly
improves accuracy. The time saved and higher-quality data
quickly make up for the cost of the sensors. Specifically,
the much higher accuracy and easier handling of the sensor
technology compared to the traditionally used methods is
attractive to health professionals. Furthermore, the sensor
will enable patients to perform the measurements themselves
without the involvement of health personnel.

The use of sensor technology that comes in today’s smart
phones for the assessment of the rotation exercises is viable.
However, one has to keep in mind that the hardware is
not standardised, and some models or brands could behave
unexpectedly. Technical limitations might also have an impact
on the implementation of the exercises, as our study has shown.

Our prototype does not implement all of the exercises that are
recommended, and more studies and research will be necessary
to find a suitable implementation of these. For some of these,
e.g., the stair climb test or the sit-to-stand test, a solution seems
obvious, unlike for others (e.g., the extended Schober’s test).
Thus, replacement-exercises that are viable for implementation
using sensors that are affordable need to be developed and
clinically approved.

V I I I . C O N C L U S I O N

We presented an architecture for self-management of axial
SpA patients that is based on self-assessment by these patients.
We have performed a proof of concept by implementing vital
parts of a self-management system including clinical mea-
surements, patient-reported outcome measurements, feedback
module, patient diary, and decision making software. For this,
we used both specifically designed sensors that are suitable



for clinical settings as well as sensors that are on-board of
smartphones.

Further user evaluations will be necessary before a system
based on our architecture can be brought into clinical practice.
In addition, communication modules to the EHR system of the
clinics need to be implemented. Further, the development of
suitable measurements for exercises beyond rotation exercises
need to be developed in a way that allows patients to perform
these at home. For some of the objective assessments, it must
be considered to use replacement-exercises. This, however, will
require evidence in clinical trials that these exercises are similar
to the ones they replace.

Finally, since patient-reported data might not be of the best
quality (e.g., they have not undergone quality assurance or
might be incomplete) estimation methods both for the current
disease status and for temporal prediction need to be developed.
While we could show the viability of the methods, further
implementation work needs to be done.

I X . A C K N O W L E D G M E N T S

Parts of the work presented here has been carried out in the
Mobile musculO SKeletal User Self-management (MOSKUS)
project funded by the Research Council of Norway in the
VERDIKT programme, grant number 227251.

R E F E R E N C E S

[1] W. Leister et al., “Towards evidence-based self-management for
spondyloarthritis patients,” in Proc. Fifth Intl. Conf. on Global
Health Challenges, pp. 43–48, Venice, Italy, Oct. 2016.

[2] L. C. Li, A. F. Townsend, and E. M. Badley, “Self-management
interventions in the digital age: New approaches to support
people with rheumatologic conditions.” Best Pract Res Clin
Rheumatol, vol. 26, no. 3, pp. 321–33, 2012.

[3] K. R. Lorig, P. D. Mazonson, and H. R. Holman, “Evidence
suggesting that health education for self-management in patients
with chronic arthritis has sustained health benefits while reducing
health care costs,” Arthritis & Rheumatism, vol. 36, no. 4, pp.
439–446, 1993.

[4] T. J. Brady, J. Kruger, C. G. Helmick, L. F. Callahan, and
M. L. Boutaugh, “Intervention programs for arthritis and other
rheumatic diseases,” Health Education & Behaviour, vol. 30,
no. 1, pp. 44–63, February 2003.

[5] M. Battersby et al., “Twelve Evidence-Based Principles for
Implementing Self-Management Support in Primary Care,” Joint
Commission Journal on Quality and Patient Safety, pp. 561–570,
Dec. 2010.

[6] Y. Miedany, “e-rheumatology: are we ready?” Clinical Rheuma-
tology, vol. 34, no. 5, pp. 831–837, 2015.

[7] D. Palmer and Y. E. Miedany, “Proms: a novel approach to
arthritis self-management,” British Journal of Nursing, vol. 21,
no. 10, pp. 601–607, 2012.

[8] Ø. Dale, T. Schulz, A. Christie, and H. Dagfinrud, “Collection
of patient reported outcome measures using short messaging ser-
vice,” in eTELEMED 2013, The Fifth International Conference
on eHealth, Telemedicine, and Social Medicine, pp. 214–219.
IARIA, 2013.

[9] J. Braun and J. Sieper, “Ankylosing spondulitis,” Lancet, vol.
369, pp. 1379–1390, 2007.

[10] M. Dougados and D. Baeten, “Spondyloarthritis,” The Lancet,
vol. 377, no. 9783, pp. 2127–2137, 2011.

[11] J. Braun et al., “2010 update of the ASAS/EULAR recommen-
dations for the management of ankylosing spondylitis,” Annals
of the Rheumatic Diseases, vol. 70, no. 6, pp. 896–904, 2011.

[12] D. van der Heijde et al., “2016 update of the ASAS-EULAR
management recommendations for axial spondyloarthritis,” An-
nals of the Rheumatic Diseases, vol. 76, no. 6, pp. 978–991,
2017.

[13] P. West, R. Giordano, M. van Kleek, and N. Shadbolt, “The
Quantified Patient in the Doctor’s Office,” in Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems
- CHI ’16, pp. 3066–3078. New York, USA: ACM Press, 2016.

[14] S. Newman, L. Steed, and K. Mulligan, “Self-management
interventions for chronic illness,” The Lancet, vol. 364, no.
9444, pp. 1523–1537, Oct. 2004.

[15] S. Johnston, C. Liddy, S. M. Ives, and E. Soto, “Literature
review on chronic disease self-management,” Élisabeth Bruyère
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L I S T O F A C R O N Y M S

ANT+ an interoperable wireless transfer capability
API application program interface
AS Ankylosing Spondylitis
ASAS Assessment of SpondyloArthritis international

Society
ASDAS Ankylosing Spondylitis Disease Activity
aSpA axial Spondyloarthritis
BASFI Bath AS Disease Activity Index
BASFI Bath AS Functional Index
BASG Bath AS Patient Global Score

BASMI Bath AS Metrology Index
BCI brain-computer interface
CI confidence interval
CST chair stands test
CRP C-reactive protein
EHR electronic health record
ESR erythrocyte sedimentation rate
EULAR European League Against Rheumatism
EU European Union
FURBER fuzzy rule-based evidential reasoning
ICC interclass correlation coefficient
ICT information and communication technology
IoT Internet of Things
ISM industrial, scientific, and medical
LED light emitting diode
LoA limits of agreement
MDP Markov decision process
mHealth mobile health
MCII minimum clinically important improvement
MOSKUS mobile musculo-skeletal user self-management
PASS patient-acceptable symptom state
PC personal computer
RPE rating of perceived exertion
SDC smallest detectable change
SpA Spondyloarthritis
ST stair climb test
STD standard deviation
SUS system usability scale
U.S. United States
6MWT six minutes walking test


