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Abstract 

The goal of this work is to present and explore the application of a novel nonlinear grey Bernoulli combined 

model based on a self-memory algorithm, abbreviated as SA-NGBM, for modeling single-peaked sequences of 

time samples of acetylsalicylate plasma concentration following oral dosing. The self-memorization SA-NGBM 

routine reduces the dependence on a solitary initial value, as the initial state of the model utilizes multiple time 

samples. To test its forecasting performance, the SA-NGBM was used to extrapolate the plasma concentration 

predicted data, in comparison with the later time samples. The results were contrasted with those of the traditional 

optimized NGBM (ONGBM), exponential smoothing (ES) and simple moving average (SMA) using four popular 

accuracy and significance tests. That comparison showed that the SA-NGBM was much more accurate and 

efficient for matching the individual, nonlinear-system stochastic fluctuations than the existing ONGBM, ES and 

SMA models. The findings have potential applications for signal matching to similar small sample size, 

single-peaked, plasma concentration series. 
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1. Introduction 

With the rapid development of pharmaceutical science, practice indicates that the pharmacological action of 

many medicines is often closely related to their plasma concentration. The relationship of the therapeutic effect or 

toxicity of drugs follows plasma concentrations more closely than dosage. Plasma concentration refers to the total 

concentration in plasma after the drug is absorbed, and it usually can reflect the concentration variation of drug at 

the site of action. Therefore, the plasma concentration prediction for drugs is an important concern for modern 

medical research and has a great significance for rational drug use in patients and clinical medication guidance. 

The conventional prediction methods are pharmacokinetic models, constrained by kinetic parameters for 

individual drugs. For instance, in a compartment model, the organism could be assumed to be an abstract 

one-compartment, two-compartment or multicompartment dynamical model, according to different pharmic 

disposal speeds. Thus, the relationship between drug concentration and time in each compartment could be 

expressed by one differential equation, and the drug concentration could be obtained by means of solving the 

corresponding differential equations [1]. However, the traditional pharmacokinetic models should be performed 

under the hypothesis of many drug concentration data at multiple time points. Nonlinear iterative regression used 

to solve for the parameters easily leads to large computational demands and complicated processes. In recent years, 

some artificial intelligence methods, such as artificial neural networks (ANN), have been considered to forecast 

plasma concentrations [2]. On the premise of large sample data, these methods can perform prediction by means 

of training data without assuming a drug behavior model. However, it is difficult to acquire lots of high-quality 

clinical data due to many influencing factors and the absence of effective monitoring information. Meanwhile, the 

human body is an extremely complex organism that includes various random factors, so changes in plasma 

concentration in the body could be considered as an irregular and uncertain nonlinear system. Moreover, the grey 

systems theory is particularly suitable for studying those systems containing partially known information and 
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partially unknown information or underdetermined problems. 

The traditional statistical prediction methods, such as the autoregressive moving-average model [3], the 

bilinear model [4] and the nonlinear autoregressive model [5], require assumptions about the system structure. 

However, there often exists uncertainty arising from the limitation of cognitive level and the influence of 

unknown disturbance. Hence, only part of the system structure could be fully realized, or it is very difficult to 

obtain the available information with large sample size. In view of the increasing complexity, uncertainty and 

chaos of the system's structure, several theories about uncertain systems have been produced, including fuzzy 

mathematics proposed by Zadeh [6] and the rough sets theory by Pawlak [7]. As an emerging branch of 

uncertainty systems science, the grey systems theory was initially proposed by Deng to study uncertain systems 

with small sample size and poor information [8,9]. Grey systems contain incomplete information which parts of 

the system are partially known or unknown. In this uncertainty theory, valuable information can be extracted by 

means of the accumulated generating operation (AGO) used on a small amount of historical observation (data). As 

an important theoretical component, the grey prediction models can weaken the randomness of original statistical 

data through AGO [10]. As a benefit over traditional statistical models, grey prediction models require only a 

limited amount of historical observation (data) and do not require knowing their statistical distribution. So far, 

they have already been effectively utilized in numerous fields, such as social economy [11,12], electric 

engineering [13], energy environment [14,15], transportation [16], public health [17,18,19] and have demonstrated 

satisfactory prediction results. 

Among the grey systems, the GM(1,1) model is the basic core model and is especially useful for 

approximating homogenous exponential sequence [20]. Since first proposed by Deng, a series of improved grey 

prediction models were continuously developed for different types of time sequences, including the discrete grey 

model [21] and the GM(1,1) model with fractional order accumulation [22,23]. However, the original data 

distributions obtained from pharmacokinetic studies often present downward trends, such as from intravenous 

administration, or the single-peak types (an increase followed by a decrease), such as from extravascular 

administration. The conventional grey prediction models, as mentioned above, are inappropriate for the 

pharmacokinetic prediction. However, the nonlinear grey Bernoulli model termed NGBM(1,1) is a recently 

developed grey prediction model proposed by Chen, which is especially suitable for a class of approximate 

single-peak sequences [24,25]. After combining the GM(1,1) model with the Bernoulli differential equation, the 

power exponent in the NGBM can flexibly determine the trend curve of real systems and effectively manifest 

nonlinear characteristics. Nevertheless, certain time sequences of real systems, including nonlinear systems, often 

show large stochastic fluctuations due to uncertain external disturbances. Additionally, there is a limitation of 

these models that they are sensitive to the initial value of the original dynamic differential equation. It is inevitable 

that the original grey models will generate apparent modeling errors, so the self-memory algorithm could be 

considered for including the individual fluctuations occurring in general evolution tendencies. 

Based on the irreversibility of natural and social phenomena, Cao first proposed the self-memory algorithm of 

dynamic systems by introducing the memory concept [26]. The history information should be investigated 

adequately if we want to realize the current status of system and predict its future trend. The self-memory 

algorithm (SA) exactly emphasizes the relationship between states before and after the current system status. It 

regards the environmental factors as external forcing, with a view to the evolution law of system per se. By 

introducing the memory function which contains historical information, the differential equation that restricts the 

dynamic system can be transformed into an appropriate difference-integral equation termed the self-memorization 

equation. It is a dynamical equation, though parameter estimation of the corresponding memory coefficients is a 

statistical method. Therefore, SA is the statistical-dynamic method to solve problems of nonlinear dynamic 

systems by integrating deterministic and random theories [27]. The predictive superiority of SA lies in that it not 

only avoids the drawback of using only one initial value in the initial-value problems of differential equations but 

also absorbs the advantage of extracting information from historical data in statistics. SA is a breakthrough for 

numerical solution of traditional initial-value problems and statistical methods, and it has been increasingly 
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applied into various fields including meteorology, hydrology, and engineering science [28,29]. Meanwhile, SA 

was also combined with some grey prediction models including the GM(1,1) model, the DHGM(2,2) model and 

interval grey number models and showed satisfactory prediction results [30-32]. Accordingly, SA can be further 

introduced into the NGBM to predict the single-peaked nonlinear system together with individual stochastic 

fluctuations. 

Aiming at the single-peaked nonlinear systems with small samples that exist in pharmacokinetic studies, this 

paper will construct a self-memory algorithm-based nonlinear grey Bernoulli model (SA-NGBM). The traditional 

NGBM can describe the integral single-peaked development tendencies of nonlinear systems, and the 

self-memory algorithm can capture the individual stochastic variations. The proposed SA-NGBM combines the 

prediction advantages of the SA and NGBM models through coupling the two prediction methods. The limitations 

of the traditional NGBM, such as sensitivity to the initial values of the differential equation, can be eliminated by 

using multi-timepoint initial field instead of an initial value from a single time point. Meanwhile, the SA-NGBM 

will be applied to simulate the plasma concentration of acetylsalicylic acid for method validation. 

The remainder of this paper is organized as follows: A brief introduction to the general nonlinear grey 

Bernoulli model, the self-memory algorithm and the self-memory algorithm-based nonlinear grey Bernoulli model 

are presented and discussed in Section 2. In Section 3, an empirical analysis on plasma concentration of 

acetylsalicylic acid are adopted to verify the feasibility and effectiveness of the novel SA-NGBM proposed here. 

Finally, some conclusions are drawn and future work proposed in Section 4. 

2. Methods 

2.1. General nonlinear grey Bernoulli model (NGBM) 

In grey systems theory, the NGBM is a first-order single-variable grey model with an interpolated coefficient 

in the background value. The basic form and characteristics of general NGBM can be summarized as follows [24]: 

First, assume that the original historical time sequence 

0 0{ 1,2, , }t tF f t n                                                                   (1) 

is a nonnegative data sequence, where the observational data 
0

tf  corresponds to the system input at time t  and 

n  is the total number of time points. Set 
1 0

1 1f f  and construct 
1

tF  by a one-time accumulated generation 

operation (1-AGO), which is given by 

  
1 1{ 1,2, , }t tF f t n  ,                                                                (2) 

where 1 0

1

t

t kk
f f


 , 1,2, ,t n  and 

1

tF  is termed as the 1-AGO sequence of 
0

tF . 

Next, based on the principle of elementary differential equations, the Bernoulli equation [33] is introduced to 

establish the nonlinear grey Bernoulli equation for the NGBM as the following form 

  
0 1 1( )t t tf ag b g   , 2,3, ,t n ,                                                        (3) 

where 
0

tf  is called a grey derivative, 
1 1 1

1(1 )t t tg f f       is referred to as the background value of the 

grey derivative 
0

tf , and   is called the interpolated coefficient of the background value within a closed interval 

[0,1] , which is traditionally set to 0.5. When   is equal to 0.5, Eq. (3) is the general NGBM [24]. When   is 

an indefinite value in the interval [0,1] , Eq. (3) is the Nash nonlinear grey Bernoulli model (NNGBM) [25]. 

Then, at sampling time 1t  , the parameters a  and b  in matrix R̂  can be obtained through 

least-squares estimation according to Eq. (3) as follows: 

T 1 T
ˆ

ˆ ( )
ˆ n

a
R B B B F

b


 

   
 

,                                                               (4) 
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where 

1 1

2 2

1 1

3 3

1 1
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( )

( )n n

g g

g g
B

g g







 
 
 
 
 
  

 and 

0

2

0

3

0

n

n

f

f
F

f

 
 
 
 
 
  

. On the basis of the monotonically increasing sequence 
1

tF , the 

whitenization differential equation of the NGBM (i.e., a first-order differential equation) can be established as 

follows: 

1
1 1d

( )
d

t
t t

F
aF b F

t

  ,                                                                  (5) 

where the parameters a  and b  are called the developing and grey input coefficients, respectively, and the 

adjustable parameter 1   is called the power exponent. 

Thus, Eq. (5) can be solved together with initial value 1 0

1 1f̂ f , and the corresponding particular solution is 

1 (1 )

1 0 1 (1 )

1 1
ˆ ( ) a t

t

b b
f f e

a a



  



  
    

  
, 1  , 1t  ,                                     (6) 

which is called the time-response sequence of the NGBM. Then, the system output 1

1
ˆ
tf 

 of dependent variable 

1

tF  can be obtained from Eq. (6), accordingly. Application of the first-order inverse accumulated generation 

operation (1-IAGO) to 1

1
ˆ
tf 

 allows the simulation and forecasting values of the original sequence 0

tF  to be 

obtained as follows: 

     0 1 1

1 1
ˆ ˆ ˆ
t t tf f f   , 1t  .                                                                (7) 

Remark. The NGBM is a sort of significant grey prediction model especially useful for the nonlinear 

small-sample time sequences, where the adjustable power exponent   plays an important role. The adjustable 

value of   that matches with actual data could be acquired by certain optimization techniques. When 0  , the 

NGBM will degenerate into the traditional GM(1,1) model; when 2  , the NGBM will degenerate into the 

grey Verhulst model. Comparatively, the adjustable power exponent   in the NGBM can flexibly fit the actual 

historical observation (data) and effectively reflect the nonlinear characteristics of real systems. Numerous 

correlational studies indicate that the NGBM is ideally suitable for nonlinear systems including a class of 

approximate single-peak sequences [18,24,25,34-37]. 

Nevertheless, there are large stochastic fluctuation phenomena inevitably present in those real nonlinear 

systems due to uncertain external disturbances. The general NGBM cannot reveal the individual stochastic 

fluctuations but can only describe the integral single-peaked evolution tendency. Under such circumstances, it is 

impossible to ignore the apparent modeling errors by using the general NGBM. Therefore, it is very essential for 

exploring how to detect the individual stochastic fluctuations present in general evolution tendency of nonlinear 

systems with small samples. 

