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1 Introduction

The field of evolutionary multi-objective optimization has developed rapidly over the last two
decades, but the design of effective algorithms for addressing problems with more than three
objectives (called many-objective optimization problems, MaOPs) remains a great challenge.
First, the ineffectiveness of the Pareto dominance relation, which is the most important criteri-
on in multi-objective optimization, results in the underperformance of traditional Pareto-based
algorithms. Also, the aggravation of the conflict between convergence and diversity, along with
increasing time or space requirement as well as parameter sensitivity, has become key barriers
to the design of effective many-objective optimization algorithms. Furthermore, the infeasibil-
ity of solutions’ direct observation can lead to serious difficulties in algorithms’ performance
investigation and comparison. All of these suggest the pressing need of new methodologies
designed for dealing with MaOPs, new performance metrics and benchmark functions tailored
for experimental and comparative studies of evolutionary many-objective optimization (EMaO)
algorithms.

In recent years, a number of new algorithms have been proposed for dealing with MaOPs [1],
including the convergence enhancement based algorithms such as the grid-dominance based
evolutionary algorithm (GrEA) [2], the knee point driven evolutionary algorithm (KnEA) [3],
the two-archive algorithm (Two Arch2) [4]; the decomposition based algorithms such as the
NSGA-III [5], and the evolutionary algorithms based on both dominance and decomposition
(MOEA/DD) [6], and the reference vector guided evolutionary algorithm (RVEA) [7]; and
the performance indicator based algorithms such as the fast hypervolume based evolutionary
algorithm (HypE) [8]. In spite of the various algorithms proposed for dealing with MaOPs, the
literature still lacks a benchmark test suite for evolutionary many-objective optimization.

Benchmark functions play an important role in understanding the strengths and weaknesses
of evolutionary algorithms. In many-objective optimization, several scalable continuous bench-
mark function suites, such as DTLZ [9] and WFG [10], have been commonly used. Recently,
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researchers have also designed/presented some problem suites specially for many-objective op-
timization [11, 12, 13, 14, 15, 16]. However, all of these problem suites only represent one or
several aspects of real-world scenarios. A set of benchmark functions with diverse properties for
a systematic study of EMaO algorithms are not available in the area. On the other hand, ex-
isting benchmark functions typically have a “regular” Pareto front, overemphasize one specific
property in a problem suite, or have some properties that appear rarely in real-world problems
[17]. For example, the Pareto front of most of the DTLZ and WFG functions is similar to a
simplex. This may be preferred by decomposition-based algorithms which often use a set of
uniformly-distributed weight vectors in a simplex to guide the search [7, 18]. This simplex-like
shape of Pareto front also causes an unusual property that any subset of all objectives of the
problem can reach optimality [17, 19]. This property can be very problematic in the context of
objective reduction, since the Pareto front degenerates into only one point when omitting one
objective [19]. Also for the DTLZ and WFG functions, there is no function having a convex
Pareto front; however, a convex Pareto front may bring more difficulty (than a concave Pareto
front) for decomposition-based algorithms in terms of solutions’ uniformity maintenance [20].
In addition, the DTLZ and WFG functions which are used as MaOPs with a degenerate Pareto
front (i.e., DTLZ5, DTLZ6 and WFG3) have a nondegenerate part of the Pareto front when
the number of objectives is larger than four [10, 21, 22]. This naturally affects the performance
investigation of evolutionary algorithms on degenerate MaOPs.

This report slightly modifies the 15 test problems for many-objective optimization as orig-
inally given in [23]. The 15 benchmark problems are with diverse properties which cover a
good representation of various real-world scenarios, such as being multimodal, disconnected,
degenerate, and/or nonseparable, and having an irregular Pareto front shape, a complex Pareto
set or a large number of decision variables (as summarized in Table 1). Our aim is to promote
the research of many-objective optimization via suggesting a set of benchmark functions with
a good representation of various real-world scenarios. As part of the competition, we provide
the implementation of the test suites in two programming languages, i.e., MATLAB and Java.
First, an open-source MATLAB software platform with a user-friendly GUI is provided inside
the PlatEMO platform [24]. Second, a Java version is provided to be compatible with the jMetal
platform [25]. In the following, Section 2 details the definitions of the 15 benchmark functions,
and Section 3 presents the experimental setup for benchmark studies, including general settings,
performance indicators, and software platforms.
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Table 1: Main properties of the 15 test functions.
Problem Properties Note

