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Abstract

The receiver operating characteristic (ROC) and detection error tradeoff (DET) curves are fre-

quently used in the machine learning community to analyze the performance of binary classifiers.

Recently, the convex-hull-based multiobjective genetic programming algorithm was proposed and

successfully applied to maximize the convex hull area for binary classification problems by mini-

mizing false positive rate and maximizing true positive rate at the same time using indicator-based

evolutionary algorithms. The area under the ROC curve was used for the performance assess-

ment and to guide the search. Here we extend this research and propose two major advancements:

Firstly we formulate the algorithm in detection error tradeoff space, minimizing false positives

and false negatives, with the advantage that misclassification cost tradeoff can be assessed di-

rectly. Secondly, we add complexity as an objective function, which gives rise to a 3D objective

space (as opposed to a 2D previous ROC space). A domain specific performance indicator for 3D

Pareto front approximations, the volume above DET surface, is introduced, and used to guide the

indicator-based evolutionary algorithm to find optimal approximation sets. We assess the perfor-

mance of the new algorithm on designed theoretical problems with different geometries of Pareto
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fronts and DET surfaces, and two application-oriented benchmarks: (1) Designing spam filters

with low numbers of false rejects, false accepts, and low computational cost using rule ensembles,

and (2) finding sparse neural networks for binary classification of test data from the UCI machine

learning benchmark. The results show a high performance of the new algorithm as compared to

conventional methods for multicriteria optimization.

Keywords: Convex hull, classification, evolutionary multiobjective optimization, parsimony,

ROC analysis, anti-spam filters.

1. Introduction

Classification is one of the most common problems in machine learning. The task of classi-

fication is to assign instances in a dataset to target classes based on previously trained classifiers.

The ROC (Receiver Operating Characteristic) curve is a technique for visualizing, organizing and

selecting binary classifiers based on their performance [24]. ROC curves are typically used to

evaluate and compare the performance of classifiers and they also have properties that make them

especially useful for domains with skewed class distributions and different classes of problems

that assign costs to misclassification. Originating from the field of object classification in radar

images, ROC analysis has become increasingly important in many other areas with cost sensitive

classification [15] and/or unbalanced data distribution [49], such as medical decision making [50],

signal detection [20] and diagnostic systems [52]. As opposed to ROC curves, which show the

tradeoff between true positive rate and false positive rate, DET (Detection Error Tradeoff) curves

[41] show tradeoffs between false positive and false negative error rates. With DET it is easier to

visualize the tradeoff between misclassification cost for binary classifiers than with ROC curves.

More recently, research has drawn attention to ROC convex hull (ROCCH) analysis that covers

potentially optimal points for a given set of classifiers [24]. ROCCH makes use of the finding

that two hard classifiers can be combined into a classifier that has characteristics in ROC space

that correspond to linear combinations of the characteristics of single classifiers and thus, when
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searching for an approximation to the Pareto front, these linear combinations do not have to be

explicitly represented in ROC space. A performance indicator for sets of hard binary classifiers

that is compliant with the improvement of ROCCH is the area under the convex hull (AUC). And

likewise the area above the DET convex hull can serve as an indicator of how well a Pareto front

has been approximated. It measures the area attained by the current Pareto front approximation in

DET space.

Some evolutionary multiobjective optimization algorithms (EMOAs) [31, 57, 32, 54, 58] have

been applied to machine learning [33, 2] and image processing areas [36, 39]. One of the first

algorithms where EMOAs were used for ROC optimization was proposed in [35]. Here a niched

Pareto multiobjective genetic algorithm was used for classifier optimization by optimizing biob-

jective ROC curve. The generalization improvement in multiobjective learning was discussed in

[27], where the generation of binary neural network classifiers based on the ROC analysis using

an evolutionary multiobjective optimization algorithm was presented. It showed that the gener-

alization ability can be more efficiently improved with a multiobjective framework than within a

single objective one. ROC for multiclass classification was analyzed in [22], where a multiob-

jective optimization algorithm was used for classifiers training based on multiclass ROC analysis.

The ROC front concept was introduced as an alternative to the ROC curve representation in [13],

and the strategy was applied to the selection of classifiers in a pool using a multiobjective opti-

mization algorithm. Moreover, the maximization of the performance of ROC representations with

respect to this indicator has been subject to a recent study by Wang et al. [55], who showed that

the proposed algorithm, convex-hull-based multiobjective genetic programming algorithm (CH-

MOGP), is capable of showing a strong performance for improving ROCCH with respect to AUC

as compared to using state-of-the-art EMOAs for the same task, such as NSGA-II (Nondominated

Sorting Genetic Algorithm II) [16], GDE3 (the third evolution step of Generalized Differential

Evolution) [34], SPEA2 (Strength Pareto Evolutionary Algorithm 2) [63], MOEA/D (Multiob-

jective Evolutionary Algorithm based on Decomposition) [61], and SMS-EMOA (multiobjective

selection based on dominated hypervolume) [7].

So far algorithms that seek to maximize ROCCH performance have only focused on the prob-

lem of optimizing binary classifiers with respect to two criteria, i.e., minimization of false positive
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rate (fpr) and maximization of true positive rate (tpr). There is however an increasing interest in

extending ROCCH performance analysis to more than two criteria. In this research we consider

the complexity as an additional objective. The objective here is to find models with maximum sim-

plicity (parsimony) or minimum computational costs. For rule-based systems, it can be described

as the number of rules defining a classifier in proportion to the number of all possible rules. As it is

easier to see the tradeoff between misclassification costs (i.e., fpr and fnr) when using DET space

than when using ROC space, we use DET curve to describe the performance of binary classifiers.

In the past, convex-hull-based selection operators were employed in EMOA to maintain a

well-distributed set or make the non-dominated sorting more effective (cf. [30, 43]). In [14] a

multiobjective evolutionary algorithm based on the properties of the convex hulls defined in the

ROC space was proposed. It was applied to determine a set of fuzzy rule-based binary classifiers

with different tradeoffs between false positive rate ( f pr) and true positive rate (tpr). NSGA-II

was used to generate an approximation of a Pareto front composed of genetic fuzzy classifiers

with different tradeoffs among sensitivity, specificity, and interpretability in [17]. After projecting

the overall Pareto front onto the ROC space, ROC convex hull method was used to determine the

potentially optimal classifiers on the ROC plane.

In this paper, we add the complexity minimization for parsimony maximization as a third ob-

jective function and formulate the problem from the misclassification error optimization point of

view by minimizing false positive and false negative error rates objectives. For this we model the

problem as a triobjective optimization in augmented DET space, and we propose a 3D convex-

hull-based evolutionary multiobjective algorithm (3DCH-EMOA) that takes into account domain

specific properties of the 3D augmented DET space. Moreover, we analyze and assess the per-

formance of the algorithm in different studies on, partly new, academic problems and practical

applications. To analyze the capability of different algorithms to maximize convex hull volume,

in a more fundamental study, a set of test problems named ZEJD (Zhao, Emmerich, Jiao, Deutz)

[21] are designed and the capability of 3DCH-EMOA to capture only the convex part of a Pareto

front is assessed. Besides, we include a study on spam filter design, in which the number of rules

determines the complexity objective in terms of number of used rules. We also apply the proposed

algorithm to deal with sparse neural networks, in which not only the classification performance

4



but also the structure of the network optimized.

This paper is organized as follows: the related work is outlined in Section 2, and the back-

ground of augmented DET surfaces and the theory of multiobjective optimization are introduced

in Section 3. We describe the framework of the 3DCH-EMOA algorithm in Section 4, and exper-

imental results on ZEJD benchmarks test problems are described and discussed in Section 5. The

description of the spam filter application and experimental results are shown in Section 6. The

experimental results about multiobjective optimization of sparse neural networks are discussed in

Section 7. Section 8 provides the conclusion and a discussion on the important aspects and future

perspectives of this work. In addition, details of ZEJD test functions are described in Appendix A.

2. Related work

2.1. ROC and DET in classification

Both ROC and DET curves are defined by a two-by-two confusion matrix which describes

the relationship between the true labels and predicted labels from a classifier. An example of a

confusion matrix is shown in Table 1. There are four possible outcomes with binary classifiers

in a confusion matrix. It is a true positive (TP), if a positive instance is classified as positive.

We call it false negative (FN or type II error), if a positive instance is classified as negative. If

a negative instance is correctly classified we call it a true negative (TN), else we call it a false

positive (FP or type I error).

Table 1: A confusion matrix of binary classifiers.

True Positives False Positives

False Negatives True Negatives

P N

P

N

True class

Predicted 
class

Let fpr= FP/(TN+FP) be the false positive rate, fnr = FN/(TP+FN) be the false negative rate

and tpr = TP/(TP+FN) denote the true positive rate. Since no perfect classifier exists for most

real-world classification problems, and fpr and fnr are conflicting with each other, DET curve is
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used to depict the tradeoff between them. DET graphs are two-dimensional graphs in which the

fpr is plotted on the X-axis and fnr is plotted on the Y-axis. Similar to DET graphs, in ROC graphs

the tpr is plotted on the Y-axis and fpr is plotted on X-axis. The DET curve can be determined

from the ROC curve, as fnr+tpr=1.

The ROC convex hull (ROCCH) covers all the potential optimal classifiers in a given set of

classifiers. The potential optimal classifiers also lie on the DET curve, the area under the curve is

called DET convex hull (DCH) in this paper. The aim of ROCCH/DCH maximization is to find a

group of classifiers that perform well as a set. Despite the fact that ROCCH is an important topic

in classification, there is not much work focusing on how to maximize the ROCCH. A reason for

this could be that this is a relatively complex task compared to approaches that assess performance

of a classifier by means of a single metric. However, the additional gain in information about

the tradeoff between different objectives (and the possibilities it offers for online adjustments of

classifiers) should justify the development of more mature methods for ROCCH maximization

and the closely related DCH maximization. The set of existing methods could be partitioned

into two categories: one is ROC geometry-based machine learning methods and the other one is

evolutionary multiobjective optimization methods.