2.2. The self-memory algorithm 

Chaotic dynamics indicate that there are random behaviors exhibited even in simple dynamic systems due to 

nonlinearities; it also implies that a prediction method must consider randomness along with dynamics. The 

self-memory algorithm (SA) of dynamic systems has exactly filled the gap between determinism and randomness 

theory and has raised questions about the predictability of systems. As system change processes are often 

irreversible, SA was developed by introducing the memory function, which contains historical information, into 

the system dynamic equation. After defining the inner product in Hilbert space, the system dynamic equation (i.e., 

a differential equation) can be transformed into an appropriate difference-integral equation, which is termed as a 

self-memorization one. Then, the self-memorization equation can be used to predict the system status by means of 
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discretization and estimating the memory coefficients. The original dynamic differential equation has the 

weakness of being sensitive to the initial value. Comparatively, the self-memorization equation can eliminate this 

drawback on account that it contains initial fields for multiple time points instead of initial fields at only a single 

time point. Accordingly, the prediction superiority of SA lies in that it not only merges dynamic calculations 

together with parameter estimation from historical data but also adequately extracts historical information from 

real systems in statistics. 

The evolution process of system maybe described by a nonlinear function as follows: 

( ) ( , ( ))x t t f x t    ,                                                                 (8) 

where x  is a state variable in relation to time t , and   represents a set of all control parameters. Generally, 

0 1 2, , ,t t t  denote various moments, and 
0 1 2, , ,x x x  denote corresponding states. Let 

( )n nx x t , 
0nt t n t   ,                                                             (9) 

then Eq. (8) can be transformed into 
1 ( , , )n nx f t x   . There are various kinds of external disturbances that 

result in system uncertainty. After adding a stochastic term that affects the system state, the system equation can 

be expressed as follows: 

d
( , ( )) ( ) ( )

d

x
f x t g x Q t

t
   ,                                                           (10) 

where ( ) ( )g x Q t  is multiplicative noise, ( )gQ t  is additive noise and g  is a constant. 

Assume that one time set 
1 1 0 1 1[ , , , , , , , , ]p p q qT t t t t t t t     , where 

1 1, , ,p pt t t   
 denote historical 

time points (observation points) from 
pt  to 

1t , 
0t  denotes the current initial time point (observation point), 

1 1, , ,q qt t t
 denote the future forecasting time points (observation points) from 

1t  to 
qt . The spatial set is 

expressed as [ , , , , ]iR r r r  , where 
ir  is the spatial point which is inspected. The inner product space 

2 :L T R , which is in the Hilbert space, can be defined as follows: 

 
0

0

, ( ) ( )d
b

a
f g f g    ,  2,f g L .                                                   (11) 

Generally, the system dynamics equation can be expressed as follows: 

d
( , , )

d

x
F x t

t
  ,                                                                      (12) 

where x  is a variable,   is a parameter, t  is time interval series, and ( , , )F x t  is termed the dynamic 

kernel. Eq. (12) reflects the relationship between local change of x  at time t  and source function F . Then, 

the memory function is defined as ( , )r t , where   is the function of r and t , and ( , ) 1r t  . If it is 

limited to spatial point 
ir , the memory function can be simplified to ( )t . 

The ordinary initial-value problem in the general NGBM corresponds to a Markov process where the next 

value depends only on the present value. While we make a prediction by SA, the memory function ( )t  

possesses functions in memorizing 1p   values of x , because p  values before 
0t  are always utilized. This 

is the algorithm mechanism for introducing a memory function ( )t  into the novel SA-NGBM. 

2.3. Self-memory algorithm-based nonlinear grey Bernoulli model (SA-NGBM) 

Based on the algorithms mentioned above, the SA prediction method is coupled with the general NGBM to 

construct a novel SA-NGBM. The modeling flowsheet of the SA-NGBM is displayed in Figure 1. The calculation 

was performed with the aid of the MATLAB program in order to decrease the computational complexity for 

model parameters, memory coefficients, and so on. 
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FIGURE 1 The modeling flowsheet of the SA-NGBM. 

Considering nonlinear systems with small sample sizes, it is assumed that the original time sequence and the 

1-AGO sequence are 
0 0{ 1,2, , }t tF f t n   and 

1 1{ 1,2, , }t tF f t n   respectively. Then, the coupling 

modeling procedure of the SA-NGBM is described as follows. 

Step 1: Establishing the self-memory dynamic equation. 

Let the differential equation 

1
1 1d

( )
d

t
t t

F
aF b F

t

   , which is equal to the whitenization equation (5) of the 

NGBM, be 
1 1( , , ) ( )t tF x t aF b F     . Then, the self-memory dynamic equation of the novel SA-NGBM it is 

considered to be in the form 
d

( , , )
d

x
F x t

t
  , where the source function of dynamic kernel 

1 1( , , ) ( )t tF x t aF b F     . 

Step 2: Optimizing the power exponent and background value. 

The superiority of the NGBM lies in the fact that the adjustable value of power exponent  , which matches 

with actual data, could be acquired by certain optimization techniques. Optimization occurs by supposing that the 

objective function is the minimization of mean absolute percentage error (MAPE) and that the constraint 

condition is the relationship among parameters a , b  and   [35-37]: 
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0 0

02,

ˆ1

1

n t t

k
t

f f
Min MAPE

n f 





  

0 1 1

1

1 0 1 (1 ) 1 1

1

1 2 0 1 1 1 0 1

2 2 2 2

1 1 0 1 1 2 0 1

2 2 2 2

1 1 1

1

1

0 1

ˆ ˆ ˆ

ˆ { [( ) ] }
. . 

( ) ( ) ( )

( ) ( ) ( )

(1 )

2,3, ,

t t t

a t

t

n n n n

t t t t t tk k k k

n n n n

t t t t t tk k k k

t t t

f f f

f d f d e
S T

g f g g f g
d

g f g g f g

g f f

t n



   

 

   

  

   



 

  

 

  

  


  

    



   

   















.                           (13) 

The adjustable value of the power exponent   can be optimized by a nonlinear programming model (13). 

Meanwhile, the appropriate interpolated coefficient  , assumed to have a closed interval [0,1] , can be 

optimized against the background value 
1 1 1

1(1 )t t tg f f      . This equation can be conveniently solved with 

the aid of LINGO software or MATLAB software, thereby obtaining the optimal power exponent   and the 

interpolated coefficient  . 

Step 3: Deducing the difference-integral equation. 

Assume that one time set 
1 1 0 1 1[ , , , , , , , , ]p p q qT t t t t t t t     , where the number p  of historical time 

points is the retrospective order of the system, and q  is the number of future forecasting time points. If 

considering the multiple historical time points 
1 1, , ,p pt t t   

 and a single forecasting time point t , the 

memory function ( )t  and inner product operation (11) are introduced into 
1 1d

( )
d

t t

x
aF b F

t

   . Meanwhile, 

the variable x and memory function ( )t  are supposed to meet the conditions of continuous, differentiable and 

integrable. Then, the system dynamic equation can be changed to an analytic formula as follows: 

  
  

1 1

  
( ) d ( )[ ( ) ]d

p p

t t

t t

x
aF b F

 



 


        

  ,                                              (14) 

which can be regarded as the weighted integral whose weight is memory coefficient ( )t . Eq. (14) then becomes 

  
1 2

1 0

    
1 1

    
( ) d ( ) d ( ) d ( )[ ( ) ]d

p p

p p p

t t t t

t t t t

x x x
aF b F

   

   



 

  
                 

      .             (15) 

The method of integration by parts and the mean value theorem of integrals are applied to all integral terms on 

the left-hand side of Eq. (15). After merging and eliminating the similar terms, a difference-integral equation is 

deduced as: 

0  
1 1

1
 

( ) ( )[ ( ) ]d 0
p

t
m

t t p p i i i
t

i p

x x x aF b F




    



             ,                            (16) 

where ( )t t   , ( )tx x t , ( )i it  , ( )i ix x t , , 1, ,0i p p    , and mid-value ( )m

i mx x t , 

1i m it t t   . 

Step 4: Discretizing the self-memory prediction equation. 

Let 
1

m

p px x    and 
1 0p   . Eq. (16) can then be transformed into 

  
0  

1 1

1
 

1

1 1
( ) ( )[ ( ) ]d

p

t
m

t i i i
t

i pt t

x x aF b F




  

 

        
 
  1 2   ,                          (17) 
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and is termed the p -order self-memory prediction equation, where p  denotes the retrospective order. The 

self-memory equation (17) emphasizes that the predicted value 
tx  at time point t  is the joint contribution of 

self-memory term 
1  and exogenous effect term 

2 . Eq. (17) can be discretized by replacing the integral 

operation with summation, replacing the differential with a difference, and replacing the mid-value 
m

ix  with the 

mean value at two contiguous time points, namely, 
1

1
( )

2

m

i i i ix x x y   . The self-memory equation (17) can 

be discretized by taking the equidistance time interval 
1 1i i it t t     for the time points, and merging 

t  

with 
i : 

  
1 0

1 1

1

[ ( ) ]t i i i i i

i p i p

x y aF b F




  

       ,                                                 (18) 

where 
1( )i i i t      and 

i i t     are called memory coefficients. 

Step 5: Estimating the memory coefficients matrix. 

When compared to a general differential equation, there is an extra memory function ( )t  present in the 

self-memory equation. Therefore, the self-memory equation has no analytic solution, and the numerical solution 

only can be solved with the aid of a computer. If regarding F  and x  as the input and output of the systems 

respectively, the self-memory equation can be solved by using the ordinary least squares method (OLS). Assume 

that there is a historical data sequence at ( )L L p  time points, and OLS is used to estimate the memory 

coefficients 
i  and 

i  in Eq. (18). Let 

1

2

1  

t

t

t
L

tL

x

x
X

x



 
 
 
 
 
 

, 

1,1 ,1 1,1

1,2 ,2 1,2

( 1)

1, , 1,

p p

p p

L p

p L p L L

y y y

y y y
Y

y y y

   

   

 

   

 
 
 
 
 
  

, 

1

( 1) 1

1

   

p

p

p
A

 



 



 
 
 
 
 
 

, 

1 1 1 1 1 1

1 1 1 1 0 0 1

1 1 1 1 1 1

2 1 1 2 0 0 2

( 1)

1 1 1 1 1 1

1 1 0 0

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

p p p p

p p p p

L p

p p L p p L L

aF b F aF b F aF b F

aF b F aF b F aF b F

aF b F aF b F aF b F

  

     

  

     

 

  

     

      
 
       

 
 
       

, 1

( 1) 1

0

   

p

p

p



 

 

 
 
  
 
 
 

, 

then the matrix form of Eq. (18) can be expressed as follows: 

tX YA  .                                                                      (19) 

If we let  ,Z Y  , 
A

W
 

  
 

, then Eq. (19) turns into 
tX ZW , and can thereby be described as the least 

square estimation of memory coefficients matrix W  is obtained by OLS: 

T 1 T( ) tW Z Z Z X .                                                                  (20) 

Step 6: Solving the self-memory prediction model. 

After the memory coefficient matrix W  is substituted into the discretized prediction equation (18), the 

simulation and forecasting value 1ˆ ( 1)tf t   of the 1-AGO sequence 
1

tF  can be acquired. Then, by applying 

the 1-IAGO to 
1ˆ

tf , its corresponding inverse accumulated value 
0ˆ ( 1)tf t   can be solved as follows: 

  
0 1 1

1
ˆ ˆ ˆ
t t tf f f  , 1t  ,                                                                (21) 

where 
1

0
ˆ 0f  . Consequently, the simulation and forecasting sequence 

0 0ˆˆ { 1}t tF f t    of the original 
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sequence 0

tF  is obtained. 

2.4. Accuracy and significance test of forecasting performance 

The purpose of prediction to provide services for decision making, and the credible and accurate predicting of 

outcomes are the precondition for scientific decision. Therefore, the accuracy and significance test results are 

important evaluation criteria for comparing the SA-NGBM with other prediction models. Only after the prediction 

model has passed through the accuracy and significance tests can it be used for extrapolation and application. In 

this study, four popular test indices for grey prediction methods have been used to compare the accuracy of 

different prediction models and test the corresponding significance as follows [9,20]. 

Let 0  ( 1,2, , )tf t n  denote the actual values at time point t  of the original sequence 
0

tF , and 

0ˆ  ( 1,2, , )tf t n  denote the corresponding predicted values. Thus 0 0ˆ( )  ( 1,2, , )t tq t f f t n    is called the 

residual error at specific time point t . In addition, the 0 0 2

1

1 ˆRMSE ( )
n

t tt
f f

n 
   denotes the root mean 

square error. 

