
A Program Transformation
Step Prediction based

Reengineering Approach

Ph.D. Thesis

Shaoyun Li

Software Technology Research Laboratory

De Montfort University

2007

To my husband, Kaixin Zhou and

my parents and parents-in-law

for their love and support

Declaration

I declare that the work described in this thesis was originally carried out by me during

the period of registration for the degree of Doctor of Philosophy at De Montfort

University, U.K., from December 2002 to December 2005. It is submitted for the degree

of Doctor of Philosophy at De Montfort University. Apart from the degree that this

thesis is currently applying for, no other academic degree or award was applied for by

me based on this work.

Acknowledgement

First of all, I wish to acknowledge the financial support from De Montfort University for

the research work.

My deepest gratitude goes to my supervisor, Professor Hongji Yang. He is the one who

brought me numerous chances, unfaltering patience, meticulous and inspiring advice

and equipped me with the courage to strive through one of the most challenging periods

of my life yet make it one of my most important times as well. I am grateful for his

leading role fostering my academic, professional and personal growth.

I would like to express my deep appreciation to my second supervisor Dr. Martin Ward,

for his invaluable advice and constant support. I am sincerely grateful to Professor

Hussein Zedan for his precious comments and suggestions about my work, which means

a lot to me. I appreciate Dr. Samad Ahmadi for his help with my work on various

occasions. I feel so blessed to have many discussions with them.

I sincerely thank Professor Hua Zhou for encouraging me to pursue my PhD degree. I

am grateful to my fellows at Yunnan University in China, Professor Hongzhi Liao,

Professor Tong Li, Qing Duan and the rest members of Information Technology Institute.

A great many thanks go to the colleagues at De Montfort University, Feng Chen, Clinton

Ingrams, Monika Solanki, Zhuopeng Zhang, Matthias Ladkau, Stefan Natelberg and

many others. I thank them for their help and encouragement during the past years.

Finally, I am particularly grateful to my husband, Kaixin Zhou, my parents and

parents-in-law from the bottom of my heart - no words are adequate to express my

appreciation for their love for all my life. Their love empowers me to steer through ups

and downs and helped me reach this point today. This thesis is dedicated to them.

II

Abstract

The essence of software reengineering is to improve or transform existing software so

that it can be understood, controlled and used anew. Program transformation is used as a

core technique for fulfilling the various needs in the context of software reengineering.

The improvement of the automation and efficiency of program transformations for

reengineering is a concern in both research and industrial areas. The proposed research

aims to achieve the goal by providing an appropriate mechanism to predict the

transformation steps to fulfil specific reengineering targets to enhance the efficiency and

correctness of reengineering through program transformations.

In this thesis, a Target Driven Program Transformation Step Prediction approach

(TDPTSP) is proposed to assist the process of transformation in software reengineering.

The proposed approach is explored by using a transformation-intensive language Wide

Spectrum Language (WSL) as an intermediate language and its toolset that provides a

well-developed transformation bank containing a large number of proven

transformations. The predication of transformations is an intelligent means to guide the

transformation process towards reengineering targets. In order to make the identified

targets tangible, the concept of Target Model (TM) is introduced for the target

representation and evaluation. In the model, software metrics selected from a

reengineering intensive metrics catalogue are correlated to the corresponding targets.

With the quantitative measurement and the tangible target representation, the program

transformation step prediction algorithm is constructed as a heuristic based search

approach. Expertise for applying program transformations in the practical work is

essential for the prediction operation. The prediction approach incorporates the expertise

rules in addition to the metrics based approach. When predicting the transformations on

domain specific applications, domain features are the vital factors. Therefore, the

III

approach needs to be augmented to deal with such applications. To explore how to

utilise the transformation prediction for the applications in specific domain, multimedia

domain is chosen for the study. In order to exploit the proposed approach, WSL is

extended with object-oriented features and multimedia domain features consistently

based on the existing language levels of WSL. Correspondingly, the existing

transformation bank is extended for the needs of the transformation prediction driven by

reengineering targets. A prototype tool and three case studies are presented for the

experiments to show the proposed approach is feasible and promising. Conclusions are

drawn based on analysis and further research directions are discussed at the end of the

thesis.

IV

Table of Contents

Declaration ... 1

Acknowledgement ... II

Abstract. .. III

Table of Contents ... V

List of Figures .. X

List of Tables .. XIII

List of Acronyms .. XIV

Chapter 1 Introduction ... 1

1.1 Motivation and Targets of Research .. 1

1.2 Scope of Thesis ... 3

1.3 Original Contributions .. 6

1.4 Research Questions ... 7

1.5 Organisation of Thesis .. 8

Chapter 2 Related Research ... 10

2.1 Introduction ... 10

2.2 Software Reengineering .. 11

2.2.1 Definition of Software Reengineering .. 11

2.2.2 Objectives of Software Reengineering .. 11

2.2.3 Software Reengineering Concepts .. 13

2.3 Program Transformation ... 16

2.3.1 Definition of Program Transformation ... 16

2.3.2 Taxonomy of Program Transformation ... 17

2.3.3 Technology Foundations ... 21

2.3.4 Transformation Systems .. 24

2.4 Software Goal-Driven Requirement Specification ... 33

2.4.1 Requirement Concepts .. 33

2.4.2 Goal Targeting Modelling ... 35

2.5 Software Metrics ... 36

v

Table of Contents

2.6 Automation of Program Transformation for Software Reengineering 38

2.7 Language for Program Transformation - Wide Spectrum Language (WSL) ... 43

2.7.1 Background ofWSL ... 43

2.7.2 Intermediate Language for Transformation45

2.7.3 Program Transformation Theory ... 54

2.7.4 Transformation Toolset on WSL ... 57

2.8 Summary ... 61

Chapter 3 Target Driven Transformation Step Prediction Framework 63

3.1 Introduction ... 63

3.2 Problem Definition .. 64

3.2.1 Program Transformation for Software Reengineering 64

3.2.2 Program Transformation with WSL .. 65

3.2.3 Traditional Semi-Automatic Program Transformation 66

3.2.4 Need to Predict Program Transformation ... 68

3.2.5 Need to Extend WSL .. 70

3.3 Reengineering Targets, Metrics and Transformations 71

3.3.1 Definition of Reengineering Target. .. 71

3.3.2 Relations between Targets, Metrics and Transformations 72

3.4 Program Transformation Prediction Framework .. 75

3.4.1 Target Driven Transformation Prediction Framework 75

3.4.2 Dedicated Metrics ... 79

3.4.3 Correlation of Metrics to Reengineering Targets 79

3.4.4 Automating Transformation Steps .. 79

3.4.5 Incorporating Expertise ... 80

3.5 Summary ... 80

Chapter 4 Using Software Metrics to Describe Reengineering Targets 82

4.1 Introduction .. 82

4.2 Software Metrics for Reengineering .. 83

4.3 Six Categories of Software Measures ... · · 83

4.3.1 Complexity Metrics .. ··· .. · · 85

4.3.2 Abstractness Metrics ... 87

VI

Table of Contents

4.3.3 Object Oriented Measures ... 89

4.3.4 Reusability Metrics ... 90

4.3.5 Domain Specific Metrics ... 91

4.3.6 Feature Oriented Metrics ... 92

4.4 Reengineering Target Definition and Modelling ... 97

4.5 Measurement of Target Using Software Metrics ... 99

4.6 Summary .. 102

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank 104

5.1 Introduction .. '" .. 104

5.2 WSL Extension Approach ... 105

5.3 WSL Extension for Supporting Target Driven Reengineering 106

5.4 Extension ofWSL with Object Oriented Features .. 108

5.4.1 Definition of Class and Obj ect in WSL .. 108

5.4.2 Inheritance ... 114

5.4.3 Reference ... 116

5.5 Utilisation of Domain Features for WSL Extension 117

5.5.1 Domain Features of Multimedia Application 118

5.5.2 Extension ofWSL with Multimedia Features 120

5.6 Program Transformation Definition .. 126

5.6.1 Semantically Equivalent References and Transformation 128

5.7 Extension of Transformations ... 129

5.7.l Transformations on Object-Oriented Constructs 130

5.7.2 Transformation Extension on Multimedia Application 133

5.8 Program Transformation Catalogue .. 136

5.9 Meta-Model of Transformations ... 138

5.10 Mathematical Notations of Program Transformation 139

5.l 0.1 Condition Function and State Function ... 140

5.11 Construction of Transformation Bank. .. 142

5.12 Transformation Composition .. 143

5.13 Summary ... 144

Chapter 6 Algorithm of Program Transformation Step Prediction 146

VII

Table of Contents

6.1 Introduction ... 146

6.2 Regarding Transformation Prediction Problem as a Search Problem 147

6.3 A Model of Target-Metric-Transformation Correlation Representation 148

604 Transformation Step Prediction Algorithms .. 149

6.4.1 Transformation Path .. 150

604.2 Problem Formulation .. 152

604.3 Transformation Impact Function ... 155

644 H .. F . . . eurIstIc unctIon ... 159

604.5 Metrics Based Prediction Algorithm ... 160

604.6 Incorporating Expertise into Prediction Algorithm 165

604.7 Exploiting Domain Features in Prediction Algorithm 168

604.8 Pseudocode of Algorithms .. 169

6.5 Summary ... 177

Chapter 7 Tool Support and Case Studies .. 179

7.1 Introduction ... 179

7.2 An Integration Platform .. 180

7.2.1 Platform Architecture .. 180

7.2.2 Platform Environment ... 182

7.3 FermaT Transformation Predictor ... 183

7.3.1 Parser for WSL extension .. 183

7.3.2 Target Modeller ... 185

7.3.3 Metrics Viewer .. 185

7.304 Transformation Predictor .. 186

7 A A Case for Procedural Programming .. 187

704.1 Strategy without Using Transformation Prediction Approach 188

704.2 Strategy with Target Driven Transformation Prediction 190

704.3 Comparison of Two Strategies .. 197

7.5 A Case for Object Oriented Program .. 198

7.6 A Case for Multimedia Program ... 202

7.7 Summary ... 210

Chapter 8 Conclusion and Future Work ... 212

VIII

Table of Contents
8.1 Summary of the Thesis .. 212

8.2 Conclusion .. 215

8.3 Evaluation of Research Questions .. 215

8.4 Limitations .. 219

8.5 Future Work ... 220

References ... 222

Appendix A Backus N aur Form of Extended WSL ... 235

Appendix B XML-based Representation of Target Model .. 241

Appendix C List of Transformations ... 244

Appendix D List of Publications .. 255

IX

List of Figures

Figure 2-1 Levels of Abstraction .. 13

Figure 2-2 WSL Language Levels48

Figure 2-3 State Transformation Illustration ... 51

Figure 3-1 The Relations between Transformations, Targets and Metrics 73

Figure 3-2 Model for Target-Metrics-Transformations (MOTMET) 74

Figure 3-3 A Paradigm of the Transformation Process Model (TPM) 75

Figure 3-4 Target Driven Transformation Prediction Framework 76

Figure 4-1 Feature-Source Code Mapping Relationship Diagram 95

Figure 4-2 Target Model of 'Low Complexity' .. 98

Figure 5-1 Extension Model of WSL .. 106

Figure 5-2 Inheritance ModeL .. 109

Figure 5-3 Class Construct.. .. III

Figure 5-4 The Class 'Point' ... 112

Figure 5-5 The Generator Associated with 'Point' ... 112

Figure 5-6 A Point at Location (3, 4) .. 112

Figure 5-7 An Object of Class Point ... 113

Figure 5-8 The Class Circle Inherited from the Class Point ... 114

Figure 5-9 Relationships between Media, Documents and Structural Models [101] ... 119