ROCCH maximization problems were first described in [48]. One approach to identify portions

of the ROCCH is to use iso-performance lines [24] that are translated from operating conditions

of classifiers. Suitable classifiers for datasets with different skewed class distribution or misclas-

sification costs can be chosen based on these iso-performance lines. In addition, a rule learning

mechanism is described in [23] and in [25]. It combines rule sets to produce instance scores in-

dicating the likelihood that an instance belongs to a given class, which induces decision rules in

ROC space. In the above methods a straightforward way was used to analyze the geometrical

properties of ROC curves to generate decision rules. However, the procedure is not effective and

easily gets trapped in local optima.

In [26], a method for detecting and repairing concavities in ROC curves is studied. In that

work, a point in the concavity is mirrored to a better point. In this way the original ROC curve can

be transformed into a ROC curve that performs better. The Neyman-Pearson lemma is introduced

in the context of ROCCH in [5], which is the theoretical basis for finding the optimal combination
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of classifiers to maximize the ROCCH. This method not only focuses on repairing the concavity

but it also improves the ROC curve, which is different from [26]. For a given set of rules, the

method can combine the rules using and and or to get the optimum rule subset efficiently. But it

can not generate new rules in the global rule set. ROCCER (a rule selection algorithm based on

ROC analysis) was proposed in [47]. It is reported to be less dependent on the previously induced

rules.

Recently, also multiobjective optimization techniques to maximize ROCCH received attention.

The ROCCH maximization problem is a special case of a multiobjective optimization problem, be-

cause the minimization of false positive rates and maximization of true positive rates can be viewed

as conflicting objectives, and the parameters of a classifier can be viewed as decision variables.

In [62], non-dominated decision trees were developed, which are used to support the decision

on which classifier to choose. A multiobjective genetic programming approach was proposed to

envelop the alternative Pareto optimal decision trees. However, it is not a general method for

ROCCH maximization because it only pays attention to cost sensitive classification problems.

The Pareto front of multiobjective genetic programming is used to maximize the accuracy of

each minority class with unbalanced dataset in [9]. Moreover, in [8], the technique of multiobjec-

tive optimization genetic programming is employed to evolve diverse ensembles to maximize the

classification performance for unbalanced data.

Other evolutionary multiobjective optimization algorithms (EMOAs) have been combined with

genetic programming to maximize ROC performance in [56]. Although they have been used in

ROCCH maximization, these techniques do not consider special characteristics of ROCCH. This is

done in convex hull multiobjective genetic programming (CH-MOGP), which has been proposed

recently in [55]. CH-MOGP is a multiobjective indicator-based genetic programming using the

area under the convex hull curve (AUC) as a performance indicator for guiding the search. It

has been compared to other state-of-the-art methods and showed the best performance for binary

classifiers on the UCI benchmark [37]. However, it is so far limited to biobjective optimization of

error rates of binary genetic programming classifiers and it would be desirable to include additional

objective functions in the analysis.

The main contributions of this paper are listed in the following. Firstly, the idea of AUC indica-
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tor is generalized to evolutionary multiobjective algorithms for classifier optimization. Secondly,

we consider one more objective (classifier complexity rate) in augmented DET space for binary

classifier optimization with parsimony as a third objective. Thirdly, 3DCH-EMOA is proposed for

multiobjective classifier optimization.

3. Augmented DET and Multiobjective Formulation

Finding a set of optimal binary classifiers can be viewed as a biobjective problem, i.e., mini-

mizing fpr and fnr simultaneously in DET space. Our study aims at looking at optimizing three

objectives for parsimony binary classification problem. We define parsimony (to be maximized)

or complexity (to be minimized) as a third objective, in addition to fpr and fnr.

3.1. Augmented DET graphs and multiobjective classifiers

In order to extend the approach to the triobjective case, recent extensions of ROC analysis to

deal with multiclass problems will be discussed first. ROC curve is extended to ROC hypersurface

for multiclass problem and ROC hypersurface inherits all the desirable properties of ROC curve

[51]. It has been shown that a multiclass classifier with good ROC hypersurface can lead to

classifiers suitable for various class distributions and misclassification costs [11]. However, due

to the increase of the dimensionality of the ROC space, achieving the optimal ROC hypersurface

is even more difficult than achieving the optimal ROC curve. A simpler generalization of AUC

for multiclass problems, namely multiclass AUC (MAUC) was proposed in [28], and it has been

widely used in recent works [38, 53]. As DET space is similar to ROC space, in this paper, we

consider a quite different extension of DET curve to a higher dimensional, which is used to deal

with parsimony in binary classification problems.

In our study we consider a set of training samples S tr = {(si, yi)|si ∈ Rd, yi ∈ {−1,+1}, i =

1, 2, . . . , |S tr|}, where yi is the class label corresponding to a given input si, d is the dimensionality

of sample features, and |S tr| is the number of instances. Note that in this work we only consider

binary classification problems and we set the labels as {1,−1}, in which 1 represents the positive

category and −1 represents the negative category. A classifier C can be trained with samples in

S tr. It can be described as an estimate of the unknown function y = f (x), which is denoted by Eq.
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1.

C : y = f
(
s; θ

)
,

(
si, yi

) ∈ S tr, (1)

where θ is a parameter set of the classifier C which is determined by training. After training, the

classifier C should be able to predict the class label yp for a new input sample s, or a set of class

labels for a testing dataset S ts, as described in Eq. 2.

yp
j = f

(
s j; θ

)
, s j ∈ S ts, j = 1, 2, . . . , |S ts|, (2)

where |S ts| is the number of test samples in S ts. In biobjective optimization model, the set of

parameters can be obtained by minimizing f pr and f nr in DET space, as it is described in Eq. 3.

min
θ∈Ω

F(θ) = min
θ∈Ω

F
(

f pr(θ), f nr(θ)
)
, (3)

where Ω is the solution space that includes all possible configurations of classifiers.

Besides fpr and fnr, we define the third objective as complexity of the classifier. In the general

case we will use the term classifier complexity ratio (ccr) to describe it. We denoted it as Eq. 4,

where O represents the complexity of classifiers. The ccr can be used to describe the structure of

sparse neural networks classifiers [33, 38]. In the case of rule-based classifiers the number of rules

from a rule base or used rules rate can be used as a measure of complexity. Usually, overfitting is

avoided if the complexity is small. Details of these two cases will be discussed in Section 6 and

Section 7.

ccr(θ) , O. (4)

The ccr is a normalized complexity, which divides the number of components (rules, neurons)

used by the classifier by the maximal possible number of components (size of rule base, maximal

number of neurons). We will denote it with ccr and it obtains a value between 0 (no rules are
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used) and 1 (all rules are used). The parsimony (or sparseness) of the model can then be defined as

1−ccr. The computational cost of a classifier with high ccr is considered to be higher than that of a

classifier with lower ccr. This is why a classifier with lower ccr should be preferred, given its other

performance criteria ( f pr, f nr) are equally good. Besides, classifiers with a lower ccr will have

a lower tendency of overfitting. It is always possible to construct a classifier whose characteristic

is a convex combination of the original classifier by means of randomization. Although it does

not make much sense in practice, it is important for theoretical considerations that we can always

construct a more complex classifier with the same performance in terms of fpr and fnr, by simply

adding components but not using them. Such solutions will be Pareto dominated, but should be

included to measure the volume of the convex hull. We name the DET space with complexity of

binary classifiers in the third axis as the augmented DET space.

(0,0,1)

(0,0,0)

(1,0,0)

(0,1,0)

Figure 1: An example of an augmented DET graph with complexity of binary classifiers as a third axis.

In augmented DET space, f pr is plotted on X-axis, f nr is plotted on Y-axis, and ccr is plotted

on the Z-axis, which is depicted in Fig. 1. Normally, ccr, f pr and f nr are conflicting with each

other. The newly proposed algorithm aims at finding optimal tradeoffs among the three objectives,

as it is denoted in Eq. 5.

min
θ∈Ω

F(θ) = min
θ∈Ω

F
(

f pr(θ), f nr(θ), ccr(θ)
)
, (5)
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where θ represents the parameter of classifiers, such as neural networks [29], support vector ma-

chine (SVM) [12], and so on. Ω is the solution space, it includes all possible configurations of

classifiers. The performance of a certain classifier can be determined by the parameter θ. We try

to find a set of θ that has good performance based on the property of augmented DET convex hull

(ADCH).

3.2. ADCH maximization and multiobjective optimization

The convex hull of a set of points is the smallest convex set that contains all those points [46].

The 3D convex hull (CH) of a finite set A ⊆ R3 is given by Eq. 6.

CH(A) ,
{

x : x =

|A|∑
i=1

λiai,
∑

λi = 1, 0 ≤ λi ≤ 1, x ∈ R3
}
, (6)

where ai ∈ A is a set of initial points. The boundary of the convex hull can be represented with a

set of facets, a set of adjacency edges and vertices (V) for each facet [4]. The volume of convex

hull (VCH) which is constructed with some points in set A is denoted by Eq. 7.

VCH(A) , Volume
(
CH(A)

)
. (7)

With a set of classifiers, the augmented DET convex hull (ADCH) covers all the potential optimal

classifiers. The proposed 3DCH-EMOA aims at maximizing the volume of ADCH with three

objectives. We denoted multiobjective optimization of parsimony binary classifiers as ADCH

maximization problem.