MaF1 Linear No single optimal solution in
any subset of objectives

MaF2 Concave No single optimal solution in
any subset of objectives

MaF3 Convex, Multimodal

MaF4 Concave, Multimodal Badly-scaled and no single
optimal solution in any sub-
set of objectives

MaF5 Concave, Biased Badly-scaled

MaF6 Concave, Degenerate

MaF7 Mixed, Disconnected, Multi-
modal

MaF8 Linear, Degenerate

MaF9 Linear, Degenerate Pareto optimal solutions are
similar to their image in the
objective space

MaF10 Mixed, Biased

MaF11 Convex, Disconnected, Non-
separable

MaF12 Concave, Nonseparable, Bi-
ased Deceptive

MaF13 Concave, Unimodal, Non-
separable, Degenerate

Complex Pareto set

MaF14 Linear, Partially separable,
Large scale

Non-uniform correlations
between decision variables
and objective functions

MaF15 Convex, Partially separable,
Large scale

Non-uniform correlations
between decision variables
and objective functions
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2 Function Definitions

• D: number of decision variables

• M : number of objectives

• x = (x1, x2, ..., xD): decision vector

• fi: i-th objective function

2.1 MaF1 (Modified inverted DTLZ1 [26])
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Figure 1: The Pareto front of MaF1 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = (1− x1...xM−1)(1 + g(xM ))

f2(x) = (1− x1...(1− xM−1))(1 + g(xM ))

...

fM−1(x) = (1− x1(1− x2))(1 + g(xM ))

fM (x) = x1(1 + g(xM ))

(1)

with

g(xM ) =

|x|∑
i=M

(xi − 0.5)2 (2)

where the number of decision variable is D = M+K−1, and K denotes the size of xM , namely,
K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 1, this test problem has an inverted PF,
while the PS is relatively simple. This test problem is used to assess whether EMaO algorithms
are capable of dealing with inverted PFs. Parameter settings of this test problem are: x ∈ [0, 1]D

and K = 10.

2.2 MaF2 (DTLZ2BZ [19])

min



f1(x) = cos(θ1)... cos(θ2) cos(θM−1)(1 + g1(xM ))

f2(x) = cos(θ1)... cos(θM−2) sin(θM−1)(1 + g2(xM ))

...

fM−1(x) = cos(θ1) sin(θ2)(1 + gM−1(xM ))

fM (x) = sin(θ1)(1 + gM (xM ))

(3)
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Figure 2: The Pareto front of MaF2 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

with

gi(xM ) =

M+i·⌊D−M+1
M

⌋−1∑
j=M+(i−1)·⌊D−M+1

M
⌋

((
xj
2

+
1

4
)− 0.5)2 for i = 1, . . . ,M − 1

gM (xM ) =

D∑
j=M+(i−1)·⌊D−M+1

M
⌋

((
xj
2

+
1

4
)− 0.5)2

θi =
π

2
· (xi

2
+

1

4
) for i = 1, . . . ,M − 1

(4)

where the number of decision variable is D = M+K−1, and K denotes the size of xM , namely,
K = |xM |, with xM = (xM , ..., xD). This test problem is modified from DTLZ2 to increase
the difficulty of convergence. In original DTLZ2, it is very likely that the convergence can be
achieved once the g(xM ) = 0 is satisfied; by contrast, for this modified version, all the objective
have to be optimized simultaneously in order to reach the true PF. Therefore, this test problem
is used to assess the whether and MOEA is able to perform concurrent convergence on different
objectives. Parameter settings are: x ∈ [0, 1]D and K = 10.

2.3 MaF3 (Convex DTLZ3 [27])
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Figure 3: The Pareto front of MaF3 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.
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min



f1(x) = [cos(
π

2
x1)... cos(

π

2
xM−2) cos(

π

2
xM−1)(1 + g(xM ))]4

f2(x) = [cos(
π

2
x1)... cos(

π

2
xM−2) sin(

π

2
xM−1)(1 + g(xM ))]4

...

fM−1(x) = [cos(
π

2
x1) sin(

π

2
x2)(1 + g(xM ))]4

fM (x) = [sin(
π

2
x1)(1 + g(xM ))]2

(5)

with

g(xM ) = 100[|xM |+
|x|∑

i=M

(xi − 0.5)2 − cos(20π(xi − 0.5))] (6)

where the number of decision variable is D = M+K−1, and K denotes the size of xM , namely,
K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 3, this test problem has a convex PF, and
there a large number of local fronts. This test problem is mainly used to assess whether EMaO
algorithms are capable of dealing with convex PFs. Parameter settings of this test problem are:
x ∈ [0, 1]D, K = 10.

