-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by De Montfort University Open Research Archive

ITL Monitor: Compositional Runtime Analysis
with Interval Temporal Logic

David Smallwood

This thesis is submitted in partial fulfilment of the
requirements for the degree of Doctor of Philosophy,
awarded by De Montfort University.

May 2019


https://core.ac.uk/display/228190419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Mary Hunt



Abstract

Runtime verification has gained significant interest in recent years. It is a process in which
the execution trace of a program is analysed while it is running. A popular language for
specifying temporal requirements for runtime verification is Linear Temporal Logic (LTL),

which is excellent for expressing properties such as safety and liveness.

Another formalism that is used is Interval Temporal Logic (ITL). This logic has constructs
for specifying the behaviour of programs that can be decomposed into subintervals of activity
[Mos83]. Traditionally, only a restricted subset of ITL has been used for runtime verification
due to the limitations imposed by making the subset executable. In this thesis an alternative
restriction of ITL was considered as the basis for constructing a library of runtime verification

monitors (ITL-Monitor).

The thesis introduces a new first-occurrence operator (>>) into ITL and explores its properties.
This operator is the basis of the translation from runtime monitors to their corresponding I'TL
formulae. ITL-Monitor is then introduced formally, and the algebraic properties of its operators
are analysed. An implementation of ITL-Monitor is given, based upon the construction of a
Domain Specific Language using Scala. The architecture of the underlying system comprises
a network of concurrent actors built on top of Akka - an industrial-strength distributed actor

framework.

A number of example systems are constructed to evaluate ITL-Monitor’s performance against
alternative verification tools. ITL-Monitor is also subjected to a simulation that generates
a very large quantity of state data. The monitors were observed to deliver consistent
performance across execution traces of up to a million states, and to verify subintervals of up

to 300 states against ITL formulae with evaluation complexity of O(n3).
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Mathematical laws and the software

library

Mathematical laws

Throughout this thesis reference is made to laws in ITL. These are referenced by name and

number such as FstFizFst(©261) The number refers to the law’s position in Appendix C.
The name of each law follows the style used by Moszkowsi in (http://antonio-cau.co.uk/

ITL/itl-theorems/itl-theorems-home.pdf).

All of the ITL laws have been proved mechanically using Isabelle/HOL [oCM18]. The Isabelle
encoding for ITL was constructed by Antonio Cau as was the translation of Moszkowski’s and
Cau’s earlier work into Isabelle. Cau also translated the IXTEX proofs that were constructed

by the author of this thesis as part of the current work.
The complete document is available from the ITL homepage [CM16]. The work undertaken

as part of this thesis is contained in Chapters 6 and 7. To access the document'

e Navigate to http://antonio-cau.co.uk/ITL/index.html

e Under Section 3 ‘Tools’, select the link to the ITL library for Isabelle/HOL http:
//antonio-cau.co.uk/ITL/itlhomepagesul3.html#x17-220003.3

e Within the ‘Deep embedding’ section is a download (Version 1.9 (16/03/2019)) which

is a zipped unix archive file

Software library

The Scala libraries developed as part of this thesis are distributed using an sbt archive. The
libarary is currently available from the author, and will appear in the tools section of the ITL
homepage [CM16].

YURL correct as of May 2019
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Glossary of key terms

Acronyms

APIT Application Program Interface.
DSL Domain Specific Language 2.4.1.
ITL Interval Temporal Logic [CM16].
JVM Java Virtual Machine.

LTL Linear Temporal Logic [Pnu77].

RV Runtime Verification.

Terms

Actor A process, typically running in its own
thread, that reacts to received messages
by (possibly) updating internal state and

sending messages to other actors.

Akka A framework and API for managing actors
in JVM-based systems. [Akk17]

Compositionality The ability to reason about
a system by combining analyses of its

constituent parts.

Chop (;) The of the

composition operator in ITL. It is used to

name sequential
split an interval non-deterministically into
two subintervals, each of which satisfies its
respective formula, connected by a shared

state, e.g. f; g¢.

Chopstar (*) The name of the repetition
operator in ITL. It is used to specify a

non-deterministic number of sequentially

composed intervals, each satisfying the

given formula, e.g. f*.

First occurrence (>>) The key ITL operator
defined within this thesis. The purpose of
> f is to define an interval that satisfies f

and has no strict prefix that satisfies f.

Interval A finite sequence of states — a

subsequence of a trace.

ITL Monitor (ITL-Monitor) The name given
to the monitor algebra developed in this
thesis. It is also used to refer to its Scala

implementation.

Monitor A software device for analysing the
trace of a program to determine if it satisfies

a given specification.

Runtime verification The use of monitors to
determine whether or not a program is
behaving according to its specification while

it is running.

Scala A contemporary programming language
combining object-oriented and functional

programming paradigms [Scal7].

Strict initial interval or strict prefix — either
an empty interval or a prefix that does not

include the final state.

(Execution) trace — a finite sequence of
program states generated by a running

program.
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Chapter 1

Introduction

1.1 Motivation

Program verification is a key activity in the software development lifecycle. Traditional
software testing which includes many established approaches including functional and
structural testing, equivalence partitioning, prime path analysis, etc. comprises an established
body of knowledge within the industry, e.g., [AO0S].

One approach that is particularly suitable for the analysis of critical systems is model checking.
A formal specification of the required temporal properties is constructed, usually in a Linear
Temporal Logic (LTL). This, and an abstract model of the system, are translated into
(typically) Biichi automata — finite state automata that can accept infinite paths. The
method tests every path through the automaton to ensure that it passes through at least
one accepting state infinitely often. Such analysis is typically undertaken before a system is

deployed because it verifies all possible execution traces that the system could generate.

By contrast, runtime verification is a lightweight approach that analyses a single execution
trace generated by a program while it is running. It is particularly useful in situations when
it is infeasible to conduct model checking, or when it is necessary to provide extra assurance
that a specific program run does not violate its temporal requirements. Faults are discovered
as they arise which leads to action being taken such as noting the fault; reacting and adapting

the system’s behaviour; or halting its execution.

Like model checking, runtime verification specifications are written in a formal language, and
LTL is very widely used. Temporal properties such as ‘whenever p occurs then ¢ must follow’
(liveness), or ‘p and ¢ must never hold at the same time’ (safety) can be checked. However,

runtime verification checks finite traces, and the interpretation of liveness over finite traces is
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different from its interpretation over infinte traces.!

Another temporal logic that has been used for runtime verification is Interval Temporal Logic
(ITL) [Mos83]. ITL has constructs that are similar to those found in computer programs such
as sequence, parallel composition, iteration, and variable assignment [MM&84]. In [Mos86] an
executable subset of ITL, called Tempura, was defined along with an outline algorithm for an
interpreter. This provides an environment in which ITL formulae can be checked by executing
them. Tempura has been applied to runtime verification using AnaTempura [Cau07], a tool
that runs the program under test with Tempura concurrently executing the specification.
The requirement for Tempura to be executable places a restriction on its design such that it
requires the user to specify the values of program variables completely, and to state explicitly

when program termination occurs.

The motivation for the work in this thesis was to investigate whether ITL could be used
for runtime verification but without the executability constraints required by Tempura. It
was immediately apparant that ITL could not be used without restriction because its non-
deterministic chop (sequential composition) operator would lead to exponential performance
growth as the number of chops increased. The approach was to specify a deterministic
partitioning of the execution trace into a sequence of subintervals, each of which could be

verified with an arbitrary ITL formula.

It soon became clear that the restriction necessary to specify the deterministic subintervals
was not a restriction on chop but a restriction on its first operand. States are input to a
runtime verification monitor sequentially and the subinterval ends as soon as the left-hand
formula is satisfied. At this point the next subinterval begins and monitoring continues with
the right-hand formula. This motivated the need to find an operator that restricted a formula
in such a way that if an interval satisfied it, then no strict prefix did. This led to the definition
of the new, derived, first-occurrence operator in ITL. As the underpinning I'TL construct for
the runtime monitors, it was necessary to explore the mathematical properties of the first
occurrence operator in depth. This has added to the body of knowledge about I'TL. Antonio
Cau has encoded ITL in Isabelle? and documented a large number of ITL laws along with their
mechanical proofs [CMS19]. These laws are drawn predominantly from work by Moszkowski
and Cau. However, Chapters 6 and 7 of the document contain all of the laws developed as

part of this thesis, along with their mechanical proofs.

A further motivation was to consider how such a language could be mapped directly into code
thus enabling such restricted ITL formulae to be synonomous with the monitors that verify
them. This eliminates the need for any specification preprocessing common to many existing

runtime verification systems. Recent research in runtime verification has proposed that using

'The difference is discussed later on page 15.
2A generic proof assistant [oCM18].
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Domain Specific Languages (DSLs) to support monitor construction is a very promising
approach [BH11, FHR13] and that Scala is a suitable development language [AHKY15].

The research was undertaken firstly by constructing a mathematical model of the monitors,
and exploring its properties. Then a software tool, written as a Scala DSL, was implemented

and evaluated by constructing a number of case studies.

1.2 Contributions
The contributions of the thesis are listed below:

e The introduction of the operators &1, % , and especially, first-occurrence (>>) into ITL
(see Chapter 3). These operators have been thoroughly investigated and, in particular,
the properties of > in relation to itself and other ITL operators including chop and

chopstar.

The theory includes the important law + >(>f; g) = >f; g which states that
the sequential composition of first occurrences is itself a first occurrence. This is a
significant result which has an important corollary - >1>f = > f which states that

a first occurrence of f is itself a first occurrence.

A comprehensive set of related theorems and fully worked proofs has been developed.
These are presented in full in Chapter 6 of [CMS19].

e The construction of ITL-Monitor - a language whose operators combine [>-restricted
ITL formulae while preserving their first-occurrence properties. The operators satisfy a
range of algebraic laws which have been discovered and categorised. All the theorems
and their associated proofs have been fully worked out and are presented in full in
Chapter 7 of [CMS19].

e Two Domain Specific Libraries written in Scala for implementing ITL expressions and
formulae and ITL-Monitors: ITL.scala and Monitor.scala. The latter provides an

API for constructing runtime monitors that verify the ITL formulae they represent.

e A demonstration that it is feasible to use ITL-Monitor to perform runtime verification
on systems generating large numbers of states (an execution trace of c. a million states
has been verified successfully). An execution trace that was partitioned into relatively
short individual subintervals (around 300 states or fewer) was able to verify each of
these subintervals against a formula with up to O(n3) evaluation complexity in less

than a tenth of a second.
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1.3 Outline of thesis

Chapter 2 introduces the field of runtime verification. The syntax and semantics of two
temporal logics are given. The first, Linear Temporal Logic (LTL), is used extensively in
both model checking and runtime verification. The second, Interval Temporal Logic (ITL),
is an extension of linear-time temporal logic and is the underlying logic used in this thesis.
The semantics of LTL is defined over infinite paths and then extended to finite paths. The
motivation for this is that runtime verification analyses an evolving execution trace which
comprises a set of prefix-closed, finite intervals. The chapter discusses finite intervals in
the context of runtime verification and argues for a partitioning of the execution trace into a
sequence of finite intervals — a topic which is developed in the subsequent chapter. Traditional
and contemporary approaches to runtime verification are discussed with particular emphasis
on two software tools that will be used for comparison with the tool developed as part of this

thesis.

Chapter 3 discusses two key distinguishing operators in ITL, chop (;) and chopstar (*),
used for sequencing and repeating I'TL formulae. Chop is a nondeterministic operator which
requires that for some formula f ; g a satisfying interval can be divided into a prefix and
a suffix over which f and ¢ hold respectively. The subintervals must share one chop (or
fusion) point but this need not be determined uniquely. Chopstar can introduce multiple
nondeterministic fusion points and the task of locating a set of such points in order to satisfy
a formula has exponential complexity. This can be mitigated by defining a deterministic chop
operator to specify a unique partitioning of the execution trace [BB08]. This thesis performs
this task by defining a new first-occurrence operator t>. This operator is independent of chop
although combining it with chop to determine fusion points is its primary role. The concept
of first-occurrence provides the basis for constructing runtime monitors. Consequently this
operator can be combined with arbitrary I'TL formulae and the chapter explores in depth the

algebraic properties of > and how it combines with other ITL operators.

Chapter 4 introduces ITL-Monitor, the compositional runtime verification language which is
the subject of this thesis. ITL-Monitor is described in two ways. Firstly, ITL-Monitor is a
language for constructing I'TL formulae that preserve first-occurrence properties. A syntax is
defined for a core language, and a translation function into ITL formulae is given. An informal
discussion of the behaviour of the core operators is given in terms of ITL, and then a set of
derived operators is introduced along with a justification for each. The algebraic properties of
monitors are explored and a number of algebraic structures are presented. An ITL-Monitor also
represents an executable, runtime monitor and the chapter describes the roles of the various
operators in this context. The application of Moszkowski’s importable assumptions and
exportable commitments [Mos96a, Mos98] to maintaining invariant properties over sequences

of subintervals is presented. The chapter concludes with a demonstration of how the ITL-
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Monitor operators can be combined to construct a runtime verification monitor for a small

application.

Chapter 5 describes the implementation of ITL-Monitor as an API in Scala. Two basic data
structures are introduced: one for representing I'TL formulae, and the other for representing
ITL-Monitor expressions. Details of their representation in Scala are provided with particular
emphasis on how specific language features such as pattern matching, existential types, and
infix method notation, have been exploited. Efficiency considerations are described in respect
of the implementations of both libraries. Finally, the translation of monitors into a network
of Akka [Akk17, Wyal3] actors is given and the operation of this system is illustrated using

two example monitors and a step-by-step animation.

Chapter 6 introduces two example systems. The first (latch) example provides a comparative
analysis of ITL-Monitor with two other runtime verifcation tools: TRACECONTRACT and
AnaTempura. Requirements specifications are presented using each of the tools’ individual
notations and these are compared with each other. The example is coded in Scala
and executed multiple times with different combinations of the tools providing a runtime
verification. The results and timing data are presented and analysed. The capability of each
tool to provide feedback when the verification fails is also discussed. The second (checkout)
example is used to generate a large quantity of state data to enable the performance of ITL-
Monitor to be measured under stress. In particular, the lengths of subintervals that could be
monitored effectively by formulae with O(n?) and O(n*) complexities are investigated. It is
demonstrated that the system’s performance scales linearly as the execution trace length is

increased and this is shown for up to c. 1m states partitioned into 12000 subintervals.

Finally, Chapter 7 summarises the thesis and discusses future research potential.
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Chapter 2

Runtime verification

1 is monitored while it is

Runtime verification is a method in which a computer program
executing to determine whether or not it satisfies or violates certain correctness criteria.
These are often safety properties expressed using a formal language such as, for example,
temporal logic. Runtime verification also describes, more widely, a discipline of computer
science whose “distinguishing research effort lies in synthesizing monitors from high level

specifications” [Leul2].

An executing program generates a sequence of states which is analysed for the purpose of

runtime verification.

Definition 2.1 Program state The state of the program at a given point in time is the

mapping of its variables to their current values.

A program’s behaviour may be understood in terms of how it modifies state. When an
instruction causes a change to one or more of the state variables, then a new state is
generated. In this way the program’s execution trace can be represented as a sequence of

states, (o, S1, ... ).

Definition 2.2 Execution trace An execution trace is a finite sequence of program states

generated by a running program.

While all of the variables which comprise the state are significant to the program’s operation,
only a subset of these may be relevant to the specification. Let a state containing only these
monitored variables be denoted by o;. As the program is executed, an execution trace, o, is

generated: (og,01,...).

'The term program is used here to represent any unit of code whose behaviour is being verified. It could,
for example, be a single subroutine, or a collection of concurrent processes, or any executable components that
make up a system under scrutiny.
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Definition 2.3 Runtime verification A method by which an executing program is checked

continuously for adherence to, or violation of, specified correctness properties.

Runtime verification can be compared both to traditional software testing techniques and to
model checking. However, there is a stronger relationship with the latter, due to the primacy
of a formal specification, typically written in temporal logic. In contrast, traditional software
testing techniques (e.g. see [AO08]) do not require formal methods, although formal methods
and testing have been combined in, e.g., [BBCT02, Hie02].

An important distinction between model checking and runtime verification is that the former
performs an analysis on all possible runs of a program, whereas the latter only analyses
one specific run at a time. For this reason runtime verification is considered to be a
lightweight verification method. Runtime verification may be employed in conjunction with
other verification techniques, sometimes as an important extra check, in order to maintain

confidence in a particular program run.

Major developments in runtime verification appear in the International Conference on
Runtime Verification which began as a workshop series in 2001 and became an annual
international conference in 2010. Areas of particular interest include formal specification

languages, temporal logics, runtime verification methods, and tool support.

Section 2.1 introduces Linear Temporal Logic (LTL) and Interval Temporal Logic (ITL), both
of which are used to specify temporal behaviour for runtime verification, the latter being the
logic used primarily in this thesis. Section 2.2 discusses intervals in the context of runtime
verification. Section 2.3 considers two languages, METATEM, based on LTL, and Tempura, a
deterministic subset of ITL, which are used to animate specifications.? Section 2.4 describes
the principal architectures for runtime verification and discusses two runtime verification tools

that are used for comparison with the current work.

2.1 Temporal logic

Temporal logic is relevant to both model checking and runtime verification. An exposition
of temporal logics and how they are used in runtime verification is presented in [Fisll],
and a discussion of the classification of temporal logics appears in [Eme90] (Chapter 16).
This section covers Linear Temporal Logic (LTL), the primary temporal logic used in model
checking and many runtime verification systems; and Interval Temporal Logic (ITL), which

is the basis for the work in this thesis.

2 Animation can be used to explore the behaviour of a specification interactively before it is included within
a runtime verification.
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2.1.1 Linear temporal logic

Linear Temporal Logic (LTL) [Pnu77, MP92] was first introduced in the context of program
verification, as a language for expressing the temporal relationships between variables in a

computer program.

Formulae in LTL are constructed from a finite set of propositional variables, P, which are
normally written as lower-case alphanumeric symbols (possibly including underscores), e.g.,
P, ¢2, is_on; the Boolean constants true and false; the propositional connectives — , A, V,
=, <; and the temporal connectives O, <, O, U, VW. Parentheses can be used to resolve

ambiguity when combining operators.

The set of well-formed LTL formulae is defined inductively:

e Any propositional variable p € P is an LTL formula
e Either of the constants true and false is an LTL formula

o If © and ¢ are LTL formulae, then so are: = ¢, o A Y, @ Vb, p = ¢, ¢ & o, pU Y,
Wb, O, Op, Op; (¥)

The semantics of LTL is defined over infinite paths m = (mg, 71,72, ...) in which each 7; is a
state characterised by the set of propositions that are true at the i*" moment in time. The
model of time is discrete and each state m; has a successor, or next state, m;11. The initial

state has index 0.

The semantics is defined using an interpretation function = which maps a path 7, an index
i >0, and a well-formed formula ¢, to a value in the set of Boolean values B = {T, L}. If a
formula ¢ holds at index i then ((m, i) = ¢) = T, abbreviated to (m, i) = ¢; and if ¢ does
not hold at index 7 then ((m, i) = ¢) = L, abbreviated to (7, 1) = ¢. The semantics of LTL

formulae is given in Figure 2.1:
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Constant

(7, 1) = true

Propositions
(myi) Ep iff pem

Propositional operators
(7772') ):_'90 iff (ﬂ-ai) %(p
(m,1) =1 Ay 1 (i) = 1 and (m,17) |= @2

Temporal operators

(m,i) E Op iff (m,i+1) Fo
(m,4) E p1U po iff there exists j > i such that (m,7) | 2 and
forall i <k <j, (mk)E ¢

Figure 2.1: LTL semantics

The next formula, Oy, holds in state i if ¢ holds in state ¢ + 1. The existence of a next state
is guaranteed because the semantics is defined over infinite paths. The until formula, ©1 U @,
holds in state ¢ if @9 holds in some future state j > 4, and ¢; holds throughout all the states
k where i < k < j. Importantly, o is guaranteed to be satisfied at some future state and
for this reason U is referred to as the strong until operator. The semantics allows ¢; to hold
in the same state that ¢ holds but does not require it. Furthermore, it is possible for o to
hold ‘immediately’ in which case ¢; holds vacuously over an empty interval. Below is a list

of derived operators:

false = — true

P1Vp2 = (mp1 A )

Y1 = P2 =01V Q2

1 02 = (1= w2) A (02 = ¢1)
Op =truelU

D¢ =00

P1 W2 = (p1U p2) V (Op1)

The main derived temporal operators are further described below.

Eventually &
Eventually ¢ will hold.
(m,1) = O iff there exists j > 4 such that (7, j) E ¢

Always Oy
o will always hold from this point.

(m,i) E Op iff forall j > i, (m,j) E e



2.1 Temporal logic 11

Weak until o1 W o
(1 must hold either until @2 holds, or forevermore if 9 never holds in the future.
(m,1) = @1 W o iff either (7, 1) = @1 U w2 or (7,4) E Op1
Note that F ¢ W false < Op.

A significant application area for LTL is model checking in which a model of a system is
constructed that represents the set of infinite paths (sequences of states) that collectively
encode all possible runs of the system. The goal of model checking is to establish that every
one of these paths satisfies a given correctness property. The number of such paths increases
combinatorially as the number of reachable states increases. Model checking, M |= ¢, and
validity, - ¢, in LTL are in the complexity class PSPACE [Fis11].

In contrast to model checking, runtime verification focuses on checking a single path — an
execution trace. Consequently, as noted by [ZZCO05], the issue of combinatorial complexity
does not arise in this case. Runtime verification is not a substitute for model checking, but

can be used as a complementary tool, or when model checking may be infeasible.

To introduce the comparison between model checking and runtime verification, an outline of
the model checking process is presented below. It uses LTL with infinte path semantics. This
is followed by a discussion of LTL with finite (truncated) paths which arise within the context

of runtime verification.

Let 3 represent the set of all possible, potentially infinite execution paths of a program S.
Then model checking requires that V€ ¥¢. (7,0) |= ¢. If, for some path 7, (7,0) = ¢ then

7 is a model of S that satisfies (.

Model checking uses finite state automata to represent all (possibly infinite) paths of the
program under test, and the temporal state transitions that satisfy the required temporal
formula. To encode infinite paths it is necessary to use a class of automata called w-automata
which can accept infinite words. An infinite word is accepted if the word describes at least
one run through the automaton that passes through at least one accepting state infinitely

often. Biichi automata are a class of such w-automata that are used in model checking.

A Biichi automaton, BA, is defined as BA = (A, S,,1, F') where A is an alphabet; S is a
finite set of states; d : § x A x S is a transition relation; I € S, is a set of initial states; and
F € S, is a set of final states. Each letter is interpreted as a set of propositions: thus A is the
powerset of a given set of propositions. A word represents an execution sequence of states in

which each state is a set of propositions that hold in that state.

LTL can express a range of temporal properties, many of which are classified in [MP&7], and

a selection of which is presented in Figure 2.2 for illustration.
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’ Classification Typical formula ‘
Invariance (Safety) Oy (or O— )
Guarantee (Liveness) O

Persistence (Stability) OOe
Recurrence (Progress) aop
Obligation (Correlation) Op1 = Ope
Response p1 = OPo
Precedence 21U

Figure 2.2: Some patterns of LTL temporal properties [MP87]

For example, suppose the alphabet is given by A = P{a, b}, then the LTL formula a A O&Ob
can be translated into the following Biichi automaton. (N.B., the shorthand notation a is

used within the transition relation § to represent any set of propositions containing a.)

A = P{a,b}

S = {sl,s2,s3}

b = {(sl,a,s2),(s2,true,s2),(s2,b,s3),(s3,b,53)}
I = {s1}

F = {s3}

The automata-based approach to model checking proceeds as follows. The system under
test, S, is modelled as a Biichi automaton, BAg. This represents all of the possible paths
that could be generated by S. The temporal property that every run of S must satisfy is
expressed as an LTL formula ¢ and its negation is translated into a Biichi automaton, BA- .
It is necessary to establish that the set of paths accepted by BAg is a subset of the set of
paths accepted by BA,. This condition can be established by checking that the intersection
of the set of paths accepted by BAg and the set of paths by BA- ., is empty. If every state in
BAg is made to be accepting, then V7 € ¥“. (7,0) = ¢ can be established by determining
that the automaton BAg x BA- , is empty. The accepting states of BAg x BA- , will be
precisely those containing the acceptance states of BA- , and thus represent precisely those
runs of S that satisfy — ¢: i.e. ‘bad states’. If the set of such paths is empty then the model

checking succeeds.

Once constructed, the automaton BAg x BA-, , can be reduced using the following set of rules
which are quoted from [Fis11] (page 34): “(i) remove transitions that contain contradictions
(e.g. a A = a); (ii) remove nodes that have no transitions emanating from them; (iii) remove
terminal, non-accepting sets of nodes.” These steps are applied repeatedly until none applies.
If the resulting graph is empty then the temporal property was satisfied. To complete this

discussion, a small example of the technique is provided below.

Example 2.1.1 Consider a program in which an agent can request to enter a particular state.
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Following the request, the agent may enter the state or may have to wait before entering.
An agent that has entered must subsequently leave and the process repeats. Using letters to
represent the propositions (r = requested, w = waiting, e = entered, | = left), the behaviour

is captured in the Biichi automaton shown in Figure 2.3.

Apay = P{r,w,e,l}

Spags = {ml,m2,m3, ma}

dpag = {(ml,r,m2),(m2, w,m3),(m2, e, m4),(m3, e,m4), (m4,l, ml)}
Ipag = {m1}

Fpay = {ml,m2,m3, md}

Figure 2.3: The Biichi automaton BAg.

It is required that this process satisfies the temporal property that whenever a request to
enter is made then entry is guaranteed at some point thereafter. The temporal property
can be expressed in LTL: ¢ = O(r = Q<¢e). The negation of this formula is given by:
- ¢ =(r A OO~ e).? The Biichi automaton for - ¢ is shown in Figure 2.4.

@ : h

Apa., = P{r,w,el}

Spa., = {pl,p2}

opa., = {(pl,true, pl),(pl,r,p2),(p2,— e,p2)}
Ipa., = {pl}

Fpa., = {p2}

Figure 2.4: The Biichi automaton BA-, .

Figure 2.5 shows the combined Biichi automaton BAg x BA-, ,. Unreachable states have been

3Negation can be moved inside next: = Qg < O— . < and O are duals: = Oy < G- @, and
Qe Oy
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removed. Notice that state m3p2 has no transitions emanating from it and therefore it is a
candidate for removal. Consequently, its removal makes m2p2 the next candidate for removal.
The resulting graph is a terminal non-accepting set of nodes which can all be deleted to leave

an empty graph. Thus the model checking succeeds. |

Figure 2.5: The Biichi automaton BAg x BA- , with nodes marked for removal.
The process can be automated using a model checker such as SPIN [Spil7, Hol04].

2.1.2 LTL with finite paths

With infinite paths semantics Qg is always defined. However, for a finite path the meaning
of Oy in the final state needs to be defined. Also, the meaning of 1 U w2 needs to be defined
for a finite interval. A weak next operator @ is introduced in which @ ¢ holds in the final
state and has the same meaning as Q¢ in all the preceding states®. The semantics of these
operators appears in Figure 2.6. Note how the definition of @1 U o requires that o must
hold in the final state, if not before.

: . (mi+1l)Ee ifi+l<n
(m,1) F Oy iff { 1 otherwise

: . (mi+1l)Ee ifi+l<n
(mi)F®e lﬁ{ T otherwise

(m,9) = o1 U @2 iff (7, 2) = o or ((7,1) |= @1 and (m, i) = O(p1 U ¢2))

where n is the length of the path.

Figure 2.6: LTL finite semantics (overrides temporal operators in Figure 2.1)

4This presentation uses the symbol Q for strong next and W for weak next. Other symbols commonly
used for these operators are X and X.
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Runtime verification analyses an execution path each time that a new state, 7;, is generated.
Thus a sequence of prefix paths is produced 7° = (mg), 7' = (7, 71), .... Suppose that 7

represents the (possibly infinite) execution path for a run of program S. Then each 7%, 0 < k,

k+1

is a finite prefix of 7, and each prefix path = represents a ‘better’ approximation of 7w than

k. These finite, prefix paths are produced by executing programs as each

1

its predecessor w
new state is generated, and the set of paths {7°, 7!, ... 7*} is a prefix-closed set. Such finite

prefixes constitute truncated paths.

Consider the evolving path as a program executes. Certain properties may be established
globally on the basis of evidence provided by a finite, partial prefix. For example, the safety
property, 0(— b), is violated as soon as an instance of b is detected. In this case the prefix
path has provided sufficient evidence to establish that the condition is violated — it may not
subsequently be judged to have been satisfied. Conversely, the liveness property, f = g, can
be established if f has been observed and then, later, g holds. The prefix path (up to ¢) has
provided sufficient evidence to establish that the condition is satisfied. By contrast, consider
a liveness property such as O(f = <g¢). No finite prefix can determine the correctness of this

claim.

Liveness in the context of finite path semantics is interpreted slightly differently from liveness
in the context of infinite path semantics. Consider the LTL formula <. The infinite LTL
semantics (Figure 2.1) requires that ¢ holds at some point in the future. However, in the case
of a finite semantics (Figure 2.6), ¢ must hold at some point up to the final state. Liveness
properties over infinite paths can be established by model checking. However, in the context
of runtime verification, a liveness property can only be checked for a specific program run by
observing ¢ before the end of the execution trace is reached.

Analysis of truncated paths has the potential to produce misleading judgements. For example,

1 k+1 An analysis of a

the formula <>¢ may be false over paths 7% 7' ... 7%, but true over
truncated path can only provide a judgement on the basis of the information available up to
a certain point in time. [EFH"03, BLS07, LS09, BLS11] have proposed using three- and four-
valued temporal logics to deal with the potentially misleading nature of premature judgements

over truncated paths.

[LS09] introduces LTLs, a three-valued logic, in which the satisfaction function returns one of
{T,L,?} where ? represents ‘inconclusive’. Consider a finite word w, and its concatentation
with an infinite word u, written w - u, and using the relation =3 to represent satisfaction in
LTLs, then w =3 ¢ is defined as T if forallu, w-u |3 ¢; L if forallu, w-u 3 ¢; and ?
if neither T nor | can be established based on w. For example, if = p holds throughout w
then w =3 O~ p =7 because p may hold in a future state. Conversely, if p holds at some
point within w, then w =3 Gp =T, and w =3 O—p = L.

In [BLSO7] the authors develop a refinement of LTLs called RV-LTL in which a four-valued
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logic, By, is introduced: By = {L, LP, TP, T}. The values represent false, presumably false,
presumably true, and true respectively. The syntax of RV-LTL formulae is given inductively
by:

pu=true|p|-pleVeloUe|Op|® ¢ (where p € P)

The semantics of RV-LTL is derived from LTLs and the following definition is taken from
[BLSO7]:

Let m € ¥* denote a finite path of length n = |7|. The truth value of an RV-LTL
formula ¢ wrt 7w at position i < n, denoted by (7, ) Epry ¢, is an element of By

and is defined as follows:

T if(mi)Es¢’ =T

1 if (m,4)

TP if (myi) E3 ¢’ =7and (m i) Ep=T
1P if (mi) E3 ¢’ =7 and (m,i) Eep =1

(71‘, Z) ’:RV Y=

where ¢ is obtained from ¢ by replacing each @ operator with Q.

[BLSO07] argue that logics for runtime verification should not evaluate to T or L prematurely,
but should evaluate to T or L as soon as possible. These properties are referred to as

impartiality and anticipation respectively.

ITL-Monitor, the runtime verification language which is the subject of this thesis, delivers
three judgements: DONE, FAIL, and MORE. These correspond to the LTLs verdicts T, L,
and 7, respectively. In future work it would be possible to explore the efficacy of using a
greater number of potential judgements. For example, one could consider RV-LTL’s TP and
1P or, relatedly, the five-valued judgements used by RULER [BHRGO09]: {TRUE, STILL TRUE,
STILL FALSE, FALSE, UNKNOWN} in which STILL_TRUE relates to a (safety) property not yet
falsified; STILL_FALSE relates to a (liveness) property not yet satisfied; and UNKNOWN relates
to a condition that does not fit the other criteria such as a combination of STILL_TRUE and
STILL_FALSE.

2.1.3 Interval temporal logic

Interval Temporal Logic (ITL) [Mos82, Mos83, CZCM96, CM16, CMS19] provides an
alternative formalism for specifying runtime system behaviour. Propositional and first-order
variants of ITL have been developed for finite and infinite path semantics. In this thesis

first order, finite ITL is used. The significance of using a finite path temporal logic for
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runtime verification was discussed in Section 2.1.2. In first order ITL validity is not decidable.
However, it is possible to check if a given model satisfies a first order ITL formula, and this
is exactly the requirement for runtime verification. This same argument is made by [BRH07]

in respect of another runtime verification logic, EAGLE, discussed later in Section 2.4.3.

ITL [CM16, CMS19] is defined over finite intervals (non-empty sequences of states), o =
00,01, -, 0|q|, in which each state is the union of the mapping from the set of integer variables
IntVar to Z, and the mapping from propositional variables PropVar to the Boolean values
Bool = {tt,ff}. IntVar U BoolVar is the set of alphanumeric identifiers, which may contain

underscores and subscripts, beginning with an uppercase letter.

The syntax of ITL expressions, e, and ITL formulae, f is presented below. The definitions
are taken from [CMI16]:

Integer Expressions ie == 2z | A|ig(ier,...,ie,) | QA |fin A

Boolean Expressions be == b | Q | bg(bey,...,be,) | OQ | fin Q

Formulae [ = true|h(en,....,en) | f AN |Vvef]
skip [ fi; fo | f*

where 2z  denotes an integer value

A denotes an integer variable (can change within an interval)

b  denotes a Boolean value

() denotes a propositional variable

ig  denotes an integer function symbol (e.g + and x)

bg denotes a Boolean function symbol (e.g A and V)

v denotes a Boolean or integer variable

e; denotes a Boolean or integer expression

h  denotes a predicate symbol. (e.g. < and =)
Temporal formulae are interpreted over a finite interval. Formulae can be composed
sequentially using the chop operator, (e.g. f ; ¢), and iteratively using the chopstar operator,

(e.g. f*). In the semantics that follows:

E[...]J(o) is the semantic function: Ezpressions x T — Z.

F[...J(o) is the semantic function: Formulae x % — Bool.

o = (0p,01...) is an interval.

0i(A) represents the value associated with the state variable A4 in state o;.

o ~, o' means that the intervals ¢ and ¢’ are identical with the possible exception of their

mappings for the variable v.
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The semantics is given inductively over the structure of ITL expressions and formulae. This

is also taken from [CM16]:
&[z](0)
£[Al (o)
Eligie, ..., iey)](0)
g[oA] (o)
E[fin A] (o)
£[b] (o)
€[Q](o)

Elbg(bey, ..., bey)] (o)

E[oQ](0)

h A fl(o) =tt

FI1(o) =t

= op(A)

= ig(Eie1](0), ..., E[ien](0))

) ai(4) if |o| >0

B any ¢ s.t. £ € Z otherwise
= 010/ (4)

=b

= 00(Q)

= bg(E[ber](o),...,E[bes](0))

) o1(Q) if |o] >0
B any = s.t. x € Bool otherwise
= U|U\(Q)

= tt

h(er,...,en)](0) =ttiff h(E[er](o),...,E[en] (o))

iff not(F[f](o) = tt)
ifft F[fi](o) = tt and F[fo](0) = tt
iff |o| =1
iff forallo’ s.t. o ~, o, F[f](c’) = tt
iff (existsk, s.t. F[fi](oo .. o) = tt and F[f] (o .. 04) = tt)
iff (existsly,...,l, s.t. lp =0and [, = |o| and
forall0 < i < n,l; < lip1 and F[f](oy, .. 0y, ,) = tt)

The length of an interval o, denoted |o|, is equal to the number of states minus one. Thus

a one-state interval is defined to have a length of zero.” The meaning of a state variable is

given by its value in the first state of the interval (g). The temporal formula skip represents

an interval of unit length (i.e. two states). The formula f; ; fo holds over an interval if the

interval can be split into two subintervals: a prefix over which f; holds and a suffix over which

fo holds. The prefix and suffix intervals thus obtained must share one common state which is

simultaneously the final state of the prefir and the initial state of the suffix. The formula f*

holds over an interval if it is possible to split the interval into a series of subintervals each of

which satisfies f: ie. f; f; ...

in Figure 2.7.

: f.5 These fundamental temporal formulae are illustrated

5This interpretation of a single state representing an empty interval has always been part of ITL.

5Note that ; is associative.
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empty @
skip @ ___®
fi9 & ® o _© o

Figure 2.7: ITL operators empty, skip, chop, and chopstar

If F[f](c) = tt then the formula f is satisfied by interval o. This is written o |= f. If the

formula f is satisfied by all possible intervals then the formula is valid, written = f.

2.1.3.1 Derived operators

The following operators are derived:”

false = - true FalseDef(¢2)
AVAE = 2(CAA-R) OrDef(¢-3)
Dk = ~AVE ImpDef (-
fi=h = (AoR)A(RDA) EquDef(¢)
Jvef = = Vove-f EzistsDef (C-6)

Figure 2.8 presents a table of operator precedences and associativity.

"The laws are listed in Appendix C and the associated number indicates the law’s position in that list.
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Of

more

EN NG B SO JUR R R
nu<>--0 4 *

Precedence Operator FExample

-~ Oz =~ (0x)
foshs k= h)s b
fonfshAB=EHonh; R)AS
hVAVANE=(h VAV (EAS)
hDADL=/D (DR
(o=h=h)=h=H=4h)

All derived prefix operators are R — L with precedence 2.
Thus, ~@=&f 5 g ANh= (= (@ (= (Of)) 5 ) Ah

Figure 2.8: ITL Operator Precedence and Associativity Table

= skip; f
= (Qtrue

empty = — more

of
of
® f
&f
@ f
& f
B f
& f
m f

= true; f

= oonf

= -0-f

= f; true
o f
true ; f ; true
o~ f

= amf

= g(more D f)

i I

I

StrongNextDef (¢-7)
MoreDef(C-%)
EmptyDef (€9
DiamondDef(¢-10)
BoxDef(C'H)
WeakNextDef (€-12)
DiDef(C-13)

BiDef (19
DaDef(C'15)
BaDef(€-16)
DmDef(¢-7)
BmDef(¢-70)

Compared to LTL, the number of standard, derived operators in ITL is significantly greater.

For example, the operators O and <, defined over finite suffiz intervals, have counterparts,
M and <, defined over finite initial (prefiz) intervals. [ f specifies that f holds over all prefix

intervals including the empty initial interval (i.e. the first state), and over the interval itself.

The formula ¢ f means that f holds for at least one initial interval.

These operators can be combined. For example, O f, which is equivalent to [ Of, means

that f holds over all subintervals. This case has its own derived operator, & f. In a similar

way, & f represents at least one subinterval and is equivalent to GO f or & Of .
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Whereas [0 and <> include the empty suffix (i.e. the last state), there is a variation on each
of these which covers all suffixes except the last state. These are and @ — the ‘m’ is
intended to read “mostly”.® The similarities and differences between various ‘box’ operators

are illustrated in Figure 2.9.

— . f f
S ! Cf !

S
S

(The empty disk, o, indicates that f does not necessarily hold at this empty interval)

Figure 2.9: ITL operators @0, O, & ,

Because intervals are finite, it is possible to specify an empty interval (i.e., in ITL an interval
with a single state) and a non-empty interval (at least two states). This is achieved using the
formulae empty and more respectively. For example, the formula [J(more D f) specifies that

all non-empty suffixes satisfy f: i.e. f is not required to hold in the final state.

In Section 2.1.2 it was observed that a finite path semantics in LTL required a weak version
of the next operator. Likewise, ITL has both strong next O and weak next @ operators.
Weak next is the dual of strong next, i.e. @ f = — O— f. The laws of ITL can be used to
show that = Q- f is equivalent to empty V (skip ; f), which captures the semantics of weak

next more directly.

Further temporal operators can be derived which simulate imperative programming language
constructs such as if...then...else and while. .. do etc. These are useful within the context of

Tempura — an executable subset of ITL — which is discussed in Section 2.3.2.

if fothen fielse o = (o ARV (=foA) IfThenElseDef(C-17)
if fothen fi = if fy then fi else empty IfThenDef(C-18)
finf = O(empty D f) FinDef(C19)
haltf = [O(empty = f) HaltDef(¢-20)
keepf = @ (skip D f) KeepDef(C-21)
fO = empty IterZeroDef (€-23)
o= fa o >0 IterDef (€24

8@ and ¢ are discussed in [Mos96a].
9Note that the O operator is overloaded in ITL and is defined for expressions and formulae.
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forndof = f" ForDef (€25
whilefodofi = (fo A fi)* Afin(= fo) WhileDef (¢-26)
repeat fountil fi = fy ; while(= fi)dofy RepeatDef (€27
The formula fin f'° holds when f is true in the final state of the interval. f may hold for any
suffix interval but it must hold in the final suffix interval. This formula contrasts with halt f
which requires that f holds in the final state and that no other suffix interval satisfies f. Thus
halt f uniquely determines an interval. For example, the formula halt(X = Y') holds over an
interval in which X = Y only in the final state. A discussion relating halt to the work of this

thesis is presented in Section 3.8.6.

keep f requires that f holds over every two-state interval. Thus, for example, to specify that

X must increase by one in each subsequent state: keep(QX = X + 1).

Finally, there are standard, derived operators related to expressions:

A=e = (O4)=ce AssignDef(€-28)
Ame = O(A=e) TemporalEqualityDef (¢+2%)
A+—e = finA=e TemporalAssignDef (C-30)
Agetse = keep(A + e) GetsDef(C-31)
stableA = Agets4 StableDef(C32)
padded A = (stable 4 ; skip) V empty PaddedDef(¢-33)
A<~e = (A< e) A padded 4 Padded TemporalAssignDef (C-3%)
len(n) = skip” LenDef(C39)

The assignment operators define values in next, all, and final states respectively; and gets
and stable provide convenient shorthand notations. For example, stable A means that A’s
value does not change throughout the interval. The operator padded specifies stability up
to but not including the final state. This is useful when used with the chop operator to
specify stability up to but not including the shared state: for example, padded A ; stable = A.
Padded temporal assignment A <& e specifies that A remains unchanged throughout the
interval until, possibly, the final state, at which time it gets the value e. The formula len(n)
specifies that the length of the interval is n. Working with fixed-length intervals is a key
aspect of the work in this thesis and properties of interval length are explored in more detail

in Section 3.5.

1%fin is also an overloaded operator in ITL, defined for expressions and formulae.
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2.1.3.2 State formulae

Conventionally in ITL, the variable w is used to denote a state (non-temporal) formula. Such
formulae do not include skip, ;, or *, or any operators derived from them. As such, a formula
w is equivalent to init f where init f = (f A empty) ; true. It is used to express a property
that must hold in a single state and, specifically, the first state of an interval. For example,

the following equivalences capture properties that hold for state formulae:

Fow=w StateEquBi(¢93)  [MOS]
F ow=w DiState(C-112)  [MOS]

2.2 Intervals and runtime verification

Runtime verification of program behaviour requires checking that certain propositions occur
in some temporal order. For example, in LTL a pattern describing such sequencing of events

uses nested until operators [MP95]:

GmU gm—1...q1 U

The until operator is not associative and, in the absence of parentheses, is understood to
associate to the right. This formula specifies a chain of intervals starting with a g,, interval.'!
¢1 U qo specifies that a finite ¢ interval holds at every position until gy holds. Note that gy

may hold immediately in which case the ¢; interval contains no states.

Consider the requirement that ¢; must hold at the current position, and p must hold anywhere
between the current position and the next position at which ¢y holds. This specifies a temporal
ordering of these three propositions that is not captured by the LTL formula ¢; U pU gy which
neither guarantees p nor ¢;. For example, if ¢y holds at the current state then the formula is

satisfied. The formula needs to be strengthened:
a N aUpA-olp)))

This specifies the endpoints of a finite interval within which p must hold. Note that the
formula is satisfied if ¢;, p, and gy hold in the current position. It is also possible for p to

hold either at the same state as ¢; (at the beginning) or at the same state as gp (at the end).

1A ¢ interval is an interval in which ¢ holds at every position.
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The requirement can be expressed more straightforwardly in ITL:'?
q A halt(go) A Op

The difference is that the semantics of LTL is defined with reference to a single point whereas
ITL semantics interprets formulae with reference to two points — the start and end of an
interval. In the ITL formula, ¢; must hold in the first state; halt(qy) requires that the final
state (and no other) satisfies qp; and &p requires p to hold at some point within the interval
(defined by halt(qp)) including at the beginning or at the end. The formula is also satisfied

by an empty (one state) interval in which all three propositions hold.

The approach to runtime monitoring advocated in this thesis requires partitioning the
execution trace into a sequence of finite intervals and specifiying temporal formulae that
the individual subintervals must satisfy. The interval semantics of ITL directly supports this

approach to specification.

[Wol81] provides an example of a property that is not expressible in LTL, namely that “a
property p has to be true in every even state of a sequence”. For example, the formula
p AO(p = —p) AO(— p = p) does not express this property because it requires p not to
hold in every odd state which is not what the specification says. [Wol81] proves more generally
that for ¢ = km where ¢ > 0, and k > 2, it is not possible in LTL to express the property “p
is true in every state 7”. In ITL, which has the Kleene star operator, these examples can be
written: (p A len(i))*.

2.3 Direct execution of specifications

Runtime verification entails the dynamic analysis of an executing program against a formal
specification. Direct execution of the specification represents a special case in which the
program and the specification are the same. In this section two examples are described:

METATEM and Tempura.

Both of these tools operate according to rules which define how to transition from one state
in the execution trace to the next. In the case of METATEM there may be a choice of rules to
apply at each step, admitting the possibility of future backtracking. In the case of Tempura,
each step transition is uniquely determined. The following subsections provide a brief overview

of each system.

12The propositions should be written with capital letters in ITL, but have been left in lower case here to aid
comparison.
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2.3.1 MetateM

METATEM [Fis06] transforms an LTL formula into separated normal form (SNF). This
representation of a formula comprises a set of transition rules in which the current (and

future) states are defined as a progression from the previous state.

Separated Normal Form

n
An LTL formula is translated into the following form: 0O A R; where each R; is
i

one of the following rules (I;, l;, and [ represent literals):
start =\ I (an indtial rule)
k=1
i = OV I (asteprule)
k=1

L = ol (a sometime rule)

[Fis11] (Chapter 4) shows how an arbitrary LTL formula can be translated into SNF. Each
rule maps a formula relating to the ‘current’ state to a formula about the current and future
states. Thus, each rule defines how the execution may progress from one state to the next.
The rules whose antecedants are true are ‘triggered’ and values are produced to make the

consequents true. (Rules whose antecedants are false are vacuously satisfied). Where the
T

antecedants provide a selection of alternatives (\/ ) then one of these may be selected at
k=1
random. The sometime rule also involves a potential choice: to satisfy <! immediately or to

postpone. Meta rules in METATEM govern how these choices are made in order to optimse
for efficiency. If a selected alternative leads to a future inconsistency, then backtracking is
used to return to the last decision and select an alternative. If the backtracking returns to
the initial state then the formula is deemed to be inconsistent because no model can be found

to satisfy it.

Executing an LTL formula provides an alternative way to understand a specification. Its
behaviour can be analysed using step by step animation and this can help to establish that
the specification itself is fit for purpose. METATEM was inspired by Tempura, a tool that

performs a similar analysis for ITL, and which is discussed below.

2.3.2 Tempura

Tempura [Mos86] is a tool for executing temporal logic specifications written using a subset
of ITL. It can be used both for specifying required behaviour and also for validating the
specification by animation. Tempura is also the basis of the AnaTempura runtime verification

system which is described in Section 2.4.5.
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Tempura statements correspond to certain ITL formulae that enable deterministic progression
from one state to the next. Consequently, Tempura does not contain statements that require
backtracking. This decision was taken deliberately to facilitate the “efficiency and simplicity
of the interpreter” [Mos86]. Thus, the following compound statements are available: fi A fo
and fi D fo, but neither = f nor fi V f; are allowed. Furthermore, all variables need to
be completely specified by the user in each state and termination conditions must also be

provided.

Similar to METATEM, each Tempura statement is separated into a conjunction of the form
(current state) N @ (future states). The weak next operator is necessary because the
interpreter may be in the final state, in which case the conjunction simply reduces to current
state. [Mos86] (Chapter 8) discusses a possible implementation of Tempura and shows how

each Tempura statement can be translated into the ‘current and future states’ formulation.

The following sequence of examples highlights the restrictions imposed by the deterministic

requirements in Tempura. It also serves to illustrate the operation of the interpreter.

Consider the tempura statement: O = I + 1 (I’s value increases by one in the next state).
This statement can not be executed because I’s value is not determined in the initial state,
and a termination condition has not been provided. Figure 2.10 shows the translation of
OI = I + 1 into Tempura'® and the corresponding failure when an attempt is made to run

the program.

/* run */ define non_execl() =

{
exists I:
{
next I =1+ 1
}
}.

The Tempura program representing the ITL formula O = I + 1 generates the following
output when run:

xx*Tempura error: state #0 (pass #2) is not completely defined.

Evaluating: (next(I) = (I + ...))

Undefined variables:
Exists level 3: { I
Exists level 2: { }
Global level 1: { }

}

Fail

Figure 2.10: A non-executable Tempura program

3The existential quantification is used to declare the variable I.
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To address the problem of incompletely defined variables, one could provide an initial value
for I and write: (I =0) A (OI = I+1). Thus Tempura would be able to determine the value
of I in the next state. The updated program is shown in Figure 2.11. However, this is still
insufficient information for Tempura to be able to execute the specification. The issue is that
the specification would be true of any interval in which the first two states contained I = 0
and I = 1 respectively. Tempura needs to be able to determine the length of the interval
over which to generate the required states. In the example, specifying an interval length of
one (i.e. two states) is sufficient to enable the execution of the specification. This is shown

in Figure 2.12.

/* run */ define non_execl() =

{
exists I:
{
I =0andnext I =1+ 1
}
}.

The Tempura program representing the ITL formula I = 0 A OI = I + 1 generates the
following output when run:

run non_exec2().

**xTempura error: the interval length is undefined.
Evaluating: run non_exec2(?)
Fail

Figure 2.11: A second, non-executable Tempura program
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/* run */ define can_execl() =

{
exists I:
{
len 1 and I=0 and next I =1 + 1
}
}.

The Tempura program representing the ITL formula len1 A I =0 A OI = I + 1 generates
the following output when run:

run can_execl().

Done! Computation length: 1. Total Passes: 2.
Total reductions: 18 (18 successful). Maximum reduction depth: 7.
Time elapsed: 0.000020

Figure 2.12: An executable Tempura program

A final enhancement can be achieved by interacting with the user so that the initial value of 1
can be input. It is possible to print out the values of I in all states so that the animation can
be inspected visually. In Figure 2.13 the addition of input and output statements to achieve

this purpose is demonstrated.
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/* run */ define can_exec2() =

{
exists I:
{
len 1 and
input(I) and
next I =TI + 1 and
always output(I)
}
}.

The Tempura program representing the I'TL formula len 1 A Of = I+1 generates the following
output when run with an initial value of 2 input for I.

run can_exec2().
State 0: % I=?
2.

State
State

= O
I
w N

Done! Computation length: 1. Total Passes: 2.
Total reductions: 27 (27 successful). Maximum reduction depth: 7.
Time elapsed: 3.439013

Figure 2.13: An executable Tempura program with /O

The final example in this short discussion will demonstrate how contradictory behaviour can
be identified and reported by Tempura. The running example will be adapted by introducing
a constraint on the final value of I: len1 A OI = I + 1 A fin(I = 2). This restricts the initial
value of I to be 1. Tempura cannot run the specification “backwards” in time to deduce this.
However, if the value in the first state is not equal to 1 then a contradiction in the second

state will be apparent. Figure 2.14 illustrates this behaviour.
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/* run */ define can_exec3() =

{
exists I:
{
len 1 and
input(I) and
next I =TI + 1 and
always output(I) and
fin (I = 2)
}
}.

The Tempura program representing the I'TL formula len1 A O = I +1 A fin I = 2 generates
the following output when run with a value of 2 input for I.

run can_exec3().
State 0: % I="7

2.
State 0: I=2
State 1: I=3

**x*Tempura error: attempt to overwrite variable.
Evaluating: (I = 2)

The variable has currently the value 3.

Fail
However, when run with a value of 1 input for I no contradiction occurs.

run can_exec3().
State 0: % I=?
1.

State 0:
State 1

Done! Computation length: 1. Total Passes: 2.
Total reductions: 31 (31 successful). Maximum reduction depth: 7.
Time elapsed: 3.429490

Figure 2.14: An executable Tempura program with |/O and a final constraint
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2.4 Architectures

Correctness properties are specified using a verification logic: for example, an LTL formula
. To enable a program to be checked against ¢ the formula must be transformed into an

executable monitor that can be run alongside the program.

Definition 2.4 Monitor A monitor is a process that analyses an execution trace and tries

to determine whether or not it satisfies a specification.

A runtime monitor continuously analyses an evolving execution trace of a running program.
The process of adapting a program so that it emits significant event and/or state data to a

monitor as these events occur is called instrumentation.

Definition 2.5 Instrumentation The adaptation of a computer program to insert code that

captures and transmits to a runtime monitor any event relevent to the runtime verification.