Several points in augmented DET space are important to note. The point (0, 0, 0) represents

the strategy of never issuing a wrong classification and a classifier with a cost of zero. This

point represents a perfect classifier and a classifier corresponding to such a point typically does

not exist for a non-trivial problem but can be approximated as closely as possible. The points

in set {(0, 0, ccr)| 0 ≤ ccr ≤ 1} also represent classifiers having perfect performance with respect

to the complexity of ccr. The point (1, 0, 0) represents the strategy of issuing all the instances

as negative by a classifier whose complexity is zero. The point (0, 1, 0) represents a classifier

that predicts all instances as positive without using any rules. In a similar way, predicting all
11



of the instances as negative with all the rules results in the point (1, 0, 1). The point (0, 1, 1)

can be obtained by predicting all of the instances as positive with all the rules. For all points in{
(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)

}
a classifier can be constructed, e.g., by randomization. The

surface of f pr+ f nr = 1 represents randomly guessing classifiers, as is shown in Fig. 2. The classi-

fiers which we search for should be in the space of f pr + f nr <1, which have better performance

than classifiers obtained by random guessing. In this paper, we treat the points (1,0,0), (0,1,0),

(1,0,1) and (0,1,1) as reference points to build convex hull and to calculate the volume above DET

surface (VAS ) in augmented DET space. For a set of randomly guessing classifiers the VAS will

be 0, as all points are in the same surface of f pr + f nr =1. And for a set of perfect classifiers

the VAS will be 0.5 (which is the maximum attainable volume), as in augmented DET space the

convex hull is constructed with a point set
{
(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0), (0, 0, 1)

}
.

can be obtained by predicting all of the instances as positive with all the rules. For all points

in {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1) } a classifier can be constructed, e.g. by randomization.

The surface of f pr + f nr = 1 represents randomly guessing classifiers, as is shown in Fig. 2.

The classifiers which we search for should be in the space of f pr + f nr <1, which have better

performance than classifiers obtained by random guessing. In this paper, we treat the points (1,0,0),

(0,1,0), (1,0,1) and (0,1,1) as reference points to build convex hull and to calculate the volume

above DET surface (VAS) in augmented DET space. For a set of randomly guessing classifiers

the VAS will be 0, as all points are in the same surface of f pr + f nr =1. And for a set of perfect

classifiers the VAS will be 0.5 (which is maximum volume), as in augmented DET space the

convex hull is constructed with a point set {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0), (0, 0, 1)}.

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0

0.5

1

(0 1 0)

(0 1 1)
(1 0 1)

(1 0 0)

Augmented
DET Space

f pr
f nr

cc
r

Figure 2: An example of an augmented DET surface for random binary classifiers.

Every binary classifier can be mapped to the augmented DET space. The ADCH is the collec-

tion of all attainable classifiers in a given set of classifiers. Furthermore, a classifier is potentially

optimal if and only if it lies on the lower boundary of the ADCH. In Fig. 3 the points a, b, e are

on the augmented DET surface and the point c, d are above it. a, b, e represent potentially optimal

classifiers and c, d represent non-optimal ones.

Imprecise distribution information of data defines a range of parameters for iso-performance

lines (surfaces) and the range of lines (surfaces) will intersect a segment of ADCH. If the segment

defined by a range of lines corresponds to a single point in augmented DET space, then there is
12
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classifiers and c, d represent non-optimal ones.

Imprecise distribution information of data defines a range of parameters for iso-performance
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lines (surfaces) and the range of lines (surfaces) will intersect a segment of ADCH. If the segment

defined by a range of lines corresponds to a single point in augmented DET space, then there is

no sensitivity to the distribution assumptions, otherwise the ADCH is sensitive to the distribution

assumptions. In order to improve the robustness of ADCH not only the VAS should be maximized

but also its distribution of points on the convex hull surface should be optimized. Usually, the more

uniform the distribution of points in the augmented DET space, the more robust and representative

the ADCH is. The Gini coefficient [60] is used to evaluate the uniformity of the distances between

solutions of the test functions in this paper, and the nearest neighbor distance of each individual is

used to calculate the value of Gini coefficient. Details of Gini coefficient evaluation are discussed

later in the paper.

The goal of ADCH maximization is to find a group of classifiers that approximate the perfect

point (0,0,0) for binary classifiers. The ADCH maximization problems turn out to be multiobjec-

tive optimization problem as it is described in Eq. 8.

min
x∈Ω

F(x) = min
x∈Ω

F
(

f1(x), f2(x), f3(x)
)
, (8)

where f pr, f nr and ccr are represented as f1, f2 and f3, respectively, and θ is represented by x. In

Eq. 8, x is the classifiers parameters set, Ω is the solution space, i.e., the set of all possible classifier

sets, and F(x) is a vector function to describe the performance of classifiers in augmented DET

space. In the problem of multiobjective optimization, Pareto dominance is an important concept

which is defined as: Let ω = (ω1, ω2, ω3), ν= (ν1, ν2, ν3) be two vectors, ν is said to dominate ω

if and only if νi ≤ ωi for all i = 1, 2, 3, and ν,ω, this is denoted as ν ≺ ω. Two distinct points ν

and ω are incomparable if and only if ν and ω do not dominate each other. The Pareto set (PS ) is

the collection of all the Pareto optimal points in decision space, i.e., of all points x ∈ Ω with no

x′ ∈ Ω such that F(x) ≺ F(x′). The Pareto front (PF) is the set of all PS points in objective space

PF = {F(x) | x ∈ PS }, (see, e.g., [56]).

A special approach based on ROCCH is proposed in [55] to solve the ROC maximization

problem for binary classification. Even though the concepts of ROC convex hull and the Pareto
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a
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c
d

s1

e

s2

Figure 3: Convex hull and Pareto front in an augmented DET space.

front were reported to be similar, specific and important differences exist. In the example of

Fig. 3 points a, b, c, d, e are non-dominated points in non-dominated multiobjective optimization

algorithms. However, only points a, b and e are on the convex hull surface. Usually, the points on

the higher part of the convex hull surface are non-dominated to each other, but there can be non-

dominated points in the Pareto front approximation that are not part of the augmented DET convex

hull surface approximation. Such points occur in concave parts of the Pareto front approximation

and they are not relevant in the context of augmented DET convex hull optimization. These points

are dominated by points that can be obtained by linear, convex combination of classifiers in the

approximation set that are not explicitly represented. This is a special characteristic of the ROCCH

and ADCH maximization problem and new strategies need to be researched to deal with it.

4. 3D Convex-Hull-based Evolutionary Multiobjective Optimization

In this section, we propose 3D convex-hull-based evolutionary multiobjective algorithm (3DCH-

EMOA) for ADCH maximization with three objectives. In this paper, we only consider 3D con-

vex hull, and the solutions of 3DCH-EMOA act as vertices on the convex hull in augmented DET

space. The aim of 3DCH-EMOA is to find a set of non-dominated solutions that covers part of

the surface of the 3D convex hull, which is constructed with population Q ⊂ R3 (the population

is described in objective space) and reference points R ⊂ R3. The set of frontal solutions (FS ),

which includes solutions that are located on the surface of the 3D convex hull, of 3DCH-EMOA,
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can be denoted by Eq. 9.

FS (Q) ,
{
p : p ∈ CH(Q ∪ R), p ∈ Q, p ∈ V

}
, (9)

where V is the set of vertices of the 3D convex hull as it is described after Eq. 6. The proposed

algorithm consists of two key modules, i.e., 3D convex-hull-based sorting and VAS contribution.

Details on the proposed algorithm are presented next.

4.1. 3DCH-based sorting without redundancy

Convex-hull-based sorting without redundancy strategy was first proposed in [55]. It has a

good performance to deal with binary classification problems. In this paper, we define redun-

dant solutions that have the same performance in objective space. The convex-hull-based sorting

approach is extended to three dimensions in this paper. The strategy works effectively, not only

because it can maintain the diversity of the population, but also because it takes into consideration

the properties of ADCH. With this strategy, if there are not enough non-redundant solutions to

fill the whole population, the redundant solutions which are preserved in the archive should be

randomly selected and added to the population. It will be shown in Section 5 that this strategy

can preserve the diversity of the population by keeping non-redundant solutions with bad per-

formance and discarding the redundant solutions even with good performance. In addition, the

non-redundancy strategy can avoid the solutions at the convex hull being copied many times at the

selection step of the algorithm.

The framework of 3DCH-based sorting without redundancy is described in Algorithm 1. At

first the solution set Q is divided into two parts, one is the redundant solution set Qr, the other is

the non-redundant solution set Qnr. The redundant solution set Qr will be assigned to the last level

of priority of the solution set and the non-redundant solution set Qnr will be assigned into different

priority levels by 3DCH-based ranking method. Before ranking the non-redundant solution set

Qnr, a reference point set R should be merged with it and a set of candidate points of convex hull

CH is constructed. Four points, i.e., (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1), are included in reference

point set R (see also Fig. 2). The 3D quickhull algorithm [4] is adopted to build the convex hull
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Algorithm 1 3DCH-based sorting without redundancy (Q,R)
Require: Q , ∅,R , ∅

Q is a solution set.
R is the set of reference points.

Ensure: ranked solution set F
1: Split Q into two subset Qr and Qnr, where Qr is the redundant solution set, and Qnr is the

non-redundant solution set.
2: i← 0
3: while Qnr , ∅ do
4: T ← Qnr ∪ R
5: Fi ← FS (T )
6: Qnr ← Qnr \ Fi

7: i← i + 1
8: end while
9: Fi ← Qr //F is the ranked solution set in different levels.

10: return the ranked solution set F = {F0, F1, . . . }

with the candidate points set, which is widely used in 3D convex hull related applications. The

points (solutions) on the convex hull surface are considered as the current Pareto set. The first

layer consists of the points on the surface of the convex hull. And the remaining points will be

used to build the new convex hull for the next layer of Pareto front. Note that all points can be

constructed by means of a convex combination of classifiers in the set. Usually, there are several

layers of solutions in the beginning of the algorithm and the number of layers will converge to

one in the evolution of the population. The computational complexity of the quickhull algorithm

to build a 3D convex hull is O(n log n) [4] with set of candidate points of size n. In the worst

case, there is only one point in each convex hull layer, then the complexity of 3DCH-based sorting

without redundancy would be O
(∑N+4

i=5 i log i
)
, which tends to O

(
N2 log N

)
.