2.4 MaF4 (Inverted badly-scaled DTLZ3)
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Figure 4: The Pareto front of MaF4 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = a× (1− cos(
π

2
x1)... cos(

π

2
xM−2) cos(

π

2
xM−1))(1 + g(xM ))

f2(x) = a2 × (1− cos(
π

2
x1)... cos(

π

2
xM−2) sin(

π

2
xM−1))(1 + g(xM ))

...

fM−1(x) = aM−1 × (1− cos(
π

2
x1) sin(

π

2
x2))(1 + g(xM ))

fM (x) = aM × (1− sin(
π

2
x1))× (1 + g(xM ))

(7)

with

g(xM ) = 100[|xM |+
|x|∑

i=M

(xi − 0.5)2 − cos(20π(xi − 0.5))] (8)

where the number of decision variable is D = M+K−1, and K denotes the size of xM , namely,
K = |xM |, with xM = (xM , ..., xD). Parameter settings are a = 2. Besides, the fitness landscape
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of this test problem is highly multimodal, containing a number of (3k − 1) local Pareto-optimal
fronts. This test problem is used to assess whether EMaO algorithms are capable of dealing
with badly-scaled PFs, especially when the fitness landscape is highly multimodal. Parameter
settings of this test problem are: x ∈ [0, 1]D, K = 10 and a = 2.

2.5 MaF5 (Concave badly-scaled DTLZ4)

0
00

0.5

1 2

1

3-objective MaF5

f 3

f
2

f
1

2 4

1.5

2

63
84

Figure 5: The Pareto front of MaF5 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = aM × [cos(
π

2
x1

α)... cos(
π

2
xαM−2) cos(

π

2
xαM−1)(1 + g(xM ))]

f2(x) = aM−1 × [cos(
π

2
x1

α)... cos(
π

2
xαM−2) sin(

π

2
xαM−1)(1 + g(xM ))]

...

fM−1(x) = a2 × [cos(
π

2
xα1 ) sin(

π

2
xα2 )(1 + g(xM ))]

fM (x) = a× [sin(
π

2
x1

α)(1 + g(xM ))]

(9)

with

g(xM ) =

|x|∑
i=M

(xi − 0.5)2 (10)

where the number of decision variable is D = M+K−1, and K denotes the size of xM , namely,
K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 5, this test problem has a badly-scaled
PF, where each objective function is scaled to a substantially different range. Besides, the PS
of this test problem has a highly biased distribution, where the majority of Pareto optimal
solutions are crowded in a small subregion. This test problem is used to assess whether EMaO
algorithms are capable of dealing with badly-scaled PFs/PSs. Parameter settings of this test
problem are: x ∈ [0, 1]D, α = 100 and a = 2.

2.6 MaF6 (DTLZ5(I,M) [28])

min



f1(x) = cos(θ1)... cos(θM−2) cos(θM−1)(1 + 100g(xM ))

f2(x) = cos(θ1)... cos(θM−2) sin(θM−1)(1 + 100g(xM ))

...

fM−1(x) = cos(θ1) sin(θ2)(1 + 100g(xM ))

fM (x) = sin(θ1)(1 + 100g(xM ))

(11)
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Figure 6: The Pareto front of MaF6 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

with

θi =

{ π
2xi for i = 1, 2, ..., I − 1

π
4(1+g(xM ))(1 + 2g(xM )xi) for i = I, ...,M − 1

(12)

g(xM ) =

|x|∑
i=M

(xi − 0.5)2 (13)

where the number of decision variable is D = M+K−1, and K denotes the size of xM , namely,
K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 6, this test problem has a degenerate PF
whose dimensionality is defined using parameter I. In other words, the PF of this test problem
is always an I-dimensional manifold regardless of the specific number of decision variables. This
test problem is used to assess whether EMaO algorithms are capable of dealing with degenerate
PFs. Parameter settings are: x ∈ [0, 1]D, I = 2 and K = 10.

2.7 MaF7 (DTLZ7 [9])
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Figure 7: The Pareto front of MaF7 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.
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min



f1(x) = x1

f2(x) = x2

...

fM−1(x) = xM−1

fM (x) = h(f1, f2, . . . , fM−1, g)× (1 + g(xM ))

(14)

with 
g(xM ) = 1 +

9

|xM |

|x|∑
i=M

xi

h(f1, f2, . . . , fM−1, g) = M −
M−1∑
i=1

[
fi

1 + g
(1 + sin(3πfi))]

(15)

where the number of decision variable is D = M+K−1, and K denotes the size of xM , namely,
K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 7, this test problem has a disconnected PF
where the number of disconnected segments is 2M−1. This test problem is used to assess whether
EMaO algorithms are capable of dealing with disconnected PFs, especially when the number
of disconnected segments is large in high-dimensional objective space. Parameter settings are:
x ∈ [0, 1]D and K = 20.