[RH16] observe that the two most common instrumentation techniques are capturing method
calls and using variable updates. The first approach is used in a range of Java-based runtime
verification systems in which events can be triggered upon entering or leaving specified
methods. A popular technique uses Aspect) [Aspl7], an extension to Java that enables
‘aspects’ of a system — such as those required for instrumentation — to be separated from the
main program logic. The nature of such aspects is that they are interwoven with the main
program and the insertion of specialised code to deal with these is performed automatically.
AspectJ is a language in which certain events within a program execution such as method
calls, so-called ‘pointcuts’, can be specified together with code to be run at each of these
pointcuts. This method is used by JavaMOP [JMLR12]

The second approach requires assertion points to be placed directly into the program at
the points when a change is made to any of the monitored state variables. This is the
method used by AnaTempura [CZCM96, ZZCO05] (see Section 2.4.5) in which the assertions
comprise formatted print statement which transmits event data to the standard output
channel which, in turn, is read by the monitor. The use of bespoke assertion points is also
required by TRACECONTRACT [Hav19, BH11] and ITL-Monitor, the subject of this thesis.
Both TRACECONTRACT and |ITL-Monitor are constructed as DSLs within Scala (cf. 2.4.1)
and, as such, become part of the host program under test via an API. An example program
and specification are presented in Section 6.2 which form the subject of a comparative analysis

of each of these runtime verification tools.
Figure 2.15 provides a high-level view of the relationship between a program and a monitor.

The figure shows three relationships:
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Program Specification ¢
instruﬁentation deriz}ation
LJ Each generated state: o Y
Instrumented Monitor
program Verdict: (0g...04) =@ ? (00...0%)

The program to be verified is instrumented so that it can generate states when
significant events occur. A monitor is derived from the specification ¢. Each new
state oy, is passed to the monitor which maintains the trace history (og...o%), and,
upon receipt of each new state, checks (oq...0%) = ¢, and returns a verdict.

Figure 2.15: Runtime verification

. Between the program and the instrumented program. The program is adapted to

include code that emits significant events (states) to the monitor when they occur.
(see Definition 2.5)

. Between the instrumented program and the monitor. Significant events that create a

new state for analysis are sent to the monitor which, in turn, delivers a verdict.

. Between the specification and the monitor. This can be achieved using automatic

translation (compilation) from a specification language into a programming language.
Alternatively, the specification and the monitor may coincide either by using a
specification language that is directly executable, or by using an API in the executable

language that encodes the specification.

The following arrangements of programs and monitors describe standard architectural
patterns [Leul2].!

Outline monitoring: the monitor is separate from the program under test. This architecture

is based upon a loose coupling between the components and relies upon data being
communicated using a channel. AnaTempura (2.4.5) is an example of such an outline
monitor system. It is possible using such an arrangement that an outline monitor can

use a separate processor and not affect the running performance of the program itself.

MThese are not mutually exclusive: ITL-Monitor is both inline and online.
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Inline monitoring: the monitor is part of the program itself and shares its computational
resources. This facilitates efficient cooperation between the program and the monitor.
Although this can increase the potential coupling between the components, mitigation
can be achieved by design. For example, ITL-Monitor is implemented using an actor
model in which messages are passed between autonomous processes which maintain

their own encapsulated state.

Offline monitoring: the analysis takes place after the program has run. This requires that
a log of the program run is constructed while the program executes, and is stored
for subsequent analysis. This can be achieved by any runtime verification system
since it is possible to ‘execute’ a log file by traversal. There are verification systems
that are designed to be run offline. One specific example is LocScopE [BHRGO0Y)
which used offline monitoring because the specific application for which it was designed
(NASA’s Mars Science Laboratory, a planetary rover) was unable to provide runtime
data in a reliable order. Another (unpublished) example is ITL-Tracer [Janl10], a Java
monitor for analysing completed program traces with respect to an ITL specification.
Offline monitoring provides a post hoc analysis of a program’s behaviour and can utilise
algorithms that take considerably more time than would be acceptable for an interactive

diagnosis.

Online monitoring: the analysis takes place while the program is running. [L.S09] points
out that making the monitor part of the system itself allows the monitor to analyse
faults and modify subsequent behaviour. In particular, online monitoring facilitates
runtime reflection in which fault detection, identification and recovery can take place.
ITL-Monitor has been implemented as a monitoring process that runs concurrently with
the program, and which can raise user-defined exceptions when the verification fails.
This mechanism can be used by the main program to react at runtime, for example by

defining recovery behaviour within catch clauses.

2.4.1 Domain specific languages

Current research in runtime verification is increasingly considering the use of Domain
Specific Languages (DSLs, see Pattern 21 in [BL13]) for monitor construction. Indeed,
DSLs, particularly in Scala [OSV16, Scal7], have been the subject of active research in
recent years including, e.g. [Havll, Hav13, Hav14, YAH"16]. Bjorner and Havelund argue
in [BH14] that specification, verification and programming may be converging with such
contemporary programming language developments. A classification of DSLs with Scala is
given in [AHKY15].

DSLs can be categorised into external and internal, and the latter can be implemented using
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either a deep embedding or a shallow embedding. External DSLs are separate languages
whose syntax is not constrained by any host programming language. A specification written
using an external DSL can either be compiled using a bespoke compiler into code that can be
executed by the host language, or it may be parsed into an internal data structure and then
interpreted within a progam. For example, in the host language Scala, the Scala combinator
parser library could be used.!” JavaMOP [JMLR12] and RULER [BHRG09] are examples
of runtime verification systems developed as external DSLs. Both of these languages have
compilers that translate specifications into AspectJ aspects (see Section 2.4.2) which are used

to instrument Java programs for monitoring.

Internal DSLs extend the host language itself and thus benefit from total integration with its
constructs. A deeply embedded DSL comprises a language, represented as an abstract syntax
tree, which is interpreted from within the program. Within this thesis, the ITL library
for use with ITL-Monitor, namely ITL.scala, is a deeply embedded DSL. ITL expressions
and formulae are instances of abstract syntax trees which can be transformed to perform
certain optimisations, and interpreted for evaluation. A shallow embedded DSL uses the host
language’s features predominantly for its representation. This is facilitated by programming
languages whose features support this approach. Such features include partial functions,

generic types, pattern matching, and higher order functions.

TRACECONTRACT [BH11] is another internal DSL written in Scala for runtime verification.
It supports specification using state machines and temporal logic. TRACECONTRACT is in
current use and is actively maintained [Hav19]. In Chapter 6 TRACECONTRACT is selected

as one of the contemporary runtime verification tools used for comparison with ITL-Monitor.

2.4.2 Aspect oriented approaches

Aspect-oriented programming (AOP) is designed specifically to enable the separation of
concerns facilitated by using a compiler to interweave ‘cross-cutting’” monitoring code into
an application. This approach facilitates monitoring by triggering verification activities at
certain programmer-defined pointcuts specified using AspectJ (cf. page 31), for example, and
a runtime monitoring system has to integrate with the Aspect) API. The syntax does provide
significant flexibility for capturing classes of events. For example, a join point may be attached
to the execution of an instance method associated with any object of a specific type. Events
may be triggered, for example, before, after, or around such method invocations. Such

instrumentation separates the concerns of the monitor code and the system under scrutiny.

Monitoring-oriented programming (MOP) [CR07, CR03] is a framework supporting the

development and analysis of software systems that permits a variety of formal languages to be

15This is maintained as a community project at [Sca].
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used in the specification of monitors for runtime verification. Eschewing the idea that a single
formalism is appropriate, MOP supports a variety of user-defined plug-ins to enable particular
properties to be expressed using a formalism that is best suited for the task. These plug-ins
are monitor synthesizers that translate formulae into runtime monitors. An implementation
of MOP for the Java language, JavaMOP [JMLR12, Jav17], has been developed in which
monitoring code is woven into the program using Aspect). The architecture permits user-
defined Java code to be included (‘user-defined actions’) for execution when monitors report
either success or failure. Thus, code can be inserted to perform dynamic recovery when

specific errors are caught.

JavaMOP is a parametric monitoring framework. This means that formulae may contain
parameters that become bound to actual object instances in the program. When a property
must be monitored for a class of objects in a program, then every instance of the class has
an associated bespoke monitor instance. To facilitate such monitoring, the input trace must
be sliced such that each slice contains events only specific to a particular monitor instance.
Efficient indexing of monitor instances has been shown to be computationally very efficient
[Jin12].

RV-MonITOR [DGHT16] is an evolution of the JavaMOP framework and is used for enforcing
safety and security policies at runtime. A version of RV-MONITOR for Android is described in
[DEM*15]. RV-MONITOR supports both manual and automated instrumentation, the latter

via a tool such as Aspectl.

Related current research has focused on AOP and Aspect] in particular and in [JZR"16]
the authors discuss the limitations of Aspect)’s join point mechanism and propose a domain-
specific aspect language, DiSL, which they demonstrate leads to extended code coverage. The

authors provide a compiler for translating existing AspectJ aspects into DiSL.

2.4.3 Rule-based approaches

Rule-based runtime verification approaches comprise systems in which a specification is
written as a set of rules, each of which is separated into its antecedants - sets of facts about
the current state — and a set of consequents — future time formulae that must hold in (current
and) future states. METATEM utilised this method splitting LTL formulae into present and

future formulae using separated normal form (2.3.1).

METATEM influenced a range of rule-based, runtime verification logics developed significantly
by Barringer, Havelund, Rydeheard et al. In [BGHS04a, BGHS04b] the authors introduced
EAGLE, a temporal fixed-point logic defined over finite traces. The full syntax and semantics
of EAGLE is presented in [BGHS04a]. EAGLE was designed as a general purpose, rule-based

temporal logic for runtime verfiication which included support for interval logic, LTL with
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future and past time, and regular expressions. In EAGLE temporal operators are expressed

in terms of minimal and maximal fixpoints:

max Always(Form F') = F N OAlways(F)
min Eventually(Form F) = F Vv QEventually(F)
min Until(Form F'y, Form Fy) = Fy V (F1 A OQUntil(Fy, F2))

where max and min denote maximum and minimum fixpoints respectively; Form is the type of
formulae; and O is the strong-next operator from LTL.'S In EAGLE the semantics of formulae
are defined over finite intervals, o, whose states are indexed from 1 to |o|. The indexes 0 and
|o| + 1 define the boundary of the interval. Rules defined using max evaluate to True at the
interval boundaries, thus the following rule [BB08] holds only when the formula is observed

at one of the boundaries:

max Limit() = False

Safety properties (e.g. Op) use a maximal fixpoint interpretation and, as such, are considered
to be satisfied throughout the trace once the end is reached. If this were not the case then a
contradiction would have been discovered earlier. Alternatively liveness properties (e.g. <&p)
use a minimal fixpoint interpretation. This means that if the end of the trace is reached
then the property is not satisfied, otherwise it would have been discharged earlier. This

interpretation of liveness is based upon finite path semantics (cf. page 15).

EAGLE includes a non-deterministic, sequential composition operator. The formula F; ; F»
is satisfied by a (finite) interval o provided that the interval can be split into a prefix o? and
suffix o® such that oP (| o |) = 0°(1), i.e. the final state of P coincides with the first state
of %, and F; holds on P (observed from some position i), and Fy holds on ¢®. Importantly,
future operators within F are limited to the scope of o and, conversely, past-time operators
within Fy are limited to the scope of o°. The full semantics of EAGLE logic is presented in

[DHO5]. The following excerpt defines the behaviour of sequential composition:'”

o,i = F1; Fyiff existsj sit. i <j <l|o|+1land oy j_y,i = Frand o, 1 |4, 1 F F»
EAGLE also supports a related concatenation construct: Fj - Fo. In this case the prefix and

suffix intervals do not overlap: thus o = oP0® (where juxtaposition here represents sequence

concatenation).

16 A brief discussion of fixpoint logics is found in Section 8.4 of [Eme90] and Section 2.8.4 of [Fis11].
"In EAGLE semantics, the first state is indicated by 1, not zero.
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o,i = F1- Fyiff existsj st. i <j <|o|+1and oy j_y,i [ F1and o 4,1 | F2

In [BBO08] the authors show that sequential composition can be represented using
concatenation, and vice versa, and therefore that each is equally expressive. However, it
is observed that the non-determinism in these operators can be computationally expensive
searching for a suitable set of cut points that satisfy a formula. Deterministic variants of
the concatenation and sequential composition operators are introduced. The authors show
that these deterministic variants do not add any new expressive power to EAGLE but, by
identifying them as bespoke operators, it is possible to provide more efficient implementations
of runtime monitors that use them based upon their deterministic semantics. Specifically,
eight variations are defined: these are the left-minimal, left-maximal, right-minimal, and right-
maximal operators for both sequential composition and concatenation. |Fy| o Fy, [Fy] o Fy,
Fy o |Fy], and Fj o [Fy], where o can be either - or ;. The semantics for | Fy| ; F» is given

below:

o,i = |F1]; Fyiff existsj sit. i <j <|o|+1 andoy..05-1,i = Fy
andaj_l..am,l ':FQ
and notexistsk s.t. 1 <k<j—1 andoy..o, 1= Fy

EAGLE itself is not specific to any particular programming language. This means that it
has no means of being instrumented (see Definition 2.5). JEAGLE [DHO05] is a runtime
verification tool that extends EAGLE and is written for the Java programming language.
JEAGLE incorporates a compiler that parses specifications written in a specification file and

emits automatic instrumentation code that can be processed by Aspect] (cf. 2.4.2).

In [BRHO7] the authors, while acknowledging the richness of EAGLE and its appropriateness
for specifiying complex temporal behaviours, also discuss how the non-deterministic
concatenation operator leads to a high computational cost. The authors note that there
are some subsets of EAGLE that could be executed efficiently for runtime monitoring — in
particular, the LTL subset of the language. The paper signals a change of research direction

towards a lower level, rule-based logic for runtime verification.

In [BHRGO09] RULER, an online trace analysis tool, is described. In RULER a set of rules
is defined, each of which has an antecedant and a consequent. Both of these must be state
expressions (i.e. no temporal formulae). The rules of the core system do not remain active
between events — they are so called one-shot rules. As each event is passed to the system,
the antecedants of the active rules are tested thereby conducting a breadth-first search of the
possible traces that satisfy the rules. The only rules that become active in the subsequent
state are the consequents of those whose antecedants were triggered in the current state. The

process continues until either no rule applies, or the trace is terminated. On top of these
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single-state persistence (step) rules, RULER has also built two others: state persistence
and always persistence. The former defines rules that remain active until they are activated
successfully, and the latter rules that remain activated throughout the verification. [BHRGO09]
observes that the state rules were used more often by users writing RULER. specifications,
thus indicating a preference for the state machine approach. It is interesting to note that these
three categories of rules are also reflected in the behaviours of the state functions provided in

the subsequent TRACECONTRACT runtime verification tool (Section 2.4.4).

Research into RULER, whose rule-based system is based on METATEM, led to consideration
of an alternative, yet established, algorithm used extensively in AI rule-based systems:
the RETE algorithm [For82]. [Hav15] discusses the adapation of the RETE algorithm for
rule-based, runtime verification and its realisation as LOGFIRE. The paper summarises
the performances of RULER and LOGFIRE against each other and five other tools over
seven experiments designed to stress the systems in terms of memory requirements and
monitor indexing. The survey concludes that for low memory experiments RULER performed
better than LOGFIRE, but that the situation was reversed for high memory experiments.
Interestingly, (unoptimised) TRACECONTRACT performed comparably to RULER. However,
the MOP system outperformed all of the competition by an order of magnitude — the authors
suggest this is due to MOP’s indexing system being significantly faster than algorithms such

as RETE for runtime verification.

2.4.4 TraceContract

TRACECONTRACT [BHI11, Hav19] is a runtime verification tool implemented as a shallow
embedded DSL (cf. 2.4.1) in Scala. It provides an API that supports specification using state
machines and linear temporal logic. It also provides a persistent ‘database’ in which facts
can be stored for future reference. Such a database provides support for temporal formulae
involving previous events. However, the persistent nature of the facts makes it necessary
for addition and deletion to be performed explicitly as the runtime verification proceeds.
Alternatively, given that the monitors are written as standard Scala code, it is possible to

encode previous events using the language itself rather than using the built-in database.

Fundamental to TRACECONTRACT is the class Monitor [Event] — which can be instantiated
to create a monitor capable of processing a list of events List [Event]. Event is a generic type
parameter which is substituted by the actual type of events to be monitored. Each monitor
maintains a private (possibly empty) list of sub-monitors forming a hierarchical composition in
which the sub-monitors at each level are effectively conjoined. As each new event is processed
by a monitor it is, in turn, recursively passed on to each of its sub-monitors. This approach

is utilised in the example given in Section 6.2.5.3.

A number of Formulae can be defined within each monitor that specify the required behaviour.
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Formulae are separated into two types: one representing state logic, and another representing
future time temporal logic. The two types can be used together within the same monitor if

required. At the heart of the state logic formulae is the Block type:
type Block = PartialFunction[Event, Formula]

which is used in the definition of the state functions, e.g.

def state(block: Block): Formula

The use of PartialFunction allows Scala’s pattern matching notation to be used to capture

specific Event instances as shown in the following example, again taken from 6.2.5.3:

def SO: Formula = state {
case Event(true ,false,false) => S4
case Event(false,false,false) => SO

case _ => error

When this state formula (S0) is active then a matched event evolves the monitor into a
subsequent state formula: for either of the valid events shown this is either S4 or SO0. The
default case ‘_’ catches any invalid event and evolves the monitor to an error state formula.
This illustrates how state transitions can be defined based upon events. Once the formula
has evolved to its new state formula then it is this that is matched against the next incoming
event. A range of state functions is defined representing different types of state evolution. In
each case, the parameter is a Block and the semantics of each function determines how the
evolved formula is determined based upon whether or not the incoming event matches one of

the cases. These are:

state(block: Block): Formula This formula remains in the monitor’s list of active

formula until a matching event occurs. Then the formula evolves according to block.

step(block: Block): Formula If the incoming event is matching then the formula
evolves according to block. Otherwise the formula evolves to the special formula True

representing success.

hot (block: Block): Formula This is the same as state with the exception that it is
an error to be in a ‘hot’ state at the end of the trace. This is used to represent liveness

properties with respect to finite path semantics (cf. page 15).

strong(block: Block): Formula A matching event must occur in the next state. Then
the formula evolves according to block. If the match does not occur in the next state,

or if there is no next state, then the formula evolves to False indicating failure.

weak(block: Block): Formula This is the same as strong except that no error occurs

if there is no next step.
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always(block: Block): Formula This is different from the other state functions in that
it is always active. Whenever a matching event occurs then always(block) remains in
the list of active formulae, and the formula that is produced by the match is also added
to the list.

TRACECONTRACT also provides functions representing future time LTL formulae. These are

matches(p: PartialFunction[Event, Boolean]): Formula This equals True if and

only if the current event satisfies p; otherwise False.
not(f: Formula): Formula This negates f.

globally(f: Formula): Formula This formula must hold for the current event, and all

future events. At the end of the trace globally(f) equals True.

eventually(f: Formula): Formula This formula must hold either for the current event,

of for some future event. At the end of the trace eventually(f) equals False.

never(f: Formula): Formula This formula must be false for the current event and for

all future events. At the end of the trace never (f) equals True.

strongnext(f: Formula): Formula This formula must be true for the next event and
there must be a next event. In this case strongnext (f) equals True; otherwise False.

At the end of the trace strongnext (f) equals False.

weaknext (f: Formula): Formula This formula must be true for the next event if there
is a next event. In this case, or if there is no next event, then weaknext (f) equals True;

otherwise False. At the end of the trace weaknext (f) equals True.

All formulae, i.e. state formulae and future time LTL formulae, can be combined with the
infix methods and, or, implies, until, and unless. An example of the use of LTL formulae

is shown in Listing 6.2 (page 130).

TRACECONTRACT is designed to analyse an event trace. Monitoring can either take place
offline, by processing the complete trace of a previously-run program, or it can be performed
online by passing the events to the monitor as they are encountered. Instrumentation is not
automated and the method, verify(event: Event), must be called explicitly from within

the program under test.

TRACECONTRACT is similar to ITL-Monitor in a number of ways: both are implemented
as internal DSLs in Scala; both require manual instrumentation; and both are designed
as experimental runtime verification tools for their respective formalisms. Both systems

make obvious efficiency gains by analysing their internal abstract syntax trees to simplify
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evaluations, although neither has been subject to extensive optimisation. Both systems
support monitor composition. This makes TRACECONTRACT an excellent choice for direct

comparison (see Chapter 6).

However, there are also some fundamental differences. TRACECONTRACT does not have the
facility to report judgements back to the program under test. Rather, they are output onto a
transcript in a similar way to AnaTempura (see below Section 2.4.5). ITL-Monitor can report
judgements, or throw exceptions, in response to each new event, thus providing the option
to react at runtime. TRACECONTRACT is based upon a hybrid formalism that incorporates
state machines and LTL, whereas ITL-Monitor is based upon ITL. Notwithstanding timed
formulae, TRACECONTRACT monitors do not exploit multithreading, whereas every monitor
in ITL-Monitor is an Akka actor. The Akka scheduler can allocate actors to run in parallel on

separate system cores.

2.4.5 AnaTempura

AnaTempura [CZCM96, ZZCO05] is an established runtime verification system that uses
Tempura as its basis. The system consists of a Tempura specification, a Tempura interpreter,
and a program to be verified. AnaTempura executes the specification and the program in

parallel checking that the program satisfies the specification at each state.

The program under scrutiny is instrumented by assertion points embedded within the code.
These transmit states to AnaTempura whenever a monitored state variable is modified.
AnaTempura computes the expected trace and compares it with the actual trace supplied
by the program under test, reporting continually whether these traces are in agreement.
AnaTempura permits a user to view the result of this monitoring process in real time and to
intervene should a problem arise. Thus AnaTempura supports a “stop and repair” model of
runtime verification but does not implement a “react at runtime” [LS09] pattern and therefore

does not support automatic fault detection and recovery.

The monitoring consists of three main components

1. The program being analysed. The program contains assertion points that have been
introduced strategically into the code to report any changes to the state that refers to
variables used in the specification. These assertion points may be designed into the code

from the outset or added retrospectively requiring a re-build of the software component.

2. The Tempura interpreter. This ‘runs’ a Tempura specification which is provided in a
separate file. Tempura specifications are written using an executable subset of ITL and

thus generate a deterministic sequence of states. This is the expected trace.

3. The runtime monitor. This compares the incoming states from the program with the
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corresponding states from Tempura to ensure that they are in agreement. As soon as a

discrepancy is discovered this is reported via an output console.

AnaTempura contains further features that are useful for developing specifications. In
particular there is an animator that permits the user to visualise the specification as it is

executed.

In AnaTempura the communication between the program under scrutiny and the monitor is
achieved by the insertion of assertion points into the program. The coupling between the
monitor and the program is therefore loose and unidirectional: snapshots of the state are
sent to the monitor using a “fire and forget” strategy. Specifically, this does not permit the
synchronisation of the monitor and the program, and it does not permit information to be sent
back from the monitor to the program. This asynchronous communication does not require the
program to wait at any time for a response from the monitor and thus the monitoring places
only a very small performance penalty on the program through the execution of assertion
points. It is possible that the expected trace cannot be generated as fast as the actual trace is
being generated. Note that if the monitor and the program are running on the same processor

then the runtime performance of both is affected.

2.5 Summary

Runtime verification has been introduced as a complementary method to model checking.
Two temporal logics were discussed: LTL, used widely in model checking, and the basis
for many runtime verification systems; and ITL, a logic that is not widely used for runtime
verification possibly due to the computational complexity introduced by its non-deterministic

sequential composition operator.

The chapter discussed the principal runtime verification architectures that have emerged from
this relatively recent computer science discipline. Particular emphasis was put upon two tools,
TRACECONTRACT and AnaTempura. Both of these have been selected as suitable candidates
for comparison with the current work: TRACECONTRACT because it is also implemented as
an internal DSL in Scala and supports LTL; AnaTempura becuase it is the only established
tool that uses ITL. However, the latter uses a deterministic subset of ITL called Tempura.
This thesis proposes a technique whereby I'TL with fewer restrictions can be used for runtime

verification. The theory to support this is introduced in the next chapter.
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Development of the first occurrence

operator

Throughout this chapter, and the rest of the thesis, reference is made to a substantial
collection of laws of ITL. These are available as [CMS19], a document in which the syntax
and semantics of ITL have been encoded using Isabelle/HOL and in which every law has a
mechanically checked proof. The laws in that paper include all of Moszkowski’s unpublished
work in [Mosl4a]; Moszkowski’s investigation into time reversal [Mosl4b]; work by Cau on
Interval Temporal Algebra [Cau08]; as well as laws provided by the author in the process of

developing this work.

The work in this thesis required a thorough investigation into fixed-length intervals, strict
initial intervals, and the first occurrence operator. The latter is a key part of the work
and an extensive collection of laws relating first occurrence to other ITL operators has been
added to ITL. All of these laws and their proofs have been checked automatically within the
Isabelle/HOL framework and appear in Chapter 7 of [CMS19].

3.1 Introduction

ITL [Mos82, Mos83, CZCM96] is a mature mathematical framework for system specification.
Its syntax and semantics were introduced in Section 2.1.3 along with a number of derived
operators. Fundamental to ITL are the chop and chopstar operators. Recall the semantics of
chop (Section 2.1.3):

.F[[fl ; fQ]](U) = tt iff (existsk, s.t. f[[fﬂ](ao .. Uk) = tt and .F[[fz]]((fk .. O"U|) = tt)

Note that the two subintervals share a common state at & which is referred to as the fusion
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point. The choice of k is non-deterministic when there is more than one way to satisfy f ; ¢
for a given interval. Figure 3.1 shows how the formula OP ; $&@Q is satisfied by the interval
(P,- @),(P,—-Q),(P,Q),(P,— Q),(P,— Q)) in three ways — each representing a different

fusion point.

M k=0

/\/—\ E—1

e o e e e k=2
P P P P

P
-Q -Q Q -Q -Q

Figure 3.1: Different ways to achieve OP ; <&@ for a given interval.

If one of the subformulae were strenghtened then the set of fusion points may be reduced. For
example, consider the formula O(P A = @) ; &Q over the same interval. This reduces the
fusion points to k € {0,1}. The set of fusion points can be reduced to one by strengthening
the first subformula even further: ((OP) A skip) ; & Q. In this case the first subinterval must

have unit length leaving the only possible fusion point as k£ = 1.

When using ITL for runtime verification, determining whether o = fy ; fi for an interval
o, requires a search for an appropriate fusion point. If neither fy nor f; themselves contain
chop or chopstar operators then every state may have to be considered as a potential fusion
point. If a formula is of the form fy; ... ; fx, for £ > 0, where each f; does not contain

chop or chopstar operators, then the maximum number of potential fusion points is given by

(Io\+1) S (A L
k (ol-+1—R) &I*

of runtime verification.

This combinatorial complexity is prohibitively expensive in the context

3.2 Timing analysis

To compare algorithms for verifying an ITL formula f over a finite interval o the below
function T is introduced. It estimates the worst-case time taken to perform a verification
based upon the number of simple tests that need to be made. The assumption is made that
both state lookup and establishing interval length take constant time. The primary focus is
on the analysis of chop and chopstar and for this reason only a subset of ITL functions has
been considered. In the definition n represents the length of the interval (i.e. the number of

states minus one).
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T(n,true) =0
T(n,empty) =1
T(n,more) =
T(n,skip) =1
T(n,len(k)) =1
T(n, Q) =1 (@ represents any propositional variable)
T(n,fin(Q)) = 1
T(n,~f) =1+ T(nf)
T(n.fiNf) =1+ T(n fi)+ T(n f2)
T(n,fi; k) = kZ (T(k, i) + T(k, f2))
=0
0, ifn=20

T , * = n n—1 ]

o d (£ 20:0) + (5 10sm). 0> 0

k=1 k=0
An algorithm for establishing o |= fi ; fo considers each state 0g, 01, ... in turn as a potential

fusion point. Note that whenever og. .oy [~ fi then the corresponding test oy . 0o = fo is not
required. Furthermore, if 0¢ ..o = fi and oy .. 00| = fo then no further fusion points need
to be considered. The definition of T'(n, fi ; fo) assumes the worst case in which every prefix
interval satisfies f; and no suffix interval satisfies fo thus requiring every state to be examined
as a potential fusion point. Thus f; is checked over each of the subintervals o9, 0¢_1, ..., 0g.»
and, for each of these, fo must be checked over subintervals oy _,,, 01 ,, - .., On respectively.
n n n
T(n,fi ; fo) is therefore given by > T'(k,fi) + > T(n—k,f2) = > (T(k,fi) + T(k, f2))
k=0 k=0 k=0

The summation for T'(n, f*) is defined a little differently. The first summation ranges over the
states 1..n. The reason that f* is not checked over the empty interval og is because f* holds

over any single state interval. Consequently, the second summation ranges over 0.. (n — 1).

Example formula T'(n, fi) T(n,f) T(n,fi ; f)
(b) Q;(R;09) 1 2n + 2 n244n+3
(c) P,(Q,(R,S)) 1 n244n+3 %+572L +37n+4

Figure 3.2: Example timings for T'(n, fi ; f2)

Figure 3.2 illustrates some sample formulae and associated worst-case timings. An example
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interval for both 3.2(c) and 3.2(d) is given below (e = proposition holds in state):

P: e
o= g : : o= (P Q) (R S)
g, P (Q;(R;S))

Figure 3.3 illustrates the expression trees for P ; (Q ; (R ; S)) and (P ; @) ; (R ; S) in which
the trees have depths of 3 and 2 respectively. Worst case evaluation is O(2¢) where d is the

depth of the expression tree.

P /@\
Q P Q R S
R S

Figure 3.3: Expression trees representing P ; (Q ; (R; S))and (P; Q) ; (R ; 9)

The formula for T'(n,f*) on page 45 is derived from the ITL equivalence - f* = (empty V
((f A more) ; f*)) (ChopStarEqu(©-0)). Worst-case performance assumes that all non-empty
subintervals satisfy f except all terminal suffixes: a situation that can be described in ITL by
the formula ((@ (more D f)) ; skip) A O— f.

n .
Equation 3.2.1 T(n,f*)=>.2"7T(,f), n>0
=1

Proof of Equation 3.2.1 is by induction.

Casen=1

T(Lf) = TS+ TOL) = T(LJ) = X 2 TG.)
p2

Case n+1

Tt 1) = (£ 10) + ( (k1)

k=1

=Tn+1,/)+ T <i > + (:g T(M*))
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= T(n+1,f)+ T(n,f*) + T(n,f*)
=Tn+1,f)+2T(n,f")

n

=T(n+1,f)+2 (Z 2n—J T(j,f)) Equation 3.2.1 by induction

J=1

n

= T(n+1,f)+ (Z 2”“‘]'T(j,f)>

Jj=1
n+1

= 3 2"IT(5,f)

Jj=

—_

Example 3.2.1 The formula P A fin P holds for any interval in which proposition P holds
in both the initial and final states. T'(n,P A fin P) = 3, therefore T'(n,(P A finP)*) =

n .

3x > 2" =3x (2" —1). [
j=1

As discussed in [MGLI14], such exponential complexity makes it is infeasible to perform

runtime verification of ITL formulae containing multiple chop operators over nontrivial

intervals.

3.3 Determining fusion points

The worst-case performance described in the previous section can be reduced significantly by
constraining the number of potential fusion points that need to be considered when checking
formulae containing chop and chopstar. The rest of this chapter develops a framework in ITL

that supports such an approach.

The timing function for f; ; fo can be modified if it is known that there exists a unique fusion
point whereby the interval satisfies the formula. Suppose that o = fi ; f holds, and that m,

0 < m < n =|o|, is the unique fusion point, then

Equation 3.3.1 T(n,fi i f) = <k§: T(k,fl)) + T(n —m,f)
=0

The chop operator has been annotated to indicate the unique length of the prefix interval
(to the ‘left’ of the fusion point). The summation captures the iteration through the prefix
intervals until the unique fusion point m is determined. The algorithm does not assume
prior knowledge of the unique fusion point m although it may be pre-determined with certain

formulae such as, for example, len(5) ? f.ol

!Code in the implementation of the ITL library that exploits such fixed-length formulae is shown on page
100.
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The associativity of the chop operator means that it is possible to rewrite formulae such as
(fi; f2); fsasfi; (f2; f3). Tosee why it is better to use a right-parenthesised form, consider

each in turn (see also Figure 3.2):

e Left-parenthesised:

m m-+m/
) .

T(n,(f5 9) ; h)

_ (”jg T(k,f " g)) 4 T(n—m—m',h)

- (mim/ ((f T(j,f)) " T(m’,g>)> T —m— )
k=0 7=0

The outermost sum repeatedly tries to establish og .. opim = f ;5 g, (m+m' + 1)
times. In the context of runtime verification, the innermost summations (over j) would
be bounded by & because each test would take place over the most recent prefix interval

0g..0k. Using | and 1 to represent the min and maz functions respectively, the formula

would be:
m-+m/ kim
( > ((Z T(’f,f)) + T((k — m’)TQ!J))) + T(n—m—m' h)
k=0 k=0

Nevertheless, the nested summation indicates an unnecessary complexity when

compared to right-parenthesisation.

e Right-parenthesised:

T(n,f 7 (g b))

_ (fj T(k,f)> + (m (k,g)> b T(n—m—m,h)
k=0

k=0

In contrast to the formula for T'(n,fi ; f2) given on page 45, in this case a fully right-
parenthesised formula is advantageous. There is no need for an algorithm to backtrack
across any of the fixed fusion points. This means that evaluation can proceed linearly,

which conveniently aligns with the execution requirements of runtime verification.

Figure 3.4 illustrates some right-parenthesised formulae with their associated timings.
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Example formula T(n, fi) T(n,f2) T(nfis f2)
(@) R™ S 1 1 m'+2
b Qn,l/ RW;LNS 1 m’'"+2 m'+m"+3
(
() PTQY(R™ S 1 m'+m"+3 m+m +m 4
(d) (Q; R S 2n + 2 1 (22k+2>+1
k=0
— (ml/)2 4 3m// + 3
(&) (P; Q™" (R™S) 2n+2 m' + 2 <Z2k+2>+m”+2
k=0
=(m)?+3m' +m" +4

Figure 3.4: Example timings for T(n,fi : )

In a similar way, a timing formula for f* can be constructed upon the assumption that each f
is satisfied over a unique, non-empty subinterval. As before, let n be the length of the interval
o,i.e. n = |o|. Let ms be a sequence of non-zero subinterval lengths such that sum(ms) < n.

The chopstar operator (*) is annotated with the sequence representing the fusion points. For
<m,m/7m//>

example, f  * =f i (f B (f
Note that:

mll

;1))

(i) The fusion points are only hypothetical for the purpose of estimating the timing formula,

(ii) The interval lengths are non-zero because empty sub-intervals do not contribute towards
establishing o = f*.

0, ifn=20

T(n,f), if n>1 and ms = ()
tl(ms)

Tnf """ p %), i n>1and ms £ ()

where hd and tl are the sequence head and tail functions

ms
Equation 3.3.2 T(n,f * )=

ms
In order to simplify the analysis of T'(n,f * ), assume that the interval o can be split into [
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subintervals of length m, i.e. Im = n, and that for each 1 < i < [,0(;_1)m -- 0im = f. This

provides a simplified formula:
Equation 3.3.3 T(Il x m,f*) =1x (Z T(k,f))
k=0

Thus, comparing equations (3.2.1) and (3.3.3) the former grows exponentially whereas the

latter grows linearly.

Reconsider the previous example 3.2.1 (page 47) (P A fin P))*. Assume that 0| =n=1xm
for some [ and m. Using equation (3.2.1) the worst-case timing to establish satisfaction of
an interval was calculated to be O(2"). Using equation (3.3.3), the timing is calculated thus:
I x (3py3) =3l(m+ 1) = 3n + 31 which is O(n).

3.3.1 Introducing first occurrence

In the previous section when considering a formula such as f; T,n fo it was assumed that the
prefix over which f; was satisfied had length m and that this was uniquely determined. This
thesis introduces a new operator, t>, into ITL which specifies the first occurrence of a formula.
Specifically, if o |= > f then there is no strict prefix interval that satisfies f: i.e. for all k < |o|,

0o ..oy [~ f. The semantics of > f is given below.
Equation 3.3.4 F[>f](0) = ttiff F[f](c) = tt and forall0 < i < |o|, F[~ f](c0..0i) = tt

This operator can be used in conjunction with a chop operator to ensure that a fusion point
is uniquely determined, e.g. fi A f. The intuition is that if any prefix interval satisfies fi, i.e.
o | & fi, then at least one prefix of o satisfies fi, and > fi specifies the shortest (first) such
prefix (DilmpEzistsOneDiLenAndFst(C-251),

In the context of runtime verification, the primary role of the > operator is to define a unique
partitioning of the incoming interval. The importance of establishing deterministic fusion
points using formulae such as > f; ; (> fo ; ... is that no backtracking across these fusion

points is necessary — because these are the only candidate fusion points.

3.3.2 Non-determinism

The operator > can be used to structure specifications sequentially to facilitate efficient
runtime verification: > f; ; > fo ; .... However, it is possible to combine each deterministic
formula, > f;, with a non-deterministic formula, g;, in the following way: (> A g1) ; (> fo A
g2); .... For example, the pattern illustrated in Figure 3.5 demonstrates the formula
AN q); >k AN g);(>f A g);(>f1 A gs). If this formula is satisfied by an
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interval then so is D(fl A 91) ; D(fg A gg); [>(f3 A g3); D(f4 A 94) due to the laws
FstWithAndImp(©-?23) and LeftChopImpChop(C-101).

> fi > fa >f3 > fa
A1 92 g3 g4
) ) ) ) ) ) ) ) ) ) ) ) ) ) )

Figure 3.5: Splitting an incoming interval into subintervals using ©>. Each > f; is deterministic
whereas each of the g; may be non-deterministic formulae.

This pattern allows each (>>f; A g¢;) to combine a ‘control’ element, > f;, which uniquely
determines the next fusion point, and a ‘payload’ element, g¢;, which may include any ITL
formula. The complexities of the subformulae f; and g¢; will, of course, determine the overall
complexity of evaluating > f; A g; but, the ‘payload’ formula needs to be calculated at most

once.

To analyse the performance assume that o = (> fi A f) ; fo for some interval o, and therefore
that there exists a unique fusion point m such that 0 < m < |o|. In this case it follows that
00 Om-1 FO-fi,00..0m F fi ANf,and oy .. 015 = fo. The number of tests required to

discover m, and establish that the formula holds, is given by:

Equation 3.3.5 T(n, (> Af) " f) = (Z T(k, f1)> + T(m,f)+ T(n—m,f)

The rationale for this is as follows: fi must be tested for each prefix interval until the fusion
point (m) is found. At this point the conjoined formula f must be tested to check that it
holds over the same prefix. Finally, the second formula, fo, must be tested on the remaining

suffix interval.

The case when a control and payload combination is repeated is given by the formula

(> f A f)*. The timing analysis for this formula is given below:

Equation 3.3.6
0, ifn=20
T(n, (/i A )" 5 T ) + (0. ), 0> 1 and ms — (

k=0
( tl(ms)

T, i A D" S AAf) ), ifn>1andms#()

Once again, for the purpose of analysing performance, it is useful to consider a special case

in which the interval can be split into [ x m subintervals each of which satisfies > fi A f.
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Equation 3.3.7 T(Ixm,(>AANf)*)=1X <§ T(k,f1)> +1x T(m,f)
k=0

3.4 Managing termination

The runtime monitors that are the subject of this thesis each represent a formula in (finite)
ITL. Therefore they are designed to terminate, and the termination condition is part of
the specification. There are three principal patterns of termination whose templates are
presented below. Note that although a monitor is designed to verify a finite execution trace,
the termination condition can be dependent upon the system being verifiied and, in particular,

may be a STOP signal issued when the system is itself ready to halt.

Monitor specifications often utilise iterated subformulae. The templates below consider two
cases in which the termination condition aligns with the end of a repeated subinterval, and
one in which it does not. The latter is more complicated, requiring a specification of how a

subinterval may be interrupted successfully.

Template 3.4.1 Iteration

(>f A g)*

It is straightforward to determine the length of a runtime verification by repeating a specific
formula a given number of times. The interval is split into a sequence of k deterministic
subintervals, each specified by > f. If g also holds within each subinterval then the verification

succeeds.

Template 3.4.2 Managed halt

halt(w) A (> f A g)* provided that halt(w) D (> f)*

If it is known (or can be arranged) that a terminating condition w always aligns with the
termination of a subinterval, then a ‘managed halt’ can be specified. Figure 3.6 illustrates a
managed halt showing how the terminating condition must align with a deterministic fusion

point.
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halt(w)

Figure 3.6: A managed halt. halt(w) D (> f)*.

Template 3.4.3 Exception

halt(w) A (>(fin(w) V f) A (fin(w) V ¢))*

The formula halt(w) specifies that the runtime verification must terminate as soon as state
formula w holds — this could be a propositional variable, STOP, for example. The termination
condition represents an exceptional condition in the sense that it may occur part way through

an iteration.

The formula >(fin(w) V f) specifies the shortest interval such that either w occurs in the
final state or the interval satisfies f. If > f is established, and the associated subinterval does
not satisfy w in its final state, then formula g must be satisfied. However, if the subinterval
satisfies > f and fin(w) then ¢ is not required to hold. Figure 3.7 illustrates an exceptional

termination under two different circumstances.

>f >f >f  fin(w)

halt(w)

Figure 3.7: A exceptional termination: (i) non-aligned and, (ii) aligned with > f.

Example 3.4.1 A critical section is managed by a counting semaphore S whose value can

vary between 0 and n.

halt(STOP) A
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( >(fin(STOP) V — stable(S5))
A (fin(STOP) Vv ((abs(fin(S) — S) = 1) A (fin(S) > 0) A (fin(S) < n)) )*

The formula stable(S) requires that the value of S remains constant throughout the interval.
The first occurrence of — stable(.S) therefore is the smallest initial interval for which S is
constant in all but the last state. Whenever S changes its value must have increased or

decreased by one and its value must remain within the semaphore limits of 0 and n. |

3.5 Properties of interval length

The first occurrence operator > was introduced in Section 3.3.1. Due to its extensive role in
constructing ITL-Monitor specifications, the relationship between > and other ITL operators
must be explored. The investigation begins with intervals of fixed length and introduces the

notion of a fixed-length formula which specifies such an interval.

Definition 3.1 Fixed-length formula A formula f is a fixed-length formula if, whenever

o = f for some interval o, there is no k < |o| such that oo ..o = f.

ITL contains three formulae that specify intervals of specific length: empty denotes a single-
state interval; skip denotes a two-state (unit) interval; and len(k) defines an interval with £+ 1
states. The formula halt(w) also specifies a fixed-length interval given that this determines
that w must hold only in the final state. > is more general than halt but acts in a similar

way to determine an interval of unique length.

There is not a body of laws available in the literature relating to ITL intervals of fixed length
and the development below constitutes an addition in this area. The proofs of the laws in
this section are recorded in Section 6.4 of [CMS19].

3.5.1 Interval length
len(k) specifies that the interval length is & — i.e. that the interval has k 4 1 states.

Fllen(Wl(0) =t iff |o] = k LenTffModSig €150

The definitions of iteration and interval length are given below:

O = empty IterZeroDef (C-23)
2 fin 20 TrerDef (€2
len(n) = skip" LenDef(€-39)
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It follows directly that:

= len(0) = empty LenZeroEquEmpty(C-143)
= len(1) = skip LenOneEquSkip(¢-144)
= len(n +1) = skip ; len(n) LenNPlusOneA(C149)

Therefore, an interval with length i + 7, (¢,7 > 0) can be chopped into two intervals of length

1 and j respectively.
= len(i 4 j) = len(i) ; len(j) LenEquLenChopLen(¢-146)

Using LenEquLenChopLen(©-146) (setting ¢ = n,j = 1), and LenOneEquSkip C-14%) it follows
that

= len(n +1) = len(n) ; skip LenNPlusOneB(C-147)

Note that every (finite) interval, o, must have a (finite) length, |o|, and therefore, this

tautological statement can be conjoined with any formula.

F 3k elen(k) ExistsLen(C-148)
= f=fA3kelen(k) AndEzistsLen(C-149)

3.5.2 Laws with fixed-length formulae

A fixed-length formula on either side of a chop operator uniquely determines the fusion point.
Straightforward examples of this include, e.g., (f ; skip) or (len(5); g). The following two
laws capture the way in which chop can distribute through conjunction when the fusion point

is deterministic.

= (f Alen(k)) 5 p A (g Alen(k)) 5 g = (f A g Alen(k)) ; (p A ) LFizedAndDistr(¢-1>)
Fops(fAlen(B) A g (gAlen(k)=(pAq);(fAgAlen(k)) RFizedAndDistr(¢-152)

In ITL ((fi A f2) ; p) only implies (fi ; p) A (f2; p). However, if the lengths of intervals
defined by fi and f are equal then this can be strengthened to an equivalence. Four

symmetrical specialisations of the above laws are presented below:

F (f Alen(k)) s pA(gAlen(k)) ;s p=(fAgAlen(k)); p  LFivedAndDistrA(C-1%)
E (f Alen(k)) s p A (f Alen(k)) ; g = (f Alen(k)) 5 (p A q)  LFizedAndDistrB(C1%%)
= opi (FATen(k) Ap (g A Ien(k)) =p;(fAgAlen(k))  RFizedAndDistrA(C-1%)
Fop s (f Alen(k) A g (f Alen(k)) = (p A g); (f Alen(k))  RFizedAndDistrB(C-1%)
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3.5.3 Fixed-length formulae and negation

There are few useful laws involving the negation of formulae containing chop due to the non-
determinism of the fusion point. There are some exceptions including the unit length interval
skip. If the fusion point is uniquely determined, irrespective of where it occurs, then formulae

can be negated easily.

E = (f;h)=-OhV (= f; h) where h= g Alen(k) NotChopFized(¢-160)
F=(h; f)=-OhV (h; ~f) where h =g Alen(k) NotFizedChop(¢ 161

Cau had previously communicated the following laws? that involve negation with chop and

skip. They can both be derived from the latter, more general laws, by setting h = skip.

=~ (skip ; = g) = empty V (skip ; g) NotSkipNotChop(C-129)
F = (= f; skip) = empty V (f ; skip) NotNotChopSkip(C-130)

3.6 Strict initial intervals

This section introduces the new ITL operators 5 (all strict initial intervals) and & (some
strict initial interval) along with their reflected counterparts, @ (all strict final intervals) and
& (some strict final interval). Their definitions and the investigation into their properties
form part of the original contribution of this thesis. 5 is required for the definition of the first
occurrence operator, >, which was introduced in Section 3.3.1 and which is defined formally
in Section 3.7. Following the introduction of the new operators, the focus will concentrate
upon and & alone. All of their properties have equivalent versions for and & under

time reversal [Mos14b].

Firstly, the behaviour of & and @ is illustrated diagramatically in Figure 3.8.

f f

f f

Figure 3.8: all strict prefixes, &, and all strict suffixes, @ .

Note that 5 f (and @ f) hold vacuously over an empty interval. Their duals, ¢ f and & f,
do not hold over the empty interval. The formal definitions of these new operators are given

below:

2Private communication but the laws are included in [CMS19)].



3.6 Strict initial intervals

o7

Ef = emptyVmf; skip
&f = ~@~f
mf = emptyVskip; Of
&f = ~@~f

BsDef (C159)
DsDef(C-150)
BtDef(C:215)
DiDef(C-216)

The effect of each these operators can be appreciated more readily by considering their

semantics.
Fl® f](o) = ttiff forall0 < i < |o|, F[f] (o0 -
Fl& fl(o) = ttiff exists0 < i < |o], F[f
Flm f](o) = ttiff foralll < i < |o|, F[f
Flo fl(o) = ttiff exists 1 < i < |ol|, F[f](oi ..

oi) =tt

LLop) =tt
..O'|U|) =tt

O‘\U‘) =tt

& and <& satisfy a range of useful algebraic properties which are listed below.

Distributive laws

FEafABg=E(fAg)
Feofveg=e(fVvy)
FEfVvEgDE(fVY)
Fo(fAgDOfNGyg

Absorption laws

FofVef=of
Fofrhneof=of

Complement laws

FfVvef=aof
Fianmf=mf

Laws relating to @ and &

H&f=of; skip

F ®f=m0m(moreD f ; skip)
Fofomf

Fefoeaaf
Feaf=mof

Ffog = FEfoEyg

BsAndEqu(€199
DsOrEqu(¢-199)
BsOrImp(C'l%)

DsAndImp(©¢-197)

DiOrDsEquDi(¢-207)
DiAndDsEquDs(¢-208)

OrDsEquDi(¢209)
AndBsEquBi(C-210)

DsDi(C-188)
BsEquBiMorelmp Chop(C.214)
BilmpBs(C-200)
BsImpBsBs(¢-201)
BsEquBsBi(¢-21)
BsImpBsRule(¢203)
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Fefigoef DsChopImpDsB(C-204)
Fefveg=m(@fvaog) BsOrBsEquBsBiOrBi(¢-206)

State formulae

A state formula w refers only to variables in the first state (see Section 2.1.3.2).
Therefore if w holds (in the first state) of an interval then it must hold over all non-
empty, strict initial intervals. In the case that the interval is empty, then 5 w holds

vacuously (BsDef(C-189)).

FwDaw StateImpBs(C-212)

Time reversal

Recent developments in ITL include Moszkowski’s work on time reversal [Mos14b]. Both
& and & operate in ‘forward time’ —i.e. over ogg .. oy for increasing k. However, each

of these operators has a counterpart under time reversal, namely @ and <& .

In keeping with established practice in ITL, these are referred to informally as “box-t”
and “diamond-t” respectively.® The following theorems state that each operator is the

reflection of its counterpart:

F®fH)=mf BsrEquBtr(¢-217)
Fof) =of" DsrEquDtr(C-218)
Fmf)y=sf BtrEquBsr(¢-219)
F(of)r=of DtrEquDsr(¢220)

All of the laws relating to & and < have related laws for and ¢ under time
reversal. These are not considered further in this thesis since they are not required for
the development of runtime monitors, nor the operator > upon which they are based.

Laws relating to these operators are available in Section 6.2 of [CMS19].

3.7 Formalisation of the first occurrence operator

The introduction of the first occurrence operator > along with a thorough investigation of
its properties is one of the main contributions of this thesis. Its role in restricting the chop

operator was described in Section 3.3.1. The formal definition of > f is given below.

>f = fAE-f FstDef(C-222)

3The use of ‘t’ was selected because, while it is usefully follows ‘s’ alphabetically, ‘t’ can bring to mind the
word “tail”. The reflected operators [d and < refer to strict suffixes (tails).
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The definition reflects its semantics (Equation 3.3.4, page 50) repeated below for convenience,
and comprises two parts: (i) the whole interval satisfies f, and (ii) no strict initial interval
satisfies f.

Fl> fl(o) = ttiff F[f](o) = ttand forall0 < i < |o|, F[- f](00..0i) = tt

Figure 3.9 illustrates an interval over which > f holds.

~f
> f 4
fﬁf

f

Figure 3.9: > f

Other authors have proposed restricting the chop operator using a combination of first and
last occurrences, most notably in EAGLE [BB08] which was discussed previously in Section
2.4.3. The approach taken here is different: in this thesis no change to the semantics
of the chop operator is proposed. The new operator >, derived within existing ITL, is
defined independently of chop, although one of its principal applications is to restrict chop
in specific circumstances. In fact, > turns out to be a generalisation of halt — specifically,
>(fin(w)) = halt(w). A discussion of the relationship between > and halt is presented in
Section 3.8.6.

> f denotes the first initial interval that satisfies f —i.e. no strict prefix satisfies f. Therefore

the length of such a satifying interval is uniquely determined:

Fo>fAlen(i) A (>FfAlen(§)Di=j FstLenSame(C-250)
A related law states that if f holds for some initial interval then there is a unique initial
interval that satisfies > f defined by its length.

Fof D3 ke (len(k) A>f) DilmpEzistsOneDiLenAndFst(C-251)

3.8 Algebraic properties of the first occurrence operator

In the remainder of this chapter the algebraic properties of > are investigated. The majority
of the work below was developed to establish and reason about the semantics of the runtime
monitors whose formal semantics will be given in Chapter 4. Indeed, it was the consideration

of how one might compose runtime monitors that led to the development of > as a suitable
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structuring mechanism. These laws, along with their proofs, are presented in Sections 6.3
and 6.4 of [CMS19].

3.8.1 First with simple formulae

The shortest interval is empty.

F D true = empty Fst True(C-226)

Since no interval satisfies false* there can be no shortest interval that does so.

F > false = false FstFalse(€-227)

The shortest interval that satisfies more (i.e. has at least two states) is an interval of unit

length.

= > more = skip FstMoreEquSkip(¢-233)

Any formula of the form, len(k) is equivalent to its own first occurrence. This is an obvious

consequence of specifying a length.

= >len(k) = len(k) FstLenEquLen(¢-272)
There are two special cases of FstLenEquLen(C2™) deriving from LenZeroEquEmpty(C-143)
and LenOneEquSkip(C-144):

F > empty = empty FstEmpty(©-229)

F > skip = skip FstSkip(C.273)
Furthermore, conjoining a formula f with empty renders the > operator redundant.

F > f Aempty =f Aempty FstAndEmptyEquAndEmpty(¢-230)
Conversely, disjoining formula f with empty renders f redundant.

~ >(empty V f) = empty FstEmptyOrEquEmpty(¢-231

State formulae, denoted conventionally by w, do not include any temporal operators (Section

2.1.3.2) and hold whenever w is true in the first state. Therefore, > w can only be satisfied

4In infinite-time ITL the formula true ; false is satisfied by an infinite interval. However, this thesis only
uses finite ITL.
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by an empty interval:

F >w=empty A w FstState(C-243)

3.8.2 First with conjunction and disjunction

F>fAgD>(fAg) Fst With AndImp(C-22)
Fe(fve=EfARogV(EgAR) FstWithOrEqu(©-2%Y

FstWithAndImp(©-?23) states that if > f and ¢ are both satisfied then this implies that the
interval satisfies the first occurrence of f A g together. This follows because f A g are satisfied
by the interval and, since no strict initial interval satisfies f, this must be the first occurrence
of the conjunction. FstWithOrEqu(© 2% separates the first occurrence of a disjunction f V ¢
into two cases: either the interval satisfies the first occurrence of f with no strict initial

interval satisfying g, or vice versa. Note that this includes the possibility of > f A > g.