An example of the result of 3DCH-based sorting without redundancy is given in Fig. 3. The

surfaces s1 and s2 represent two layers of solutions of different priority, the solutions on surface

s1 are better than those on surface s2 and the solutions on surface s1 have much more opportunity

to survive to the next generation than those on s2.

After ranking the individuals into different priority levels other questions arise such as how to

analyze the importance of individuals in the same priority layer. As the redundant solutions have

no additional information about the population, the algorithm selects some of them to survive
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to the next generation randomly. If there are too many non-redundant solutions to fill the new

population, the contribution to the VAS will be used as metric measure to rank the individuals in

the same layer, and only the individuals with high VAS contribution will survive. Details of the

contribution of VAS are described in the next part.

4.2. VAS contribution selection scheme

In this section, we describe the VAS contribution indicator to evaluate the importance of in-

dividuals within the same priority layer. We hypothesize that the new VAS contribution indicator

is a more efficient strategy to maximize the volume under the 3D convex hull when compared to

the hypervolume based contribution [7] or crowding distance indicator [16]. In the case of 3DCH-

EMOA, VAS is defined as the volume above DET convex hull surface, the VAS of population Q

is denoted by Eq. 10:

VAS (Q) = VCH
(
Q ∪ R

)
, (10)

where R is a set of reference points. To calculate the contribution of an individual, a new convex

hull should be built by subtracting from the total population volume the volume of the population

without the individual, as shown in Eq. 11:

∆VAS i = VAS
(
Q
)
− VAS

(
Q \ {qi}

)
, i = 1, 2, ...,m, (11)

where m is the number of solutions in Q on the 3D convex hull. The procedure of calculating the

VAS contribution for the non-redundant solution set Qnr is given in Algorithm 2. After calculating

the contribution to the VAS of each individual in Qnr, the individuals in the same priority layer can

be ranked by the volume of ∆VAS . The larger the volume of the contribution to VAS the more

important the individual will be.

To analyze the computational complexity of VAS contribution selection stage, we only con-

sider the worst case scenario. In the worst case, there is only one point beyond the set of refer-

ence points to rank population for each layer Fi, then the complexity of Algorithm 2 would be

O
(∑N+4

i=5 i log i
)
, which tends to O

(
N2 log N

)
.
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Algorithm 2 ∆VAS (Qnr,R)
Require: Qnr , ∅

Qnr is the non-redundant solution set
R is a set of reference points

Ensure: VAS contribution of each population
1: m← sizeof(Qnr)
2: P← Qnr ∪ R
3: Volumeall ← VAS (P) // using algorithm described in [4]
4: for all i← 1 to m do
5: qi ← Qnr(i)
6: ∆VAS i ← Volumeall − VAS (P \ {qi})
7: end for
8: return set of ∆VAS

4.3. 3DCH-EMOA

The framework of 3DCH-EMOA is described in Algorithm 3, which is inspired by indicator-

based evolutionary algorithms. To optimize the multiple objectives on the convex hull space the

initial population Q0 should be built randomly with a uniform distribution. Due to the high compu-

tational complexity of 3D convex hull construction, a steady-state selection scheme is used, which

has been successfully used in many EMOAs [7, 45]. The steady-state selection is also denoted

as (N + 1), where N represents the population size of EMOA, (N + 1) means that only a new

solution is produced in each generation. The advantage of using a steady-state scheme was ana-

lyzed theoretically in [7]. Most importantly it will lead to a series of population with increasing

size of the convex hull, and, when compared to other subset selection strategies with this property,

has a small computational effort. For each iteration there is only one offspring produced by the

evolutionary operators and, in order to keep the size of population constant, the least perform-

ing individual should be deleted, or in other words, the best performing subset of size N should

be kept. The non-descending reduce strategy given in Algorithm 4 is adopted in this method to

remove an individual from the population.

In Algorithm 4, the population is firstly divided into non-redundant part Qnr and redundant

part Qr. If the redundant set Qr is not empty, an individual can be selected randomly to be deleted

from the population. If there is no individual in Qr, all of the solutions are of non-redundant type,

then 3DCH-based sorting without redundancy can be used to rank the population into several
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Algorithm 3 3DCH-based EMOA (Max,N)
Require: Max > 0,N > 0

Max is the maximum number of evaluations
N is the population size

Ensure: a set of FS
1: Q0 randomly generated with a uniform distribution
2: t0 ← 0
3: m← 0
4: while m < Max do
5: qi ← Generate New Offspring (Qt)
6: Qt+1 ← Non-Descending Reduce(Qt, qi)
7: t ← t + 1
8: m← m + 1
9: end while

10: return FS (Qt)

priority layers. If there is only one layer of solutions, it means that all solutions in the population

are non-dominated, then the contribution of each solution to VAS should be calculated and the

individual with the least contribution will be deleted from the population. If there are several layers

of the population, only the contribution to VAS of individuals on the last priority layer should

be calculated and the individual with least contribution should be removed from the population.

In Algorithm 4, the comparison in the 9th line is added to save time in cases when there is no

improvement after adding the new point.

4.4. Computational complexity of 3DCH-EMOA

As described above, 3DCH-EMOA is a general evolutionary algorithm. Its computational

complexity can be described by considering one iteration of the entire algorithm. The com-

plexity of variation operation on generating new offspring is O
(
N
)
. 3DCH-based sorting with-

out redundancy has complexity of O
(
N2 log N

)
and VAS contribution selection has complexity

of O
(
N2 log N

)
. Here, N is the size of population. The overall complexity of the algorithm is

O
(
N2 log N

)
. As we only consider triobjective optimization, the number of objectives is not in-

volved in the asymptotical analysis.
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Algorithm 4 Non-Descending Reduce (Q, q)
Require: Q , ∅

Q is a set of solutions
q is a solution

Ensure: a new solution set Q′

1: Split Q∪{q} into two sub-population Qr and Qnr (Qr is the collection of redundant individuals
and Qnr is the collection of non-redundant individuals)

2: if sizeof(Qr) >= 1 then
3: p←Randomly selected individual from Qr

4: Q′ ← Qnr ∪ Qr \ {p}
5: else
6: F1, ..., Fl ← 3DCH-based sorting without redundancy(Qnr)
7: Volori ← VAS (Q)
8: Volq ← VAS (Q ∪ {q})
9: if Volori < Volq then

10: /*the index of the minimum value in ∆VAS (Fl)*/

k ← argmin
i

∆VAS (Fl)

11: d ← Fl(k) /*the kth solution in Fl*/

12: Q′ ← Qnr \ {d}
13: else
14: Q′ ← Qnr \ {q}
15: end if
16: end if
17: return Q′

5. Experimental Studies on Artificial Test Problems

In this section, ZEJD test functions are adopted to test the performance of 3DCH-EMOA

and several other EMOAs, including NSGA-II, GDE3, SMS-EMOA, SPEA2, MOEA/D. In this

first benchmark we are interested in the capability of 3DCH-EMOA to cover the relevant part

of the convex hull surface with points. To evaluate the performance of these algorithms VAS ,

Gini coefficient, computational time and Mann-Whitney test [40] are adopted in this section. By

comparing the results of all algorithms we can make a conclusion that the new proposed algorithm

has a good performance to deal with augmented ADCH maximization problem. Details of the

experiments are described next.
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5.1. Metrics

Four metrics are chosen to evaluate the performance of the different algorithms in the com-

parative experiment on the ZEJD problems. VAS metric can evaluate the solution set directly, the

better the solution set the larger the value of VAS will be. For ZEJD problems the smallest value

of VAS is 0 with random guessing classifiers and the largest value of VAS is 0.5.

The Gini coefficient is commonly used as a measure of statistical dispersion intended to repre-

sent the income distribution of a nation’s residents [60]. In this work, the Gini coefficient is used to

evaluate the uniformity of the solution set by calculating the statistical distribution of the nearest

neighbor distance of each solution. The Gini coefficient can describe the spread of neighboring

individuals on the achieved Pareto front. The value of Gini coefficient will be zero if distances in

the set are distributed uniformly. The definition of Gini coefficient g(Q) is described in Eq. 12.

g(Q) =
1
|Q|

|Q| + 1 − 2
(∑|Q|

i=1(|Q| + 1 − i)di∑|Q|
i=1 di

) , (12)

where g represents the value of Gini coefficient, |Q| is the number of solutions in the solution set

Q, di is the nearest neighbor distance for each solution in the objective space.

In addition the computational effort is measured for each algorithm. As the evaluation of the

test problems is fast, this measure indicates how much time is needed to perform the steps of the

algorithm. Time cost is used to measure the complexity of each algorithm in this section.

Furthermore, the Mann-Whitney test, which is a statistical test, is selected to evaluate whether

the differences between 3DCH-EMOA and other methods are significant or not. We denote it as

”N” if 3DCH-EMOA outperforms other method significantly, if 3DCH-EMOA performs as well

as other method in statistical testes denote it as ”–”, and we denote it as ”O” if 3DCH-EMOA

performs not as well as other method.

5.2. Parameter setting

All algorithms are run for 25000 function evaluations. The simulated binary crossover (SBX)

operator and the polynomial mutation are applied in all experiments. The crossover probability

of pc = 0.9 and a mutation probability of pm = 1/n, where n is the number of decision variables
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that are used. The population size is set to 50 for ZEJD problems. The size of archive for SPEA2

is equal to the size of the population. All of the experiments are based on jMetal framework

[19, 18]. All of the experiments are running on a desktop PC with an i5 3.2 GHz processor and

4GB memory under Ubuntu 14.04 LTS. For each mentioned algorithm, 30 independent trials are

conducted on ZEJD test problems.

