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ABSTRACT
This paper presents a novel decoupling control strategy for Lipschitzmulti-variable non-linear uncer-
tain systems. Using the explicit parametric design, an observer-based output feedback controller
has been developed with free parameters while the closed-loop system can be further described
by transfer function matrix with these free parameters. The coupling effects of the systems would
be attenuated if the free parameters are optimised where the performance criterion is given based
on the H∞ norm of the transfer functions. Moreover, the sufficient conditions of stabilization have
been obtained for observer, controller and closed-loop system, respectively. Following the proce-
dure of the presented control strategy, an illustrative numerical example is given to demonstrate
the effectiveness of the presented control strategy. In addition, the similar design approach has been
discussed for filtering problem which is a potential extension of the presented control strategy.
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1. Introduction

Decoupling analysis and control are important research
topics inmany research fields due to the fact that the cou-
pling or interaction phenomenon commonly exists in the
complex industrial dynamic processes. Subjected to the
coupling effects, the results for the SISO systems cannot
be extended to theMIMO systems directly. Therefore, the
decoupling controller design becomes more and more
significant since 1950s.

Firstly, the decoupling problem described by state-
space model was presented by Morgan (1964). After
years of development, Falb and Wolovich (1967), Gilbert
and Pivnichny (1969) and Descusse, Lafay, and Mal-
abre (1988) gave the answers to this problem gradually.
Corresponding developments also appeared in the field
of optimal decoupling control (Park, Choi, & Kuc, 2002)
and robust decoupling control (Conte & Perdon, 1993).
However all of these control methods focus on the lin-
ear deterministic systems, thus these results cannot be
extended to dynamic systems with non-linear proper-
ties, for example the Lipschitz non-linearity. To overcome
these existing shortcomings forms the purpose of this
paper.

To deal with the control of the state-space mod-
els with Lipschitz non-linearity, a plenty of results have
been developed. In particular, various non-linear con-
trollers and observers have been proposed by Zhu
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and Han (2002) and Ding (2011). Considering the
uncertainties of the parameters, the robust non-linear
controller has beendesignedbyWang,Huang, andUnbe-
hauen (1999) and Shen and Tamura (1995). All the
mentioned controllers can achieve good performance,
however there was no separate decoupling design
included in these controllers. Fu and Chai (2007), Zhang,
Chai, and Wang (2011), and Chai, Zhang, Wang, Su,
and Sun (2011) designed the control structures as the
linear controllers with non-linear compensator. Although
the linear controllers were easy to implement compar-
ing with the non-linear ones, the compensator always
increase computational complexity. Therefore, it is sig-
nificant to develop a simply control law for the imple-
mentation of the complex dynamic systemwith coupling
attenuation.

In this paper, the Lipschitz non-linear uncertain multi-
variable systemshavebeen investigatedwhile thedecou-
pling design is very difficult since the decoupling design
would affect the stability of the closed-loop systems.
To the best of our best knowledge, there is no exist-
ing solution to the parametric output-feedback decou-
pling design for non-linear uncertain systems with the
stability analysis. Based upon the investigated non-linear
uncertain multi-variable model, the controller and lin-
ear observer can be designed and analysed theoreti-
cally while the non-linear term can be considered as
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unmodelled dynamics which satisfies the Lipschitz con-
dition. The sufficient conditions are given for the con-
vergence of the observer, the stabilization of the con-
troller and stabilization of the closed-loop system, respec-
tively. Using this controller structure, the design pro-
cedure is simplified which reduces the complexity of
implementation. Furthermore, theparameters of the con-
troller and observer can be optimised using the para-
metric state feedback (Roppenecker, 1986; Zhang, Wang,
& Wang, 2016) and H∞ norm based performance crite-
rion while the H∞ norm can be obtained by numerical
algorithms (Belur & Praagman, 2011; Boyd, Balakrishnan,
& Kabamba, 1988). Using the presented control strat-
egy, the optimal output feedback control law is obtained
and the performance has been verified by the numeri-
cal simulation. Basically, the novelties and contributions
of this paper can be summarised as follows: (1) a para-
metric decoupling control strategy has been presented
for a class of non-linear uncertain systems; (2) the stability
analysis has been developed using the presented control
algorithm; (3) a novel performance criterion is given to
enhance the system performance with coupling attenua-
tion; (4) an extended parametric filtering approach is also
given as an extension of the presented algorithm.