Figure 5-10 Typical Specialisation Hierarchy for Multimedia Data [101] 120

x

List of Figures

Figure 5-11 Class Diagram of Multimedia Data ... 121

Figure 5-12 Topological Relationships between the Media Objects 124

Figure 5-13 Hierarchy of Transformation Mapping to the Levels ofWSL 127

Figure 5-14 Meta-Model of the Transformations ... 138

Figure 6-1 Target-Metric-Transformation Correlation Representation 149

Figure 6-2 Example of Transformation Parallel Composition 151

Figure 6-3 Target Driven Transformation Process Model. .. 153

Figure 6-4 Impact Relations between Target, Metric and Transformation 161

Figure 6-5 Example of Transformation Process Model .. 165

Figure 7-1 FIP Architecture ... 181

Figure 7-2 FIP Environment ... 182

Figure 7-3 Parser Implementation ... 184

Figure 7-4 Target Modeller Interface .. 184

Figure 7-5 Metrics Viewer Interface ... 185

Figure 7-6 Transformation Predictor Interface ... 186

Figure 7-7 A PASCAL Program .. 188

Figure 7-8 A Result by the Strategy without Using the Proposed Approach 189

Figure 7-9 'Low Complexity' Target Model ... 190

Figure 7-10 Translated WSL Program .. 191

Figure 7-11 A View of the WSL Program AST ... 192

Figure 7-12 Constructed Transformation Process Model ... 195

XI

List of Figures

Figure 7-13 Transformed WSL Program by Applying TP6 .. 196

Figure 7-14 Screenshot ofLDA .. 198

Figure 7-15 An SMIL Multimedia Application ... 205

Figure 7 -16 Translated WSL Program of the Multimedia Application 207

Figure 7-17 Transformation Result from Program to Specification 209

Figure 7-18 Abstraction Result of the Transformations .. 210

XII

List of Tables

Table 2-1 A Taxonomy of Program Transformation ... 18

Table 2-2 Goal Relationship .. 36

Table 4-1 Selected Complexity Metrics .. 86

Table 4-2 Selected Abstractness Metrics [124] ... 88

Table 4-3 Selected Object Oriented Metrics [125] ... 89

Table 4-4 Selected Reusability Metrics [125] ... 90

Table 4-5 Multimedia Specific Metrics ... 92

Table 4-6 Feature Oriented Metrics .. 97

Table 5-1 Temporal Relations between Media [5] .. 125

Table 6-1 Example of the Altered Metric Values .. 158

Table 6-2 Impact of the Transformations on Metrics Suite ... 162

Table 7-1 Impact of the Transformation on Node <1> ... 193

Table 7-2 Impact of the Selected Transformations on the Case Study 1. 194

Table 7-3 Selected Metrics for the LDAAnalysis .. 199

Table 7-4 Feature-Class Table of the LDA ... 199

Table 7-5 Impact of the Selected Transformations on the Case Study 2 200

Table 7-6 Selected Metrics for the Multimedia Application Abstraction 207

Table 7-7 Impact of the Selected Transformations on the Case Study 3 208

XIII

List of Acronyms

ABST-CFDF

ABST-LOC

ABST-STAT

ABST-VOC

AI

AMS

ANFC

ANSDF

ANSFF

AST

BNF

CBO

CF

CFDF

DBMS

DF

DIT

ETL

F-DOC

FIP

F-ME

FOPF

F-TP

F-UML

HIL

HLL

IEEE

ISO

JavaCC

LDA

Abstractness based on Control-Flow Data-Flow Complexity metric

Abstractness based on Lines of Code metric

Abstractness in Statement metric

Abstractness in Vocabulary metric

Artificial Intelligent

Average Module Size metric

Average Number of Feature implemented in a Class metric

Average Number of Shared Data module between two Features metric

Average Number of Shared Functions between two Features metric

Abstract Syntax Tree

Backus Naur Form

Coupling Between Object Classes metric

Control Flow

Control Flow and Data Flow metric

Database Management System

Data Flow

Depth of Inheritance Tree metric

Error Tolerance Level metric

FIP Documentation Tool

FermaT Integration Platform

FIP Maintenance Environment

First-Order Predicate Formulas

FIP Transformation Predictor

FIPUML

Human Interaction Level metric

High Level Language

Institute of Electrical and Electronics Engineers

International Organisation for Standardisation

Java Compiler Compiler

Linkage Disequilibrium Analyser

XIV

List of Acronyms

MA Maintainer's Assistant

MOTMET Model of Target-Metric-Transformation

NCIF

NCNB

NEI

NFR

NMI

NON

NVC

00

OSC

PSR

PTR

RNC

SBSE

SD

SMIL

TDPTSP

TDTPF

TM

TP

TPM

TQS

TS

TSG

WMC

WOC

WOIL

WP

WSL

XML

XSLT

Number of Classes Implementing a Feature metric

Non-Comment Non-Blank metric

Number of External Interactions metric

Non-Functional Requirements

Number of Method Invocation metric

Number of Node metric

Number of Variables per Class metric

Object Oriented

Overlap Statements among the Classes metric

Percentage of Spatial Constructs metric

Percentage of Temporal Constructs metric

Recursion and Nesting metric

Search Based Software Engineering

Self-Descriptiveness metric

Synchronised Multimedia Integration Language

Target Driven Program Transformation Steps Prediction

Target Driven Transformation Prediction Framework

Target Model

Transformation Path

Transformation Process Model

Transformation Qualification Score

Target Score

Transformation Search Graph

Weighted Methods per Class metric

Weight Of every Construct metric

Weight Of Interfaces in relations to Lines of code metric

Weakest Precondition

Wide Spectrum Language

The Extensible Markup Language

The Extensible Style sheet Language Transformation

xv

Chapter 1
Introduction

Objectives

• To observe the need for reengmeenng target driven program

transformation prediction

• To present the scope of the thesis

• To highlight original contributions and define the research questions

• To outline the organisation of the thesis

1.1 Motivation and Targets of Research

An intrinsic property of software in a real-world environment is that software systems

are continuously being evolved soon after their first version is delivered to meet the

changing requirements of their users. Software practitioners are performing changes

daily to source code such as correcting errors, adding new functionalities and adopting

new technologies to ensure the users' needs and the changing environment are met [68].

Software reengineering is often viewed as an attractive approach for such evolution and

has emerged as a business critical activity over the past decade. Most reengineering

Chapter 1 Introduction

methodologies have come to rely extensively on tools in order to reduce human effort

requirements. Not surprisingly, the topic of software reengineering has been researched

heavily for some time, leading both to a variety of commercial toolsets for particular

reengineering tasks and to research prototypes [103]. Each task taken in software

reengineering process is driven by its specific target(s).

Reengineering consists of mainly two parts, reverse engineering and forward

engineering through which an existing system is systematically transformed into a new

form to fulfil the needs of software evolution [8]. The purpose of software reengineering

is to realise quality improvements in operation, system capability, functionality,

performance, evolvability at a lower cost, schedule, or risk to the customer [12]. A

reengineering process can start from the source code that is the most reliable information

of software and end at a desired form of the software. The targeted form can not only be

the implementation of the system harnessed with new technology, improved quality or

needed new functionalities, but also be the specification derived from the source code

which are used to comprehend or analyse the system and accordingly facilitate the

forward engineering.

In the context of software reengineering, program transformation is used, which is the

examination and alteration of one representation to reconstitute it in a new form and the

subsequent implementation of the new form while preserving the subject system's

external behaviour (functionality and semantics) [24]. Program transformation is often

one of appearance, such as altering code to improve its structure in the traditional sense

of structured design. While restructuring creates new versions that implement or propose

change to the subject system, it does not normally involve modifications because of new

requirements. However, it may lead to better observations of the subject system that

suggest changes that would improve aspects of the system. Program transformation is

also needed to convert legacy code or deteriorated code into a more modular or

Chapter 1 Introduction

structured fonn [39] or even to migrate code to a different programming language or

even language paradigm [40]. To summarise, program transfonnation is a crucial means

to realise a variety of software reengineering tasks driven by specific needs or targets.

However, there are a number of problems caused in the applications of program

transfonnations for reengineering. (1) In most cases, the corresponding relation between

reengineering target and program transfonnation that contributes the satisficing the

target is not explicitly one-to-one. In order to achieve a reengineering target, there might

be more than one transfonnation as candidates needed. (2) Within the transfonnation

candidates, different one can result in the outcome with different satisficed degrees. (3)

The different execution sequence of transfonnations can cause different impacts. (4)

Nonnally, to make the two decisions, i.e. selecting transfonnations in the existing

transfonnation bank and deciding the execution sequence, relies on the features of the

source code, the capability of the program transfonnations and the experience of the

software engineer. Doing the work without the experience could cause the lack of

efficiency and correctness to fulfil the reengineering target(s). (5) When processing a

domain specific application, the domain features are important factors for detennining

transfonnations due to their speciality. They are unavoidable factors taken into account

when the domain specific applications are reengineered.

The thesis therefore aims to present a program transfonnation step prediction method

driven by reengineering target with quantitative means, the knowledge of expertise and

domain features as a solution to address the above five problems.

1.2 Scope of Thesis

In this thesis, a program transfonnation step prediction approach for software

reengineering is proposed. The approach is based on the construction of a Wide

3

Chapter 1 Introduction

Spectrum Language (WSL) and its program transformation theory [125]. The thesis

concentrates on the prediction method of program transformations for identified

reengineering targets and studies the proposed approach on the normal imperative or

object-oriented programs as well as the programs in special domains, where multimedia

domain is selected. The scope of the research includes:

(1) Using WSL as an intermediate language and its toolset to explore the proposed

approach. Because WSL represents specifications and executable

implementations, it is ideal for reengineering purposes. A well-developed library

of proven transformations based on WSL can support the research on the program

transformation prediction.

(2) Proposing the idea of transformation prediction. The predication of

transformations IS an intelligent means to guide the transformation process

towards the reengineering targets. To provide the useful information guiding the

transformation process, the transformation engine is supposed to determine the

suitable candidates and predict the sequence of the transformations. This feature

of the transformation tools can assist and present clues to the users and

accordingly improve the transformation implementation's efficiency.

(3) Presenting the target model to represent and measure reengineering target. In

order to make the identified targets tangible, a formal representation is necessary.

The goal driven model [89] is used for the representation of the targets. The

software metrics related to a target are included in the model.

(4) Using software metrics to measure the status of program and satisficed degree of

the target based on the target model. Software metrics are useful quantitative

means to measure the status of software and the satisficed degree of targets. Six

Chapter 1 Introduction

groups of dedicated reengineering intensive metrics are selected and counted

based on the target model.

(5) Extending WSL with object-oriented features so that the scope of the WSL's

application is broadened to particular domains subsequently. Based on the

hierarchy of WSL constructs and the fixed-point theory, the object-oriented

syntax and semantics are consistent with the original WSL, therefore the

transformations developed based on the extended WSL can be compatible with

the existing transformations and vice versa.

(6) Extending WSL with domain specific features. The extension is applied in the

multimedia domain by extending the language and mapping the application of the

domain into WSL.

(7) Extending the current transformation bank for the transformation prediction

purpose. The extension works on two aspects, one is the management of the

transformation bank and the other is the addition of the transformations based on

the extended WSL. The transformations are classified according to their

characteristics and usage. The classification will be used as a heuristic for the

transformation prediction algorithm.

(8) Using a search-based approach to constructing transformation process model that

is used to predict program transformation candidates and their execution

sequence. With the quantitative measurement and the tangible target

representation, the transformation prediction can be modelled as a search problem.

It may prove that a metrics based prediction algorithm is not efficient due to the

large search space. The expertise is an important knowledge for the

transformation prediction. To incorporate the expertise formalised as a set ofmles

5

Chapter I Introduction

and take the domain features into account will improve the prediction approach.

1.3 Original Contributions

The original contributions of this thesis are listed as follows.

(I) The most significant contribution is to propose the motivation of program

transformation step prediction for reengineering, model the transformation

prediction as a search problem and provide the heuristic based algorithms as

solutions. By studying the source code and using the prediction algorithm, a set

of transformation candidates and the possible execution sequence can be

predicted to provide the information to software engineer and guide the

practical transformation work.

(2) The second contribution is to narrow the large search space by using heuristics.

The metrics based approach is proposed with the utilisation of the heuristics.

The expertise obtained in the practical work is taken into account to incorporate

the prediction process. In addition, the thesis explores the transformation

prediction based approach with using domain features. The multimedia domain

is chosen for the investigation.

(3) The third contribution is to model the reengineering targets and measure them

with the dedicated software metrics. Software reengineering is composed of

various tasks for different purposes related to software evolution. Program

transformation has been used as a practical technique to realise these tasks. To

model the task as target-driven is natural because each task has its target. In the

research described in the thesis, the program transformations are regarded as

reengineering target-driven to implement the required reengineering tasks. The

targets are modelled by using the goal-driven techniques and correlated the

6

Chapter 1 Introduction

reengineering intensive metrics to the targets. Doing so can provide a tangible

way to guide the program transformation process towards the given targets.

(4) The fourth contribution is to extend WSL. The transformation-intensive WSL

is used as an intermediate language to experiment the program transformation

theory and application. However, the current transformations are developed for

procedural languages only. In order to experiment the proposed approach in

more cases, it is necessary to extend the existing language and transformations.

In the thesis, the WSL is extended with object-oriented features and the

multimedia domain features. In addition, the :MetaWSL is also extended with

more functions for the transformation prediction.

(5) The fifth contribution is to extend the transformation bank. As the WSL is

extended with the advanced features, the transformations should be extended

accordingly. On the other hand, the transformation bank is also structured for

the prediction particularly.