5.3. Experimental results and discussion

The comparison of simulation experiments with NSGA-II, GDE3, SPEA2, MOEA/D, SMS-

EMOA, and 3DCH-EMOA on ZEJD problems is discussed in this section. The results of exper-

iments are given as follows: the results not only include the plots of solution set in the objective

space but also include statistical analysis on the metrics of these results. The illustrations of so-

lution set in the f1 − f2 − f3 objectives space are plotted for the ZEJD problems. The results of

ZEJD1 are shown in Fig. 4, of ZEJD2 are shown in Fig. 5 and of ZEJD3 are shown in Fig. 6. The

solutions obtained are depicted in dark dots with large size and the true Pareto fronts are in gray

dots with small size.

By comparing the Pareto fronts and results of ZEJD1 we can make some conclusions. NSGA-

II, GDE3 and SPEA2 show the worst convergence. MOEA/D can converge to the true Pareto

front, however it does not give good results on diversity and distribution uniformity. The result of

MOEA/D has no solutions on the edges of the solution space. SMS-EMOA and 3DCH-EMOA

have good performance on convergence, diversity and distribution uniformity. SMS-EMOA and

3DCH-EMOA work well with the ZEJD1 test problem.

By comparing the results of ZEJD2 and ZEJD3 we can see that SMS-EMOA and 3DCH-

EMOA have better performance on convergence, diversity and distribution uniformity than other

algorithms. However, the results of SMS-EMOA have several points on the dent areas in the results

of ZEJD2 and ZEJD3. Only 3DCH-EMOA omits the dent areas of ZEJD2 and ZEJD3, which al-

lows it to add more points in parts that are relevant for maximizing VAS . As there are some points

on the Pareto front but not on the 3D convex hull surface, which contribute to hypervolume metric

but do not contribute to VAS , SMS-EMOA preserves these solutions and 3DCH-EMOA ignores

them. In summary, 3DCH-EMOA can always achieve better results than other algorithms, not only
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on convergence and distribution uniformity, but it also does not waste resources by approximating

concave parts of the Pareto front.
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Figure 4: Experimental results of ZEJD1 are shown in f1 − f2 − f3 space. (a) Result of NSGA-II. (b) Result of GDE3.
(c) Result of SPEA2. (d) Result of MOEA/D. (e) Result of SMS-EMOA. (f) Result of 3DCH-EMOA.

In the experiments, all algorithms have been running for 30 times independently on ZEJD test

problems to evaluate and compare the robustness of these algorithms. The performance character-

istics of each algorithm can be seen from the statistical analysis of the experimental results. The

statistical results (mean and standard deviation) of the VAS are shown in Table 2. The detailed
23
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Figure 5: Experimental results of ZEJD2 are shown in f1 − f2 − f3 space. (a) Result of NSGA-II. (b) Result of GDE3.
(c) Result of SPEA2. (d) Result of MOEA/D. (e) Result of SMS-EMOA. (f) Result of 3DCH-EMOA.

discussion follows next.

While dealing with the ZEJD problems and considering the metric of VAS , 3DCH-EMOA gets

the largest value of mean and the smallest value of standard deviation, which shows that 3DCH-

EMOA has a good performance not only in convergence but also in stability of these results.

GDE3 obtains the second best result with these test functions. As 3DCH-EMOA uses VAS metric

to guide its evolution of population, it can obtain solutions with higher value of VAS than others.
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Figure 6: Experimental results of ZEJD3 are shown in f1 − f2 − f3 space. (a) Result of NSGA-II. (b) Result of GDE3.
(c) Result of SPEA2. (d) Result of MOEA/D. (e) Result of SMS-EMOA. (f) Result of 3DCH-EMOA.

Table 2: Mean and standard deviation of VAS on ZEJD test problems.
NSGA-II GDE3 SPEA2 MOEA/D SMS-EMOA 3DCH-EMOA

ZEJD1 4.60e − 011.3e−03 4.62e − 016.3e−04 4.49e − 011.1e−02 4.59e − 012.1e−03 4.46e − 013.6e−03 4.65e − 015.0e−06
ZEJD2 4.60e − 011.2e−03 4.61e − 016.4e−04 4.48e − 011.3e−02 4.59e − 011.3e−03 4.46e − 013.1e−03 4.64e − 014.5e−06
ZEJD3 4.60e − 018.8e−04 4.61e − 016.9e−04 4.46e − 011.2e−02 4.59e − 011.5e−03 4.46e − 014.1e−03 4.64e − 013.9e−06

Fig. 7 uses box-plots to show statistical results of VAS with different EMOAs. By comparing
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the three box-plots of ZEJD test problems, we can see that 3DCH-EMOA not only can obtain

solutions with the largest value of VAS , but it can also obtain solutions with the best stability with

the metric of VAS .
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Figure 7: Box-plots of VAS for three ZEJD test problems, each box-plot is generated by running 30 independent
trials. (a) Box-plot of VAS for ZEJD1 test problem. (b) Box-plot of VAS for ZEJD2 test problem. (c) Box-plot of
VAS for ZEJD3 test problem.

The statistical results of the Gini coefficient are shown in Table 3. By comparing the results in

the table we can see that 3DCH-EMOA gets the smallest value of mean, which shows that 3DCH-

EMOA has a good uniformity and diversity of the population performance. SMS-EMOA shows

the best stability as it gets the smallest value of standard deviation. SPEA2 obtains the second best

result, however it did not have good convergence performance.

Fig. 8 uses box-plots to show statistical results of VAS with different EMOAs. By comparing

the three box-plots of ZEJD test problems, we can see that 3DCH-EMOA can obtain solutions

with the smallest value of Gini coefficient, i.e., 3DCH-EMOA can obtain solutions with the best
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Table 3: Mean and standard deviation of Gini coefficient on ZEJD test problems.
NSGA-II GDE3 SPEA2 MOEA/D SMS-EMOA 3DCH-EMOA

ZEJD1 3.83e − 014.0e−02 2.90e − 012.9e−02 9.60e − 022.0e−02 3.09e − 011.7e−02 9.88e − 021.3e−02 8.18e − 021.4e−02
ZEJD2 3.58e − 013.9e−02 2.87e − 012.7e−02 9.49e − 021.5e−02 3.69e − 012.6e−02 9.54e − 021.4e−02 8.74e − 021.6e−02
ZEJD3 3.45e − 014.5e−02 2.92e − 012.3e−02 9.10e − 021.6e−02 3.12e − 011.6e−02 9.62e − 021.4e−02 8.67e − 021.2e−02

uniformity.
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Figure 8: Box-plots of Gini coefficient for three ZEJD test problems, each box-plot is generated by running 30
independent trials. (a) Box-plot of Gini coefficient for ZEJD1 test problem. (b) Box-plot of Gini coefficient for
ZEJD2 test problem. (c) Box-plot of Gini coefficient for ZEJD3 test problem.

The statistical results of optimization time cost are shown in Table 4. MOEA/D always costs

the least time and NSGA-II performs better than others. SMS-EMOA is the most time consuming

algorithm and 3DCH-EMOA performs only better than SMS-EMOA.

The Mann-Whitney test is adopted to verify whether the differences observed in Table 2, 3 and

4 are significant or not. The results of Mann-Whitney test are listed in Table 5. By comparing the
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Table 4: Mean and standard deviation of optimization time cost/ms on ZEJD test problems.
NSGA-II GDE3 SPEA2 MOEA/D SMS-EMOA 3DCH-EMOA

ZEJD1 1.29e + 029.6e+01 2.91e + 032.2e+01 2.05e + 036.9e+01 8.49e + 016.5e+01 7.03e + 042.5e+03 5.30e + 041.4e+03
ZEJD2 1.32e + 021.0e+02 2.91e + 033.8e+01 2.04e + 036.5e+01 8.82e + 016.6e+01 6.80e + 042.3e+03 4.41e + 041.0e+03
ZEJD3 1.25e + 027.8e+01 2.61e + 032.8e+02 2.07e + 031.9e+02 8.08e + 013.8e+01 7.33e + 043.6e+03 4.91e + 041.3e+03

Table 5: The results of Mann-Whitney test on ZEJD test problems.
3DCH-EMOA vs NSGA-II GDE3 SPEA2 MOEA/D SMS-EMOA

VAS
ZEJD1 N N N N N
ZEJD2 N N N N N
ZEJD3 N N N N N

Gini coefficient
ZEJD1 N N N N N
ZEJD2 N N – N N
ZEJD3 N N – N N

Time cost
ZEJD1 O O O O N
ZEJD2 O O O O N
ZEJD3 O O O O N

results in Table 5 we can see that: 1) 3DCH-EMOA outperforms other EMOAs significantly on

VAS metric; 2) 3DCH-EMOA outperforms most of other EMOAs significantly on Gini coefficient

metric except for SPEA2 on ZEJD2 and ZEJD3 problems; 3) 3DCH-EMOA performs not as good

as most of other EMOAs on time cost metric except for SMS-EMOA.

In the case of machine learning problems, such as feature selection and parameters optimiza-

tion of classifiers, the evaluation takes much more time than optimization process, which is differ-

ent from test functions. Considering problems in machine learning, the optimization time is not a

key obstacle, especially for offline learning. Details of 3DCH-EMOA dealing with spam problem

are discussed in the next section.