The rest of the paper is organised as follows. In
Section 2, the preliminaries are given including themodel
formulation and control objectives. The optimal decou-
pling control strategy is developed while the conver-
gence of the linear observer, the stabilization of the
parametric state feedback controller and the stabiliza-
tion of closed-loop non-linear system are analysed in
Section 3. Moreover, the parameter optimisation and
design procedure are also given in this section. Sections 4
and 5 present the results of numerical simulation and the
potential application of filtering problem, respectively.
Finally, the conclusions are drawn in Section 6.

2. Preliminaries

2.1. Formulation

Suppose that the complex industrial dynamic process can
bemodelled by the following non-linear uncertain multi-
variable systems.

ẋ(t) = (A + �A(t))x(t) + (B + �B(t))u(t) + φ(x(t), u(t))

y(t) = Cx(t) (1)

where x ∈ R
m, u ∈ R

n and y ∈ R
n are the system state

vector, input vector and output vector, respectively. m
and n are positive integers while system matrices A, B, C
and parameter uncertainties �A(t), �B(t) are of appro-
priate dimensions. The non-linear term φ(x(t), u(t)) is
a vector-valued non-linear function. Assume that the

investigated system model (1) satisfies the following
assumptions.

Assumption 2.1: φ(x(t), u(t)) is Lipschitz function with
respect to the state x, uniformly in the control u, and
there exists a real constant γc > 0 such that the following
inequality holds.

‖φ (x1, u1) − φ (x2, u2)‖ ≤ γc ‖x1 − x2‖
φ (0, u(t)) = 0

(2)

Assumption 2.2: The pair (A, B) is controllable and the
pair (A,C) is observable.

Assumption 2.3: The admissible parameter uncertain-
ties are of the norm-bounded form

[�A(t) �B(t)] = M[�1(t)N1 �2(t)N2] (3)

In Eq. (3),M, N1 and N2 denote the structure of the uncer-
tainties which are known real constant matrices with
proper dimensions. �1(t) and �2(t) are unknown time-
varying matrices which respectively meet the following
conditions.

�T
1(t)�1(t) ≤ I,�T

2(t)�2(t) ≤ I (4)

Remark 2.1: All the assumptionsmentioned above have
been widely used in non-linear control. In particular, the
parameter uncertainty structure in Eq. (3) has beenwidely
used in the problem of stabilization of uncertain systems
(Khargonekar, Petersen, & Zhou, 1990). Moreover, it can
represent parameter uncertainty in many physical cases.

The control objective is to develop a new control strat-
egy so that the closed-loop system remains stabilization
and the optimal control law should be designed to atten-
uate the couplings of the investigated non-linear uncer-
tain systems.

2.2. Mathematical preliminaries

The concept of H∞ norm will be used to optimise the
parameters while theH∞ norm of a transfer function G(s)
can be defined as follows.

γ = ‖G(s)‖H∞ = sup
Re(s)≥0

σmax(G(s)) (5)

The physical meaning of the Eq. (5) is that γ represents
the maximum amplification gain of the transfer function
G(s). Numerically, the value of theH∞ normof the closed-
loop transfer function should be close to one, similarly,
the system inputs cannot affect the system outputs if the
H∞ norm equals to zero.
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For the state-spacemodel, there exist variousmethods
to obtain the analytical or numerical solution of the H∞
norm (Doyle, Francis, & Tannenbaum, 2013). Specifically,
the characteristic equation is given by

det
(

1
γ 2 C

TC(sI − A)−1BBT + (sI + A)T
)

= 0 (6)

which has eigenvalues on the imaginary axis.
In addition, the following lemma (Petersen, 1987) has

been recalled here which can be used to analyse the
convergence and stabilization of the presented control
strategy.