(6) The sixth contribution, which is quite novel, is to apply program

transformations on multimedia applications for reengineering purposes.

1.4 Research Questions

The whole research question is how well the proposed research supports software

reengineering. The following specific research questions are given to judge the success

of the research described in this thesis:

o What are the advantages of the implementation of reengineering with the

program transformation prediction approach against the one without using the

approach?

Chapter 1 Introduction

o Are the extended constructs consistent with the syntax and semantics of WSL?

o Is the target model correct and complete to represent the identified target?

o Can the prediction be modelled as a search problem?

o What kind heuristics will be used in the proposed approach? Is the heuristic

knowledge useful for the transformation prediction?

o How can the quantitative approach be used to control the transformation

prediction process?

o Will the prediction result be ensured as a good solution?

1.5 Organisation of Thesis

The rest of the thesis is organised as follows.

Chapter 2 provides an overvIew of reengineering and program transformation,

investigates the existing related work, especially those involving existing program

transformation systems, software metrics, software requirement specification and

program transformation automation for software reengineering. Particularly, the

transformation specific language WSL, the transformation theory and the support tools

are reviewed briefly.

Chapter 3 outlines target driven transformation prediction framework. The needs of the

proposed research are analysed and the technical steps in the approach are discussed.

Chapter 4 presents and justifies six dedicated groups ofreengineering-intensive software

metrics and depicts the way to model a reengineering target that can be measured with

8

Chapter 1 Introduction

the metrics.

Chapter 5 presents the extension of WSL with object-oriented features on both syntax

and semantics. In addition, the extension ofWSL into the multimedia is explored for the

experiment of the proposed approach in a specific domain. Based on the extension of the

language, the construction of the transformation bank, which provides a mechanism to

manage transformations and control transformation process, is shown.

Chapter 6 illustrates the core technique of the proposed research. The technical steps of

the program transformation predication are elaborated. The algorithms of the steps are

presented in detail.

Chapter 7 describes the implementation of the prototype developed for the proposed

approach and gives three case studies on a procedural program, an object-oriented

program and a multimedia application respectively to address the usability of the

approach on different aspects.

Chapter 8 summarises the thesis, draws the conclusion and propose the future work. The

research questions proposed in this chapter are answered to evaluate the proposed

approach.

Appendix A gives the syntax extension of WSL.

Appendix B shows an XML-based representation of target model

Appendix C lists the transformations stored in the transformation bank.

Appendix D lists all the related publications by the author during the PhD study.

Chapter 2
Related Research

Objectives

• To provide the related work of the thesis

• To present the basic concepts related to software reengmeenng and

program transformation

• To discuss existing techniques to modelling software requirements and

software metrics

• To review the research on program transformation automation

• To overview the WSL and its program transformation theory

2.1 Introduction

This research alms to provide a method for predicting transformations driven by

reengineering targets based on a transformation-specific language WSL. Four major

tasks are implied in this statement: (1) using program transformation to implement

reengineering; (2) applying the transformations stored in the existing transformation

systems; (3) modelling the targets; (4) predicting the suitable transformation steps. This

III

Chapter 2 Related Research

chapter will review some existing techniques related to the aimed research.

2.2 Software Reengineering

2.2.1 Definition of Software Reengineering

Software reengineering is the examination, analysis and alteration of an existing

software system to reconstitute it in a new form and the subsequent implementation of

the new form [85]. The process typically encompasses a combination of other processes

such as reverse engineering, redocumentation, restructuring, translation and forward

engineering. The goal is to understand the existing software (specification, design,

implementation) and then to re-implement it to improve the system's functionality,

performance or implementation. The objective is to maintain the existing functionality

and prepare for new functionality to be added later.

2.2.2 Objectives of Software Reengineering

The challenge in software reengineering is to take existing systems and instill good

software development methods and properties, generating a new target system that

maintains the required functionality while applying new technologies. Although specific

objectives of a reengineering task are determined by the goals of the corporations, there

are four general reengineering objectives [96]:

• Preparation for functional enhancement

• Improve maintainability

• Migration

• Improve reliability

Although reengineering should not be done to enhance the functionality of an existing

II

Chapter 2 Related Research

system, it is often used in preparation for enhancement. Legacy systems, through years

of modifications due to errors or enhancements, become difficult and expensive to

change. The code no longer has a clear and logical structure, its documentation may not

exist, and if it exists, it is often outdated. Reengineering specifies the characteristics of

the existing system that can be compared to the specifications of the characteristics of

the desired system. The reengineered target system can be built to facilitate easily the

enhancements. For example, if the desired system enhancements build on

object-oriented design, the target system can be developed using object-oriented

technology in preparation for increasing the functionality of the legacy system.

As systems grow and evolve, maintainability costs increase because changes become

difficult and time consuming. An objective of reengineering is to re-design the system

with more appropriately functional modules and explicit interfaces. Documentation,

internal and external, will also be current, hence improving maintainability.

The computer industry continues to grow at a fast rate; new hardware and software

systems include new features, quickly outdating current systems. As these systems

change, personnel skills migrate to the newer technologies, leaving fewer people to

maintain the older systems. In a relatively short time, manufacturers no longer support

the software and hardware parts become expensive. Even more important is the

compatibility of the older systems with the newer ones. For these reasons, companies

with working software that meets their needs might need to migrate to a newer hardware

platform, operating system, or language.

The fourth objective of reengineering is to achieve greater reliability. Although it is

possible that the reliability never was very high, more likely, over time and with multiple

changes, there have been 'ripple effects' [14], one change causing multiple additional

problems. As maintenance and changes continue, the reliability of the software steadily

12

Chapter 2 Related Research

decreases to the point of unacceptable.

2.2.3 Software Reengineering Concepts

Reengineering is an umbrella term which covers many forms of system improvement,

many of which are tool supported [105]. The concepts introduced in software

reengineering are based on the software development levels of abstraction shown in

Figure 2-1. Each level corresponds to a phase in the development life cycle and defines

the software system at a particular level of detail (or abstraction). The conceptual

abstraction level is the highest level of abstraction. Here the concept of the system - its

reason for existence - is described. At this level, functional characteristics are described

only in general terms. In the requirement, abstraction level functional characteristics of a

system are described in detailed terms. In these first two levels internal system details

are not mentioned. In the design abstraction level system characteristics such as

architectural structure, system components, interfaces between components, algorithmic

procedure and data structures are described. The implementation abstraction level is the

lowest level. Here a system description focuses on implementation characteristics and is

represented in a language understood by a computer.

/
/

Reverse engiIJeering

Restructuring

Design

Implementation

Figure 2-1 Levels of Abstraction

"" ~rward engineering

~
'------

----~

The levels of abstraction present a model for reengineering process crossing these levels.

Defined in [13], the process of reengineering computing system involves three main

steps: reverse engineering, restructuring and forward engineering.

13

Chapter 2 Related Research

Reverse engineering is the process of analysing a system in order to obtain and identify

major system components and their inter-relationships and behaviours. It involves the

extraction of higher-level specifications from the original system. Reverse engineering

moves from low-level implementation to high-level abstractions. This involves

extracting design artifacts and building or synthesising abstractions that are less

implementation dependent.

Restructuring is the process of creating a logically equivalent system from the given

one. This process is performed at the same level of abstraction and does not involve

semantic understanding of the original system.

Forward engineering IS the process of developing a system starting from the

requirement specification and moving down towards implementation and deployment.

Forward engineering moves from high-level abstractions and logical implementation

independent designs to the physical implementation of the system. A sequence from

requirements through design to implementation is followed.

Under the spectrum of the reengineering process, there are several activities which are

described as follows [125].

• Abstraction is a process of generalisation, removing restrictions, eliminating

details, removing inessential information [112]. Abstract specification says

what a program does without necessarily saying how it does and has more

potential implementations.

• Redocumentation is the creation or reVISIon of a semantically equivalent

representation within the same relative abstraction level. The resulting forms

of representation are usually considered alternate views intended for a human

audience.

\4

Chapter 2 Related Research

•

•

Design Recovery is a subset of reverse engmeenng to recreate design

abstractions from a combination of code, existing design documentation (if

available), personal experience and general knowledge about problem and

application domains.

Program understanding implies always that understanding begins with the

source code while reverse engineering can start at a binary and executable

form of the system or at high-level descriptions of the design. The science of

program understanding includes the cognitive science of human mental

process in program understanding that can be achieved in an ad hoc manner.

• Refinement is an inverse activity of abstraction. It IS to refine abstract

specification towards to low-level implementation.

• Re-code is changes to implementation characteristics. Language translation

and control flow restructuring are source code level changes. Other possible

changes include conforming to coding standards, improving source code

readability, renaming program items, etc.

• Re-design is changes to design characteristics. Possible changes including

restructuring design architecture, altering a system's data model as

incorporated in data structures, or in a database, improvements to an algorithm,

etc.

• Re-specify is changes to requirement characteristics. This type of change can

refer to changing only the form of existing requirements. For example, taking

informal requirements expressed in English and generating a formal

specification expressed in a formal language. This type of change can also

refer to changing system requirements, such as the addition of new

15

Chapter 2 Related Research

requirements, or the deletion or alteration of existing requirements.

2.3 Program Transformation

The idea that program transformations could be used for software maintenance and

evolution by changing a specification and re-synthesising was suggested in the early 80s

[10]. Porting software and carrying out changes using transformations were suggested

and demonstrated in the late 80s [7]. Simple source-to-source 'evolution' transforms

used to change specification code was suggested by Feather [42]. Evolution transforms

lead to the key idea of using both correctness-preserving transforms to change

nonfunctional properties of software and to use non-correctness preserving transforms to

change functional properties of a software system. Theory about how to modify

programs incrementally using 'maintenance delta' transformations and previously

captured design information was suggested in 1990 [11].

It is very often that a software system has to migrate from one development language to

another in order to be able to fulfil the required evolutionary changes [90]. Program

transformation has acted as a fundamental technique for evolutionary changes and

various software reengineering activities. This section reviews the concepts, the

taxonomy, the technical foundations and the transformation systems within the program

transformation scope.

2.3.1 Definition of Program Transformation

Any programming language has three components: syntax, semantics and pragmatics

[99].

• Syntax defines the formal relations between the constituents of a language,

thereby providing a structural description of the various expressions that make

16

Chapter 2 Related Research

•

•

up legal strings in the language. Syntax deals solely with the form and

structure of symbols in a language without any consideration give to their

meanmg.

Semantics describes the behaviour that a computer follows when executing a

program in the language. This behaviour can be disclosed by describing the

relationship between the input and output of a program or by a step-by-step

explanation of how a program will execute on a real or an abstract machine.

Pragmatics includes issues such as ease of implementation, efficiency III

application and programming methodology.

Program transformation is the act of changing one program into another. It is often

important that the derived program be semantically equivalent to the original, relative to

a particular formal semantics. The operation is to alter the syntax of the program but

preserve the semantics. The languages in which the program is transformed and the

resulting program are written are called the source and target language respectively

[108].

2.3.2 Taxonomy of Program Transformation

Program transformation has applications in many areas of software engineering such as

compilation, optimisation, refactoring, program synthesis, software renovation and

reverse engineering. Visser [106] distinguish these applications as two main scenarios,

shown as Table 2-1, i.e., the one in which the source and target language are different

(translations) and the one in which they are the same (rephrasings).

Translation

In a translation scenano, a program is transformed from a source language into a

17

Chapter 2 Related Research

program in a different target language. Translation scenarios can be distinguished by

their effect on the level of abstraction of a program. Although translations aim at

preserving the extensional semantics of a program, it is usually not possible to retain all

information across a translation. Translation scenarios can be divided into synthesis,

migration, reverse engineering, analysis and so forth.

Translation Rephrasing

• Migration • Normalisation

• Synthesis Simplification

- Refinement Desugaring

- Compilation Weaving

• Reverse engineering • Optimisation

- Abstraction Specialisation

- Decompilation Inlining

- Architecture extraction Fusion

- Software visualisation • Refactoring

• Analysis - Design improvement

- Control-flow analysis - Obfuscation

- Data-flow analysis • Renovation

Table 2-1 A Taxonomy of Program Transformation

Synthesis

Program synthesis is a class of transformations that lower the level of abstraction of a

program. In the course of synthesis, design information is traded for increased efficiency.

In refinement [100] an implementation is derived from a high-level specification such

that the implementation satisfies the specification. Compilation [6, 82] is a form of

synthesis in which a program in a high-level language is transformed to machine code.

This translation is usually achieved in several phases. Typically, a high-level language is

first translated into a target machine independent intermediate representation.