Test criterion 1: Residual error test 

The residual error test is one type of pointwise test method. The relative percentage error RPEt
 at time point 

t  is defined as 

0

( )
RPE ( ) 100%t

t

q t
t

f
    , 2,3, ,t n ,                                                 (22) 

where ( )q t  denotes the residual error at time point t . The average relative percentage error ARPE  at all time 

points is expressed as 

2

1
ARPE ( ) ( )

1

n

t
avg t

n 
   


 , 2,3, ,t n .                                         (23) 

For a given 0  , when ARPE   and RPEt   , then the model is supposed to pass the residual error test. 

Test criterion 2: Posterior variance test 

Let 
0

1

1 n

tt
f f

n 
   and 

2 0 2

1 1

1
( )

n

tt
S f f

n 
   denote the mean value and variance of the original 

sequence 
0

tF , respectively. Moreover, 
1

1
( )

n

t
q q t

n 
   and 

2 2

2 1

1
( ( ) )

n

t
S q t q

n 
   denote the mean value 

and variance of the residual error sequence 0Q , respectively. The ratio of mean square error 
2 1C S S  is 

termed as the posterior variance ratio. For a given 
0 0C  , if there is 

0C C , then the model is a 

posterior-variance-ratio-qualified model. In the same way, for a given 
0 0p  , if there is 

1 0{ ( ) 0.6745 }p P q t q S p    , then the model is a small-error-probability-qualified model. Accordingly, the 

model is considered to pass the posterior variance test. 

Test criterion 3: Correlation degree test 

Let 

ˆ1

ˆ ˆ1

   
 

       
 denote the absolute correlation degree between the original sequence 

0

tF  and 

predicted sequence 
0ˆ

tF , where 
1 0 0

2

1

2

n

t nt
f f




   , 

1 0 0

2

1ˆ ˆˆ
2

n

t nt
f f




    and 

1 0 0 0 0

2

1ˆ ˆˆ ( ) ( )
2

n

t t n nt
f f f f




      . For a given 

0 0  , if the model satisfies 
0   , then it is regarded to 
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pass the correlation degree test. 

Test criterion 4: Significance test of error 

Let 
0

( )
t

t

q t
E

f
 ( 2,3, , )t n , and it is generally considered to obey a normal distribution, i.e., tE 2( , )N   , 

where   and 2  are unknown. The higher the prediction accuracy is, the closer to zero the mathematical 

expectation of relative error obeying a normal distribution is. Therefore, the level of prediction accuracy is 

equivalent to the hypothesis testing as follows: 

0 : 0H   , 1 : 0H   .                                                                 (24) 

For a given confidence level  , the test statistic ( 1)
E

t n
s n

   is constructed. If there is 
1 2( 1)t n t   , then 

0H  is rejected, meaning that there was a significant difference between the modeling error and zero. Conversely, 

if there is 
1 2( 1)t n t   , then 

0H  is accepted, meaning that there was no significant difference between them. 

Consequently, the model is considered to pass the significance test. 

From the above, the residual error, posterior variance, correlation degree and significance can be used for 

testing the reliability and accuracy of prediction models. Four accuracy test indices for each model are 

comprehensively evaluated in Table 1. 

TABLE 1 The commonly used scales of different test indices for accuracy test [9,20] 

Accuracy class 
Accuracy test index 

Average relative error 

( )avg  
Posterior variance ratio 

C  

Small error probability 

p  

Correlation degree 

  

1st level (superior) 1%  0.35  95%  0.90  

2nd level (qualified) 1% 5% 0.35 0.50  80% 95% 0.80 0.90  

3rd level (marginal) 5% 10%  0.50 0.65 70% 80% 0.70 0.80  

4th level (disqualified) 10% 20%  0.65 0.80  60% 70%  0.60 0.70  

3. Empirical analysis on plasma concentration of acetylsalicylic acid 

3.1. Data 

Plasma concentration data of acetylsalicylic acid were obtained from another study [38]. This study examined 

four experimental rabbits whose weights were between 2.5 kg and 3.0 kg. After a 12 hour fast, they were given 

acetylsalicylic acid tablets (50-100 mg·kg
1

) orally. Then, the plasma concentration data at different time points 

after taking the medicine were obtained. Table 2 lists the acetylsalicylic acid plasma concentrations corresponding 

to those four experimental rabbits. 

TABLE 2 Plasma concentration of acetylsalicylic acid of four groups [38] (unit: μg·mL1) 

Time-point Group 1 Group 2 Group 3 Group 4 

1 (0.15h) 151.34 147.34 153.85 150.83 

2 (0.25h) 169.29 157.94 170.34 167.34 

3 (0.50h) 211.14 205.78 211.67 198.23 

4 (1.00h) 232.52 221.45 236.47 228.46 

5 (1.50h) 247.01 250.63 258.65 249.85 

6 (2.00h) 252.33 259.85 266.24 261.85 

7 (2.50h) 255.87 264.46 273.45 270.46 

8 (3.00h) 258.42 269.74 277.46 275.27 

9 (3.50h) 231.21 249.83 257.53 252.99 

10 (4.00h) 211.85 228.73 237.35 230.53 
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11 (6.00h) 170.36 192.35 209.35 201.75 

12 (13.0h) 126.55 143.63 151.43 149.64 

13 (22.0h) 93.43 106.42 111.34 109.25 

Testing the significance of differences between the four groups of plasma time-concentration data should be 

carried out before conducting prediction. Above all, Friedman rank sum testing was conducted for the four groups 

of data as a whole. The Friedman chi-squared was 47.473, and the p-value was far less than 0.00001. Results 

indicate that there existed significant differences and high correlations among the four experimental groups. 

Wilcoxon signed-rank testing was then employed on each data pair. Testing results showed that there existed 

significant differences between each two experimental groups, except between group 1 and group 2. Therefore, 

the four groups of plasma time-concentration data have passed the significance testing. 

Figure 2 shows the four groups of plasma concentration trend curves of acetylsalicylic acid. As is seen in this 

figure, there was an obvious single-peak tendency for each group of plasma concentrations, accompanied by 

irregular fluctuations due to the unstable changes occurring from the experimental and material factors. In 

conclusion, the plasma concentrations of acetylsalicylic acid showed an obvious nonlinear characteristic of 

single-peak tendency with stochastic fluctuations. 
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FIGURE 2 Plasma concentration tendency of acetylsalicylic acid of four groups. 

3.2. Results 

As a result of factors introducing uncertainty, such as the precision of detection and experimental error, the 

plasma concentrations of acetylsalicylic acid present typical grey system characteristics with small sample sizes 

and poor information. For this reason, this paper will build the SA-NGBM, an optimized NGBM (ONGBM) [36], 

an exponential smoothing model (ES) [39] and a simple moving average model (SMA) [40] to simulate the 

plasma concentration of acetylsalicylic acid at different time points. The plasma concentration data of the first 

eleven time points are taken as the simulation samples, and the data of the latter two time points are chosen as 

testing samples for prediction testing. Meanwhile, four popular accuracy and significance test criteria are adopted 

to check the prediction accuracy of different prediction models. 

3.2.1. Forecasting the plasma concentration of acetylsalicylic acid of group 1 

Following the modeling steps to couple the SA-NGBM with the SA algorithm, the power exponent is 

0.573411  , the interpolated coefficient of background value is 0.594408  , and the corresponding values 
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of the parameter ,  a b  are 0.313723, 10.804450, respectively. Meanwhile, the value of the retrospective order is 

determined as 2p   by trial calculation method by minimizing the root-mean-square error. The memory 

coefficients are 
3 0.403296  , 

2 1.846963   , 
1 2.395267  , 

2 0.414322  , 
1 0.251846  and 

0 0.040747  , respectively. The model values of the SA-NGBM and other three compared models are shown in 

Table 3. There are no simulated values of the first two time points owing to the retrospective order 2p   in the 

SA-NGBM. 

TABLE 3 The predicted values for plasma concentration of acetylsalicylic acid of group 1 (unit: μg·mL1) 

Time- 

point 

Plasma 

concentration 

at group 1 

SA-NGBM model 

0.573411   

0.594408  , 2p   

ONGBM model 

0.595842   

0.5   

Single exponential 

smoothing 

Simple moving average 

0

tf  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  

2 169.29 — — 169.290 0.000% 169.290 0.000% — — 

3 211.14 — — 212.093 -0.451% 169.290 19.821% — — 

4 232.52 232.593 -0.031% 238.766 -2.686% 206.955 10.995% — — 

5 247.01 244.099 1.178% 251.908 -1.983% 229.964 6.901% 204.317 17.284% 

6 252.33 259.987 -3.035% 254.530 -0.872% 245.305 2.784% 230.223 8.761% 

7 255.87 254.026 0.721% 249.426 2.518% 251.628 1.658% 243.953 4.657% 

8 258.42 246.525 4.603% 238.955 7.532% 255.446 1.151% 251.737 2.586% 

9 231.21 244.214 -5.624% 225.007 2.683% 258.123 11.640% 255.540 -10.523% 

10 211.85 206.735 2.414% 209.035 1.329% 233.901 10.409% 248.500 -17.300% 

11 170.36 172.230 -1.098% 192.124 -12.775% 214.055 25.649% 233.827 -37.255% 

( )avg   2.338%  3.283%  9.101%  14.052% 

12 126.55 137.129 -8.360% 175.058 -38.331% 174.730 -38.072% 204.473 -61.575% 

13 93.43 79.610 14.792% 128.968 -38.037% 131.368 -40.606% 169.587 -81.512% 

The accuracy and significance test criteria values of different prediction models for plasma concentration of 

acetylsalicylic acid of group 1 are listed in Table 4. 

TABLE 4 Accuracy and significance test of predicted values for different grey prediction models 

Model RMSE ( )avg  C  p    Significance ( =0.95)  

SA-NGBM model 7.165581 2.338 % 0.259230 100.000 % 0.9896 significant 

ONGBM model 10.046072 3.283 % 0.320229 90.000 % 0.9911 significant 

Single exponential smoothing 24.272530 9.101 % 0.773521 50.000 % 0.9745 nonsignificant 

Simple moving average 34.767227 14.052 % 1.159815 42.857 % 0.6435 nonsignificant 

3.2.2. Forecasting the plasma concentration of acetylsalicylic acid of group 2 

In the same way as group 1, the power exponent 0.631898  , background value 0.527600  , and 

parameter 0.365241a  , 7.925877b   are obtained for group 2. Meanwhile, under the retrospective order 

2p  , the corresponding memory coefficients are 
3 0.109115  , 

2 1.580079   , 
1 2.419673  , 

2 0.066091   , 
1 0.302783  and 

0 0.177644  , respectively. The model values of the SA-NGBM and 

other three compared models are shown in Table 5. Similarly, there are no simulated values of the first two time 

points in the SA-NGBM. 

TABLE 5 The predicted values for plasma concentration of acetylsalicylic acid of group 2 (unit: μg·mL1) 

Time- 

point 

Plasma 

concentration 

at group 2 

SA-NGBM model 

0.631898   

0.527600  , 2p   

ONGBM model 

0.639316   

0.5   

Single exponential 

smoothing 

Simple moving average 
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0

tf  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  

2 157.94 — — 157.940 0.000% 157.940 0.000% — — 

3 205.78 — — 202.751 1.472% 157.940 23.248% — — 

4 221.45 221.054 0.179% 234.062 -5.695% 200.996 9.236% — — 

5 250.63 250.475 0.062% 252.688 -0.821% 219.405 12.459% 195.057 22.173% 

6 259.85 260.314 -0.179% 260.579 -0.281% 247.507 4.750% 225.953 13.045% 

7 264.46 271.012 -2.478% 259.983 1.693% 258.616 2.210% 243.977 7.745% 

8 269.74 256.322 4.974% 253.049 6.188% 263.876 2.174% 258.313 4.236% 

9 249.83 256.739 -2.765% 241.646 3.276% 269.154 -7.735% 264.683 -5.945% 

10 228.73 229.996 -0.553% 227.315 0.619% 251.762 -10.070% 261.343 -14.258% 

11 192.35 191.453 0.466% 211.275 -9.839% 231.033 -20.111% 249.433 -29.677% 

( )avg   1.457%  2.988%  9.199%  13.869% 

12 143.63 153.590 -6.935% 194.456 -35.387% 196.218 -36.614% 223.637 -55.704% 

13 106.42 85.746 19.427% 143.320 -34.674% 148.889 -39.907% 188.237 -76.881% 

The accuracy and significance test criteria values of different prediction models for plasma concentration of 

acetylsalicylic acid of group 2 are listed in Table 6. 