Lemma 2.1: Given any real constantmatrices X and Ywith
proper dimensions. Then there exists a constant ξ > 0, such
that the following inequality holds.

XTY + YTX ≤ ξXTX + ξ−1YTY (7)

3. Control strategy

Asmentioned in Introduction, the control strategy can be
divided into two parts: observer-based output feedback
design and the parametric optimisation for decoupling
performance enhancement while the block diagram is
given by Figure 1.

3.1. State feedback design

The linear state feedback controller canbedeterminedby
the nominal linearmodel and the control law is described
by

u(t) = Kx(t) (8)

where the gain matrix K can be obtained by parametric
design (Roppenecker, 1986; Zhang et al., 2016). In partic-
ular, we have

K = [W1f1, . . . ,Wmfm]

× [(λ∗
1I − A1)

−1B1f1, . . . , (λ∗
mI − Am)

−1Bmfm]−1 (9)

Figure 1. The block diagram for the presented control strategy.

where modified parameter vectors and closed-loop
eigenvalues are denoted by f1, . . . , fm and λ∗

1, . . . , λ
∗
m

which can be considered as free parameters. In the case
of a common open-loop and closed-loop eigenvalue,
the gain matrix K can be determined by the following
equations.

Aj = A + v0j w
0
j
T

Wj = I −
eiw0

j
T
B

w0
j
T
bi

Bj = BWj + v0j e
T
i , j = 1, . . . ,m

(10)

where v0j andw
0
j denote the open-loop eigenvectors and

eigenrows of A. bi is the ith column of B. ei is a unit vector
while the ith element is 1. In the other case, no common
eigenvalue results inw0T

j bi = 0 which leads to

Aj = A

Wj = I

Bj = B, j = 1, . . . ,m

(11)

Substituting control law (8) into the system model (1)
yields the closed-loop system:

ẋ(t) = (Ac + �Ac(t))x(t) + φ(x(t), u(t)) (12)

where Ac = A + BK , �Ac(t) = �A(t) + �B(t)K . Thus the
following lemma can be proposed.

Lemma 3.1: For the nonlinear uncertain multi-variable
system given by (1), with the Assumptions A1–A3 and with
the control law given by (8), then there exist three positive
constants ε1,ε2,ε3, so that the equilibrium x(t) = 0 is stabi-
lized if the followingmatrix inequality hasapositive-definite
solution P = PT > 0.

ATc P + PAc + ε1N
T
1N1 + (ε−1

1 + ε−1
2 )PMMTP

+ ε2K
TNT

2N2K + ε3P
TP + ε−1

3 γ 2I < 0 (13)

Proof: Consider the Lyapunov function candidate as

Vc(x) = xT (t)Px(t), P = PT > 0 (14)

The time derivative of Vc(x) along the trajectories of (12)
is given as follows.

V̇c(x) = xT (t)ATc Px(t) + xT (t)PAcx(t)

+ xT (t)Pφ(x(t), u(t)) + φT (x(t), u(t))Px(t)

+ xT (t)�AT (t)Px(t) + xT (t)P�A(t)x(t)

+ xT (t)KT�BT (t)Px(t) + xT (t)P�B(t)Kx(t) (15)
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Let ε1, ε2 and ε3 be positive constants, the following
matrix inequalities hold using Lemma 2.1.

xT (t)�AT (t)Px(t) + xT (t)P�A(t)x(t)

= xT (t)(M�1N1)
TPx(t) + xT (t)pM�1N1x(t)