Instruction selection then translates the intermediate representation into machine

instructions. Other examples of synthesis are parser and pretty-printer generation from

context-free grammars [2, 16]

18

Chapter 2 Related Research

Migration

In migration, a program is transformed to another language at the same level of

abstraction. This can be a translation between dialects, for example, transforming a

Fortran77 program to an equivalent Fortran90 program or a translation from one

language to another, e.g., porting a Pascal program to C.

Reverse Engineering

The purpose of reverse engineering [12, 24] is to extract from a low-level program a

high-level program or specification, or at least some higher-level aspects. Reverse

engineering raises the level of abstraction and is the dual of synthesis. Examples of

reverse engineering are decompilation in which an object program is translated into a

high-level program, architecture extraction in which the design of a program is derived,

documentation generation and software visualisation in which some aspect of a program

is depicted in an abstract way.

Analysis

Program analysis reduces a program to one aspect such as its control flow or data flow.

Analysis can thus be considered a transformation to a sub language or an aspect

language.

Rephrasing

Rephrasings are transformations that transform a program into a different program in the

same language, i.e., source and target language are the same. In general, rephrasings try

to say the same thing in different words thereby aiming at improving some aspect of the

program, which entails that they change the semantics of the program. The main

19

Chapter 2 Related Research

subscenarios of rephrasing are nonnalisation, optimisation, refactoring and renovation.

Normalisation

A nonnalisation reduces a program to a program in a sub language, with the purpose of

decreasing its syntactic complexity. Simplification is a more general kind of

nonnalisation in which a program is reduced to a nonnal (standard) form, without

necessarily removing simplified constructs. For example, consider transformation to

canonical fonn of intennediate representations and algebraic simplification of

expressions. Note that nonnal fonn does not necessarily correspond to being a normal

fonn with respect to a set of rewrite rules.

Optimisation

An optimisation [82] is a transformation that improves the run-time and/or space

perfonnance of a program. Example optimisations are fusion, iniining, constant

propagation, constant folding, common-subexpression elimination and dead code

elimination.

Refactoring

The tenn refactoring was originally introduced by Opdyke in his PhD thesis [86].

Fowler et al [44] defines a refactoring is "a change made to the internal structure of

software to make it easier to understand and cheaper to modify without changing its

observable behaviour". As for the methods used in refactoring, it generally refers to

transfonnations, which move code around or rename identifiers. In practice, refactoring

is restricted to restructuring transfonnations: moving code and renaming code. For

example, converting a recursive algorithm to an iterative one would not normally be

considered a 'refactoring' operation, nor would replace an algorithm with a completely

20

Chapter 2 Related Research

different one that produces the same output.

Renovation

In software renovation, the extensional behaviour of a program is changed in order to

repair an error or to bring it up to date with respect to changed requirements. Examples

are repairing a Y2K bug, or converting a program to deal with the Euro.

2.3.3 Technology Foundations

According to Mens [76], program transformation process consists of a number of

distinct activities related to the following questions:

Where should the software be transformed and which transformation(s) should be

applied to the identified places?

To identify the parts of software for program transformation normally is applied with the

step of proposing transformations together. Kataoka et al. implemented the Daikon tool

to indicate where transformations might be applicable by automatically detecting

program invariants [61]. The main problem with this approach is that it requires

dynamic analysis of the runtime behaviour. Nonetheless, the approach is complementary

to other approaches that rely on static information. Balzinska et al. use a clone analysis

tool to identify duplicated code that suggests candidates for transformations [9]. Ducasse

et al. sketch an approach to detect duplicated code in software and propose

transformations that can eliminate this duplication. The approach is based on an

object-oriented meta model of the source code and a tool that is capable of detecting

duplication in code [37]. In FermaT [118], pattern variables are constructed for matching

the program schema and identifying the suitable transformations to determine where to

be transformed and which transformation to be used.

~I

Chapter 2 Related Research

An important issue about this step is that identification of which transformations to

apply can be highly dependent on the particular application domains. The characteristics

of the specific domains can result in completely different transformations.

How does the applied transformation preserve behaviour?

By definition, a transformation should not alter the behaviour of the software.

Unfortunately, a precise definition of behaviour is rarely provided or may be inefficient

to be checked in practice [76]. The original definition of behaviour preservation as

proposed originally states that, for the same set of input values, the resulting set of output

values should be the same before and after the transformation. In many application

domains, requiring the preservation of input-output behaviour is insufficient since many

other aspects of the behaviour many be relevant as well. This implies a wider range of

definitions of behaviour that mayor may not be preserved by a transformation,

depending on domain-specific or even user specific concerns.

The preservation property can either be checked statically or dynamically [76]. One

needs to remove the restrictions imposed by static conservative approximations by

taking more dynamic information into account. However, one should be aware that even

then it is impossible to guarantee full behaviour preservation in its generality. Moore and

Bennett propose a more dynamic notion of call preservation, where the transformation

guarantees that the same messages in a class will be sent in the same order [81]. Ward

provides a formal imperative language with formally defined semantics [118]. A

fundamental property of the semantics of WSL is that in order to prove a refinement or

equivalence relation between two programs, it is sufficient to prove an implication or

equivalence between the corresponding weakest preconditions [34, 98].

22

Chapter 2 Related Research

How is the effect of the transformations on quality characteristics assessed?

F or any pIece of software, its external quality attributes can be specified such as

reusability, performance and so on. Program transformations that alter the program can

be applied to improve the quality of software. To achieve this, each transformation has

to be analysed according to its particular purpose and effect. Some transformations

remove code redundancy, some raise the level of abstraction, some enhance the

reusability, etc. This effect can be estimated to a certain extent by expressing the

transformations in terms of the internal quality attributes they affect (such as SIze,

complexity, coupling and cohesion).

In the context of logic and functional programs, restructuring transformations typically

have the goal of improving program performance while preserving the program

semantics [94, 98] . In the context of object-oriented programs, Demeyer [31] concludes

that the program performance gets better after the transformation that replaces

conditional logic by polymorphism because of the efficient way in which current

compiler technology optimises polymorphic methods.

To measure or estimate the impact of a transformation on quality characteristics, many

different techniques can be used. Examples include, but are not limited to, software

metrics, empirical measurements, controlled experiments and statistical techniques.

Kataoka et al. propose coupling metrics as an evaluation method to determine the effect

of transformations on the maintainability of the program [127]. Tahvildari and

Kontogiannis encode design decisions as soft-goal graphs to guide the application of the

transformation process [104]. These soft-goal graphs describe correlations between

quality attributes. The association of transformations with a possible effect on soft-goals

addresses maintainability enhancements through primitive and composite

transformations. Tahvildari and Kontogiannis use a catalogue of object-oriented metrics

, ,
- -'

Chapter 2 Related Research

as an indicator to automatically detect where a particular transformation can be applied

to improve the software quality [103]. This is achieved by analysing the impact of each

transformation on these object-oriented metrics.

2.3.4 Transformation Systems

A program transformation system is determined by the choices it makes in program

representation and the programming paradigm used for implementing transformations.

It leverages an engineer-provided base of 'transforms' to automate analysis,

modification and generation of software, enhancing productivity and quality over

conventional methods [12]. Transformation system technology has matured to the point

where these activities are practical on large scale, production software systems and offer

large productivity and quality increments to engineering organisations using them.

This section will review a number of existing program transformation systems.

-<} DMS Software Reengineering Toolkit

The Design Maintenance System (DMS) Software Reengineering Toolkit [3, 12] is a set

of tools for automating customised source program analysis, modification or translation

or generation of software systems, containing arbitrary mixtures of languages

('domains'). The term 'software' for DMS is very broad and covers any formal notation,

including programming languages, markup languages, hardware description languages,

design notations, data descriptions, etc.

DMS provides generalised compiler technology for automating custom analysis,

modification and generation of large software system sources. It includes:

• Unicode-based lexer generator. DMS levers capture binary values of lexemes,

all comments and source file positioning information. Support is provided for

24

Chapter 2 Related Research

•

•

•

INCLUDE files and other preprocessor issues.

Context-free Generalised Left-to-right Rightmost derivation (GLR) parser

generator. Automatic construction of Abstract (not concrete) Syntax Trees

(AST). Handling of local and conventional ambiguities. Parse-time semantic

checking is possible.

Pretty printer generator. DMS pretty printers can pretty-print ASTs according

to custom pretty printing rules, or 'fidelity' print, preserving as much of the

original formatting as possible.

Multi-pass attribute evaluator generator. Attributes computed from one pass

are available in following passes. Attribute evaluation occurs in parallel, based

on data dependencies.

• Symbol table support for both conventional and unusual scoping rules.

• Surface-syntax pattern and rewrite rule specification. Patterns/rewrites written

in the notation of the target language, or in both source and target notations if

different languages. Conditional rewriting, with optional procedural

attachment. Optional procedural attachment for Right-hand-side construction.

Pattern and rule set compositions.

• Associative/Commutative rewrite engine.

• Scalable foundations Parallel execution based symmetric multiprocessing in

P ARLANSE, an internal parallel language for symbolic execution. Handles

tens of thousands of files comprising several million lines on Windows

platforms.

25

Chapter 2 Related Research

It is claimed by DMS that their toolset predefines a number of legacy languages for use

with DMS, such as ANSI C and C++ with a built in preprocessor, COBOL (ANSI

85/IBM VS II) with built in preprocessor, Java 2.0, C#, HTML 4.0, XHTML, Internet

Explorer dialect, PHP, ISO Pascal and (Borland) Object Pascal, Ada83/95,

Fortran77/90/95, ECMAScript (JavaScript), XML, Verilog, VHDL and so on.

~ TXL

The tree transformation language TXL [29] is a language designed for specifying

rule-based source-to-source transformations, claiming to be a general purpose

transformation system. Due to its long history started as early as 1990, this tool has been

used in many different industrial projects.

In the transformation rules, a mix of concrete and abstract syntax can be used. The TXL

engine applies all transformation rules repeatedly in a nondeterministic way until no

more rules succeed. When a rule is applied, it is possible to call other rules that operate

on a supplied argument that could for example be a child node. This provides a basic

mechanism of custom traversals over the input tree, but it is not very powerful. There is

no query support, but template matching support is quite powerful. It is however unclear

if and how this functionality allows one to retrieve input from an arbitrary location in the

input.

Due to the weak traversal support and due to the bad scaling characteristics of this

approach this is not a very good solution. A possibly better approach, which is also

aimed at allowing for transformations in which source and target language are different,

is to use several intermediate grammars and apply multiple successive rewrites from one

grammar to the next.

26

Chapter 2 Related Research

~ Alchemist

This approach described in [70] is primarily of interest because it was one of the first

program transformation environments and because it is based on TT - grammars [63], a

paradigm not commonly used but that looks interesting because it has been intended

exactly for the definition of program transformations.

Transformations in Alchemist are based on grammar productions. The tool allows

specification of the transformation of a grammar production of the source into the

production of the target. Transformations are defined completely in terms of grammar

productions, which actually is a mix of concrete and abstract syntax but in the context of

this evaluation, it is considered as abstract syntax. After specifying the exact

transformation, the system will perform a simple traversal over the input to transform

every node. This traversal is implicit and cannot be customised in any way. Furthermore,

it is not possible to add user-defined traversals over the input. Support for data

acquisition and queries is absent, which is recognised by the developers.

Although tree transformation grammars can be very good at l-to-1 and some

local-to-Iocal forward transformations, there is absolutely no support for traversals,

queries or data acquisition. This makes all other transformation scopes very hard to

implement. It is unclear what a reverse transformation should look like in the context of

tree transformation grammars. It is therefore no surprise that Alchemist does not support

this. Multi-stage transformations are possible in theory, but no references have been

found in the literature on this functionality.

~ ASF+SDF

The ASF (Algebraic Specification Formalism) +SDF (Syntax Definition Formalism)

meta-environment [33] provides a complete environment for program transformations

27

Chapter 2 Related Research

based on the term rewriting paradigm. One of its qualities is that it provides strong type

checking on transformation rules. Another reason that makes it an interesting tool to

study is because it has been used in a number of industrial projects. The equations that

define the transformation are written in a concrete syntax.

This concrete syntax is fully parsed and the resulting AST is used internally. Besides the

equations, a transformation specification also consists of a complete grammar definition

of both input and output, which makes it possible to generate any type of output easily.

Traversals are fairly well developed. There are two basic traversals, bottom up and top

down. It is also possible to define new traversals by manually specifying inside every

rule how a transformation should recurse into its children. Due to the tight coupling of

the transformation and this type of traversals, it is unfortunately not possible to separate

this functionality, making reuse of custom traversals very difficult.

There is no special query functionality that is allowed for easy lookups of information.