It may appear that a corresponding law for >(f A ¢g) would be appropriate. However, such a
formula does not permit anything more interesting than f A g, or & = (f A g), to be deduced.
Both of these formulae follow directly from the definition FstDef(¢222) so nothing new is
derived. The first occurrence of the conjunction does not preclude any number of strict initial
intervals satisfying either f or g — but not both together. However, if the first conjunct is
of the form > f then there is a useful law which allows the introduction or elimination of >

around an expression of the form > f A g.

F>(fAg=>fAg FstFstAndEquFstAnd(C-225)

Consider the first occurrence of a disjunction >(f V ¢). Suppose an interval satisfies > f,
then it only satisfies >(f V g) if no strict initial interval satisfies g. Otherwise > g would
occur before t> f. This is the basis of the law Fst WithOrEqu(¢-229)

F>(fVe)=EfAE-gV(IgARS) FstWithOrEqu(©-2%
The following laws state that in the formula >(f V g), both f = > f and g = > g hold. These
laws are useful for moving > outside of parentheses in proofs.

F>(>fVg)=r(fVy) FstFstOrEquFstOrL{¢-26%)
F (Vg =e(fVyg) FstFstOrEquFstOrR(C-270)
FeEfveg) =(fVyg) FstFstOrEquFstOr(C-2T)
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3.8.3 First with prefix intervals

Although @ — f A f appears, at first sight, to be stronger than & — f A & f, it turns out that
they are, in fact, equivalent. This may be understood by considering the following argument:
& — f states that no strict initial interval satisfies f; therefore & = f D (& f = f). This leads

to an alternative equivalence for > f:

F>f=a-fASf FstEquBsNotAndDi(C-257)

The two laws, FstOrDiEquDi(C-?*Y) and FstAndDiEquFst(C-23%) permit the absorption of
either > f or & f depending upon whether they are disjoined or conjoined.

F fVOLf=0f FstOrDiEquDi(¢ 234
F DfASf=EDS FstAndDiEquFst(C-235)

The two laws, DiEquDiFst(C-236) and FstDiEquFst(¢237) show that terms involving both of
the operators ¢ and > in either order consecutively can be reduced by the removal of one of

the operators.

Fof=onf DiEquDiFst(€-236)
F>of=nf FstDiEquFst(¢237)

The laws below can be derived from DiEquDiFst(¢236) and FstDiEquFst(¢ 237, The second
law, DiOrFstAndEquDi(€-239)  demonstrates an absorptive property, and the third law,
FstDiAndDiEqu(©-21) | shows how > limits the effect of <.

F oAV =EDfV(OfAY) DiAndFstOrEquFstOrDiAnd(¢-23%)
FofvEfrg=of DiOrFstAndEquDi(C-2%9)
Fe(OfASYN=EfACY)V(BgADS) FstDiAndDiEqu(C-240)

Finally, the following two laws demonstrate that if there is no initial interval (or strict initial
interval) satisfying > f then there is no initial interval (or strict initial interval) satisfying f.

Both laws are equivalences.

F@oa>f=mof BiNotFstEquBiNot(C-241)
Fa->f=m-f BsNotFstEquBsNot(C-242)
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3.8.4 Distribution
3.8.4.1 Through conjunction and disjunction

This section includes a key result in this thesis: LFstAndDistr(¢-2°2). Essentially this law
permits the distribution of chop across conjunction because the interval length on the left
side has been fixed thus making the chop point deterministic. The law has four useful

specialisations.
F(fAQ) ;M AFAGR) ; hh=0fAg Ag);(h Ahy) LFstAndDistr(C-252)

There are some special cases of LFstAndDistr(C-252) that are also useful laws in their own

right. Each is a straightforward derivation.

e Setting hy = hy in LFstAndDistr(¢-2°2) generates the law:

F(>fAQ) s AAfAG) ; h=FfAgnAe); b LFstAndDistrA(©25%)

e Setting g1 = ¢ in LFstAndDistr(¢-252) generates the law:

F(>fAQ:AMBFAG ;o= (>fAg); (b Ahy) LFstAndDistrB(¢-25%)

(C.252)

e Setting g1 = ¢go = true in LFstAndDistr generates the law:

FofihmADf; ho=0f; (A h) LFstAndDistrC(¢-255)

Note that it is unnecessary to specify a similar (valid) law for disjunction:
>fsgvefih=pfigVvfih

since it is a direct application of ChopOrEqu(C-107),

e Setting hy = hy = true in LEstAndDistr(¢-2°2) and using DiDef(¢-13) generates the law:

FOEfAG)ANSEIAR) =0CfAgAg) LFstAndDistrD(¢-256)

3.8.4.2 Through chop

This section introduces a number of laws that describe the behaviour of the first occurrence
operator as it distributes through chop. It contains two of the most important mathematical
results of this thesis. The first is FstFstChopEquFstChopFst(C-2%0) whose intuitive appeal

is obvious but which turned out to be remarkably difficult to prove. It expresses the
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fact that the sequential composition (the fusion) of two first occurrences itself denotes
a first occurrence. The second important result, FstFizFst(®-26D) is a corollary of
FstFstChopEquFstChopFst(C-260) and states another intuitive idea that the first occurrence

of f has no other first occurrence of f as a strict prefix.

There is a particular boundary case that occurs when chop is combined with formulae on an

empty interval. This results in the following theorem:’

= i gAempty=fAgAempty ChopEmptyAndEmpty(¢-139)

The chop operator requires a shared state. The only way that the composition f ; ¢ can
occur in a single state is if each of f and ¢ is true over the empty interval. A useful corollary

1s:

= f ; skip A empty = false ChopSkipAndEmptyEquFalse(¢140)

which states that it is impossible for any formula of the form f ; skip to be satisfied over an

empty interval.

Before the two particularly important results are presented the next two laws provide some
necessary background. They involve the negation of chop in which one of the formulae is a
first occurrence. The law NotFstChop(¢-2%%) states that if the first occurrence of f followed
by g does not hold, then either there is no initial interval that satisfies the first occurrence
of f, or there is an initial interval that satisfies > f but the corresponding suffix interval does

not satisfy g¢.

F=a(f;9)=-0>fV>f; g NotFstChop(©-25%)

NotFstChop(©-258) can be compared to NotSkipNotChop'© 129 F - (skip ; = g) = empty V
(skip ; ¢), and, indeed, can be considered a generalisation of it. This is interesting because
combining negation and chop is difficult due to the non-determinism inherent in the chop
operator. However, when the length of one of the subintervals is fixed then a useful law
emerges. The aforementioned NotSkipNotChop(©-129) is such a special case and has proved
to be very useful in its own right. However, it is interesting to note that this new law,
NotFstChop(©-2°®)  is a generalisation.

To illustrate the point an informal argument will be employed to show how to specialise
NotFstChop(©-2%%) and produce NotSkipNotChop(C-129).

5The importance of this law emerged during informal discussions about this research with Peter
Messer, previously Head of School of Computing at De Montfort Univeristy. The law is used
in the proof of FstChopEmptyEquFstChopFstEmpty(©?*? which, in turn, is used in the proof of
FstFstChopEquFstChopFst(¢-2°") This latter law expresses a key property of the first operator >.
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Set f = skip, then it follows that = (>skip; g) = = & >skip V >skip; = g. As will
be established later, >skip = skip (FstSkip(©-?™)), so the law reduces to — (skip ; g) =
= & skip V skip ; = g. Arguing informally, the first disjunct expresses the fact that no initial
subinterval has two states (i.e. skip), which is more concisely written as empty. Hence:

- (skip ; g) = empty V skip ; = ¢ which, negating g, leads to the more specific law.

The law BsNotFstChop(¢ 2 further extends NotFstChop(®-2°®) in that it requires the
property to hold over all strict initial intervals. This variation is required in the proof of

the main result that follows it.

FEoEfig)=Sempty Voo fVEfiEyg BsNotFstChop(C-259)

The following theorem is one of the most important mathematical results in this thesis and

expresses an important property about the sequential composition of first occurrences.

F>Efig=nfi>g FstFstChopEquFstChopFst(C-260)

The intuition is that the expression > f ; > g requires that the first occurrence of f is followed
by the first occurrence of g. This is not equivalent to the first occurrence of f followed by
any occurrence of g because ¥ g O > g. However, the introduction of > around the whole

expression, >(>> f ; g), forces the first occurrence of g.

Another of the important mathematical results in this thesis is a corollary of
FstFstChopEquFstChopFst(C-260).

Fo>f=p>f FstFizFst(¢-261)

which expresses the idea that if an interval satisfies > f then no strict prefix interval can satisfy
> f —i.e. the interval not only represents the first occurrence of f but it also represents the
first (and only) occurrence of > f. Thus > f is a fixpoint of t>. This result underpins another
important theorem that appears later in this thesis — the First Fixpoint Law for primary
monitors, MFizFst(C-309)

3.8.5 First occurrence with iteration

The previous section discussed the combination of the first occurrence operator and
chop. However, care must be taken when combining first occurrence with chopstar. The

propositional axioms for ITL include

F f* = (empty V ((f A more) ; f*)) ChopStarEqu(¢-16)
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which specifies that an empty interval satisfies f*% Therefore

F >(f*) = empty FstCSEquEmpty(©-276)

and, in general,

>(f*) # (> )

Alternatively, it may be useful to write specifications including, e.g., >(f™), as this determines
a specific number of iterations rather than a choice. The following law states that the finite

iteration of > f is itself a first occurrence.

- " =e((>)"), [n=0] FstlterFizFst(¢-277)

One must distinguish between (&> f)"™ and >(f") because

>(f") # (> )"

As an example consider the formula f = (fin X mod2 =1 A fin X = X +2) V (fin X = 2%)
and the interval ¢ in which o¢(X) =1,01(X) =2,02(X) =3,....

d eo—e ® °
c) © ® ° °
b) @ ® ® >
(256)
a) ©6—e—e—9
® © 0600006060600 0000000000000 00000 0 00
X 1 2 3 4 5 7 8 16 32

Figure 3.10: Comparing the four initial intervals satisfying f3

In Figure 3.10 the four prefix intervals satisfying f3 have been labelled a) ... d). The interval
marked a) represents >(f3): the shortest initial interval satisfying f3. The interval marked d)
represents (> f)3: at each step the shortest interval satisfying f is taken. This is the shortest
path (>((>> f)?)) that can be generated in this way (see FstlterFizFst(C277)). The intervals
b) and c) represent neither >(f3) nor (> f)2 but do represent other ways of satisfying f3.

3.8.6 First and halt

Both halt w and > f define a fixed-length interval. The difference is that halt is used with a

state formula w whereas > can be used with a temporal formula. Consider the semantics of

5The empty interval even satisfies false*.
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these operators:

Fl>f](o) = ttiff F[f](c) = tt and forall0 < i < |o|, F[- f](c0..04) = tt
Flhalt f](o) = ttiff F[f]({0),)) = tt and forall0 < i < |o|, F[= f](0i..0p,) = tt

For example, the formula halt P holds over an interval in which P is true in the final state

and not in any previous states. halt P holds over an empty interval if P does. The following

laws each express halt w in terms of >:

F haltw = >(fin w)
F haltw = >(halt w)

F > (Ow) = haltw

3.9 The last occurrence operator

HaltState EquF stFinState(C-246)
HaltStateEquFstHaltState(C-247)
FstDiamondState EquHalt(C-2*%)

A reflected first occurrence operator <1 f could be considered to represent the most recent

interval to satisfy f.

Qf = far~f

It is possible to determine a relationship between > and < as follows:

(>f)"
=(fre-f)r
=frA@-f)
=f"A@(-f)
=frAm-fr
=f"

And symmetrically:

(<f)”
=(fAE-f)
=/mA@-f)"
=frAp(f)
=f"Amf7
=pfr

LstDef(C-282)

FstDef (€-222)
TRAnd(¢61)
BerqUBtr(C'217)
TRNot(¢57)
LstDef(¢-252)

LstDef(C'282)
TRAnd (¢ 61)
BtrEquBsr(¢-219)
TRNot(¢57)
FstDef(C-222)
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Thus the following laws hold:

Ff)r=<af" FstrEquLstr(©-234)
F(af) = f" LstrEquFstr(C-285)
A straightforward corollary can be obtained using FstrEquLstr(¢2%Y) and TRChop(¢59):

F(>f;>g)=<g"; af" FstChopFstREquLstrChopLstr(€-286)

Recall that one of the most important results in this thesis, FstFstChopEquFstChopFst(¢-260),
proved that the sequential composition of two first occurrence expressions is itself a first
occurrence: = >(>f; g) =>f; >g. It is expected that the reflected law would also hold:
ie. that - <(g; <f)=<g; <f. The following argument can be used:

Q9" Qf”

=(>f;>g)" FstChopFstREquLstrChopLstr(C-236)
=>Ef59) FstFstChopEquFstChopFst(C-260)
=<1 9) FstrEquLstr(€-284
=<(g" ;5 (>f)") TRChop(C'59)
=<lg": Af7) FstrEquLstr(¢-28%)

Thus, relabelling, the following holds:

- <(g; <f)=<g; Qf LstChopLstEquLstChopLst(C-239)

This final section has shown how the reflected theory could be developed and future work will

investigate these relationships in more detail.

3.9.1 Last and until

The LTL operator U/ is not provided as part of the standard library of derived operators
in ITL [CM16]. However, a definition of U for finite intervals was provided by Moszkowski
[Mos83]:

Equation 3.9.1 fidfy = FPe(PADOPD(fV (i AOP))))

where P does not occur free in fi or f>.

The ITL operator U is illustrated in Figure 3.11.
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Figure 3.11: Moszkowski's definition of fi U fo in ITL

fid f> is defined over a finite interval such that for some 0 < k < [o], 00..0)4| F fi, 01..014 F
fi, ooy Ok-1..0,4 F fi and 0 .. 0}y = fo. There may be more than one value of k that
satisfies fi U fo. However, it is possible to specify that k is maximal, and therefore that f
holds up to the last occurrence of fo, by writing fi U (< f2). Thus the reflected first occurrence

operator can be used to construct a deterministic until formula.

3.10 Summary

This chapter introduced the background to the first occurrence operator. An investigation
into fixed length intervals within I'TL discovered a collection of useful laws. Three new I'TL
operators, 5 and & , and > were introduced. A significant number of laws relating these new
operators to each other and to existing ITL operators was developed. These laws provide the

basis of ITL-Monitor, the runtime monitor system introduced in Chapter 4.

Two of the most important mathematical results in this thesis have been presented: the
laws FstFstChopEquFstChopFst(C-260) and FstFizFst(€-261) These laws capture fundamental,
intuitive properties of > upon which the later theory relies. A discussion pointing to future

work in which the theory can be developed using reflection was presented.
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Chapter 4

ITL Monitor

ITL-Monitor is a restricted subset of ITL used to construct specifications whose components
describe a deterministic partitioning of an execution trace. This was illustrated previously
in Section 3.3.2. Furthermore, this deterministic partitioning property is preserved under
monitor composition — this is a key property of ITL-Monitor which is based upon the fact that

every ITL-Monitor represents its own first occurrence.

ITL-Monitor has also been realised as a DSL (cf. 2.4.1) in Scala. As code, a monitor performs
the réle depicted in Figure 2.15 (page 32), receiving states from a running program, and
maintaining an internal representation of the execution trace. At each deterministic fusion
point the monitor assesses whether or not the current trace satisfies its ITL formula. The

implementation of ITL-Monitor in Scala is presented in the following chapter.

In this chapter, the syntax of ITL-Monitor expressions is introduced along with a translation
function to their respective ITL formulae. The behaviour of each monitor operator is explained
with an emphasis on their practical réle in runtime verification. In Section 4.4 the algebraic
properties of ITL-Monitor are presented. The analysis of these properties formed another
major aspect of the current work and resulted in a comprehensive list of monitor laws and
associated proofs. All of these have been mechanically checked by Isabelle/HOL and appear
as Chapter 8 of [CMS19].

The chapter concludes with a small example specification.

4.1 Monitor syntax and translation to ITL

The syntax of a monitor expression, ITL-Monitor, is given in Figure 4.1.



72 Chapter 4: ITL Monitor

ITL-Monitor ::= FIRST (ITL-Formula)

ITL-Monitor UPTO ITL-Monitor
ITL-Monitor THRU ITL-Monitor
ITL-Monitor THEN ITL-Monitor
ITL-Monitor WITH ITL-Formula

where ITL-Formula represents any well-formed I'TL formula.

Figure 4.1: ITL-Monitor syntax

The unary operator FIRST has the highest priority. Each of the binary operators has equal
priority and is left-associative. Parentheses can be used to override these defaults. The ITL
formula represented by each ITL-Monitor expression is defined by the translation function
M : ITL-Monitor — ITL-Formula (Figure 4.2).

M(FIRST (f)) = >f MFirstDef (C-239)
M(aUPTO D) = >(M(a)V M(D)) MUptoDef(¢-290)
M(aTHRU D) = (O M(a) A & M(D)) MThruDef(©291)
M(a THEN b) = M(a); M(b) MThenDef (¢-292)
MawWITHf) = M(a) A f MWithDef(C-293)

Figure 4.2: ITL-Monitor translations to ITL formulae

A description of each of the ITL-Monitor operators is given below. (Note that all monitors are

first occurrences: - M(a) = > M(a) (MFizFst(¢-39)). This law will be presented formally
in Section 4.4.1).

FIRST (f)

This monitor succeeds as soon as the states consumed comprise an interval that satisfies

> f. This basic monitor is used to define the extent of the subintervals into which an

execution trace is divided.

a UPTO b

If a specification can be expressed as the first occurrence of an interval that satisfies
either one of two independent formulae, M(a) or M(b), then a UPTO b permits each

to be run independently and both terminated as soon as one is satisfied.
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Figure 4.3: FIRST (f) UPTO FIRST (g)

Figure 4.3 illustrates a situation in which the expression FIRST (f) UPTO FIRST (g) is

satisfied with formula f occuring before formula g.

a THRU b

This monitor specifies the shortest interval containing prefixes in which both M(a) and
M(b) are satisfied. Necessarily, this means that a satisfying interval is a model for the
first occurrence of either (or both) of these formulae. The monitor terminates as soon as
either a or b has terminated: this ensures that the fixed-length property is maintained.

Furthermore, the monitor fails if either of its two component monitors, a or b, fails.

Figure 4.4: FIRST (f) THRU FIRST (g)

Figure 4.4 illustrates an interval that satisfies FIRST (f) THRU FIRST (g). The interval

satisfies > ¢ and a prefix interval satisfies > f: i.e. the example interval satisfies
S>fAD>g.
a THEN b

The ITL formula represented by M (a THEN b) is the sequential composition of two first

occurrences, M(a) ; M(b). The resulting formula is itself a first occurrence:

M(a) 5 M(b)
= M(a); > M(b) MPFizFst(¢309) | FstFigFst(C-261)
= (>M(a) ; >M(D)) FstFstChopEquFstChopFst(C-200)
=>(M(a) ; M(b)) MFizFst(C-309)



74 Chapter 4: ITL Monitor

Since M(a) is a first-occurrence (MFizFst(C399))  this ensures that the monitor

composition M (a THEN b) defines a unique point of fusion within the execution trace.

Figure 4.5: FIRST (f) THEN FIRST (g)

Figure 4.5 illustrates the sequential composition of two monitors FIRST (f) THEN
FIRST (g). To succeed both components must succeed: ©>f up to the uniquely

determined fusion point, and then > ¢ to the end of the interval.

a WITH f

The conjoinment of M(a) and f. This monitor consumes sufficient states to satisfy
M(a) and then checks that the formula f, which can be any ITL formula, holds over
the same interval. Mathematically, this is the same monitor as FIRST (M(a) A f)

M(FIRST (M(a) A f)))

=p>(M(a) A f) MFirstDef (€289
=(>M(a) Af) MFizFst(C-309)
= M(a)Af FstFstAndEquFstAnd(C-2%5)
=M(a) A f MFizFst(C-309)
= M(a WITH f) MWithDef (¢-29)

By separating the components of the formula using ¢ WITH f, it is possible for an
implementation to separate the search for a suitable interval (> M(a) must be checked
with the addition of each new state) from the final verification of f — a check that only

needs to be performed once.

A number of derived monitors are defined in Figure 4.6 below. These capture common
specification patterns. The unary operators take precedence over the binary operators. Each
of the latter has equal priority and is left-associative. Parentheses can be used to override
these defaults.
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LEN (k) = FIRST (len(k)) MLenDef(C29)
SKIP = FIRST (skip) MSkipDef (¢-297)
FAIL = FIRST (false) MFailDef (¢-300)
EMPTY = FIRST (empty) MEmptyDef(¢-29)
HALT (w) = FIRST (fin w) MHaltDef (€29
a TIMES 0 EMPTY

a TIMES (k + 1)

~

a SOMETIME w =

~
o~

a THEN (a TIMES k), k>0

GUARD (w) = EMPTY WITH w
w; UNTIL wp = (HALT w2) WITH (@ w)

a ALWAYS w = a WITH (O fin w)

a WITH (& finw)

aWITHIN f = aWITH (8~ f)
aAND b = a WITH M())
a ITERATED = a WITH (M(b))*

MTimesDef (€299

MGuardDef (¢ -298)
MUntilDef(¢-303)
MAlwaysDef (¢-301)
MSometimeDef(¢-302)
MWithinDef (¢-304)
MAndDef(¢-305)
MTterateDef (¢-306)

Figure 4.6: Derived monitors

These derived monitors are useful in three respects.

e To express useful zero and unit elements in the algebra: EMPTY and FAIL.

e To improve readability: e.g. LEN, HALT and GUARD.

e To improve efficiency. This includes the group of monitors defined using WITH. The

discussion of WITH on page 74 showed how the right-hand operand only needs to be

evaluated once. The specific behaviours of each of these monitors have been used to

provide more efficient code implementations.

Each of the derived monitors is described below.

LEN (k) and SKIP. These monitors are satisfied by any intervals of the required length.

Recall that skip = len(1). For example, a THEN b shares a common state, whereas in
a THEN SKIP THEN b, @ and b have no common state.! The difference is demonstrated

by Figure 4.7.

THEN is an associative operator (MThenAssoc

(0,355)).
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@ THEN SKIP THEN b

Figure 4.7: The effect of introducing a SKIP monitor

FAIL and EMPTY. These monitors represent annihilators and units when combined with
various binary monitor operators. As such they perform an important réle in the ITL-

Monitor algebra which is presented below in Section 4.4.

HALT (w). This is a special case of FIRST in which an interval is defined up to the first
occurrence of state formula w, or, in ITL, = w A finw. The relationship between
first occurrence, >, and halt was discussed in Section 3.8.6. The HALT monitor can
be used to define a finite subinterval up to the first occurrence of a state event — for
example, HALT Button_Pressed. However, FIRST can be used to define a subinterval
based upon temporal relationships — for example, FIRST (G((X < X) A more)): “Up
to the first point at which the state variable X receives a value that it was assigned
previously.” The addition of more ensures that progress is made because X «+ X is

trivially satisfied by an empty interval.

a TIMES k. This monitor represents a specific number of instances of a fused together. An

example showing a TIMES 8 is shown in Figure 4.8.

Figure 4.8: a TIMES 8

If £ = 1 then this is equivalent to a, alone; and if ¥ = 0 then this is equivalent to
EMPTY.



4.1 Monitor syntax and translation to ITL 77

GUARD (w). This monitor treats the current state as an empty interval and establishes
whether or not w holds in this empty interval. A guard can be useful for specifying
an intial condition, e.g. GUARD (X = 0) THEN aq, or for analysing the final state of an
interval, e.g. @ THEN GUARD (X = 0). A series of guards can also be used to determine

future behaviour as described in Section 4.3.

wy UNTIL wo. This monitor specifies the shortest interval that satisfies wq U wy. This is

equivalent to >(m w; ; w).

The remaining derived monitors are special cases of a WITH f. FEach monitor can be

implemented more efficiently by exploiting the properties related to its specific function.

a ALWAYS w. w can be checked in each state. If ever — w holds then the whole monitor fails

immediately.

a SOMETIME w. w can be checked in each state. If w holds in the final state of some
prefix interval og .. 0;, then the property holds for any extended interval o .. o; where
0<i<j.

a WITHIN f. As each new state is supplied, f is checked against each newly-extended prefix
interval. If f should ever be satisfied, but M (a) is not satisfied, then the monitor fails.
The monitor FAIL is equal to FIRST (false) WITHIN EMPTY.

a AND b. The monitors a and b must be satisfied simultaneously by the same interval. It is

possible for an implementation to run these monitors simultaneously, failing if, and as
soon as, either monitor fails. Figure 4.9 illustrates FIRST (f) AND FIRST (g).

Figure 4.9: FIRST (f) AND FIRST (g)

a ITERATE b. This monitor combines a with a repetition of b. This is similar to AND above
in that for a satisfying interval both M (a) and (M (b))* must hold. Figure 4.10 provides

an illustrative example.
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Figure 4.10: (a TIMES 8) ITERATE b

Example 4.1.1 Partition. Consider the ITL-Monitor m where

m = a ITERATE b
b =FIRST(X <« X + 1) WITH f

The ITL formula represented by M(b) is (X < X + 1) A f. The first three cycles of
(M(b))* are illustrated in Figure 4.11.

X X+1 X+2 X+3

Evaluation of ((X < X +1) A f)*

Figure 4.11: Partitioning using a counter

This demonstrates a partitioning of an evolving system using one of the state variables
as a counter. The checkout example (Section 6.3) uses a transaction counter to partition

the execution trace by customer transaction. The example can be generalised by writing,

e.g.

m = a ITERATE b
b =FIRST (X < X + 1) ITERATE ¢

This demonstrates that levels of partitioning can be nested. |
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4.2 Importable assumptions and exportable commitments

Moszkowski demonstrated how the use of temporal fixpoints could be used to reason
compositionally in ITL [Mos94, Mos96a, Mos98]. The original work was applied primarily to
safety and liveness conditions. However, it also provided a general framework for reasoning
about I'TL specifications compositionally. The application of this theory within ITL-Monitor

is explored in this section.

4.2.1 Background

Recall that sequential composition connects formulae using ITL’s chop operator, o |= fi ; fo iff
exists k s.t. 00..01 = fi and 0y..0),| = fo. Parallel composition relates to formulae composed

with A requiring both conjuncts to be satisfied simultaneously: o = fi A fo iff ¢ = fi and
o= f
Consider the sequential composition, fi ; fo. Suppose that fi D Co, fo D Co, and Co* = Co.

In this case if fi ; fo holds for some interval, then so does Co ; Co and hence Co* which
is equivalent to Co. A formula Co with the property that Co* = Co is an ezportable

commaitment.

Furthermore, consider some property As that holds over an interval and also satisfies
As = @ As. In this case As holds over every subinterval. Such a formula is an importable

assumption.

It is possible for a formula to be simultaneously an importable assumption and an exportable
commitment. An example of such a formula is keep f. Such formulae are referred to as very

compositional. Moszkowski [Mos96a] considers the following general form of an ITL theorem:

Fw A As A Sys D Co A finw'

in which w is an initial state formula, As is an assumption about the overall interval, Sys is
the system under consideration, Co is a commitment about the overall interval, and w’ is a
final state formula. Thus, an interval that satisfies the formula w A As A Sys also satisfies the
commitment Co and final state w’. The composition of two systems (Sys ; Sys’) with suitable
importable assumption As and exportable commitment Co is summarised in the following
proof rule 4.1 [Mos96a].

Rule 4.1

FwA As A Sys D Co A finw'
Fw' A As A Sys’ D Co A finw”

Fw A As A (Sys ; Sys’) D Co A finw”
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For this rule to be sound the following conditions must be satisfied:?

Importable assumption As =@ As (1)

Exportable commitment Co = Co* (2)

Note that (Sys ; Sys’) is satisfied by the whole interval but the fusion point is non-
deterministic. Therefore, if the global assumption As is to apply to an arbitrary subinterval
then it must be a fixpoint of @ (all subintervals) (condition (1)). Furthermore, if both Sys
and Sys’ imply Co then the whole interval satisfies (Co ; Co), and hence Co (condition (2)).

Sequential composition can be generalised to handle zero or more iterations, (Sys*). Once

again, (4.2) is taken from [Mos96a]. The soundness conditions (1) and (2) apply.

Rule 4.2

FwA As A Sys D Co A finw

FwA As A Sys* D Co A finw

Both proof rules 4.1 and 4.2 have simpler counterparts that may be generated by setting
various components to true. This technique can be used to remove the initial and final states
(w and w'), the assumptions As, or the commitments Co, or any combination of these as

required.

A collection of formulae that are fixpoints of chopstar and E — and hence can be used for

exportable commitments and importable assumptions — are contained in [Mos96¢].

Consider an ITL-Monitor, a ITERATE b, that is monitoring the property M(a) A (M(b))*. If
M(b) implies some exportable commitment Co, then each successful iteration of b maintains
Co* which, in turn, establishes Co over the whole interval. This is illustrated in Figure 4.12

and demonstrates how an exportable commitment Co can be verified incrementally.

2These conditions are expressed as equivalences. However, to establish them one only needs to show that
Co* D Co and As D [&] As because their converses are laws.
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a ITERATE b

o e 6 6 06 06 0 O e 6 6 6 06 0 O e 6 6 6 06 0 O

Within the monitor a ITERATE b, the image shows three cycles of b. If M(b) D Co
then Co* is established at the end of each cycle and, if Co is an exportable
commitment (i.e. Co = Co*), then Co holds over the whole interval.

Figure 4.12: Exportable commitment

4.2.2 Examples

Example 4.2.1 Invariant. Consider the ITL-Monitor m where

m = a ITERATE (FIRST (f) WITH (A < A))

The monitor verifies an execution trace against the ITL formula M(a) A (>>(f) A (A « A))*.
The subformula A < A specifies that the value of A in the final state of the subinterval
equals its value in the initial state of the subinterval. The formula A < A is also a fixpoint
of chopstar, and hence an exportable commitment. Therefore, since M(m) D (A < A)*, and
(A« A)* = (A < A), each iteration re-establishes A <— A and, when the loop terminates,

this invariant property will also hold over the whole interval. |

Example 4.2.2 Refactor. Consider the ITL-Monitor m where

m = a ITERATE (FIRST (f) ALWAYS (w)) ITERATE (FIRST (g) ALWAYS (w))

which monitors the ITL formula M(a) A (>f A Ow)* A (> g A Ow)*. Suppose that this

monitor is determining an exportable commitment Co where

Co = Coy A Coy
Ow A f D Coy
Ow A g D Coy

The monitor (inefficiently) duplicates the evaluation of the subexpression ALWAYS (w). In
general, one cannot refactor (>f A h)* A (> g A h)* to (>f)" A (> g)* A h. However, the

formula OQw is a fixpoint of @ and hence an importable assumption. Therefore, it is possible
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to establish separately that Ow holds over the whole interval, and import it into all of the

subintervals specified by the individual > f and > g subformulae.

m = a ALWAYS (w) ITERATE FIRST (f) ITERATE FIRST (g)

Thus ALWAYS (w) runs concurrently with the two parallel iterations. If w is discovered not to
hold in any state then the whole monitor fails immediately. (See discussion on ALWAYS (page
7). [

4.3 Selection

The monitor a UPTO b is satisfied by an interval provided that the interval satisfies either
a or b (or both). Both monitors analyse the evolving interval until either M(a) or M(b)
holds, at which point the composition succeeds. This concept can be specialised so that the
choice between a and b is based upon the first state of the interval. Such a situation arises at
the point of fusion between two monitors a THEN b. The final state of a becomes the initial
state of b thus providing the possibility of communication between the two subintervals. The
continuation branch can be selected following the application of a single-state monitor that

involves a state expression, w. For example, consider the following pattern:

(a UPTO (HALT (w))) THEN ( (GUARD (w)  THEN &) UPTO
(GUARD (— w) THEN b)) (S1)

The monitor expression (¢ UPTO (HALT (w))) is satisfied by an interval over which either
M(a) holds, or halt(w) holds. Suppose that M(a) A O(— w) represents normal termination
and halt(w) represents some exceptional condition. The GUARD s can be used to analyse the
value of this formula and determine which subsequent monitor (by or b;) to evaluate. Both
branches of UPTO will be evaluated simultaneously and will continue until one of the branches
succeeds. However, if the guards are mutually exclusive, as is the case in this example, then

one of these guarded expressions will be eliminated immediately.

This pattern can be extended by using an integer flag, I say, to denote normal termination
(I = 0) or an error code (I > 0). In general, if € {0... M} then each one of M different
interrupts might be matched.
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a UPTO (FIRST (fin/ > 0)) THEN ( (GUARD (I =0) THEN &) UPTO
(GUARD (I =1) THEN b;) UPTO

(GUARD (I = M) THEN by)

All of the guards are checked in parallel. In this case all except one will fail and the monitor
will quickly reduce to one of the b;,7 € {0... M}.

If no guard succeeds then the monitor fails. The style of selection described by this pattern

is reminiscent of Dijkstra’s Guarded Command Language [Dij75].

4.4 Algebraic properties of monitors

The ITL-Monitor operators respect a number of algebraic laws which are presented in this
section. The calculus permits the specification/monitor designer to compose and refactor
ITL-Monitor specifications whilst maintaining equivalent I'TL formulae for analysis. All of the
laws in this Chapter have been developed as part of this thesis and appear in Chapter 7 of
[CMS19].

4.4.1 First occurrence fixpoint law

Primary monitors satisfy a fixpoint law: M(a) is a fizpoint of >:

F M(a) =1 M(a) MPFizFst(C-309)

This law states that the formula represented by any monitor is a first-occurrence formula.
Therefore, every monitor operator preserves this property. This result is used extensively

throughout the proofs of many of the algebraic monitor laws.

4.4.2 Equivalence of monitors

The following equivalence relation® facilitates a succinct expression of the algebraic monitor

laws.
a~b)=(F M(a)=M(b)) EqDef(¢324)
a~a MonEqRefl(¢-325)
a~bkFb~a MonEqSym/¢-326)

3Defined by A Cau as part of the Isabelle translation of the laws [CMS19].
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a~b, b~cktax~c MonEqTrans(¢-327

4.4.3 Annihilator and identity laws

FAIL UPTO a >~ a MFailUpto(C‘%O)
FAIL THRU a ~ FAIL MFail Thiu(C-331)
FAIL AND a ~ FAIL MFailAnd(C-332)
a THEN FAIL ~ FAIL MThenFail(©-33%)
FAIL THEN a ~ FAIL MFail Then!(©-33%)
FAIL WITH f ~ FAIL MFail With(C-335)
a WITH false ~ FAIL MWithFalse(©-336)
a WITH true >~ a MWith True € -337)
EMPTY UPTO a ~ EMPTY MEmptyUpto(©-33%)
EMPTY THRU a ~ a MEmpty Thru(C-339)
a THEN EMPTY ~ g MThenEmpty(©-310)
EMPTY THEN a ~ a MEmptyThen(C341)
EMPTY ITERATE b ~ EMPTY MEmptylterate(©-342)

4.4.4 Idempotence laws

a UPTO a ~ a MUptOIdemp(C'344)
a THRU a ~ a MThruldemp(©-345)
a AND a ~ a MAndIdemp(©-316)
(WITH f) o (WITH ) = (WITH ) MWithIdemp(C3)
a ITERATE a >~ a MTIterateldemp(©-3%3)

The law MWithldemp(©3*7) uses the notation of operator sections: (WITH f) = Am e
m WITH f

4.4.5 Commutativity laws

a UPTO b~ b UPTO a MUptoCommut(C-318)

a THRU b ~ b THRU a M ThruCommut(¢-349)

a AND b ~ b AND a MAndCommut(€-359)
(

(WITH f) o (WITH g) ~ (WITH g) o (WITH f) MWithCommut(C-351)
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a|

b

| a

a UPTO b
a THRU (a UPTO b)

a UPTO b |
a THRU (a UPTO b) |

Figure 4.13: Pictorial representation of MThruUptoAbsorp

4.4.6 Associativity laws

(a UPTO b) UPTO ¢ ~ a UPTO (b UPTO c¢)
(a THRU b) THRU ¢ ~ a THRU (b THRU c¢)
(a AND b) AND ¢ ~ a AND (b AND c¢)

(a THEN b) THEN ¢ ~ a THEN (b THEN c¢)

4.4.7 Absorption laws
a UPTO (a THRU b) ~ a
a THRU (a UPTO b) ~ a

(WITH f) o (WITH g) ~ (WITH (f A g))

The second of these laws is illustrated in Figure 4.13.

(C.358)

MUptoAssoct©-352)
MThruAssoc(C-353)

MAndAssoc(© 359
MThenAssoc(©-359)

MUptoThruAbsorp(©-357)
MThruUptoAbsorp(C-358)
MWithAbsorp(C-356)
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4.4.8 Distributivity laws

a UPTO (b THRU ¢) ~ (a UPTO b) THRU (a UPTO ¢)
(a THRU b) UPTO ¢ ~ (a UPTO ¢) THRU (b UPTO c)
a THRU (b UPTO ¢) ~ (a THRU b) UPTO (a THRU ¢)
(a UPTO b) THRU ¢ ~ (a THRU ¢) UPTO (b THRU c)
a THEN (b AND ¢) ~ (a THEN b) AND (a THEN c)

a THEN (b UPTO ¢) ~ (a THEN b) UPTO (a THEN ¢)
a THEN (b THRU ¢) ~ (@ THEN b) THRU (a THEN c¢)

) ~
)

MUpto ThruDistrib(¢ 359
MThruUptoR Distrib(¢ 362
MThru UptoDistm‘b( C.361
MUptoThruRDistrib(¢-360
M ThenAndDistrib(C-364)
MThenUptoDistrib(¢-3%6)
MThen ThruDistrib(€-367)

)
)
)
)

((HALT w) WITH f) UPTO ((HALT w) WITH g) ~ (HALT w) WITH (f V g)
MHalt WithUptoHalt WithEquHalt WithOr(€-369)
((HALT w) WITH f) AND ((HALT w) WITH g) ~ (HALT w) WITH (f A g)

MHaltWithAndDistrib(C-35)

((HALT w) WITH f) THRU ((HALT w) WITH g) ~ ((HALT w) WITH f) AND ((HALT w) WITH g)
MHalt With ThruHalt WithEquHalt WithAndHalt With(©-370)

(C.361)

Figure 4.14 provides a pictorial representation of the law M ThruUptoDistrib .

4.4.9 Algebraic structures

The monitor properties listed in the previous sections permit various algebraic structures

to be identified. Table 4.15 summarises the algebraic properties that are satisfied by these

operators.

Using the properties summarised in Table 4.15 the following categorisations can be made.

e (ITL-Monitor, AND) is an idempotent, commutative semigroup.

(ITL-Monitor, THEN, EMPTY) is a monoid.

(ITL-Monitor, UPTO, FAIL) is an idempotent, commutative monoid. This is also a

bounded, meet-semilattice with an order relation a < b < a UPTO b ~ a with greatest

element FAIL.

(ITL-Monitor, THRU, EMPTY) is an idempotent, commutative monoid. This is also a

bounded, join-semilattice with an order relation ¢ > b < a THRU b ~ ¢ with least

element EMPTY.

(ITL-Monitor, UPTO, FAIL, THRU, EMPTY) is an idempotent semiring (R, +,0,0,1). The
absorption laws, MThruUptoAbsorp'©-358) and MUpto ThruAbsorp(©-357) combine the
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a| .

C :

b UPTO ¢
a THRU (b UPTO ¢)

b UPTO ¢
a THRU (b UPTO ¢)

a THRU b |

a THRU ¢
(e THRU b) UPTO (a THRU ¢)

a THRU b

a THRU ¢
(a THRU b) UPTO (a THRU ¢)

o

b |

o

|

b UPTO c |
a THRU (b UPTO ¢) |

b UPTO c |
a THRU (b UPTO ¢) |

a THRU b |

a THRU ¢
(a THRU b)) UPTO (a THRU ¢)

a THRU b

a THRU ¢
(a THRU b)) UPTO (a THRU ¢)

a|

b |
c]

b UPTO c |
a THRU (b UPTO ¢) |

c

b UPTO c |
a THRU (b UPTO ¢) |

a THRU b
a THRU ¢
(a THRU b)) UPTO (a THRU ¢)

a THRU b
a THRU ¢
(a THRU b)) UPTO (a THRU ¢)

Figure 4.14: Pictorial representatio

n of MThruUptoDistrib(¢-361)

UPTO THRU AND THEN ITERATE WITH
Annihilator(L) FAIL  FAIL  FALL FAIL FAIL
Annihilator(R) FAIL  FAIL  FAIL false
Identity(L) FAIL EMPTY EMPTY EMPTY
Identity(R) FAIL EMPTY EMPTY true
Idempotent v v v v
Commutative v v v
Associative v v v v
UPTO distributes through LR
THRU distributes through | LR
THEN distributes through L L L
UPTO absorption v
THRU absorption v

Figure 4.15: Summary table of algebraic properties
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two semilattices into a bounded lattice with top element FAIL and bottom element
EMPTY.

FAIL
& (J|\4a)
0

B - (|Ma)

|

EMPTY

The relationship between UPTO, THRU, AND, EMPTY, and FAIL is illustrated in Figure
4.16.

FAIL

(s)M(a) A M(b)

>M(a) A>M(b) a AND b

EMPTY

Figure 4.16: Lattice showing the relationship between UPTO, AND, and THRU
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4.5 Example specification - scoring tennis

In this section a small example specification is presented that demonstrates the use of the
ITL-Monitor operators. To assist with the explanation of the scenario, Z notation [Spi01] is

used alongside the explanatory text.

Consider a piece of software that is monitoring two players’ scores throughout a tennis match.

The players are represented by the type Player.

Player == pl|p2

In this example, the two players compete by playing the best of five sets. To win a set a player
has to win at least six games and to have won at least two more games than their opponent.

Thus the set may end with a scores of 6-0 or 9-7 for example, but not 6-5.

A game is won by the first player to win at least four points and to have at least two more
points than their opponent. Rather than use simple numbering, 1 .. 4, the points in tennis
games have special names: fifteen, thirty, forty, and game, respectively, with a special extra

point called advantage. The type Point enumerates these values.

Point ::= love | fifteen | thirty | forty | advantage | game

Because a player must win a game by two clear points, if the score is forty-forty then the
player that wins the next point moves to advantage rather than game. Similarly, if a player at
advantage fails to win the next point then the score reverts to forty-forty. The point transitions
that occur when player pl wins a point are specified by the function updatePoints. Each pair

of points represents scores for players (pl, p2) respectively.

updatePoints : (Point x Point) — (Point x Point)

updatePoints =

{ (love, love) — (fifteen, love), (love, fifteen) — (fifteen, fifteen),
(love, thirty) — (fifteen, thirty), (love, forty) — (fifteen, forty),
(fifteen, love) — (thirty, love), (fifteen, fifteen) — (thirty, fifteen),
(fifteen, thirty) — (thirty, thirty), (fifteen, forty) — (thirty, forty),
(thirty, love) — (forty, love), (thirty, fifteen) — (forty, fifteen),
(thirty, thirty) — (forty, thirty), (thirty, forty) — (forty, forty),
(forty, love) — (game, love), (forty, fifteen) — (game, fifteen),
(forty, thirty) — (game, thirty), (forty, forty) — (advantage, forty),
(forty, advantage) — (forty, forty), (advantage, forty) — (game, forty) }

The tennis match may be represented by the following state comprising variables for the

4In this example tie breaks for a set are not used.
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number of points, games, and sets. Each variable holds a pair of values for pl and p2

respectively.

Match
Points : Point x Point
Games : N x N

Sets : N x N

At the start of the match all the scores are zero:®

StartMatch = [Match’ | Points’ = (love, love) A Games’ = (0,0) A Sets’ = (0,0)]

The operation to update the scores when a point is won is defined as the sequential
composition of three operations: UpdatePoints, then Update Games, then UpdateSets. Fach of
these is presented below. (In Z an operation relates the before values of the state and their after
values. Within each operation schema the before states are introduced by including Match
and the after states are introduced by including Match’. The primed variables represent the

after states.)

UpdatePoints inputs the winner of the point and uses this to decide how to update the points.
If p2 wins the point then the arguments to, and results from, the updatePoints function must

be reversed. The other state variables are not changed.

— UpdatePoints
Match
Match’/
winner? : Player

winner? = pl = Points’ = updatePoints(Points)
winner? = p2 = Points’ = let (z1,22) == Points;
(y2,yl) == updatePoints(z2,z1) e (y1,y2)
Games' = Games
Sets’ = Sets

UpdateGames must check to see if a game has just been won by either of the players. This
is determined by inspecting the first and second fields of the Points variable respectively. If
either player’s score has reached game that player’s game count is incremented. If neither
player has won a game then the state variables are unchanged. In any case the Sets variable
is unchanged at this stage and will be checked in the subsequent schema. Note that the first

two conjuncts are mutually exclusive because only one player can win a game.

5In Z initial states are conventionally primed — i.e. they are considered as after states.
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__UpdateGames
Match
Match'

first(Points) = game = Games' = (first(Games) + 1, second(Games))
second(Points) = game = Games' = (first(Games), second(Games) + 1)
first(Points) # game A second(Points) # game = Games' = Games
Points’ = Points

Sets’ = Sets

UpdateSets must check to see if a set has just been won by one of the players. If neither
player has won a set then no state variables are changed. The operation also outputs a set of
winners which is empty if neither player has won, or contains the winning player otherwise.
Once again, the first two conjuncts are mutually exclusive because only one player can win a

game.

__UpdateSets
Match
Match/
winner! : P Player

first(Games) > 6 A first(Games) > (second(Games) + 1) =
Sets’ = (first(Sets) + 1, second(Sets))

second(Games) > 6 A second(Games) > (first(Games) + 1) =
Sets’ = (first(Sets), second(Sets) + 1)

(first(Games) < 6 V second(Games) < 6V
abs(first(Games) — second(Games)) < 1)

Games' = Games

) = Sets' = Sets

Points’ = Points

winner! = if first(Sets) > 2 then {pl}
else if second(Sets) > 2 then {p2}
else @

Finally, the PlayPoint operation can be expressed as the sequential composition of the three
component operations. (In Z schema composition S § T' equates the after state of S with the

before state of 7' and hides this intermediate state.)

PlayPoint = UpdatePoints § UpdateGames § UpdateSets

The following two operations specify the state transitions required to reset the Points scores

and the Sets scores following a game-win and a set-win respectively. The schemas ResetPoints
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and ResetGames specify the resetting of the relevant state variables. The schema NewGame
is called following a game-win but not a set-win. The schema NewSet is called following a

set-win and it incorporates the act of starting a new game.

ResetPoints = [Match; Match' | Points’ = (love, love)]
ResetGames = [Games’ = (0,0)]

NewGame = [ResetPoints | Games' = Games N Sets’ = Sets]
[

NewSet = [ResetPoints; ResetGames | Sets’ = Sets]
The scoring of a particular tennis match is recorded by a trace in which each state holds
the variables Points, Games, and Sets. For example, the trace after seven points have been

played might be:

Points (0,0) (0,0) (0,15) (0,30) (0,40) (15,40) (15,G) (0,0) (15,0)
Games (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,0)
Sets  (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,00 (0,0) (0,0)
o 09 o1 09 o3 o o5 06 o7 os

In the above example, o( represents the initial state specified by StartMatch. The state o1
is the start of the first set.° Each of the transitions o1 — 09, 09 — 03, 03 — 04, 04 — 05,
o5 — o0g, and o7 — og represent state changes specified by PlayPoint. The state transition
og — o7 represents the state change specified by NewGame. It is useful to consider the suffix

of some possible later trace that includes a set win:

Points  (15,30) (15,40) (15,G) (0,0) (0,15) (0,30) (0,40) (0,G) (0,0)
Games (4,5)  (4,5)  (4,6) (0,0) (0,0) (0,0) (0,0) (0,1) (0,1)
Sets  (0,0)  (0,0) (0,1) (0,1) (0,1) (0,1) (0,0) (0,1) (0,1)
o 070 o071 072 073 074 075 076 o7 078

In this example the final game in the first set is won in state o79 — this state is the end of a
game subinterval and a set subinterval. The next state o73 shows the reset values of Points
and Games and maintains the updated Sets. Play continues and state o77 shows the end of

the next game, etc.

The previously-defined updatePoints function enumerates all of the possible point score
transitions for both players from the perspective of pl winning the point. However, the

set of legal point score transitions for a single player can be specified as follows:

5The fact that o1 = oo looks odd but it is only a special case because o1 is the beginning of the first set.
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_~= _: Point < Point

¥ p1, p2 @ Point e
p1~ p2 <=

(p1,p2) € { (love, fifteen), (fifteen, thirty), (thirty, forty), (forty, game)
(forty, advantage), (advantage, forty), (advantage, game) }

Thus it is possible to capture a temporal property relating Points(p) and Q(Points(p)) for

each player p following each point-win.”

winPoint = skip A ( (stable(Points(pl)) A (Points(p2) ~» O(Points(p2)))) V
(stable(Points(p2)) A (Points(pl) ~ O(Points(pl)))) )

validGame specifies an interval representing a single game. Initially the Points score for
each player is set to love, and then a finite sequence of winPoint transitions occurs. The
relationship between the Games scores for each player are defined by their values across the
whole interval. The ITL formula A <~ e means that the value of state variable A is stable
until the final state in which its value must equal e. Thus, over the course of a single game one
player’s game score must remain constant, whereas the opponent’s game score will increase
by one in the final state: i.e. when the game is won. The end of the interval is determined as

soon as either player’s Points score reaches game.

validGame = (Points(pl) = love) A (Points(p2) = love) A
winPoint™ A
( ((Games(pl) <~ (Games(pl) + 1)) A stable(Games(p2))) V
((Games(p2) < (Games(p2) + 1)) A stable(Games(pl))) )

gameQuer = (Points(pl) = game) V (Points(p2) = game)

An interval representing a game must satisfy validGame A halt(gameOver). The reason it is
convenient to split this into two parts is because halt(gameOver) can be used to determine
the length of the interval consumed by the corresponding ITL-Monitor. Specifically, the
interval will extend to the first occurrence of the state formula gameQOver. Then the formula

validGame can be checked against the accrued interval.

A set of tennis is won by the player who is the first to win at least two more games than their
opponent and who has won at least six games. Initially both players’ Games scores are set

to zero.

“In ITL the formula stable(A) means that A’s value does not change throughout the interval.
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validSet = (Games(pl) = 0) A (Games(p2) = 0) A
( ((Sets(pl) <~ (Sets(pl) + 1)) A stable(Sets(p2))) V
((Sets(p2) <o (Sets(p2) + 1)) A stable(Sets(pl))) )

(
setOver = ( ((Games(pl) >=6) A (Games(p2) + 1 < Games(pl))) V
((Games(p2) >=6) A (Games(pl) + 1 < Games(p2))) )

Once again, note that it is convenient to split the specification for playing a single set into
two parts. A set must satisfy validSet A halt(setOver). In a similar way to gameQuver (above)
the first occurrence of setOver will be used to define the extent of the interval covered by the
corresponding monitor. A match is over as soon as one of the players wins two sets. Thus

the extent of a match is specified as halt(matchOuver), where

matchOver = (Sets(pl) = 3) V (Sets(p2) = 3)

The scoring system for a tennis match conveniently splits the specification into subintervals.
Furthermore, the fact that Points are reset to zero at the start of each new game, and Games
are reset to zero at the start of each new set, provides a set of natural fusion points across

which backtracking is unnecessary. In the first state the initialisation requires:

startMatch = Points(P1) = love A Points(P2) = love A
Games(P1) =0 A Games(P2) =0 A
Sets(P1) = 0 A Sets(P2) =0

A runtime monitor for checking a tennis scoring program against this specification can now

be constructed using ITL-Monitor.

bygame = GUARD (startMatch) THEN HALT (matchOuver) ITERATE (
(SKIP THEN HALT (setOver) ITERATE (
SKIP THEN HALT (gameQuer) WITH (skip ; validGame)
)

) WITH (skip ; validSet)

4.5.1 Running the verification

As the tennis program under test proceeds it sends each update to any of the state variables to
the monitor. Let us consider the evaluation of the first set — for the purpose of this discussion
it will be assumed that the set consists of six games. Each game is preceded by SKIP to
separate each one from the next - i.e. by skipping from the end of one game to the start of
the next game. The diagram in Figure 4.17 shows the interval evolving as each of the games

in a set is verified.
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skip one game Direction of time

v

one set

No backtracking across these lines

Figure 4.17: A set of tennis

Games do not share states which is why each is preceded by a single skip. The verification of
a single game may involve backtracking since the specification is non-deterministic. However,
backtracking cannot cross the vertical lines: each game is extended to the first occurrence of

gameQuer which cannot be satisfied by any other fusion point.

4.5.2 Adjusting the granularity of the analysis

The match monitor reports on whether or not the system under test meets the specification
after each game is played: this is illustrated in Figure 4.17. Thus the ‘granularity’ of the
analysis is at the level of a single tennis game. Recall that the specification of a game involves

non-determinism which is why it cannot be checked after every state.

It is possible to decrease the granularity of the analysis by testing an interval after each set.

The following ITL specification covers a single set of tennis:

byset = GUARD (startMatch) THEN HALT (matchOver) ITERATE (
(SKIP THEN HALT (setOver)) WITH
((skip ; (halt(gameOQwver) A validGame))* A (skip ; validSet))

This monitor will not be able to report upon any violations of the specification until a whole
set has been played. Furthermore, at the points of verification — in this case when a set
has completed — the evaluation will take longer when compared to the sum of several much

smaller evaluations following each game.

Ultimately, it is possible to decrease the granularity of the analysis to cover an entire tennis
match. This effectively generates the entire trace for subsequent analysis. The revised ITL

formula would be:
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byMatch = GUARD (startMatch) THEN HALT (matchOver) WITH validMatch

This requires significant backtracking given the embedded choice within each of the sub-
specifications, and the employment of two levels of chopstar. In this case all of the verification
would take place as soon as the match is over but no verification would occur while the

program is running.

This example has demonstrated a decrease of the granularity of the analysis from games, to
sets, to the whole match. Is it possible to increase the granularity of the analysis to the level
of individual states? It is not possible simply to reduce the scope of each monitor to analyse

every pair of adjacent states: the non-determinism in the specification does not permit this.