6. Spam problem

From a technical point of view, an email anti-spam system consists of a set of boolean filtering

rules (denoted as Ru = {r1, r2, . . . , r|Ru|}), that jointly allows for spam messages detection. Dis-

covering the relative importance of these rules and assigning the corresponding scores (weights)

of each rule, is a complex setup process. The need of frequent scores reassignment for existing

rules and setting scores for new rules, to keep the anti-spam filter updated and running, requires

the adoption of machine learning and optimization techniques. Every time an email is received for

evaluation, SpamAssassin [1], probably the most commonly used open source anti-spam filtering
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system, finds all the rules matching the target message and computes the sum of their scores. This

cumulative value is then compared with a configurable threshold (required score) to finally classify

the new incoming message as spam or ham (legitimate). An email total score (ets) is computed as

shown in Eq. 13:

ets =

|Ru|∑
i=1

wi × ri, (13)

where wi is the weight of ri, Ru is a set of spam classification rules, whose cardinality is |Ru|.

6.1. Multiobjective spam filtering problem formulation

Spam filtering problem optimization has been addressed by the techniques surveyed in [6, 59].

The formulation of the scores setting optimization problem is naturally biobjective. A typical user

would wish to minimize both the number of spam messages not identified by anti-spam filtering

techniques, called false negative rate ( f nr), and the number of legitimate messages classified as

spam by mistake, called false positive rate ( f pr). A business email is one of extreme cases of anti-

spam systems setup with such objectives, where the f pr should be tuned to have lowest possible

rate of legitimate messages lost, usually at the expenses of higher fnr. On the other extreme is

content management systems (CMSs) devoted to entertainment, where dismissing some legitimate

messages keeps or improves the interest on their usage, while the acceptance of any spam message

is not allowed. The cases between these two extremes are also of high interest for a variety of

areas where this problem is studied.

In previous work on anti-spam filter optimization [59], it was observed that many rules were

not participating in the classification process and some (with very small weights) only marginally

influenced the classification results. This observation suggests that in addition to optimizing f pr

and f nr, the complexity of the anti-spam filter or its parsimony can be optimized.

The trend of increasing the number of rules for the system operation creates an empirically

known potential inefficiency phenomenon, which is addressed under the so called principle of par-

simony. This principle states, in one of its simplified formulations, that unnecessary assumptions

for a conclusion should not be considered if they have no effect on the conclusion [3]. Parsimony

is measured in the context of the current anti-spam study as the minimum number of rules with
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score different from zero that support a specific classification quality. The complexity classifier

rate can described by Eq. 14.

ccr =

∑|Ru|
i=1 1

{
|wi| , 0

}
|Ru| , (14)

where 1{·} is the indicator function, so that 1{a true statement}=1, and 1{a false statement}=0.

In our study we also follow a triobjective problem formulation, minimizing all three objectives:

f pr, f nr and ccr (number of anti-spam filter rules rate) to be used in the classification process.

6.2. SpamAssassin corpus

For the multiobjective anti-spam problem formulation experiments, we adopted the SpamAs-

sassin system [1]. SpamAssassin was selected due to its popularity and wide adoption by the

open source community, the research community on anti-spam systems, wide commercial usage,

and available email corpora. The SpamAssassin corpus used in our experiments is composed of

9349 email messages, 2398 of which are spam and 6951 legitimate messages [42]. SpamAssas-

sin became a reference in the anti-spam filtering domain, not only due to its public availability to

research and development, but also because of its performance (classification quality). Individual

binary classifiers (filtering rules) learning process, such as Naive Bayes, is based on SpamAssassin

public corpus with cross-validation training and testing procedures.

6.3. Algorithms involved

Five reference multiobjective algorithms (NSGA-II, SPEA2, MOEA/D, SMS-EMOA and 3DCH-

EMOA) were tested for spam classification quality assessment of the three objectives anti-spam

filtering problem formulation, using the SpamAssassin corpus [42]. Experiments were performed

with jMetal [18], an optimization framework for the development of multiobjective metaheuristics

in Java.

6.4. Parameter setting

Default parameters for problem formulation, experiments and algorithms settings were adopted

for the experiments.
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Encoding: We employed a jMetal RealBinary encoding scheme where the chromosome is

constituted by an array of real values in the interval [−5, 5] and a bit string of equal length. The

length of the chromosome is determined by the number of anti-spam filtering rules. In this study

the number of rules available in the SpamAssassin software public distributions that effectively

match SpamAssassin email messages corpus is 330. Each rule is associated with a real value score

in the [−5, 5] interval and a one bit in the chromosome. If the ith bit is 0 the ith rule is ignored,

and otherwise the rule is considered by the spam classifier with the ith corresponding real value

score (weight). Messages are classified as spam when the sum of the active rules that match the

message is equal or greater than the threshold value of 5.

Configuration: The five algorithms (NSGA-II, SPEA2, SMS-EMOA, MOEA/D, 3DCH-EMOA)

are set with a maximum of 25000 function evaluations as the experiment stopping criteria. The

simulated binary crossover (SBX) single point crossover and polynomial bit flip mutation opera-

tors are applied in the experiments. The crossover probability of pc = 0.9 and a mutation proba-

bility of pm = 1/n, where n is the number of anti-spam filtering rules, are used. The population

size is set to 100 for all algorithms, archive size of 100 is set for SPEA2 and offset size of 100 is

set for SMS-EMOA and 3DCH-EMOA. All of the algorithms are run 30 times independently.

6.5. Experimental results and discussion

The comparison of NSGA-II, MOEA/D, SPEA2, SMS-EMOA and 3DCH-EMOA algorithms

for the three objectives spam problem formulation is done with respect to the reference Pareto

front, which is taken as a close approximation of the true Pareto front. The reference Pareto front

is calculated as the best set of solutions of all algorithms achieved in all experimental runs.

We will first interpret this reference Pareto front shown in Fig. 9(a), Fig. 9(b) and Fig. 9(c),

corresponding to the three axis projections, ccr × f pr (classifier complexity ratio × false positive

rate) and ccr × f nr (classifier complexity ratio × false negative rate), respectively (all objectives

are to be minimized).

The plots show the boundary between the dominated and non-dominated space (attainment

curve). All values are percentages relative to the number of anti-spam filtering rules (330) and

total number of email messages (9349).
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Figure 9: Reference Pareto front for three objectives spam problem formulation. (a) Reference Pareto front for three
objectives spam problem formulation (three axis projection). (b) Reference Pareto front for three objectives spam
problem formulation (ccr× f pr projection). (c) Reference Pareto front for three objectives spam problem formulation
(ccr × f nr projection).

From the plots we conclude that: 1) Even for a classifier using the maximal number of rules,

the f nr could not be reduced to zero, but it got very close to it; 2) The f pr is almost exactly zero

for spam filters that use only ca. 15% of the rules; 3) Using about 20% of the rules, the knee point

solution is found. From then on, only marginal improvements are possible by adding more rules.

In summary, the addition of a third objective is particularly valuable because it can help to

reduce the computational effort for the classification to ca. 20% of the effort when all rules are

used, losing almost no performance. The second question is how close different algorithms get to

the true Pareto front, here represented by the reference Pareto front. For this, one might look at
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Pareto fronts of each algorithm that have an average performance in VAS . Also, we can look at

summary statistics on performance metrics, first and foremost on the VAS performance.

The performance statistics of VAS , Gini coefficient and time cost are listed in Table 6. Fig.

10(a) and Fig. 10(b) indicate that the 3DCH-EMOA has clearly the best performance in the VAS

metric and also it achieves relatively good Gini index values, but has bad performance in the

time cost metric. Because the VAS metric is the most relevant to 3D ROC optimization, it is

recommended to use 3DCH-EMOA for finding frontal solutions approximations for the 3D anti-

spam filtering problem.
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Figure 10: Box-plot of VAS and Gini for triobjective spam problem formulation. (a) Box-plot of VAS for triobjective
spam problem formulation. (b) Box-plot of Gini for triobjective spam problem formulation.

Table 6: Mean and standard deviation of VAS , Gini coefficient and time cost/ms.
NSGA-II MOEA/D SPEA2 SMS-EMOA 3DCH-EMOA

VAS 3.41e − 015.8e−03 3.48e − 011.3e−02 3.31e − 017.8e−03 3.26e − 017.7e−03 4.08e − 014.9e−03
Gini 5.96e − 018.8e−02 4.82e − 011.2e−01 7.30e − 018.9e−02 5.84e − 011.6e−01 2.70e − 017.3e−02
Time cost 3.15e + 052.0e+04 3.22e + 052.0e+04 3.31e + 052.5e+04 4.03e + 058.0e+04 1.38e + 072.7e+06

The results of Mann-Whitney test are listed in Table 7. By comparing the results in Table

7 we can see that: 1) 3DCH-EMOA outperforms other EMOAs significantly on VAS and Gini

coefficient metrics; 2) 3DCH-EMOA performs not as well as other EMOAs on time cost metric.
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Table 7: The results of Mann-Whitney test of SPAM problem.
3DCH-EMOA vs NSGA-II SPEA2 MOEA/D SMS-EMOA

VAS N N N N
Gini coefficient N N N N

Time cost O O O O

7. Multiobjective optimization of sparse neural networks

In this section, the proposed algorithm is applied to optimize multiobjective formulation of

sparse neural networks to avoid overfitting by seeking parsimonious neural network models and

hence to provide better predictions in augmented DET space. The idea of sparse neural network

was proposed in [44], in which a fully connected feedforward neural network was pruned through

optimization using single objective differential evolution algorithm to produce a sparse network

that has good performance on accuracy.

7.1. Multiobjective formulation of sparse neural networks

In this paper, we propose a multiobjective formulation of sparse neural network, in which

the performance of neural networks is evaluated in DET space and the sparsity is defined as the

complexity objective to be optimized. Besides f pr and f nr, we define ccr by Eq. 15.

ccr =

∑M
i=1 1

{
|wi| , 0

}
M

, (15)

where wi, i = 1, 2, . . . ,M is a weight in the neural network model, and M is the number of weights

in total, 1{·} is an indicator function.