≤ xT (t)(ε1N
T
1N1 + ε−1

1 PMMTP)x(t) (16)

xT (t)KT�BT (t)Px(t) + xT (t)P�B(t)Kx(t)

= xT (t)KT (M�2N2)
TPx(t) + xT (t)PM�2N2Kx(t)

≤ xT (t)(ε2K
TNT

2N2K + ε−1
2 PMMTP)x(t) (17)

xT(t)Pφ(x(t), u(t)) + φT (x(t), u(t))Px(t)

≤ ε3x
T (t)PTPx(t) + ε−1

3 φT (x(t), u(t))φ(x(t), u(t))

≤ xT (t)(ε3P
TP + ε−1

3 γ 2I)x(t) (18)

Substituting these inequalities into the derivative of Vc(x)
with Assumption A1, we have

V̇c(x) ≤ xT (t)(ATc P + PAc)x(t)

+ xT (t)(ε1N
T
1N1 + ε−1

1 PMMTP)x(t)

+ xT (t)(ε2K
TNT

2N2K + ε−1
2 PMMTP)x(t)

+ xT (t)(ε3P
TP + ε−1

3 γ 2I)x(t) (19)

Since V̇c(x) < 0, theproof of Lemma3.1 is completed. �

3.2. Observer design

Using the linear observer to estimate the states of the
model (1), the linear observer can be designed based on
the nominal linear model.

˙̂x(t) = (A − LC)x̂(t) + Ly(t) + Bu(t) (20)

where the estimated state vector canbedenotedby x̂ and
L is pre-specified gain matrix of this observer.

Introducing the error of the estimation by

e(t) = x(t) − x̂(t) (21)

and substituting the Eqs. (20)–(21) to system model (1).
The closed-loop model can be described by

ė(t) = Aoe(t) + �Ac(t)x(t) + φ(x(t), u(t)) (22)

where Ao = A − LC. Similar to Lemma 3.1, Lemma 3.2 is
given as follows.

Lemma 3.2: For the non-linear uncertain multi-variable
system given by (1), with the Assumptions A1–A3 and with
the linear observer given by (20), then there exists three pos-
itive constants ε1, ε2,ε3, so that the estimation error e(t)

converges to zero if the followingmatrix inequalities have a
positive-definite solution P = PT > 0.

AoP + PAo + ε3P
TP < 0 (23)

ε1N
T
1N1 + (ε−1

1 + ε−1
2 )PMMTP + ε2K

TNT
2N2K

+ ε−1
3 γ 2I < 0 (24)

Proof: Consider the Lyapunov function candidate as

Vo(e) = eT (t)Pe(t), P = PT > 0 (25)

The time derivative of Vo(e) along the trajectories
of (21) is given by the following equation.

V̇o(e) = eT (t)(AoP + PAo)e(t)

+ eT (t)Pφ(x(t), u(t)) + xT (t)�AT (t)Px(t)

+ φ(x(t), u(t))TPe(t) + xT (t)P�A(t)x(t)

+ xT (t)KT�BT (t)Px(t) + xT (t)P�B(t)Kx(t) (26)

Similar to the proof of Lemma 3.1, we have

V̇o(e) ≤ eT (t)(AoP + PAo)e(t)

+ xT (t)(ε1N
T
1N1 + ε−1

1 PMMTP)x(t)

+ xT (t)(ε2K
TNT

2N2K + ε−1
2 PMMTP)x(t)

+ ε3e
T (t)PTPe(t) + ε−1

3 γ 2xT (t)x(t) (27)

which ends the proof �

3.3. Output feedback design

Combining the parametric state feedback controller and
the designed observer, the output feedback controller
can be obtained for the system (1).

u(t) = Kx̂(t) (28)

which leads to the closed-loop dynamics as follows.

ẋ(t) = Acx(t) + �Ac(t)x(t) + φ(x(t), u(t)) (29)

− (B + �B(t))Ke(t)

Furthermore, the stability of the closed-loop control
design can be guaranteed by the following theorem.