4.6 Summary

This chapter has presented ITL-Monitor syntax and translation into ITL. The monitor
operators were described informally with illustrative examples. The small case study at
the end of the chapter showed how ITL-Monitor could be used to specify a runtime monitor
for an example system. An investigation into the mathematical properties of monitors was
undertaken and the results presented. Algebraic structures were identified for combinations of
ITL-Monitor operators and these have been organised and presented. An important monitor
law, MPFizFst(C-399)  was established and its réle in the maintenance of first occurrence

properties of monitors was explained.
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ITL Monitor implementation

This chapter describes the implementation of ITL-Monitor. The library contains two principal
objects, ITL and Monitor, each of which is described below. ITL defines an Application
Programming Interface (API) for creating ITL formulae, and Monitor defines the API for
specifying runtime verification monitors in ITL-Monitor. Section 5.1.1 introduces the ITL
library, including the implementation of each of its key components. Section 5.1.2 introduces
the Monitor library from the perspective of constructing user-defined specifications. The
translation of the derived monitors using a range of optimisation flags is also explained.
Section 5.2 looks in detail at the underlying representation of runtime monitors as a network
of Akka actors [Wyal3, Akk17]. The process of creating an Akka network representing an
abstract monitor is described, and the way the network acts as a monitor, receiving messages

from a program, forming and returning judgements, is illustrated with a worked example.

Throughout this chapter both ITL formulae and ITL-Monitor specifications, which represent
ITL formulae, may be referred to both as temporal logic formulae — as mathematical objects —
or as processes. Mathematically, FIRST (f) represents an ITL formula, > f, that may satisfied
by some finite interval. Operationally, FIRST (f) is a monitor (a process) that maintains an
internal representation of the states that have been passed to it (an interval), and terminates
successfully as soon as the interval satisfies f. Mathematically, FIRST (f) AND FIRST (g) is an
executable ITL-Monitor representing the ITL formula > f A > g. Operationally, it represents
a concrete monitor — a hierarchy of Akka actors — in which the two submonitors FIRST (f) and
FIRST (g) could be executing in parallel. These examples reflect the purpose of this thesis:
to create a library of executable, runtime monitors that represent ITL formulae directly, and
whose combination reflect new executable monitors that can verify the composition of their

respective formulae.
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Listing 5.1: Monitor.scala

object ITL {

abstract class Var[T]

case class Val[Tl(v: T)

type VarUpdate = (Var[T],T) forSome {type T}

class Interval {
def get[T](k: Int, v: Var[T]): Option[Val[T]]
def add(updates: VarUpdate* ): Interval

¥

abstract class Expr[T] {
def evalExpr [T](expr: Expr[T], sigma: Interval): Option[Const[T]]
case class Const[T](c: T) extends Expr[T]
case class Ref [TI(v: Var[T]) extends Expr[T]
case class Unary[T,U](op: T=>U, x: Expr([T]) extends Expr [U]
case class Binary[T,U,V]l(op: (T,U)=>V, x: Expr[T], y: Expr[U]) extends Expr[V]
case class With[T,U](x: Expr[T], f: Const[T] => Expr[U]) extends Expr [U]
case class Next[T](v: Var[T]) extends Expr[T]
case class Fin[T](v: Var[T]) extends Expr[T]
case class IntLen () extends Expr[Int]

}

abstract class Formula {
def evalFormula(sigma: Interval): Boolean
case class Exp (x: Expr[Boolean]) extends Formula
case class Not (f: Formula) extends Formula
case class Final (f: Formula) extends Formula
case class And (f: Formula, g: Formula) extends Formula
case class Len (n: Int) extends Formula
case class Chop (f1: Formula, f2: Formula) extends Formula
case class Chopstar(f: Formula) extends Formula

¥

}

Figure 5.1: Overview of ITL.scala
5.1 Application programming interface

ITL-Monitor is implemented as a collection of objects and classes in Scala. These are defined
in two Scala files: ITL.scala which contains support for ITL specifications and intervals; and
Monitor.scala which provides the implementation of ITL-Monitor. Each of these is presented

below.

5.1.1 ITL

The ITL API provides all the components necessary to define and evaluate an ITL formula
with respect to an interval. An overview of the key objects, classes, types, and methods
is presented in Figure 5.1. (The code appears in full in Listing A.1). The figure shows
the classes relating to variables, values, intervals, expressions and formulae. Unnecessary
detail has been omitted including some superclass relationships, internal data structures, and

derived operators.

ITL expressions and formulae are implemented as data structures (trees) whose definitions
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Not (
Chop (
Chop (
Exp (
Const (true)
),
And (
Len(1),
Not (
Exp (
Binary(
RelInt .EQ,
Binary(
NumInt .Mul,
Ref (4),
Const (2)
),
Fin (A)
)
)
)
)
),
Exp (
Const (true)
)
)
)

Figure 5.2: Representation of the ITL formula A gets (A x 2)

appear in Figure 5.1 (lines 9-19 and 20-29). For example, the ITL formula Agets(A *2) is

shown in Figure 5.2.

The expressions and formulae data structure constitutes a deeply embedded DSL (cf. 2.4.1).
The use of case classes to represent the ‘nodes’ in the expression/formulae trees allows Scala’s
pattern matching to recognise structures for evaluation and/or rewriting. An example of
rewriting is given by the function not: when evaluating not (£) the structure of £ is matched

to avoid the potential of returning a doubly-negated formula.

def not(f: Formula): Formula = f match { case (Not(g)) => g
case _ => Not(f) }
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Without this optimisation the subformula And (. .) in Figure 5.2 (lines 7-23) would have been
constructed as Not (Not (And(..))).

Pattern matching is also used in the evaluation of formulae. For example, the (private)
f.evalFormula(sigma, i, j) method application evaluates a formula f with respect to

the subinterval sigma; ;. Evaluation of formulae matching the pattern Chop(f, g) can be

simplified if one of the ;ubformulae specifies a subinterval of a specific length. The method
application f.fixed () returns None if f is not a fixed-length formula, and Some (m), where
m is a positive integer representing the fusion point, otherwise. If either £ or g has a fixed
length then the search for a fusion point can be reduced from j — i + 1 possibilities to just

one.

case Chop(f, g) => (f.fixed(), g.fixed()) match {
case (None,None) => (i to j).toStream.map(k =>
if (f.evalFormulaFromTo(sigma, i, k))
g.evalFormulaFromTo(sigma, k, j)
else
false).contains(true)
case (Some(m),None) => (i+m >= i && i+m <= j) &&
f.evalFormulaFromTo(sigma, i, i+m) &&
g.evalFormulaFromTo(sigma, i+m, j)
case (None,Some(n)) => (j-n >= 1 && j-n <= j) &&
f.evalFormulaFromTo(sigma, i, j-n) &&
g.evalFormulaFromTo(sigma, j-n, j)
case (Some(m),Some(n)) => (i+m >= i && i+m <= j) &&
(i+m == j-n) &&
f.evalFormulaFromTo(sigma, i, i+m) &&

g.evalFormulaFromTo(sigma, i+m, j)

5.1.1.1 Variables

Figure 5.1 (line 2) introduces a parameterised, abstract class Var [T] representing variables
for use in ITL formulae. The use of the generic type variable T allows the Scala type checker

to perform valuable static type analysis on any user-defined variables.

User-defined variables are created as objects, subclassing from a suitably parameterised
instance of Var [T]. The use of an object for each variable ensures that it is identified with a
single Var instance. Each user-defined variable will inherit a range of ITL operators that are

defined for state variables including V' <&~ e (padded temporal assignment), V < e (temporal



5.1 Application programming interface 101

assignment), V := e (next-state assignment), and V gets e (unit delay).

For example, a state variable C' that stores a character value, and B that stores a Boolean

value, are declared as follows.

object C extends Var[Char] { override def toString = "C" }
object B extends Var[Boolean] { override def toString = "B" }

The overridden toString methods permit the client to define how the variables should appear

when printed on the output stream.

On line 4 of the listing the type VarUpdate represents a tuple in which the components are
existentially quantified. Thus, the type T does not appear at top-level with the type itself.
This permits a list of VarUpdate tuples to be constructed in which each pair has correctly
matched types but differently typed tuples can appear in the same List [VarUpdate], e.g.,
List( (C, ’x’), (B, true) ). Thisis useful in the context of runtime verification in which

variables of different types may be updated simultaneously.

5.1.1.2 Values

Figure 5.1 (line 3) introduces a parameterised case class that is used to construct constant
values in ITL formulae. This is parameterised so that the type checker can ensure that
values are stored in variables of the same type. Looking ahead to the process of updating the
state during a runtime verification, a monitor mu may have its variables updated using a set

method, viz:
mu.set (B, true).set(C, ’x’)

The monitor set method builds internally a list of variable updates as shown at the end of

the previous section (5.1.1.1).

5.1.1.3 Intervals

Figure 5.1 (lines 5-8) introduces a class Interval as an opaque type.' It is not possible to
parameterise the interval type, i.e. Intervall[T], because this would require all the variables
in the state to be of the same type. Similar to the VarUpdate type (cf. 5.1.1.1), the interval

contains mappings in which each variable is bound to a value of the appropriate type.

Intervals are represented internally using a Scala immutable HashMap. However, its behaviour
can be captured by the following function in which the generic type T is hidden using

existential quantification.

!See Listing A.1 for the full implementation of intervals.
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Interval =3 T o Var[T] — (N — Val[T])

For each variable, a mapping is maintained in which the (index,value) pairs are only stored
when changes occur. The value if variable v at index i is equal to the value of v looked up at
the largest index 7 < 4 for which an entry exists. This approach avoids potentially duplicated
values being stored in successive states and is similar to the representation used in ITL Tracer
[Jan10]. Locating the most recent index is currently a linear search (from i down to j).? Once

the index has been located, lookup in a Scala hashmap is constant time.

Consider the following example in which each state consists of two variables, X : Var[Int]

and Y : Var[Boolean]. The interval o:

X 1170|7717 71919
Y ittt

Lindex [[01]2]3]4]5]6]7]8]9]

is stored using the hashmap sigma:

{X—»{0—~1,3—78—=9} Y - {0—t,4— f 99— t}}

In this example, lookup(sigma)(X)(5) =T7.

5.1.1.4 Expressions and formulae

Figure 5.1 (lines 9-19) introduces the abstract class Expr [T] which represents expressions of
type T. Lines 20-29 introduce the abstract class Formula. The basic forms of expressions and
formulae are provided as subclasses. Scala allows class member methods to be used infix,
i.e. method calls of the form o.m(p) can be written o m p. Coupled with the ability to use
symbolic method names, this syntactic sugar permits a useful range of infix binary operators
to be provided for expressions and formulae. Two examples from each abstract class are

provided below. Firstly, infix operators are provided for addition and comparison.

abstract class Expr([T] {
def + (that: Expr[T]) (implicit o: Num[T]): Expr[T] = Binary(o.Add, this, that)
def < (that: Expr[T])(implicit o0:0rd[T]): Expr[Boolean] = Binary(o.LT, this, that)

The implicit parameters refer to objects that define the appropriate functions for each type.

Thus a Num[Int] object, NumInt, contains the function Add for integers, and an Ord[Char]

2Future work will consider optimisations for sparse mappings which may derive or maintain index iterators.
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object, OrdChar, contains a less-than order relation LT for characters etc. The ITL API

exports implicit objects defining these functions for all of the Scala primitive types.

Scala’s implicit parameters can be applied automatically by the compiler provided there is a
suitably typed value in scope. Thus, if a and b are integer expressions then instead of writing
a.+(b) (NumInt), the expression can be written more succinctly as a + b, and NumInt is

appended silently by the compiler.

Useful infix operators have also been provided for formulae.

abstract class Formula {
def ¢;‘(that: Formula)
def and(that: Formula)

Chop(this,that)
And(this,that)

This syntax permits I'TL formulae to be written, e.g., (f and g) ;¢ h.

5.1.1.5 Derived operators

All of ITL’s standard derived operators are provided within the API as functions. Some of
these use the standard names such as next and eventually whereas others use descriptions
of their mathematical symbols (which is common in ITL) such as di (‘diamond-i’, ¢ ). Some

examples are shown below:

def chop(fl: Formula, f2: Formula): Formula = Chop(f1, £f2)

val skip: Formula = Len(1)

def next(f: Formula): Formula = chop(skip, f)
def eventually(f: Formula): Formula = chop(TRUE, f)
def di(f: Formula): Formula = chop(f, TRUE)

5.1.2 Monitor

The Monitor API provides the components necessary to define and execute an ITL-Monitor.
An overview of the key objects, classes, types, and methods is presented in Figure 5.3. (The
full listing appears as Listing A.2). The figure shows the exported class Abstr.Monitor whose

subclasses constitute the core ITL-Monitor syntax. Unnecessary detail has been omitted.

Object Protocol (Figure 5.3, lines 2-10), defines the messages which form the communication
between the monitors internally, and the client program externally. Step extends the
execution trace by one state and passes the updated state as a list of variable updates (cf.

5.1.1.1). Show causes the underlying implementation to display a version of itself on the
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Listing 5.2: Monitor.scala

object Monitor {
object Protocol { /* Communication protocol between monitors and clients */
abstract class Request
case class Step(updates: List[VarUpdate]) extends Request
case class Show(indent: Int) extends Request
abstract class Reply
case object Fail extends Reply
case object More extends Reply
case class Done(updates: List[VarUpdate]) extends Reply

}

object OptimisationFlags {
class OpTy
case object ANY_STATE extends OpTy
case object ALL_STATES extends O0OpTy
case object ANY_PREFIX extends OpTy
case object ALL_PREFIXES extends OpTy
case object CHECK_ONCE extends OpTy

}

object Abstr {
class Monitor {

def ::(name: String): Monitor = Name (name,this)
def UPTO(that: Monitor): Monitor = Upto(this,that)
def THRU(that: Monitor): Monitor = Thru(this,that)
def THEN(that: Monitor): Monitor = Then(this,that)
def AND(that: Monitor): Momitor = And(this,that)
def ITERATE(that: Monitor): Iterate = Iterate(this,that)
def WITH(opt : OpTy, f: Formula): Monitor = With(this,opt,f)
def WITH( f :Formula): Monitor = With(this, CHECK_ONCE,f)
def TIMES (k: Int): Monitor = if (k==0) EMPTY
else this THEN (this TIMES
def ALWAYS (w: Formula): Monitor = With(this, ALL_STATES ,w)
def SOMETIME (w: Formula): Monitor = With(this, ANY_STATE,w)
def WITHIN(f: Formula): Monitor = With(this, ALL_PREFIXES,
more implies (not(f) ;¢
}
def FIRST(f: Formula) = First (ANY_PREFIX, f)
def LEN(k: Int) = FIRST(len(k))
def SKIP = LEN(1)
def EMPTY = FIRST (empty)
def FAIL = FIRST (false) WITHIN (empty)
def HALT(w: Formula) = First (ANY_STATE, w)
def SKIPTO(w: Formula) = SKIP THEN HALT (w)
def GUARD(w: Formula) = EMPTY WITH (w)

def UNTIL (w1l : Formula, w2: Formula) = HALT(w2) WITH (bm(w1l))

case class Name (name: String, a: Monitor) extends Monitor
case class First (opt: OpTy, f: Formula) extends Monitor
case class Upto (a: Monitor, b: Monitor) extends Monitor
case class Thru (a: Monitor, b: Monitor) extends Monitor
case class Then (a: Monitor, b: Monitor) extends Monitor
case class And (a: Monitor, b: Monitor) extends Monitor
case class Iterate(a: Monitor, b: Monitor) extends Monitor
case class Project(a: Monitor, b: Monitor, p: Monitor) extends Monitor
case class With (a: Monitor, opt: OpTy, f: Formula) extends Monitor

object Runtime {
case class RTM(a: Abstr.Monitor, name: String, system: ActorSystem)
def set[T](v: Var[T], a: T): RTM
def get[T](v: Var[T]): T
def stop
def verify: Reply

(k-1))

skip))

Figure 5.3: Overview of Monitor.scala
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output terminal for visual analysis/debugging. Fail, Done, and More represent the three

judgements that can be reported by a monitor following a Step.

Lines 21-44 define the ITL-Monitor operators, both infix and prefix, and their translations into
the internal data structure defined on lines 46-54. Like the ITL expressions and formulae,

this tree structure represents a deep-embedded DSL.

Object OptimisationFlags on lines 11-18 defines an optimisation type OpTy and a set of
subclass objects, each representing a different form of evaluation. On page 77 optimisations
of WITH were defined as derived monitors. It was noted that more efficient implementations
could be provided by exploiting their specific behaviours. The effect of each optimisation flag

is explained below:

ANY_STATE - used by With to implement g.SOMETIME(w) (line 32) where w is a state
formula. The formula is checked when each new state is received. If any state satisfies

w then the formula ¢Gw has succeeded and the monitor can simply become g.

This flag is also passed to First in the implemention of HALT (w) (line 41). This monitor
succeeds as soon as a state is received that satisfies the formula. With this optimisation
only the most recent state needs to be inspected obviating the need to store or search

an evolving subinterval within the monitor.

ALL_STATES — used by With to implement _.ALWAYS(w) (line 31). Once again, w is a
state formula. As each new state arrives, if any fails to satisfy w then the monitor
fails immediately. As with ANY_STATE, the monitor does not need to maintain an

evolving interval.

ANY_PREFIX — used by First as the default implemention of FIRST(£) (line 36). The
semanitcs of > f require that this monitor must terminate as soon as the accumulated
interval satisfies £. Therefore, this optimisation flag requires each prefix interval to be

examined in turn until the monitor succeeds.

ALL_PREFIXES — used by With to implement g.WITHIN(f) (line 33). This flag requires
every prefix to satisfy the formula more O (= f ; skip). It guarantees that f does
not occur before g although the accumulated interval could satisfy both f and g

simultaneously. The monitor fails should £ be satisfied before g.

CHECK_ONCE — used by With as the default implemention of g.WITH(f). It maintains
the evolving interval but does not need to check that it satisfies £ until g has completed
successfully. The implementation of UNTIL(wl, w2) (line 44) is an example of this
strategy.

Line 57 shows the constructor for a runtime monitor, RTM, which requires three parameters:

an instance of Abstr.Monitor which has been defined using the functions described above;
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an identifying name to be used when printing to log files and the standard output stream;
an Akka [Akk17] actor system to be used for the underlying implementation. The abstract
monitor, a, is processed when the RTM is created, and transformed into its corresponding

concrete implementation. This is discussed in more detail in the Section 5.2.

The four methods on lines 58-61 define how the runtime monitor interacts with the program
being verified. set updates the monitor with a new variable/value pair. The monitor can
collect multiple updates to the state before performing the next analysis. The reason it
returns an RTM is because the method returns a reference to itself which allows multiple set
calls to be chained: for example, mu.set (B, true).set(C, ’x’). The method get looks
up the latest value of a variable stored in the monitor. stop terminates a monitor. verify

causes the monitor to process the latest state and return a judgement.

5.2 Concrete monitors

The abstract monitors described previously (Abstr.Monitor) reflect the syntax of ITL-
Monitor. Thus, for suitable ITL formulae £, g, h and p, a client could construct an abstract

monitor such as
val m: Abstr.Monitor = (FIRST(f) AND FIRST(g)) UPTO (FIRST(h) WITH p)

representing the ITL formula >((>f A >g) V (> h A p)). This would be transformed (using

o1, 02 etc. to represent the appropriate optimisation flags) into the data structure:
Upto(And(First(ol, f), First(o2, g)), With(First(o3, h), o4, p))

Unlike the ITL formulae representations, this data structure is not evaluated directly. Rather,
it is translated into a network of Akka [Akk17] actors. The parent-child relationships in the
abstract syntax tree are reflected by communication channels between the corresponding
actors. The resulting actor network forms the concrete realisation of the ITL-Monitor

expresssion.

Figure 5.4 shows the principal components within Monitor.scala that implement concrete
monitors (Concr.Monitor). This is a skeleton view and extraneous detail has been omitted.

(The full code appears in Listing A.2).

5.2.1 Actor initialisation

Figure 5.4 (line 5) defines a concrete Monitor as an actor. Each of the classes shown on lines

8-14 are actors representing a node in the abstract monitor syntax tree. The startUp method
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private object Concr {
import Protocol._
import OptimisationFlags._

abstract class Monitor extends Actor with ActorLogging

def startUp(mu: Abstr.Monitor, context: ActorContext): ActorRef

case
case
case
case
case
case
case

class
class
class
class
class
class
class

First (name: String, opt: OpTy, f: Formula) extends Monitor

With(name: String, a: Abstr.Monitor, opt:0pTy, f: Formula) extends Monitor
Upto(name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor
Thru(name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor

And (name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor
Then(name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor
Iterate(name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor

Figure 5.4: Overview of concrete monitor implementation

on line 7 is responsible for initiating a concrete monitor (actor) associated with an abstract

monitor. Calling startUp with an abstract monitor a creates a corresponding concrete actor

c, which, if a has children, calls startUp for each child.

The steps in the creation of a runtime monitor for the formula ((FIRST(f) AND
FIRST (g)) UPTO (FIRST (h) WITH (p)) are shown below. For clarity, only the monitor and

formula parameters are given.

1. Within the program define the ITL formulae £, g, h, and p.

2. Define an ITL-Monitor:

val a

= (FIRST(f) AND FIRST(g)) UPTO (FIRST(h) WITH (p))

3. The following chain of events is depicted in Figure 5.5.

(i) Define a runtime monitor (assuming a suitable Akka system, as, is in scope):

val mu: Runtime.RTM = RTM(a, "monitor name", as)

(ii) Initialisation of mu creates an RTMActor (a)

RTMActor(a) initiates Upto (And(First(f), First(g)), With(First(h), p))

Upto(And(First(f), First(g)), With(First(h), p))

initiates And (First (f), First(g))

(v) And(First(f), First(g)) initiates First(f)

And(First(f), First(g)) initiates First(g)

Upto(And(First(f), First(g)), With(First(h), p))

initiates With(First(h), p)

With(First(h), p) initiates First(h)
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(i

)

Program

(iii)

Program

Monitor
(FIRST(f) AND FIRST(g))
UPTO(FIRST(h) WITH(p))

(v)

Program

Monitor
(FIRST(f) AND FIRST(g))
UPTO(FIRST(h) WITH(p))

FIRST(f)

(vii)

Program

Monitor
(FIRST(f) AND FIRST (g))
UPTO(FIRST(h) WITH(p))

FIRST(f)

FIRST(g)
-

(i)

Program

Monitor
(FIRST(f) AND FIRST(g))
UPTO(FIRST(R) WITH(p))

(iv)

Program

Monitor
(FIRST(f) AND FIRST(g))
UPTO(FIRST(R) WITH(p))

(vi)

Program ‘Monitor
(FIRST(f) AND FIRST(g))
UPTO(FIRST(h) WITH(p))
FIRST(f) FIRST(g)
:
(viii)
Program Monitor
(FIRST(f) AND FIRST(g))
UPTO(FIRST(h) WITH(p))
FIRST(/) FIRST(g) |

Figure 5.5: Initialisation of a concrete monitor
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The behaviour of each actor is defined using an Akka receive block — an instance of a Scala
partial function, PartialFunction[Any, Unit]. The domain of the partial function is Any,
the root of Scala’s typeclass system, which allows any kind of message to be passed. This
is slightly dangerous because the communication channels are untyped.®> Only instances
of Request and Reply (Listing 5.3 lines 2-10) should be sent between monitors. Pattern
matching associates each received message with a corresponding action. The full listing of
Monitor.scala (Appendix A Listing A.2) shows the concrete monitor implementations and

how each actor’s behaviour is defined by a receive block.

5.2.2 Runtime monitoring

Once the actor network implementing a monitor has been initiated it receives Step
messages from the program being verified, and can deliver verdicts (cf. Figure 2.15). The
communication between the program, the monitor (actor), and each of the other actors uses
a synchronous protocol. Normally, within an actor network, the communication channels are
used asynchronously to avoid blocking. However, ITL-Monitor has been designed to execute in
lock-step with the program being verified. Thus, when the program sends a new state to the
monitor, it waits for a response. The decision to use a synchronised communication model
was taken to enable the program to ‘react at runtime’ in response to the verdicts it receives

from the monitor.

To see the runtime operation of a monitor, consider the earlier example: ((FIRST (f) AND
FIRST (g)) UPTO (FIRST (k) WITH (p)). An actor representing UPTO is created and this
actor then spawns two children. These, in turn, have their own children. The situation is
illustrated in Figure 5.6. The architecture exhibits a loose form of coupling between the
program, the monitor, and the sub-monitors. The program and monitor communicate using

message passing.

Figure 5.7 illustrates what happens when the program generates the first state. It is passed on
to the monitor which, in turn, passes it down through each of the nodes, replicating the state
at each fork, until a copy of the state reaches each terminal node in the tree. This illustrates
how each terminal node maintains its own copy of the evolving interval. The terminal nodes
represent monitors such as FIRST which need access to a copy of the current subinterval in

order to judge whether or not it satisfies the given formula.

The design requires that these terminal nodes share an evolving subinterval. Any particular
implementation can decide how to achieve this depending upon the functionality required. For
example, references to a shared state could be used, to minimise duplication. Alternatively,

duplication could be used precisely to avoid shared, mutable state. Duplication provides for

3This is the definition in the Akka API.
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Program Monitor

(FIRST(f) AND FIRST(g))
UPTO(FIRST (k) WITH(p))

FIRST(f) FIRST(g) FIRST(h)
g g g

A3

Program, monitor, and the concrete actors representing ((FIRST (f) AND FIRST (g)) UPTO
(FIRST (h) WITH (p)). The picture shows the state at the point monitoring begins.

Figure 5.6: Monitoring-1:
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Program Monitor

S0 (FIRST(f) AND FIRST(g))
UPTO(FIRST(h) WITH(p))

p
o 50

FIRST(f) FIRST(g) FIRST(h)
o S0 o S0 o 50

The program generates the first states which is duplicated as it passes down the tree. A copy of
the state is stored in each terminal node.

Figure 5.7: Monitoring-2
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Program Monitor

S0 (FIRST(f) AND FIRST(g))
MORE | UPTO(FIRST(h) WITH(p))

FIRST(f) FIRST(g) FIRST(h)

o S0 o S0 o S0

Each terminal node (monitor) makes its judgement on the interval consisting of the first state.
These judgements are reported up the tree to the parent nodes which interpret the results and
report their own judgements according to their behaviour.

Figure 5.8: Monitoring-3

a local copy within each monitor which minimises state-lookup overheads if parallel monitor
components were to be distributed. The Scala implementation used in this thesis adopts the

latter strategy.

Figure 5.8 demonstrates the first judgement that the monitor returns to the program following
the generation of the first state. The dotted lines on the right indicate the reports passed
back ‘up’ the process hierarchy. Each message is a judgement on the interval so far. In this
example p might be a state formula which is satisfied in the first state. MORE indicates that
the monitor has not reached a final judgement and is asking for more states to be provided.
Figure 5.9 presents a table of the message values that can be returned by each monitor

following the introduction of each new state.

The monitor response protocol includes DONE, FAIL, and MORE, representing three possible
judgements that can be returned to a program. DONE informs the program that its runtime
verification has successfully terminated: the program may continue beyond this point but
no further verification will occur. FAIL informs the program of a verification failure and an

error code will also be communicated to indicate the nature of the non-compliance. MORE
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’ Message Description Judgement  Readiness
DONE Verification success Final Will accept no more states
MORE Cannot anticipate judgement Inconclusive Requires more states
FAIL Verification failure Final Will accept no more states

Figure 5.9: Monitor-response messages

informs the program that the monitor has insufficient data to make a final judgement at this
stage and, remaining ¢émpartial it requests more state(s). This implements a three-valued logic

response [LS09].

In Figure 5.10 the situation arises when a final judgement can be made and the monitoring
is completed. The system is shown after three states have been generated by the program.
The monitor expressions FIRST (f) and FIRST (¢) have completed successfully. Therefore the
expression FIRST (f) AND FIRST (g) has completed successfully and reports DONE. On the
right-hand side of the expression tree the monitors have not completed and are requesting
more states. However, the semantics of UPTO is that it succeeds if, and as soon as, either of
its operands succeeds and, since this is the case, the UPTO node reports DONE to the main

monitor which, in turn, is relayed to the main program.
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Program Monitor

505152 (FIRST(f) AND FIRST(g))
DONE UPTO(FIRST (k) WITH(p))

o S05152

FIRST(f) FIRST(g) FIRST(h)
o S05152 o S05152 o S05152

A final judgement can be made. The left-hand part of the tree succeeds. The right-hand part
has not yet delivered a judgement. However, UPTO requires only one side to succeed, and can
therefore pass DONE to its parent.

Figure 5.10: Monitoring-4
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Program Monitor

505152 (FIRST(f) AND FIRST(g))
THEN(FIRST(h) WITH(p))

FIRST(f) FIRST(g)

o S0S5152 o S0S5152

After three states the WITH monitor is able to report success. The THEN monitor must discard
the old subtree and create a new one based on the right-hand subformula before it can complete
its analysis.

Figure 5.11: Monitoring-5

In contrast to the previous example, consider the monitor ((FIRST (f) AND FIRST (¢)) THEN
(FIRST () WITH (p)). In this case the top-most combinator has been changed from a parallel
combinator, UPTO, to a sequential one, THEN. Figure 5.11 shows the state part-way through
the analysis performed by the node THEN. The left-hand branch has just reported successful
termination. However, fusion shares a state: the last state of the previous interval becomes
the first state of the new interval. At this stage, therefore, THEN can discard its left subtree
since its purpose has ended, and create a new right subtree based on the right-hand part of
the formula. The newly evolved state is shown in Figure 5.12. The THEN operator represents
a dynamic transition in that the shape of the graph changes when the transition from left
child to right child occurs.
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Program Monitor

505182 (FIRST(f) AND FIRST(g))
MORE | THEN(FIRST(h) WITH(p))

MORE

IMORE
)

The newly-created right subtree is passed the previous final state to become its first state. The
analysis is now completed.

A3

52

FIRST(h

o S2

Figure 5.12: Monitoring-6

Figure 5.12 shows the system following the pruning of the now-terminated left sub-tree and
the creation of the new right subtree. The newly created node, WITH, has been forwarded
the current state — the state that terminated the previous subinterval — which becomes the
first state of the new interval. This has been cascaded down to the terminal nodes and a
suitable judgement has been reported back. At this stage no conclusion can be reached so
the nodes request more information (another state). The next two figures will demonstrate

how the system could evolve.
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Program

508515283

MORE

Monitor

(FIRST(f) AND FIRST(g))
THEN(FIRST (h) WITH(p))

MORE

o 5283

FIRST(h

o 5283

FWORE
)

This shows the system after four states. The overall monitor remains impartial and anticipatory.

Figure 5.13: Monitoring-7

Figure 5.13 illustrates the generation of a fourth state, s3. The full interval, (s, s1, s2, s3), is

drawn inside the program to illustrate its history. However, see how the intervals stored in

the terminal nodes are only (s, s3). This demonstrates that the terminal nodes store only

the states relevant to their subinterval.
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Program Monitor

505152835485 (FlRST(f) AND FlRST(g))
DONE | THEN(FIRST(h) WITH(p))

p

o 82835485

FIRST(h)

o 82835485

This shows the system after five states. The current network is concerned with only the suffix
interval which, in this case, satisfies its components: (s2, s3,54) = > h A p.

Figure 5.14: Monitoring-8

Finally, in Figure 5.14, the introduction of the fifth state, s4, creates an interval that satisfies
WITH: (s2,83,54) = > h A p. The judgements are reported back to the program. Following
this judgement the monitor can be discarded, and garbage-collected, as it has completed
its function. If, at this stage, the program has not completed, then a new monitor may be
created according to a new formula and runtime verification can continue. This demonstrates

the dynamic behaviour of the monitors.

The example illustrates how the program’s behaviour satisfied the formula (>f A
>g); (>h A p). Thus (so,81,8) F >f A >g and (s2,s3,84) = >h A p. The program
also satisfies the more general formula: (f A g) ; (h A p):

1 F>fADGDfAgG FstAndElimL{ ¢ 269 logic
2 F>hAPpDhAD FstAndElimL{ ¢ 25 logic
3 F(>fADg) ;(hAD)D(fAG);(hAD) 1, 2, LeftChopImpChop €101

RightChopImpChop(©-102)
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5.3 Summary

The chapter introduced the practical realisation of ITL-Monitor as a Scala API. The main
components for building monitors were explained: ITL for constructing ITL formulae, and
Monitor for constructing ITL-Monitors and executing them. Although the libraries have
not been extensively optimised, certain efficiency measures have been taken in respect of
determining fusion points when a formula specifices an interval of a predefined length; and
adjusting the evaluation strategies of certain derived monitors to take advantage of their

semantics.

The use of Akka actors to implement the concrete monitors provides the potential to exploit
multiple cores which ameliorates the impact of an inline, runtime monitoring system which
shares resources with the program under test. Furthermore, the distribution of actors
across available cores is a task that is handled by the Akka dispatcher and not the monitor

implementation itself.
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Chapter 6

Examples and evaluation

6.1 Introduction

In this chapter two example scenarios are presented and analysed.

The first (latch) example (Section 6.2) is specified and verified using four different approaches
and three different runtime verification tools. The tools compared are TRACECONTRACT
[BH11, Hav19], a runtime monitoring system developed as a Domain Specific Language in
Scala; AnaTempura [Mos96b], an established runtime verification system for ITL; and ITL-

Monitor, the monitoring system developed in this thesis.

The example illustrates the use of each of these systems and provides a comparative
performance analysis. To facilitate a fair comparison, the example utilises a specification
that can be expressed in LTL, Tempura (a subset of ITL), and ITL.

The second (checkout) example (Section 6.3) concentrates predominantly on ITL-Monitor. Its
purpose is to demonstrate the performance when monitoring a significantly more complex
system capable of generating large execution traces. In this example, two of the temporal
requirements are also adapted for use with TRACECONTRACT for comparison with ITL-

Monitor.

All experiments were run using sbt [sbt19] on a Macbook Pro with 2.6GHz Intel Core i5;
0OSX 10.13.6; Scala version 2.12.7; Akka version 2.5.19.

6.2 Latch example

A program is written in Scala to simulate the operation of system governed by the relative
temporal behaviour of three Boolean flags. A set of requirements is developed for the system

and verified in four ways:
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1. Using ITL-Monitor, the inline runtime verification system proposed in this thesis;

2. Using AnaTempura (Section 2.4.5), an outline runtime verification system based upon a
subset of ITL;

3. Using TRACECONTRACT [Hav19, BHI1], an dnline runtime verification system also

written as a Scala DSL, with two specification styles:

(a) Future time LTL
(b) State machines

The different styles of specification and runtime verification will then be compared both
qualitatively and quantitatively. The latter will include an analysis of the runtime results
and their relative timings. The full code for the latch example is provided in Section B.2 from

which relevant extracts are presented below as required.

Consider a system which consists of two latches, A and B, and a signal, S. The behaviour
is defined informally as follows. When latch A is down then B must remain stable up to
and including the first moment when latch A is up. When latch A is up then B is free to
switch between up and down states. Every time a state change in B occurs then a signal S
is raised just at the point that B’s state changes. Unless B changes state in the very next
moment then S returns to its down state. Thus A is used to enable B’s switching behaviour,
and S signals every state change in B. The diagram in Figure 6.1 illustrates a prefix of some

example simulation run.

Figure 6.1: Latch example

The set of system requirements is given:

R1 Whenever B is stable in two successive states then the signal S is low in the second of

those states.
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R2 Whenever B is not stable in two successive states then the signal S is high in the second

of those states: i.e. any change to B is signalled by S.
R3 Whenever A is low in two successive states then B is stable across those states.

R4 Whenever A is raised across two successive states then B is stable across those states.

6.2.1 Description in ITL

Consider a single cycle of A from down, through up, and then to down again. This cycle can
be described by the ITL formula halt(A) ; halt(—= A). The formula halt(A) specifies that = A
holds in all states except the final state whereupon A holds. halt(— A) specifies the inverse
situation. Furthermore, until A holds, B is required to be stable. These conditions can be

combined into the following formula describing a cycle of A.

(halt(A) A stable(B)) ; (halt(— A)) (1)
To specify finitely many A-cycles, the formula can be repeated:

( (halt(A) A stable(B)) ; (halt(— A)) )*

In a similar way the latching behaviour of B can be specified. Every change in state by B
must be accompanied by the raising of the signal S. Each cycle of B consists of a series of

states in which B remains stable and a final state in which B’s value changes.
(B <~ = B) A (skip ; halt(S5)) (2)

The operator <~ is padded temporal assignment. The formula B <~ — B specifies that B is
stable until the final state, at which point it changes. The formula skip ; halt(S) specifies that
S is low from the second state and raised at the end. Skipping the initial state is necessary
because the initial state of each B-cycle (except the first B-cycle) coincides with the final
state of the previous B-cycle and in each of these states S holds. The repetition of finitely

many B-cycles is given by:

((B <~ — B) A (skip ; halt(8)))*

Assume that some terminating condition STOP is specified to align with the end of an A-cycle

and a B-cycle, i.e.

halt(STOP) D &(skip AAANO(— A) ANO(B) =— B)

halt(STOP) specifies the interval in which STOP holds only in the final state. This defines
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the extent of the simulation. When halt(STOP) holds then there must be a two-state suffix

subinterval (skip A ...) which satisfies the final transitions of an A and B-cycle respectively.

Every variable is false in the initial state. The system can be specified as follows:

(empty N\ = AAN-BA-S); Initial state
( halt(STOP) Termination condition
A ((B <~ = B) A (skip ; halt(9)))* (1)*
A ((halt(A) A stable(B)) ; (halt(— A)))* (2)*

The four requirements (R1 — R4) can be derived from this ITL specification. The derivations
are presented in B.2.1. Note that keep f requires f to hold over all unit subintervals — i.e.

over all subintervals that consist of precisely two states.

R1: keep( (O(B) = B) > O(~5) )

R2: keep( (O(B) # B) > O(5) )

R3: keep((— A A O(— 4) D (B =0(B)))
R4 : keep((— A AN O(4) D (B =0B))

Noting that (B < = B) = >(B <~ — B), the above ITL specification can be translated into
an ITL-Monitor formula:

m = GUARD (= AA - B A=)
THEN ( HALT (STOP)
ITERATE (FIRST (B <~ — B) WITH (skip ; halt(5)))
ITERATE ( (HALT (A) WITH (stable(B))) THEN HALT (= A))

The structure of this specification exhibits a managed halt patern (Section 3.4.2).

6.2.2 Properties expressed in Tempura

The four requirements (R1— R4) can also be written in Tempura for analysis with AnaTempura.
As with the LTL specification in the following subsection, the requirements do not require the
use of an iteration construct (chopstar). Each of the requirements is expressed as a formula

that applies over all unit intervals. In Tempura this is achieved using the keep operator.

define R1(B,S) = { keep( ((next B) = B) implies not next(S) ) }.
define R2(B,S) = { keep( ((next B) = not B) implies next(S) ) }.
define R3(A,B) = { keep( (not A and not next(A)) implies (B = (mext B))) 1.
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define R4(A,B) = { keep( (not A and next(A)) implies (B = (next B))) I}.

6.2.3 Properties expressed in LTL

Unlike ITL, LTL does not have an iteration construct and therefore the original ITL
specification cannot be translated directly. However, the four requirements (R1 - R4) can
be expressed in LTL using the form [J(...). Each requirement is a formula that holds over
pairs of successive states. Weak-next is used instead of strong-nezt because the intervals are
finite (Section 2.1.2).

R1 0(B< @ (B) =@ (—9))
R2 0 (B ® (B) = ® (5))
R3 D((-4AN® (-4)= (B @ (B)
R4 D((-4AAN® (4) = (B o (B))

6.2.4 State machine

The behaviour of the latch example can also be expressed as a deterministic, finite state
machine (Figure 6.2). Each transition is implicitly labelled with a 3-tuple consisting of the
next state of the three variables (A, B, S). The nodes represent each of the eight possible
states. In the initial state, sy, all three flags are down. The system can terminate in either
of the states s; or s3 — each of these represents a situation in which a final B-transition has

occurred.

6.2.5 Simulation and runtime verification

The latch simulation is written as a Scala program and the full listing appears in Appendix
B in two parts as Listing B.4 and Listing B.5. The simulation has been written in such a way

that it can be executed using any combination of the following monitoring options:

e Using ITL-Monitor with the ITL specification
e Using AnaTempura with the Tempura specification
e Using TRACECONTRACT with the LTL specification

e Using TRACECONTRACT with the state machine specification

It is also possible to run the simulation with no monitoring at all. This provides a baseline

for performance measurement.
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Figure 6.2: Finite state machine for the latch example

Both ITL-Monitor and TRACECONTRACT are embedded domain specific libraries written in
Scala. In both cases their respective monitors are created dynamically as Scala objects
within the simulation and therefore perform inline monitoring. Instrumenting the simulation
to communicate with these monitors entails internal method calls. In contrast to these,
AnaTempura runs externally to the simulation and thus performs outline monitoring." In this

case the instrumentation is handled by sending specially encoded ASCII messages to stdout.

To ensure that the same state data is communicated to all running monitors, the

instrumentation for each system is abstracted into a single verify () method:

def verify () {

if (runAna)

println("!'PROG: assert Event:"+mu.get(A)+":"+mu.get(B)+":"+mu.get (S)+":!");
if (runLTL || runStM) nu.verify(TC.Event(mu.get(A), mu.get(B), mu.get(S)))
if (runITM) mu.!!
numOfStates = numOfStates + 1

Each monitoring system is guarded by its own flag (runAna, runITL, runITM) and these flags

can be set in any combination when the simulation is run.

nline and outline monitoring was discussed in Section 2.4.
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6.2.5.1 ITL monitoring

The simulation contains a mixture of unmonitored and monitored variables. The former are
simply standard Scala variables. The latter are represented using the type Var from the
ITL-Monitor API (cf. Section 5.1.1.1). The three flags are declared thus:

object S extends Var[Boolean] { override def toString = "S" }
object A extends Var[Boolean] { override def toString = "A" }
object B extends Var[Boolean] { override def toString = "B" }

The ITL specification (6.2.1) is translated into ITL-Monitor. It has been split into subclauses

for ease of reading.

val initial = (~A and ~B and ~S)

val clause2 = FIRST(B <~ ~B) WITH (skip ‘;¢ halt(S))

val clause3 = (HALT(A) WITH (stable(B))) THEN (HALT(~A))

val spec = (GUARD (initial) THEN (HALT(STOP) ITERATE clause2 ITERATE clause3))

A monitor, mu, is created to perform a runtime verification using this specification. The

constructor requires a name field, and a reference to an Akka actor system (as).

val mu = RTM(spec, "Latch", as)

mu encapsulates the state of the monitored variables which can be accessed via get and set

methods. For example, this shows how to assign B := - B and § := true:

mu.set(B,!mu.get(B)).set(S,true)

When an assertion point is reached and the current state is to be added to the interval for

analysis, this instruction can be made by the following method call.

mu.!!

This can result in one of three outcomes:

1. MORE is returned — the verification is inconclusive and more state(s) are required. This is
the normal situation while the simulation is being verified, before a definitive judgement

can be made.
2. DONE is returned — the execution trace satisfies the formula.

3. An exception is thrown — the execution trace cannot satisfy the formula.

Ifmu.!! occurs within a try block then a failure can be handled using a corresponding catch

block. The simulation demonstrates the potential of this approach.
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catch {
case e: RTM.RTVException =>
println(e) // ITM detected a violation
println("React at Runtime...") // Alternative action goes here
}

6.2.5.2 AnaTempura monitoring

AnaTempura invokes the simulation but both run as separate programs. The specification is

contained within a special Tempura file latch.t (Listing 6.1).2

Listing 6.1: AnaTempura specification

load "conversion".

load "exprog".

2
3
4
5 /* sbt demo.latch.Simulation 2 t off 1 Latch x/
6
7 set print_states = true.

8

9

define get_var(A,B,S,Z) = {

10 exists T : {

11 get2(T) and

12 A = if T[1]="true" then true else false and

13 B = if T[2]="true" then true else false and

14 S = if T[3]="true" then true else false and

15 Z = if T[4]="true" then true else false

16 }

17 }

18

19 define Pass(R) = format("-- Pass R%d\n",R).

20 define Fail(R) = format("**x Fail R%d\n",R).

21

22 define R1(B,S) = { keep if ((next B = B) implies (not next S))
23 then Pass (1) else Fail (1)

24 }.

25 define R2(B,S) = { keep if ((next B = not B) implies (mext S))
26 then Pass(2) else Fail(2)

27 }.

28 define R3(A,B) = { keep if ((not A and not next(A)) implies (B = next B))
29 then Pass(3) else Fail(3)

30 }.

31 define R4(A,B) = { keep if ((not A and next(A)) implies (B = next B))
32 then Pass(4) else Fail (4)

33 }.

34

2 Antonio Cau adapted AnaTempura (version 3.5) to run Scala programs within sbt (The simple build tool —
a command line development environment for Scala projects). The current latch example was the catalyst for
this development and the original latch.t code was provided by A Cau. The author and A Cau co-developed
the file to work with latch.scala and AnaTempura.
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36
37
38
39
40
41
42
43
44
45
46
47
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/* run */ define test() = {

exists A,B,S,Z: {
get_var(A,B,S,Z) and
format ("A=%t, B=%t, S=%t, STOP=%t\n",A,B,S,Z) and
keep (get_var(next A,next B,next S,next Z)) and
keep format ("A=Yt, B=Jt, S=)t, STOP=Yt\n",next A,next B,next S,next Z) and
halt(Z) and
R1(B,S) and
R2(B,S) and
R3(A,B) and
R4 (A,B)

}

}.

Listing 6.1 contains the following features:

line 5 This comment specifies how AnaTempura should call the Scala simulation. It states that
the simulation is run within sbt, Scala’s terminal-based development environment. The

simulation path and command line arguments are provided as an sbt batch command.

lines 9-17 The get_var function parses the string passed to AnaTempura from the simulation

for each state. Each state is passed as a string such as:
IPROG: assert Event:true:false:true:false:!

The components of the string are parsed into T where, in this example, T[1], T[2], T[3],
and T[4] are true, false, true, and false respectively. These values are assigned to
the state variables A, B, S, and Z.

lines 19-20 These definitions specify the messages to be output when monitor R succeeds
or fails. The function format(...) returns true so the formula itself always succeeds.

The printed message indicates the truth value associated with R.

lines 22-33 The requirements R1-R4 are expressed as function definitions. Note that in
each case the condition keep cond has been expressed as (for R1) keep if cond then
Pass(1) else Fail(1). This construction allows for the test itself to succeed whether
or not cond passes or fails. However, the appropriate report message is printed on the

output transcript.
lines 35-46 This is the main function test which is executed from within AnaTempura.
lines 37 and 38 Read and write the first state.
lines 40 and 41 Read and write all subsequent states.

lines 41-45 The extent of the finite interval is defined using the variable Z which becomes

true when a STOP event is received. The remaining lines conjoin the four requirements.
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6.2.5.3 TraceContract monitoring

The code required to specify the LTL and state machine specifications in TRACECONTRACT
is relatively lengthy compared to the ITL-Monitor specification above. Therefore, this code
is encapsulated into a separate object, TC, (see Listing B.5). These specifications will be
discussed further below, but first the construction of a TRACECONTRACT monitor, nu, as

provided within the main simulation program is shown:

val nu = if (runLTL && runStM) TC.monitorAll

else if (runLTL) TC.monitorLTL
else if (runStM) TC.monitorStM
else TC.monitorNil

The simulation sets up nu to run one of four combinations of TRACECONTRACT verification:
just LTL, just the state machine, both, or neither. The flags controlling the simulation are
derived from command line arguments when the simulation is initiated. When a new state is
ready for analysis it needs to be encoded as an Event (a type defined within TC that consists

of the three Boolean values) and then passed to nu using the verify() method call:

nu.verify (TC.Event (mu.get (A), mu.get(B), mu.get(S)))

The interplay between (ITL-Monitor) mu and (TRACECONTRACT) nu is important here. The
state values are obtained from mu using mu.get methods and these are used to construct a
TC.Event to be passed to monitor nu. This occurs whether or not mu is used for performing
a runtime verification, and ensures that the same states are passed to all runtime monitors

being used.

The LTL formulae representing R1-R4 are encoded using the TRACECONTRACT API. Firstly,
a mumber of named propositions are defined and represented as partial functions. Each is a

projection function inspecting a particular component of the TC.Event state:

def aHi: PartialFunction[Event ,Boolean] = { case Event(true, _,_) => true }
def alLo: PartialFunction[Event ,Boolean] = { case Event(false,_,_) => true }
def bHi: PartialFunction[Event ,Boolean] = { case Event(_,true, _) => true }
def bLo: PartialFunction[Event,Boolean] = { case Event(_,false,_) => true }
def sHi: PartialFunction[Event ,Boolean] = { case Event(_,_,true ) => true }
def sLo: PartialFunction[Event ,Boolean] = { case Event(_,_,false) => true }

Each requirement is written as a subclass of a TRACECONTRACT Monitor and thus inherits
all of the monitor behaviour. The code for R1 is shown below. The function globally
corresponds to the LTL operator 0. Also note the use of weaknext which does not fail when

applied in the final state of a finite interval.
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Listing 6.2: Definition of R1

class R1 extends Monitor [Event] {

/ *

* If B is stable across two adjacent states then S is low in the 2nd state

*

*O((Be® B)=0 (-9)

*/

def bStable = ((matches{bHi}) and weaknext(matches{bHi})) or
((matches{bLo}) and weaknext (matches{bLol}))

property (’R1) {
globally {

bStable implies (weaknext(matches{sLol}))

}
}//R1

The remaining requirements are encoded similarly and then combined into a single monitor

representing the conjunction of all four requirements. 3

class LTLRequirements extends Monitor [Event] {

monitor ( new R1, new R2, new R3_R4 )

6.2.5.4 State machine with TraceContract

TRACECONTRACT supports the encoding of a state machine for runtime verification. To

prepare a monitor to behave as a state machine each of the nodes from Figure 6.2 are

represented as TRACECONTRACT monitors.

The method state is used in conjunction

with a partial function that matches the event (next state) and moves to the next node

as appropriate. Two of the nodes, sy and s4, are provided as examples:

property (’R5) { SO }

def SO: Formula
case
case

case

}

def S4: Formula = state {

case

case

case

case

case

state {

Event (true ,false
Event (false,false

_ => error

Event (false,false
Event (false, true
Event (true ,true
Event (true ,false

_ => error

,false) => S4
,false) => S0

,false) => SO
,true ) => 83
,true ) => 87
,false) => S4

3In the example the requirements R3 and R4 are

in Listing B.4.

combined within a single monitor R3_R4. See the code
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The initial state sy is indicated by the construction of a property (R5) which contains sp.

This property forms the StMRequirements monitor:

class StMRequirements extends Monitor [Event] {
monitor ( new R5 )

}

6.2.5.5 Execution timings

The first set of experiements provides a relative performance analysis of the inline monitoring
systems ITL-Monitor and TRACECONTRACT. Both of these systems perform runtime
verification by constructing monitors dynamically via a Scala API and executing these
alongside the simulation itself. In this respect, TRACECONTRACT follows the same
architectural paradigm as ITL-Monitor making TRACECONTRACT an excellent candidate for

comparative analysis.

For each experiment the time to run the simulation is measured using Java’s nanotime ()
system call and the recorded time is the average over ten runs. The experiments are repeated
for 20, 40, 60, 80, and 100 A-cycles so that the performance of the verification over intervals
with different numbers of states can be compared. The same runtime environment (via sbt)
is used for each experiment. For each A-cycle length, four experiments are performed: no
runtime verification; using ITL-Monitor (ITL); using TRACECONTRACT (LTL); and using a
TRACECONTRACT state machine. The results are listed below (in Table 1 and Table 2).
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Table 1

Num of  Without  ITL-Monitor  TRACECONTRACT  Num of Time *
A-cycles monitoring ITL LTL State machine states® (s)
20 v 687 0.011
40 v 1172 0.016
60 v 1931 0.038
80 v 2490 0.057
100 v 3170 0.096
20 v 614 0.330
40 v 1222 0.453
60 v 1775 0.542
80 v 2555 0.734
100 v 3119 0.753
20 v 616 0.103
40 v 1249 0.179
60 v 1765 0.242
80 v 2631 0.333
100 v 3162 0.380
20 v 611 2.447
40 v 1240 18.336
60 v 1925  67.325
80 v 2483 143.435
100 v 3059 281.840

* Average for ten simulation runs.

The results without monitoring provide a baseline measurement. Runtime verification with
ITL-Monitor increases the time taken by one order of magnitude up to about 1.5K states,
and then remains at the same order of magnitude up to circa 32K states (Table 2). However,
after circa 23K states the experiments run more quickly with ITL-Monitor performing runtime
analysis. This counterintuitive result is explained when the CPU loading and number of active
threads is inspected. Without monitoring the CPU load for the JVM is maintained around
100% and a single thread is running at any one time. However, when the experiment uses
ITL-Monitor the CPU usage for JVM increases to around 300%* and the number of active
threads increases peaking at eight. ITL-Monitor is written in Akka and its performance will
be governed by Akka’s threadpool management. Analyis of how to fine tune the threadpool

performance for given architectures is left for future work.

The table below summarises a series of experiments in which the ITL-Monitor and

TRACECONTRACT(LTL) monitors were executed with significantly longer execution traces.

4 Apple OSX reports up to 100% for each virtual core.
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Table 2

Num of  Without ITL-Monitor TRACECONTRACT Num of Time *
A-cycles monitoring ITL LTL states™ (s)
250 v 7825 0.588
500 v 15538 2.191
750 v 23339 4.916
1000 v 31513 9.042
2000 v 62706  35.640
250 v 7836 1.759
500 v 15676 3.168

750 v 23525 4.661
1000 v 31823 6.318
2000 v 63341  12.008
250 v 7874 1.177
500 v 15946 3.393

750 v 23843 6.659
1000 v 31441 11.069
2000 v 62801  40.978

* Average for ten simulation runs.