2.8 MaF8 (Multi-Point Distance Minimization Problem [11, 12])
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Figure 8: The Pareto front of MaF8 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

This function considers a two-dimensional decision space. As its name suggests, for any
point x = (x1, x2) MaF8 calculates the Euclidean distance from x to a set of M target points
(A1, A2, ..., AM ) of a given polygon. The goal of the problem is to optimize these M distance
values simultaneously. It can be formulated as

min


f1(x) = d(x, A1)

f2(x) = d(x, A2)

...

fM (x) = d(x, AM )

(16)

where d(x, Ai) denotes the Euclidean distance from point x to point Ai.
One important characteristic of MaF8 is its Pareto optimal region in the decision space is

typically a 2D manifold (regardless of the dimensionality of its objective vectors). This naturally
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allows a direct observation of the search behavior of EMaO algorithms, e.g., the convergence of
their population to the Pareto optimal solutions and the coverage of the population over the
optimal region.

In this test suite, the regular polygon is used (in order to unify with MaF9). The center
coordinates of the regular polygon (i.e., Pareto optimal region) are (0, 0) and the radius of
the polygon (i.e., the distance of the vertexes to the center) is 1.0. Parameter settings are:
x ∈ [−10 000, 10 000]2. Fig. 8 shows the Pareto optimal regions of the 3-objective and 10-
objective MaF8.

2.9 MaF9 (Multi-Line Distance Minimization Problem [29])

This function considers a two-dimensional decision space. For any point x = (x1, x2), MaF9
calculates the Euclidean distance from x to a set of M target straight lines, each of which passes
through an edge of the given regular polygon with M vertexes (A1, A2, ..., AM ), where M ≥ 3.
The goal of MaF9 is to optimize these M distance values simultaneously. It can be formulated
as

min


f1(x) = d(x,

←−−→
A1A2)

f2(x) = d(x,
←−−→
A2A3)

...

fM (x) = d(x,
←−−→
AMA1)

(17)

where
←−→
AiAj is the target line passing through vertexes Ai and Aj of the regular polygon, and

d(x,
←−→
AiAj) denotes the Euclidean distance from point x to line

←−→
AiAj .

One key characteristic of MaF9 is that the points in the regular polygon (including the
boundaries) and their objective images are similar in the sense of Euclidean geometry [29]. In
other words, the ratio of the distance between any two points in the polygon to the distance
between their corresponding objective vectors is a constant. This allows a straightforward
understanding of the distribution of the objective vector set (e.g., its uniformity and coverage
over the Pareto front) via observing the solution set in the two-dimensional decision space. In
addition, for MaF9 with an even number of objectives (M = 2k where k ≥ 2), there exist k
pairs of parallel target lines. Any point (outside the regular polygon) residing between a pair
of parallel target lines is dominated by only a line segment parallel to these two lines. This
property can pose a great challenge for EMaO algorithms which use Pareto dominance as the
sole selection criterion in terms of convergence, typically leading to their populations trapped
between these parallel lines [14].
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Figure 9: The Pareto front of MaF9 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.
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For MaF9, all points inside the polygon are the Pareto optimal solutions. However, these
points may not be the sole Pareto optimal solutions of the problem. If two target lines inter-
sect outside the regular polygon, there exist some areas whose points are nondominated with
the interior points of the polygon. Apparently, such areas exist in the problem with five or
more objectives in view of the convexity of the considered polygon. However, the geometric
similarity holds only for the points inside the regular polygon. The Pareto optimal solutions
that are located outside the polygon will affect this similarity property. So, we set some regions
infeasible in the search space of the problem. Formally, consider an M -objective MaF9 with

a regular polygon of vertexes (A1, A2, ..., AM ). For any two target lines
←−−−→
Ai−1Ai and

←−−−−→
AnAn+1

(without loss of generality, assuming i < n) that intersect one point (O) outside the considered
regular polygon, we can construct a polygon (denoted as ΦAi−1AiAnAn+1) bounded by a set of

2(n − i) + 2 line segments: AiA′
n, A

′
nA

′
n−1, ..., A

′
i+1A

′
i, A

′
iAn, AnAn−1, ..., Ai+1Ai, where points

A′
i, A

′
i+1, ..., A

′
n−1, A

′
n are symmetric points of Ai, Ai+1, ...An−1, An with respect to central point

O. We constrain the search space of the problem outside such polygons (but not including the
boundary). Now the points inside the regular polygon are the sole Pareto optimal solutions of
the problem. In the implementation of the test problem, for newly-produced individuals which
are located in the constrained areas of the problem, we simply reproduce them within the given
search space until they are feasible.