Although the rich equation functionality can be used for expressing certain queries, it

does not provide a very compact syntax and is only practical for querying the current sub

tree not allowing for easy access to other parts of the input tree.

There are a number of special features that are allowed for easy data acquisition. First of

all it is possible to collect data in extra attributes during a manual traversal. This suffers

from the problem that the addition of a single attribute will affect many equations, which

presents a scaling problem. The usage of the predefined traversal types accumulator or

transformer provides a much nicer approach. For these predefined traversal types the

system generates default rules that will automatically handle the traversal over terms for

which no traversal is specified. It even takes extra arguments into account, making data

acquisition easy. This however only works nicely if the traversal can be captured in a

28

Chapter 2 Related Research

basic bottom up or top down traversal. If this is not the case there is the option of

overriding the traversal at some key points, but these overrides should specify exactly all

extra arguments used, introducing again the same scaling problem as in the manual

traversal.

-<} XMLIXSLT

The very popular functional transformation language XSLT (Extensible Stylesheet

Language Transformation) [109] can be used to transform Extensible Markup Language

(XML)documents into arbitrary output and cannot be overlooked when studying

program transformations, although up to now it has not been used much for program

transformation.

A typical XSL T rewrite rule, or template in XSL T terms, receives as input an XML

document, for example, the abstract syntax for a Java file. The right hand side of these

templates is the output also in terms ofXML. However, since simple string values can be

used as XML values, concrete syntax can be used just as well. Although this approach is

widely used, it does not provide any format checking and suffers from escaping

problems. Another reason is that XSL T was not designed to be used like this, which is

supported by for example the new XSL T 2.0 specification that allows for applying a

transformation to the result of another transformation. This is of course only possible if

all transformation results are specified in terms of XML. Although only XML should be

output, this XML can of course be abstract syntax for any language and can be pretty

printed to the concrete syntax of that language. It is possible to define traversals by

manually recursing into the children of a node, but this does not allow for a clean

separation of traversal and rewriting.

For this reason, intelligent traversals are hard to write and maintain. This is compensated

29

Chapter 2 Related Research

by the powerful XPath matching functionality [110], which can be used for defining the

nodes a template should be applied on. It allows not only for matching against a specific

node, but also against the context a node occurs in, for example by putting restrictions on

it's ancestors. Query support, through XPath expressions, is very well developed. These

expressions allow selection of nodes precisely, using a compact and easy to learn syntax.

Furthermore, it always allows direct access to the whole tree and not only to just the

current sub-tree. Data acquisition is easy, primarily because of the powerful queries.

Furthermore, it is also possible to manually pass extra arguments to recursive template

applications allowing propagation of data through a traversal. Finally, there are variables

inside templates and global variables that can hold arbitrary values, making sharing of

data very easy.

~ Stratego

The special purpose transformation language Stratego is based on term rewriting [107]

and can be seen as the first incarnation of the strategic programming paradigm. It

provides numerous features such as hygienic variables, concrete object syntax and

dynamic rules that make it very suitable for implementing program transformations.

Internally all transformations operate on an AST. The programmer has the choice

between abstract syntax, usually preferable for small transformations or small code

fragments that are ambiguous in concrete syntax or abstract syntax, that can be mixed

into a Stratego program using a fully customisable syntax for defining quotation and

antiquotation [18]. The output of a transformation always is an AST that can be

pretty-printed to concrete syntax. Since the programmer is completely free to choose the

format of the output AST any type of output can be generated.

Because of the strategic programming paradigm used in Stratego traversal support is

excellent. Generic term traversal is readily available through the usage of congruence

30

Chapter 2 Related Research

operators and generic basic traversal strategies such as 'all' and 'one'. These can be

combined using strategy combinators for sequential composition, non-deterministic

choice and many others, to build very complex traversals. In fact, Stratego includes a

library with many common generic traversal strategies such as top down, bottom up,

collect, innermost and many others, which are evidence of the power of this mechanism.

There is no standard query functionality available, but powerful pattern matching

support in combination with intelligent traversals provides access to data. Although this

approach at first sight only seems to give access to data in the sub tree of the input of a

transformation, scoped dynamic rewrite rules [17] can be used to access the initial input

tree at any time during the transformation.

Furthermore, a study [121] shows the user-defined extension with XPath-like [109]

queries using a custom, application-specific, syntax. Data acquisition is possible in a

number of ways; scoped dynamic rewrite rules provide a very interesting approach of

making data available elsewhere in a way nicely fitting in the term rewriting paradigm.

Furthermore, it is possible to tuple the normal input tree with other data and carries along

this information during the traversal. This can present a scaling problem, since addition

of new arguments will likely force modification of many rules. An approach that scales

much better is the definition of a special traversal that holds an environment whose

values can be used inside every transformation. The standard Stratego library already

contains a number of these traversal strategies such as env-topdown and env-bottomup.

~ Tom

Tom [49, 80] is a software environment for defining transformations in Java. It is

particularly well suited for programming various transformations on trees/terms and

XML based documents. Since Tom is an extension of C or Java, it is naturally a general

31

Chapter 2 Related Research

purpose language that can be used to implement a large class of applications. The main

contribution of Tom is to add pattern matching facilities to C and Java. The application

domain of Tom becomes naturally related to the manipulation of structured tree/term

based objects. By introducing high-level, typed and structured constructs, Tom brings C

or Java closer to algebraic and functional style programming languages.

-.} FermaT Transformation Engine

The FermaT transformation engme [112-119, 125] is the latest version which has

evolved over two decades from a laboratory tool to a practical system based on the

transformation-intensive language WSL and its transformation theory. The details of

this tool and its theory are given in Section 3.6. The proposed research is implemented

based on the FermaT transformation engine. The choice of FermaT as an experiment

platform relies on the following reasons against to the other transformation systems.

• The flexibility and extendibility of WSL and .sMetaWSL. Using WSL as an

intermediate language is beneficial to the application of transformations on

various program languages. It is not required to develop different

transformations for different languages . .sMetaWSL as an extension of WSL is

for manipulating programs particularly and is an ideal means to develop

transformations. The layered structure of WSL facilitates the language

extension based on the existing constructs. That makes WSL adaptive for

more cases than the other systems, which are developed for a particular

language only.

• The reengineering-oriented transformations. In addition to the transformations

used to operate the same abstraction levels of software, FermaT

transformation engine has the transformations for abstraction and refinement

Chapter 2 Related Research

•

which are crucial for reverse engmeenng and forward engmeenng. Its

transformations can facilitate the reengineering process.

The rich transformation banle By the academic research and the practical

industrial applications for the two decades, there have been a large number of

transformations developed. The transformations were proven theoretically

before their development. Therefore, FermaT transformation engine is suitable

to experiment the research on transformation prediction.

2.4 Software Goal-Driven Requirement Specification

The proposed approach, the target driven program transformation steps predication

(TDPTSP) towards reengineering targets, involves a transition from requirements to

software entities or to a representative model of the implemented system. The input is

one target or multiple targets, the correlated metrics and the existing system. The output

expected is, for the target(s), a set of transformation candidates and their execution

sequence. The output is used as knowledge to assist the transformation process.

The target referred here can be regarded as a kind of software requirement informally

because it is proposed according to the needs of software reengineering. This section

will introduce the relevant concepts and techniques used in software requirement

specification which can be used for modelling and specifying targets.

2.4.1 Requirement Concepts

It is common to make a distinction between user and system requirements [64], which

are defined as follows.

• User requirements (or stakeholder requirements) define what the user requires

33

Chapter 2 Related Research

•

of the software or system as a whole. User requirements are informal. They

are written by the user or taken down by a system analyst in consultation with

the user.

System requirements (requirement specifications) define what is required of

the system as a whole, either hardware or software. Analysts develop system

requirements, as a refinement of user requirements, by translating them into

engineering terms.

Requirement specification commonly identifies four major classes of requirements [15]:

• . Functional requirements which specify a function that a system or a system

component (i.e. software) must be capable of performing;

• Non-functional requirements which state the characteristics of the system to be

achieved that are not related to its functionality, i.e. its performance, reliability,

security, maintainability, availability, accuracy, error-handling, capacity, types

of users, changes to be accommodated, level of training support, etc.;

• Inverse requirements which describe constraints on the system expressed in

terms of what the system will not be able to do, e.g. in relation to software

safety or security requirements; and

• Design and implementation constraints which state the boundary conditions on

how the required software is to be constructed and implemented.

As the quality of requirements has a pivotal role in reaching the quality of the final

software product, it is important that the requirements specification meets some

well-recognised quality standard. Therefore, it should identify only the information that

34

Chapter 2 Related Research

is necessary and actually useable in the development of the software project. All such

information should be expressed in unambiguous and consistent terms and be complete

and verifiable. Individual requirements should be prioritised to allow scheduling of all

development tasks and should the user requirements change; the specification must be

easily modifiable. Any software development products must also be traceable back to

the original requirements statements.

2.4.2 Goal Targeting Modelling

Within requirement engineering, the notion of goal has increasingly been used. Goals

generally describe targets which a system should achieve through cooperation of actors

in the intended software and in the environment [71]. Goals are central III some

requirement engineering frameworks and can playa supporting role in others.

The term soft goal is used in connection with modelling languages and especially with

goal-oriented modelling. Soft goals can represent [25]:

• Non-functional requirements

• Relations between non-functional requirements

Normally a goal is a very strict and clear logical criterion. It is satisfied when all

sub-goals are satisfied. However, in the non-functional requirements you often need

more loosely defined criteria, like satisficeable or unsatisficeable. Soft goals are goals

that do not have a clear-cut criterion for their satisfaction: they are satisfied when there is

a sufficient positive and little negative evidence for this claim, while they are

unsatisficeable in the opposite case.

Goals can be related to other soft-goals in terms of relations such as AND, OR, + or -

35

Chapter 2 Related Research

[25, 83, 84]. The meaning of these relations has been shown as Table 2-2. Goal-oriented

analysis amounts on an intertwined execution of the three types of analysis sketched

here, namely analysis of non-functional requirements as soft-goals, of functional

requirements as goals and conflict analysis. The analysis can be declared complete when

all relevant goals (soft or otherwise) have been operationalised in terms of constraints on

and functions to be performed by, the new system. Goal-oriented analysis focuses on the

description and evaluation of alternative and their relationship to the organisational

targets behind a software development project.

Goal G is satisficed when all of G l' G 2 , .. , G n are satisficed and

AND (G, G1, G2 ,···, Gn)

there is no negative evidence against it.

Goal G is unsatisficed and there is one of GI'G2 , .. ,Gn IS

unsatisficed and there is no positive evidence for it.

Goal G is satisficed when one of G1, G 2 , •.. , G n is satisficed and

OR(G,G1,G2 ,··,Gn)
there is no negative evidence against it.

Goal G is unsatisficed if all of G1, G 2" •• , G n are unsatisficed and

there is no positive evidence for it.

+(GI'G2) Goal GI contributes positively to the fulfilment of goal G2 ·

-(G1,G2) Goal G1 contributes negatively to the fulfilment of goal G 2 .

Table 2-2 Goal Relationship

2.5 Software Metrics

Software metrics as a subject area has been over 30 years old since Maurice Halstead

published his first paper [50], which was the beginning of the first long-term software

metrics research effort. Since then software metrics have become a significant part of

software engineering.

Metrics are critical to any engineering discipline and software engmeenng IS no

36

Chapter 2 Related Research

exception. Software metrics can be used throughout the software life cycle to assist in

cost estimation, quality control, productivity assessment and project control and can be

used to help asses the quality of technical work products and to assist in tactical decision

making as a project proceeds.

In the definitions of software metrics, three terms, 'measure', 'measurement' and

'metrics', must be noticed and distinguished, because definitions of these terms can

easily become confusing. Within the software engineering context, these terms are

defined as follows:

• A measure provides a quantitative indication of the extent, amount,

dimensions, capacity, or size of some attributes of a product or process [92].

• Measurement is the act of determining a measure [92]. It is the process of

empirically and targetly assigning numerical results to the attributes of

software in such a way as to describe the software.

• A software metric is a quantitative measure of the degree to which a system,

component, or process possesses a given attribute.

Other important definitions are listed as follows following classical texts in the science

of measurement [65, 66, 95].

• An attribute is a feature or property of an entity.

• Direct measurement of an attribute is measurement that does not depend on

the measurement of any other attribute.

• Indirect measurement of an attribute is measurement that involves the

measurement of one or more other attributes. (It is often useful in making

37

Chapter 2 Related Research

visible the interactions between direct measurements.)

After three decades, plenty of metrics have been developed for different measurements.

Those metrics are used to serve the assessment of the properties of software [43, 88].