Theorem 3.3: For the nonlinear uncertain multi-variable
system given by (1), with the Assumptions A1–A3 and with
the control law given by (28) using the observer (20), then
there exists a set of positive constants εi, i = 1, . . . , 8, so
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that the equilibrium x(t) = 0 is stabilized if the follow-
ing matrix inequalities have positive-definite solution P1 =
PT1 > 0, P2 = PT2 > 0.

ε4K
TBTBK + ε5K

TNT
2N2K + AoP2 + P2Ao + ε8P

T
2P2 < 0

(30)

ATc P1 + P1Ac + (ε−1
1 + ε−1

2 + ε−1
4 + ε−1

5 )P1MMTP

+ (ε−1
6 + ε−1

7 )P2MMTP2 + (ε2 + ε7)K
TNT

2N2K

+ ε3P
T
1P1 + (ε−1

3 + ε−1
8 )γ 2I1 + (ε1 + ε6)N

T
1N1 < 0

(31)

Proof: Consider the Lyapunov function candidate as

V(x(t), e(t)) = xT (t)P1x(t) + eT (t)P2e(t) (32)

The time derivative of V(x(t), e(t)) along the trajectories
of (29) is shown as follows.

V̇(x(t), e(t))

= xTATc Px + xTPAcx + φT (x, u)Px

+ xTPφ(x, u) + xT�ATPx + xTP�Ax

+ xTKT�BTPx + xTP�BKx − eTKTBTPx

− xTPBKe − eTKT�BTPx − xTP�BKe

+ eT (t)(AoP + PAo)e(t) + eT (t)Pφ(x(t), u(t))

+ φ(x(t), u(t))TPe(t) + xT (t)�AT (t)Px(t)

+ xT (t)P�A(t)x(t) + xT (t)KT�BT (t)Px(t)

+ xT (t)P�B(t)Kx(t) (33)

Let ε4 and ε5 be positive constants, the following matrix
inequalities hold using Lemma 2.1.

− eT (t)KTBTPx(t) − xT (t)PBKe(t)

≤ ε4e
T (t)KTBTBKe(t) + ε−1

4 xT (t)PMMTPx(t) (34)

− eT (t)KT�BT (t)Px(t) − xT (t)P�B(t)Ke(t)

≤ ε5e
T (t)KTNT

2N2Ke(t) + ε−1
5 xT (t)PMMTPx(t) (35)

Substituting these inequalities into the derivative of
V(x(t), e(t)) and using Lemma 3.2, we have

V̇ ≤ xT [ATc P1 + P1Ac + (ε1 + ε6)N
T
1N1

+ (ε2 + ε7)K
TNT

2N2K + ε3P
T
1P1 + (ε−1

3 + ε−1
8 )γ 2I

+ (ε−1
1 + ε−1

2 + ε−1
4 + ε−1

5 )P1MMTP1

+ (ε−1
6 + ε−1

7 )P2MMTP2]x

+ eT (ε4K
TBTBK + ε5K

TNT
2N2K

+ AoP2 + P2Ao + ε8P
T
2P2)e (36)

which leads to the conditions and the proof has been
completed. �

3.4. Parametric optimisation

To deal with the coupling effects of the investigated
MIMO system, the free parameters of the controller
should be optimised. Substituting the feedback gain
matrix (9) and the control law (28) to the nominal linear
model which is used to design the controller, the linear
closed-loop model can be obtained as follows.

ẋ(t) = Acx(t)

y(t) = Cx(t)
(37)

The transfer function matrix of this state space
model (37) can be obtained by

G(s, λ∗
i , fi) = C(sI − Ac)

−1B (38)

where the elements of the matrix are transfer functions
which can be changed by turning the free parameters of
the controller. Furthermore, the Eq. (38) can be expressed
by another form as follows:

G(s, λ∗
i , fi) = Ḡ(s, λ∗

i , fi) + ¯̄G(s, λ∗
i , fi) (39)

where the matrices Ḡ and ¯̄G denote the diagonal matrix
and the off-diagonal elements of matrix G, respectively.