Each of the TRACECONTRACT monitors R1, R2, and R3_R4 are of the form globally(..).
TRACECONTRACT forks a new monitor for each matching event within a globally clause,
and each monitor processes events until its formula has been satisfied. Monitors R1 and R2
have complementary antecedants and therefore one or the other of these must be triggered
in every state. Furthermore, in every state when A is low R3_R4 is triggered. Each of these
monitors’ lifetime is only two states but there is nonetheless an extra overhead in creating

and disposing of monitors with every new event.

TRACECONTRACT performance exhibits exponential growth over the simulation lengths
from 0.5K states to 3K states with LTL monitoring being better than the state machine
performance. Monitoring of the CPU load during the TRACECONTRACT experiments shows
that multiple threads are being utilised across the cores but to a significantly less extent with
the state machine than the LTL specification. This accords with the sequential flow through

the deterministic state machine rather than the forking of multiple monitors within LTL.

The ITL-Monitor specification analyses the data in subintervals according to cycles of A or B.
Each fusion point between cycles is the cause of the disposal of one monitor and the creation
of a new monitor. Thus the number of monitors created is proportional to the number of A
and B cycles and not to the number of states. This is a significant reduction in performance

overhead as demonstrated by the timing data.

Considering the AnaTempura verification it is significant to note that the monitoring is

performed outline. The simulation does not synchronise with any AnaTempura process and
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will therefore run independently. However, it is relevant to consider how quickly AnaTempura

can process the stream of incoming state data.

Any timing analysis of the AnaTempura monitoring does not affect the time taken to run
the simulation because the runtime verification is performed outline. Thus the reported time
by AnaTempura is different from that reported by sbt. The following table illustrates the
difference by showing some sample runs with reported timings (rounded to whole seconds).

Each row in the following table is based upon average values from five similar experiments.

Num of Num of  Elapsed time (s)
A-cycles states AnaTempura sbt

20 612 16 3
40 1228 21 3
60 1863 21 5
80 2557 23 6
100 3088 25 8
250 7828 60 26
500 15938 116 54
1000 31789 224 109

The timings are similar to those for TRACECONTRACT (LTL). It is noticable that the

simulation completes significantly before the analysis in each case.
ITL-Monitor revisited

The initial ITL-Monitor specification was based upon subintervals that aligned with cycles
of A and B. The resulting ITL modelled the operation of the latches very closely. The
four requirements, R1 - R4, were derived from the original ITL specification and it was
demonstrated that these were being verified implicitly. However, it is also possible to verify

these requirements directly within ITL-Monitor:

val R1 = SKIP WITH ((Next(B) ‘=‘B) implies not(Next(S)))

val R2 = SKIP WITH ((Next(B)‘/=‘B) implies Next(S))

val R3 = SKIP WITH ((not(A) and not(Next(A))) implies (B‘=‘Next(B)))
val R4 = SKIP WITH ((not(A) and Next(A)) implies (B‘=‘Next(B)))

val spec2 = (GUARD(initial) THEN (HALT(STOP) ITERATE (R1 AND R2 AND R3 AND R4)))

Here, formulae with the form keep f have been expressed equivalently as (skip A f)*. There is
an associated cost with this approach: all of the subintervals used for generating ITL-Monitors
are of unit length. This means that a monitor will need to be created for every state. In this
way the verification approach is now closer to TRACECONTRACT (LTL) in its operation. The
table below shows the timings for running ITL-Monitor using this revised formula. The timings
are higher than the equivalent ones for the original ITL-Monitor specification and approach
the TRACECONTRACT (LTL) timings at the higher numbers of states. This observation
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is consistent with the fact that the revised spec2 spawns monitors at every state as does
TRACECONTRACT (LTL).

Num of ITL-Monitor Num of Time *

A-cycles ITL states™ (s)
20 v 691 0.697
40 v 1310 0.921
60 v 1842 1.135
80 v 2599 1.555

100 v 3226 1.811
250 v 7906 4.169
500 v 15440 7.792
750 v 23803  12.348
1000 v 31511  15.418
2000 v 63068  31.445

* Average for ten simulation runs.

6.2.5.6 Reporting and recovery

In this section the runtime behaviour of each of the monitoring systems, TRACECONTRACT,
ITL-Monitor, and AnaTempura, will be analysed. The discussion takes place within the context
of the latch example and will address how each system provides a running commentary, reports

a successful verification, reports a failure, and supports error recovery.

Displaying progress Each of the monitoring systems can display progress as it receives
states from the simulation. TRACECONTRACT prints out a report each time a monitor

is satisfied. Thus, monitor ’R1 is satisfied by the first two states:

Monitor: TC$LTLRequirements.TC$R1

Property ’R1 succeeds

Succeeding event number 2: Event(false,false,false)
Trace:

1=Event (false,false,false)

2=Event (false,false,false)

AnaTempura similarly reports on each individual state:

State 0: A=false, B=false, S=false, STOP=false
State 0: -- Pass R1
State 0: -- Pass R2
State 0: -- Pass R3
State 0: -- Pass R4
State 1: A=false, B=false, S=false, STOP=false
State 1: -- Pass R1
State 1: -- Pass R2
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State 1: -- Pass R3
State 1: -- Pass R4

For ITL-Monitor each generated state is printed with a judgement. The first two states
of a simulation are shown below — in each case the judgement is MORE meaning that no

violation has been detected at this stage.

( 0.061 sec): RIM (Latchl) More 0 A —> false B —> false S —> false STOP —> false
( 0.062 sec): RIM (Latchl) More 1 A—> false B —> false S —> false STOP —> false

Reporting success All of the systems provide a report when the simulation has completed
— i.e., when the finite execution trace has ended. TRACECONTRACT lists each monitor
and reports on the number of violations detected. The simulation ran to completion

and no violations were detected.

Monitor TC$LTLRequirements.TC$R1 property ’R1 violations: O
Monitor TC$LTLRequirements.TC$R2 property ’R2 violations: O
Monitor TC$LTLRequirements.TC$R3_R4 property ’R3_R4 violations: O

AnaTempura simply reports Done! and provides some statistical information about

the computation. For example:

Done! Computation length: 40. Total Passes: 43.
Total reductions: 8061 (7984 successful). Maximum reduction depth: 15.
Time elapsed: 10.696765

Finally, ITL-Monitor reports Done and lists the elements of the final state. The [INFO]

message indicates that the Akka actor system has shut down the monitor.

Done (List ((B,false), (STOP,true), (S,true), (A,false)))

[INFO] [03/13/2019 22:17:04.641] [run-main-el]
[Monitor$Runtime$RTM (akka://LatchActorSystem)]
Stop: Monitor Latchl has been stopped.

Reporting failure TRACECONTRACT continuously reports on the status of each of its
monitors until the end of the simulation. The simulation allows for a random failure to

be introduced. In this case an error was introduced at the fourth state:

Monitor: TC$LTLRequirements.TC$R2
Property ’R2 violated

Violating event number 4: Event (true,true,false)
Trace:
3=Event (true,false,false)

4=Event (true,true,false)
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AnaTempura reports violations associated with monitors and states. In this case the
nature of the reporting is controlled within the latch.t program itself by side effecting
the Pass/Fail messaging within the monitor formulae (Listing 6.1 lines 22-33).

State 10: A=false, B=true, S=false, STOP=false
State 10: -- Pass R1
State 10: **x Fail R2
State 10: -- Pass R3
State 10: -- Pass R4
In ITL-Monitor a failure causes the verification to terminate with a message on the
transcript. An example of the type of message that appears on the transcipt is shown
below. Extraneous Akka messages have been removed.
Listing 6.3: ITM failure detection
1 ( 0.025 sec): RIM (Latchl) More 3 A —> true B —> false S —> true STOP —> false
2 ( 0.027 sec): RTM (Latchl) Failed 4 A —> true B —> true S —> false STOP —> false
3 RTVException Failure Latchl
4 React at Runtime...
5
6 Terminating monitor Monitor:
7
8

== e
N = O ©

(anon)THEN: RHS failed
(anon)WITH: RHS failed
(anon)ITERATE: LHS failed
(anon)ITERATE: RHS failed

The message describes a path through a monitor formula to assist in locating the source
of the failure. In this case the failure appears to have occurred in the subformula to the
right of WITH in clause2.

val initial = (~A and ~B and ~8)

val clause2 = FIRST(B <~ ~B) WITH (skip ‘;¢ halt(S))
val clause3 = (HALT(A) WITH (stable(B))) THEN (HALT(~A))
val spec = (GUARD (initial)

THEN (HALT (STOP)
ITERATE clause2 ITERATE clause3))

The WARN messages are output using Akka’s asynchronous logging mechanism and, as
such, their order is non-deterministic. In the example there is no ambiguity about the
location of the failure: the only path that satisfies THEN RHS, ITERATE LHS, ITERATE
RHS, WITH RHS leads to the subexpression skip ; halt(S). However, it is possible to label
any of the ITL-Monitor subformulae to assist in locating the source of a failure or to
resolve any potential ambiguity. For example, consider a monitor formula of the form
(a ITERATE b) ITERATE (c ITERATE d); in such a case a failure report consisting of
{ITERATE LHS, ITERATE RHS} is ambiguous.

The operator : : is provided by the ITL-Monitor API so that individual subformulae can

be labelled. If the following changes were made to the previous example:
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val clause2 = "clause2"::(FIRST(B <~ ~B) WITH (skip ;‘ halt(S)))
val spec = "spec"::(GUARD(initial)
THEN "loop"::(HALT(STOP)
ITERATE clause2 ITERATE clause3))

then the error reporting would include the subformula labels (anon is the default for

unlabelled formulae).

[WARN] (spec)THEN: RHS failed

[WARN] (clause2)WITH: RHS failed
[WARN] (loop)ITERATE: LHS failed
[WARN] (anon)ITERATE: RHS failed

Error recovery

Both TRACECONTRACT and AnaTempura only provide a report on the output
transcript. There is no message passing back to the simulation. The communication
of states from the simulation to AnaTempura is via printf messages on stdout. In
TRACECONTRACT each state is evaluated using the verify() method but, because
this method returns ()°, it cannot report a failure back to the simulation. In contrast,
ITL-Monitor verification returns judgements (of type Reply) to the program under test.
The methods provided are:

def verify: Reply // returns a judgement (PASS, FAIL, or MORE)
def ! // a synonym for verify
def !!(e: Exception): Reply // as above but throws e on failure

def !! : Reply // as above but throws default exception

These methods communicate synchronously with the monitor. This design ensures that

the calling program can react at runtime as soon as a failure is reported.

if (mu.verify.isFail)

else

However, when there are many such assertion points within a block of code, it may be
preferable to associate all of them with the same recovery action. The !'! methods
are designed to be used with the try/catch pattern. This is illustrated by the current
example — see Listing B.5. The output displayed in Listing 6.3, line 4, demonstrates that
recovery code within the catch block has been executed following a failure detection.
In this example the recovery code is simply a placeholder message, but the principle has
been established.

5() is the only element of the Unit type in Scala. It is used similarly to void in Java and C to indicate
that the method is called only for its side effect.
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6.3 Checkout system

In this section a larger example is described which simulates a self-service checkout of the
type currently popular in many large retail outlets. It is designed to model a single day’s
trading. The checkout is a reactive system designed to operate for a finite length of time. It
models a realistic system and is capable of generating a large volume of data spanning the
full range of possible interactions that can take place during each customer transaction. It

will enable ITL-Monitor to be analysed with large volumes of data.

The simulation is comprised of the following components.

Customers The simulation generates customers with randomised shopping baskets

Attendant The attendant is responsible for a given number of terminals. Each customer
is assigned to a free terminal by the attendant and the attendant reacts to situations
during a transaction such as “assistance required” or “unexpected item in bagging area”

or “check customer age” whenever an age-restricted product is scanned.

Terminals The simulation models several terminals all of which are managed by the
attendant. Each terminal interacts with one customer at a time. The interactions
include scanning products and placing them in the bagging area and finally ensuring
payment for the goods. When items are placed on the scale in the bagging area their
respective weights are checked against the product DB to see if they are correct within
a given tolerance. When the customer requests assistance or an intervention is required

the terminal alerts the attendant and awaits instruction.

Product DB The product DB maintains details of the products including their price and
weight. Within the context of the simulation it is also responsible for generating random

shopping baskets of products for each newly generated customer.

The simulation The main simulation is responsible for initialising, running, and finalising
the components. It is fundamentally a loop which repeatedly generates a new customer
and “offers” the customer to the attendant to be shown to a free terminal. The
simulation polls the attendant at given time intervals and generates a new customer
once the current one has been “accepted”. This ensures a constant supply of new

customers until the store closes.

A diagram showing the interaction of the principal actors in the simulation is shown in Figure
6.3.

If customer C2 were to complete their transaction next then the corresponding terminal T2

would return to the pool of free terminals and the associated customer actor would be removed
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Simulation Attendant
el [
i Customers i Terminals

busy free

In this example the attendant looks after four terminals but this number is configurable upon
creation of the attendant. The simulation creates customers and passes them (in turn) to the
attendant. The attendant allocates a free terminal to a customer. In the state depicted the
simulation has just passed the reference to newly created C4 to the attendant who is about to
allocate the new customer to the free terminal T4. Whenever there are no free terminals then
the customer must wait. The attendant then maintains contact with all the customers and all the
terminals reacting to situations that arise. The diagram does not show the product database.

Figure 6.3: The principal actors in the simulation
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Simulation Attendant
el [
i Customers | Terminals

busy free

Customer C2 has completed their transaction and the now-obsolete actor has been
garbage-collected; terminal T2 is returned to the free pool ready to be assigned by
the attendant to the next customer.

Figure 6.4: The state after customer C2 has completed their transaction

from the simulation. The actor would be garbage collected. The situation in which customer
C4 has been allocated to the previously free terminal T4, and in which C2 has completed

their transaction, is depicted in Figure 6.4.

Communication between the actors in the simulation takes the form of message passing
with immutable data. Each actor represents its own state-transition system that governs
its behaviour. Figure 6.5 shows the behaviour of a terminal. The system described makes a
number of assumptions and simplifications in order to manage its complexity in this context.
For example, it is assumed that the customer will not seek assistance when paying for the
goods; and the range of assistance that may be sought and provided is restricted to a small
number of representative transactions. Notwithstanding these simplifications, the system
generates a sufficiently varied range of traces by which the behaviour of ITL-Monitor can be
demonstrated and analysed. Figure 6.6 shows a part of a runtime trace filtered to show only

the messages received by, and sent from a single terminal.

6.3.1 Modelling the terminal class

In this section the emphasis is solely upon the implementation of the Terminal class so that it
can later be analysed with runtime verification. The principles apply to any of the components

in the simulation and it is equally possible to attach monitors to the attendant, or to each
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Uninitialised
Start
% Sem [
Pay
Unexpected ‘
State Waiting for Action Next state
Uninitialised Internal state set-up Initialise (handshake) Ready
Ready New customer arrival New customer assigned Start
Start Customer to start Ask customer to scan Scan
Scan Customer activity Scans non-restricted item Place
Scans restricted item Authorise
Seeks assistance Assist
Places item Unexpected
Finish and pay Pay
Authorise Authorisation Granted Place
Refused / within permitted attempts Scan
Refused / too many attempts — end Ready
transaction
Place Item placed Weight within tolerance — accept Scan
Weight not within tolerance — reject Unexpected
Pay Customer to insert card ~ Payment accepted / transaction complete Ready
Payment rejected / ok to try again Pay
Payment rejected / too many attempts — Ready
end transaction
Assist Attendant to help Help provided — carry on Scan
Unwanted item — item removed Scan
Abandon transaction Ready
Unexpected  Attendant to adjudicate Ok — remove and carry on Scan
Not ok — end transaction Ready

Figure 6.5: State transition diagram for a Terminal
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[T 1/C247] [scan
[T 1/C247] [scan
[T 1/C247] [scan
[T 1/C247] [scan

----> T2C_ScanNextItem

<---- C2T_Scan: (921)

- - - Reported: TotalPrice: $\$$ 13.67 NbrOfItems: 5
----> T2A_AuthorisationRequired: 1014987439

[T 1/C247] [authorise <---- A2T_AuthorisationGranted
[T 1/C247] [authorise ----> T2C_PlacelItemOnScale
[T 1/C247] [place <---- C2T_Put: (494)

[T 1/C247] [scan
[T 1/C247] [scan

----> T2C_ClearScanner
----> T2C_ScanNextItem

[T 1/C247] [scan <---- C2T_FinishAndPay
[T 1/C247] [scan ----> T2C_PayWithCard
[T 1/C247] [pay <---- C2T_InsertCard

[T 1/C247] [pay
[T 1/C247] I[pay
[T 1/C247]1 [ready
[T 1/C248] [ready
[T 1/C248] I[ready

----> T2C_PaymentAccepted

----> T2A_TransactionComplete

<---- A2T_Assign: -664662046: (248)

- - - Reported: Sending to customer 72140258
----> T2C_Welcome

[T 1/C248] [start <---- C2T_Start
[T 1/C248] [start ----> T2C_ScanNextItem
[T 1/C248] [scan <---- C2T_Scan: (901)

[T 1/C248] [scan
[T 1/C248] [scan
[T 1/C248] [authorise
[T 1/C248] [authorise
[T 1/C248] [authorise
[T 1/C248] [scan
[T 1/C248] [scan
[T 1/C248] [scan
[T 1/C248]1 [place
[T 1/C248] [scan
[T 1/C248] [scan

- - - Reported: TotalPrice: $\$$ 0.00 NbrOfItems: O
----> T2A_AuthorisationRequired: -664662046

<---- A2T_AuthorisationRefused

----> T2C_ClearScanner

----> T2C_ScanNextItem

<-=--- C2T_Scan: (109)

- - - Reported: TotalPrice: $\$$ 0.00 NbrOfItems: O
--=--> T2C_PlaceItemOnScale

<---- C2T_Put: (645)

----> T2C_ClearScanner

----> T2C_ScanNextItem

L L L e b b b b b b b b L b b e e e b e b e e e e b e e e L

[T 1/C248] [scan <---- C2T_Put: (640)

[T 1/C248] [scan ] ----> T2A_UnexpectedItemInBaggingArea
[T 1/C248] [unexpected] <---- A2T_ResetForNextCustomer

[T 1/C248] [unexpected] ----> T2C_TransactionTerminated

[T 1/C248] [unexpected] ----> T2A_TransactionComplete

[T 1/C248] [ready ] <---- A2T_Assign: -1076536131: (249)

This short extract from an execution trace shows a sequence of messages received by, and sent
from, terminal T1 during the end of a transaction with customer C247 and at the start of a
transaction with new customer C248.

Figure 6.6: Extract from the messages received by, sent from, a terminal
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Simulation Attendant
el [
i Customers | Terminals

busy free

Each terminal has its own runtime monitor running concurrently with it. If there are
four terminals then there are four concurrent monitors. It is possible to monitor the
state of any class/actor and another could be added to, for example, the attendant.
Since these are Akka actors the Akka dispatcher will distribute the processes across
the available cores although the total monitoring load necessarily becomes part of the
overall computation.

Figure 6.7: Each terminal is associated with its own runtime monitor

customer, or to the simulation driver itself. The terminals have been selected because they
represent static machines that would most likely be candidates for such analysis and also
because they appear as multiple instances. This permits simultaneous monitoring across
multiple, available cores. Figure 6.7 illustrates a situation in which the simulation has four

terminals, each with its own independent runtime monitor.

A terminal is an Akka actor that maintains local state and updates this state in reaction to
messages received from other actors in the system. When a state change occurs the partial
function can be substituted for another in situ: this context switching technique is achieved
using the Akka become method — “become the following state”. Not all of the private state
of a terminal will be monitored and it is useful to partition the state space into monitored

and non-monitored variables.

The following code extract shows the definition of the Terminal class and the subsequent
state variables partitioned accordingly. The unmonitored variables are modelled using Scala
variable types and the monitored variables use the parameterised Var [T] type imported from
the ITL API.

1 class Terminal( attendant: ActorRef, // attendant to which this terminal belongs
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tid: Int, // terminal ID
productDB: ActorRef // product database
) extends Actor with ActorLogging {

/K Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K K 3K K K K K Kk ko ok ok ok ok ok ok ok ok ok 3K K K K K K 3 K K K K K ok ok ok ok ok ok ok ok oK ok ok K K K K K K K K K K K K K kK ok
* Unmonitored state variables

***********************************************************************************/

private val scanned = ListBuffer[(Int, Int)]() // items scanned (bagging area)

private var offered: Product = Product.nothing // item just scanned

/K Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK oK oK 3K K K K K 3K 3K K K K K K ok ok ok ok ok oK oK oK oK oK K K K K K K K K K K K K ok ok ok ok ok ok oK ok oK oK K K K K K K K K K K K K ok ok K
* Monitored state variables

***********************************************************************************/

object CID extends Var[Int] {override def toString = "CID" }
object TotalPrice extends Var[Int] {override def toString = "TotalPrice" }
object NbrOfItems extends Var[Int] {override def toString = "NbrOfItems" }
object NbrOfCusts extends Var[Int] {override def toString = "NbrOfCusts" }
object NbrOfPayments extends Var[Int] {override def toString = "NbrOfPayments"}
object NbrOfRefusals extends Var[Int] {override def toString = "NbrOfRefusals"}
object IsClosed extends Var[Boolean] <{override def toString = "IsClosed" }
object HelpLight extends Var[Boolean] <{override def toString = "HelpLight" }
object Incoming extends Var[Msg.Valuel{override def toString = "Incoming" }
object Outgoing extends Var[Msg.Valuel{override def toString = "Outgoing" }

6.3.2 Specifications

A list of required temporal properties that must be satisfied by a terminal is provided below.

Its execution trace can be divided into a sequence of transactions as illustrated in Figure 6.8.

NorOfCusts 0O O O O O O 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3

A terminal processes customers sequentially. The variable NbrOfCusts is incremented
at the start of each new customer transaction. Certain temporal formulae, indicated
by f in the figure, apply to subintervals that correspond to individual transactions.

Figure 6.8: Terminal ‘lifetime’ as a fusion of individual customer transactions

The temporal requirements R1-R5 apply within a single transaction — i.e., per customer.
These properties apply iteratively over the whole execution trace: in ITL this is written f*.
Given that the overall execution trace is finite, a condition representing the final state is

necessary. This reflects the fact that the terminal will eventually be shut down. The variable
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IsClosed serves this purpose, and its role within an iterative formula representing the whole

interval, is given by the following template:

halt(ZsClosed) A
(>(NbrOfCusts < NbrOfCusts + 1 V fin(IsClosed)) A (fin(IsClosed) V f))*

Figure 6.9: Template formula for a customer transaction with requirement f

This is an example of the exceptional termination pattern (Section 3.4.3). A Scala function

for embedding single-transaction formulae within this ITL-Monitor pattern is given below:

Listing 6.4: Single transaction formula template

def ByCust(f: Formula): Monitor =
HALT (IsClosed) ITERATE (
FIRST(NbrOfCusts <~ NbrOfCusts+1l or fin(IsClosed)) WITH (
fin(IsClosed) or f
)

This structure emphasises the interval-based properties of these requirements. Each of the
per-transaction requirements (R1 - R5 below) is embedded within the above template to form
the ITL-Monitors: i.e., ByCust(R1), ByCust (R2), etc. As discussed in Section 2.2, aside from
individual propositions, LTL cannot restrict the scope of temporal formulae to apply over

subintervals.

Requirements

The requirements are presented in ITL alongside their translation into ITL-Monitor. Each of
R1-R5 will be substituted into the single transaction formula (see Listing 6.4 and Figure 6.9)
to construct the required monitor for the whole execution trace. Requirements R4 and Rb5

also have related TRACECONTRACT properties defined alongside for comparison.

R1 Whenever the number of (authorisation) refusals exceeds the maximum allowed, then

the transaction must be terminated.® This property must hold for every transaction.

O(NorOfRefusals > NUM_OF_REFUSALS_ALLOWED) D
&(Outgoing = T2C_TransactionTerminated)

val Rl = eventually (NbrOfRefusals > NUM.OF REFUSALS ALLOWED) implies
eventually (Outgoing ‘=‘ Msg.T2C_TransactionTerminated)

5This is an example of an obligation property [MP95].
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R2

R3

R4

Whenever the help light is illuminated it will eventually be switched off. The help light
state is used here as a proxy for help being provided, which is denoted by the light being

switched off.” This property must hold for every transaction.

m (HelpLight > &(— HelpLight))

The operator specifies behaviour in all suffix intervals except the final state. This
weaker form of [J is used because in the final state the implication is a contradiction.

This property must hold for every transaction.

val R2 = bm (HelpLight implies eventually (~HelpLight))

If the number of (failed) payment attempts reaches its limit, then there must have been
precisely that number of payment rejections previously within the current transaction.

This property must hold for every transaction.

O(NorOfPayments = PAYMENT_ATTEMPTS_ALLOWED) D
& (O(halt(Outgoing = T2C_PaymentRejected))) ™ MENT-ATTEMPTS-ALLOWED

val R3 = eventually (NbrOfPayments ‘=‘PAYMENT ATTEMPTS ALLOWED) implies
di(next (halt (Outgoing ‘=‘Msg. T2C_PaymentRejected)) times
PAYMENT ATTEMPTS ALLOWED)

The formula & (Q(halt(w)))* states that there must be some prefix interval that satisfies
k iterations of O(halt(w)). For example, if k£ = 3, the formula would be satisfied by an

interval with the following pattern: [ee w eee w e w].

Whenever there is an unexpected item in the bagging area then the next outgoing
message must report either a terminated transaction or a removed item. This property

must hold for every transaction.

O( Outgoing = T2A_UnezxpectedItemInBaggingArea D
& ( >(— (stable( Outgoing))) A
fin(Outgoing = T2C_TransactionTerminated V
Outgoing = T2C_RemoveSelectedItem) ) )

val R4 = always (
(Outgoing ‘= Msg. T2A _UnexpectedItemInBaggingArea) implies
di( fst(not(stable(Outgoing))) and
fin ( (Outgoing ‘=‘ Msg.T2C_TransactionTerminated) or

"This is an example of an response property [MP95].
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(Outgoing ‘=‘ Msg. T2C_RemoveSelectedItem) ) ) )

This reads as follows. Whenever an unexpected item occurs then, from that point, there
must be some prefix interval whose final state contains the first update to Outgoing

which must be either a transaction terminated or a remove selected item message.

It is useful to consider the use of TRACECONTRACT for monitoring this behaviour.
While it is natural for the ITL-based approaches (ITL-Monitor and Tempura) to treat
execution traces as sequences of states, TRACECONTRACT considers a trace to contain
events. In the earlier latch case study (Section 6.2) states were treated as events. In
this example, the ingoing and outgoing messages alone can be sent to TRACECONTRACT
rather than complete states. The type of data that would be generated is illustrated

below:

1 A2T_Assign :

2 T2C_Welcome 97 T2C_ClearScanner

3 C2T_Start 98 T2C_ScanNextItem

4 T2C_ScanNextItem 99 C2T_FinishAndPay

5 C2T_Scan 100 T2C_PayWithCard

6 T2C_PlaceltemOnScale 101 C2T_InsertCard

7 C2T_Put 102 T2C_PaymentAccepted

103 T2A_TransactionComplete

However, such data is generated per-customer and it is possible to adapt the simulation
to start a new TRACECONTRACT monitor for each customer transaction. Requirement
R4 can be rewritten in terms of traces of input/output events. If an unexpected item
appears in the bagging area then, there must not be another unexpected item in the
bagging area until the transaction is terminated or the original unexpected item has

been removed.

O(T2A_UnexpectedltemInBaggingArea =
O( (= T2A_UnezpectedItemInBaggingArea) U
(T2C_TransactionTerminated vV T2C_RemoveSelectedItem) )

The translation into TRACECONTRACT takes advantage of Scala’s implicit definitions.
In this case messages are lifted to TRACECONTRACT LTL formulae automatically — this
simplifies the presentation of property 'R4 and aligns it with the LTL formula above.

class TCR4 extends tracecontract.Monitor [Msg. Value| {

import tracecontract. _

implicit def msgToFormula(msg: Msg. Value): Formula = matches {

case m if m = msg => true
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case _ => false

property ("TCR4) {
globally {
Msg. T2A _UnexpectedItemInBaggingArea implies (
strongnext (
not (Msg. T2A UnexpectedItemInBaggingArea) until (
Msg. T2C_TransactionTerminated or
Msg. T2C_RemoveSelectedItem

R5 A payment rejected message should only occur if a pay with card message has been sent

previously within the same transaction. This property must hold for every transaction.

@ ( fin(Outgoing = T2C_PaymentRejected) D
O(Outgoing = T2C_PayWithCard) )

val R5 = bi ( fin (Outgoing ‘=‘ Msg.T2C_PaymentRejected) implies
eventually (Outgoing ‘=‘ Msg.T2C_PayWithCard) )

The operator [@ specifies all initial intervals. The requirement states that any prefix
interval ending with PaymentRejected must contain a state in which PayWithCard has

taken place: i.e. that the latter has occurred previously within the interval.

Transaction subintervals are specified with ByCust (R5) (cf. 6.4): thus the subformula
O (Outgoing = T2C _PayWithCard) is restricted to the ‘current transaction’.

It is possible to compare this specification with TRACECONTRACT using its support
for LTL with past time events. As in R4 above, the TRACECONTRACT monitor will
be defined on a per-transaction basis. TRACECONTRACT supports LTL with past-time
events by maintaining a ‘facts database’ [BH11]|. These facts persist so it is up to the
monitor to add and remove facts at the right times. Unlike ITL where the scope of past
values is delimited by the extent of a subinterval, the database approach relies upon

inserting code into the monitor formula to add and remove facts at the correct times.

Such a facts database has been utilised in the following TRACECONTRACT specification
of requirement R5. The postfix operators +, 7, and ~, cause their associated facts to be

added, and queried for presence, and absence respectively.
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class TCR5 extends tracecontract.Monitor [Msg. Value] {

import tracecontract._

case object CardPaymentRequested extends Fact
property ("TCR5) {
require {
case Msg.T2C_PayWithCard => CardPaymentRequested +
case Msg.T2C_PaymentRejected if CardPaymentRequested 7 => ok
case Msg. T2C_PaymentRejected if CardPaymentRequested =~ => error

R6 One transaction in each group of ten must complete a successful payment.

HALT (IsClosed) ITERATE (
FIRST (NbrOfCusts < NbrOfCusts + 1 V fin(IsClosed)) TIMES 10 SOMETIME (
(Outgoing = T2C_PaymentAccepted) ) )

This specification highlights the use of nested, iterative monitor composition. The
monitor iterates as long as the simultation is running (HALT (IsClosed)). Each iteration
is a sequence of ten transactions. Within that ten-transaction interval, at least one
payment accepted message must hold. The use of SOMETIME means that the proposition

is monitored continually.

def R6 = HALT(IsClosed) ITERATE (
FIRST (NbrOfCusts <~ NbrOfCusts+1 or
fin (IsClosed)) TIMES 10 SOMETIME
(Outgoing ‘=‘ Msg.T2C_PaymentAccepted)

Each of the requirements R1-R5 are transaction-based and thus can be embedded within the
ByCust (f) template. R6 spans transactions and thus stands alone. The combined monitor
expression is presented below. Combining these monitors with AND requires that they all

satisfy the same execution trace.

Each submonitor is labelled to enable identification of component formulae in logfile data.

val specification = "R1"::ByCust(R1) AND
"R2"::ByCust (R2) AND
"R3"::ByCust (R3) AND
"R4"::ByCust (R4) AND
"R5"::ByCust (R5) AND
"R6"::R6
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PAYMENT_ATTEMPTS_ALLOWED 2 number of payment attempts allowed before
the transaction is terminated
NUM_OF_REFUSALS_ALLOWED 1 number of times a restricted item can be
refused before underage customer is evicted
PROBLEM_SOLVED_LIKELIHOOD 95 percentage likelihood of solving a general
enquiry and continuing with shopping
CUSTOMER_TRUST_LIKELTHOOD 95 percentage likelihood that the attendant

trusts the customer following mistake

HELP_BUTTON_PRESSED_LIKELIHOOD 10 percentage likelihood of customer pressing the
help button

GENERAL_ASSIST_LIKELIHOOD 60 percentage likelihood of customer requiring
general assistance
UNDO_PREV_ITEM_LIKELIHOOD 30 percentage likelihood of customer wishing to
undo the last scanned item
PLACE_WRONG_ITEM_LIKELIHOOD 10 percentage likelihood of customer placing the
wrong item in the bagging area
UNDERAGE_LIKELIHOOD 10 percentage likelihood of customer being
underage
CARD_ACCEPTED_LIKELIHOOD 90 percentage likelihood of customer card being
accepted (by machine/bank/etc.)
PUT_NOT_SCAN_LIKELIHOOD 5 percentage likelihood of customer putting an

item down before scanning it

Figure 6.10: Simulation constants for the checkout system

6.3.3 Timing data

The simulation is controlled using a set of constants which is presented as Figure 6.10. The

following values may also be set for a given run:

e The number of terminals available to serve customers.
e The number of shopping items selected randomly for each customer.

e The number of customers to be processed. In terms of the scenario, this determines the

trading period. It therefore controls the length of a simulation run.

The first set of results is used for analysing the time it takes to run sequences of transactions.
The requirements R1-R5 are written on a per-transaction basis and, as such, cause the monitor
to verify the requirements one transaction at a time. The five requirements are monitored
simultaneously. For the purpose of the timing analysis each simulation run completes and
all of the requirements succeed. The simulation generates random events in accordance with
the simulation parameters (Figure 6.10) and these are recorded via instrumentation points

(verify) placed within the Terminal class.

Figure 6.11 shows the outputs for a number of relatively short runs of 100 transactions

(representing 100 customers). The number of items in each customer’s shopping cart has been
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set at 10, 50, 100, and 200 respectively. For each run the total number of states generated by
the simulation is recorded along with the total time spent analysing the transactions. These
times are calculated using the system timer within the verification method. Each transaction
has its own interval length depending upon the combination of events that occur. Some
intervals may be significantly shorter than the number of items if, for example, the transaction
is terminated early. However, the interval lengths are averaged over 100 transactions. The
maximum length of any interval is also captured by the system and reported. The interval

lengths and times are averaged over five runs.

These relatively short runs generate interval lengths up to on average c. 350 states. Some of
the maximum values are significantly larger. The average time for simultaneously checking
requirements R1-R5 is less than a third of a second. The interval lengths are based upon
realistic amounts of shopping (even though 200 items is perhaps a little extreme) and thus
demonstrate that checking these requirements is very feasible. In the type of system this is

modelling, these verification times are well within what would be required.

In the first experiment, the time taken to evaluate each of the requirements was dependent
upon the length of the interval and the particular values assigned by the simulation. Figure
6.12 shows the outputs for verification of formulae with guaranteed evaluation worst-case
complexities of O(n3) and O(n?).

The O(n3) formula O(O((¢G(empty)))) equates to = (O(O(= (O(empty))))) which, in turn,
is equal to — (true ; (true ; (— (true ; (empty))))). Evaluation will require the examination
of every possible fusion point for each ;. The results show that for O(n?) formulae, the
evaluation times are within a tenth of a second for intervals up to c. 300 states. However,
once the O(n*) formula is used there is a noticable exponential rise in evaluation times. For
interval lengths up to around 200 states even O(n?) formulae can be verified in under a

second.

The third experiment demonstrates scalability. The computational load on each requirement
is kept low by maintaining average interval lengths of 80 states. This is testing that a constant
performance for the individual interval verifications is maintained as the overall number of

states rises. This occurs as the number of states rises from 80K to just under 1m.

6.3.4 Running with TraceContract

It was shown during the development of R4 and R5 that these requirements could be
adapted for use with TRACECONTRACT. Although these monitors do not capture the whole
execution trace, the behaviour of individual intervals is checked by creating and destroying

the TRACECONTRACT monitors within the simulation when each new customer arrives.
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R1-R5, 1 monitor
No. of No. items Total states Avgintvl Max intvl Total time  Avg intvl
intervals  per intvl  monitored length length (s) time (s)
100 10 8009 80 131 6.376 0.06376
100 10 7671 7 139 5.189 0.05189
100 10 7938 79 136 5.064 0.05064
100 10 8033 80 121 5.751 0.05751
100 10 8251 83 146 6.378 0.06378
avg 80 0.05752
100 50 20963 210 479 36.151 0.36151
100 50 23655 237 485 20.313 0.20313
100 50 23135 231 468 28.292 0.28292
100 50 23565 236 474 18.660 0.18660
100 50 21398 214 476 20.352 0.20352
avg 226 0.24754
100 100 32651 327 900 26.267 0.26267
100 100 26427 264 879 19.728 0.19728
100 100 27148 227 854 19.856 0.19856
100 100 31672 317 892 25.150 0.25150
100 100 28906 289 889 23.289 0.23289
avg 285 0.22858
100 200 33155 332 1655 24.453 0.24453
100 200 31916 319 1673 28.308 0.28308
100 200 34595 346 1492 29.392 0.29392
100 200 32798 328 1553 27.699 0.27699
100 200 34772 348 1644 31.943 0.31943
avg 335 0.28359

Runs for shopping baskets with 10, 50, 100, and 200 items. Experimental output data in Section
B.3.1.

Figure 6.11: Experiment 1
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1 monitor
No. of No. items Total states Avg intvl Max intvl Total time  Avg intvl
intervals  per intvl  monitored length length (s) time (s)

Formula for each transaction is 0(0((O(empty)))) — O(n?)

100 10 7795 78 121 2.298 0.02298
100 40 21165 212 383 6.118 0.06118
100 70 24703 247 628 8.565 0.08565
100 100 29038 290 872 9.795 0.09795
100 1000 37913 379 1758 12.844 0.12844

Formula for each transaction is 0(0(00(O(empty))))) — O(n?)

100 10 8503 85 132 7.051 0.70705
100 40 20628 206 379 78.349 0.78349
100 70 24025 240 610 200.102 2.00102
100 100 28461 285 824 367.922 3.67922

[llustrating worst-case performance characteristics. Experimental output data in Section B.3.2.

Figure 6.12: Experiment 2

TRACECONTRACT can be set to log event data and to report successful verifications to the
standard output. For example, in a sample transaction, monitor TCR4 reports that Monitor:
Terminal TCMonitor. Terminal TCR4

Property ’TCR4 succeeds

Succeeding event number 58: T2C_RemoveSelectedItem
Trace:
56=T2A_UnexpectedItemInBaggingArea
58=T2C_RemoveSelectedItem

The TRACECONTRACT event numbers do not align with the ITL-Monitor trace because the
latter is being monitored for the whole simulation whereas the former only for a given
transaction. However, it is possible to locate the corresponding states in the ITL-Monitor
trace for comparison. The More judgement in state 74 reflects the fact that requirement R4
has passed this sequence successully (some of the variable mappings have been removed for

brevity):

( 0.214 sec): RTM (T_1) More 72 CID -> 1
Incoming -> C2T_Put
Outgoing -> T2A_UnexpectedItemInBaggingArea
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R1-R5, 1 monitor
No. of No. items Total states Avg intvl Max intvl Total time  Avg intvl
intervals  per intvl  monitored length length (s) time (s)
1000 10 79949 79 162 41.575 0.04158
2000 10 159838 80 157 80.466 0.04023
3000 10 238610 80 154 112.501 0.03750
12000 10 955706 80 176 468.546 0.03905

The experiment demonstrates that the monitor performance scales linearly, and is capable of
handling large data sets. Experimental output data in Section B.3.3.

Figure 6.13: Experiment 3

( 0.214 sec): RIM (T_1) More 73 CID -> 1
Incoming -> A2T_ClearMostRecentItem
Outgoing —-> T2A_UnexpectedItemInBaggingArea

( 0.215 sec): RIM (T_1) More 74 CID -> 1
Incoming -> A2T_ClearMostRecentItem
Outgoing -> T2C_RemoveSelectedItem

It is more difficult with TCR5 because TRACECONTRACT cannot identify the relevant states
— the check is made against the ’facts database’. However, by inspecting the event log for
each customer it is possible to locate an example. Below is the tail of a TRACECONTRACT
log showing two trigger events, 69 and 71. The required earlier event is number 67. When
event 67 occurred the fact T2C_PayWithCard was added to the database. When events 69
and 71 occurred the fact was checked. Note that it is not necessary to clear the fact database

because the TRACECONTRACT monitor is terminated at the end of the transaction.

66 C2T_FinishAndPay

67 T2C_PayWithCard

68 C2T_InsertCard

69 T2C_PaymentRejected

70 C2T_InsertCard

71 T2C_PaymentRejected

72 C2T_InsertCard

73 T2C_PaymentAccepted

74 T2A_TransactionComplete

The relevant states from the ITL-Monitor trace are extracted below.
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( 1.895 sec): RTM (T_1) More 3427 CID -> 45 ... Outgoing -> T2C_PayWithCard

( 1.896 sec): RTM (T_1) More 3428 CID -> 45 ... OQOutgoing -> T2C_PayWithCard

( 1.896 sec): RTM (T_1) More 3429 CID -> 45 ... Outgoing -> T2C_PayWithCard

( 1.897 sec): RTM (T_1) More 3430 CID -> 45 ... Outgoing -> T2C_PaymentRejected

( 1.898 sec): RIM (T_1) More 3431 CID -> 45 ... Outgoing -> T2C_PaymentRejected

( 1.898 sec): RTM (T_1) More 3432 CID -> 45 ... Outgoing -> T2C_PaymentRejected

( 1.898 sec): RIM (T_1) More 3433 CID -> 45 ... Outgoing -> T2C_PaymentRejected

( 1.899 sec): RTM (T_1) More 3434 CID -> 45 ... Outgoing -> T2C_PaymentRejected

( 1.899 sec): RTM (T_1) More 3435 CID -> 45 ... Outgoing -> T2C_PaymentRejected

( 1.899 sec): RIM (T_1) More 3436 CID -> 45 ... Outgoing -> T2C_PaymentRejected

( 1.899 sec): RTM (T_1) More 3437 CID -> 45 ... Outgoing -> T2C_PaymentAccepted

( 1.900 sec): RIM (T_1) More 3438 CID -> 45 ... Outgoing -> T2A_TransactionComplete

The example highlights the difference between storing individual events and storing states.
In the latter approach certain data is duplicated in successive states while other values
change. There is no need to store historical facts because the interval of states for the current

transaction delimits the scope of the operators [ and <.

@ ( fin(Outgoing = T2C_PaymentRejected) D
&(Outgoing = T2C_PayWithCard) )

6.4 Summary

The examples in this chapter have demonstrated that ITL-Monitor can be used both to
specify and to monitor real word applications. The checkout system delivered performance
characteristics in which intervals of length averaging c. 300 states were being verified against
ITL formulae with verification time complexity of O(n3) in around a tenth of a second.
The system also showed that the tool is capable of handling large execution traces. The
experimental requirements R1-R5 were verified over a trace consisting of nearly a million
states. When the length of the subintervals was maintained at 80 states, ITL-Monitor delivered
consistent average interval verification times of ¢. 0.04 seconds as the number of subintervals
was increased from 1000 to 12000. This demonstrates that the underlying architecture is

capable of handling this level of throughput.

The first example has demonstrated the advantage of dividing the execution trace into a series
of subintervals. For simulation lengths of up to about 300 states both TRACECONTRACT and
ITL-Monitor were processing the data in similar times. However, as the number of states
increased beyond that, ITL-Monitor gained a clear advantage over TRACECONTRACT with

the latter taking three times longer to complete over 62K states.

ITL-Monitor generates a new monitor each time an A-cycle or a B-cycle completes (about one
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in every 10 states), whereas TRACECONTRACT is generating a new monitor in every state.
When the ITL specification was changed to reflect the LTL more closely, the resulting ITL-
Monitor performed more slowly — ITL-Monitor took 31 seconds to process 63K states whereas

before it only took 12 seconds. TRACECONTRACT took 41 seconds.

Both of these systems are Scala DSLs, which have not been especially optimised, running
inline with the simulation itself. However, TRACECONTRACT has not been written to exploit
multi-core architectures, whereas ITL-Monitor has been, by virtue of being implemented as
a network of Akka actors. This design decision delegates the distribution of labour across
multiple cores to the Akka dispatcher. It is also possible, in principle, to distribute actors
across computer systems and networks — Akka already supports this. Exploting this potential

for monitor distribution is left for future work.

There is a potential drawback with performing verification after each subinterval has been
collected. Faults will be detected at this level of granularity. Runtime verification systems
whose monitors check every state against the specification will be able to detect faults
immediately. It is a trade-off. ITL-Monitor is a candidate runtime verification tool for systems
for which the time to evaluate each verification judgement is required to be of the order of

tenths of seconds, or greater, rather than, e.g., miliseconds.

Practice with these runtime verification tools has highlighted the utility of monitor
composition. TRACECONTRACT provides this using monitor hierarchies (trees) in which
siblings are run concurrently. The internals of TRACECONTRACT ensures that each event
is distributed to all child monitors. The grammar of ITL-Monitor enables monitors to be
composed sequentially, iteratively, and in parallel, and the theory developed in Chapter 4
provides an ITL translation of every ITL-Monitor expression. An example of this approach
was particularly evident in requirement R6 which exploits all of these features (including the

nested iteration of intervals).

HALT (IsClosed) ITERATE (
FIRST (NbrOfCusts <~ NbrOfCusts + 1 V fin(IsClosed)) TIMES 10 SOMETIME (
(Outgoing = T2C_PaymentAccepted) ) )

The use of Scala DSLs for developing runtime verification libraries is a current research topic.
TRACECONTRACT is one example and ITL-Monitor is another. Scala’s support for higher
order functions, pattern matching, and partial function syntax, all contribute to the ease

with which such libraries can be developed.
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Conclusion and future work

The use of ITL to specify the ITL-Monitor components required the development of a theory
of fixed-length intervals in ITL (Section 3.5.2). Three new ITL operators were introduced: all
strict initial intervals, & ; some strict initial interval, & , and the first occurrence operator,
>. An investigation of these operators was conducted which led to the development of a
body of laws that has been added to ITL [CMS19]. The theory includes the important
law FstFstChopEquFstChopFst(¢209) (- >(>f; g) = >f; >g) which states that the
sequential composition of first occurrences is itself a first occurrence. This is a significant
result which has an important corollary’, FstFizFst(C-261) (F > f=rf). This states that
a first occurrence of f can have no other first occurrences of f before it. These operators

provide the basis for the translations of the ITL-Monitor expressions into ITL (cf. Chapter 4).

The development of ITL-Monitor as a restriction of ITL enabled monitor operators to be
investigated mathematically. Their algebraic properties have been discovered and documented
[CMS19]. These are particularly useful because, not only does this enable ITL-Monitor
expressions to be rewritten and simplified, it also facilitates the transformation of their

executable counterparts.

The implementation of ITL-Monitor as a Domain Specific Language in Scala means that
monitors exist as dynamic objects within the programs they are verifying and that they can
be constructed and executed under program control. This provides flexibility to the software
engineer to decide how the runtime verification affects the program’s future behaviour. This

feature is an implementation of the react at runtime pattern discussed in [LS09].

Experimental results were carried out using a case study capable of generating large volumes
of simulation data. The performance of ITL-Monitor was found to be scalable — constant
interval processing times of a 0.04 seconds/interval were observed as the size of the execution

trace increased from 80,000 states to just under a million. The average interval length was 80

1Set g = empty.
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states. A second experiment showed that verifying ITL formulae with evaluation complexity
of O(n?) over interval sizes of around 300 states ran at approximately 0.1 seconds/interval.
These results indicate that ITL-Monitor is a practical runtime verification tool with real-world

potential application.

7.1 Comparison with related work

Interest in using Scala as a language for building runtime monitor DSLs (cf. 2.4.1) [AHKY15]
has increased in recent years. The syntactic features available in Scala which facilitate
the construction of DSLs, coupled with its compilation into Java bytecode, make it an
attractive implementation target. The DSL approach to monitor construction is one of the
considerations discussed recently in [BHK16] in which the authors propose a move towards
tighter integration of specification logics and programming languages. ITL-Monitor has been

developed as an internal DSL in Scala.

ITL-Monitor shares with AnaTempura the use of manually instrumented checkpoints. However,
unlike AnaTempura, ITL-Monitor provides a closer coupling between the program checkpoint
and the monitor because it uses an internal DSL rather than an external monitor. This
embedded approach benefits from the use of the compiler to type-check the data passed to
and from each monitor. In principle, the instrumentation of ITL-Monitor could be automated
using an approach similar to Aspect] [Asp17] and JavaMOP [JMLR12] with the trigger events
being associated with updates to variables. However, the current manual approach affords
greater control when a new state is added to the trace. In particular it permits multiple

updates at a time to occur to monitored variables (see Section 2.1 in [RH16]).

A key aspect of ITL-Monitor is its compositional construction which it derives from the
underlying ITL. Compositionality in ITL has provided the motivation for both theoretical
[Mos94, Mos98, Mos13, Mosl4b], and practical work [Mos96a, JNWC15, Dim00, Dim02,
SCZ03a, SCZ03b, Sie05, JCST06, JCSZ13, STET14]. An exciting area of current research
involves temporal projection [MG17]. It is envisaged that ITL-Monitor will develop to
exploit temporal projection to perform simultaneous runtime verification at different time

granularities.

7.2 Limitation

The instrumentation of ITL-Monitor currently utilises a manual approach in which the software
engineer inserts code to pass a new state to the monitor. Although this provides a fine level
of control over when states are passed, it is incumbent upon the software engineer to insert

checkpoints at exactly the right places in the code. This approach is similar to both of the
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other runtime verification tools that have been used in this thesis (TRACECONTRACT and
AnaTempura).

7.3 Future work

Distributed monitors. It was a deliberate design decision to use Akka, an industrial
strength, distributed actor system, as the basis for the monitor implementation. This
already enables monitors to exploit multiple cores courtesy of the Akka dispatcher. This
is particularly useful given that ITL-Monitor is an inline monitoring architecture (cf.
2.4). However, Akka actors can also be distributed across networks and it is intended

to explore how to configure ITL-Monitor to perform distributed runtime verification.

Time reversal. The underlying theory expressed in ITL has focused on time flowing in a
forwards direction. The insight is that the monitor is concerned with consuming new
states as they arrive in real time just until the evolving interval satisfies the required
condition. Thus the first occurrence operator was introduced to facilitate the expression
of such requirements. In recent work [Mosl4b] time reversal has been introduced into
ITL and has been shown to provide new insights and, in some cases, to lead to simpler

proofs.

An evolving execution trace is extended at only one end. However, a completed interval
can be viewed from either end. It is natural to consider the reflections of the newly
added ITL operators (@, ¢, <) and how a symmetrical theory of first occurrence
could be developed. It is expected that this will provide a set of transformations that

could provide greater insight into future applications of these new operators.

Temporal projection. ITL-Monitors may be composed sequentially and in parallel. These
are built, fundamentally, upon the ITL operators (; and A). However, it can be useful
to view intervals at different levels of temporal abstraction. This can be achieved using
temporal projection, fi proj fo, [MG17, Mos86, BT00], The translation of ITL-Monitor

into ITL will need to be adapted to take into account this new feature.

At a practical level, some exploratory work has already been undertaken, and an initial
implementation of projection has already been added to the Monitor.scala API. In this
experimental version, the projection points must be specified deterministically. This has
been tried out practically with a small example and it is clear that useful, multi-level
verifications can take place simultaneously on an evolving trace. It is expected that
such an enhanced ITL-Monitor will have application in monitoring systems at different

temporal granularities simultaneously.
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7.4 Potential impact

The theory of first occurrence extends the body of knowledge relating to ITL, particularly
in respect of fixed length intervals and their combination. The laws have been checked
mechanically by Isabelle/HOL using a translation of ITL into Isabelle/HOL produced by

Antonio Cau.

The ITL-Monitor API has potential use in commercial or industrial applications. As mentioned
above, the intention is to investigate next how to exploit Akka’s distributed actor support
so that the existing model can be used to monitor a distributed system. This is seen as a

significant potential direction for ITL-Monitor.
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Appendix A

API listings

Al

ITL API

Listing A.1: ITL.scala

package

runtime .

3 object ITL {

© 0 O O

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

import
import
import
import
import

import

trait
def
def

trait
def
def
def
def

trait
def
def
def
def
def
def

trait
def
def

trait
def
def
def
def
def
def

analysis

.language.implicitConversions

existentials

collection .immutable. ListMap
collection .immutable. SortedMap

'(EQ(a,b))

// minimal complete definition

LE(a,b) && NE(a,b)
LE(b,a)
LT(b,a)

if (Listrue(b)) Lfalse else Ltrue

scala

scala.language.
scala.language.postfixOps
scala.collection .immutable
scala .

scala .