2.6 Automation of Program Transformation for Software

Reengineering

A core technique of the proposed approach IS 'prediction'. The prediction in the

approach refers to find the applicable transformations and the execution sequence of

them, which contribute the specified targets. The process of the prediction is actually to

search a set of suitable solutions to improve automation of program transformation

towards reengineering targets. With regard to the aspect of the proposed research, a few

research works related to transformation automation are reviewed and compared in this

section for the further discussion on the proposed approach.

Tracing back to 1970's, target-driven program transformation has drawn attention.

Wegbreit [120] proposed that program transformation can be made goal-directed. In

their approach, the execution performance goals are established to direct the process of

program transformation which is carried out by local simplification, partial evaluation of

recursive functions, abstraction of new recursive function definitions from recurring

subgoals and generalisation of expressions as required obtaining compatible subgoals.

The goal is represented as expression. The closed-form algebraic expressions which

describe execution behaviour are derived to specify the program's computation cost and

program's output characteristics. Their transformations are used to remove the program

segments whose computation costs are not accounted for in the estimates of minimum

cost. The approach did not realise the automation of the transformation but suggested the

idea of goal-driven which can direct the implementation of transformations.

38

Chapter 2 Related Research

The action to improve the automation of program transformation by prediction approach

can be regarded as a search problem in that it is needed to find the candidates among a

large number of transformations and determined their execution sequence. The proposed

problem has a tight link with Search Based Software Engineering (SBSE). SBSE is a fast

growing field in that search based solutions have a track record of success in the domain

of software engineering, characterised by a large number of potential solutions, where

there are many complex, competing and conflicting constraints and where construction

of a perfect solution is either impossible or impractical [126]. Growth in interest is

fueled by the way in which search techniques can be applied right across the life-cycle of

software and the speed with which the techniques can be mastered and deployed to

produce results [53]. These techniques provide robust, cost-effective and high quality

solution for several problems in software engineering. It is precisely these factors which

make robust meta-heuristic search-based optimisation techniques readily applicable [52].

Meta-heuristic algorithms, such as genetic algorithms [48], simulated annealing [67],

A * search [102] and tabu search [46] have been applied successfully to a number of

engineering problems.

In order to reformulate software engineering as a search problem, it is necessary to

define [52]:

• The representation of a candidate solution. This IS critical to shaping the

nature of the search problem.

• A fitness function (defined in terms of this representation) which is the

characterisation of what is considered to be a good solution. When

constructing the fitness function, in most case, metrics to measure software

properties are used as the fitness function [51].

39

Chapter 2 Related Research

• A set of manipulation operators. Different search techniques use different

operators. As a minimum requirement, it will be necessary to mutate an

individual representation of a candidate solution to produce a representation of

a different candidate solution.

Recently, quite a few researches have been devoted in the area of SBSE, to search the

optimal solutions, including the one of program transformation in software

. .
reengmeenng.

As a pioneer work in the subject of SBSE for program transformation, Fatiregun et al.

proposed to using genetic algorithms for evolving transformation sequences [41]. In this

work, they reformulated the transformation problem as a search issue for optimisation,

provided evidence that evolutionary and/or local search can be used to evolve good

transformation sequences and investigate the difference between Hill-Climbing (HC)

and the Genetic Algorithms (GA). A system is proposed so that transformation

sequences for a variety of target functions can be dynamically generated. As an

experiment, the number of Lines of Code (LOC) is used as the fitness function to

compare the effect of the transformation sequence generation by different search

algorithms. In their transformation sequence, the transformations that could transform

an entire program in one single step are not included. In addition to the atomic ones that

work on pairs of nodes on abstract syntax tree, the operations which move the current

cursor position on the abstraction syntax tree of the program are also included. There are

two points to argue w.r.t their research. (1) The transformations that could transform an

entire program in one single step should be included in the approach. The selection of

the transformations should be complete. (2) The generation of the transformation

sequences through GA or HC does not take the expertise and domain knowledge into

account. Expertise is also a crucial knowledge and should not be neglected. The

efficiency and the correctness of the result could be doubted due to the two factors.

Chapter 2 Related Research

Tahvildari and Kontogiannis [133, 134] proposed a quality driven object-oriented

reengineering transfonnation framework that allows for quality requirements of the

target system to be modelled as soft-goals and transfonnations to be applied selectively

towards achieving specific quality requirements for the target system. These

transfonnations can be applied as a series of the iterative and incremental steps to the

source code. The authors used a revised A * heuristic algorithm to determine the

transfonnation solutions. An evaluation procedure can be used at each transformation

step to detennine whether specific goals have been achieved. However, the

transfonnations used in their approach were not proved semantic preserving. The

transfonnation result cannot ensure the behaviour of the legacy system unchanged while

its qualities are improved as desired. The evaluation function defined for implementing

the A * search is not precise in that the cost function is the combination of the metrics

which can be valued in very different ranges. This could cause the neglect of the

transformation impact on some metrics and result in an inaccurate cost evaluation. In

addition, the heuristic function defined in their approach is so imprecise that the A *

search could fail to find the optimised solutions as the authors claimed.

Zou et al. [103, 104] presented a software migration process to transform a subject

system from its original procedural language implementation to an object oriented

design without altering its external behaviour. In this context, the migration process is

denoted by a sequence of transformations each one of which alters the state of the system

being migrated. In order to identify the optimal sequence of transfonnations that can be

applied at any given state of the migration process, the authors used a state transition

system modelled as Markov type chains and the Viterbi algorithm for the optimisation.

In the transition model, every transformation is denoted with a quality factor that

indicates the impact on specific code features when applying each transformation in a

migration. However, their approach assumes that the final state is well defined, for

41

Chapter 2 Related Research

example, such as a migrated object-oriented system which has the desired qualities.

Unfortunately, this limitation prevents the application of the framework for continuous

system improvement. To apply the framework in more general transformation processes,

it must be enhanced with better quality prediction capabilities.

Ryan [97] worked on usmg search techniques to automate parallelisation for

supercomputers and described the application of Genetic Programming (GP) to a real

world application area - software reengineering in general and automatic parallelisation

specifically. Unlike most uses of Genetic Programming, this book evolves sequences of

provable transformations rather than actual programs. It demonstrates that the benefits

of this approach are twofold: first, the time required for evaluating a population is

drastically reduced and second, the transformations can subsequently be used to prove

that the new program is functionally equivalent to the original. The work shows that

there are applications where it is more practical to use GP to assist with software

engineering rather than to replace it entirely. It also demonstrates how the author

isolated aspects of a problem that were particularly suited to GP and used traditional

software engineering techniques in those areas for which they were adequate.

Agosta et al [1] proposes a methodology for the co-exploration of the design space

composed of architectural parameters and source program transformations. They

presented a heuristic technique and used it to efficiently span the multi-target co-design

space composed of the product of the parameters related to the selected program

transformations and the configurable architecture. In the transformation space of their

work, the most important optimisation transformations called passes are classified in

three categories: dataflow passes, passes that simplify the control and enlarge the code

and passes that modify the access pattern to data. A transformation point in their work is

any point in a program where a transformation can be applied.

42

Chapter 2 Related Research

Cooper et al. [28] focus on searching for sequences of compiler optimisation transforms

which work largely on compiled code using biased random sampling. They compare the

results of their experiments with those obtained against a fixed set of optimisations in a

predetermined order.

2.7 Language for Program Transformation

Spectrum Language (WSL)

2.7.1 Background of WSL

Wide

Wide Spectrum Language (WSL) [72, 112-115, 117, 118, 125] has been developed for

almost two decades and has been used to build a general approach and a tool [114, 115,

118] for addressing reengineering research issues such as program comprehension and

reverse engineering using program transformation and abstraction techniques. The wide

spectrum language is so termed because it embraces the whole spectrum from

mathematical specifications to executable implementations [125]. WSL contains both

specification constructs, such as the general assignment statement and programming

constructs, such as while-do loops [129].

Because WSL represents specifications and executable implementations, it is ideal for

reengineering and re-documentation purposes. By translating a legacy system's source

code to WSL as an intermediate representation, a reengineering tool can derive both the

specifications inherent within the WSL representation in order to generate the

documentation of the system [125]. The use of WSL as an intermediate language or

representation has many advantages including the ability to use standardised

transformations and mappings from the intermediate to the target domain and, thus,

avoid the 'impedance mismatching' problem between the source and target domain.

This allows the reengineering effort to be divided up into smaller steps rather than a

Chapter 2 Related Research

monolithic source to target domain reengineering effort [79]. WSL was developed with

several advantages in mind:

(1) WSL has simple, regular and formally defined semantics.

(2) Its syntax is simple, clear and unambiguous.

(3) WSL has the ability to express general specifications III terms of

mathematical logic with suitable notation.

(4) WSL is supported by well-developed library of proven transformations

which do not require the user to fulfil complex proof obligations before

these transformations can be applied.

(5) WSL supplies a suite of constants, functions and procedures which are

especially designed to handle lists which represent WSL programs. This

collection of procedures and functions is known as .0\1etaWSL which is

extended from WSL for writing program transformations.

(6) Techniques based on WSL can bridge the 'abstraction gap' between

specifications and implementation.

(7) WSL has the ability to scale to large programs and has broad real

industry-intensive applications in the world wide range.

(8) WSL has existing tool support as well. The FermaT tool [114,115,118]

was designed to use WSL and has applications in the following areas:

• Improving the maintainability of existing mission-critical software.

Chapter 2 Related Research

• Translating programs to modem programming languages. FermaT often

translates programs written in obsolete assembler language to more

modem languages such as C.

• Extracting reusable components from the current system, deriving their

specifications and storing the specifications, implementation and

development strategy.

• Reverse engineering existing systems to high-level specifications,

followed by subsequent reengineering and evolutionary development.

WSL was adopted because, among many reasons, its ability for proven transformations

and the ability to represent high and low levels of abstraction which make it well suited

for reengineering purposes. Particularly, its possession of a rich transformation bank is

ideal to explore the transformation prediction approach.

2.7.2 Intermediate Language for Transformation

2.7.2.1 The Kernel Language

The WSL language is built up in a series of layers from a small a mathematically

tractable 'kernel language' . This kernel language is based on infinitary first order logic,

which is an extension of ordinary first order logic which allows conjunction and

disjunction over (countably) infinite lists of formulae and quantification over finite lists

of variables. Expressions and conditions (formulae) in WSL are taken directly from

infinitary first order logic. Statements in the kernel language are constructed by

combining infinitary logic formulae, lists of variables and statement variables. Four

primitive statements and three compound statements are needed to define the whole

kernel language. Let P and Q be any infinitary logical formulae and x and y be any finite,

45

Chapter 2 Related Research

non-empty lists of variables. The primitive statements are [117, 125]:

Add variables: add (x) adds the variables in x to the state space and assigns arbitrary

values to them. If the variables are already in the state space, then they still get assigned

arbitrary values.

Remove variables: remove (y) removes the variables in y from the state space if

they are present: i.e. it ensures that the variables are no longer in the state space.

Guard: [P] is a guard statement. It always terminates and enforces P to be true at this

point in the program without changing the values of any variables. It has the effect of

restricting previous non-determinism to those cases which will cause P to be true at this

point. If this cannot be ensured then the set of possible final states is empty and therefore

all the final states will satisfice any desired condition (including P);

Assertion: {Q} is an assertion statement which acts as a partial skip statement. If the

formula P is true then the statement terminates immediately without changing any

variables, otherwise it does not terminate.

The compound statements are as follows; for any kernel language statements SI and S2,

the following are also kernel language statements:

Sequence: (Sl ; S2) executes SJ followed by S2;

Nondeterministic choice: (SJ n S2) chooses one of SJ or S2 for execution, the

choice being made nondeterministically;

Recursion: (JiX.SJ) where X is a statement variable (taken from a suitable set of

Chapter 2 Related Research

symbols). The statement Sj may contain occurrences of X as one or more of its

component statements. These represent recursive calls to the procedure whose body is

Sj.

The kernel primitives have been described as 'the quarks of programming' - rather

mysterious objects which cannot be found in isolation (the guard statement cannot be

implemented) but which combine to form more familiar objects: combinations which,

until recently, were thought to be 'atomic' and indivisible.

2.7.2.2 Extending the Kernel Language

The kernel is a very simple and mathematically tractable language which contains all the

operations needed for a programming and specification language. It is relatively easy to

prove the correctness of transformations in the kernel language, but the language is not

very expressive for programming. The language is extended into an expressive

programming language by defining new constructs in terms of the kernel. This extension

is carried out in a series of layers, illustrated in Figure 2-2, with each layer building on

the previous language level. A series of new language levels is built up, with the

language at each level being defined in terms of the previous level; the kernel language

is the level zero language which forms the foundation for all the others. Each new

language level automatically inherits the transformations proved at the previous level;

these form the basis of a new transformation catalogue. Transformation of each new

language construction is proved by appealing to the defmitional transformation of the

construct and carrying out the actual manipulation in the previous level language. This

technique has proved extremely powerful and has led to the development of a practical

transformation system (FermaT) which implements a large number of transformations.