The coupling effects should be attenuated if the H∞
normof thematrix ¯̄G is close to zero,meanwhile the norm
of the matrix Ḡ should be close to one. Therefore, two
performance criteria can be proposed as follows.

J1(λ
∗
i , fi) = min

m∑
j=1

m∑
i=1

‖G∗
ij(s, λ

∗
i , fi)‖H∞

, j �= i (40)

J2(λ
∗
i , fi) = min

m∑
j=1

m∑
i=1

‖1 − G∗
ij(s, λ

∗
i , fi)‖H∞

, j = i

(41)
Comparing (1) and (37), the non-linear dynamic with

unmatched time-varying uncertain parameters can also
affect the performance of the decoupling design. The
probabilistic decoupling (Zhang, Zhou, Wang, & Chai,
2015,2017) should be considered as a compensation per-
formance criterionwhile theoutputs of the systemshould
be sampled as yk with sampling instance k. Thus, we have
the following criterion.

J3(λ
∗
i , fi) = min

∥∥∥∥∥γJ(yk) −
n∏
i=0

γi(yi,k)

∥∥∥∥∥ (42)

where γJ and γi denote the joint probability density
function and the marginal probability density function
for each system output yi, respectively. Moreover, these
probability density functions in Eq. (42) can be estimated
by kernel density estimation (Zhang &Wang, 2016).
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Therefore, the complete performance criterion can be
given as follows.

J = R1J1(λ
∗
i , fi) + R2J2(λ

∗
i , fi) + R3J3(λ

∗
i , fi) (43)

where real positive R1, R2 and R3 stand for the weights.
Then the optimal free parameter fi can be obtained by

gradient descent once the eigenvalues λ∗
i are

pre-specified.

fi,j+1 = fi,j + μ
dJ
dfi

∣∣∣∣
fi=fi,j

i = 1, . . . ,m (44)

where j denotes the optimisation searching iteration
index. μ stands for the pre-specified step. Note that the
freeparametric optimisationwouldnot affect the stability
of the closed-loop system design.

Basically, the parametric design supplies more flexi-
bilities with free parameters which enhance the decou-
pling performance using novel criterion. Moreover, this
control design can be further considered as a frame-
work while the performance criterion can be replaced
by other design requirements and the stability of the
design can be guaranteed. In addition, the presented
control strategy can be applied to many practical appli-
cations, for instance, the neural interaction attenuation
(Zhang & Sepulveda, 2017a, 2017b) can be analysed and
designed following the proposed approach.

Remark 3.1: Based on the dual principle, the observer
gain matrix can be also obtained using proposed optimi-
sation approach which is discussed in Section 5. Mean-
while, the optimisation operation can also be replaced by
multi-objective optimisation algorithms then theweights
can be neglected.

Remark 3.2: Only a few elements of the parameter vec-
tors fi affect the control performance directly. Therefore,
in order to determine the free parameters quickly, trial
and errormethod can be used and the performance crite-
rion can verify the manually selected parameters simply.

3.5. Design procedure

The procedure of the proposed control strategy is sum-
marised as follows:

Step 1 Setup the initial free parameters of the
controller.

Step 2 Transfer the closed-loop model to the transfer
function matrix and develop the expressions of
the performance criterion.

Step 3 Use thenumerical approach tooptimise theper-
formance criterion, by computing the H∞ norm

and gradient descent, and the optimal parame-
ters are obtained.

Step 4 Update the feedback gain matrix of the control
law, and verify it by the conditions of Lemma 3.1
to guarantee stability of the system, if the con-
ditions hold, then go to next step, otherwise,
return to Step 1.