Eq[T] {

EQ(a: T, b: T): Boolean
NE(a: T, b: T): Boolean
Ord [T] extends Eq[T] {
LE(a: T, b: T): Boolean
LT(a: T, b: T): Boolean
GE(a: T, b: T): Boolean
GT(a: T, b: T): Boolean
Num[T] {

Add(a: T, : T): T
Sub(a: T, b: T): T
Mul(a: T, b: T): T
Neg(a: T): T

Abs(a: T): T

Sgn(a: T): T
Integral [T] {

Div(a: T, b: T): T
Mod(a: T, b: T): T
Logical [T] {

Ltrue: T

Lfalse: T

Listrue(b: T): Boolean
Lisfalse(b: T): Boolean
Lnot(b: T): T

Land( a: T, b: T): T

if (Listrue(a) && Listrue(b)) Ltrue else Lfalse
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44 def Lor( a: T, b: T): T = Lnot (Land (Lnot(a),Lnot(b)))
45 def Limp( a: T, b: T): T = Lor(Lnot(a),b)

46 def Leqv( a: T, b: T): T = Land (Limp(a,b), Limp(b,a))
47 def Lxor( a: T, b: T): T = Lnot(Legv(a,b))

48 def Lnand(a: T, b: T): T = Lnot(Land(a,b))

49 def Lnor( a: T, b: T): T = Lnot(Lor(a,b))

50 }

51

52 /* 3k sk sk 3k sk sk sk sk sk sk sk ok sk sk ok ok ok ok sk sk ok 3k sk sk sk sk sk sk ok sk sk sk sk ok ok 3k sk ok sk sk sk ok sk sk sk sk sk sk ok sk sk sk ok ok 3k 3k sk sk ok 3k sk sk sk sk sk ok 3k sk 3k 3k ok ok ok ok ok 3k 3k sk ok ok
53 * Implicit instances for Int

54 ook o ok K ok K oK o oK K oK K oK K oK oK S oK K oK K K R R K K KK KK oK K R oK K KR oK K S oK K oK K oKk oK K R oK K KR o oK o oK K ok K Kk oK oK K oK K oK K K K K ok o ok ok %/
55

56 implicit object Rellnt extends Eq[Int] with Ord[Int] {

57 override def EQ(a: Int, b: Int): Boolean = a=—b

58 override def LE(a: Int, b: Int): Boolean = a<=b

59 }

60

61 implicit object NumlInt extends Num[Int] {

62 def Add(a: Int, b: Int): Int = a+b

63 def Sub(a: Int, b: Int): Int = a—b

64 def Mul(a: Int, b: Int): Int = axb

65 def Neg(a: Int): Int = —a

66 def Abs(a: Int): Int = a.abs

67 def Sgn(a: Int): Int = a.signum

68 }

69

70 implicit object Integrallnt extends Integral[Int] {

71 def Div(a: Int, b: Int): Int = a/b

72 def Mod(a: Int, b: Int): Int = a%b

73}

74

75 implicit object Logicallnt extends Logical [Int] {

76 def Ltrue: Int =1

7 def Lfalse: Int = 0

78 def Listrue(b: Int): Boolean = b!=0

79 def Lisfalse(b: Int): Boolean = b=—70

80}

81

82 /% sk sk ok ok ok ok ok s ok ok o oK o ok o ok K kK oK K o oK K oK K K oK oK oK K ok R KK K K o oK K oK K oK oK S K R oK K K K S oK o oK K KR K K S oK K KK oK oK K oK K ok K KK K K R K K
83 * Implicit instances for Long

84 **********************************************************************************/
85

86 implicit object RelLong extends Eq[Long] with Ord[Long] {
87 override def EQ(a: Long, b: Long): Boolean = a—b

88 override def LE(a: Long, b: Long): Boolean = a<=b
89}

90

91 implicit object NumLong extends Num|[Long] {

92 def Add(a: Long, b: Long): Long = a+b

93 def Sub(a: Long, b: Long): Long = a—b

94 def Mul(a: Long, b: Long): Long = axb

95 def Neg(a: Long): Long = —a

96 def Abs(a: Long): Long = a.abs

97 def Sgn(a: Long): Long = a.signum

98 }

99

100 implicit object IntegralLong extends Integral[Long] {

101 def Div(a: Long, b: Long): Long = a/b

102 def Mod(a: Long, b: Long): Long = a%b

103 }

104

105 implicit object LogicalLong extends Logical [Long] {

106 def Ltrue: Long = 1

107 def Lfalse: Long = 0

108 def Listrue(b: Long): Boolean = b!=0

109 def Lisfalse(b: Long): Boolean = b=—=0

110}

111

112 /* S sk sk ok sk sk ok ok ok sk ok ok ok ok ok ok ok ok Sk sk ok sk sk ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok sk sk sk ok sk ok ok ok ok sk ok ok ok ok ok sk ok sk sk sk ok ok sk ok ok ok sk ok ok sk ok ok ok ok sk sk sk ok ok ok ok ok
113 * Implicit instances for Char

114 st ok ok o ok K ok oK oK oK oK oK R ok R oK oK oK ok S ok oK R oK oK SR oK K oK oK K oK ok S ok K oK R oK oK S ok K ok R oK ok oK K R oK K oK K oK oK R oK K ok K oK oK S ok R ok R oK K KoK Rk K ok ok ok ok %/
115

116 implicit object RelChar extends Eq[Char] with Ord[Char] {
117 override def EQ(a: Char, b: Char): Boolean = a=—b



118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156

158
159
160
161
162
163
164

166
167
168

170
171
172

174
175
176

178
179
180
181
182
183
184

186
187
188

190
191
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override def LE(a: Char, b: Char): Boolean = a<=b

implicit object LogicalChar extends Logical [Char] {
def Ltrue: Char = T’
def Lfalse: Char = ’F°’
def Listrue(b: Char): Boolean = b!="F"’
def Lisfalse(b: Char): Boolean = b=—'F’

/3 sk ok sk ok ok sk ok ok sk ok sk sk ok sk ok ok sk K ok sk K sk sk ok sk o ok ok o ok sk ok sk ok oK ok o ok ok K ok ok K ok o oK ok K sk ok K sk ok ok sk K ok sk K sk sk ok sk R oK ok K ok ok K ok oK K ok K oK ok K ok ok
* Implicit instances for Boolean

sk sk sk sk sk s ok sk sk sk sk ok sk sk ok sk sk ok sk R sk sk R sk sk sk sk ok sk R sk Sk K sk S ok sk sk sk ok ok sk s ok sk sk ok sk R sk sk ok sk ok sk R ok sk ok sk s ok sk S ok sk sk sk ok K sk S ok sk K ok sk ok ok ok /

implicit object RelBoolean extends Eq[Boolean] with Ord[Boolean] {
override def EQ(a: Boolean, b: Boolean): Boolean = a—b
override def LE(a: Boolean, b: Boolean): Boolean = a<=b

implicit object LogicalBoolean extends Logical [Boolean] {
def Ltrue: Boolean = true
def Lfalse: Boolean = false
def Listrue(b: Boolean): Boolean = b
def Lisfalse(b: Boolean): Boolean = !b

/3 sk sk sk ok sk ok ok sk ok sk sk ok sk ok ok sk K ok sk K sk sk ok sk o ok sk o ok sk ok ok oK oK ok o ok sk K ok ok K ok o oK ok K sk ok K sk ok ok sk o ok sk K sk ok ok sk R oK ok o ok ok K ok oK K ok o oK ok K ok ok
* Implicit conversions

st sk sk sk sk s ok sk sk sk sk ok sk s oF sk sk ok sk R sk sk ok sk sk sk sk ok sk R sk Sk K sk S ok sk sk sk ok sk sk s ok sk sk sk sk sk sk sk ok sk sk ok sk sk ok sk ok sk sk ok sk S ok sk sk sk ok K sk S ok sk sk sk sk ok ok ok /

implicit def implicit-T_To_-Val_-T [T](c: T): Val[T] = Val(c)

implicit def implicit-T_To_Const_.T[T](c: T): Expr[T] = Const(c)

implicit def implicitVar_.T_ToExpr[T] (v: Var[T]): Expr[T] = Ref(v)

implicit def implicitVal . T_To_.T [T](va: Val[T]): T = va match { case Val(a) => a }
implicit def implicitVal-T_ToConst_-T [T](c: Val[T]): Const[T] = Const(c)

implicit def implicitExprBoolToFormula(x: Expr[Boolean]): Formula = Exp(x)
implicit def implicitBoolToFormula(a: Boolean): Formula = Exp(Const(a))
implicit def implicitVarBoolToFormula(v: Var[Boolean]): Formula = Exp(Ref(v))

/* EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREESEEREREEEEREEESEEEESESEESEESSEEESES
* Abstract Values and Variables
*********************************************************************************/

abstract trait Value
abstract trait Variable {
override def toString (): String = this.getClass.getName

abstract class Var[T] extends Variable {
def <~ (x: Expr[T]) (implicit 0:Eq[T]) = ptassign(this, x)
def <— (x: Expr[T]) (implicit o0:Eq[T]) = tassign (this, x)
def := (x: Expr[T]) (implicit o0:Eq[T]) = assign (this, x)
def gets(x: Expr[T]) (implicit o0:Eq[T]) = ITL.gets (this, x)

case class Val[T](v: T) extends Value {
def value: T = v
override def toString (): String = v.toString()

type VarUpdate = (Var[T],T) forSome {type T}
[k ok ok sk ok ok sk ok ok ok sk koK ok sk Rk K sk kK K kK K ok kK K ok kK Kk kK K ok Rk Kk kK Kk Rk Kk kK Kk kK Kk kK koK K ok kK kK K kK K
* Intervals
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type IntervalRepresentation = immutable.Map[Variable ,immutable.Map|[Int , Value]]
class Interval {

val index: Int = —1

val sigma: IntervalRepresentation = new immutable.HashMap ()

def firstIndex: Int = 0
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192 def lastIndex: Int = index

193

194 def get [T](k: Int, v: Var[T]): Option[Val[T]]

195 = sigma.get(v) match {

196 case None => None

197 case Some(trace) => (k to 0 by —1).toStream.find (trace.isDefinedAt(-)) match {

198 case None => None

199 case Some(j) => trace.get(j).asInstanceOf[Option[Val[T]]]

200 }//match

201 }//match

202

203 def add(updates: VarUpdatex ): Interval = this.add(updates.toList)

204

205 def add(updates: List[VarUpdate] ): Interval = {

206 var s = sigma

207 val i = index+1

208 for ((v,a) <— updates) {

209 val newtr: immutable.Map[Int , Value] = s.get(v) match {

210 case None => new immutable.HashMap() + ((i —> Val(a)))

211 case Some(oldtr) => oldtr + ((i —> Val(a)))

212 }//match

213 s =s 4+ ((v => newtr))

214 }//for

215 Makelnterval (s, i)

216 }

217

218 def finState: List[VarUpdate] = {

219 def finVal[T](v: Var[T]): VarUpdate =

220 this.get (lastIndex , v) match {

221 case None => sys.error("finVal no match!")

222 case Some(Val(a)) => (v,a).aslnstanceOf[VarUpdate]

223 }//match

224

225 def getFinVal(v: Variable): VarUpdate =

226 finVal(v.asInstanceOf [Var[T] forSome {type T}])

227

228 ((sigma.keys) map getFinVal).toList

229 }//finState

230

231 def isEmpty (): Boolean = index=—0

232

233 def slice [T](v: Var[T]): String = {

234 v.toString + ": " 4+ ((0 to index).map{k => (k, this.get(k, v))}).toString

235 }

236

237 override def toString (): String = {

238 def order (m: immutable.Map[Int ,Value]) = m.toSeq.sortWith(_-._1<_._1)

239 val tau = sigma.mapValues(m => order (m)).toSeq.sortWith(-._1.toString < _._1.toString)

240 tau.toString

241 }

242 }//Interval

243

244 case class Makelnterval(s: IntervalRepresentation, i: Int) extends Interval {

245 override val index: Int = i

246 override val sigma: IntervalRepresentation = s

247}

248
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250 « Temporal Expressions, Values, Variables, and Formulae
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252

253 abstract class Expr[T] {

254 def unary_— (implicit o:Num[T]) Expr [T] = Unary (o.Neg, this )
255 def abs (implicit o:Num[T]): Expr [T] = Unary (o.Abs, this )
256 def sgn (implicit o:Num[T]) Expr [T] = Unary(o.Sgn, this )
257 def x (that: Expr[T])(implicit o:Num[T]): Expr[T] = Binary (o.Mul, this, that)
258 def / (that: Expr[T])(implicit o:Integral[T]): Expr[T] = Binary(o.Div, this, that)
259 def % (that: Expr[T])(implicit o:Integral[T]): Expr[T] = Binary (o.Mod, this, that)
260 def + (that: Expr[T])(implicit o:Num[T]): Expr [T] = Binary (o.Add, this, that)
261 def — (that: Expr[T])(implicit o:Num[T]): Expr[T] = Binary (o.Sub, this, that)
262 def ¢77¢ (that: Expr[T])(implicit o:Eq[T]): Formula = ITL . tempeq( this, that)
263 def (that: Expr[T])(implicit o:Eq[T]): Expr [Boolean] = Binary (o.EQ, this, that)
264 def (that: Expr[T])(implicit o:Eq[T]): Expr[Boolean] = Binary (o.NE, this, that)
265 def < (that: Expr[T])(implicit 0:0rd[T]): Expr[Boolean] = Binary (o.LT, this, that)
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def > (that: Expr[T])(implicit 0:0rd[T]) Expr[Boolean] = Binary (o.GT, this
def <= (that: Expr[T])(implicit 0:0rd[T]): Expr [Boolean] = Binary(o.LE, this
def >= (that: Expr[T])(implicit 0:0rd[T]): Expr[Boolean] = Binary (o.GE, this
def unary_~ (implicit o:Logical [T]): Expr [T] = Unary(o.Lnot, this
def & (that: Expr[T])(implicit o:Logical [T]): Expr[T] = Binary (o.Land, this
def &! (that: Expr[T])(implicit o:Logical [T]): Expr[T] = Binary (o.Lnand, this
def | (that: Expr[T])(implicit o:Logical [T]): Expr[T] = Binary (o.Lor, this
def |! (that: Expr[T])(implicit o:Logical [T]): Expr[T] = Binary (o.Lnor, this
def |~ (that: Expr[T])(implicit o:Logical [T]): Expr[T] = Binary (o.Lxor, this
def Implies(that: Expr[T])(implicit o:Logical [T]): Expr[T] = Binary (o.Limp, this
def Equiv (that: Expr[T])(implicit o:Logical [T]): Expr[T] = Binary (o.Leqv, this
def injectInto [U](f: Const[T] => Expr[U])(implicit o:Eq[T]) = With ( this

}//Expr

case class Const[T](c: T) extends Expr[T]

case class Ref[T](v: Var[T]) extends Expr[T)]

case class Unary[T,U](op: T=>U, x: Expr[T]) extends Expr [U]

case class Binary [T,U,V](op: (T,U)=>V, x: Expr[T], y: Expr[U]) extends Expr[V]

case class With[T,U](x: Expr[T], f: Const[T] => Expr[U]) extends Expr[U]

case class Next[T](v: Var[T]) extends Expr[T)]

case class Fin[T](v: Var[T]) extends Expr[T]

case class IntLen () extends Expr[Int]
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* Expression evaluation
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def evalExpr [T](expr:
evalExprFromTo (expr ,

def evalExprFromTo [T](expr:

sigma :
expr match {
case Ref(v) =
case Const(a) =
case Unary(op,x) =
case Binary (op,x,y) =>
case With(x, ) =
case Next(v) =
case Fin(v) =
case IntLen () =
}//match
}//evalExprFromTo
/%

* Formulae

Expr[T],
sigma ,

sigma: Interval): Option[Const[T]]

sigma. firstIndex , sigma.lastIndex)
Expr[T],

Interval , i: Int, j: Int):

sigma.get (i, v) match {
case Some(Val(a)) => Some(Const(a))
case None => None

}

Some (Const(a))

evalExprFromTo(x, sigma,
case None => None //

j) match {
strict!

i,

Option[Const [T]]

={

case Some(Const(a)) => Some(Const(op(a)))

}

evalExprFromTo(x, sigma,
case None => None //
case Some(Const(a)) =>

j) match {
strict!

i,

evalExprFromTo(y, sigma, i,

case None => Nomne // strict!

case Some(Const(b)) => Some(Const(op(a,

}
evalExprFromTo(x, sigma, i, j) match {
case None => None // strict!
case Some(k) => evalExprFromTo(f(k),
}
(D) > §)
None
else

sigma.get (i+1, v) match {
case Some(Val(a)) => Some(Const(a))

case None => None
}
sigma.get (j, v) match {
case Some(Val(a)) => Some(Const(a))
case None => None

}

Some (Const (j—i))

j) match {

b)))

sigma, i,])
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abstract class Formula {

)

)

)

)

)

that)
that)
that)

that)
that)
that)
that)
that)
that)
that)
£ )
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340 def ¢;‘(that: Formula) = Chop(this ,that)

341 def chopstar = Chopstar (this)

342 def times(n: Int) = Repeat(n, this) // use f times 3 or f.times(3)
343 def and(that: Formula) = And(this ,that)

344 def or(that: Formula) = Not(And(not(this),not(that)))

345 def implies(that: Formula) = not(this) or that // does NOT have ITL priority/associativity
346 def equiv(that: Formula) = And(this implies that, that implies this)

347 def afb(w: Formula) = ITL. afb (this, w)

348 def fixed (): Option[Int] = this match {

349 case Len(k) => Some (k) // fixed length
350 case And(f,g) => f.fixed () match {

351 case None => g.fixed ()

352 case Some(k) => Some(k)
353 }

354 case _ —=> None

355 3

356
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358 * Formula evaluation

359 *******************************************************************************/
360

361 def evalFormulaFromTo [T](sigma: Interval, i: Int, j: Int): Boolean = {

362 this match {

363 case Label(s, f) =>

364 f.evalFormulaFromTo (sigma, i, j)

365

366 case Exp(x) =>

367 evalExprFromTo(x, sigma, i, j) match {

368 case None => false

369 case Some(Const(b)) => b

370 }

371

372 case Not(f) =>

373 ! (f.evalFormulaFromTo (sigma, i, j))

374

375 case Final(w) =>

376 w.evalFormulaFromTo (sigma, j, j)

377

378 case And(f, g) =>

379 f.evalFormulaFromTo (sigma, i, j) && g.evalFormulaFromTo (sigma, i, j)
380

381 case Len(n) =>

382 Exp(IntLen () ‘=‘ Const(n)).evalFormulaFromTo (sigma, i, j)

383

384 case Chop(f, g) = (f.fixed (), g.fixed ()) match {

385 case (None,None) => (i to j).toStream .map(k =>

386 if (f.evalFormulaFromTo(sigma, i, k))
387 g.evalFormulaFromTo (sigma, k, j)
388 else

389 false).contains (true)

390 case (Some(m) ,None) => (i+m >= i && i+m <= j) &

391 f.evalFormulaFromTo (sigma, i, i+m) &&
392 g.evalFormulaFromTo (sigma, i+m, j)

393 case (None,Some(n)) = (j-n>1i&& j—n<=j) &

394 f.evalFormulaFromTo (sigma, i, j—n) &&
395 g.evalFormulaFromTo (sigma, j—n, j)

396 case (Some(m),Some(n)) => (i+m >= i && i+tm <= j) &&

397 (itm = j-n) &&

398 f.evalFormulaFromTo (sigma, i, i+m) &&
399 g.evalFormulaFromTo (sigma, i+m, j)

400 }

401

402 case Chopstar(f) => // ChopstarEqv |= f*x = (empty \/ ((f /\ more) ; f=x))
403 if (empty.evalFormulaFromTo (sigma, i, j))

404 true

405 else // not empty implies more

406 Chop((f and more), Chopstar(f)).evalFormulaFromTo (sigma, i, j)
407

408 case Repeat(n, f) =>

409 if (n=0)

410 empty . evalFormulaFromTo (sigma, i, j)

411 else

412 Chop (f, Repeat(n—1, f)).evalFormulaFromTo (sigma, i, j)

413
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case AllOf(xs,

case AnyOf(xs,
}//match

}//evalFormulaFromTo

f) = ((xs map
f) = ((xs map

def evalFormula (sigma: Boolean
this

}//Formula

Interval ):
.evalFormulaFromTo (sigma ,

/%

* Derived formulae

f).foldLeft (TRUE)
f).foldLeft (FALSE)(- or

sigma. firstIndex ,

(- and evalFormulaFromTo (sigma , i,

).
-)).evalFormulaFromTo (sigma, i,

sigma.lastIndex)
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case class Exp (x: Expr[Boolean]) extends Formula
case class Not (f: Formula) extends Formula
case class Final (f: Formula) extends Formula
case class And (f: Formula, g: Formula) extends Formula
case class Len (n: Int) extends Formula {
override def toString = "Len("4n+4")"
}
case class Chop (fl1: Formula, f2: Formula) extends Formula
case class Chopstar(f: Formula) extends Formula
case class Repeat (n: Int, f: Formula) extends Formula
case class AllOf[T](xs: List[T], f: T => Formula) extends Formula
case class AnyOf[T](xs: List[T], f: T => Formula) extends Formula
case class Label (s: String, f: Formula) extends Formula {
override def toString = "Formula(" + s + ")"
}
def label(s: String, f: Formula) = Label(s, f)
def anyof[T](xs: List[T], f: T => Formula) = AnyOf(xs, f)
def allof[T](xs: List[T], f: T => Formula) = AllOf(xs, f)
val TRUE: Formula = Exp(Const(true))
val FALSE: Formula = Exp(Const (false))
def len(n: Int): Formula = Len(n)
val empty: Formula = Len(0)
val Empty: Formula = Len(0)
val skip: Formula = Len(1)
def chop(fl: Formula, f2: Formula): Formula = Chop(fl, f2)
def repeat(n: Int, f: Formula): Formula = Repeat(n, f)
def not(f: Formula): Formula = f match { case (Not(g)) => g
case => Not(f) }
def next(f: Formula): Formula = chop(skip, f)
def strongnext (f: Formula): Formula = next (f)
def weaknext(f: Formula): Formula = empty or strongnext(f)
val more: Formula = next (TRUE)
def eventually (f: Formula): Formula = chop (TRUE, f)
def always(f: Formula): Formula = not(eventually (not(f)))
def di(f: Formula): Formula = chop(f, TRUE)
def bi(f: Formula): Formula = not(di(not(f)))
def da(f: Formula): Formula = chop (chop (TRUE, f), TRUE)
def ba(f: Formula): Formula = not(da(not(f)))
def bs(f: Formula): Formula = empty or chop(bi(f),skip)
def ds(f: Formula): Formula = not(bs(not(f)))
def bm(f: Formula): Formula = always(more implies f) // from Ben M
def dm(f: Formula): Formula = eventually (more and f) // from Ben M
def fst(f: Formula): Formula = f and bs(Not(f))
def fin(f: Formula): Formula = Final(f)
def halt(f: Formula): Formula = always (empty equiv f)
def keep(f: Formula): Formula = ba(skip implies f)
def afb(f: Formula,
w: Formula): Formula = bi(eventually (f) implies fin(w)) // f afb g
def tempeq[T](x: Expr[T], y: Expr[T]) //x ‘TT¢y
(implicit o0:Eq[T]) = always (Exp(Binary (0.EQ, x, y)))
def tassign [T](v: Var[T], x: Expr[T]) /] v <— x
(implicit o:Eq[T]) = Exp(Binary (0.EQ,x,Fin(v)))
def assign [T](v: Var[T], x: Expr[T]) /] v = x
(implicit o0:Eq[T]) = Exp(Binary (o.EQ,x,Next(v)))
def gets[T](v: Var[T], x: Expr[T]) //v gets x
(implicit o:Eq[T]) = keep(tassign (v, x))
def stable [T](v: Var[T])
(implicit o0:Eq[T]) = gets (v,Ref(v))
def padded[T](v: Var[T])
(implicit o:Eq[T]) = empty or chop(stable(v),skip)
def ptassign [T](v: Var[T], x: Expr[T]) // v <" x

i)
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488 (implicit o0:Eq[T]) = tassign(v,x) and padded(v)
489 def ifThenElse (f: Formula,

490 g: Formula,

491 h: Formula): Formula = (f and g) or ((not(f) and h))
492 def ifThen (f: Formula,

493 g: Formula): Formula = ifThenElse(f, g, empty)

494 def forDo (n: Int,

495 f: Formula): Formula = f.times (n)

496 def whileDo (f: Formula,

497 g: Formula): Formula = (f and g).chopstar and fin (not(f))
498 def repeatUntil(f: Formula,

499 g: Formula): Formula = chop(f, whileDo(not(g),f))
500

501 }//ITL

A.2 DMonitor API

Listing A.2: Monitor.scala

1 package runtime.analysis
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3 object Monitor {

4 import scala.language.implicitConversions

5 import scala.language.postfixOps

6 import scala.concurrent.Await

7 import scala.concurrent.duration. _

8 import akka.actor.._

9 import akka.event.Logging

10 import akka.util.Timeout

11 import scala.concurrent.Future

12 import akka.pattern.ask

13 import akka.actor.Status.Failure

14 import runtime.analysis.ITL._. // {Formula,Final,Interval ,VarUpdate}

15

16 implicit val timeout: Timeout = Timeout (600 seconds)

17

18 object Protocol { /* Communication protocol between monitors and clients =/
19

20 abstract class Request

21

22 case class Step(updates: List[VarUpdate]) extends Request

23 case class Show(indent: Int) extends Request

24

25 abstract class Reply { def isDone: Boolean = false
26 def isMore: Boolean = false
27 def isFail: Boolean = false }
28

29 case object Fail extends Reply { override def isFail: Boolean = true }
30 case object More extends Reply { override def isMore: Boolean = true }
31 case class Done(updates: List[VarUpdate]) extends Reply {

32 override def isDone: Boolean = true }
33

34 case object Tick //internal acknowledgement only

35 }//Protocol

36

37 object OptimisationFlags {

38 class OpTy

39 case object ANY_STATE extends OpTy

40 case object ALL_STATES extends OpTy

41 case object ANY_PREFIX extends OpTy

42 case object ALL_PREFIXES extends OpTy

43 case object CHECK.-ONCE extends OpTy

44 }//OptimisationFlags

45

46 /3 sk sk ok ok sk o ok sk ok sk sk ok sk ok ok sk K ok sk K sk sk ok sk R ok ok K ok sk ok ok ok oK ok o ok sk K ok ok K ok ok oK ok K sk ok K sk ok ok sk K ok ok K sk sk ok ok oK oK ok K ok ok K ok oK K ok K oK ok K ok ok
47 * Abstract monitors link to the client and are expression trees.

48 **********************************************************************************/

49
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object Abstr {

}

/
*
*
*
%
*
*
*
*
*
*
*

import OptimisationFlags. _

class Monitor {
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* PUBLIC INTERFACE infix binary operators
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def ::(name: String ): Monitor = Name(name, this)
def UPTO(that : Monitor ): Monitor = Upto(this ,that)
def THRU(that : Monitor): Monitor = Thru(this ,that)
def THEN(that : Monitor): Monitor = Then(this ,that)
def AND(that : Monitor): Monitor = And(this ,that)
def ITERATE(that: Monitor ): Iterate = Iterate (this,that)
def WITH(opt : OpTy, f: Formula): Monitor = With(this ,opt,f)
def WITH( f :Formula): Monitor = With(this ,CHECK.ONCE, f)
def TIMES (k: Int ): Monitor = if (k==0) EMPTY

else this THEN (this TIMES (k-—1))
def ALWAYS(w: Formula): Monitor = With(this ,ALL.STATES,w)
def SOMETIME (w : Formula): Monitor = With(this ,ANY_.STATE,w)
def WITHIN(f: Formula): Monitor = With(this , ALL_PREFIXES,

more implies (not(f) ;¢ skip))

// Expirimental

def INTERRUPT(i: Var[Int], bs: List[Monitor]): Monitor = {
val interrupts: List[Monitor] =
(EMPTY:: bs).zipWithIndex .map(t => GUARD(i ‘=‘ t._2) THEN t._1)
this UPTO (FIRST(Fin(i)>0)) THEN interrupts.reduceLeft ((m,n) => m.UPTO(n))

}
}//Abstr. Monitor

/* Sk 3k 3k 3k sk sk sk sk sk sk sk sk sk ok ok sk >k ok ok 3k >k ok sk sk sk sk sk sk sk sk sk sk sk >k ok >k sk >k ok sk 3k 3k sk sk sk sk sk sk sk sk sk ok ok sk >k >k ok >k >k ok ok 3k sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok
* PUBLIC INTERFACE prefix operators
********************************************************************************/

def FIRST(f: Formula) = First (ANY_PREFIX, f)

def LEN(k: Int) = FIRST (len (k))

def SKIP = LEN(1)

def EMPTY = FIRST (empty)

def FAIL = FIRST (false) WITHIN (empty)
def HALT(w: Formula) = First (ANY_STATE, w)

def SKIPTO(w: Formula) = SKIP THEN HALT(w)

def GUARD(w: Formula) = EMPTY WITH (w)

def UNTIL (wl : Formula, w2: Formula) = HALT(w2) WITH (bm(wl))
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* Abstract monitor representation
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case class Name (name: String, a: Monitor) extends Monitor
case class First (opt: OpTy, f: Formula) extends Monitor
case class Upto (a: Monitor, b: Monitor) extends Monitor
case class Thru (a: Monitor, b: Monitor) extends Monitor
case class Then (a: Monitor, b: Monitor) extends Monitor
case class And (a: Monitor, b: Monitor) extends Monitor
case class Iterate (a: Monitor, b: Monitor) extends Monitor {

def PROJECT(p: Monitor) = Project(this.a, this.b, p)
}
case class Project(a: Monitor, b: Monitor, p: Monitor) extends Monitor
case class With (a: Monitor, opt: OpTy, f: Formula) extends Monitor
//Abstr
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Concrete monitors are Akka actors. Each one is an autonomous agent with its own
state sequence (interval). A concrete monitor reacts to state updates. A cover
function, step, is provided in the API which enables the concrete actors to be
hidden from the external program. The user supplies an abstract monitor to
API.Monitor which, in turn, creates the underlying concrete monitors on a
by—needs basis. The use of Akka actors enables the concrete monitors to be
distributed across cores/nodes. Synchronous message alreadyPassed is necessary
to maintain the interaction with the program being verified — i.e. the main

program needs to check the result of the last state change before moving on.
(Future work may be able to relax this — returning futures for eg).
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124

125 private object Concr {

126 import Protocol._

127 import OptimisationFlags._

128

129 abstract class Monitor extends Actor with ActorLogging {

130 def indent(i: Int): Int = i + 4

131 def tab(i: Int) { for (- <— 1 to i) print(’> *) }

132

133 override def preStart() { log.debug("\nStarting " + this) }

134 override def postStop() { log.debug("\nStopping " + this) }

135

136 /* 3k 3k ok ok sk sk sk sk sk sk sk ok sk sk ok ok ok ok Sk Sk ok 3k sk sk ok sk sk sk ok sk sk ok sk ok sk ok sk ok ok sk sk 3k 3k sk sk sk sk sk sk ok sk sk ok ok Sk ok sk Sk ok 3k sk sk sk sk sk sk ok sk sk ok ok ok ok ok ok ok

137 * zombie represents the state of a monitor that can only be stopped. The

138 * stop message comes from a call to context stop ... thus sending an Akka stop

139 * message . The zombie process will react to a Show message by stating

140 * that this monitor has been closed down (awaiting stop) and to any other

141 * message — that it should not receive — by printing an alarm on the terminal.
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143

144 def zombie: Receive = {

145 case Show(-) => log.error("Trying to Show a zombie process"); sender ! Tick

146 case msg => log.error("zombie monitor " + this 4 "received " 4+ msg); sender ! Tick

147 }//zombie

148
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150 * rogue represents the state of a monitor that has received a message that is

151 * outside the known protocol. The monitor does not know how to handle the

152 * message and it is unsafe to react to it in any way. The monitoring protocol

153 * has detected a serious error and cannot continue. The rogue process will

154 * react to a Show message by stating that this monitor has ”gone rogue” and

155 * to any other message by printing an alarm on the terminal. Needless to say,

156 * we don’t expect to get into this state, but it will help to locate a serious

157 * problem if it ever occurs.
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159

160 def rogue: Receive = {

161 case Show(-) =>log.error("Trying to Show a rogue process"); sender ! Tick

162 case msg => log.error("rogue monitor " 4 this + "received " + msg); sender ! Tick

163 }//rogue

164 }//Concr. Monitor

165
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167 * Every abstract monitor has a concrete counterpart. The abstract monitors form

168 % an expression tree and this tree forms the specification (top level monitor)

169 * that the client provides. When an abstract monitor is called upon then its

170 * concrete counterpart (an actor) has to be initiated. Note that subtrees (i.e.

171 * subordinate abstract monitors) are passed as parameters to the actors and they

172 % are, in turn, initiated on a by—needs basis. It is not possible for an entire

173 % abstract expression tree to be represented as actors initially because the tree

174 * ‘evolves’ over time (i.e. the THEN operator) so it is appropriate that the

175 * future evaluation is passed in abstract form ready to be interpreted whenever

176 * required.
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178

179 def startUp (mu: Abstr.Monitor, context: ActorContext): ActorRef = mu match {

180 case Abstr.Name(n, Abstr.Name(m,a)) => startUp(Abstr.Name(n+"::"+m, a), context)

181 case Abstr.Name(n, a) => startUpl (n, a, context)

182 case _ => startUpl("anon", mu, context)

183 }//startup

184

185 def startUpl (name: String, mu: Abstr.Monitor, context: ActorContext): ActorRef = mu match {
186 case Abstr. First (o, f) => context.actorOf(Props(classOf[Concr. First], name, o, f ))
187 case Abstr.Upto(a,b) => context.actorOf(Props(classOf[Concr.Upto], name, a, b ))
188 case Abstr.Thru(a,b) => context.actorOf(Props(classOf[Concr.Thru], name, a, b ))
189 case Abstr.Then(a,b) => context.actorOf(Props(classOf[Concr.Then], name, a, b ))
190 case Abstr.With(a,o,f) => context.actorOf(Props(classOf[Concr.With], name, a, o, f))
191 case Abstr.And(a,b) => context.actorOf(Props(classOf[Concr.And], name, a, b ))
192 case Abstr.Iterate(a,b) => context.actorOf(Props(classOf[Concr.Iterate], name, a, b ))
193 case Abstr.Project(a,b,p)=> context.actorOf(Props(classOf[Concr.Project], name, a, b, p))
194 }//startupl

195
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197 * Monitor class: FIRST
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198 * This monitor continually checks to see if the formula is satisfied. As soon

199 # as it is then this is the first occurrence of an interval that satisfies the

200 * formula and DONE is returned. For all the preceding initial subintervals the

201 * monitor returns MORE indicating that more states are required. This monitor

202 * cannot FAIL because it either finds the first inital subinterval satisfying

203 * the formula or it keeps looking. It is possible for this monitor NOT to

204 * terminate if the formula is never satisfied. This monitor will be shut down

205 * by its parent.

206 *******************************************************************************/

207

208 case class First (name: String, opt: OpTy, f: Formula) extends Monitor {

209 // Extend the interval until the first time that sigma [= f

210

211 var sigma: Interval = new Interval // The interval so far

212

213 override def preStart() { log.debug("\nStarting " + this) }

214

215 override def receive = {

216

217 case Show (i) => tab (i)

218 println ("FIRST(" + f + ")" 4 "sigma = " + sigma)

219 sender ! Tick

220

221 case Step(u) => opt match {

222 case ANY.STATE => sigma = (new Interval).add(sigma.finState4+u)
223 case ANY_PREFIX => sigma = sigma.add(u)

224 1

225 if (f.evalFormula(sigma)) {

226 First.update(log, f, sigma.lastIndex+1)

227 sender ! Done(sigma.finState)

228 context.become(this.zombie)

229 ¥

230 else

231 sender ! More

232

233 case _ => sender ! Fail;

234 log.error ("Unknown request - actor: " 4+ this.toString)

235 context.become(this.rogue)

236 }//receive

237 }//First

238
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240 * This companion object maintains state common to all First occurrences (like static
241 * attributes and methods in Java). Each time a first occurrence terminate successfully
242 * this is recorded along with the number of states in the (sub)interval so that average
243 * interval length data can be accumulated an reported.
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245

246 object First {

247 import scala.math. _

248 var totStates: Int = 0

249 var totFirsts: Int = 0

250 var minLen: Int = Int.MaxValue

251 var maxLen: Int = 0

252 var avgLen: Int = 0

253 def update(log: akka.event.LoggingAdapter, f: Formula, numStates: Int) {

254 totStates 4= numStates

255 totFirsts 4= 1

256 minLen = min(numStates, minLen)

257 maxLen = max(numStates, maxLen)

258 if (totFirsts > 0) avgLen = round (totStates.toFloat / totFirsts.toFloat)

259 log .debug(s"L0OG FST DONE $totFirsts: this interval has $numStates states: ${f.toStringl}")
260 log .debug(s"L0OG FST STATES: AVG($avglLen), TOT($totStates), MIN($minLen), MAX($maxLen)")
261 }//update

262 }//First

263

264 sk ok sk sk sk ok sk sk ok sk ok ok ok K sk ok oK sk K ok ok sk sk ok ok sk s ok sk K sk sk ok Sk R ok sk K sk sk ok sk SR oK sk o ok sk K ok ok K sk o ok ok K sk ok K ok o oK ok K sk ok oK sk o ok Sk K ok ok ok

265 * Monitor class: a WITH f

266 * This monitor runs monitor a alongside checking f. However, depending upon the

267 * supplied optimisation parameter various optimisations may occur. This includes

268 * two cases in which previous states don’t need to be stored explicitly. Some

269 * formulae benefit from being evaluated alongside monitor a whereas others do

270 * not. In the latter case the evaluation of f takes place once when a has

271 * completed. The analysis with f adapts for each of the following patterns:
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(ALL_STATES, w)
(ANY_STATE, w)

(ALL_PREFIXES,
(ANY_PREFIX, f)
(CHECK_.ONCE, f)

(ALL_STATES, w)
(ANYSTATE, w)

(ALL_PREFIXES,
(ANY_PREFIX, f)
(CHECK_ONCE, f)

*
*
*
*
*
* Mathematically :
*
*
*
*
*
*

£)

£)

=—=> Only needs last state.
=—> Only needs last state. If
—> Needs whole interval. If
—> Needs whole interval. If
—> Needs whole interval.

— sigma |= [i] (fin(w)) or
— sigma |= <i> (fin(w)) or
— sigma |= [i] f

— sigma |=<i> f

— sigma |= f

“w
w
Tf

holds
holds
holds

f holds

sigma
sigma

Only check f

return
return
return
return

if /when a

]

<> w

w

FAIL
PASS
FAIL
PASS always
is DONE

always
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case class With(name:

var c:

var sigma:

var

ActorRef =
Interval = new Interval

String , a: Abstr.Monitor,

- // ¢ is concrete

counterpart

// The interv

alreadyDone = false
sigmaSatisfiesF = false

override def preStart () {

log.debug("\nStarting
¢ = Concr.startUp (a,

" 4+ this)

context)

override def receive = {

case Show (i)

case Step(u)

=

=> tab (i)

println ("WITH")
Await.result (ask(c,
sender ! Tick
if (!alreadyDone) opt match {
case ALL.STATES
| ANYSTATE => sigma

case => sigma =
}//match
val c¢f = ask(c, Step(u))

Await.result (cf,
case Done(s) =>
sender !

context

context.become(this.zombie)

}
else {
sender !

opt:

if (alreadyDone

to a

al so

Show (indent (i))),

// copy new
timeout.duration ). asInstanceOf [Reply]

Done(s)
stop c¢

Fail

OpTy,

far

f:

Formula) extends Monitor {

timeout.duration)

(new Interval).add(sigma.finState++u)
sigma.add (u)

state to c

match {

f.evalFormula (sigma)) {

log.warning (s" ($name) WITH :

context

context.become(this.zombie)

case More => opt match {
case ALL_STATES
| ALL_PREFIXES =>

stop ¢

sender !

else {

sender !

context

Fail
log.warning (s" ($name) WITH (in):
stop c

context .become(this.

case ANY_STATE

| ANY_PREFIX if

('alreadyDone) {

RHS failed")

if (f.evalFormula(sigma))
More

Prefix violation")

zombie)

alreadyDone = f.evalFormula(sigma)

sender !

case CHECK_ONCE
}//match

sender

case Fail => sender ! Fail

More

! More

log.warning(s" ($name) WITH:

context stop

C

context .become(this.zombie)

LHS failed")
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Y/

/*
*
*

*

case

}//receive

/With
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Monitor ¢

Either

shor

test

}//match

- => sender ! Fail;

log.error ("Unknown request

context .become(this

lass: a UPTO b

interval that satisfies

case class Upto(name: String

var ¢
var d

: Act
: Act

orRef = . // ¢
orRef = _ // d

override def preStart () {

log
c =
d =

.debug("\nStarting
Concr.startUp (a,
Concr.startUp (b,

override def receive =

{

case Show (i) => tab (i)
println ("UPTO")

Await.result (ask(c,
Await.result (ask(d,

sender !

case Step(u) =>

v

v

al cf
al df

= ask(c, Step(u))
= ask(d, Step(u))
Await.result (cf,

a or b must be satisfied.

>
i

i

a: Abstr.Monitor, b:

.rogue)

The
a or b (or

- actor:

" + this.

length of the int

both).
*******************************************************************************/

Abstr. Monitor) extends Monitor

s concrete counterpart to a

s concrete counterpart to b

" 4 this)
context)
context)

Tick

Show (indent (i))),
Show (indent (i))),

// copy new state
// copy new state

to ¢
to d

toString)

erval consumed is the

timeout.duration)

timeout.duration)

timeout.duration ). asInstanceOf [Reply]

timeout.duration).asInstanceOf [Reply] //

match {
case Done(s)
=> Await.result (df,
sender ! Done(s)
context stop c¢
context stop d
context.become(this.zombie)
case More
=> Await.result (df,

case

match {
case Done(s)

case More

case Fail

}

Fail
Await.result (df
match {

case Done(s)

case More

case Fail

’

timeout.duration ). asInstanceOf[Reply]

=> sender
context
context

1

Done(s)
stop ¢
stop d

context.become(this.zombie)

=> sender

=> sender

1

1

More

More

log.warning (s" ($name) UPTO :

context

stop d

RHS failed")

context .become(singleBranchC)

timeout.duration ). asInstanceOf[Reply]

=> sender
context
context

1

Done(s)
stop ¢
stop d

context.become(this.zombie)

=> sender
context

1

More
stop ¢

context .become(singleBranchD)

=> sender

1

Fail

redundant

{

777 Why
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420 log.warning (s" ($name) UPTO: LHS & RHS failed")
421 context stop c¢

422 context stop d

423 context.become(this.zombie)

424 }//match

425 }//match

426

427 case _ => sender ! Fail

428 log.error ("Unknown request - actor: " +4 this.toString)

429 context.become(this.rogue)

430 }//receive

431

432 def singleBranchC: Receive = {

433 case Show (i) => tab(i)

434 println ("UPTO-1")

435 Await.result (ask(c, Show(indent(i))), timeout.duration)
436 sender ! Tick

437

438 case Step(u) =>

439 val cf = ask(c, Step(u))

440 Await.result (cf, timeout.duration).asInstanceOf[Reply]

441 match {

442 case Done(s) => sender ! Done(s)

443 context stop c¢

444 context.become(this.zombie)

445

446 case More => sender ! More

447

448 case Fail => sender ! Fail

449 log.warning (s" ($name) UPTO: LHS failed")

450 context stop c

451 context .become(this.zombie)

452 }//match

453

454 case _ => sender !

455 Fail; log.error ("Unknown request - actor: " 4+ this.toString)
456 context.become(this.rogue)

457 }//singleBranchC

458

459 def singleBranchD: Receive = {

460 case Show (i) => tab(i)

461 println ("UPTO-r"

462 Await.result (ask(d, Show(indent(i))), timeout.duration)
463 sender ! Tick

464

465 case Step(u) =>

466 val df = ask(d, Step(u))

467 Await.result (df, timeout.duration).asInstanceOf[Reply]

468 match {

469 case Done(s) => sender ! Done(s)

470 context stop d

471 context.become(this.zombie)

472

473 case More => sender ! More

474

475 case Fail => sender ! Fail

476 log.warning (s" ($name) UPTO: RHS failed")

477 context stop d

478 context.become(this.zombie)

479 }//match

480

481 case _ —=> sender ! Fail;

482 log.error ("Unknown request - actor: " 4+ this.toString)

483 context .become(this.rogue)

484

485 }//singleBranchD

486 }//Upto

487
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489 * Monitor class: a THRU b

490 * Both a and b must be satisfied for some prefix interval. The length of the
491 * interval consumed is the shortest interval that contains both prefixes.
492 *******************************************************************************/

493
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case class Thru(name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor {
var c¢: ActorRef = _ // ¢ is concrete counterpart to a
var d: ActorRef = _ // d is concrete counterpart to b

override def preStart () {
log .debug("\nStarting " + this)
¢ = Concr.startUp(a, context)
d = Concr.startUp (b, context)

}
override def receive = {
case Show (i) => tab(i)
println ("THRU")
Await.result (ask(c, Show(indent(i))), timeout.duration)
Await.result (ask(d, Show(indent(i))), timeout.duration)
sender ! Tick
case Step(u) =>
val cf = ask(c, Step(u)) // copy new state to c
val df = ask(d, Step(u)) // copy new state to d
(Await.result (cf, timeout.duration).asInstanceOf[Reply],
Await.result (df, timeout.duration).asInstanceOf[Reply])
match {
case (Done(s), Done(-)) => sender ! Done(s)
context stop c¢
context stop d
context.become(this.zombie)
case (More, More ) => sender ! More
case (More, Done(-)) => sender ! More
context stop d
context.become(singleBranchC)
case (Done(-), More ) => sender ! More
context stop c
context.become(singleBranchD)
case (Fail, Fail) => sender ! Fail
log.warning (s" ($name) THRU: LHS & RHS failed")
context stop c¢
context stop d
context.become(this.zombie)
case (Fail , - ) => sender ! Fail
log . warning (s" ($name) THRU: LHS failed")
context stop c
context stop d
context .become(this.zombie)
case (-, Fail ) => sender ! Fail
log.warning (s" ($name) THRU: RHS failed")
context stop c¢
context stop d
context.become(this.zombie)
case (rl, r2 ) => log.error(s"($name) THRU: unexpected ($r1,$r2)")
}
case _ => sender ! Fail;
log.error ("Unknown request - actor: " +4 this.toString)
context.become(this.rogue)
}//receive

def singleBranchC: Receive =
{
case Show (i) => tab(i)
println ("THRU-1")
Await.result (ask(c, Show(indent(i))), timeout.duration)
sender ! Tick

case Step(u) =>
val cf = ask(c, Step(u))
Await.result (cf, timeout.duration).asInstanceOf[Reply]
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match {
case Done(s) => sender ! Done(s)
context stop c
context.become(this.zombie)
case More => sender ! More
case Fail => sender ! Fail
log.warning (s" ($name) THRU: LHS failed")
context stop c
context.become(this.zombie)
}//match
case - —=> sender ! Fail;
log.error ("Unknown request - actor: " + this.toString)
context .become(this.rogue)
}//singleBranchC

def singleBranchD: Receive = {
case Show (i) => tab (i)
println ("THRU -r"
Await.result (ask(d, Show(indent(i))), timeout.duration)
sender ! Tick

case Step(u) =>
val df = ask(d, Step(u))
Await.result (df, timeout.duration).asInstanceOf[Reply]

match {
case Done(s) => sender ! Done(s)
context stop d
context.become(this.zombie)
case More => sender ! More
case Fail => sender ! Fail
log.warning (s" ($name) THRU: RHS failed")
context stop d
context.become(this.zombie)
}//match
case _ => sender ! Fail;
log.error ("Unknown request - actor: " 4+ this.toString)
context.become(this.rogue)
}//singleBranchD
}//Thru

/* >k 3k 3k sk sk sk sk sk sk sk sk sk sk ok ok >k >k >k sk sk >k ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok k >k >k sk 3k sk sk sk sk sk sk sk sk sk sk sk ok sk >k >k ok >k >k sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok
* Monitor class: a AND b

* Both a and b must be satisfied by the same interval.
*******************************************************************************/

case class And(name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor {
var c¢: ActorRef = _ // ¢ is concrete counterpart to a
var d: ActorRef = _ // d is concrete counterpart to b

override def preStart () {
log .debug("\nStarting " + this)
¢ = Concr.startUp (a, context)
d = Concr.startUp (b, context)

override def receive = {
case Show (i) => tab (i)
println ("AND")
Await.result (ask(c, Show(indent(i))), timeout.duration)
Await.result (ask(d, Show(indent(i))), timeout.duration)
sender ! Tick

case Step(u) =>
val cf = ask(c, Step(u)) // copy new state to c
val df = ask(d, Step(u)) // copy new state to d
(Await.result (cf, timeout.duration).aslnstanceOf[Reply],
Await.result (df, timeout.duration).asInstanceOf[Reply])
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match {
case (Done(s),
Done(-)) => sender ! Done(s)
context stop c¢
context stop d
context.become(this.zombie)

case (More,
More ) => sender ! More

case (More,

Done(-)) sender ! Fail

U

log.warning(s" ($name) AND: RHS premature")
context stop c

context stop d

context .become(this.zombie)

case (Done(-),
More ) => sender ! Fail
log.warning(s" ($name) AND: LHS premature")
context stop c¢
context stop d
context.become(this.zombie)

case (rl,
r2 ) => sender ! Fail
(rl1,r2) match {

case (Fail,Fail) => log.warning(s" ($name)AND: LHS & RHS failed")

case (Fail, _ ) => log.warning(s" ($name) AND: LHS failed")
case (- ,Fail) => log.warning(s"($name)AND: RHS failed")
case (-, - ) => log.error(s"($name)AND: unexpected ($r1,$r2)")

I

context stop c¢

context stop d

context.become(this.zombie)
}//match

case - => sender ! Fail;
log.error ("Unknown request - actor: " + this.toString)
context.become(this.rogue)
}//receive

}//And

/*
*
*
*

*
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Monitor class: a THEN b

Once a is satisfied control immediately switches to b. The shared state must
be checked (end of a, start of b) when the change over occurs.
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case class Then(name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor

var c: ActorRef = _ // ¢ is concrete counterpart to a (initially) — it may
// become the concrete counterpart to b (later)

override def preStart () {
log .debug("\nStarting " + this)
¢ = Concr.startUp(a, context)

override def receive = {
case Show (i) => tab (i)
println ("THEN")
Await.result (ask(c, Show(indent(i))), timeout.duration)
sender ! Tick

case Step(u) =>

val cf = ask(c, Step(u)) // copy new state to c

Await.result (cf, timeout.duration).asInstanceOf[Reply]

match {

case Fail => sender ! Fail

log.warning (s" ($name) THEN: LHS failed")
context stop c
context.become(this.zombie)

case More => sender ! More

{
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case Done(s) => context stop c¢

¢ = Concr.startUp (b, context) //

val cf = ask(c,
Await.result (cf
match {

case Done(s)

case More

case Fail

}//match
}//match

case . => sender ! Fail;
log.error ("Unknown request
context.become(this.rogue)
}//receive

def receive2: Receive = {
case Show (i) => tab(i)
println ("THEN2")
Await.result (ask(c,
sender ! Tick

=> sender ! Done(

Step(s)) //

replace ¢ with concr(b)
copy shared state to ¢

, timeout.duration).asInstanceOf[Reply]

context stop c¢

s)

context.become(this.zombie)

=> sender ! More

context.become(receive?2)

=> sender ! Fail

log.warning(s" ($name) THEN: RHS failed in 1st state ")

context stop c¢

context.become(this.zombie)

- actor: " 4+ this.toString)

Show (indent (i))),

case Step(u) => wval cf = ask(c, Step(u)) // copy new

timeout.duration)

state to c

Await.result (cf, timeout.duration).asInstanceOf[Reply]

.zombie)

log.warning (s" ($name) THEN: RHS failed")

match {
case Domne(s) => sender ! Done(s)
context stop c¢
context .become(this
case More => sender ! More
case Fail => sender ! Fail
context stop c
context.become(this.zombie)
}//match
case _ => sender ! Fail;
log.error ("Unknown request - actor: "

context .become(this.
}//receive2
}//Then

rogue)

+ this.toString)

[ sk sk sk sk sk sk sk ok ok sk sk sk ok oK oK sk sk sk s K ok oK sk ok Sk R K ok ok sk sk R K oK ok Sk sk o R oK sk ok sk R K ok ok sk sk SR K oK oK ok sk ok K K ok ok Sk s K oK oK sk ok ok R K oK ok ok ok R K K

* Monitor class: a ITERATE b

* Performs a WITH (M(b))x. However, both a and b are

#* When a is done then b must also be done — i.e. a finite

* of b must align with a.

executed as monitors.

number of iterations

sk sk o ok sk sk ok sk ok sk sk ok sk ok sk R sk sk ok sk SR sk SR ok sk ok sk Sk K sk SR ok sk K sk sk R sk Sk ok sk R ok sk R sk sk ok sk ok sk R ok sk ok sk sk ok sk S oK Sk K sk Sk K sk SR ok sk K ok sk ok ok ok /)

case class Iterate (name: String, a: Abstr.Monitor, b: Abstr.Monitor) extends Monitor {

var c¢: ActorRef = _ // ¢ is concrete
var d: ActorRef = _ // d is concrete

override def preStart () {
log .debug("\nStarting " + this)
¢ = Concr.startUp (a, context)
d = Concr.startUp (b, context)

override def receive = {
case Show (i) => tab(i)
println ("ITERATE")
Await.result (ask(c,
Await.result (ask(d,

counterpart to a
counterpart to b

Show (indent (i))),
Show (indent (i))),

timeout.duration)
timeout.duration)
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sender

case Step(u) =>
val cf = ask(c, Step
val df = ask(d, Step

' Tick

(u)) // copy new state to c
(u)) // copy new state to d

(Await.result (cf, timeout.duration).asInstanceOf[Reply],

Await.result (df, timeout.duration).asInstanceOf[Reply])

match {
case (Done(s),
Done(-)) =>

case (Done(s),
More ) =>

case (More,
Done(s)) =>

case (More,
More ) =

case (rl,
r2 ) =

sender ! Done(s)

context stop c

context stop d
context.become(this.zombie)

sender ! Fail

// error because a is the controlling monitor

log.warning(s" ($name) ITERATE: LHS premature")

context stop c
context stop d
context.become(this.zombie)

// send b round again ...
context stop d
d = Concr.startUp (b, context)

val df = ask(d, Step(s)) // copy shared

match {
case Done(-) => // No further

state to d
Await.result (df, timeout.duration).asInstanceOf[Reply]

progress can be made

// with b, but a hasn’t finished , so

sender ! Fail

log.warning (s" ($name) ITERATE: RHS empty loop")

context stop c¢
context stop d

context .become(this.zombie)

case More => sender ! More

case Fail => sender ! Fail

log.warning(s" ($name) ITERATE: RHS failed")

context stop c¢
context stop d

context.become(this.zombie)

}//match
sender ! More
sender ! Fail

(rl1,r2) match {

case (Fail,Fail) => log.warning(s" ($name) ITERATE: LHS & RHS failed")

case (Fail, ) => log.warning(s" ($name) ITERATE: LHS failed")
case (- ,Fail) => log.warning(s"($name) ITERATE: RHS failed")
case (-, -