7.2. UCI dataset

In this section, a total of 19 two-class datasets from the UCI repository [37] are used to evalu-

ate the performance of two EMOAs for sparse neural networks optimization. As we only optimize

binary classifiers, while dealing with dataset which contains multiple classes, we split them into

several smaller datasets, each of them including a single pair of classes. Both balanced and unbal-

anced benchmark datasets are included, details are described in Table 8.
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Table 8: 19 balanced and unbalanced UCI datasets.
No. Data Set No. features Class Distribution No. Data Set No. features Class Distribution
1 Australian 14 383:307 11 Vehicle23 18 217:218
2 Breast 9 458:241 12 Vehicle24 18 217:212
3 Glass12 9 51:163 13 Vehicle34 18 218:212
4 Heart 13 139:164 14 Vote 16 267:168
5 Ionosphere 34 126:225 15 Wdbc 30 212:357
6 Parkinsons 22 147:48 16 Wine12 13 59:71
7 Sonar 60 97:111 17 Wine13 13 59:48
8 Spectf 44 95:254 18 Wine23 13 71:48
9 Vehicle12 18 199:217 19 Wpbc 33 46:148
10 Vehicle13 18 199:218

7.3. Algorithms involved

Two reference evolutionary multiobjective algorithms (NSGA-II, 3DCH-EMOA) and a single

objective algorithm SGD (Stochastic Gradient Descend) algorithm [10] are tested. Experiments

are performed with Matlab code running on a desktop PC with an i5 3.2GHz processor and 4GB

memory under Ubuntu14.04 LTS.

7.4. Parameter setting

The experiment stopping criteria of the two EMOAs are set with a maximum of 20000 function

evaluations. The simulated binary crossover (SBX) and polynomial bit flip mutation operators are

applied in the experiments with crossover probability of pc = 0.9 and mutation probability of

pm = 0.1. The population size is set to 50 for both of EMOAs.

All algorithms mentioned above are used to optimize a multilayer feedforward network with an

input layer with size of the number of features of each dataset, two hidden layers with 10 neuron

units and an output layer with 2 neuron units. The sigmoid function is selected as activation

function in this neural network. For each dataset 50% of samples are randomly selected for model

training and the remaining 50% of samples are selected for testing. For each mentioned algorithm,

30 independent trials are conducted on all of the UCI datasets.

7.5. Experimental results and discussion

To evaluate the performance of these algorithms, we compare the statistical results of VAS ,

Gini coefficient, time cost and classification accuracy in this section. Classification accuracy is

an important metric to evaluate the performance of classifiers. It is defined as the partition of
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the correctly classified samples to all samples in test dataset. In the case of binary classification

problems it is denoted by Eq. 16.

Acc =
T P + T N

T P + T N + FP + FN
. (16)

Table 9 shows the mean and standard deviation of VAS of NSGA-II and 3DCH-EMOA for

UCI datasets. In the table VAS is calculated based on the test datasets. By comparing the results

we can make a conclusion that the proposed algorithm 3DCH-EMOA outperforms NSGA-II for

all the UCI datasets. The results of Mann-Whitney test are listed in Table 10. In the table we

can see that 3DCH-EMOA outperforms NSGA-II significantly over most of these datasets, and

3DCH-EMOA performs as well as NSGA-II on five datasets.

Table 9: Mean and standard deviation of VAS of UCI datasets.
Data Set NSGA-II 3DCH-EMOA Data Set NSGA-II 3DCH-EMOA
Australian 1.47e − 011.41e−02 1.54e − 011.50e−02 Vehicle23 1.43e − 013.76e−02 1.69e − 013.77e−02
Breast 2.84e − 019.25e−03 2.98e − 017.94e−03 Vehicle24 3.89e − 022.00e−02 4.34e − 021.64e−02
Glass12 1.71e − 011.28e−01 1.79e − 011.29e−01 Vehicle34 1.36e − 013.01e−02 1.69e − 013.34e−02
Heart 2.19e − 012.62e−02 2.40e − 011.73e−02 Vote 3.27e − 018.74e−03 3.57e − 018.44e−03
Ionosphere 2.45e − 013.03e−02 2.71e − 011.93e−02 Wdbc 2.91e − 015.73e−02 2.95e − 015.77e−02
Parkinsons 5.76e − 025.29e−02 1.07e − 013.37e−02 Wine12 2.05e − 011.31e−01 2.99e − 015.97e−02
Sonar 1.17e − 013.48e−02 1.57e − 012.54e−02 Wine13 2.20e − 011.22e−01 3.02e − 016.16e−02
Spectf 1.09e − 017.59e−02 2.02e − 013.19e−02 Wine23 7.59e − 026.88e−02 1.51e − 017.12e−02
Vehicle12 2.38e − 016.68e−02 2.86e − 011.40e−02 Wpbc 3.56e − 025.84e−02 3.71e − 025.46e−02
Vehicle13 2.23e − 012.19e−02 2.48e − 012.43e−02

Table 10: The results of Mann-Whitney test of VAS of UCI datasets.
Data Set 3DCH-EMOA vs NSGA-II Data Set 3DCH-EMOA vs NSGA-II

Australian – Vehicle23 N
Breast N Vehicle24 –
Glass12 – Vehicle34 N
Heart N Vote N
Ionosphere N Wdbc –
Parkinsons N Wine12 N
Sonar N Wine13 N
Spectf N Wine23 N
Vehicle12 N Wpbc –
Vehicle13 N

Table 11 shows the mean and standard deviation of Gini coefficient of NSGA-II and 3DCH-

EMOA for UCI datasets. In the table Gini coefficient is calculated based on the test datasets. The
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results of Mann-Whitney test are listed in Table 12. By comparing the results we can make a

conclusion that NSGA-II outperforms 3DCH-EMOA for most of the UCI datasets, but NSGA-II

does not outperforms 3DCH-EMOA significantly, as it is shown in Table 12. The proposed method

does not work well on the metric of Gini coefficient, since the distribution of solutions of these UCI

datasets is not uniform. The proposed method can obtain results with good performance of VAS ,

but can not obtain good results with respect to Gini coefficient. While dealing with real-world

classification problems, VAS is more suitable to evaluate the performance of EMOAs.

Table 11: Mean and standard deviation of Gini coefficient of UCI datasets.
Data Set NSGA-II 3DCH-EMOA Data Set NSGA-II 3DCH-EMOA
Australian 2.78e − 012.78e−01 5.97e − 015.97e−01 Vehicle23 3.04e − 013.04e−01 6.13e − 016.13e−01
Breast 3.26e − 013.26e−01 5.00e − 015.00e−01 Vehicle24 2.75e − 012.75e−01 7.20e − 017.20e−01
Glass12 4.63e − 014.63e−01 4.59e − 014.59e−01 Vehicle34 3.12e − 013.12e−01 6.22e − 016.22e−01
Heart 3.11e − 013.11e−01 4.60e − 014.60e−01 Vote 4.64e − 014.64e−01 5.71e − 015.71e−01
Ionosphere 3.40e − 013.40e−01 5.97e − 015.97e−01 Wdbc 4.86e − 014.86e−01 4.87e − 014.87e−01
Parkinsons 4.58e − 014.58e−01 7.02e − 017.02e−01 Wine12 4.02e − 014.02e−01 5.24e − 015.24e−01
Sonar 2.34e − 012.34e−01 6.72e − 016.72e−01 Wine13 4.10e − 014.10e−01 5.06e − 015.06e−01
Spectf 2.07e − 012.07e−01 6.26e − 016.26e−01 Wine23 2.18e − 012.18e−01 6.52e − 016.52e−01
Vehicle12 4.34e − 014.34e−01 5.52e − 015.52e−01 Wpbc 4.08e − 014.08e−01 3.22e − 013.22e−01
Vehicle13 3.98e − 013.98e−01 5.08e − 015.08e−01

Table 12: The results of Mann-Whitney test of Gini coefficient of UCI datasets.
Data Set 3DCH-EMOA vs NSGA-II Data Set 3DCH-EMOA vs NSGA-II

Australian – Vehicle23 –
Breast – Vehicle24 –
Glass12 – Vehicle34 –
Heart – Vote –
Ionosphere – Wdbc –
Parkinsons – Wine12 –
Sonar – Wine13 –
Spectf – Wine23 –
Vehicle12 – Wpbc –
Vehicle13 –

Table 13 shows the mean of time cost of NSGA-II, 3DCH-EMOA and SGD for UCI datasets.

In the table time cost is computed for training procedure only. The results of Mann-Whitney test

of time cost are listed in Table 14. By comparing the results we can make a conclusion that SGD

is fast to obtain results, and EMOAs are slow to find weighting vectors. 3DCH-EMOA is much

more time consuming when compared to NSGA-II. In the future, more strategies can be adopted

to speed up the implementation of 3DCH-EMOA.
37



Table 13: Mean of time cost/ms of compared algorithms of UCI datasets.
Data Set NSGA-II 3DCH-EMOA SGD Data Set NSGA-II 3DCH-EMOA SGD
Australian 9.78e + 04 2.29e + 06 2.15e + 03 Vehicle23 3.40e + 04 2.47e + 06 2.97e + 03
Breast 9.02e + 04 1.88e + 06 1.74e + 03 Vehicle24 3.00e + 04 1.88e + 06 7.85e + 02
Glass12 9.44e + 04 1.79e + 06 5.08e + 02 Vehicle34 2.89e + 04 1.95e + 06 1.25e + 03
Heart 4.56e + 04 1.91e + 06 5.43e + 02 Vote 2.91e + 04 1.97e + 06 4.38e + 02
Ionosphere 5.05e + 04 2.43e + 06 1.38e + 03 Wdbc 2.94e + 04 2.33e + 06 3.22e + 03
Parkinsons 4.86e + 04 1.86e + 06 5.29e + 02 Wine12 2.93e + 04 1.72e + 06 7.75e + 02
Sonar 4.73e + 04 2.58e + 06 2.09e + 03 Wine13 2.97e + 04 1.71e + 06 7.22e + 02
Spectf 4.39e + 04 2.55e + 06 2.09e + 03 Wine23 3.25e + 04 1.78e + 06 6.75e + 02
Vehicle12 3.14e + 04 1.91e + 06 1.18e + 03 Wpbc 3.25e + 04 3.54e + 06 5.25e + 01
Vehicle13 3.10e + 04 2.02e + 06 1.20e + 03

Table 14: The results of Mann-Whitney test of time cost of UCI datasets.
3DCH-EMOA vs NSGA-II SGD 3DCH-EMOA vs NSGA-II SGD

Australian O O Vehicle23 O O
Breast O O Vehicle24 O O
Glass12 O O Vehicle34 O O
Heart O O Vote O O
Ionosphere O O Wdbc O O
Parkinsons O O Wine12 O O
Sonar O O Wine13 O O
Spectf O O Wine23 O O
Vehicle12 O O Wpbc O O
Vehicle13 O O

Moreover, classification accuracy is compared in this part. Table 15 shows the mean and

standard deviation of accuracy obtained by NSGA-II, 3DCH-EMOA and SGD for UCI datasets.