Step 5 Obtain the feedback gainmatrix of the observer
by dual principle and verify it by Lemma 3.2.

Step 6 Verify the optimal parameters by Theorem 3.3,
and if the conditions can be satisfied, then com-
plete the procedure, otherwise, return to Step 1.

4. A numerical simulation

In order to illustrate the effectiveness of decoupling con-
trol strategy proposed in this paper, a numerical simula-
tion has been carried out.

Consider the parameters of the Lipschitz non-linear
uncertain multi-variable systems (1) as follows.

A =

⎡
⎢⎢⎣
2 0 −1

1 −1 −1

1 −1 −2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
1 0

0 1

0 1

⎤
⎥⎥⎦

C =
[
1 1 0

0 0 1

]
, M =

⎡
⎢⎢⎣
0.1 0 0.1

0 0.2 0

0.1 0 0.1

⎤
⎥⎥⎦

�1(t) = �2(t) = sin t

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

N1 =

⎡
⎢⎢⎣
0.1 0.1 0

0 0 0.1

0 0.1 0

⎤
⎥⎥⎦ , N2 =

⎡
⎢⎢⎣
0.2 0

0 0.1

0.1 0.1

⎤
⎥⎥⎦

φ(x(t), u(t)) =

⎡
⎢⎢⎣
0.1 sin x1 + 0.1 sin x2

0.1 sin x3

0.1 sin x1 + 0.1 sin x3

⎤
⎥⎥⎦

Pre-selecting the free parameters λ∗
i and setting the

initial values of fi, the optimal parameters canbeobtained
by computing the value of performance criterion.

λ∗
1 = −1, λ∗

2 = −2, λ∗
3 = −3, f∗1 = (3 1)T

f∗2 = (9.98 − 1.1)T , f∗3 = (0 0.97)T

Using the Eq.(9) and the dual principle, both the feed-
back gainmatrix of the controller and the observer can be
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Figure 2. The outputs of the closed-loop system.

Figure 3. The estimated states.

developed.

K∗ =
[−4.5231 −2.8615 2.4308

−1.5077 −1.9538 1.4769

]

L =

⎡
⎢⎢⎣
27.4089 −6.9170

−9.2883 2.3958

4.4179 4.8795

⎤
⎥⎥⎦

Substituting the parameters, the closed-loop dynamic
can be simulated with the initial states x1 = x2 = x3 =
0.5. Then Figures 2–4 show the control performance, the
estimated states, and the estimation errors, respectively.
From the results, the controller andobserver canmeet the
control objective for the Lipschitz non-linear uncertain
multi-variable system (1) while the procedure of design-
ing is simply and easy to implement.

In order to illustrate the decoupling performance, a
disturbance sine wave is introduced to the closed-loop
dynamic to affect the control signals, and the amplitude,
frequency of this wave are 0.1, 2, respectively. Another
feedback gain matrix of the controller K is selected to

Figure 4. The estimation errors of the observer.

Figure 5. The decomposed outputs with the pulse using K.

compare with the optimal parameters.

K =
[−9.2609 −5.9565 5.1739

19.0870 16.6522 −12.3913

]

The control performance with the different feedback
gain matrices can be showed by Figures 5 and 6. By
analysing the results of the simulation, the decoupling
performance with the optimal parameters is better and
the coupling affects have been attenuated. When the
system inputs periodic fluctuate with the given sine
wave disturbance, the coupling effects of the system out-
puts still exist using feedback gain matrix K showing by
Figure 5, while the outputs y1, y2 seem almost unaffected
by the non-diagonal control inputs u1, u2, and also the
performance of the diagonal outputs become better.

To demonstrate the performance of the presented
control strategy, one additional comparison is given in
this manuscript while the 2-dimensional PI controller has
been usedwith the parameters as Kp = [1.5, 1.5] and Ki =
[0.1, 0.1]. Based on the results of Figures 7 and 8, it has
been shown that the designed PI controller cannot atten-
uate the system couplings comparing to the presented
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Figure 6. The decomposed outputs with the pulse using K∗.