In this test suite, the center coordinates of the regular polygon (i.e., Pareto optimal region)
are (0, 0) and the radius of the polygon (i.e., the distance of the vertexes to the center) is 1.0.
Parameter settings are: x ∈ [−10 000, 10 000]2. Fig. 9 shows the Pareto optimal regions of the
3-objective and 10-objective MaF9.

2.10 MaF10 (WFG1 [10])
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Figure 10: The Pareto front of MaF10 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = yM + 2(1− cos(
π

2
y1))...(1− cos(

π

2
yM−2))(1− cos(

π

2
yM−1))

f2(x) = yM + 4(1− cos(
π

2
y1))...(1− cos(

π

2
yM−2))(1− sin(

π

2
yM−1))

...

fM−1(x) = yM + 2(M − 1)(1− cos(
π

2
y1))(1− sin(

π

2
y2))

fM (x) = yM + 2M(1− y1 −
cos(10πy1 + π/2)

10π
)

(18)
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with
zi =

xi
2i

for i = 1, . . . , D (19)

t1i =

{
zi, if i = 1, . . . ,K

|zi−0.35|
|⌊0.35−zi⌋+0.35| , if i = K + 1, . . . , D

(20)

t2i =

{
t1i , if i = 1, . . . ,K

0.8 +
0.8(0.75−t1i )min(0,⌊t1i−0.75⌋)

0.75 − (1−0.8)(t1i−0.85)min(0,⌊0.85−t1i ⌋)
1−0.85 , if i = K + 1, . . . , D

(21)

t3i = t2i
0.02

for i = 1, . . . , D (22)

t4i =


∑iK/(M−1)

j=(i−1)K/(M−1)+1
2jt3j∑iK/(M−1)

j=(i−1)K/(M−1)+1
2j

, if i = 1, . . . ,M − 1∑D
j=K+1 2jt

3
j∑D

j=K+1 2j
, if i = M

(23)

yi =

{
(t4i − 0.5)max(1, t4M ) + 0.5, if i = 1, . . . ,M − 1

t4M , if i = M
(24)

where the number of decision variable is D = K + L, with K denoting the number of position
variables and L denoting the number of distance variables. As shown in Fig. 10, this test
problem has a scaled PF containing both convex and concave segments. Besides, there are a
lot of transformation functions correlating the decision variables and the objective functions.
This test problem is used to assess whether EMaO algorithms are capable of dealing with PFs
of complicated mixed geometries. Parameter settings are: x ∈

∏D
i=1[0, 2i], K = M − 1, and

L = 10.

2.11 MaF11 (WFG2 [10])
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Figure 11: The Pareto front of MaF11 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.
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min



f1(x) = yM + 2(1− cos(
π

2
y1))...(1− cos(

π

2
yM−2))(1− cos(

π

2
yM−1))

f2(x) = yM + 4(1− cos(
π

2
y1))...(1− cos(

π

2
yM−2))(1− sin(

π

2
yM−1))

...

fM−1(x) = yM + 2(M − 1)(1− cos(
π

2
y1))(1− sin(

π

2
y2))

fM (x) = yM + 2M(1− y1 cos
2(5πy1))

(25)

with
zi =

xi
2i

for i = 1, . . . , D (26)

t1i =

{
zi, if i = 1, . . . ,K

|zi−0.35|
|⌊0.35−zi⌋+0.35| , if i = K + 1, . . . , D

(27)

t2i =

{
t1i , if i = 1, . . . ,K

t1K+2(i−K)−1 + t1K+2(i−K) + 2|t1K+2(i−K)−1 − t1K+2(i−K)|, if i = K + 1, . . . , (D +K)/2

(28)

t3i =


∑iK/(M−1)

j=(i−1)K/(M−1)+1
t2j

K/(M−1) , if i = 1, . . . ,M − 1∑(D+K)/2
j=K+1 t2j
(D−K)/2 , if i = M

(29)

yi =

{
(t3i − 0.5)max(1, t3M ) + 0.5, if i = 1, . . . ,M − 1

t3M , if i = M
(30)

where the number of decision variable is n = K + L, with K denoting the number of position
variables and L denoting the number of distance variables. As shown in Fig. 11, this test problem
has a scaled disconnected PF. This test problem is used to assess whether EMaO algorithms
are capable of dealing with scaled disconnected PFs. Parameter settings are: x ∈

∏D
i=1[0, 2i],

K = M − 1, and L = 10.