) => log.error(s"($name) ITERATE: unexpected ($r1,$r2)")

}//match

}

context stop c

context stop d

context .become(this.zombie)

case _ => sender ! Fail;

log.error ("Unknown request - actor: " +4 this.toString)

context.become(this.rogue)

}//receive

}//Iterate

/
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Monitor class: a ITERATE b PROJ c

Performs a WITH (M(b))*. However, both a and b are executed as

When a is done then b must also be done — i.e. a finite

of b must align with a.

number

monitors .

of

iterations
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863 *******************************************************************************/
864
865 case class Project(name: String, a: Abstr.Monitor, b: Abstr.Monitor, p: Abstr.Monitor)
866 extends Monitor {
867 var c¢: ActorRef = _ // ¢ is concrete counterpart to a
868 var d: ActorRef = _ // d is concrete counterpart to b
869 var q: ActorRef = _ // g is concrete counterpart to p
870
871 override def preStart () {
872 log .debug("\nStarting " + this)
873 ¢ = Concr.startUp(a, context)
874 d = Concr.startUp (b, context)
875 q = Concr.startUp(p, context)
876 1
877
878 override def receive = {
879 case Show (i) => tab(i)
880 println ("PROJECT")
881 Await.result (ask(c, Show(indent(i))), timeout.duration)
882 Await.result (ask(d, Show(indent(i))), timeout.duration)
883 Await.result (ask(q, Show(indent(i))), timeout.duration)
884 sender ! Tick
885
886 case Step(u) =>
887 val cf = ask(c, Step(u)) // copy new state to c
888 val df = ask(d, Step(u)) // copy new state to d
889 val qf = ask(q, Step(u)) // copy new state to d
890 (Await.result (cf, timeout.duration).asInstanceOf[Reply],
891 Await.result (df, timeout.duration).asInstanceOf[Reply],
892 Await.result (gf, timeout.duration).asInstanceOf[Reply])
893 match {
894 case (Done(s),
895 Done(-),
896 Done(-)) => // All three monitors are satisfied by the first state
897 sender ! Done(s)
898 context stop c
899 context stop d
900 context stop q
901 context.become(this.zombie)
902 case (More,
903 More,
904 More) => // All three monitors need to continue
905 sender ! More
906 context.become(receive2)
907
908 case (rl,
909 2,
910 r3) => sender ! Fail
911 (r1,r2,r3) match {
912 case (Fail,Fail,Fail) => log.warning(s" ($name)PROJECT: 1st state all failed")
913 case (Fail,Fail, _
) => log.warning(s" ($name)PROJECT: 1st state 1&2 failed")
914 case (Fail,_,
Fail) => log.warning(s" ($name)PROJECT: 1st state 1&3 failed")
915 case (-,
Fail ,Fail) => log.warning(s" ($name) PROJECT: 1st state 2&3 failed")
916 case (Fail,_, -
) => log.warning(s" ($name)PROJECT: 1st state 1 failed")
917 case (-, Fail , -
) => log.warning(s" ($name)PROJECT: 1st state 2 failed")
918 case (-, -,
Fail) => log.warning(s"($name) PROJECT: 1st state 3 failed")
919 case (-, . -
) => log.error(s"($name)PROJECT: unexpected ($rl1,$r2,$r3)")
920 }
921 context stop c
922 context stop d
923 context stop q
924 context .become(this.zombie)
925 }//match
926
927 case _ => sender ! Fail;
928 log.error ("Unknown request - actor: " +4 this.toString)

929 context.become(this.rogue)



A.2 Monitor API 193

930 }//receive

931

932 def receive2: Receive = {

933 case Show (i) => tab(i)

934 print]n("PROJECT")

935 Await.result (ask(c, Show(indent(i))), timeout.duration)

936 Await.result (ask(d, Show(indent(i))), timeout.duration)

937 Await.result (ask(q, Show(indent(i))), timeout.duration)

938 sender ! Tick

939

940 case Step(u) =>

941 val cf = ask(c, Step(u)) // copy new state to c

942 val df = ask(d, Step(u)) // copy new state to d

943 (Await.result (cf, timeout.duration).asInstanceOf[Reply],

944 Await.result (df, timeout.duration).asInstanceOf[Reply])

945 match {

946 case (Done(s),

947 Done(-)) => val qf = ask(q, Step(s)) // send s to projection

948 Await.result (gf, timeout.duration).asInstanceOf[Reply]

949 match {

950 case Done(-) => sender ! Done(s)

951 case More => sender ! Fail

952 log.warning (s" ($name) PROJECT: 1&2 premature")
953 case Fail => sender ! Fail

954 log.warning(s" ($name)PROJECT: 1 premature; 2 failed")
955 }//match

956 context stop c¢

957 context stop d

958 context stop q

959 context.become(this.zombie)

960

961 case (Done(s),

962 More ) => sender ! Fail

963 log.warning(s" ($name)PROJECT: 1 premature")

964 context stop c¢

965 context stop d

966 context stop q

967 context.become(this.zombie)

968

969 case (More,

970 Done(s)) => // send b round again...

971 context stop d

972 d = Concr.startUp (b, context)

973 val df = ask(d, Step(s)) // copy shared state to d

974 Await.result (df, timeout.duration).asInstanceOf[Reply]

975 match {

976 case Done(-) => // No further progress can be made

977 // with b, but a hasn’t finished , so

978 sender ! Fail

979 log.warning (s" ($name)PROJECT: 2 empty loop")
980 context stop c¢

981 context stop d

982 context stop q

983 context.become(this.zombie)

984

985 case More => // Send s to projection

986 val qf = ask(q, Step(s))

987 Await.result (gf, timeout.duration).asInstanceOf[Reply]
988 match {

989 case More => sender ! More

990 case Done(-) => sender ! Fail

991 log.warning (s" ($name) PROJECT: 3 premature")
992 context stop c¢

993 context stop d

994 context stop q

995 context.become(this.zombie)
996 case Fail => sender ! Fail

997 log.warning(s" ($name) PROJECT: 3 failed")
998 context stop c

999 context stop d

1000 context stop g

1001 context .become(this.zombie)
1002 }//match

1003
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case Fail => sender ! Fail
log.warning (s" ($name) PROJECT: 2 failed")
context stop c
context stop d
context stop q
context.become(this.zombie)
}//match

case (More,
More ) => sender ! More

case (rl, r2 ) => sender ! Fail
(r1,r2) match {
case (Fail,Fail) => log.warning(s"($name) PROJECT: 1&2 failed")

case (Fail, _ ) => log.warning(s" ($name) PROJECT: 1 failed")
case (-, Fail) => log.warning(s"($name) PROJECT: 2 failed")
case (-, -

) => log.error(s"($name)PROJECT: unexpected ($r1,$r2)")

//
//

}//match

context stop c

context stop d

context stop q

context.become(this.zombie)
}//match

case - —> sender ! Fail;
log.error ("Unknown request - actor: " 4+ this.toString)
context.become(this.rogue)
}//receive2
}//Project

}//Concr
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* Object Runtime encapsulates the runtime monitoring definitions that are exported for public
* use. It imports and re—exports everything in Protocol._. which makes the error messages and
* other related reporting objects visible. The key class that this interface exports is RIM.
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object Runtime {
import scala.collection.immutable
import scala.collection.immutable.Map
import Protocol. -
val system = ActorSystem (” MonitorSystem”) // An Akka Actor system with a name
def stopAllMonitors = system.shutdown // Shut down the Actor system when done

[ sk ok sk sk sk ok sk sk ok sk ok ok sk sk sk ok K sk ok oK ok K sk ok ok sk ok ok sk s ok ok K ok sk ok sk R oK sk K ok sk K ok ok K sk o ok Sk K ok ok K sk o oK ok K ok ok K sk ok ok sk K ok sk K sk sk ok sk R oK ok K ok ok K ok oK oK ok
* RTMActor. This private actor implements the actual runtime monitor ... sending updated

* states to, and receiving replies from, the concrete monitor tree. A public interface to

%« it is provided by the RIM class — below.
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private case class RTMActor(a: Abstr.Monitor) extends Actor with ActorLogging {
var c¢: ActorRef = _ // ¢ is concrete counterpart to a

override def preStart () {
log .debug("Running " + this 4+ ": analysing abstract monitor")
¢ = Concr.startUp (a, context)

override def postStop () {
log .debug("Stopping " + this)

override def receive = {
case rqst => sender ! ask(c, rgst)

}
}//RTMActor
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* RTM: The mutable monitored state takes responsibility for managing the internal actor

* system associated with the abstract monitor. The client simply has to define their

* abstract specification , spec, and pass it to an instance of RITM. For example:
*
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* val spec: Abstract.Monitor =

* val mu = RIM(spec, ”Simulation”)

*

* Once the monitoring is complete the client should call:

* mu. stop

*

* External clients can use the MonitoredState ... for example:

* object I extends Var[Int] { override def toString = 1”7 }

* object J extends Var[Int] { override def toString = ”"J” }

* mu.set (I, i)

* mu.set (J, mu.get(I)+1)

* mu. verify

* mu.checkWhile { ... statements ... }

*

* Known issue: The state is not fully specified. The variables are, of course, typed since
* they extend Var[T], but there is not a way, currently , of declaring the names and types
* of all the variables in the state. The state is simply a collection of (Var[T],T))

* forSome {type T} pairs. This uses existential types.
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case class RIM(a: Abstr.Monitor, name: String, system: ActorSystem) {
private val m: ActorRef = system.actorOf(Props(classOf[RTMActor], a), name)

private var store: immutable.Map[Variable, Value] = new immutable.HashMap ()
private var state: Int =0

private var updates: List[VarUpdate] = List ()

private var reply: Reply = Done(List ())

private var printEachCheckPoint: Boolean = false

private var logEachCheckPoint: Boolean = false

private var stopped: Boolean = false

private val lock: Object = new Object

private var timer: Long =0

private val log = Logging.getLogger (system, this)
private var exception: RIM.RTVException = new RITM.RTVException(f"Failure $name")
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* Methods to manage the store/state
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def set[T](v: Var[T], a: T): RIM = lock.synchronized {

store = store + ((v —> Val(a)))
updates = updates ::: List((v,a))
this

}//lock

def get [T](v: Var[T]): T = lock.synchronized {
store(v).asInstanceOf[Val[T]]
match {
case Val(a) => a

}

}//lock
def getStore = lock.synchronized {
store.toSeq.sortWith(_-._1.toString < -._1.toString)
}//lock

def getUpdates = lock.synchronized {
updates // return the latest updates that were applied

}//lock

/3 sk sk sk ok sk sk ok sk sk sk ok ok sk sk ok sk ok sk K sk sk ok sk R ok sk s ok sk ok ok ok K sk o oK sk K ok ok K sk SR oK ok 3 ok ok K sk ok ok sk o ok sk K sk sk ok sk sk ok sk R ok Sk K ok Sk K sk oK oK Sk K oK ok K sk ok oK ok K
* To stop a monitor

s ok ok sk sk sk o R oK ok ok sk oK ok oK ok ok ok R K ok ok Sk sk o K oK sk ok sk SR R K sk ok sk R K ok oK ok sk ok R K ok ok Sk sk oK oK sk sk sk SR K oK sk ok sk R K ok ok sk sk ok R K ok ok Sk sk K ok oK sk ok ok R ok ok sk ok ok k[

def stop = lock.synchronized {
if (stopped) {
log.info("Stop: Monitor " + name + " has been stopped.")
}
else {
system stop m
}
reply // always return the last reply

}//lock

[ sk sk sk sk sk sk ok ok sk sk sk s K ok sk sk sk sk R oK sk ok sk sk K oK ok ok sk sk ok oK sk ok sk R K ok sk Sk sk o oK sk ok sk s K oK ok ok sk sk R ok oK sk ok sk R K ok ok sk sk o oK oK sk ok sk R K oK ok ok ok R K ok ok sk ok

* To print a monitor
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1151 s sk ok 3 ok ok ok ok ook Sk oK o ok R ok ok ok ok S ok R ok R KR S oK SR ok R ok ok ook SR R ok R ok R ok ok SR ok R ok R KR S oK R ok R ok R ook S oK R ok R oK R oK ok R ok R ok ok KR S oK R kR ok ok ok ok ok ok ok /
1152

1153 def showStore = lock.synchronized {

1154 fr¢state’dd " +

1155 getStore . foldRight (""){case ((i,v),s) => f"${i.toString} -> ${v.toString} $s"}

1156 }//lock

1157

1158 override def toString = lock.synchronized {

1159 "RTM (" 4+ name + ") " +

1160 ( if (hasFailed) "Failed" else if (hasStopped) "Done! " else "More " ) 4+ showStore
1161 }//lock

1162

1163 /* 3k 3k ok sk sk sk ok sk sk sk ok ok sk 3k ok sk ok sk ok sk ok sk sk ok sk sk sk sk sk sk sk ok 3k sk 3k ok Sk ok sk sk sk sk sk sk sk sk sk sk ok ok sk 3k 3k ok ok ok Sk ok 3k Sk sk ok sk sk sk ok ok sk sk sk ok ok sk ok ok ok sk sk ok 3k sk ok ok ok ok ok
1164 * To show a single monitor’s concrete state

1165 ok ok o ok ok K KK oK K o oK K ok K KK oK K R oK K KK S K K K oK K KK o K S oK K oK R KK oK K R oK K oK K o oK R oK K ok K KK K K K oK K oK K oK o K K K K KK R K K K K kK Rk ok ok ok
1166

1167 def show: Unit = lock.synchronized {

1168 if (stopped) println("Show: Monitor " 4+ name 4+ " has been stopped.")

1169 else Await.result (ask(m, Show(0)), timeout.duration)

1170 }//lock

1171

1172 [k sk ok sk ok sk ok sk ok ok ok ok ok o ok ok R oK R S ok R ok R ok ok oK oK S ok R oK R oK oK K ok o ok K ok R oK K SR oK R sk R oK ok oK oK S oK R KR KoK SR oK R ok R oKk oK oK R oK R kR Kok K K K oK R K K
1173 * To set/unset the checkpoint printing flag

1174 ****************************************************************************************/
1175

1176 def printOn: RIM = lock.synchronized { printEachCheckPoint = true; this }//lock

1177 def printOff: RTM = lock.synchronized { printEachCheckPoint = false; this }//lock

1178

1179 /* 3k sk sk ok sk sk ok ok sk sk ok ok sk sk ok sk ok sk ok Sk ok sk sk ok sk sk sk sk sk sk sk ok sk sk 3k ok Sk ok sk sk ok Sk sk sk ok sk sk sk ok sk sk sk ok Sk ok ok sk ok sk sk sk ok Sk sk sk ok ok sk ok sk ok ok sk Sk ok ok ok sk ok ok sk ok ok ok ok ok
1180 #* To set/unset the checkpoint logging flag

1181 B
1182

1183 def logOn: RIM = lock.synchronized { logEachCheckPoint = true; this }//lock

1184 def logOff: RITM = lock.synchronized { logEachCheckPoint = false; this }//lock

1185

1186 /* 3k >k 3k >k sk >k sk >k sk >k Sk 3k 5k 3k sk 3k ok 3k sk 3k ok 3k sk 3k ok 3k >k 3k ok 3k >k 3k ok 3k >k 3k >k 3k >k sk >k 5k >k sk >k 5k 3k sk 3k sk 3k ok 3k ok 3k >k 3k ok 3k >k 3k >k 3k >k 3k >k 3k >k 3k >k 3k >k sk >k 5k >k 5k >k 5k 3k >k 3k %k %k ok k
1187 * To set the default exception handler

1188 3k ok 3 ok ok ok ok ok R oK oK o ok R ok R ok ok oK ok R ok R oK R oK oK R ok R ok K oK R S oK R ok R oK R oK oK SR oK R ok R oK R oK oK R ok R ok R oK ok S oK R ok R oK R oK ok R oK R ok R oK K K oK R ok R ok ok ok ok ok ok ok /
1189

1190 def setException(e: RIM.RTVException): RIM = lock.synchronized {

1191 exception = e

1192 this

1193 }//lock

1194

1195 /* 3k sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok ok ok Sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok Sk ok sk sk ok sk sk sk ok sk sk sk ok ok sk sk ok ok ok ok sk ok sk sk sk ok ok sk sk ok ok sk ok ok ok ok sk Sk ok ok ok sk ok ok ok ok ok ok ok ok
1196 * To run a verification

1197 ok ok o ok K ok K oK K oK oK o oK R ok K KK oK K R oK K oK K oK oK K K K ok K KK oK K R oK K oK K KoK oK K R oK R oK K R oK R oK K ok R KK SR oK R oK R oK K K oK S oK K oK R K K K oK R ok K kK Kk ok ok ok /
1198

1199 def verify: Reply = lock.synchronized {

1200 var rf: Future[Reply] = null

1201 if (stopped) {

1202 getReply

1203 }

1204 else {

1205 val t0: Long = java.lang.System.nanoTime ()

1206 rf = Await.result (ask(m,Step(updates)),timeout.duration).asInstanceOf[Future[Reply]]
1207 updates = List () // re—set for next time

1208 reply = Await.result (rf, timeout.duration).asInstanceOf[Reply]

1209 val tl: Long = java.lang.System.nanoTime ()

1210 timer = timer + (t1 — tO0)

1211 if (reply.isDone || reply.isFail) {

1212 system stop m

1213 stopped = true

1214 1

1215 if (printEachCheckPoint) {

1216 println (f"(${timer.toDouble /1000000000}%6.3f sec): $this")

1217 }

1218 if (logEachCheckPoint) {

1219 log .debug (f"(${timer.toDouble /1000000000}%6.3f sec): $this")

1220 }

1221 state = state + 1

1222 reply

1223 !

1224 }//lock
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def ! = this.verify
def !! : Reply = this.!!(this.exception)

def !!(e: Exception): Reply = this.verify match {
case Fail => throw e
case r = r

}//match

/3 sk sk sk ok sk ok ok sk ok sk ok ok sk ok ok sk ok sk K sk ok ok sk o ok sk o ok sk K ok sk K ok o oK ok K ok ok K ok ok oK ok o ok ok K sk ok ok sk o ok sk K sk ok ok ok sk ok ok R oK ok K ok ok K ok ok oK ok K ok ok K ok ok K ok K
* To analyse replies

sk sk sk sk sk s ok sk sk ok sk sk sk sk ok sk s ok sk R sk sk R sk sk sk R ok sk sk sk Sk R sk Sk ok sk sk sk sk R sk ok ok sk ok sk sk sk sk ok sk s ok sk R ok sk sk sk sk ok sk ok sk sk ok sk R sk ok K sk S ok sk sk sk ok ok sk sk ok sk ok /

def getNbrOfStates = lock.synchronized
def getTimer

this.state }
this.timer }
this.reply }
this.reply.isDone }

lock .synchronized
def getReply = lock.synchronized
def hasStopped = lock.synchronized
def hasFailed

[

lock .synchronized this.reply.isFail }

}//RTM

object RIM {
class RTVException(msg: String) extends RuntimeException {
override def toString() = f"RTVException $msg"

}

}//companion object RITM

/* EEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEREEEEEEEESEEEEEEEEEESEEEEEEEEREEESEERERESEEEESES S
* RTMRef Runtime Monitor Reference — for use with RTMC
******************************************************************************************/

case class RTMRef(name: String) { override def toString = "RTMRef ("+namet")" }
[k sk sk ok ok ok o ok ok ok ok ok ok o ok ok K oK K K oK S ok K oK K K R oK K oK K oK K K oK S ok K oK R K K S oK o oK K KK oK K S oK K oK R oK oK S K K ok K oK R oK oK R oK K ok K oKk oK K R ok K K K
* RTMC Runtime Monitor Cluster: [MO, M1, M2, ...]

Kok sk sk sk K ok ok oK ok SR K ok ok ok ok R K oK ok Sk sk K R K sk ok Sk R K oK oK Sk sk SR K K oK ok ok ok R K ok ok Sk sk o K ok ok Sk R K oK oK sk sk sk K oK oK sk ok sk R K ok ok Sk ok SR K ok ok Sk ok K oK oK ok sk ok ok ok 3k /)

class RIMC(name: String, system: ActorSystem) {
private var monitors: immutable.Map[RTMRef, ActorRef] = new immutable.HashMap ()

private var replies: immutable.Map[RTMRef, Reply] = new immutable.HashMap ()

private var stopped: immutable. List [RTMRef] = List ()

private var failed: immutable. List [RTMRef] = List ()

private var store: immutable .Map[ Variable , Value] = new immutable.HashMap ()

private var state: Int =0

private var updates: List[VarUpdate] = List ()

private val lock: Object = new Object // for synchronization
private var printEachCheckPoint: Boolean = false

private var logEachCheckPoint: Boolean = false

private var timer: Long 0

val log = Logging.getLogger (system, this)
/* 3k sk ok ok sk sk ok ok ok sk ok ok sk ok ok ok ok ok Sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok ok sk ok ok ok sk sk ok sk sk sk ok sk ok sk ok ok sk sk ok ok ok ok sk sk sk sk sk ok ok sk sk ok ok sk ok ok ok ok sk Sk ok ok sk sk ok ok ok ok ok ok ok ok
* Methods to manage the store/state

sk sk ok ok sk ok ok sk o ok ok K sk ok ok sk R ok sk K ok ok K ok sk K sk o oK ok K ok ok K ok ok K sk o oK ok K sk ok ok sk o ok sk K ok ok K sk sk ok sk R ok ok K ok sk K ok oK oK ok o oK Sk K sk ok K 3k o oK ok K ok ok ok sk ok ok ok ok /

def set [T](v: Var[T], a: T): RIMC = lock.synchronized {

store = store 4+ ((v —> Val(a)))
updates = updates ::: List((v,a))
this

}//lock

def get[T](v: Var[T]): T = lock.synchronized {
store(v).asInstanceOf[Val[T]]
match { case Val(a) = a }
}//lock

def getStore = lock.synchronized {
store.toSeq.sortWith(_-._1.toString < -._1.toString)

}//lock

def getUpdates = lock.synchronized {
updates // return the latest updates that were applied

}//1lock
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ok oK ok oK KK K K oK oK K K oK oK oK K K K oK oK oK KK K oK oK oK KK K K oK K K K oK oK oK K K K oK oK K KK K oK oK oK KK K oK 3K K K K oK oK oK K K K oK oK K K K K oK oK K KK K oK Kk
Methods to add/remove/stop monitors to/from the cluster
add : sets up a new RTMActor and associates it with a reference. This pair is then

added to the ’cluster’

remove : stops the monitor identified by its reference and then removes all

references

removeAll: removes all monitors from the cluster

st sk sk sk sk ok ok sk s ok sk sk sk sk ok sk s ok sk R ok sk R sk sk ok sk sk sk R sk sk R sk Sk sk S ok sk sk sk Sk K sk S ok sk sk sk sk ok sk sk ok sk R ok sk R sk sk ok sk sk ok sk R sk sk ok sk s ok Sk oK sk ok sk ok ok sk ok ok K/

def add(a: Abstr.Monitor, name: String): RTMRef = lock.synchronized {

val mr = RTMRef(name)
monitors = monitors 4+ (mr —> system.actorOf(Props(classOf [RTMActor], a), name))
mr

}//lock

// Completely remove a monitor from the cluster
def remove(mr: RTMRef): RIMC = lock.synchronized {

if (monitors contains mr)
system .stop (monitors (mr))

monitors = monitors — mr

replies = replies — mr

stopped = stopped.filterNot (- = mr)
failed = failed . filterNot (. == mr)
this

}//lock

// Remove all monitors from the cluster

def removeAll: RTMC = lock.synchronized { monitors.keys.foreach (remove(-)); this }//lock

/%

sk sk sk ok sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk ok Sk sk sk sk sk Sk sk ok ok sk Sk sk ok ok ok ok ok ok ok ok

* To print out the monitors in the cluster

ok oK sk ok sk oK R oK ok ok sk K oK oK Sk ok ok R K ok ok Sk sk R K oK sk ok Sk R K K ok ok sk R K oK oK oK sk ok R K ok ok Sk sk K oK oK ok ok Sk R K oK sk ok sk R K ok ok Sk sk ok R K ok ok Sk sk K ok oK sk ok ok ok o ok sk ok ok k[

def showStore = lock.synchronized {

nen 4 state 4 "> v 4
getStore.foldRight (""){case ((i,v),s) => i.toString + "->" + v.toString + " " + s}

}//lock

override def toString = lock.synchronized {

def show(a: RTMRef , s: String): String = a.name + " " + s

"RTMCluster (" + name +
") {Live: " + monitors. keys.foldRight ("")(show(-,-)) +
"} {Stopped: " + stopped.foldRight("")(show(-,-)) +
"} {Failed: " + failed.foldRight("")(show(-,-)) +
"} {Store: " + showStore +
H}IV

}//lock

/%

sk sk sk ok sk sk ok sk sk sk sk sk sk sk ok sk sk sk ok ok sk sk Sk ok sk ok sk ok sk sk ok sk sk Sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk Sk sk ok ok sk sk sk k ok sk sk ok Ok sk sk sk Sk Sk sk ok sk sk Sk sk ok ok sk Sk sk ok ok ok ok Ok ok ok ok

* To show a single monitor’s concrete state

sk ok sk sk sk oK R K ok ok sk oK ok oK ok sk ok R K ok ok Sk sk o oK oK sk ok sk SR R K sk ok sk R R oK oK sk sk ok R K ok ok Sk sk R oK oK sk sk sk R K oK sk ok sk SR K ok ok Sk sk ok R K ok ok sk sk K oK oK sk ok ok ok ok sk ok ok k[

def show(mr: RTMRef): Unit = lock.synchronized {

/%

if (monitors contains mr) Await.result (ask(monitors(mr), Show(0)), timeout.duration)

}//lock

sk sk sk ok sk sk ok ok sk ok sk sk sk sk ok ok sk sk sk ok sk sk Sk k sk sk sk ok Sk sk ok sk sk Sk sk ok sk sk sk sk ok sk sk sk sk sk ok sk sk Sk sk sk ok sk sk sk k ok sk sk ok Ok sk ok sk Sk Ok sk ok sk ok Sk sk ok ok sk Sk sk ok ok ok K Ok sk ok ok

* To set/unset the checkpoint printing flag

s ok ok sk sk sk ok R oK ok ok sk oK ok oK sk sk ok R K ok ok Sk sk o R oK sk ok sk SR R oK sk ok sk s K ok oK sk ok ok R K ok ok Sk sk R oK oK sk ok sk SR K oK sk ok sk R K ok ok Sk sk ok R K ok ok Sk sk K oK oK sk ok ok ok ok sk ok ok k[

def printOn: RIMC = lock.synchronized { printEachCheckPoint = true; this }//lock
def printOff: RTMC = lock.synchronized { printEachCheckPoint = false; this }//lock

/%

st sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk ok sk sk sk sk sk sk ok ok ok K sk sk Rk sk sk sk sk sk sk sk sk sk ok ok ok K K sk R sk sk sk sk sk sk sk sk sk sk ok ok K K sk sk sk sk sk sk sk sk ok sk sk sk ok ok oK K K K ok ok kR

#* To set/unset the checkpoint logging flag

sk sk ok sk ok ok sk o ok ok K sk ok ok sk o ok ok K sk ok K ok ok K ok ok oK ok K ok ok K ok ok K ok o oK ok K sk ok K sk ok ok ok K ok ok K sk ok ok ok R ok ok K ok sk ok ok ok oK ok o oK ok K ok ok K ok ok oK ok K ok ok ok sk ok ok ok k /)

def logOn: RIMC = lock.synchronized { logEachCheckPoint = true; this }//lock
def logOff: RITMC = lock.synchronized { logEachCheckPoint = false; this }//lock

/=

sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok ok ok sk ok ok ok

* To run a verification
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def

verify: Unit = lock.synchronized {
var ns: immutable.Map[RTMRef, Future [Reply]] = new immutable.HashMap ()
val t0: Long = java.lang.System.nanoTime ()

monitors. foreach {
case (mr: RTMRef, m: ActorRef) =>
ns = ns + ((mr, Await.result (ask(m, Step(updates)),
timeout.duration ). asInstanceOf [Future[Reply]]))
}//foreach

updates = List () // re—set for next time

val ps = ns.mapValues{rf => Await.result (rf, timeout.duration).asInstanceOf[Reply]}
val tl: Long = java.lang.System.nanoTime ()

timer = timer + (tl1 — t0)

val (more, no_more) = ps.partition { case (mr, r) => r.isMore }

val (done, fail) = no_more.partition { case (mr, r) => r.isDone }

stopped = stopped 4+ (done.keys)

failed = failed ++ (fail.keys)

monitors = monitors — (no_more. keys)

replies = replies ++ ps

if (printEachCheckPoint) {
println (f"(${timer.toDouble /1000000000}%6.3f sec): $this")

}
if (logEachCheckPoint) {
log.info(s"(${timer.toDouble /1000000000}%6.3f sec): $this")

}

state = state + 1

}//lock

/%

sk sk sk ok sk sk sk ok sk sk sk sk sk sk ok sk sk sk ok ok sk sk ok sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok ok sk sk sk ok Sk sk sk sk sk Sk sk ok sk sk Sk sk ok ok ok ok ok ok ok ok

* To analyse replies

ok oK sk sk sk oK R K ok ok Sk SRR oK oK oK Sk ok R K ok ok Sk sk R K oK sk ok sk SR K K ok ok sk R K ok oK Sk ok ok R K ok ok Sk sk K oK oK sk sk Sk R K oK sk ok sk R K oK oK Sk sk ok R K ok ok Sk K K oK oK sk ok ok ok o ok sk ok ok k[

def getStoppedMonitors: List [RTMRef] = lock.synchronized { stopped }

def getFailedMonitors: List [RTMRef] = lock.synchronized { failed }

def getLiveMonitors: List [RTMRef] = lock.synchronized { monitors.keys.toList }

def getReplies: immutable.Map[RTMRef, Reply] = lock.synchronized { replies }

def getReply (mr: RTMRef): Option[Reply] =

lock.synchronized { if (replies contains mr) Some(replies(mr)) else None }//lock

def hasStopped (mr: RTMRef): Boolean = lock.synchronized { stopped <contains mr }

def hasFailed (mr: RTMRef): Boolean = lock.synchronized { failed contains mr }

def isLive (mr: RTMRef): Boolean = lock.synchronized { monitors contains mr }

def noneFailed: Boolean = lock.synchronized { replies.values.forall(r => !(r.isFail)) }
}//RTMC

}//Runtime object

object
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Appendix B

Practical examples

B.1 Tennis example

The code listings in this section relate to the tennis example in Chapter 4.5. The three files

comprise:

1. The definitions for the simulation including the monitored and non-monitored variables;
2. The ITL-Monitor specifications

3. The main simulation itself

Listing B.1: Tennis example: definitions

package demo. tennis

object Defs {

import runtime.analysis.ITL._ // Needed for Var definitions

/3 sk sk ok ok sk ok ok sk ok sk ok ok sk ok ok sk K sk ok K sk ok ok sk o ok ok o ok ok ok sk o ok ok ok ok sk K ok ok oK ok o ok ok K ok ok K ok o oK ok K ok ok K sk ok oK ok K ok ok K sk ok ok ok o ok ok K ok sk ok ok oK oK ok K ok ok K ok oK oK ok
* Data types used by the simulation and the specification
********************************************************************************************/
class Player {
def other = if (this=—P1) P2 else P1
}
case object Pl extends Player
case object P2 extends Player
class Score
case object Love extends Score
case object Fifteen extends Score
case object Thirty extends Score
case object Forty extends Score
case object Advantage extends Score
case object Game extends Score
implicit object RelScore extends Eq[Score] with Ord[Score] {

override def EQ(a: Score, b: Score): Boolean = a—b
override def LE(a: Score, b: Score): Boolean = a match {
case Love => true
case Fifteen => b != Love
case Thirty => b != Love && b != Fifteen
case Forty => b =— Forty || b = Advantage || b =— Game
case Advantage => b = Advantage || b = Game
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29 case Game => b =— Game

30 }

31 }

32

33 /* 3k sk sk 3k sk sk sk sk sk sk ok ok sk sk ok 3k ok sk ok Sk ok sk sk sk 3k sk sk sk sk sk sk sk sk sk sk sk ok ok ok Sk ok 3k 3k sk ok sk sk sk sk ok sk sk ok sk Sk sk ok Sk ok sk sk ok 3k sk sk sk sk sk sk ok sk sk 3k 3k ok ok sk ok 3k 3k Sk sk ok 3k 3k ok ok ok ok ok
34 * Monitored variables

35 ook o oK K ok K K o K S oK K KK K oK K K oK K KR o oK R oK K ok K oK oK K K oK K oK K o oK o oK K ok oK K o oK K oK K kK oK oK o oK K oK R oK K S oK K oK K oKk oK K o oK K oK K oK K R oK K ok K ok ok ok ok
36 case class Points(p: Player) extends Var[Score] { override def toString = "Points ("+p+")" }
37 case class Games(p: Player) extends Var[Int] { override def toString = "Games ("+p+")" }
38 case class Sets(p: Player) extends Var[Int] { override def toString = "Sets ("+p+")" }
39 }

Listing B.2: Tennis example: specification

1 package demo.tennis

2

3 object Spec {

4 import runtime.analysis.ITL._ // ITL definitions and operators
5 import runtime.analysis.Monitor.Abstr. _ // Runtime Monitor components
6 import Defs._ // Variable definitions

7

8 [k ok ok ok ok ok kK ok ok o ok o ok K kK oK K o oK K oK K KK K K S K K KR oK K S K K oK K KK oK K S oK K oK R oK K K K oK K KR K oK o oK K ok K K o K R oK K oK R oK oK K oK K ok K KK KK K K
9 * ITL/monitor specification

10 ********************************************************************************************/
11

12 def nextPoint(p: Player) = ((Points(p) ‘=‘Love) and (Next(Points(p)) ‘=‘Fifteen)) or
13 ((Points(p) ‘=‘Fifteen) and (Next(Points(p)) ‘=‘Thirty)) or
14 ((Points (p) ‘=‘Thirty) and (Next(Points(p)) ‘=‘Forty)) or
15 ((Points (p) ‘=‘Forty) and (Next(Points(p)) ‘=‘Game)) or
16 ((Points (p) ‘=‘Forty) and (Next(Points(p)) ‘=‘Advantage)) or
17 ((Points(p) ‘=‘Advantage) and (Next(Points(p)) ‘=‘Forty)) or
18 ((Points (p) ‘=¢‘Advantage) and (Next(Points(p)) ‘=‘Game))

19

20 def winPoint = skip and (((stable(Points(Pl)) and nextPoint(P2))) or

21 ((stable (Points(P2)) and nextPoint(P1l))) )

22

23 def validGame = label("VALID GAME",

24 (Points(P1) ‘=‘Love) and (Points(P2)‘=‘Love) and

25 (winPoint ). chopstar and

26 (((Games(P1) <~ Games(P1l) + 1) and stable (Games(P2))) or

27 ((Games(P2) <~ Games(P2) + 1) and stable (Games(P1))))

28 )

29

30 def gameOver = label("GAME OVER", ((Points(P1l))‘=‘Game) or ((Points(P2)) ‘=‘Game) )

31

32 def validSet = label("VALID SET",

33 ((Games(P1) ‘=‘0) and (Games(P2)‘=‘0)) and

34 (((Sets(P1) <~ Sets(Pl) + 1) and stable(Sets(P2))) or

35 ((Sets(P2) <~ Sets(P2) + 1) and stable(Sets(P1))))

36 )

37

38 def setOver = label ("SET OVER", ((Games(P1)>=6) and (Games(P2)+1 < Games(P1))) or

39 ((Games (P2)>=6) and (Games(P1)+1 < Games(P2))) )

40

41 def matchOver = label ("MATCH OVER", (Sets(Pl)‘=‘3) or (Sets(P2)‘=‘3) )

42

43 def startMatch = label ("START MATCH", (Points(Pl) ‘=‘ Love) and (Points(P2) ‘=*‘ Love) and
44 (Games (P1) ‘= 0) and (Games(P2) ‘=< 0 ) and
45 (Sets (P1) ‘=¢0) and (Sets(P2) ‘=0 ) )
46

AT [ ok ook sk oo ok ok ok ok sk ok ok ok ok ok ok ok ok o ok R ok R ok R oK ok o ok R ok R oK R S oK R sk R ok oK oK ok o ok R oK R KR SR oK R KR Kok SR oK R ok R KR K oK R ok R ok ok ok ok S ok R ok R oK R oK oK R ok R ok ok Kok K R R K
48 % Analysis granularity = one game

QO kot ok ok sk ok ok ok ok ook o ok K ok ok oK o oK K KK SR S oK K oK K K oK K o oK K KK oK o K K ok K R o K R oK K kR sk o K K ok K SR o ok R oK K sk K sk o K K oK K R o ok R K K ko ok ok kK ok /
50

51 def bygame = GUARD(startMatch) THEN HALT(matchOver) ITERATE (

52 (SKIP THEN HALT(setOver) ITERATE (

53 SKIP THEN HALT(gameOver) WITH (skip ‘;‘ validGame)

54 )

55 ) WITH (skip ‘;‘ validSet)

56 )

57

B8/ sk sk sk ok sk sk sk sk sk ok sk sk sk sk K ok ok sk sk sk R oK ok ok sk sk ok K sk ok sk oK oK oK sk sk sk o oK oK sk ok sk K ok ok Sk ok SR R K ok ok sk sk o oK oK sk sk sk ok R oK sk ok sk R K ok oK sk ok sk R K ok ok sk sk R K oK ok ok ok ok R K K
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* Analysis granularity = one set

ok ok ok Kk

sk sk sk ok sk ok ok sk s ok ok K sk ok ok sk sk ok sk R ok sk K sk sk ok sk R oK sk R ok sk K sk ok K sk S oK Sk K sk ok K sk o oK sk K ok ok K sk ok ok Sk R ok sk K sk sk ok sk SR ok sk K ok sk K ok ok K sk S oK Sk K ok ok K sk ok ok ok /

def byset = GUARD(startMatch) THEN HALT(matchOver) ITERATE (

EET TS

(SKIP THEN HALT(setOver)) WITH
((skip ‘;¢ (halt(gameOver) and validGame)).chopstar and
(skip ;¢ validSet))

sk sk sk ok ok ok sk ok ok ok ok sk ok k sk ok sk ok Sk sk ok ok ok sk sk ok ok sk sk ok ok sk ok sk ok Sk sk ok sk sk Sk sk ok sk sk R Ok sk ok sk k Sk sk ok sk sk sk sk ok ok sk sk ok Ok sk sk sk ok Ok sk ok sk sk Sk sk ok sk sk Ok Ok ok ok ok Ok Ok Sk ok ok

* Analysis granularity = one match — i.e. the whole interval checked once at the end

s sk ok ok ok sk

def v

def b

VEE TS

sk ok ok sk sk sk oK oK sk sk sk s K oK sk ok sk K ok ok sk ok ok o oK ok ok sk sk o oK oK sk ok sk o R oK sk ok sk s ok ok sk ok sk K oK ok sk sk sk o K ok sk sk sk o o oK sk ok ok s K ok ok sk ok ok R oK ok sk ok ok R ok ok ok ok /

alidMatch = ( (skip ‘;‘ (halt(gameOver) and validGame)).chopstar and
(skip ‘;¢ (halt(setOver) and validSet))
).chopstar
ymatch = GUARD(startMatch) THEN HALT(matchOver) WITH validMatch

sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok ok ok ok sk ok ok ok

* Analysis granularity = one game / adding projection

ok ok ok K ok

def s

def b

S o oKk oK KK K KK o kKK o kK K S kK K o kK K S KK K s kK K KK K KK K KK K K Kk oKk 3 ok KOk S KOk S KOk o oKk o o Kk o kKK o ok Kk ok ok ok
etsIncr (p: Player) = (keep((Next(Sets(p)) — Sets(p)) <= 1))

ygamep= GUARD(startMatch) THEN HALT(matchOver) ITERATE (
(SKIP THEN HALT(setOver) ITERATE (
SKIP THEN HALT(gameOver) WITH (skip ‘;¢ validGame)

)

) WITH (skip *;‘ validSet)

) PROJECT
( SKIP THEN
HALT(matchOver) WITH (setsIncr (P1)) WITH (setsIncr (P2))

Listing B.3: Tennis example: simulation

package
/*
Example
scalac

scala
scala
scala
scala
scala

*/

object

demo. tennis

of "Tennis Score’ pattern
demo/tennis/Simulation.scala

demo. tennis.Simulation bygame
demo. tennis.Simulation bygameproj
demo. tennis.Simulation bysafegame
demo. tennis.Simulation byset
demo. tennis.Simulation bymatch

Simulation {

import akka.actor.ActorSystem

import runtime.analysis.Monitor.Runtime. _

import Defs. _ // Variable definitions
import Spec._ // ITL and Runtime Monitor specifcation
[ ok sk ok sk ok sk ok sk ok ok ok ok ok o ok ok ok K R S ok R ok R ok oK oK oK o oK R KR oK R SR ok R ok R ok ok oK oK R oK R KR oK oK SR ok R ok R KR SR R R ok R ok R Kok S sk R ok R oK R oK oK R ok R ok ok KoK K K R K

* Simulation / Program to be monitored

sk sk ok ok ok

def p
{
def
def
def

val

var

/*

sk sk ok sk ok ok ok o ok ok K ok ok ok sk ok ok ok o ok ok K ok ok ok ok R oK ok K ok ok K ok ok K ok o oK ok K ok ok K ok ok oK ok K ok ok K sk ok ok ok o ok ok K ok sk ok ok oK ok ok K ok ok K ok oK K ok o oK ok K ok ok K ok ok ok ok /

layMatch (mu: RTM)
matchOver (p: Player) = mu.get(Sets(p)) =— 3
setOver (p: Player) = (mu.get(Games(p)) >= 6) &&

((mu. get (Games(p.other))+1) < mu.get (Games(p)))
gameOver = (mu. get (Points(P1)) = Game) || (mu.get(Points(P2)) = Game)
r = scala.util.Random
winner: Player = P1 //P1 is a placeholder initial value only

sk sk sk sk ok sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk ok ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk Sk sk ok sk sk Sk sk sk ok sk ok sk ok ok ok

* Play a match
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35 sk ook ok ok o ok R R oK R S ok R ok R ok ok Sk oK R oK R KR oK oK SR ok R ok R KR SR R ok R kR ok ok S ok R ok R KR S oK R ok R ok ok KR S oK R SRR R oK ok o ok R ok ok KR S oK R ok ok ok ok ok ok ok ok ok /
36

37 mu. set (Points (P1), Love).set (Points(P2), Love)

38 .set (Games(P1), 0) .set (Games(P2), 0)

39 .set (Sets (P1), 0) .set (Sets(P2), 0)

40 .verify

41 do

42 {

43 [k kR sk sk sk K kK K R oK K KK K KK K R K 3K K KR K R K K KR K KR oK K Sk K K SRR oK K K K K KR K KK oK K 3K K K KK K K K K K K KK K Ok K K
44 * Play a set

45 st 3 ok o ok K ook o oK K oK K oK K o oK oK K kK KK S K K oK R oK K S oK K ok K R oK K R oK K KR S oK K K K ok K KK o K R oK K oK K o ok o oK K ok K oK K R oK K KK KK K oK K ok K ok ok ok ok
46 //println (" New Set”)

47 mu. set (Games(P1), 0)

48 .set (Games(P2), 0)

49

50 do

51 {

52 [ ok ok ok ok ok ok ok ok ok sk ok o sk ok ok ok oK oK S ok R ok R oK oK SR ok R ok R ok ok oK R R ok R oK R oK oK SR ok R ok R oK K S oK R oK R oK oK K ok S ok K oK R oK oK SR oK K ok R Kok K oK R ok K K oK
53 * Play a game

54 **********************************************************************************/
55 //println (”New Game — init”)

56 mu. set (Points (P1),Love)

57 .set (Points (P2),Love)

58 .verify

59 //println (" New Game — start”)

60 do

61 {

62 winner = if (r.nextInt(2)=—0) P1 else P2 // random: 0=—P1 win, 1=—P2 win

63 mu. get (Points (winner))

64 match

65 {

66 case Love => mu.set (Points(winner), Fifteen).verify

67 case Fifteen => mu.set (Points(winner), Thirty).verify

68 case Thirty => mu.set (Points(winner), Forty).verify // the correct line
69 //case Thirty => mu.set (Points(winner), Game).verify // insert a bug
70 case Forty => if (mu.get(Points(winner.other)) = Forty)

71 mu. set (Points (winner), Advantage).verify

72 else if (mu.get(Points(winner.other)) = Advantage)

73 mu. set (Points(winner.other), Forty).verify

74 else

75 mu. set (Points (winner), Game)

76 case Advantage => mu.set (Points(winner), Game)

77 3

78 //println (” Winner: ” 4 winner + 7, (P1,P2) = " +

79 // (mu. get (Points (P1)), mu. get(Points(P2))))
80 }

81 while (1 gameOver) /s sk ook ook s ok ok skok ok ok ok ok ok ok ok ok ok ok koK ok ok ok ok ok ok o ok K oK oK ok ok o ok K oKk ok ok o ok K oK K KoK ok ok ok ok ok ok
82

83 mu. set (Games(winner ), mu. get (Games(winner)) + 1)

84 if (setOver(winner))

85 mu.set (Sets(winner), mu.get(Sets(winner)) + 1)

86 mu. verify

87

88 }

89 while (!setOver (WIinmer )) /s sk sk ok skok koo skok ok sk ok ok ok ok sk ok ok sk ok ok ok K sk ok ok sk ok ok sk K sk ok ok sk o ok sk ok ok sk ok sk ok oK ok K ok ok K ok ok ok %/
90

91 }

92 while (!matchOver (WInmer )) /s sk ook skok ok skok skokok sk ok skok sk ok skokok sk ok sk ok K sk s ok sk sk skl ok sk sk ok sk ok sk sk ok sk sk ok sk K sk sk ok sk ok ok /
93

94 println ("Match over. Winner is " + winner)

95  }

96

97 [ sk sk ok ok ok ok ok sk ok ok ok ok ok o ok K ok K oK oK SR ok K sk oK K oK oK R ok K oK R oK K SR ok ok R KK oK K R oK K oK R oK oK K oK ok K KR oK oK R ok K oK K Kok oK oK R ok K oK K oK oK R KK ok K KK KK K K
98 # Simulation thread — starting , and then awaiting, the simulation and run—time monitor

99 ********************************************************************************************/

100 def runSimulation (args: Array[String])

101 {

102 val system = ActorSystem ("Ex3ActorSystem")
103 val mu = RTM(args (0) match

104 {

105 case "bygame" => bygame
106 case "bygamep" => bygamep
107 case "byset" => byset

108 case "bymatch" => bymatch
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}
"Tennis",
system ). printOn

playMatch (mu)
mu.stop

Thread sleep 2000
system . terminate

}

def main(args: Array[String]) {
runSimulation (args)

}
}

B.2 Latch example

The Scala code for the latch example is separated into two objects. One is TC into which the
TRACECONTRACT specifications have been placed. The second is Simulation which contains
the ITL-Monitor specification and the program that generates sample execution traces for
analysis. The latter distinguishes between the the monitored and non-monitored variables,
both of which are used within the simulation irrespective of whether or not any monitoring
is carried out. The integration of monitored variables into the program under test performs

the instrumentation used by ITL-Monitor.

Listing B.4: TraceContract definitions for the latch example

package demo.latch

object TC {
import tracecontract. -

/*

* An event is the construction of a new state consisting of the three

* flags: a, b, and s. A trace is a sequence of events (states)

*/

case class Event(a: Boolean, b: Boolean, s: Boolean)

def aHi: PartialFunction[Event,Boolean] = { case Event(true, _,_.) => true }
def aLo: PartialFunction [Event,Boolean] = { case Event(false,_,_) => true }
def bHi: PartialFunction [Event,Boolean] = { case Event(-,true, _) => true }
def bLo: PartialFunction [Event,Boolean] = { case Event(.,false,_) => true }
def sHi: PartialFunction [Event,Boolean] = { case Event(-,_-,true ) => true }
def sLo: PartialFunction [Event,Boolean] = { case Event(.,_.,false) => true }

class Rl extends Monitor [Event] {
/ *

* If B is stable across two adjacent states then S is low in the 2nd state

« Oee@ B)=0Q -9)
*/

def bStable = ((matches{bHi}) and weaknext(matches{bHi})) or
((matches{bLo}) and weaknext(matches{bLo}))

property ('R1) {
globally {
bStable implies (weaknext(matches{sLo}))
}
}
}//R1
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35

36 class R2 extends Monitor [Event] {

37 /*

38 * If B is unstable across two adjacent states then S is high in the 2nd state
39 *

40 s O-3me® B) =0 )

41 */

42

43 def bStable = ((matches{bHi}) and weaknext(matches{bHi})) or
44 ((matches{bLo}) and weaknext(matches{bLo}))

45

46 def bUnstable = ((matches{bHi}) and weaknext(matches{bLo})) or
47 ((matches{bLo}) and weaknext(matches{bHi}))

48

49 property ('R2) {

50 globally {

51 bUnstable implies (weaknext(matches{sHi}))

52 }

53 1

54 }//R2

55

56 class R3_R4 extends Monitor [Event] {

57 /*

58 * R3 Whenever A is stable across two adjacent states then B is stable
59 *

60 * -ar@® —~ay=3Bs® B)

61 *

62 * R4 Whenever A is low across two adjacent states then B is stable
63 *

64 * @-ar@®@ )= Bs® B))

65 */

66

67 def bStable = ((matches{bHi}) and weaknext(matches{bHi})) or
68 ((matches{bLo}) and weaknext(matches{bLo}))

69

70 def aStableLo = (matches{aLo}) and weaknext(matches{aLo})

71

72 def aRises = (matches{aLo}) and weaknext(matches{aHi})

73

74 property ('"R3_R4) {

75 globally { (aStableLo implies bStable) and (aRises implies bStable) }
76 }

77 }//R3_R4

78

79 class R5 extends Monitor [Event] {

80 /x

81 * A state machine representing the latch behaviour

82 * Event State ABS — valid moves:
83 * Event(false ,false , false) SO R i S0, S4

84 * EBEvent(false ,false ,true ) S1 R > S0, S4

85 * BEvent(false ,true ,false) S2 — e S2, S6

86 * BEvent(false ,true ,true ) S3 _— 5 S2, S6

87 * Event(true ,false ,h false) S4 - > SO0, S3, S4, S7
88 * Event(true ,false ,true ) S5 - > S0, S3, S4, S7
89 * BEvent(true ,true ,false) S6 —_ e S1, S2, S5, S6
90 * BEvent(true ,true ,true ) S7 —_ = S1, S2, S5, S6
91 */

92

93 property ("R5) { SO }

94

95 def S0: Formula = state {

96 case Event(true ,false ,h false) => S4

97 case Event(false , false, false) => S0

98 case . => error

99 }

100

101 def S2: Formula = state {

102 case Event(true ,true ,false) => S6

103 case Event(false ,true ,false) => S2

104 case _ => error

105 1

106

107 def S4: Formula = state {

108 case Event(false ,false , false) => S0
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109 case Event(false ,true ,true ) => S3
110 case Event(true ,true ,true ) => S7
111 case Event(true ,false, false) => 5S4
112 case _ => error

113 ¥

114

115 def S6: Formula = state {

116 case Event(false ,true ,false) => S2
117 case Event(false , false ,true ) => S1
118 case Event(true ,false ,true ) => S5
119 case Event(true ,true ,false) => S6
120 case _ => error

121 1

122

123 def S3: Formula = state {

124 case Event(false ,true ,false) => S2
125 case Event(true ,true ,false) => S6
126 case . => error

127 !

128

129 def S1: Formula = state {

130 case Event(false , false , false) => SO
131 case Event(true ,false, false) => S4
132 case _ => error

133 }

134

135 def S7: Formula = state {

136 case Event(true ,true ,false) => S6
137 case Event(true ,false ,true ) => S5
138 case Event(false ,true ,false) => S2
139 case Event(false ,false ,true ) => S1
140 case _ => error

141 }

142

143 def S5: Formula = state {

144 case Event(true ,false,b false) => S4
145 case Event(true ,true ,true ) => S7
146 case Event(false , false , false) => SO
147 case Event(false ,true ,true ) => S3
148 case _ => error

149 }

150  }//R5

151

152 class LTLRequirements extends Monitor [Event] {

153 /x

154 * All the LTL requirements are conjoined in the following monitor
155 «/

156

157 monitor ( new R1l, new R2, new R3_R4 )

158}

159

160 class StMRequirements extends Monitor [Event] {

161 /

162 * The state machine requirement becomes a monitor

163 */

164 monitor ( new R5 )

165  }

166

167 class AllRequirements extends Monitor [Event] {

168 /*

169 #* A monitor representing the conjunction of the LTL and state machine
170 %/

171 monitor ( new LTLRequirements, new StMRequirements )
172}

173

174 /%

175 %« Convenient covers for exporting each of the combinations
176 */

177 def monitorLTL = new LTLRequirements
178 def monitorStM StMRequirements
179 def monitorAll = new AllRequirements
180 def monitorNil = new Monitor [Event]
181

182 }//TC

Il
5
]
H
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Listing B.5: Latch example simulation

1 package demo.latch

© 003U Ae W N
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~
*

* Simulation of the latch example in which runtime verification may use any

* C

*/

ombination of ITM(ITL), TraceContract(LTL), and TraceContract(state machine).

object Simulation {

import akka.actor.ActorSystem

import runtime.analysis.ITL._

import runtime.analysis.Monitor.Runtime. _

import runtime.analysis.Monitor.Abstr. _

var as: ActorSystem = _

/*

* ITM—monitored variables are integral to the simulation irrespective
* of whether or not ITM monitoring is performed.

*/
object S extends Var[Boolean] { override def toString = "s" }
object A extends Var[Boolean] { override def toString = "A" }
object B extends Var[Boolean] { override def toString = "B" }
object STOP extends Var[Boolean] { override def toString = "STOP" }
/%

* The ITM (ITL) specification:

*

* initial: The initial state condition in which all the flags are low.
*

% clause2: Satisfied by a subinterval from this point up to the first
* state in which B changes value. Throughout this interval S can be

% high or low in the first state; then S must stay low until the final
* state when S must be high. (In an extreme case it is possible for this
* subinterval to consist of only two states in which (B != O(B)) & O(S)
* holds .