Figure 7. The system outputs with sine-wave disturbance
using K∗.

Figure 8. The system outputs with sine-wave disturbance using
PI controller

controller. Moreover the transient performance is also
deteriorated without optimisation design.

5. Potential extension

Similar to the presented continuous-time control strat-
egy, the discrete-time extension can be obtained while

the model (1) can be transformed as follows:

xk+1 = (A + �A)xk + (B + �B)uk + φ(xk , uk) + ωk

(45)

yk = Cxk (46)

while ωk denotes the non-Gaussian noise.
Following the main result of this paper, the associate

sufficient conditions for convergence and stabilisation
can also be developedwhich are omitted due to the simi-
larity. However, the linear observer should be replaced by
filter in order to enhance the performance of the closed-
loop system.

The structure of the filter can be selected as the
discrete-time format of Eq. (20) as follows:

x̂k+1 = (A − LC)x̂k + Lyk + Buk (47)

where the parametric observer gain matrix L can be
expressed following the results from Roppenecker
O’reilly (1989).

L = −[f1, . . . , fm] × [C(λ∗
1I − A)

−1f1,

. . . ,C(λ∗
mI − A)

−1fm]−1 (48)

where modified parameter vectors and eigenvalues of
matrix Ao are denoted by f1, . . . , fm and λ∗

1, . . . , λ
∗
m which

can be considered as free parameters.
Thus, the closed-loop system can be further described

by the error dynamics equation,

ek+1 = Aoek + �Acxk + φ(xk , uk) (49)

while the filter gain L can also be obtained to converge
the estimation error using parametric design with free
parameters.

To optimise the free parameter for filter gain L, the
following criteria should be considered,

Jk = H(e1:k) + M(e1:k) (50)

where M and H stand for the mean value and entropy,
respectively. Motivated by probabilistic decoupling, the
randomness of the estimated states can also be atten-
uated if the probabilistic decoupling among the states
have been minimized. Thus we have the complete per-
formance criterion as follows:

Jk = R1H(e1:k) + R2M(e1:k) + R3JPDF (51)

where R1, R2 and R3 are weights and

JPDF = min

∥∥∥∥∥γJ(ek) −
m∏
i=0

γi(ei,k)

∥∥∥∥∥ (52)

Based on the free parameter optimisation, the optimal
filter gain L is obtained and therefore the performance of
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the closed-loop system is enhanced with the presented
control design. Note that the optimisation operation for
feedback gain K and filter gain L can be processed at
the same time. In practice, the filtering approach can
be applied for the battery management problem (Liu, Li,
Peng, & Zhang, 2018; Liu, Li, Yang, Zhang, & Deng, 2017;
Liu, Li, & Zhang, 2017) while the internal states can be
estimated.

6. Conclusion

Decoupling control for multi-variable non-linear uncer-
tain systems have been investigated using the observer-
based parametric output feedback design. Combining
the H∞ norm and parametric optimisation, the optimal
parameters for decoupling design have been obtainedby
optimising the presented performance criterion. Mean-
while the theoretical analysis is given to guarantee the
robustness, stabilization and convergence of the closed-
loop systems. Based on the results of the numerical sim-
ulation, the effectiveness of the presented decoupling
control strategy has been verifiedwhile the control objec-
tives have been achieved. As an extension, the discrete-
time extension is also discussed and the associate filter
design can be developed following the procedure of the
presented algorithm.

Due to the non-linearity of the performance crite-
rion, the parametric optimisation is difficult to obtain
the global optimal solution and the local optimal solu-
tion is subjected to the initial value. Therefore, intelligent
optimisation methods would be used to optimise the
parameterswhich can shouldbe taken into account in the
future.
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