Over the last eighteen years, the WSL language and transformation theory have been

47

Chapter 2 Related Research

developed in parallel: after a sufficiently complete set of transformations for dealing

with that a construct, it is only needed to add the new construct to the language. This is

one of the reasons for the success of WSL, as witness by the practical utility of the

program transformation tool.

Because of the advantage of WSL, it is possible to extend WSL with new constructs so

that the application of the program transformation theory based on WSL can be extended

into new domains with new features.

[third level (procedures/function) 1

[second level(loop/action) 1
\1

r first level (if7while ...) 1
\1

[kernel 1

Figure 2-2 WSL Language Levels

The first level language consists of the following constructs:

Sequential composition: The sequencing operator is associative so the brackets can be

eliminated:

Deterministic choice: guards can be used to tum a nondeterministic choice into a

deterministic choice:

Specification statement:

x:= x'.Q = DF {:lx'.Q}; add(x'); [Q]; add(x); [x = x']; remove(x')

48

Chapter 2 Related Research

Simple assignment: if Q is of the form x' = t where t is a list of terms that do not

contain x' then the assignment can be abbreviated as follows:

x:= t =DF x:= x'.(x' = t)

If x contains a single variable, x := t is written as (x):= (t) ;

Nondeterministic choice: The 'guarded command' ofDijkstra:

ifB)~S) =DF({B)vB2 v···vBn };

B S fi D n ~ n

(·.·(([B)];S)n

([B2]; S2) n
... »

Deterministic iteration: a while loop is defined using a new recursive procedure X that

does not occur free in S:

while B do Sod = DF (JLX.(([B]; S) n [-,ED)

Nondeterministic iteration:

-DF

Initialised local variables:

begin x := t: Send =DF (add(x); ([x = t]; (S; remove (x»»

Counted iteration: Here, the loop body S must not change i, b,/ or s:

for i:= b to/step s do S od begin i := b:

while i ~ / do S; i : = i + Sod end

49

Chapter 2 Related Research
Block with procedure calls:

begin S where proc X == S' .end S [(,uXS') / X]

One aim for the design of the first level language is that it should be easy to determine

which statements are null potentially.

The level two languages introduce multi-exit loops and Action Systems. Level three

adds local variables and parameters to procedures, functions and expression with side

effects.

The extendibility of WSL by adding or adjusting language construct levels endues itself

with the flexibility when WSL is used for the program written in the other imperative

language such as object-oriented programming.

2.7.2.3 The Specification Statement

A simple combination of kernel statements is used to construct the specification

statement x:= X'.Q where x is a sequence of variables and x' the corresponding

sequence of 'primed variables' and Q is any formula. This assigns new values to the

variables in x so that the formula Q is true where (within Q) x represents the old

values and x' represents the new values. If there are no new values for x which

satisfices Q then the statement aborts.

The formal definition of x:= X'.Q is:

{ 3X'.Q}; add(x'); [Q]; add(x); [x = x']; remove(x')

The first assertion ensures that the statement aborts if there are no values for the x'

variables which satisfy Q. The next two statements add x' to the state space with

arbitrary values and then restrict the values to satisfy Q. The final three statements copy

50

Chapter 2 Related Research

the values from x' to x and then remove x' from the state space. It is assumed that

the 'primed variables' are a separate set of variables which are not used outside

specification statements.

Any WSL program can be transformed into a single equivalent specification statement.

This shows that the specification statement is sufficiently general to define the

specification of any program.

By having expressive program constructs in the implementation level and specification

statements in the abstraction level, WSL is de facto wide spectrum covering high level

and low level of a program.

2.7.2.4 Semantics of the Kernel Language

Figure 2-3 State Transformation Illustration

Let Vand W be finite sets of variables and H be a set of values.

A state is either the special -.l which indicates nontermination or error, or is function

from V to H. This function gives a value (taken from H) to each variable in the state

{ } U H v H V '
space. The set of all state on V is denoted DH (V) where DH (V) = DF 1- , IS

the defined states on V.

51

Chapter 2 Related Research

A state predicate is a set of proper states (i.e. states other than 1-), with the set of all state

predicates denoted EH(V).

A state transfonnation is a function which maps a state in VH to a set of states in WH,

where 1- maps to WH and if 1- is the output, then so is every other state. The state

transfonnation is illustrated in Figure 2-3. The set of all state transfonnation from Vto W

may therefore be defined as:

The non-recursive kernel language statements are defined as state transformations as

follows:

{
{S} if SEe

{e}(s) =DF DH (W) otherwise

{
{S}

[e](s) =DF ¢
if SEe

otherwise

add(s) =DF {s' E DH(W) I Vy E W.(y ~ X => s'(y) = s(y))}

remove (s) = DF {s' E DH (W) I Vy E W.(s'(y) = s(y))}

(1;; 12)(s) = DF U {/2 (s') I s' E 1; (s)}

Three fundamental state transfonnations in FH (V, V) are: 0, 0, A. These give the

semantics of the statements abort, null and skip, where abort is defined as {false},

null is defined as [false] and skip is defined as {true}. For each proper s EDH:

0(s) =DF ¢ A(s) =DF {s}

Recursion is defined in tenns of a function on state transformations:

52

Chapter 2 Related Research

Theorem 2-1 Recursion: Suppose a function F which maps the set of state

transformations F H (V, V) to itself. A recursive state transformation from F as the limit

of the sequence of state transformations F(n),F(F(n)),F(F(F(n))),.··. With the

definition of state transformation given above, this limit (p.F) has a particularly

simple and elegant definition:

n<OJ

where 1I on a set of state transformation is defined by pointwise intersection:

(li X)(s) =DF n{f(s) If EX}

F n (0.) is the 'nth truncation' of (p.F): as n increases the truncations get closer to

(f.l.F). The later truncations provide more information about (p.F) - more initial

states for which it terminates and a restricted set of final states. The 11 operation

collects together all this information to form (p.F) .

With this definition, (p.F) is well defined for every function F: F H (V, V) ~ F H (V, V) .

However if the recursive statement state transformations needs to satisfy the property

F((p.F)) = (p.F) (in other words, to be a fixed point of the F function) then the further

restrictions on F is required.

The definition of recurSIOn will be referred for the extension of WSL with

object-oriented features. The fixed point approach will be used to define the semantics

of inheritance and self-reference relationship.

53

Chapter 2 Related Research

2.7.3 Program Transformation Theory

2.7.3.1 Refinement and Equivalence

A state transformation can be thought of as either a specification of a program, or as a

(partial) description of the behaviour of a program. If/ is a specification, then for each

initial state s,/(s) is the allowed set of final states. If -LE /(s) then the specification

does not restrict the program in any way for initial state s, since every other state is also

in/(s).

Similarly, if / is a program description, then -L~ /(s) means that the program is

guaranteed to terminate in some state in/(s) when started in state s.

Program/satisfies specification g precisely when \/s.(/(s) c g(s)).

A program /2 is a refinement of program 1; if /2 satisfies every specification

satisfied by 1;, i.e. \/g.(\/s.(1; (s) c g(s)) => \/S.(/2 (s) C g(s))). It is easy to see that

refinement and satisfaction, as defined above, are identical relations.

Theorem 2-2 Refinement: Given two state transformations 1; and 12 in F H (V, W) ,

/2 refines 1; ,or 1; is refined by /2' written as 1; ~ /2 if and only if /2 satisfies

1; . More fonnally:

If all the constant symbols, function symbols and relation symbols in the statement are

interpreted as elements of H, functions on H and relations on H, then fonnulae can be

interpreted as state predicates and statements as state transformations.

Chapter 2 Related Research

Theorem 2-3 Equivalent: Two statements f. and !2 are equivalent if their

interpretations are identical.

There are many ways of interpreting the constant symbols, relation symbols and

function symbols appearing in a WSL program. Rather than fixing on a particular

interpretation, the transformation rules are proved in the context of a set tl of

assumptions. Here, tl is a finite or countable infinite set of sentences (formulae with no

free variables). In any interpretation, a sentence must either be universally true or

universally false. An interpretation within which all the sentences of tl are true is

called a model for tl. If S is a statement and Vand Ware state transformation defined by

applying M to S on V and W is denoted int M (S, V, W) .

Theorem 2-4 Semantic Refinement: Let S) and S 2 be statements and V and W be

state spaces such that S) : V ~ Wand S2 : V ~ W . Let tl be a set of sentences. If for

everymodelMoftl,if intM(S),V,W)~intM(S2'V,W) then S2 is a refinement of S)

under tl and is written as:

~ t== S) ~ S2

If tl t== S) ~ S2 and tl t== S2 ~ S) then the semantic functions are identical under every

model, so S) and S2 are semantically equivalent and is written as

2.7.3.2 Transformation Definition

The mathematical model of WSL defines the semantics of a program as a function from

states to sets of states. For each initial state s, the function! returns the set of states fis)

55

Chapter 2 Related Research

which contains all the possible final states of the program when it is started in the state s.

If two programs are both potentially nonterminating on a particular initial state, then

they are equivalent on that state. A transformation is an operation which takes any

program satisfying its applicability conditions and returns an equivalent program [112].

2.7.3.3 !MetawSL

A transformation is a function which maps a WSL program to an equivalent WSL

program. WSL programs are represented as abstract syntax tree: therefore a

transformation can be expressed as an operation on a syntax tree. Similarly, the

applicability condition of a transformation is expressed as a function on syntax trees. By

extending the WSL language to proved suitable constructs for accessing and

manipulating WSL syntax trees, program transformations can be expressed in this

extension of WSL, called 9vtetaWSL. Since 9vtetaWSL is an extension to WSL, the

WSL transformation can also be applied to 9vtetaWSL code (with some small

modifications), in addition further 9vtetaWSL specific transformations are possible.

Therefore, a program transformation can be implemented as a piece of 9vtetaWSL code

which in tum can be source program for applying a transformation (including itself: a

transformation can be applied to its own source code). The result will be different

implementation of the same program transformation.

The implementation of 9vtetaWSL involves a translator from 9vtetaWSL to Scheme, a

small Scheme runtime library (for the main abstract data types) and a WSL runtime

library (for the high-level 9vtetaWSL constructs such as ifmatch, foreach, fill etc).

56

Chapter 2 Related Research

2.7.4 Transformation Toolset on WSL

2.7.4.1 Related Transformation Systems

The first tool to be developed as a result of the research work on WSL and program

transformation theory was the Maintainer's Assistant (MA) [111, 125]. The X windows

based front-end (XMA) for MA that displays formatted WSL code provides the graphic

user interface by which the user can select the position and select transformations to

apply. MA includes a large number of transformations but is very much an academic

prototype whose aim was to test the ideas rather than be a practical tool.

Since 1988, MA has evolved into an industrial-strength reengineering tool, FermaT [115,

118, 125], which allows transformations and code simplification to be carried out

automatically. The FermaT tool was also designed to use WSL and has applications in

the following areas:

• Improving the maintainability of existing mission-critical software.

• Translating programs into modem programmmg languages. FermaT often

translates program written in obsolete assembler language to more modem

languages such as C.

• Improving the quality of code by transformations.

• Extracting reusable components from the current system, deriving their

specifications and storing the specification, implementation and development

strategy.

• Reverse engineering existing systems to high-level specifications, followed by

subsequent reengineering and evolutionary development.

57

Chapter 2 Related Research

FermaT provides a suitable platform and experimental environment for the program

transformation step prediction approach. The proposed work is an extension of the

research based on F erma T.

2.7.4.2 Implementation of Program Transformation

A transformation is function which maps a WSL program to an equivalent WSL

program. WSL programs are represented as abstract syntax trees (AST); therefore, a

transformation can be expressed as an operation on a syntax tree. Similarly, the

applicability condition of a transformation can be expressed as a function on syntax trees.

By extending the WSL language to provide suitable constructs for accessing and

manipulating WSL syntax trees, the transformations are able to be expressed in this

extension to WSL, called :MetaWSL [118].