2.12 MaF12 (WFG9 [10])
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Figure 12: The Pareto front of MaF12 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.
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min



f1(x) = yM + 2 sin(
π

2
y1)... sin(

π

2
yM−2) sin(

π

2
yM−1)

f2(x) = yM + 4 sin(
π

2
y1)... sin(

π

2
yM−2) cos(

π

2
yM−1)

...

fM−1(x) = yM + 2(M − 1) sin(
π

2
y1) cos(

π

2
y2)

fM (x) = yM + 2M cos(
π

2
y1)

(31)

with
zi =

xi
2i

for i = 1, . . . , D (32)

t1i =

z
0.02+(50−0.02)(0.98/49.98−(1−2

∑n
j=i+1 zj

D−i
)|⌊0.5−

∑D
j=i+1 zj

D−i
⌋+0.98/49.98|)

i , if i = 1, . . . , D − 1

zi, if i = D

(33)

t2i =

1 + (|t1i − 0.35| − 0.001)(
349.95⌊t1i−0.349⌋

0.349 +
649.95⌊0.351−t1i ⌋

0.649 + 1000), if i = 1, . . . ,K
1
97(1 + cos[122π(0.5− |t1i−0.35|

2(⌊0.35−t1i ⌋+0.35)
)] + 380(

|t1i−0.35|
2(⌊0.35−t1i ⌋+0.35)

)2), if i = K + 1, . . . , D

(34)

t3i =


∑iK/(M−1)

j=(i−1)K/(M−1)+1
(t2j+

∑K/(M−1)−2
k=0 |t2j−t2p|)

⌈K/(M−1)/2⌉(1+2K/(M−1)−2⌈K/(M−1)/2⌉) , if i = 1, . . . ,M − 1∑D
j=K+1(t

2
j+

∑D−K−2
k=0 |t2j−t2q |)

⌈(D−K)/2⌉(1+2(D−K)−2⌈(D−K)/2⌉) , if i = M
(35)

yi =

{
(t3i − 0.5)max(1, t3M ) + 0.5, if i = 1, . . . ,M − 1

t3M , if i = M
(36){

p = (i− 1)K/(M − 1) + 1 + (j − (i− 1)K/(M − 1) + k)mod(K/(M − 1))

q = K + 1 + (j −K + k)mod(n−K)
(37)

where the number of decision variable is D = K + L, with K denoting the number of position
variable and L denoting the number of distance variable. As shown in Fig. 12, this test problem
has a scaled concave PF. Although the PF of this test problem is simple, its decision variables are
nonseparably reduced, and its fitness landscape is highly multimodal. This test problem is used
to assess whether EMaO algorithms are capable of dealing with scaled concave PFs together
with complicated fitness landscapes. Parameter settings are: x ∈

∏D
i=1[0, 2i], K = M − 1, and

L = 10.

2.13 MaF13 (PF7 [13])

min



f1(x) = sin(
π

2
x1) +

2

|J1|
∑
j∈J1

y2j

f2(x) = cos(
π

2
x1) sin(

π

2
x2) +

2

|J2|
∑
j∈J2

y2j

f3(x) = cos(
π

2
x1) cos(

π

2
x2) +

2

|J3|
∑
j∈J3

y2j

f4,...,M (x) = f1(x)
2 + f2(x)

10 + f3(x)
10 +

2

|J4|
∑
j∈J4

y2j

(38)
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Figure 13: The Pareto front of MaF13 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

with

yi = xi − 2x2 sin(2πx1 +
iπ

n
) for i = 1, . . . , D (39)


J1 = {j|3 ≤ j ≤ D, and j mod 3 = 1}
J2 = {j|3 ≤ j ≤ D, and j mod 3 = 2}
J3 = {j|3 ≤ j ≤ D, and j mod 3 = 0}
J4 = {j|4 ≤ j ≤ D}

(40)

where the number of decision variable is D = 5. As shown in Fig. 13, this test problem has a
concave PF; in fact, the PF of this problem is always a unit sphere regardless of the number of
objectives. Although this test problem has a simple PF, its decision variables are nonlinearly
linked with the first and second decision variables, thus leading to difficulty in convergence. This
test problem is used to assess whether EMaO algorithms are capable of dealing with degenerate
PFs and complicated variable linkages. Parameter setting is: x ∈ [0, 1]2 × [−2, 2]D−2.