TABLE 6 Accuracy and significance test of predicted values for different grey prediction models 

Model RMSE ( )avg  C  p    Significance ( =0.95)  

SA-NGBM model 5.847106 1.457 % 0.238907 100.000 % 0.9898 significant 

ONGBM model 9.480363 2.988 % 0.276589 100.000 % 0.9937 significant 

Single exponential smoothing 25.106145 9.199 % 0.721896 50.000 % 0.9561 nonsignificant 

Simple moving average 36.508674 13.869 % 1.469318 14.286 % 0.5166 nonsignificant 

3.2.3. Forecasting the plasma concentration of acetylsalicylic acid of group 3 

In the same way as groups 1 and 2, the power exponent 0.582311  , background value 0.550247  , 

and parameter 0.290872a  , 9.948943b   are obtained. Meanwhile, under the retrospective order 2p  , 

the corresponding memory coefficients are 
3 0.341151  , 

2 0.934582   , 
1 1.570336  , 

2 7.756000   , 
1 18.737145  and 

0 9.831399   , respectively. The model values of the SA-NGBM 

and other three compared models are shown in Table 7. Similarly, there are no simulated values of the first two 

time points in the SA-NGBM. 

TABLE 7 The predicted values for plasma concentration of acetylsalicylic acid of group 3 (unit: μg·mL1) 

Time- 

point 

Plasma 

concentration 

at group 3 

SA-NGBM model 

0.582311   

0.550247  , 2p   

ONGBM model 

0.607507   

0.5   

Single exponential 

smoothing 

Simple moving average 

0

tf  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  

2 170.34 — — 166.534 2.234% 170.340 0.000% — — 

3 211.67 — — 211.670 0.000% 170.340 19.526% — — 

4 236.47 236.358 0.047% 242.731 -2.648% 207.537 12.235% — — 

5 258.65 257.480 0.452% 261.155 -0.968% 233.577 9.694% 206.160 20.294% 

6 266.24 269.010 -1.040% 269.123 -1.083% 256.143 3.792% 235.597 11.510% 

7 273.45 276.333 -1.054% 268.902 1.663% 265.230 3.006% 253.787 7.191% 

8 277.46 266.057 4.110% 262.561 5.370% 272.628 1.742% 266.113 4.090% 

9 257.53 267.177 -3.746% 251.864 2.200% 276.977 -7.551% 272.383 -5.767% 

10 237.35 233.946 1.434% 238.254 -0.381% 259.475 -9.322% 269.480 -13.537% 
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11 209.35 210.872 -0.727% 222.870 -6.458% 239.562 -14.431% 257.447 -22.974% 

( )avg   1.576%  2.301%  8.130%  12.195% 

12 151.43 183.598 -21.243% 206.587 -36.424% 212.371 -40.244% 234.743 -55.017% 

13 111.34 70.059 37.077% 157.065 -41.068% 157.524 -41.480% 199.377 -79.070% 

The accuracy and significance test criteria values of different prediction models for plasma concentration of 

acetylsalicylic acid at group 3 are listed in Table 8. 

TABLE 8 Accuracy and significance test of predicted values for different grey prediction models 

Model RMSE ( )avg  C  p    Significance ( =0.95)  

SA-NGBM model 5.638736 1.576 % 0.263565 100.000 % 0.9971 significant 

ONGBM model 7.257053 2.301 % 0.224003 100.000 % 0.9811 significant 

Single exponential smoothing 22.687607 8.130 % 0.685827 50.000 % 0.9543 nonsignificant 

Simple moving average 33.329205 12.195 % 1.511051 14.286 % 0.5109 nonsignificant 

3.2.4. Forecasting the plasma concentration of acetylsalicylic acid of group 4 

In the same way as the prior groups, the power exponent 0.665516  , background value 0.607350  , 

and parameter 0.416486a  , 6.833010b   are obtained. Meanwhile, under the retrospective order 2p  , 

the corresponding memory coefficients are 
3 0.082427   , 

2 0.518745   , 
1 1.572655  , 

2 5.859309   , 
1 13.065967  and 

0 6.406394   , respectively. The model values of the SA-NGBM 

and other three compared models are shown in Table 9. Similarly, there are no simulated values of the first two 

time points in the SA-NGBM. 

TABLE 9 The predicted values for plasma concentration of acetylsalicylic acid of group 4 (unit: μg·mL1) 

Time- 

point 

Plasma 

concentration 

at group 4 

SA-NGBM model 

0.665516   

0.607350  , 2p   

ONGBM model 

0.716306   

0.5   

Single exponential 

smoothing 

Simple moving average 

0

tf  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  

2 167.34 — — 151.319 9.574% 167.340 0.000% — — 

3 198.23 — — 198.230 0.000% 167.340 15.583% — — 

4 228.46 228.366 0.041% 233.284 -2.112% 195.141 14.584% — — 

5 249.85 247.001 1.140% 255.542 -2.278% 225.128 9.895% 198.010 20.748% 

6 261.85 269.918 -3.081% 266.057 -1.607% 247.378 5.527% 225.513 13.877% 

7 270.46 268.270 0.810% 266.806 1.351% 260.403 3.718% 246.720 8.778% 

8 275.27 264.234 4.009% 260.027 5.537% 269.454 2.113% 260.720 5.286% 

9 252.99 262.799 -3.877% 247.852 2.031% 274.688 -8.577% 269.193 -6.405% 

10 230.53 230.290 0.104% 232.124 -0.691% 255.160 -10.684% 266.240 -15.490% 

11 201.75 200.155 0.791% 214.339 -6.240% 232.993 -15.486% 252.930 -25.368% 

( )avg   1.732%  3.142%  8.617%  13.707% 

12 149.64 169.648 -13.371% 195.654 -30.750% 204.874 -36.911% 228.423 -52.648% 

13 109.25 106.204 2.788% 152.553 -39.637% 155.163 -42.026% 193.973 -77.550% 

The accuracy and significance test criteria values of different prediction models for plasma concentration of 

acetylsalicylic acid at group 3 are listed in Table 10. 

TABLE 10 Accuracy and significance test of predicted values for different grey prediction models 

Model RMSE ( )avg  C  p    Significance ( =0.95)  

SA-NGBM model 6.109683 1.732 % 0.264338 100.000 % 0.9957 significant 

ONGBM model 8.735930 3.142 % 0.258615 100.000 % 0.9138 significant 
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Single exponential smoothing 22.524427 8.617 % 0.660678 50.000 % 0.9557 nonsignificant 

Simple moving average 35.737509 13.707 % 1.506252 14.286 % 0.5299 nonsignificant 

3.3. Discussion 

From the viewpoint of accuracy and significance testing, the nonlinear grey Bernoulli model is particularly 

appropriate to approximate single-peak sequences. It is shown that the NGBM can take into full consideration the 

characteristics of approximating single-peaks among sequences and is able to adequately reflect the integral 

evolution laws of nonlinear systems compared with the ES [39] and SMA [40] models. Nevertheless, as a result of 

uncertainty about external disturbances, the traditional NGBM [24,25] cannot effectively reflect large stochastic 

fluctuations that commonly exist in nonlinear systems. In contrast, the SA method helped the NGBM to closely 

catch individual stochastic variations. The limitations of the traditional NGBM, such as sensitivity to initial values 

of the differential equation, can be eliminated by using multi-timepoint initial fields instead using data from only a 

single time point [30]. The prediction accuracy of the SA-NGBM was further improved compared with the 

traditional ONGBM. Meanwhile, the fitting curves of plasma concentration of acetylsalicylic acid and their 

corresponding comparison results of the RPEt
 distribution are shown in Figures 3–6 respectively. As seen from 

the following figures, the proposed SA-NGBM model can better represent the tendency of integral single-peak 

development, along with individual fluctuations existing in nonlinear systems, and possesses more stable and ideal 

prediction effects. Therefore, it is a reliable and stable model for predicting the future evolutionary trend of 

single-peaked nonlinear systems with small sample sizes. 
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FIGURE 3 Comparison among original and simulative curves of different prediction models of group 1. 
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FIGURE 4 Comparison among original and simulative curves of different prediction models of group 2. 
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FIGURE 5 Comparison among original and simulative curves of different prediction models of group 3. 
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FIGURE 6 Comparison among original and simulative curves of different prediction models of group 4. 

In addition, from the comparison of results across accuracy and significance tests, the residual error, posterior 

variance, correlation degree and error significance of the SA-NGBM were widely superior to that of other 

prediction models. Thus, according to grey prediction theory [9,20], the proposed SA-NGBM could be used to 

carry out extrapolation and prediction that could reasonably reflect the decreasing trend of the future plasma 

concentration of acetylsalicylic acid. 

Nevertheless, in real-life situations, there exist numerous influence factors involved in plasma concentration. 

For example, the individual difference between patients, different dosage regimens, the unknown potential drug 

interactions, the pathophysiological status of patients, and so forth, could all influence plasma concentrations. 

Therefore, high-quality plasma time-concentration data are difficult to acquire. With the development of clinical 

drug trials, the systematic population pharmacokinetics can be conducted in the clinical stage of new drugs. 

Consequently, the high-quality data samples can be obtained for conducting plasma concentration prediction and 

guiding clinical medication regimens. 

4. Conclusion and future work 

In this paper, we propose a self-memory algorithm-based NGBM model termed SA-NGBM and utilize it to 

predict the plasma concentration of acetylsalicylic acid. The model combines the prediction advantages of the 

self-memory algorithm and the traditional NGBM. SA could be useful for catching the individual stochastic 

fluctuations existing in nonlinear systems due to uncertain external disturbances. The system’s self-memorization 

equation of the SA-NGBM contains a multiple-time-point initial field instead of an initial value determined from a 

single time point. Consequently, it overcomes the limitations of being sensitive to the initial value used in the 

traditional NGBM and possesses more robust predictions. The empirical results indicated that the new model can 

take full advantage of the historical statistical information and capture tightly the nonlinear system's tendency of 
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integral evolution and individual fluctuations. It is worth popularizing and applying to forecast other 

single-peaked time sequences with similar sample sizes. 

Plasma concentration prediction and monitoring for drugs are important to guide the rational use of drugs as 

clinical medications. Accurate predictions are conducive to reduce the adverse reactions of patients, and are 

expected to provide more convenience for drug developers. In clinical environments, the original plasma 

time-concentration data distributions often present downward trends, such as intravenous administration, or the 

single-peaked types, such as extravascular administration. Nevertheless, many plasma time-concentration data that 

are required by conventional pharmacokinetics cannot be acquired easily. Under the condition of small sample 

sizes, the clinical plasma concentration sequence characteristics of single-peaked series can also be predicted 

using analogical modeling. Once the accuracy and significance test has been passed, the model can be used for 

extrapolation forecasting. Accordingly, through the prediction method proposed in this paper, similar small 

sample-size, single-peaked, plasma concentration series of other drugs can be predicted by analogy. Patients can 

be individually tracked and treated, allowing for drug dosage, physical metabolism and other drug guidance 

programs to be obtained more scientifically and accurately. By means of the combination of computer algorithms 

and clinical pharmacology, data-mining methods can be used to improve human health and have good 

development prospects. 

However, the existing research on the SA-NGBM is not comprehensive in this paper. Problems such as the 

intelligent optimization algorithms of the retrospective order have not been discussed. Additionally, the 

SA-NGBM is a univariable nonlinear grey Bernoulli model and cannot reflect the effect of relevant factors in 

multivariable nonlinear systems with interacting relationships. In addition, new plasma time-concentration data 

will continually enter into the original systems as a result of the periodical monitoring when considering the 

time-concentration curve for repeated administrations. The metabolism model based on the new information 

priority principle may be introduced into the SA-NGBM. Therefore, there remain some solutions that should be 

explored for these problems. 
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Abstract 

The goal of this work is to present and explore the application of a novel nonlinear grey Bernoulli combined 

model based on a self-memory algorithm, abbreviated as SA-NGBM, for modeling single-peaked sequences of 

time samples of acetylsalicylate plasma concentration following oral dosing. The self-memorization SA-NGBM 

routine reduces the dependence on a solitary initial value, as the initial state of the model utilizes multiple time 

samples. To test its forecasting performance, the SA-NGBM was used to extrapolate the plasma concentration 

predicted data, in comparison with the later time samples. The results were contrasted with those of the traditional 

optimized NGBM (ONGBM), exponential smoothing (ES) and simple moving average (SMA) using four popular 

accuracy and significance tests. That comparison showed that the SA-NGBM was much more accurate and 

efficient for matching the individual, nonlinear-system stochastic fluctuations than the existing ONGBM, ES and 

SMA models. The findings have potential applications for signal matching to similar small sample size, 

single-peaked, plasma concentration series. 