*

% clause3: Satisfied by a subinterval from this point up to the first
% state in which A is raised followed by the first state in which A is
* lowered. Within the first part of this subinterval B must remain

* stable.

*

% spec: The initial state must be fused with an interval that continues
#* until the first state in which HALT holds. Over this interval the

% cycles represented by clause2 and clause3 are repeated.

*

/

val initial = (~A and ~B and ~8)

val clause2 = FIRST(B <~ ~B) WITH (skip ;¢ halt(S))

val clause3 = (HALT(A) WITH (stable(B))) THEN (HALT(~A))

val spec = (GUARD(initial)

THEN (HALT(STOP)
ITERATE clause2 ITERATE clause3))

/%

% The purpose of the simulation is to demonstrate and compare the different

% runtime verification approaches. Flags to the simulation control which of

* these is set/unset. The length of the simulation (the number of verified

* states) is returned.

*/

def runSimulation (iter: Int , // Iteration number (for multiple runs)
aCycles: Int, // Number of A cycles to simulate
runITM: Boolean, // ITM monitoring on/off
runLTL: Boolean, // LTL monitoring on/off
runStM: Boolean, // State Machine monitoring on/off
runAna: Boolean, // AnaTempura monitoring on/off
printOn: Boolean, // Stdout continuous commentary on/off
errorOn: Int // Error on given cycle (0 = off)
): Int = {

/*

* A number of constants control the simulation:
* rand : A random number generator
* aStayLow: Generates a random number of states (1—20) for A to stay low
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74 * bFlips: Randomly determines if B flips state (50%)

75 * alsLowered: Randomly determines if A is lowered (5%)

76 */

7 val rand = scala.util.Random

78 def aStaysLow = l4rand.nextInt (20)

79 def bFlips = rand.nextInt(100)<50

80 def alsLowered = rand.nextInt(100)<5

81

82 /*

83 # mu is the ITM monitor.

84 * —— associated with an Akka actor system and an ITL specification
85 *

86 # nu is the TraceContract monitor.

87 * —— runs LTL and/or state machine monitor combinations as required
88 */

89 val mu = RTM(spec, "Latch"+iter , as)

90 val nu = if (runLTL && runStM) TC.monitorAll

91 else if (runLTL) TC. monitorLTL

92 else if (runStM) TC. monitorStM

93 else TC. monitorNil

94

95 // Initialise logging and printing

96 if (printOn) { mu.printOn; nu.setSuccess(true) }

97 nu.setEventLog("log/Latch.log")

98

99 /%

100 * A counter to measure the length of a simulation run

101 */

102 var numOfStates = 0

103

104 /*

105 * verify () is invoked at each assertion point within the simulation.
106 * This performs the instrumentation connecting the program to the

107 * monitors.

108 *

109 * The monitored variables are maintainted within the monitor (mu)

110 * irrespective of whether or not ITM verification is invoked. All of
111 * the monitoring systems used by the simulation use the same values
112 * taken from these state variables. This facilitates a fair comparison
113 * of the different monitoring systems to be made.

114 *

115 * The AnaTempura instrumentation is handled via an output on stdout.
116 *

117 #* The TraceContract instrumentation requires the combination of the
118 # monitored variables into a TC.Event. This event is transmitted to
119 * the TC monitor (nu).

120 *

121 #* The ITM variables are maintainted within the monitor (mu) itself. The
122 * instruction mu.!! instructs the monitor to process the current state.
123 * Any violation will result in an exception being thrown.

124 */

125 def verify () {

126 if (runAna)

127 println ("!PROG: assert Event:"+4

128 mu. get (A)+":"+mu. get (B)+": "+mu. get (S)+": "+mu. get (STOP)+": 1 ")
129 if (runLTL || runStM) nu.verify (TC.Event (mu.get(A), mu.get(B), mu.get(S)))
130 if (runITM) mu.!!

131 numOfStates = numOfStates + 1

132 }

133

134 /

135 #* Initialise the monitored state variables.

136 * This is not an assertion point.

137 */

138 mu. set (STOP, false ).set (A, false).set (B, false).set (S, false)

139

140 /*

141 * The ITM monitor mu raises an exception if violation is encountered.
142 * This represents a react—at—runtime behaviour. The alternative

143 * behaviour is placed within the corresponding catch block.

144 */

145 try {

146 for (i <— 1 to aCycles) { // Simulate this many A cycles

147



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

210

Appendix B: Practical examples

verify ()
if (mu.get(S)) // A has been lowered (at start
mu.set (S, false) // of cycle) — ensure S is low
for (j <— 1 to aStaysLow) // Generate states for analysis
verify () // while A remains low
mu. set (A, true) // A is now raised
while (mu.get(A)) { // While A is raised ...
verify () // Assertion point
if (bFlips) // Randomly, B may flip
mu. set (B,!mu. get (B)).set (S,true) // 1f so, raise S
else
mu.set (S, false) // If not, lower S
if (i==errorOn) // The simulation allows for a
mu. set (B,!mu. get (B)) // deliberate error to occur
// at the i—th iteration
if (alsLowered) // Randomly, A may be lowered
mu. set (A, false)
}//while
}//for—i
if (!mu.get(S)) // Ensure that the simulation
mu. set (B,!mu.get (B)).set (S, true) // ends with a B—transition
mu. set (STOP, true) // Set STOP in the final state
verify ()
} catch {
case e: RIM.RTVException =>
println (e) // ITM detected a violation
println ("React at Runtime...") // Alternative action goes here
} finally {
println (mu. getReply) // Print final ITM judgement.
nu.end () // mu prints final summary by
mu. stop // default. Close both monitors
}
numOfStates // Return the sumulation length
}//runSimulation
/=
* The main program analyses the command line arguments to determine
* how to call run the simulation. If the simulation type (args (1))
* contains ’a’ then the simulation will be repeated ten times and an
% average timing analysis printed. Otherwise the simulation runs once.
% AnaTempura is only run once so the inclusion of flag ’t’ suppresses
« flag ’a’.
*/
def main(args: Array[String]) {
// args(0) Number of A cycles to run the simulation
// args(l) A string i=ITM 1=LTL s=StM t=AnaTempura (a=run averages)
// args(2) A string: “on” means printing is on (anything else is ”off”)
// args(3) A number indicating which A—cycle to introduce an error
val aCycles: Int = args(0).tolnt
val runlTM: Boolean = (args.length > 1) && args(1).contains(’i’)
val runLTL: Boolean = (args.length > 1) && args(1l).contains(’1’)
val runStM: Boolean = (args.length > 1) && args(1l).contains(’s’)
val runAna: Boolean = (args.length > 1) && args(1).contains(’t?)
val average: Boolean = !runAna &&
(args.length > 1) && args(1l).contains(’a’)
val printOn: Boolean = (args.length > 2) && args(2)=—"on"
val errorOn: Int = if (args.length > 3) args(3).tolnt else 0
as = ActorSystem ("LatchActorSystem")

if (average) {
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246 }

}

var times: List[Long] = List ()
List [Int] = List ()

val N = 10 // Run N experiments

var states:

(1 to N) foreach { i =>
val t0: Long = java.lang.System.nanoTime ()
val s = runSimulation (i, aCycles,
runITM, runLTL, runStM,
val tl: Long = java.lang.System.nanoTime ()
times = (t1 — t0) :: times
states = s :: states
}
val min: Double = times.min.toDouble /1000000000
val max: Double = times.max.toDouble/1000000000
val avg: Double = times.sum.toDouble/N/1000000000
val avs: Double = states.sum.toDouble/N

print (f"A-cycles: $aCycles, sim: ${args (1)}, ")
println (f"Times: min: $min%6.3f, max: $max%6.3f,
println (f"avg: $avg%6.3f, avg: $avg%6.3f, avs:
¥
else // run once
runSimulation (1, aCycles, runITM, runLTL, runStM,

as.terminate // Close down the actor system

runAna ,

runAna,

printOn, errorOn)

")

${Math.round (avs)}")

printOn, errorOn)

B.2.1 Latch example - derived formula

In Section 6.2.1 the following ITL formula was presented.

(empty N\ = AAN-BA-S);
( halt(STOP)
A ((B <~ = B) A (skip ; halt(5)))*
A ((halt(A) A stable(B)) ; (halt(— A4)) )*

Initial state
Termination condition
(1)

(2)

From this specification, four requirements and one further derivation were calculated. The

analysis is presented below.

Firstly consider formula (1). B <~ — B is equivalent to keep(Q(B) = B)
B)) and skip ; halt(.S) is equivalent to keep(O(—

B) A (skip ; halt(5))
O(B) = B)

S5)) )5 (skip A (O

5))

; (skip A (O(B) # B)) ) A
AO(=9)) ) ;5 ( skip A (O(B) # B)

= 5)) ) ( skip A (O(B) #

; (skip A (O(B) £
; (skip A O(S)). Thus:

from (1)
( keep(O(—9)) ; (skip A O(S5)) )
A O(S) )
RFizedAndDistr(C'l52)
B)=0 logic
(B) # B) =0(S5) )
logic, ITL (keep)

logic

(3)
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Secondly, consider formula (2).

(halt(A) A stable(B)) ; halt(—= A)

from (2)

= keep((mANQ=A) A (B=0B)); (skip A= AANO(A) AN O(B)) ; keep(4) ITL (4)

Then

(4) O keep((= AN O(— 4) D (B =0(B))) (5)
and

(4) D keep((= AN O(4) D (B=0DB)) (6)

Finally, the four requirements can be presented in ITL.

R1: keep( (O(B) = B) > 0O(=5) ) from (3)
R2: keep( (O(B) # B) D O(9) ) from (3), contrapositive
R3: keep((— A A O(— 4) D (B =0(B))) from (5)
R4 : keep((= A A O(A) D (B =0B)) from (6)
D5 : keep((=AANO(=A4) DO(—9)) from R3 and R1, transitivity

B.3 Checkout example - experiments

The results of running each of the checkout experiments (6.3.3) are listed below. The runs

generate a large volume of output, so only the concluding lines, containing the statistical

data, are included for each run.

B.3.1 Experiment 1

Experiment 1 R1-R5, ITM only, one monitor, 100 intervals

runMain demo.marvin.Simulation 100 1 10

sx*kkkkkx LOG FST STATES: AVG(80), TOT(40344), MIN(1), MAX(131)

=======> Monitor T_1 completes with success. 8009 states, 100 custs, in
=======> Customers[100], Items[1 x 10 = 10], Terminals(1)

runMain demo.marvin.Simulation 100 1 10

sx*kkxkkx LOG FST STATES: AVG(76), TOT(38554), MIN(1), MAX(139)

=======> Monitor T_1 completes with success. 7671 states, 100 custs, in
=======> Customers[100], Items[1 x 10 = 10], Terminals(1)

runMain demo.marvin.Simulation 100 1 10
s*xxxxxxx LOG FST STATES: AVG(79), TOT(40195), MIN(1), MAX(136)

=======> Monitor T_1 completes with success. 7938 states, 100 custs, in

6.376 sec.

5.189 sec.

5.064 sec.
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=======> Customers[100], Items[1 x 10 = 10], Terminals(1)
runMain demo.marvin.Simulation 100 1 10
s*kxxxxx LOG FST STATES: AVG(80), TOT(40606), MIN(1), MAX(121)
=======> Monitor T_1 completes with success. 8033 states, 100 custs, in 5.751 sec.
=======> Customers[100], Items[1 x 10 = 10], Terminals(1)
runMain demo.marvin.Simulation 100 1 10
sxxxkkkx [[0G FST STATES: AVG(82), TOT(41598), MIN(1), MAX(146)
=======> Monitor T_1 completes with success. 8251 states, 100 custs, in 6.378 sec.
=======> Customers[100], Items[1 x 10 = 10], Terminals(1)
runMain demo.marvin.Simulation 100 5 10
s*xxxxxxx LOG FST STATES: AVG(206), TOT(104911), MIN(1), MAX(479)
=======> Monitor T_1 completes with success. 20963 states, 100 custs, in 36.151 sec.
=======> Customers[100], Items[5 x 10 = 50], Terminals(1)
runMain demo.marvin.Simulation 100 5 10
sxkkxkkx LOG FST STATES: AVG(233), TOT(118185), MIN(1), MAX(485)
=======> Monitor T_1 completes with success. 23655 states, 100 custs, in 20.313 sec.
=======> Customers[100], Items[5 x 10 = 50], Terminals(1)
runMain demo.marvin.Simulation 100 5 10
s*xxxxxx LOG FST STATES: AVG(229), TOT(116130), MIN(1), MAX(468)
=======> Monitor T_1 completes with success. 23135 states, 100 custs, in 28.982 sec.
=======> Customers[100], Items[5 x 10 = 50], Terminals(1)
runMain demo.marvin.Simulation 100 5 10
sxxxkkxx [0G FST STATES: AVG(233), TOT(117976), MIN(1), MAX(474)
> Monitor T_1 completes with success. 23565 states, 100 custs, in 18.660 sec.
> Customers[100], Items[5 x 10 = 50], Terminals(1)
runMain demo.marvin.Simulation 100 5 10
skkkkkkx LL0G FST STATES: AVG(211), TOT(106984), MIN(1), MAX(476)
=======> Monitor T_1 completes with success. 21398 states, 100 custs, in 20.352 sec.
=======> Customers[100], Items[5 x 10 = 50], Terminals(1)
runMain demo.marvin.Simulation 100 10 10
s*kxxxxx LOG FST STATES: AVG(321), TOT(163026), MIN(1), MAX(900)
=======> Monitor T_1 completes with success. 32651 states, 100 custs, in 26.267 sec.

=======> Customers[100], Items[10 x 10 = 100], Terminals(1)

runMain demo.marvin.Simulation 100 10 10
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sokxkkkkkx [0G FST STATES: AVG(261), TOT(132332), MIN(1), MAX(879)
=======> Monitor T_1 completes with success. 26427 states, 100 custs,
=======> Customers[100], Items[10 x 10 = 100], Terminals(1)

runMain demo.marvin.Simulation 100 10 10

sxkkxkkx LOG FST STATES: AVG(268), TOT(135805), MIN(1), MAX(854)
=======> Monitor T_1 completes with success. 27148 states, 100 custs,
=======> Customers[100], Items[10 x 10 = 100], Terminals(1)

runMain demo.marvin.Simulation 100 10 10

sx*kkxkkx LOG FST STATES: AVG(312), TOT(158715), MIN(1), MAX(892)
=======> Monitor T_1 completes with success. 31672 states, 100 custs,
=======> Customers[100], Items[10 x 10 = 100], Terminals(1)

runMain demo.marvin.Simulation 100 10 10

sxkkxkkx LOG FST STATES: AVG(285), TOT(144695), MIN(1), MAX(889)
=======> Monitor T_1 completes with success. 28906 states, 100 custs,
=======> Customers[100], Items[10 x 10 = 100], Terminals(1)

runMain demo.marvin.Simulation 100 20 10

sxkkxkkx LOG FST STATES: AVG(327), TOT(166220), MIN(1), MAX(1655)
=======> Monitor T_1 completes with success. 33155 states, 100 custs,
=======> Customers[100], Items[20 x 10 = 200], Terminals(1)

runMain demo.marvin.Simulation 100 20 10

sxkkkkkx [L0G FST STATES: AVG(314), TOT(159699), MIN(1), MAX(1673)
=======> Monitor T_1 completes with success. 31916 states, 100 custs,
=======> Customers[100], Items[20 x 10 = 200], Terminals(1)

runMain demo.marvin.Simulation 100 20 10
**xxxxxx LOG FST STATES: AVG(339), TOT(172323), MIN(1), MAX(1492)

runMain demo.marvin.Simulation 100 20 10
skkrkkkx L0G FST STATES: AVG(323), TOT(164205), MIN(1), MAX(1553)

==> Monitor T_1 completes with success. 32798 states, 100 custs,

runMain demo.marvin.Simulation 100 20 10

skkkkkkx LL0G FST STATES: AVG(342), TOT(173893), MIN(1), MAX(1644)

> Monitor T_1 completes with success. 34772 states, 100 custs,
> Customers[100], Items[20 x 10 = 200], Terminals(1)
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B.3.2 Experiment 2

Experiment 2 true, ITM only, one monitor, 100 intervals

runMain demo.marvin.Simulation 100 1 10

ByCust (always (always (eventually(empty)))) // n"3

s*xxxxxx LOG FST STATES: AVG(77), TOT(7896), MIN(1), MAX(121)

=======> Monitor T_1 completes with success. 7795 states, 100 custs, in 2.298 sec.

=======> Customers[100], Items[1 x 10 = 10], Terminals(1)

runMain demo.marvin.Simulation 100 4 10

ByCust (always(always (eventually(empty)))) // n"3

s*xxxxxx LOG FST STATES: AVG(208), TOT(21266), MIN(1), MAX(383)

=======> Monitor T_1 completes with success. 21165 states, 100 custs, in 6.118 sec.
=======> Customers[100], Items[4 x 10 = 40], Terminals(1)

runMain demo.marvin.Simulation 100 7 10

ByCust (always (always (eventually (empty)))) // n~3

s*xkxxxxxx LOG FST STATES: AVG(243), TOT(24804), MIN(1), MAX(628)

=======> Monitor T_1 completes with success. 24703 states, 100 custs, in 8.565 sec.
=======> Customers[100], Items[7 x 10 = 70], Terminals(1)

runMain demo.marvin.Simulation 100 10 10

ByCust (always(always (eventually (empty)))) // n”3

skkxkkkkx L0G FST STATES: AVG(286), TOT(29139), MIN(1), MAX(872)

=======> Monitor T_1 completes with success. 29038 states, 100 custs, in 9.795 sec.
=======> Customers[100], Items[10 x 10 = 100], Terminals(1)

runMain demo.marvin.Simulation 100 100 10

skkkkkkx LL0G FST STATES: AVG(373), TOT(38014), MIN(1), MAX(1758)

=======> Monitor T_1 completes with success. 37913 states, 100 custs, in 12.844 sec.
=======> Customers[100], Items[100 x 10 = 1000], Terminals(1)

runMain demo.marvin.Simulation 100 1 10

ByCust (always (always (always(eventually(empty))))) // n"4

sxkkkkkx LOG FST STATES: AVG(84), TOT(8604), MIN(1), MAX(132)

=======> Monitor T_1 completes with success. 8503 states, 100 custs, in 7.051 sec.

=======> Customers[100], Items[1 x 10 = 10], Terminals(1)

runMain demo.marvin.Simulation 100 4 10

ByCust (always (always (always (eventually (empty))))) // n~4

s*xxxxxx LOG FST STATES: AVG(203), TOT(20729), MIN(1), MAX(379)

=======> Monitor T_1 completes with success. 20628 states, 100 custs, in 78.349 sec.

=======> Customers[100], Items[4 x 10 = 40], Terminals(1)
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runMain demo.marvin.Simulation 100 7 10

ByCust (always (always (always (eventually (empty))))) // n"4

sxkkkkkx LOG FST STATES: AVG(237), TOT(24126), MIN(1), MAX(610)

=======> Monitor T_1 completes with success. 24025 states, 100 custs, in 200.102 sec.
=======> Customers[100], Items[7 x 10 = 70], Terminals(1)

runMain demo.marvin.Simulation 100 10 10

ByCust (always (always (always (eventually(empty))))) // n~4

skkxkkkx L0G FST STATES: AVG(280), TOT(28562), MIN(1), MAX(824)

=======> Monitor T_1 completes with success. 28461 states, 100 custs, in 367.922 sec.
=======> Customers[100], Items[10 x 10 = 100], Terminals(1)

B.3.3 Experiment 3

Experiment 3 R1-R5, ITM only, one monitor, 1000 intervals

runMain demo.marvin.Simulation 1000 1 10

skkkckkkx LOG FST STATES: AVG(81), TOT(403722), MIN(1), MAX(162)

> Monitor T_1 completes with success. 79949 states, 1000 custs, in 41.575 sec.
> Customers[1000], Items[1 x 10 = 10], Terminals(1)

runMain demo.marvin.Simulation 2000 1 10

sxxkkkxx L0G FST STATES: AVG(81), TOT(807671), MIN(1), MAX(157)

=======> Monitor T_1 completes with success. 159838 states, 2000 custs, in 80.466 sec.
=======> Customers[2000], Items[1 x 10 = 10], Terminals(1l)

runMain demo.marvin.Simulation 3000 1 10

skkxkkkx LOG FST STATES: AVG(80), TOT(1205241), MIN(1), MAX(154)

=======> Monitor T_1 completes with success. 238610 states, 3000 custs, in 112.501 sec.
=======> Customers[3000], Items[1 x 10 = 10], Terminals(1)

runMain demo.marvin.Simulation 12000 1 10

skkxkkkx LOG FST STATES: AVG(81), TOT(4827361), MIN(1), MAX(176)

=======> Monitor T_1 completes with success. 955706 states, 12000 custs, in 468.546 sec.
=======> Customers[12000], Items[1 x 10 = 10], Terminals(1)
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List of laws

All of the laws relating to ITL and ITL-Monitor along with their mechanically checked proofs in
Isabelle/HOL appear in [CMS19]. Please refer to page vii for information on how to download
a copy of that report.

This appendix contains a list of the laws used in this thesis. The laws are annotated as

follows:

[CAU] Law from Antonio Cau.

[DRS] An existing ITL law (from Cau or Moszkowski) for which a proof was constructed as

part of this thesis, or an original law developed as part of this thesis.
[ITL] Law from [CM16].

[MOS] Law from Ben Moszkowski.

C.1 First order ITL

C.1.1 ITL definitions, derived constructs, axioms and rules

C.1.1.1 Semantic exists

SemanticExists [prs

Fl[3vef](o)=tt iff existso’ s.t. o~y 0, F[f](c)) =1t (C.1)
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C.1.1.2 Frequently-used non-temporal derived constructs

FalseDef (111

false = = true

OrDef [y

AVE = AN F)

ImpDef [ITL)

hDh = fAVE

EquDef 111

IR

h=5hk (idR)AN(LDA)

EzxistsDef [y

Jvef = = Vove-f

C.1.1.3 Frequently-used temporal derived constructs

StrongNextDef (111

Of = skip; f

(C.2)

(C.5)

(C.7)
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MoreDef (111

more = (true

EmptyDef i

empty = — more

DiamondDef (111

Of = true; f

BO(L‘D@f [ITL)

of = o f

WeakNextDef [rrr

®@f = -0~f
DiDef [y

&Of = f; true
BzDef [ITL]

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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DaDef 11

&f = true; f; true (C.15)
BaDef 1y

Bf = ~&~f (C.16)
C.1.1.4 Frequently-used concrete derived constructs
IfThenFElseDef (111

if fothenfielsep = (HAA)V (=foAR) (C.17)
IfThenDef (i1

if fothen i = if fy then f; else empty (C.18)
FinDef [

finf = DO(empty D f) (C.19)
HaltDef (171

haltf = [O(empty = f) (C.20)
KeepDef [ry

keepf = @& (skip D f) (C.21)
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KeepNowDef 111

keepnow f = & (skip A f) (C.22)
TterZeroDef (1

9 = empty (C.23)
TterDef (111

L2 f >0 (C.24)
FO?"D@f [ITL)

forndof = f" (C.25)
WhileDef (171

whilefodo i = (fo A fi)" Afin(= fo) (C.26)
RepeatDef (1

repeat fountil fi = fo ; while(= fi)dofy (C.27)
C.1.1.5 Frequently-used derived constructs relating to expressions
AssignDef (1o

A=e = (Q4)=c¢e (C.28)
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TemporalEqualityDef (111

Ar~e = QOA=¢)

TemporalAssignDef (17

A+—e = find=e¢

GetsDef (i

Agetse = keep(A « e)

StableDef (111

stable A = AgetsA

PaddedDef iy

padded A = (stable A ; skip) V empty

PaddedTemporalAssignDef (111

A<~e = (A< e)Apadded 4

LenDef [y

len(n) = skip”

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)
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C.1.1.6 Propositional axioms and rules for ITL
ChopAssoc [t

E (s h)sk=hi(hs k) (C.36)
OrChopImp o

F(oVA)s ED(os BV (A FR) (C.37)
ChopOrImp [

s hvER) DU A)V (o k) (C.38)
EmptyChop (1w

F oempty; f=f (C.39)
ChopEmpty [y

F f;empty=f (C.40)
BiBoxChopImpChop (1

F @B oA ATERDE) D (s k) DMh; k) (C.41)

StateImpBi (171

FwDnow

(C.42)
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NextImpNotNextNot [rr

FOf>-~0f

KeepnowImpNotKeepnowNot (i1

- keepnow(f) D — keepnow(— f)

BoxInduct (i

FfAaD(fo® f) D Of

ChopStarEqu [Ty

F f* = (empty V ((f A more) ; f*))

MP [ITL]

EfDh F o
il

BozGen [y

75
F oaf

BiGen 1y

_rr
Fomf

(C.43)

(C.44)

(C.45)

(C.46)

(C.47)

(C.48)

(C.49)
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C.1.1.7 First order axioms and rules for ITL

EzistsChopRight (111

(Jve(fi; fa)) D (Jvefi); fo [where v not free in fo]

EzistsChopLeft (i)

Fve(fi; ) DO fi; (Fvefy) [where v not free in fi]

ForallGen (111

- f

———— [for any variable v]
F Vvef

C.1.2 Time reversal

C.1.2.1 Time reversal definitions and laws

ReflectionRule [mos

=i S

TRTrue [MOS]

F true” = true

TRSkip (mos)

F skip” = skip

(C.50)

(C.51)

(C.52)

(C.53)

(C.54)

(C.55)
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TRState [mos

F w =finw

TRNot (mos)

S =

TROr [MOS]

(v =rvy

TRChop [mos)

E (9" =9"5

TRChopstar (mos)

S =)

TRAnd (prs)

A =g

TRImp [DRS]

F (229" =f">g"

(C.56)

(C.57)

(C.58)

(C.59)

(C.60)

(C.61)

(C.62)
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TREqu (prs

F(f=9"=0"=9") (C.63)
TRMore [mos)

F more” = more (C.64)

TREmpty |prs

F empty” = empty (C.65)
TRDi [prs

F(of) =0of" (C.66)
TRBi [mos)

= (@f) =of (C.67)

TRDiamond [prs

F (o) =of" (C.68)

TRBox (prs

- (@af) =af” (C.69)
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C.1.3 Definitions and laws related to

BmDef (mos

mf = O(moreDf)

DmDef [MOS]

@f;—\—\f

BaEgquBmAndFin (uos)

Faf=m fAfinf

BmDiFizCS  1mos)

Fmof=[@m of)*

FizDilnfBmDIFizCS  |mos

DI=®DIF @ DI = (@ DI)*

FizDalnfBmDAFixCS  (mos

DA=& DA+ @ DA=(m DA)*

StateImpDiamondStateFixDi  (mos)

F (w2 ow)=3o(w D ow)

exportable commitments

(C.70)

(C.71)

(C.72)

(C.73)

(C.74)

(C.75)

(C.76)
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BmStateImpDiamondStateFizCS  (mos)

F®E(wDouw)=@m (w>dow))* (C.77)
StateImpDAFixDi |uos)

DA=® DAF (w>D DA)= & (w D DA) (C.78)
BmStateImpDAFizCS  (mos)

DA=® DA+ ® (w> DA)=(m (w D DA))* (C.79)
C.1.4 Always-followed-by
Aﬂ)Def [ITL)

f=w = @ Dfinw) (C.80)
SafvDef (rri

few = @ ((f =finw) (C.81)
AltAfoDef (11

frw = B Dfinw) (C.82)
AltSafbDef [irr)

few 2@ ((f =finw) (C.83)
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C.1.5 Commonly used ITL laws

C.1.5.1 Box, Diamond, Now

NowImpDiamond [mos)

2 Of (C.84)

BoxImpNow (prs

Fafof (C.85)

C.1.5.2 State, skip, true, false, empty, more with chop

StateAndChop [mos

F(wAf)sg=wA(f;g) (C.86)

MoreEquTrueChopSkip [prs

- more = true ; skip (C.87)

Skip TrueEquTrueSkip (prs)

- skip ; true = true ; skip (C.88)

BiChopImpChop [mos)

oo f)ofi9) o 5 9) (C.89)
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BoxChopImpChop 1mos)

FoOWod)D((fi9)D(f59)

Didntro [mos

Ffoof

BiElim  mos

Fofof

StateFEquBi  [mos)

F ow=w

TrueEquTrueChopTrue [mos

F  true = true ; true

MoreEquSkipChopTrue (mos

F more = skip ; true

MoreEquNotEmpty (cau

F more = - empty

(C.90)

(C.91)

(C.92)

(C.93)

(C.94)

(C.95)

(C.96)
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MoreEquMoreChopTrue (cauv)

F  more = more ; true (C.97)

ChopFulseEquFalse (prs)

- f; false = false (C.98)

FalseChopEquFalse (prs)

- false ; f = false (C.99)

BoxImpFinImpDiamondImpFin [prs

O Dfinw) D (Of D finw) (C.100)

C.1.5.3 Implication and equivalence through chop

LeftChopImpChop 1mos)

Ffof = (9D (C.101)

RightChopImpChop 1mos)

Fgdgd = F(f;9)D((;9) (C.102)

LeftChopEquChop [prs

Ff=Eff o= (U9 =({"0) (C.103)
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RightChopEquChop [mos)

Fg=9 = F (i9=(59)

LeftAndChopImp (prs

AN 59D fi 9N g

RightAndChopImp (prs

Ffiangd)Dfsgnfid

ChopOrEqu |mos)

FfigVve)=figVviid

OrChopEqu  [mos)

V) ig=figVvfyg

C.1.5.4 Initial intervals

DilmpDi  mos

F fDg = FofDdg

DiEquDi  mos

Ff>g9g = FofDObyg

(C.104)

(C.105)

(C.106)

(C.107)

(C.108)

(C.109)

(C.110)
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BilmpBiRule [mos

Ff>g = Fofoog

DiState [mos

F ow=w

DiNotEquNotBi [umos

- o-f=-nf

NotDiEquBiNot [mos)

Foof=m-f

DiEquNotBiNot [mos)

Fof=-m-f

ChopImpDi  (mos

Ef;9D0f

DiEquDiDi  (mos)

Fof=00f

(C.111)

(C.112)

(C.113)

(C.114)

(C.115)

(C.116)

(C.117)
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BZE(]UB’LB’L [MOS)]

Fof=oof (C.118)

DiEmpty  (mos)

F <& empty (C.119)

NotBiMore [prs

= = @ more (C.120)

DiOrEqu  (mos

FO(fVY =0V oy (C.121)

BiAndEqv (prs)

Fo(fAg)=ofA@yg (C.122)

AndChopA (mos

A 9D fsg (C.123)

DiAndImpAnd (mos)

FO(fAYDOfADY (C.124)
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BozStateEquBiFinState [prs

F Ow=m(finw) (C.125)

DiamondStateEquDiFinState [prs

F ow = (finw) (C.126)

C.1.5.5 Induction
EmptyNextInductA [mos)

F emptyDf, H OfDf = Fof (C.127)

EmptyChopSkipInduct (prs

Foempty D f, F (f;skip)Df = Ff (C.128)

C.1.5.6 Chop and negation

NotSkipNotChop [prs

= = (skip ; = g) = empty V (skip ; g) (C.129)

NotNotChopSkip [cauv

F = (= f; skip) =empty V (f ; skip) (C.130)



C.1 First order ITL 237
ChopAndNotChopImp (mos)

EfigAn(fih)Dfi(gA—h) (C.131)
RightChopAndNot (cav

FfigAn(hig)D(fA-R)sg (C.132)
ChopAndNotNotChop (cauv)

EfishA=(=g;h)D(fAg); true (C.133)
SkipNotEmptyOrMoreMore [cauv

- skip = — (empty V more ; more) (C.134)
C.1.5.7 Strong and weak next
NextEquMoreAndWeakNext [mos)

F Of =more N @ f (C.135)
NotWeakNextNotEquNext |[prs

e -f=of (C.136)

WeakNextEquMorelmpStrongNext [prs

F @ f =more D Qf

(C.137)
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C.1.5.8 Existential quantifcation through chop

ExistsChopLeftEqu (prs)

F (3ve(fi; f) = fi;(3vefp) [where v not free in fi] (C.138)

C.1.5.9 Chop with empty and more

ChopEmptyAndEmpty (prs)

F fi g Aempty=f A g A empty (C.139)

ChopSkipAndEmptyEquFalse (prs)

F f; skip A empty = false (C.140)

ChopSkipImpMore [prs

= (f ; skip) D more (C.141)

MorelmpImpChopSkipEqu [prs)

= more D ((f D g) ; skip=((f ; skip) D (g ; skip))) (C.142)
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C.1.6 Fixed length intervals
C.1.6.1 Properties of interval length
LenZeroEquEmpty (prs

- len(0) = empty (C.143)
LenOneEquSkip (prs

F len(1) = skip (C.144)
LenNPlusOneA (prs

F len(n 4 1) = skip ; len(n) (C.145)
LenEquLenChopLen (prs

F len(i+7) = len(7) ; len(y) (C.146)
LenNPlusOneB (prs

F len(n 4+ 1) =len(n) ; skip (C.147)
FExistsLen (prs)

F 3k elen(k) (C.148)
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AndFxistsLen (prs

F f=fA3kelen(k)

LenlffModSig (prs)

Fllen(k)](o) =tt iff |o| =k

LFizedAndDistr [prs)

= (f Alen(k)) s pA(gAlen(k)); g=(f AgAlen(k));(pAq)

RFizedAndDistr |prs

Fop; (fAlen(k)) Ag;(gnlen(k))=(pAq);(fAgAlen(k))

LFizedAndDistrA (prs

E (fAlen(k)) s pA(gAlen(k)); p=(fAgAlen(k)); p

LFizedAndDistrB (prs)

= (f Alen(k)) s p A(f Alen(k)) s g=(f Alen(k)) ; (p A q)

RFizedAndDistrA (prs)

Fop;(fAlen(k)) Aps(gAlen(k))=p; (fAgAlen(k))

(C.149)

(C.150)

(C.151)

(C.152)

(C.153)

(C.154)

(C.155)
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RFizedAndDistrB  (prs)

Fop s (f Alen(k)) A g s (f Alen(k)) = (p A q) s (f Alen(k)) (C.156)
ChopSkipAndChopSkip [prs)

F f; skip A g ; skip=(f A g) ; skip (C.157)
BiAndChopSkipEqu  (prs)

Fm(fAg);skip=mf; skip Amyg; skip (C.158)
DiAndChopSkipImp (prs)

E & (fAg); skipDof; skip A dg; skip (C.159)
NotChopFized [prs

= (f; h)=-ChV (= f; h) where h =g Alen(k) (C.160)
NotFizedChop [prs

F=(h; f)=-OhV(h; = f) where h=g Alen(k) (C.161)
C.1.7 Further laws with initial intervals
ImpEquDi  (prs)

Ffo(f=of) (C.162)
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AndDiEqu (prs

FINOF=ES

OrDiEquDi (prs

FfVef=of

AndDiOrEqu (prs)

FfA@fVe) =S

DiChopImpDiA [prs)

Fof;9D0f

DiChopImpDiB (prs

F o 9)D0f

BiNotImpNotBiChop [prs)

Fo-foma-(f;9)

DiDiAndDiEquDiAndDi (prs

FO@QFANDY=OTNDy

(C.163)

(C.164)

(C.165)

(C.166)

(C.167)

(C.168)

(C.169)
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AndDiAndDiEquAndDi (prs

FfAS(FADY=FNOY (C.170)

DiAndDiEquDiAndDiOrDiAndDi (prs)

FOfAGI=C(NDY VOGNS (€camn)

BiOrBilmpBiOr [prs

Fofvmgo>m(fVvg) (C.172)

BiOrBiEquBiBiOrBi |prs)

Fofviog=o(@fVmg) (C.173)

MoreAndBilmpBiChopSkip (prs

F more A@f Dmf ; skip (C.174)

DiEquOrDiChopSkipA (prs)

Fof=fVo(f; skip) (C.175)

DiEquOrDiChopSkipB  (prs

Fof=fVI(Of; skip) (C.176)
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BiEquAndEmptyOrBiChopSkip (prs)

Fof=fA(emptyV(@f; skip)) (C.177)

DiamondEquOrStrongNextDiamond [prs

HOf =1 VOoor (C.178)

BoxEquAndWeakNextBoxr (prs

FofsfAeof (C.179)

BiAndDiEquBiAndDiAndBi [prs

FofAog=nfAS(@ATS) (C.180)

DiAndBilmpDiAndBi (prs)

FofAmgDO(fADY) (C.181)

BiAndEmptyEquAndEmpty (prs)

F m@mf Aempty = f A empty (C.182)

DiAndEmptyEquAndEmpty |prs)

= &f Aempty = f A empty (C.183)
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BiEmptyEquEmpty (cav

F @ empty = empty (C.184)
C.1.8 Strict initial intervals
BSD@f [DRS]

Ef = emptyV@f; skip (C.185)
DSD@f [DRS]

of =& —@m-f (C.186)
DsMoreDi (prs

F & f=more A&f ; skip (C.187)
DsDsq [DRS]

F &f=&f; skip (C.188)

C.1.8.1 Duality

BsEquNotDsNot [prs

FEf=E=-6f

(C.189)
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NotBsEquDsNot [prs)

F-mf=6-f (C.190)

NotDsEquBsNot (prsj

o f=mf (C.191)

NotDsAndEmpty [prs)

F = (® f A empty) (C.192)

C.1.8.2 Distribution through conjunction and disjunction

BsMoreEquEmpty [prs)

F & more = empty (C.193)

BsAndEqu (prs)

FEafARg=E(fAg) (C.194)

DsOrEqu  (prs

FofVeg=e(fVy) (C.195)

BsOrImp (prs)

Fefvagom(fVyg) (C.196)
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DsAndImp (prs)

Fo(frAgDefAGy (C.197)
DsAndImpElmL (prs)

Fo(frgDef (C.198)
DsAndImpElUmR  (prs)

F&(fAg) Doy (C.199)
C.1.8.3 Useful implications
BilmpBs |prs

Fofomf (C.200)
BsImpBsBs (prs

Feafoeaaf (C.201)
DSImpDi [DRS)]

Fefoof (C.202)

BsImpBsRule [prs

Ff>g = FEfomg

(C.203)
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DsChopImpDsB  [prs)

Fo(figDef (C.204)

NotBsImpBsNotChop (prs)

FE-fom~(f;9) (C.205)

C.1.8.4 Relating strict and non-strict initial intervals

BsOrBsEquBsBiOrBi (prs

FefvEag=m(@fVag) (C.206)

DiOrDsEquDi (prs

FOfVOr=af (C.207)

DiAndDsEquDs (prs)

FOfANGf=Sf (C.208)

OrDsEquDi  (prs)

Ffvef=aof (C.209)

AndBsEquBi (prs)

- fAmf=0f (C.210)
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BsEquBsBi [prs

Feaf=emf (C.211)
StateImpBs [prs)

FwDEw (C.212)
DsAndDsEquDsAndDiOrDsAndDi (prs)

FOfANGI=ES(fADYVS(gNDS) (C.213)
BsEquBiMoreImpChop (prs)

F ®f =m0 (more D f ; skip) (C.214)
C.1.8.5 Strict final intervals
BtDef (prs

mf = emptyVskip; Of (C.215)
DtDef [prs
BsrEquBtr (prs

@) =@ (C.217)
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DsrEquDtr |prs

F(@f) =of (C.218)

BtrEquBsr (prs)

F@f)=af (C.219)

DirEquDsr |prs)

F@f) =ef (C.220)

AlwaysImpBt  [prs)

Fofomf (C.221)

C.1.9 First occurrence operator

FstDef [DRS]

>f 2 fAE-f (C.222)

C.1.9.1 First with conjunction and disjunction

FstWithAndImp [prs)

F>fAgD>(fAg) (C.223)
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FstWithOrEqu (prs)

Fo(fVvg)=rmfAa-g) V(I>gABRf) (C.224)
FstFstAndEquFstAnd (prs)

F>(rfAg=>fAg (C.225)
C.1.9.2 First with true, false, empty, more
FstTrue (prs

F > true = empty (C.226)
FstFalse 1prs)

F > false = false (C.227)
FstChopFalseEquFalse [prs

F > f; false = false (C.228)
FstEmpty [prs

F > empty = empty (C.229)

FstAndEmptyEquAndEmpty [prs)

F > f Aempty = f A empty

(C.230)
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FstEmptyOrEquEmpty (prs)

F >(empty V f) = empty (C.231)

FstChopEmptyFEquFstChopFstEmpty (prs

F >f; gAempty=01f; >gAempty (C.232)

FstMoreEquSkip [prs)

- > more = skip (C.233)

C.1.9.3 First with initial intervals
FstOrDiEquDi (prs

E>fVof=of (C.234)

FstAndDiEquFst (prs

F>fASf=EDS (C.235)

DiEquDiFst [prs

Fof=o>f (C.236)

FstDiEquFst [prs

F >of=>f (C.237)
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DiAndFstOrEquFstOrDiAnd (prs

FOfAPBfVY=EfV(OfAY) (C.238)
DiOrFstAndEquDi  (prs)

FofVEfag=of (C.239)
FstDiAndDiEqu (prs)

F > (OfAGY=EfAGYV(>gASS) (C.240)
BiNotFstEquBiNot [prs
BsNotFstEquBsNot (prs

Fao>f=a-f (C.242)
C.1.9.4 First with state formulae
FstState (prs

F >w=empty A w (C.243)

FstStateAndBsNotEmpty (prs

F DwAR- empty=>w

(C.244)
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FstStateImpFstStateOr [prs

F >wD>(wVf)

HaltStateEquEFstFinState |prs)

F haltw = >(fin w)

HaltStateEquF'stHaltState (prs

F haltw = >(halt w)

FstDiamondStateEquHalt [prs)

F >(Oow) = haltw

FstBoxState EquStateAndEmpty (prs

F >(Ow) = w A empty

C.1.9.5 First and unique length

FstLenSame |prs

Fo@>fAlen(i) NS (>f Alen(j)) Di=j

DilmpFExistsOneDiLenAndF'st (prs

Fof >3, ke (len(k) A>f)

(C.245)

(C.246)

(C.247)

(C.248)

(C.249)

(C.250)

(C.251)
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C.1.9.6 First with chop distribution through conjunction
LFEstAndDistr |prs

FCfAg) s ABfAGR) =0 AgAg); (A h) (C.252)
LEstAndDistrA (prs

FE>fAq)s hABFAR) s h=0fAaNg);h (C.253)
LEstAndDistrB |prs

E>fAg i ATAG s he=(>fAg); (A h) (C.254)
LEstAndDistrC  (prs)

E>fishmADf;hh=>f;(hAh) (C.255)
LEstAndDistrD (prs)

FOEfAGANSEIAR)=ESCEFAGAR) (C.256)

C.1.9.7 Further useful theorems
FstEquBsNotAndDi (prs)

Fof=a-fADSf

(C.257)
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NotFstChop [prs

Fofig=-0>fV>finyg (C.258)

BsNotFstChop (prs

FEo(>fig)=empty VooV Eg (C.259)

FstFstChopEquFstChopFst [prs)

FeEfig=Erfibyg (C.260)

FstFizEst (prs)

Fo>f=>f (C.261)

DsImpNotFst (prs

F&fo(Hr)) (C.262)

FstLenAndEquLenAnd |prs

F >(len(k) A f) =len(k) A f (C.263)

FstAndElimL (prs

F>fof (C.264)
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FstImpNotDiChopSkip (prs)

F >f D (&f ; skip) (C.265)

FstimpDiEqu (prs

FfO(Of=)) (C.266)

FstAndDiFstAndEquFstAnd (prs)

F>fASfAg =>fAg (C.267)

FstAndDilmpBsNotAndDi [prs

F(>fAGY D(E-(OfNAY) (C.268)

FstFstOrEquFstOrL |prs)

Fe(Efve)=e(fVye) (C.269)

FstFstOrEquEstOrR  (prs)

F>(fVveg) =>(fVyg) (C.270)

FstFstOrEquFstOr [prs

F >(>fVveg) =(fVyg) (C.271)
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C.1.9.8 First with len and skip
FstLenEquLen |prs

F >len(k) = len(k)

FstSkip (prs

F > skip = skip

FstLenEquLenF'st |prs

FstLenEqulLenF'st

FstNextEquNextFst (prs

FstNextEquNextFst

C.1.9.9 First occurrence with iteration
FstCSEquEmpty (prs

F > (f*) = empty

FstlterFixFst

[DRS]

F )" =(>)"), [n=0]

(C.272)

(C.273)

(C.274)

(C.275)

(C.276)

(C.277)
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C.1.9.10 Dual of first
NFstDef (prs

Bf = apaf (C.278)

NFstEquOrDsNot  [prs)

Fef=Efvenrf (C.279)

NotFstEquINFstNot (prs

T (C.280)

NotNFstEquFstNot [prs

Fosf=>of (C.281)

C.1.9.11 Reflection of the first occurrence operator

LstDef [DRS)]

af = frm-f (C.282)

NLStDef [DRS)]

af = - a-f (C.283)
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FstrEquLstr |prs

e =af

LstrEquF'str (prs

F(Qf) =p T

FstChopFstREquLstrChopLstr (prs

F(>fi>g) =<9 Qf

FstFstChoprEquLstrChopLstr |prs

FEf59) =< Qf)

LstChopLstEquLstChopLst [prs

- o<(g; f)=<g; <f

(C.284)

(C.285)

(C.286)

(C.287)

(C.288)

C.2 1ITL Monitor definitions, combinators and laws

C.2.1 ITL Monitor definitions
MFirstDef [prs)

M(FIRST (f)) = ©f

(C.289)
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MUptoDef [prs

M(aUuPTO D) = >(M(a)V M(D))

MThruDef (cav

1R

M(a THRU b) > (o> M(a) A S M(b))

MThenDef (prs)

M(a THEN b) = M(a); M(b)

MWithDef (prs

M(aWITH f) = M(a)Af

C.2.2 ITL Monitor derived definitions
MHaltDef [prs

HALT (w) = FIRST (finw)
MLenDef (prs

LEN (k) = FIRST (len(k))

MEmptyDef (prs

~

EMPTY = FIRST (empty)

(C.290)

(C.291)

(C.292)

(C.293)

(C.294)

(C.295)

(C.296)
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MSkipDef [prs)

o~

SKIP = FIRST (skip) (C.297)

MGuardDef (prs)

GUARD (w) = EMPTY WITH w (C.298)

MTimesDef (prs

a TIMES 0 =  EMPTY
~ (C.299)

a TIMES (k + 1) = a THEN (a TIMES k), k>0
MFuailDef [prs)

FAIL = FIRST (false) (C.300)
MAlwaysDef (prs

a ALWAYS w = a WITH (O fin w) (C.301)
MSometimeDef (prs)

a SOMETIME w = a WITH (<& finw) (C.302)

MUntilDef (prs)

w; UNTIL wp = (HALT wz) WITH (@ w) (C.303)
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MWithinDef (prs

aWITHIN f = aWITH (& — f) (C.304)
MAndDef (prs

a AND b = a WITH M(b) (C.305)
MTlterateDef [prs

a ITERATED = a WITH (M(b))" (C.306)
MStarDef (prs

a STARf = FIRST (Of) ITERATE a (C.307)
MRepeatDef (prs

a REPEATUNTIL w = (HALT w) ITERATE (a WITH (B — w)) (C.308)
C.2.3 ITL Monitor laws
MFixFst [DRS]

F M(a) =1 M(a) (C.309)
MGuardFalseEquFalse (prs

- M(GUARD (false)) = false (C.310)
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MFstFalseEquFalse (prs)

F M(FIRST (false)) = false (C.311)

C.2.4 ITL Monitor alternative definitions
MFuailAlt (prs

F M(FAIL) = false (C.312)

MEmptyAlt (prs

- M(EMPTY) = empty (C.313)

MSkipAlt  1prs

F M(SKIP) = skip (C.314)

MGuardAlt (prs)

F M(GUARD (w)) = empty A w (C.315)

MLengthAlt (prs)

F M(LENEk) = len(k) (C.316)

MAlwaysAlt (prs

F M(a ALWAYS w) = M(a) A Qw (C.317)
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MSometimeAlt [prs)

F M(a SOMETIME w) = M(a) A Sw (C.318)
MWithinAlt prs

F M(aWITHIN f) = M(a) AB— f (C.319)
MTimesAlt (prs)

- M(a TIMES k) = (M(a))* (C.320)

MUptoAlt |prs

- M(a UPTO b) = (M(a)A m= M(D)) V (M(B)A m= M(a)) V (M(a) A M(b)) (C.321)

MThruAlt |prs

- M(a THRU b) = (M(a) A & M(b)) V (M(b) A & M(a))

MHaltAlt (prs)

F M(HALT w) = haltw

C.2.5 ITL Monitor equivalence

EqDef (cav

(a~D)

i
/_F
<
<
IS
~—
!
<
C
~—

(C.322)

(C.323)

(C.324)
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MonEqRefl (cauv)

MonEqSym (cav

a~bkFb~a

MonEqTrans (cau

a~b, b~ckax~c

MonEq (cau

(a=b) = M(a) = M(b))

C.2.6 Efficient implementation of FAIL

MFailEquFstFalse WithinEmpty (prs)

I FAIL ~ FIRST (false) WITHIN empty

C.2.7 ITL Monitor annihilator and identity laws

MFailUpto [prs

FAIL UPTO a >~ a

(C.325)

(C.326)

(C.327)

(C.328)

(C.329)

(C.330)
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MFailThru (prs

FAIL THRU a ~ FAIL (C.331)
MFuailAnd (prs)

FAIL AND a ~ FAIL (C.332)
MThenFail [prs

a THEN FAIL ~ FAIL (C.333)
MFailThen [prs

FAIL THEN a =~ FAIL (C.334)
MFailWith (prs

FAIL WITH f ~ FAIL (C.335)
MWithFalse (prs

a WITH false ~ FAIL (C.336)

MWithTrue [prs

a WITH true >~ a

(C.337)
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MEmptyUpto (prs

EMPTY UPTO a ~ EMPTY (C.338)

MEmptyThru [prs)

EMPTY THRU ¢ ~ q (C.339)

MThenEmpty (prs

a THEN EMPTY =~ g (C.340)

MEmptyThen [prs

EMPTY THEN ¢ ~ a (C.341)

MEmptylterate |prs

EMPTY ITERATE b ~ EMPTY (C.342)

C.2.8 ITL Monitor idempotence laws

Mlterateldemp (prs

a ITERATE ¢ ~ a (C.343)

MUptoldemp (prs)

aUPTO a~a (C.344)
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MThruldemp (prs)

a THRU a >~ a (C.345)
MAndldemp (prs)

a AND a ~ a (C.346)
MWithldemp [prs

(WITH f) o (WITH f) ~ (WITH f) (C.347)
C.2.9 ITL Monitor commutativity laws
MUptoCommut (prs)

a UPTO b ~ b UPTO a (C.348)
MThruCommut (prs)

a THRU b ~ b THRU a (C.349)
MAndCommut (prs

a AND b ~ b AND a (C.350)
MWithCommut |prs

(WITH f) o (WITH g) ~ (WITH g) o (WITH f) (C.351)
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C.2.10 ITL Monitor associativity laws

MUptoAssoc (prs

(a UPTO b) UPTO ¢ ~ a UPTO (b UPTO c¢)

MThruAssoc (prsj

(a THRU b) THRU ¢ ~ a THRU (b THRU c¢)

MAndAssoc (prs

(a AND b) AND ¢ ~ a AND (b AND ¢)

MThenAssoc |prs

(a THEN b) THEN ¢ ~ a THEN (b THEN c¢)

C.2.11 ITL Monitor absorption laws

MWithAbsorp [prs

(WITH f) o (WITH g) ~ (WITH (f A g))

MUptoThruAbsorp (prs)

a UPTO (a THRU b) ~ @

(C.352)

(C.353)

(C.354)

(C.355)

(C.356)

(C.357)
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MThruUptoAbsorp (prs)

a THRU (a UPTO b) ~ a (C.358)
C.2.12 ITL Monitor distributivity laws
MUptoThruDistrib [prs

a UPTO (b THRU ¢) ~ (a UPTO b) THRU (a UPTO ¢) (C.359)
MUptoThruRDistrib (prs

(a UPTO b) THRU ¢ ~ (a THRU ¢) UPTO (b THRU c) (C.360)
MThruUptoDistrib [prs

a THRU (b UPTO ¢) ~ (a THRU b) UPTO (a THRU c) (C.361)
MThruUptoRDistrib (prs

(a THRU b) UPTO ¢ ~ (a UPTO ¢) THRU (b UPTO c) (C.362)
MWithAndDistrib |prs

(a AND b) WITH f ~ (a WITH f) AND (b WITH f) (C.363)
MThenAndDistrib (prs)

a THEN (b AND ¢) ~ (a THEN b) AND (a THEN c) (C.364)
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MAndThenDistrib (prs

(a AND b) THEN ¢ ~ (a THEN c) AND (b THEN ¢)

MThenUptoDistrib (prs)

a THEN (b UPTO ¢) ~ (a THEN b) UPTO (a THEN ¢)

MThenThruDistrib (prs)

a THEN (b THRU ¢) ~ (a THEN b) THRU (a THEN c)

MHalt WithAndDistrib [prs

((HALT w) WITH f) AND ((HALT w) WITH g) ~ (HALT w) WITH (f A g)

MHaltWithUptoHalt WithEquHalt WithOr  |prs

((HALT w) WITH f) UPTO ((HALT w) WITH g) ~ (HALT w) WITH (f V g)

MHalt With ThruHalt WithEquHalt WithAndHalt With  (prs)

(C.365)

(C.366)

(C.367)

(C.368)

(C.369)

((HALT w) WITH f) THRU ((HALT w) WITH g¢) ~ ((HALT w) WITH f) AND ((HALT w) WITH g)

(C.370)
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