2.14 MaF14 (LSMOP3 [16])
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Figure 14: The Pareto front of MaF14 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.
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min



f1(x) = xf1 ...x
f
M−1(1 +

M∑
j=1

c1,j × ḡ1(x
s
j))

f2(x) = xf1 ...(1− xfM−1)(1 +

M∑
j=1

c2,j × ḡ2(x
s
j))

...

fM−1(x) = xf1(1− xf2)(1 +

M∑
j=1

cM−1,j × ḡM−1(x
s
j))

fM (x) = (1− xf1)(1 +
M∑
j=1

cM,j × ḡM (xs
j))

x ∈ [0, 10]|x|

(41)

with

ci,j =

{
1, if i = j

0, otherwise
(42)



ḡ2k−1(x
s
i ) =

1

Nk

Nk∑
j=1

η1(x
s
i,j)

|xs
i,j |

ḡ2k(x
s
i ) =

1

Nk

Nk∑
j=1

η2(x
s
i,j)

|xs
i,j |

k = 1, ..., ⌈M
2
⌉

(43)


η1(x) =

|x|∑
i=1

(x2i − 10 cos(2πxi) + 10)

η2(x) =

|x|−1∑
i=1

[100(x2i − xi+1)
2 + (xi − 1)2]

(44)

xs ← (1 +
i

|xs|
)× (xsi − li)− xf1 × (ui − li)

i = 1, ..., |xs|
(45)

where Nk denotes the number of variable subcomponent in each variable group xs
i with i =

1, ...,M , and ui and li are the upper and lower boundaries of the i-th decision variable in
xs. Although this test problem has a simple linear PF, its fitness landscape is complicated.
First, the decision variables are non-uniformly correlated with different objectives; second, the
decision variables have mixed separability, i.e., some of the are separable while others are not.
This test problem is mainly used to assess whether EMaO algorithms are capable of dealing
with complicated fitness landscape with mixed variable separability, especially in large-scale
cases. Parameter settings are: Nk = 2 and D = 20×M .
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Figure 15: The Pareto front of MaF15 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

2.15 MaF15 (Inverted LSMOP8 [16])

min



f1(x) = (1− cos(
π

2
xf1)... cos(

π

2
xfM−2) cos(

π

2
xfM−1))× (1 +

M∑
j=1

c1,j × ḡ1(x
s
j))

f2(x) = (1− cos(
π

2
xf1)... cos(

π

2
xfM−2) sin(

π

2
xfM−1))× (1 +

M∑
j=1

c2,j × ḡ2(x
s
j))

...

fM−1(x) = (1− cos(
π

2
xf1) sin(

π

2
xf2))× (1 +

M∑
j=1

cM−1,j × ḡM−1(x
s
j))

fM (x) = (1− sin(
π

2
xf1))× (1 +

M∑
j=1

cM,j ḡM (xs
j))

x ∈ [0, 1]|x|

(46)

with

ci,j =

{
1, if j = i or j = i+ 1

0, otherwise
(47)



ḡ2k−1(x
s
i ) =

1

Nk

Nk∑
j=1

η1(x
s
i,j)

|xs
i,j |

ḡ2k(x
s
i ) =

1

Nk

Nk∑
j=1

η2(x
s
i,j)

|xs
i,j |

k = 1, ..., ⌈M
2
⌉

(48)


η1(x) =

|x|∑
i=1

x2i
4000

−
|x|∏
i=1

cos(
xi√
i
) + 1

η2(x) =

|x|∑
i=1

(xi)
2}.

(49)
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xs ← (1 + cos(0.5π
i

|xs|
))× (xsi − li)− xf1 × (ui − li)

i = 1, ..., |xs|
(50)

where Nk denotes the number of variable subcomponent in each variable group xs
i with i =

1, ...,M , and ui and li are the upper and lower boundaries of the i-th decision variable in
xs. Although this test problem has a simple convex PF, its fitness landscape is complicated.
First, the decision variables are non-uniformly correlated with different objectives; second, the
decision variables have mixed separability, i.e., some of the are separable while others are not.
Different from MaF14, this test problem has non-linear (instead of linear) variable linkages on
the PS, which further increases the difficulty. This test problem is mainly used to assess whether
EMaO algorithms are capable of dealing with complicated fitness landscape with mixed variable
separability, especially in large-scale cases. Parameter settings are: Nk = 2 and D = 20×M .

3 Experimental Setup

To conduct benchmark experiments using the proposed test suite, users may follow the experi-
mental setup as given below.