Keywords 

grey prediction theory; nonlinear grey Bernoulli model; self-memory algorithm; plasma concentration. 

1. Introduction 

With the rapid development of pharmaceutical science, practice indicates that the pharmacological action of 

many medicines is often closely related to their plasma concentration. The relationship of the therapeutic effect or 

toxicity of drugs follows plasma concentrations more closely than dosage. Plasma concentration refers to the total 

concentration in plasma after the drug is absorbed, and it usually can reflect the concentration variation of drug at 

the site of action. Therefore, the plasma concentration prediction for drugs is an important concern for modern 

medical research and has a great significance for rational drug use in patients and clinical medication guidance. 

The conventional prediction methods are pharmacokinetic models, constrained by kinetic parameters for 

individual drugs. For instance, in a compartment model, the organism could be assumed to be an abstract 

one-compartment, two-compartment or multicompartment dynamical model, according to different pharmic 

disposal speeds. Thus, the relationship between drug concentration and time in each compartment could be 

expressed by one differential equation, and the drug concentration could be obtained by means of solving the 

corresponding differential equations [1]. However, the traditional pharmacokinetic models should be performed 

under the hypothesis of many drug concentration data at multiple time points. Nonlinear iterative regression used 

to solve for the parameters easily leads to large computational demands and complicated processes. In recent years, 

some artificial intelligence methods, such as artificial neural networks (ANN), have been considered to forecast 

plasma concentrations [2]. On the premise of large sample data, these methods can perform prediction by means 

of training data without assuming a drug behavior model. However, it is difficult to acquire lots of high-quality 

clinical data due to many influencing factors and the absence of effective monitoring information. Meanwhile, the 

human body is an extremely complex organism that includes various random factors, so changes in plasma 

concentration in the body could be considered as an irregular and uncertain nonlinear system. Moreover, the grey 

systems theory is particularly suitable for studying those systems containing partially known information and 
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partially unknown information or underdetermined problems. 

The traditional statistical prediction methods, such as the autoregressive moving-average model [3], the 

bilinear model [4] and the nonlinear autoregressive model [5], require assumptions about the system structure. 

However, there often exists uncertainty arising from the limitation of cognitive level and the influence of 

unknown disturbance. Hence, only part of the system structure could be fully realized, or it is very difficult to 

obtain the available information with large sample size. In view of the increasing complexity, uncertainty and 

chaos of the system's structure, several theories about uncertain systems have been produced, including fuzzy 

mathematics proposed by Zadeh [6] and the rough sets theory by Pawlak [7]. As an emerging branch of 

uncertainty systems science, the grey systems theory was initially proposed by Deng to study uncertain systems 

with small sample size and poor information [8,9]. Grey systems contain incomplete information which parts of 

the system are partially known or unknown. In this uncertainty theory, valuable information can be extracted by 

means of the accumulated generating operation (AGO) used on a small amount of historical observation (data). As 

an important theoretical component, the grey prediction models can weaken the randomness of original statistical 

data through AGO [10]. As a benefit over traditional statistical models, grey prediction models require only a 

limited amount of historical observation (data) and do not require knowing their statistical distribution. So far, 

they have already been effectively utilized in numerous fields, such as social economy [11,12], electric 

engineering [13], energy environment [14,15], transportation [16], public health [17,18,19] and have demonstrated 

satisfactory prediction results. 

Among the grey systems, the GM(1,1) model is the basic core model and is especially useful for 

approximating homogenous exponential sequence [20]. Since first proposed by Deng, a series of improved grey 

prediction models were continuously developed for different types of time sequences, including the discrete grey 

model [21] and the GM(1,1) model with fractional order accumulation [22,23]. However, the original data 

distributions obtained from pharmacokinetic studies often present downward trends, such as from intravenous 

administration, or the single-peak types (an increase followed by a decrease), such as from extravascular 

administration. The conventional grey prediction models, as mentioned above, are inappropriate for the 

pharmacokinetic prediction. However, the nonlinear grey Bernoulli model termed NGBM(1,1) is a recently 

developed grey prediction model proposed by Chen, which is especially suitable for a class of approximate 

single-peak sequences [24,25]. After combining the GM(1,1) model with the Bernoulli differential equation, the 

power exponent in the NGBM can flexibly determine the trend curve of real systems and effectively manifest 

nonlinear characteristics. Nevertheless, certain time sequences of real systems, including nonlinear systems, often 

show large stochastic fluctuations due to uncertain external disturbances. Additionally, there is a limitation of 

these models that they are sensitive to the initial value of the original dynamic differential equation. It is inevitable 

that the original grey models will generate apparent modeling errors, so the self-memory algorithm could be 

considered for including the individual fluctuations occurring in general evolution tendencies. 

Based on the irreversibility of natural and social phenomena, Cao first proposed the self-memory algorithm of 

dynamic systems by introducing the memory concept [26]. The history information should be investigated 

adequately if we want to realize the current status of system and predict its future trend. The self-memory 

algorithm (SA) exactly emphasizes the relationship between states before and after the current system status. It 

regards the environmental factors as external forcing, with a view to the evolution law of system per se. By 

introducing the memory function which contains historical information, the differential equation that restricts the 

dynamic system can be transformed into an appropriate difference-integral equation termed the self-memorization 

equation. It is a dynamical equation, though parameter estimation of the corresponding memory coefficients is a 

statistical method. Therefore, SA is the statistical-dynamic method to solve problems of nonlinear dynamic 

systems by integrating deterministic and random theories [27]. The predictive superiority of SA lies in that it not 

only avoids the drawback of using only one initial value in the initial-value problems of differential equations but 

also absorbs the advantage of extracting information from historical data in statistics. SA is a breakthrough for 

numerical solution of traditional initial-value problems and statistical methods, and it has been increasingly 
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applied into various fields including meteorology, hydrology, and engineering science [28,29]. Meanwhile, SA 

was also combined with some grey prediction models including the GM(1,1) model, the DHGM(2,2) model and 

interval grey number models and showed satisfactory prediction results [30-32]. Accordingly, SA can be further 

introduced into the NGBM to predict the single-peaked nonlinear system together with individual stochastic 

fluctuations. 

Aiming at the single-peaked nonlinear systems with small samples that exist in pharmacokinetic studies, this 

paper will construct a self-memory algorithm-based nonlinear grey Bernoulli model (SA-NGBM). The traditional 

NGBM can describe the integral single-peaked development tendencies of nonlinear systems, and the 

self-memory algorithm can capture the individual stochastic variations. The proposed SA-NGBM combines the 

prediction advantages of the SA and NGBM models through coupling the two prediction methods. The limitations 

of the traditional NGBM, such as sensitivity to the initial values of the differential equation, can be eliminated by 

using multi-timepoint initial field instead of an initial value from a single time point. Meanwhile, the SA-NGBM 

will be applied to simulate the plasma concentration of acetylsalicylic acid for method validation. 

The remainder of this paper is organized as follows: A brief introduction to the general nonlinear grey 

Bernoulli model, the self-memory algorithm and the self-memory algorithm-based nonlinear grey Bernoulli model 

are presented and discussed in Section 2. In Section 3, an empirical analysis on plasma concentration of 

acetylsalicylic acid are adopted to verify the feasibility and effectiveness of the novel SA-NGBM proposed here. 

Finally, some conclusions are drawn and future work proposed in Section 4. 

2. Methods 

2.1. General nonlinear grey Bernoulli model (NGBM) 

In grey systems theory, the NGBM is a first-order single-variable grey model with an interpolated coefficient 

in the background value. The basic form and characteristics of general NGBM can be summarized as follows [24]: 

First, assume that the original historical time sequence 

0 0{ 1,2, , }t tF f t n                                                                   (1) 

is a nonnegative data sequence, where the observational data 
0

tf  corresponds to the system input at time t  and 

n  is the total number of time points. Set 
1 0

1 1f f  and construct 
1

tF  by a one-time accumulated generation 

operation (1-AGO), which is given by 

  
1 1{ 1,2, , }t tF f t n  ,                                                                (2) 

where 1 0

1

t

t kk
f f


 , 1,2, ,t n  and 

1

tF  is termed as the 1-AGO sequence of 
0

tF . 

Next, based on the principle of elementary differential equations, the Bernoulli equation [33] is introduced to 

establish the nonlinear grey Bernoulli equation for the NGBM as the following form 

  
0 1 1( )t t tf ag b g   , 2,3, ,t n ,                                                        (3) 

where 
0

tf  is called a grey derivative, 
1 1 1

1(1 )t t tg f f       is referred to as the background value of the 

grey derivative 
0

tf , and   is called the interpolated coefficient of the background value within a closed interval 

[0,1] , which is traditionally set to 0.5. When   is equal to 0.5, Eq. (3) is the general NGBM [24]. When   is 

an indefinite value in the interval [0,1] , Eq. (3) is the Nash nonlinear grey Bernoulli model (NNGBM) [25]. 

Then, at sampling time 1t  , the parameters a  and b  in matrix R̂  can be obtained through 

least-squares estimation according to Eq. (3) as follows: 

T 1 T
ˆ

ˆ ( )
ˆ n

a
R B B B F

b


 

   
 

,                                                               (4) 
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where 

1 1

2 2

1 1

3 3

1 1

( )

( )

( )n n

g g

g g
B

g g







 
 
 
 
 
  

 and 

0

2

0

3

0

n

n

f

f
F

f

 
 
 
 
 
  

. On the basis of the monotonically increasing sequence 
1

tF , the 

whitenization differential equation of the NGBM (i.e., a first-order differential equation) can be established as 

follows: 

1
1 1d

( )
d

t
t t

F
aF b F

t

  ,                                                                  (5) 

where the parameters a  and b  are called the developing and grey input coefficients, respectively, and the 

adjustable parameter 1   is called the power exponent. 

Thus, Eq. (5) can be solved together with initial value 1 0

1 1f̂ f , and the corresponding particular solution is 

1 (1 )

1 0 1 (1 )

1 1
ˆ ( ) a t

t

b b
f f e

a a



  



  
    

  
, 1  , 1t  ,                                     (6) 

which is called the time-response sequence of the NGBM. Then, the system output 1

1
ˆ
tf 

 of dependent variable 

1

tF  can be obtained from Eq. (6), accordingly. Application of the first-order inverse accumulated generation 

operation (1-IAGO) to 1

1
ˆ
tf 

 allows the simulation and forecasting values of the original sequence 0

tF  to be 

obtained as follows: 

     0 1 1

1 1
ˆ ˆ ˆ
t t tf f f   , 1t  .                                                                (7) 

Remark. The NGBM is a sort of significant grey prediction model especially useful for the nonlinear 

small-sample time sequences, where the adjustable power exponent   plays an important role. The adjustable 

value of   that matches with actual data could be acquired by certain optimization techniques. When 0  , the 

NGBM will degenerate into the traditional GM(1,1) model; when 2  , the NGBM will degenerate into the 

grey Verhulst model. Comparatively, the adjustable power exponent   in the NGBM can flexibly fit the actual 

historical observation (data) and effectively reflect the nonlinear characteristics of real systems. Numerous 

correlational studies indicate that the NGBM is ideally suitable for nonlinear systems including a class of 

approximate single-peak sequences [18,24,25,34-37]. 

Nevertheless, there are large stochastic fluctuation phenomena inevitably present in those real nonlinear 

systems due to uncertain external disturbances. The general NGBM cannot reveal the individual stochastic 

fluctuations but can only describe the integral single-peaked evolution tendency. Under such circumstances, it is 

impossible to ignore the apparent modeling errors by using the general NGBM. Therefore, it is very essential for 

exploring how to detect the individual stochastic fluctuations present in general evolution tendency of nonlinear 

systems with small samples. 