In this part only the best result in the population of EMOAs is listed in the table. From the table

we can see that 3DCH-EMOA outperforms other algorithms for most of the datasets. To compare

the results, the accumulation of accuracy across these UCI datasets is shown in Fig. 11. From the

figure, we can make some conclusions: 1) EMOAs can obtain better accuracy results than SGD;

2) 3DCH-EMOA outperforms NSGA-II for these UCI datasets. The results of Mann-Whitney

test are listed in Table 16. By comparing the results we can see that 3DCH-EMOA outperforms

NSGA-II significantly over most of these datasets, and 3DCH-EMOA performs as good as SGD

over all these datasets.
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Table 15: Mean and standard deviation of classification accuracy on UCI datasets.
Data Set NSGA-II 3DCH-EMOA SGD Data Set NSGA-II 3DCH-EMOA SGD
Australian 0.690.02 0.700.02 0.680.02 Vehicle23 0.690.05 0.710.05 0.510.07
Breast 0.880.01 0.890.01 0.880.02 Vehicle24 0.560.03 0.570.03 0.480.02
Glass12 0.850.08 0.850.08 0.760.03 Vehicle34 0.680.04 0.710.05 0.520.08
Heart 0.790.04 0.810.02 0.800.03 Vote 0.950.01 0.960.01 0.960.01
Ionosphere 0.850.04 0.870.03 0.890.03 Wdbc 0.900.05 0.900.06 0.860.08
Parkinsons 0.770.03 0.770.10 0.750.03 Wine12 0.800.17 0.900.09 0.500.06
Sonar 0.660.05 0.710.03 0.740.03 Wine13 0.820.14 0.900.08 0.560.14
Spectf 0.760.04 0.780.02 0.790.03 Wine23 0.630.06 0.700.11 0.590.05
Vehicle12 0.820.09 0.870.03 0.800.03 Wpbc 0.760.04 0.760.03 0.760.04
Vehicle13 0.780.03 0.820.05 0.760.04

Table 16: The results of Mann-Whitney test of accuracy of UCI datasets.
3DCH-EMOA vs NSGA-II SGD 3DCH-EMOA vs NSGA-II SGD

Australian – – Vehicle23 – –
Breast N – Vehicle24 – –
Glass12 – – Vehicle34 N –
Heart N – Vote N –
Ionosphere N – Wdbc – –
Parkinsons N – Wine12 N –
Sonar N – Wine13 N –
Spectf N – Wine23 N –
Vehicle12 N – Wpbc – –
Vehicle13 N –

 0
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 16

NSGA-II 3DCH-EMOA SGD

Figure 11: The accumulation of classification accuracy of 19 UCI datasets for NSGA-II, 3DCH-EMOA and SGD.
Boxes from bottom to top for each method represent the average accuracy for datasets in Table 8.

8. Conclusions and Future Work

In this paper, we analyzed the properties of augmented DET convex hull (ADCH) maximiza-

tion problem. 3DCH-EMOA is proposed to optimize the performance of augmented DET for

classification. In order to evaluate the performance of several EMOAs a set of test problems ZEJD

is designed. 3DCH-EMOA is compared with other EMOAs, such as NSGA-II, GDE3, SPEA2,

MOEA/D and SMS-EMOA on ZEJD test problems. 3DCH-EMOA always obtains the best results

not only for convergence but also for diversity metrics. By avoiding concave regions, 3DCH-
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EMOA is able to focus on relevant parts of the Pareto front, that is, parts that contribute to a high

value of VAS . We also applied this algorithm to the real-world applications of spam filtering

and multiobjective optimization of sparse neural networks. Testing performance of the newly pro-

posed method and comparing it to state-of-the-art approaches on a number of experimental studies

indicate that the proposed algorithm is promising and effective.

However, the new proposed method is time consuming, because it needs to compute the VAS

contribution of every point in the first priority layer solutions. This is a drawback of the proposed

3DCH-EMOA approach. It is, however, less important if the evaluations of classifiers are relatively

expensive. In the future, more effective strategies will be adopted to reduce the computational

complexity.
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Appendix A. ZEJD Problem

Three ZEJD (Zhao, Emmerich, Jiao, Deutz) problems are designed to evaluate the performance

of several kinds of EMOAs on ADCH maximization problems and the general principle of their

construction is derived in [21]. These test problems are simulation of augmented DET distribution

of complexity classifiers, which has several important properties. Firstly, the points (1,0,0), (0,1,0)
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and (0,0,1) included in the Pareto front are the extremal points of the Pareto front. Note that

the point (0,0,1) would correspond to a perfect classfier which uses all the rules. Secondly, the

Pareto front should be above the augmented DET surface of random guessing classifiers which is

described in Fig. 2. Thirdly, all of the solutions are in the space of the unit cube. The objective of

this set of test problems is to find the maximum value of the volume under the convex hull surface.

The range of variation of each object is in [0,1], the problem of ZEJD1 is defined in Eq. A.1.


f1 = 1 − √2cos(x1 ∗ π/2)(1 − x3)

f2 = 1 − √2sin(x1 ∗ π/2)cos(x2 ∗ π/2)(1 − x3)

f3 = 1 − √2sin(x1 ∗ π/2)sin(x2 ∗ π/2)(1 − x3)

(A.1)

where x1, x2, x3 are all in [0, 1] and f1, f2, f3 are all in [0, 1].

The Pareto front of ZEJD1 is shown in Fig. A.12(a), which is a convex surface. The solutions

of EMOAs with good performance can cover the Pareto front uniformly. Both ZEJD2 and ZEJD3

problems are versions of ZEJD1 modified by additional dent on the surface, in which some parts

of Pareto Front are not on the convex hull, the Pareto front of ZEJD2 is discontinuous and the

Pareto front of ZEJD3 is continuous. These two test problems are designed to test whether the

algorithms can avoid the dent areas, i.e., finding solutions only on the convex part of the Pareto

front. ZEJD2 is defined by Eq. A.2. A dent is made in the area satisfied f1 < a, f2 < a, g < a,

by making the function decrease slowly. In our experiments we set a = 0.3, λ = 0.5. The Pareto

front of ZEJD2 is shown in Fig. A.12(b). ZEJD3 is defined by Eq. A.3. A dent is made by adding

a surface d(x, y). In order to keep the points (1,0,0), (0,1,0) and (0,0,1) in the Pareto front, d(0, 0)

is subtracted to obtain f3. In this paper, we set A = 0.15, γ = 400. The Pareto front of ZEJD3 is

shown in Fig. A.12(c). The objectives of both ZEJD2 and ZEJD3 are f1, f2 and f3, f1 ∈ [0, 1],

f2 ∈ [0, 1], f3 ∈ [0, 1].

41





f1 = 1 − √2cos(x1 ∗ π/2)(1 − x3)

f2 = 1 − √2sin(x1 ∗ π/2)cos(x2 ∗ π/2)(1 − x3)

f3 =

 a + λ(g − a) if f1 < a, f2 < a, g < a

g else

g = 1 − √2sin(x1 ∗ π/2)sin(x2 ∗ π/2)(1 − x3)

(A.2)



f1 = 1 − √2cos(x1 ∗ π/2)(1 − x3)

f2 = 1 − √2sin(x1 ∗ π/2)cos(x2 ∗ π/2)(1 − x3)

f3 =

 k( f1, f2) if k( f1, f2) > 0

0 else

g = 1 − √2sin(x1 ∗ π/2)sin(x2 ∗ π/2)(1 − x3)

d(x, y) = A ∗ e−γ{(x−0.173)2+(y−0.173)2}

k( f1, f2) = g + d( f1, f2) − d(0, 0)

(A.3)
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[49] S. D. Rı́o, V. López, J. M. Benı́tez, F. Herrera, On the use of mapreduce for imbalanced big data using random

forest, Information Sciences 285 (2014) 112–137.

[50] H. C. Sox, M. C. Higgins, D. K. Owens, Medical decision making, 2nd Edition, Wiley-Blackwell, 2013.

[51] A. Srinivasan, Note on the location of optimal classifiers in N-dimensional ROC space, Tech. Rep. PRG-TR-2-

99, Oxford University Computing Laboratory, Oxford, UK (November 1999).

[52] J. A. Swets, Measuring the accuracy of diagnostic systems, Science 240 (4857) (1988) 1285–1293.

[53] K. Tang, R. Wang, T. Chen, Towards maximizing the area under the ROC curve for multi-class classification

problems, in: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI 2011, San Francisco,

California, USA, August 7-11, 2011), AAAI Press, 2011, pp. 483–488.

[54] H. Wang, L. Jiao, X. Yao, Two Arch2: an improved two-archive algorithm for many-objective optimization,

IEEE Transactions on Evolutionary Computation 19 (4) (2015) 524–541.
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