3.1 General Settings

• Number of Objectives (M): 5, 10, 15

• Maximum Population Size1: 240

• Maximum Number of Fitness Evaluations (FEs)2: max{100000, 10000×D}

• Number of Independent Runs: 20

3.2 Performance Metrics

• Inverted Generational Distance (IGD): Let P ∗ be a set of uniformly distributed
points on the Pareto front. Let P be an approximation to the Pareto front. The inverted
generational distance between P ∗ and P can be defined as:

IGD(P ∗, P ) =

∑
v∈P ∗ d(v, P )

|P ∗|
, (51)

where d(v, P ) is the minimum Euclidean distance from point v to set P . The IGD metric
is able to measure both diversity and convergence of P if |P ∗| is large enough, and a
smaller IGD value indicates a better performance. In this test suite, we suggest a number
of 10000 uniformly distributed reference points sampled on the true Pareto front3 for each
test instance.

• Hypervolume (HV): Let y∗ = (y∗1, ..., y
∗
m) be a reference point in the objective space

that is dominated by all Pareto optimal solutions. Let P be the approximation to the
Pareto front. The HV value of P (with regard to y∗) is the volume of the region which
is dominated by P and dominates y∗. In this test suite, the objective vectors in P are

1The size of final population/archive must be smaller the given maximum population size, otherwise, a com-
pulsory truncation will be operated in final statistics for fair comparisons.

2Regardless of the number of objectives, every evaluation of the whole objective set is counted as one FE.
3The specific number of reference points for IGD calculations can vary a bit due to the different geometries of

the Pareto fronts. All reference point sets can be automatically generated using the software platform introduced
in Section 3.3.
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normalized using f j
i =

fj
i

1.1×ynadir
i

, where f j
i is the i-th dimension of j-th objective vector,

and ynadiri is the i-th dimension of nadir point of the true Pareto front4. Then we use y* =
(1,...,1) as the reference point for the normalized objective vectors in the HV calculation.

3.3 Matlab Software Platform

All the benchmark functions have been implemented in MATLAB code and embedded in a
recently developed software platform – PlatEMO5. PlatEMO is an open source MATLAB-based
platform for evolutionary multi- and many-objective optimization, which currently includes
more than 50 representative algorithms and more than 100 benchmark functions, along with
a variety of widely used performance indicators. Moreover, PlatEMO provides a user-friendly
graphical user interface (GUI), which enables users to easily perform experimental settings and
algorithmic configurations, and obtain statistical experimental results by one-click operation.

Figure 16: The GUI in PlatEMO for this test suite.

In particular, as shown in Fig. 16, we have tailored a new GUI in PlatEMO for this test suite,
such that participants are able to directly obtain tables and figures comprising the statistical
experimental results for the test suite. To conduct the experiments, the only thing to be done by
participants is to write the candidate algorithms in MATLAB and embed them into PlatEMO.
The detailed introduction to PlatEMO regarding how to embed new algorithms can be referred
to the users manual attached in the source code of PlatEMO [24]. Once a new algorithm is
embedded in PlatEMO, the user will be able to select the new algorithm and execute it on the
GUI shown in Fig. 16. Then the statistical results will be displayed in the figures and tables on
the GUI, and the corresponding experimental result (i.e. final population and its performance
indicator values) of each run will be saved to a .mat file.

3.4 Java Software Platform

The benchmark functions implemented in Java code have been embedded in an object-oriented
framework – jMetal6. jMetal, which stands for Metaheuristic Algorithms in Java, is a Java-

4The nadir points can be automatically generated using the software platform introduced in Section 3.3.
5PlatEMO can be downloaded at http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html
6jMetal can be downloaded at http://jmetal.sourceforge.net/index.html
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based framework for multi-objective optimization with metaheuristics developed in recent years
by J.J. Durillo [25]. The framework provides more than 30 classic and state-of-the-art algorithm-
s, including single or multi-objective evolutionary algorithms as well as other metaheuristics.
Nearly 70 benchmark problems and a set of well-known quality indicators are included to assess
the performance of these algorithms. Furthermore, full experimental studies can be configured
and executed with a graphical interface supported.

With the experimental support GUI, users can select algorithms, problems and indicators
and configure the experiment properly. The final results can be stored and generated as Latex
tables, Wilcoxon tests or boxplots. For carrying out newly developed algorithms or other
settings, the modification of code based on jMetal must be made from the user’s point of view.
By embedding these algorithms into jMetal, the user can execute them with code or GUI in a
similar way to other existing algorithms.
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