2.2. The self-memory algorithm 

Chaotic dynamics indicate that there are random behaviors exhibited even in simple dynamic systems due to 

nonlinearities; it also implies that a prediction method must consider randomness along with dynamics. The 

self-memory algorithm (SA) of dynamic systems has exactly filled the gap between determinism and randomness 

theory and has raised questions about the predictability of systems. As system change processes are often 

irreversible, SA was developed by introducing the memory function, which contains historical information, into 

the system dynamic equation. After defining the inner product in Hilbert space, the system dynamic equation (i.e., 

a differential equation) can be transformed into an appropriate difference-integral equation, which is termed as a 

self-memorization one. Then, the self-memorization equation can be used to predict the system status by means of 
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discretization and estimating the memory coefficients. The original dynamic differential equation has the 

weakness of being sensitive to the initial value. Comparatively, the self-memorization equation can eliminate this 

drawback on account that it contains initial fields for multiple time points instead of initial fields at only a single 

time point. Accordingly, the prediction superiority of SA lies in that it not only merges dynamic calculations 

together with parameter estimation from historical data but also adequately extracts historical information from 

real systems in statistics. 

The evolution process of system maybe described by a nonlinear function as follows: 

( ) ( , ( ))x t t f x t    ,                                                                 (8) 

where x  is a state variable in relation to time t , and   represents a set of all control parameters. Generally, 

0 1 2, , ,t t t  denote various moments, and 
0 1 2, , ,x x x  denote corresponding states. Let 

( )n nx x t , 
0nt t n t   ,                                                             (9) 

then Eq. (8) can be transformed into 
1 ( , , )n nx f t x   . There are various kinds of external disturbances that 

result in system uncertainty. After adding a stochastic term that affects the system state, the system equation can 

be expressed as follows: 

d
( , ( )) ( ) ( )

d

x
f x t g x Q t

t
   ,                                                           (10) 

where ( ) ( )g x Q t  is multiplicative noise, ( )gQ t  is additive noise and g  is a constant. 

Assume that one time set 
1 1 0 1 1[ , , , , , , , , ]p p q qT t t t t t t t     , where 

1 1, , ,p pt t t   
 denote historical 

time points (observation points) from 
pt  to 

1t , 
0t  denotes the current initial time point (observation point), 

1 1, , ,q qt t t
 denote the future forecasting time points (observation points) from 

1t  to 
qt . The spatial set is 

expressed as [ , , , , ]iR r r r  , where 
ir  is the spatial point which is inspected. The inner product space 

2 :L T R , which is in the Hilbert space, can be defined as follows: 

 
0

0

, ( ) ( )d
b

a
f g f g    ,  2,f g L .                                                   (11) 

Generally, the system dynamics equation can be expressed as follows: 

d
( , , )

d

x
F x t

t
  ,                                                                      (12) 

where x  is a variable,   is a parameter, t  is time interval series, and ( , , )F x t  is termed the dynamic 

kernel. Eq. (12) reflects the relationship between local change of x  at time t  and source function F . Then, 

the memory function is defined as ( , )r t , where   is the function of r and t , and ( , ) 1r t  . If it is 

limited to spatial point 
ir , the memory function can be simplified to ( )t . 

The ordinary initial-value problem in the general NGBM corresponds to a Markov process where the next 

value depends only on the present value. While we make a prediction by SA, the memory function ( )t  

possesses functions in memorizing 1p   values of x , because p  values before 
0t  are always utilized. This 

is the algorithm mechanism for introducing a memory function ( )t  into the novel SA-NGBM. 

2.3. Self-memory algorithm-based nonlinear grey Bernoulli model (SA-NGBM) 

Based on the algorithms mentioned above, the SA prediction method is coupled with the general NGBM to 

construct a novel SA-NGBM. The modeling flowsheet of the SA-NGBM is displayed in Figure 1. The calculation 

was performed with the aid of the MATLAB program in order to decrease the computational complexity for 

model parameters, memory coefficients, and so on. 
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FIGURE 1 The modeling flowsheet of the SA-NGBM. 

Considering nonlinear systems with small sample sizes, it is assumed that the original time sequence and the 

1-AGO sequence are 
0 0{ 1,2, , }t tF f t n   and 

1 1{ 1,2, , }t tF f t n   respectively. Then, the coupling 

modeling procedure of the SA-NGBM is described as follows. 

Step 1: Establishing the self-memory dynamic equation. 

Let the differential equation 

1
1 1d

( )
d

t
t t

F
aF b F

t

   , which is equal to the whitenization equation (5) of the 

NGBM, be 
1 1( , , ) ( )t tF x t aF b F     . Then, the self-memory dynamic equation of the novel SA-NGBM it is 

considered to be in the form 
d

( , , )
d

x
F x t

t
  , where the source function of dynamic kernel 

1 1( , , ) ( )t tF x t aF b F     . 

Step 2: Optimizing the power exponent and background value. 

The superiority of the NGBM lies in the fact that the adjustable value of power exponent  , which matches 

with actual data, could be acquired by certain optimization techniques. Optimization occurs by supposing that the 

objective function is the minimization of mean absolute percentage error (MAPE) and that the constraint 

condition is the relationship among parameters a , b  and   [35-37]: 
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0 0

02,

ˆ1

1

n t t

k
t

f f
Min MAPE

n f 





  

0 1 1

1

1 0 1 (1 ) 1 1

1

1 2 0 1 1 1 0 1

2 2 2 2

1 1 0 1 1 2 0 1

2 2 2 2

1 1 1

1

1

0 1

ˆ ˆ ˆ

ˆ { [( ) ] }
. . 

( ) ( ) ( )

( ) ( ) ( )

(1 )

2,3, ,

t t t

a t

t

n n n n

t t t t t tk k k k

n n n n

t t t t t tk k k k

t t t

f f f

f d f d e
S T

g f g g f g
d

g f g g f g

g f f

t n



   

 

   

  

   



 

  

 

  

  


  

    



   

   















.                           (13) 

The adjustable value of the power exponent   can be optimized by a nonlinear programming model (13). 

Meanwhile, the appropriate interpolated coefficient  , assumed to have a closed interval [0,1] , can be 

optimized against the background value 
1 1 1

1(1 )t t tg f f      . This equation can be conveniently solved with 

the aid of LINGO software or MATLAB software, thereby obtaining the optimal power exponent   and the 

interpolated coefficient  . 

Step 3: Deducing the difference-integral equation. 

Assume that one time set 
1 1 0 1 1[ , , , , , , , , ]p p q qT t t t t t t t     , where the number p  of historical time 

points is the retrospective order of the system, and q  is the number of future forecasting time points. If 

considering the multiple historical time points 
1 1, , ,p pt t t   

 and a single forecasting time point t , the 

memory function ( )t  and inner product operation (11) are introduced into 
1 1d

( )
d

t t

x
aF b F

t

   . Meanwhile, 

the variable x and memory function ( )t  are supposed to meet the conditions of continuous, differentiable and 

integrable. Then, the system dynamic equation can be changed to an analytic formula as follows: 

  
  

1 1

  
( ) d ( )[ ( ) ]d

p p

t t

t t

x
aF b F

 



 


        

  ,                                              (14) 

which can be regarded as the weighted integral whose weight is memory coefficient ( )t . Eq. (14) then becomes 

  
1 2

1 0

    
1 1

    
( ) d ( ) d ( ) d ( )[ ( ) ]d

p p

p p p

t t t t

t t t t

x x x
aF b F

   

   



 

  
                 

      .             (15) 

The method of integration by parts and the mean value theorem of integrals are applied to all integral terms on 

the left-hand side of Eq. (15). After merging and eliminating the similar terms, a difference-integral equation is 

deduced as: 

0  
1 1

1
 

( ) ( )[ ( ) ]d 0
p

t
m

t t p p i i i
t

i p

x x x aF b F




    



             ,                            (16) 

where ( )t t   , ( )tx x t , ( )i it  , ( )i ix x t , , 1, ,0i p p    , and mid-value ( )m

i mx x t , 

1i m it t t   . 

Step 4: Discretizing the self-memory prediction equation. 

Let 
1

m

p px x    and 
1 0p   . Eq. (16) can then be transformed into 

  
0  

1 1

1
 

1

1 1
( ) ( )[ ( ) ]d

p

t
m

t i i i
t

i pt t

x x aF b F




  

 

        
 
  1 2   ,                          (17) 
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and is termed the p -order self-memory prediction equation, where p  denotes the retrospective order. The 

self-memory equation (17) emphasizes that the predicted value 
tx  at time point t  is the joint contribution of 

self-memory term 
1  and exogenous effect term 

2 . Eq. (17) can be discretized by replacing the integral 

operation with summation, replacing the differential with a difference, and replacing the mid-value 
m

ix  with the 

mean value at two contiguous time points, namely, 
1

1
( )

2

m

i i i ix x x y   . The self-memory equation (17) can 

be discretized by taking the equidistance time interval 
1 1i i it t t     for the time points, and merging 

t  

with 
i : 

  
1 0

1 1

1

[ ( ) ]t i i i i i

i p i p

x y aF b F




  

       ,                                                 (18) 

where 
1( )i i i t      and 

i i t     are called memory coefficients. 

Step 5: Estimating the memory coefficients matrix. 

When compared to a general differential equation, there is an extra memory function ( )t  present in the 

self-memory equation. Therefore, the self-memory equation has no analytic solution, and the numerical solution 

only can be solved with the aid of a computer. If regarding F  and x  as the input and output of the systems 

respectively, the self-memory equation can be solved by using the ordinary least squares method (OLS). Assume 

that there is a historical data sequence at ( )L L p  time points, and OLS is used to estimate the memory 

coefficients 
i  and 

i  in Eq. (18). Let 

1

2

1  

t

t

t
L

tL

x

x
X

x



 
 
 
 
 
 

, 

1,1 ,1 1,1

1,2 ,2 1,2

( 1)

1, , 1,

p p

p p

L p

p L p L L

y y y

y y y
Y

y y y

   

   

 

   

 
 
 
 
 
  

, 

1

( 1) 1

1

   

p

p

p
A

 



 



 
 
 
 
 
 

, 

1 1 1 1 1 1

1 1 1 1 0 0 1

1 1 1 1 1 1

2 1 1 2 0 0 2

( 1)

1 1 1 1 1 1

1 1 0 0

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

p p p p

p p p p

L p

p p L p p L L

aF b F aF b F aF b F

aF b F aF b F aF b F

aF b F aF b F aF b F

  

     

  

     

 

  

     

      
 
       

 
 
       

, 1

( 1) 1

0

   

p

p

p



 

 

 
 
  
 
 
 

, 

then the matrix form of Eq. (18) can be expressed as follows: 

tX YA  .                                                                      (19) 

If we let  ,Z Y  , 
A

W
 

  
 

, then Eq. (19) turns into 
tX ZW , and can thereby be described as the least 

square estimation of memory coefficients matrix W  is obtained by OLS: 

T 1 T( ) tW Z Z Z X .                                                                  (20) 

Step 6: Solving the self-memory prediction model. 

After the memory coefficient matrix W  is substituted into the discretized prediction equation (18), the 

simulation and forecasting value 1ˆ ( 1)tf t   of the 1-AGO sequence 
1

tF  can be acquired. Then, by applying 

the 1-IAGO to 
1ˆ

tf , its corresponding inverse accumulated value 
0ˆ ( 1)tf t   can be solved as follows: 

  
0 1 1

1
ˆ ˆ ˆ
t t tf f f  , 1t  ,                                                                (21) 

where 
1

0
ˆ 0f  . Consequently, the simulation and forecasting sequence 

0 0ˆˆ { 1}t tF f t    of the original 
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sequence 0

tF  is obtained. 

2.4. Accuracy and significance test of forecasting performance 

The purpose of prediction to provide services for decision making, and the credible and accurate predicting of 

outcomes are the precondition for scientific decision. Therefore, the accuracy and significance test results are 

important evaluation criteria for comparing the SA-NGBM with other prediction models. Only after the prediction 

model has passed through the accuracy and significance tests can it be used for extrapolation and application. In 

this study, four popular test indices for grey prediction methods have been used to compare the accuracy of 

different prediction models and test the corresponding significance as follows [9,20]. 

Let 0  ( 1,2, , )tf t n  denote the actual values at time point t  of the original sequence 
0

tF , and 

0ˆ  ( 1,2, , )tf t n  denote the corresponding predicted values. Thus 0 0ˆ( )  ( 1,2, , )t tq t f f t n    is called the 

residual error at specific time point t . In addition, the 0 0 2

1

1 ˆRMSE ( )
n

t tt
f f

n 
   denotes the root mean 

square error. 

Test criterion 1: Residual error test 

The residual error test is one type of pointwise test method. The relative percentage error RPEt
 at time point 

t  is defined as 

0

( )
RPE ( ) 100%t

t

q t
t

f
    , 2,3, ,t n ,                                                 (22) 

where ( )q t  denotes the residual error at time point t . The average relative percentage error ARPE  at all time 

points is expressed as 

2

1
ARPE ( ) ( )

1

n

t
avg t

n 
   


 , 2,3, ,t n .                                         (23) 

For a given 0  , when ARPE   and RPEt   , then the model is supposed to pass the residual error test. 

Test criterion 2: Posterior variance test 

Let 
0

1

1 n

tt
f f

n 
   and 

2 0 2

1 1

1
( )

n

tt
S f f

n 
   denote the mean value and variance of the original 

sequence 
0

tF , respectively. Moreover, 
1

1
( )

n

t
q q t

n 
   and 

2 2

2 1

1
( ( ) )

n

t
S q t q

n 
   denote the mean value 

and variance of the residual error sequence 0Q , respectively. The ratio of mean square error 
2 1C S S  is 

termed as the posterior variance ratio. For a given 
0 0C  , if there is 

0C C , then the model is a 

posterior-variance-ratio-qualified model. In the same way, for a given 
0 0p  , if there is 

1 0{ ( ) 0.6745 }p P q t q S p    , then the model is a small-error-probability-qualified model. Accordingly, the 

model is considered to pass the posterior variance test. 

Test criterion 3: Correlation degree test 

Let 

ˆ1

ˆ ˆ1

   
 

       
 denote the absolute correlation degree between the original sequence 

0

tF  and 

predicted sequence 
0ˆ

tF , where 
1 0 0

2

1

2

n

t nt
f f




   , 

1 0 0

2

1ˆ ˆˆ
2

n

t nt
f f




    and 

1 0 0 0 0

2

1ˆ ˆˆ ( ) ( )
2

n

t t n nt
f f f f




      . For a given 

0 0  , if the model satisfies 
0   , then it is regarded to 
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pass the correlation degree test. 

Test criterion 4: Significance test of error 

Let 
0

( )
t

t

q t
E

f
 ( 2,3, , )t n , and it is generally considered to obey a normal distribution, i.e., tE 2( , )N   , 

where   and 2  are unknown. The higher the prediction accuracy is, the closer to zero the mathematical 

expectation of relative error obeying a normal distribution is. Therefore, the level of prediction accuracy is 

equivalent to the hypothesis testing as follows: 

0 : 0H   , 1 : 0H   .                                                                 (24) 

For a given confidence level  , the test statistic ( 1)
E

t n
s n

   is constructed. If there is 
1 2( 1)t n t   , then 

0H  is rejected, meaning that there was a significant difference between the modeling error and zero. Conversely, 

if there is 
1 2( 1)t n t   , then 

0H  is accepted, meaning that there was no significant difference between them. 

Consequently, the model is considered to pass the significance test. 

From the above, the residual error, posterior variance, correlation degree and significance can be used for 

testing the reliability and accuracy of prediction models. Four accuracy test indices for each model are 

comprehensively evaluated in Table 1. 

TABLE 1 The commonly used scales of different test indices for accuracy test [9,20] 

Accuracy class 
Accuracy test index 

Average relative error 

( )avg  
Posterior variance ratio 

C  

Small error probability 

p  

Correlation degree 

  

1st level (superior) 1%  0.35  95%  0.90  

2nd level (qualified) 1% 5% 0.35 0.50  80% 95% 0.80 0.90  

3rd level (marginal) 5% 10%  0.50 0.65 70% 80% 0.70 0.80  

4th level (disqualified) 10% 20%  0.65 0.80  60% 70%  0.60 0.70  

3. Empirical analysis on plasma concentration of acetylsalicylic acid 

3.1. Data 

Plasma concentration data of acetylsalicylic acid were obtained from another study [38]. This study examined 

four experimental rabbits whose weights were between 2.5 kg and 3.0 kg. After a 12 hour fast, they were given 

acetylsalicylic acid tablets (50-100 mg·kg
1

) orally. Then, the plasma concentration data at different time points 

after taking the medicine were obtained. Table 2 lists the acetylsalicylic acid plasma concentrations corresponding 

to those four experimental rabbits. 

TABLE 2 Plasma concentration of acetylsalicylic acid of four groups [38] (unit: μg·mL1) 

Time-point Group 1 Group 2 Group 3 Group 4 

1 (0.15h) 151.34 147.34 153.85 150.83 

2 (0.25h) 169.29 157.94 170.34 167.34 

3 (0.50h) 211.14 205.78 211.67 198.23 

4 (1.00h) 232.52 221.45 236.47 228.46 

5 (1.50h) 247.01 250.63 258.65 249.85 

6 (2.00h) 252.33 259.85 266.24 261.85 

7 (2.50h) 255.87 264.46 273.45 270.46 

8 (3.00h) 258.42 269.74 277.46 275.27 

9 (3.50h) 231.21 249.83 257.53 252.99 

10 (4.00h) 211.85 228.73 237.35 230.53 
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11 (6.00h) 170.36 192.35 209.35 201.75 

12 (13.0h) 126.55 143.63 151.43 149.64 

13 (22.0h) 93.43 106.42 111.34 109.25 

Testing the significance of differences between the four groups of plasma time-concentration data should be 

carried out before conducting prediction. Above all, Friedman rank sum testing was conducted for the four groups 

of data as a whole. The Friedman chi-squared was 47.473, and the p-value was far less than 0.00001. Results 

indicate that there existed significant differences and high correlations among the four experimental groups. 

Wilcoxon signed-rank testing was then employed on each data pair. Testing results showed that there existed 

significant differences between each two experimental groups, except between group 1 and group 2. Therefore, 

the four groups of plasma time-concentration data have passed the significance testing. 

Figure 2 shows the four groups of plasma concentration trend curves of acetylsalicylic acid. As is seen in this 

figure, there was an obvious single-peak tendency for each group of plasma concentrations, accompanied by 

irregular fluctuations due to the unstable changes occurring from the experimental and material factors. In 

conclusion, the plasma concentrations of acetylsalicylic acid showed an obvious nonlinear characteristic of 

single-peak tendency with stochastic fluctuations. 
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FIGURE 2 Plasma concentration tendency of acetylsalicylic acid of four groups. 

3.2. Results 

As a result of factors introducing uncertainty, such as the precision of detection and experimental error, the 

plasma concentrations of acetylsalicylic acid present typical grey system characteristics with small sample sizes 

and poor information. For this reason, this paper will build the SA-NGBM, an optimized NGBM (ONGBM) [36], 

an exponential smoothing model (ES) [39] and a simple moving average model (SMA) [40] to simulate the 

plasma concentration of acetylsalicylic acid at different time points. The plasma concentration data of the first 

eleven time points are taken as the simulation samples, and the data of the latter two time points are chosen as 

testing samples for prediction testing. Meanwhile, four popular accuracy and significance test criteria are adopted 

to check the prediction accuracy of different prediction models. 

3.2.1. Forecasting the plasma concentration of acetylsalicylic acid of group 1 

Following the modeling steps to couple the SA-NGBM with the SA algorithm, the power exponent is 

0.573411  , the interpolated coefficient of background value is 0.594408  , and the corresponding values 
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of the parameter ,  a b  are 0.313723, 10.804450, respectively. Meanwhile, the value of the retrospective order is 

determined as 2p   by trial calculation method by minimizing the root-mean-square error. The memory 

coefficients are 
3 0.403296  , 

2 1.846963   , 
1 2.395267  , 

2 0.414322  , 
1 0.251846  and 

0 0.040747  , respectively. The model values of the SA-NGBM and other three compared models are shown in 

Table 3. There are no simulated values of the first two time points owing to the retrospective order 2p   in the 

SA-NGBM. 

TABLE 3 The predicted values for plasma concentration of acetylsalicylic acid of group 1 (unit: μg·mL1) 

Time- 

point 

Plasma 

concentration 

at group 1 

SA-NGBM model 

0.573411   

0.594408  , 2p   

ONGBM model 

0.595842   

0.5   

Single exponential 

smoothing 

Simple moving average 

0

tf  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  

2 169.29 — — 169.290 0.000% 169.290 0.000% — — 

3 211.14 — — 212.093 -0.451% 169.290 19.821% — — 

4 232.52 232.593 -0.031% 238.766 -2.686% 206.955 10.995% — — 

5 247.01 244.099 1.178% 251.908 -1.983% 229.964 6.901% 204.317 17.284% 

6 252.33 259.987 -3.035% 254.530 -0.872% 245.305 2.784% 230.223 8.761% 

7 255.87 254.026 0.721% 249.426 2.518% 251.628 1.658% 243.953 4.657% 

8 258.42 246.525 4.603% 238.955 7.532% 255.446 1.151% 251.737 2.586% 

9 231.21 244.214 -5.624% 225.007 2.683% 258.123 11.640% 255.540 -10.523% 

10 211.85 206.735 2.414% 209.035 1.329% 233.901 10.409% 248.500 -17.300% 

11 170.36 172.230 -1.098% 192.124 -12.775% 214.055 25.649% 233.827 -37.255% 

( )avg   2.338%  3.283%  9.101%  14.052% 

12 126.55 137.129 -8.360% 175.058 -38.331% 174.730 -38.072% 204.473 -61.575% 

13 93.43 79.610 14.792% 128.968 -38.037% 131.368 -40.606% 169.587 -81.512% 

The accuracy and significance test criteria values of different prediction models for plasma concentration of 

acetylsalicylic acid of group 1 are listed in Table 4. 

TABLE 4 Accuracy and significance test of predicted values for different grey prediction models 

Model RMSE ( )avg  C  p    Significance ( =0.95)  

SA-NGBM model 7.165581 2.338 % 0.259230 100.000 % 0.9896 significant 

ONGBM model 10.046072 3.283 % 0.320229 90.000 % 0.9911 significant 

Single exponential smoothing 24.272530 9.101 % 0.773521 50.000 % 0.9745 nonsignificant 

Simple moving average 34.767227 14.052 % 1.159815 42.857 % 0.6435 nonsignificant 

3.2.2. Forecasting the plasma concentration of acetylsalicylic acid of group 2 

In the same way as group 1, the power exponent 0.631898  , background value 0.527600  , and 

parameter 0.365241a  , 7.925877b   are obtained for group 2. Meanwhile, under the retrospective order 

2p  , the corresponding memory coefficients are 
3 0.109115  , 

2 1.580079   , 
1 2.419673  , 

2 0.066091   , 
1 0.302783  and 

0 0.177644  , respectively. The model values of the SA-NGBM and 

other three compared models are shown in Table 5. Similarly, there are no simulated values of the first two time 

points in the SA-NGBM. 

TABLE 5 The predicted values for plasma concentration of acetylsalicylic acid of group 2 (unit: μg·mL1) 

Time- 

point 

Plasma 

concentration 

at group 2 

SA-NGBM model 

0.631898   

0.527600  , 2p   

ONGBM model 

0.639316   

0.5   

Single exponential 

smoothing 

Simple moving average 
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0

tf  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  

2 157.94 — — 157.940 0.000% 157.940 0.000% — — 

3 205.78 — — 202.751 1.472% 157.940 23.248% — — 

4 221.45 221.054 0.179% 234.062 -5.695% 200.996 9.236% — — 

5 250.63 250.475 0.062% 252.688 -0.821% 219.405 12.459% 195.057 22.173% 

6 259.85 260.314 -0.179% 260.579 -0.281% 247.507 4.750% 225.953 13.045% 

7 264.46 271.012 -2.478% 259.983 1.693% 258.616 2.210% 243.977 7.745% 

8 269.74 256.322 4.974% 253.049 6.188% 263.876 2.174% 258.313 4.236% 

9 249.83 256.739 -2.765% 241.646 3.276% 269.154 -7.735% 264.683 -5.945% 

10 228.73 229.996 -0.553% 227.315 0.619% 251.762 -10.070% 261.343 -14.258% 

11 192.35 191.453 0.466% 211.275 -9.839% 231.033 -20.111% 249.433 -29.677% 

( )avg   1.457%  2.988%  9.199%  13.869% 

12 143.63 153.590 -6.935% 194.456 -35.387% 196.218 -36.614% 223.637 -55.704% 

13 106.42 85.746 19.427% 143.320 -34.674% 148.889 -39.907% 188.237 -76.881% 

The accuracy and significance test criteria values of different prediction models for plasma concentration of 

acetylsalicylic acid of group 2 are listed in Table 6. 

TABLE 6 Accuracy and significance test of predicted values for different grey prediction models 

Model RMSE ( )avg  C  p    Significance ( =0.95)  

SA-NGBM model 5.847106 1.457 % 0.238907 100.000 % 0.9898 significant 

ONGBM model 9.480363 2.988 % 0.276589 100.000 % 0.9937 significant 

Single exponential smoothing 25.106145 9.199 % 0.721896 50.000 % 0.9561 nonsignificant 

Simple moving average 36.508674 13.869 % 1.469318 14.286 % 0.5166 nonsignificant 

3.2.3. Forecasting the plasma concentration of acetylsalicylic acid of group 3 

In the same way as groups 1 and 2, the power exponent 0.582311  , background value 0.550247  , 

and parameter 0.290872a  , 9.948943b   are obtained. Meanwhile, under the retrospective order 2p  , 

the corresponding memory coefficients are 
3 0.341151  , 

2 0.934582   , 
1 1.570336  , 

2 7.756000   , 
1 18.737145  and 

0 9.831399   , respectively. The model values of the SA-NGBM 

and other three compared models are shown in Table 7. Similarly, there are no simulated values of the first two 

time points in the SA-NGBM. 

TABLE 7 The predicted values for plasma concentration of acetylsalicylic acid of group 3 (unit: μg·mL1) 

Time- 

point 

Plasma 

concentration 

at group 3 

SA-NGBM model 

0.582311   

0.550247  , 2p   

ONGBM model 

0.607507   

0.5   

Single exponential 

smoothing 

Simple moving average 

0

tf  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  

2 170.34 — — 166.534 2.234% 170.340 0.000% — — 

3 211.67 — — 211.670 0.000% 170.340 19.526% — — 

4 236.47 236.358 0.047% 242.731 -2.648% 207.537 12.235% — — 

5 258.65 257.480 0.452% 261.155 -0.968% 233.577 9.694% 206.160 20.294% 

6 266.24 269.010 -1.040% 269.123 -1.083% 256.143 3.792% 235.597 11.510% 

7 273.45 276.333 -1.054% 268.902 1.663% 265.230 3.006% 253.787 7.191% 

8 277.46 266.057 4.110% 262.561 5.370% 272.628 1.742% 266.113 4.090% 

9 257.53 267.177 -3.746% 251.864 2.200% 276.977 -7.551% 272.383 -5.767% 

10 237.35 233.946 1.434% 238.254 -0.381% 259.475 -9.322% 269.480 -13.537% 
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11 209.35 210.872 -0.727% 222.870 -6.458% 239.562 -14.431% 257.447 -22.974% 

( )avg   1.576%  2.301%  8.130%  12.195% 

12 151.43 183.598 -21.243% 206.587 -36.424% 212.371 -40.244% 234.743 -55.017% 

13 111.34 70.059 37.077% 157.065 -41.068% 157.524 -41.480% 199.377 -79.070% 

The accuracy and significance test criteria values of different prediction models for plasma concentration of 

acetylsalicylic acid at group 3 are listed in Table 8. 

TABLE 8 Accuracy and significance test of predicted values for different grey prediction models 

Model RMSE ( )avg  C  p    Significance ( =0.95)  

SA-NGBM model 5.638736 1.576 % 0.263565 100.000 % 0.9971 significant 

ONGBM model 7.257053 2.301 % 0.224003 100.000 % 0.9811 significant 

Single exponential smoothing 22.687607 8.130 % 0.685827 50.000 % 0.9543 nonsignificant 

Simple moving average 33.329205 12.195 % 1.511051 14.286 % 0.5109 nonsignificant 

3.2.4. Forecasting the plasma concentration of acetylsalicylic acid of group 4 

In the same way as the prior groups, the power exponent 0.665516  , background value 0.607350  , 

and parameter 0.416486a  , 6.833010b   are obtained. Meanwhile, under the retrospective order 2p  , 

the corresponding memory coefficients are 
3 0.082427   , 

2 0.518745   , 
1 1.572655  , 

2 5.859309   , 
1 13.065967  and 

0 6.406394   , respectively. The model values of the SA-NGBM 

and other three compared models are shown in Table 9. Similarly, there are no simulated values of the first two 

time points in the SA-NGBM. 

TABLE 9 The predicted values for plasma concentration of acetylsalicylic acid of group 4 (unit: μg·mL1) 

Time- 

point 

Plasma 

concentration 

at group 4 

SA-NGBM model 

0.665516   

0.607350  , 2p   

ONGBM model 

0.716306   

0.5   

Single exponential 

smoothing 

Simple moving average 

0

tf  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  0ˆ  tf  ( )t  

2 167.34 — — 151.319 9.574% 167.340 0.000% — — 

3 198.23 — — 198.230 0.000% 167.340 15.583% — — 

4 228.46 228.366 0.041% 233.284 -2.112% 195.141 14.584% — — 

5 249.85 247.001 1.140% 255.542 -2.278% 225.128 9.895% 198.010 20.748% 

6 261.85 269.918 -3.081% 266.057 -1.607% 247.378 5.527% 225.513 13.877% 

7 270.46 268.270 0.810% 266.806 1.351% 260.403 3.718% 246.720 8.778% 

8 275.27 264.234 4.009% 260.027 5.537% 269.454 2.113% 260.720 5.286% 

9 252.99 262.799 -3.877% 247.852 2.031% 274.688 -8.577% 269.193 -6.405% 

10 230.53 230.290 0.104% 232.124 -0.691% 255.160 -10.684% 266.240 -15.490% 

11 201.75 200.155 0.791% 214.339 -6.240% 232.993 -15.486% 252.930 -25.368% 

( )avg   1.732%  3.142%  8.617%  13.707% 

12 149.64 169.648 -13.371% 195.654 -30.750% 204.874 -36.911% 228.423 -52.648% 

13 109.25 106.204 2.788% 152.553 -39.637% 155.163 -42.026% 193.973 -77.550% 

The accuracy and significance test criteria values of different prediction models for plasma concentration of 

acetylsalicylic acid at group 3 are listed in Table 10. 

TABLE 10 Accuracy and significance test of predicted values for different grey prediction models 

Model RMSE ( )avg  C  p    Significance ( =0.95)  

SA-NGBM model 6.109683 1.732 % 0.264338 100.000 % 0.9957 significant 

ONGBM model 8.735930 3.142 % 0.258615 100.000 % 0.9138 significant 
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Single exponential smoothing 22.524427 8.617 % 0.660678 50.000 % 0.9557 nonsignificant 

Simple moving average 35.737509 13.707 % 1.506252 14.286 % 0.5299 nonsignificant 

3.3. Discussion 

From the viewpoint of accuracy and significance testing, the nonlinear grey Bernoulli model is particularly 

appropriate to approximate single-peak sequences. It is shown that the NGBM can take into full consideration the 

characteristics of approximating single-peaks among sequences and is able to adequately reflect the integral 

evolution laws of nonlinear systems compared with the ES [39] and SMA [40] models. Nevertheless, as a result of 

uncertainty about external disturbances, the traditional NGBM [24,25] cannot effectively reflect large stochastic 

fluctuations that commonly exist in nonlinear systems. In contrast, the SA method helped the NGBM to closely 

catch individual stochastic variations. The limitations of the traditional NGBM, such as sensitivity to initial values 

of the differential equation, can be eliminated by using multi-timepoint initial fields instead using data from only a 

single time point [30]. The prediction accuracy of the SA-NGBM was further improved compared with the 

traditional ONGBM. Meanwhile, the fitting curves of plasma concentration of acetylsalicylic acid and their 

corresponding comparison results of the RPEt
 distribution are shown in Figures 3–6 respectively. As seen from 

the following figures, the proposed SA-NGBM model can better represent the tendency of integral single-peak 

development, along with individual fluctuations existing in nonlinear systems, and possesses more stable and ideal 

prediction effects. Therefore, it is a reliable and stable model for predicting the future evolutionary trend of 

single-peaked nonlinear systems with small sample sizes. 
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FIGURE 3 Comparison among original and simulative curves of different prediction models of group 1. 
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FIGURE 4 Comparison among original and simulative curves of different prediction models of group 2. 
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Comparison of simulative curves at group 3
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FIGURE 5 Comparison among original and simulative curves of different prediction models of group 3. 

1 2 3 4 5 6 7 8 9 10 11 12 13
50

100

150

200

250

300

Time points

P
la

s
m

a
 c

o
n
c
e
n
tr

a
tio

n
 (

μ
g
.m

L
-1

)

Comparison of simulative curves at group 4

5 6 7 8 9 10 11 12 13

-80

-60

-40

-20

0

20

40

Time points

R
P

E
(t

) 
(%

)

Comparison of RPE(t) at group 4

Original data

SA-NGBM

ONGBM

ES

SMA

SMA

ES

ONGBM

SA-NGBM

Simulated

Sample

Simulated

Sample

Forcasted

Sample

Forcasted

Sample

 

FIGURE 6 Comparison among original and simulative curves of different prediction models of group 4. 

In addition, from the comparison of results across accuracy and significance tests, the residual error, posterior 

variance, correlation degree and error significance of the SA-NGBM were widely superior to that of other 

prediction models. Thus, according to grey prediction theory [9,20], the proposed SA-NGBM could be used to 

carry out extrapolation and prediction that could reasonably reflect the decreasing trend of the future plasma 

concentration of acetylsalicylic acid. 

Nevertheless, in real-life situations, there exist numerous influence factors involved in plasma concentration. 

For example, the individual difference between patients, different dosage regimens, the unknown potential drug 

interactions, the pathophysiological status of patients, and so forth, could all influence plasma concentrations. 

Therefore, high-quality plasma time-concentration data are difficult to acquire. With the development of clinical 

drug trials, the systematic population pharmacokinetics can be conducted in the clinical stage of new drugs. 

Consequently, the high-quality data samples can be obtained for conducting plasma concentration prediction and 

guiding clinical medication regimens. 

4. Conclusion and future work 

In this paper, we propose a self-memory algorithm-based NGBM model termed SA-NGBM and utilize it to 

predict the plasma concentration of acetylsalicylic acid. The model combines the prediction advantages of the 

self-memory algorithm and the traditional NGBM. SA could be useful for catching the individual stochastic 

fluctuations existing in nonlinear systems due to uncertain external disturbances. The system’s self-memorization 

equation of the SA-NGBM contains a multiple-time-point initial field instead of an initial value determined from a 

single time point. Consequently, it overcomes the limitations of being sensitive to the initial value used in the 

traditional NGBM and possesses more robust predictions. The empirical results indicated that the new model can 

take full advantage of the historical statistical information and capture tightly the nonlinear system's tendency of 
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integral evolution and individual fluctuations. It is worth popularizing and applying to forecast other 

single-peaked time sequences with similar sample sizes. 

Plasma concentration prediction and monitoring for drugs are important to guide the rational use of drugs as 

clinical medications. Accurate predictions are conducive to reduce the adverse reactions of patients, and are 

expected to provide more convenience for drug developers. In clinical environments, the original plasma 

time-concentration data distributions often present downward trends, such as intravenous administration, or the 

single-peaked types, such as extravascular administration. Nevertheless, many plasma time-concentration data that 

are required by conventional pharmacokinetics cannot be acquired easily. Under the condition of small sample 

sizes, the clinical plasma concentration sequence characteristics of single-peaked series can also be predicted 

using analogical modeling. Once the accuracy and significance test has been passed, the model can be used for 

extrapolation forecasting. Accordingly, through the prediction method proposed in this paper, similar small 

sample-size, single-peaked, plasma concentration series of other drugs can be predicted by analogy. Patients can 

be individually tracked and treated, allowing for drug dosage, physical metabolism and other drug guidance 

programs to be obtained more scientifically and accurately. By means of the combination of computer algorithms 

and clinical pharmacology, data-mining methods can be used to improve human health and have good 

development prospects. 

However, the existing research on the SA-NGBM is not comprehensive in this paper. Problems such as the 

intelligent optimization algorithms of the retrospective order have not been discussed. Additionally, the 

SA-NGBM is a univariable nonlinear grey Bernoulli model and cannot reflect the effect of relevant factors in 

multivariable nonlinear systems with interacting relationships. In addition, new plasma time-concentration data 

will continually enter into the original systems as a result of the periodical monitoring when considering the 

time-concentration curve for repeated administrations. The metabolism model based on the new information 

priority principle may be introduced into the SA-NGBM. Therefore, there remain some solutions that should be 

explored for these problems. 
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