WSL syntax trees are manipulated via an abstract data type which stores the tree

internally and records the 'current position' in the syntax tree. A 'position' in the tree is

represented as a list of integers < PI' P2"'" P n > where PI th is taken as the root,

P2 th is taken as the node at the P2 th relatively to the PI th node and so on. In 5\1etaWSL,

a number of procedures are developed for manipulating WSL program ASTs for the

implementation of transformations. For example, :MetaWSL procedures @Up, @Down,

@Left, @Right, @Goto(position), @To_Last, @To and @Down_To are used to move

around the tree. The @Program function returns the whole tree, while @I returns the

current item and @Posn returns the current position. The functions @GT(I), @ST(I),

@V(I) and @Cs(I) return the generic type, specific type, value and list of components

for the node 1. Moreover, the editing procedures used to edit the current position in a tree

are @Delete, @Clever_Delete, @Cut, @Paste_Over, @Paste_Before, @Paste_After,

@Splice_Over, @Splice_Before, @Splice_After.

58

Chapter 2 Related Research

In addition to the basic procedures, 5WetaWSL also provides some basic constructs, such

as foreach, ateach, ifmatch and fill constructs. With those constructs,

meta-transformation can be developed and easily extended in FermaT.

2.7.4.3 Transformation Bank

Over many years of the transformation theory development, the various versions of

FermaT and case studies with many different systems are developed with a large number

of transformations which are known to always 'improve' the program whenever they are

applied [117].

The program transformations are stored in FermaT as source files in a folder. There are

two types of transformations, i.e., the 'atomic transformations' and the meta

transformations'. The 'meta transformations' operate primarily by invoking other

transformations. In the current transformation bank, there are nearly 100 transformations

including the atomic ones and the meta ones stored as source file format.

Each transformation is written to operate on the current item @I. Hence

@Trans(trans,data) applies transformation trans on @I with the given data. Most

transformations do not require any data as parameters. Each transformation consists of a

program called trans_name.wsl (where Trans_Name is the name of the transformation)

containing [116]:

(1) An MW _PROC without parameters called @Trans_Name_Test which raises

errors if the item is not suitable for the transformation;

(2) An MW _PROC called @Trans_Name_Code and taking as its parameter the data

to be passed to the transformation (if any);

59

Chapter 2 Related Research

(3) Any auxiliary functions or procedures useful to Trans _Name_Code or

Trans_Name _Test;

(4) A final SKIP which constitutes the mam body of the program

transformation _ name.wsl, thus ensuring that technically it is indeed a well

formed WSL program.

The metadata of program transformations is used to facilitate the understanding, use and

management of data. For each transformation, there is an auxiliary file

transformation_name _ d.wsl which registers the transformation with the system and

having the following form:

TRs_Name[TR_Trans_Name] := 'Trans Name';

TRs_Proc_Name[TR_Trans_Name] := 'Trans_Name';

TRs_Test[TR_Trans_Name]:=!XF funct(@Trans_Name_Test);

TRs _ Code[TR _Trans _Name]:=!XF funct(@Trans_Name_Code);

TRs_Keywords[TR_Trans_Name] := < 'key' , 'words' >;

TRs_Help[TR_Trans_Name] := "This transformation does the following ... ";

TRs_Prompt[TR_Trans_Name] :="";

TRs_Data_Gen_Type[TR_Trans_Name] :="".

In addition each transformation has a 'test file' to test its validation as well as give ,

examples how to use it. In a 'test folder' , each test file has the name

trans_name TEST.wsl where as before Trans_Name is the name of the transformation.

A test file consists of a set of @Test_Trans commands. The arguments of Test_Trans

consist of:

• A string identifying the test: 'nth test of Trans_Name';

60

Chapter 2 Related Research

•

•

•

•

The item to be tested;

The position in this item at which the transformation should be applied (given

as a list - see Section 2.7.4.2);

The data for the transformation: if there is none, the data will be an empty set;

Either the code which should result from the transformation (if the item to be

transformed ought to pass Trans_Name_Test in trans_name.wsl) OR the

string 'Fail' if it should be failed by Trans_Name _Test.

2.8 Summary

The chapter introduced the techniques and existing research which are relevant to the

proposed approach.

A The goal of software reengineering is to understand the existing software and

then to re-implement it to improve the system's functionality, performance or

implementation.

A The process of reengineering computing system involves three main steps, i.e.,

reverse engineering, restructuring and forward engineering.

A Program transformation is the act of changing the syntax of a program but

preserving its semantics.

A Program transformation has applications in many areas of software

engineering. It is one of the important techniques for software reengineering

due to its features.

61

Chapter 2 Related Research

A number of transformation systems are reviewed with regard to their

platforms, processing languages and capability. Compared to the other systems,

FermaT platform is an industry intensive toolset for software migration and

software reengineering. Equipped with formal techniques and the rich

transformation bank, FermaT has a good extendibility and it is ideal to

experiment the proposed transformation prediction approach.

J.. Software goal-driven techniques and software metrics reviewed in this chapter

are appropriate for the representation of target driven by a reengineering

activity.

J.. A variety of the related work on program transformation automation and using

heuristics based search techniques to get optimal solutions to achieve the

automation are reviewed and analysed. The defects of these approaches are

discussed and accordingly a few points should be addressed and paid attention

to in the proposed approach.

J.. The background and concepts of WSL is introduced as the groundwork on

which the language and transformation extension for further applications is

flexible due to its language levels.

J.. The current transformation bank is reviewed on the aspects about its capacity,

management and development. It provides a good platform to explore the

transformation prediction approach.

62

Chapter 3
Target Driven Transformation Step
Prediction Framework

Objectives

• To outline the motivation of the Target Driven Program Transformation

Step Prediction (TDPTSP)

• To explore the relationship between targets, metrics and transformations

• To overview the framework of the proposed research

• To illustrate the technical steps used in the proposed work

3.1 Introduction

As a combination of reverse engineering and forward engineering, software

reengineering is the set of activities for the problem of evolving existing computing

systems to ensure that software continues to meet organisational and business targets in

a cost effective way. Each activity is triggered by specific requirements or targets. To

achieve the targets proposed for the software reengineering, program transformation,

also called transformation for short, can be used for the specified purposes. The

63

Chapter 3 Target Driven Transformation Step Prediction

maturity of Wide Spectrum Language (WSL) and its transformations has reached the

point which has the large scale of industry applications [Ill, 118, 125]. A large number

of transformations stored in the transformation bank can serve the reengineering tasks

and result in the desired software which fulfils the specific reengineering targets. The

efficiency of finding the proper transformations and implementing them for the

specified targets has become a very big concern of the maintainers. The thesis proposes

a method to predict the transformation steps and aid transformation process to

approach the reengineering targets. This chapter aims to overview the framework of

the proposed approach and introduces its technical steps.

3.2 Problem Definition

3.2.1 Program Transformation for Software Reengineering

Software reengineering is important for recovering and reusing existing software assets,

putting high software maintenance costs under control and establishing a bass for future

software evolution. As defined by Tilley [105], reengineering is the systematic

transformation of an existing system into a new form to release quality improvements

in operation, system capability, functionality, performance or evolvability at a lower

cost, schedule or risk to the customer. Reengineering is an umbrella term which covers

many forms of system improvement, many of which are tool supported. Starting from

existing source code, software reengineering is combined of reverse engineering,

restructure and forward engineering. The process of reengineering aims to lead

software evolving [47] successfully through a set of 'Re' -activities, listed in Chapter 2.

A program transformation refers any operation on a program which generates a

semantically equivalent program. Program transformation is used in many areas of

software engineering, including compiler construction, software reverse engineering.

64

Chapter 3 Target Driven Transformation Step Prediction

software vaiualisation, documentation generation and automatic software renovation

[93]. With its capability in those areas, it has been one of the most important and

functional techniques for software reengineering. The program transformation has been

proved to be a powerful technique for deriving programs from specifications, verifying

program properties, improving source code quality, comprehending source code,

specialising program with regard to their context of use, deriving more efficient

program versions from less efficient ones and so forth [91]. The research and

development of program transformation in both academic and industrial areas has been

booming since it was proposed [20].

3.2.2 Program Transformation with WSL

As an important member of the program transformation family, the WSL and the

transformation theories based on the language have been developed and used in the

both areas. It was developed as an academic prototype when it was 'born' in 1988 [111].

Since then the great efforts are devoted into its development and research. It has

become more and more mature and been used in large scale industrial proj ects [115,

117, 118]. The transformations based on WSL are implemented in a tool named

transformation engine. The latest version of the transformation engine is called FermaT

[114, 118] and forms a central component of FermaT Workbench [115]. The

transformation technology of FermaT has reached such a level of maturity that behaves

on the following perspectives [125]. The tool can cope with the usual programming

constructs and their uses.

In the library of the transformation engme, there have been nearly a hundred

transformations developed. The transformations in the library were proven correct

before the tool was built. They allow a construct in WSL to be recast into another WSL

65

Chapter 3 Target Driven Transformation Step Prediction

construct while ensuring that the semantics are preserved.

The software engmeer does not have to do the proof and only has to select a

transformation and apply it by using the tool. The transformation engine checks that if

the transformation is applicable. The whole transformation process, from the raw WSL

generated directly from the parsed source language to high-level WSL suitable for the

translation to the target source code, could be carried out automatically with no human

in terv en ti on.

Since transformations are implemented in ~etaWSL, it is possible for users to develop

their own transformations (as combinations of existing transformations) and add them

to the system. Provided the new transformations are limited to invoking existing

transformations and are prevented from carrying out unrestricted editing operations,

the new transformations are guaranteed to be correct.

3.2.3 Traditional Semi-Automatic Program Transformation

Before the motivation of the proposed approach is introduced, the traditional execution

of program transformations is reviewed to show the routine steps included in the

normal program transformation process. Traditionally, the execution steps of

transformations are predefined by the software engineer according to his/her expertise

and the usage of the selected transformations. After selecting the transformations and

deciding their sequence, the reengineering task can be implemented by following a

batch file which contains the determined information. For instance, the following

example shows how to migrate Assembler code to C code via the transformation on

WSL.

a2w "FMTOO lAl.lst" "FMTOO lA1.ws 1"

2 metrics "FMTOO 1 A 1. ws 1" "FMTOO 1 A 1.me 1"

66

Chapter 3 Target Driven Transformation Step Prediction

3 datprune "FMTOOIAl.wsI" "FMTOO1 A1.dat" "FMTOOIAl.dal"

4 datreorg "FMTOOIAl.daI" "FMTOOIA1.da2"

5 dat211 "FMTOOIA1.wsI" "FMTOOIAl.da2" "FMTOOlAI.ll"

6 dat2c "FMTOOIAl.da2" "FMTOOIAl.h"

7 dotrans "FMTOOIA1.wsI" "FMTOOIA1.ws2" Find Dead Code

8 dotrans "FMTOOIA1.ws2" "FMTOOIA1.ws3" Data Translation A data="FMTOOlAl 11" - - .

9 dotrans "FMTOOIA1.ws3" "FMTOOIA1.ws4" Fix_Decimal data="FMTOOlA1.11"

10 dotrans "FMTOOIAl.ws4" "FMTOOIA1.ws5" Fix_Assembler data=25600

11 dotrans "FMTOOIAl.ws5" "FMTOOIA1.ws6" Data_Translation_A data="FMTOOIA1.11"

12 metrics "FMTOO 1 A 1. ws6" "FMTOO 1 A I.me6"

13 wsl2c "FMTOO 1 A 1. ws6" "FMTOO 1 A l.raw"

14 tidy_c "FMTOOIA1.raw" "FMTOOlAl.c"

15 gcc -i . -i Ihome/martin/fermat2/config -c "FMTOOIA1.c"

Steps 1-6 are the processes before the code improving transformations. The preprocess

aims to translate the Assembler program to WSL, measure the raw WSL code and

restructure the data file. Steps 12-15 are the processes after the transformations. These

steps are used to measure and translate the processed WSL code to the target source

code.

Steps 7-11 are the actual processes to apply the transformations. The first step

determined by the maintainer is to find the dead code, i.e. unreachable code in the

program. The next transformation Data_Translation _ A is to load the data file. The

Fix-Decimal transformation is specially to deal with the assembler system's feature.

The transformation Fix-Assembler is used to transform the action system to the

procedural structure with IF/While structure, then reload the data file and generate the

final transformation result.

The transformations are executed one by one while their sequence is predefined. It is a

semi-automatic process where the execution is decided by software engineer. To find

the proper transformations and determine their steps greatly depends on the software

engineer's experience, understanding of the existing transformations and the source

67

Chapter 3 Target Driven Transfonnation Step Prediction

code features.

However, it is quite often that a recruit could not define the sequence due to the lack of

the expertise. On the other hand, to understand the features of the program is a

time-consuming mission. Furthermore, without the knowledge of the existing

transfonnations also can cause the failure of the transfonnation. These problems drive

the needs of the proposed research.

3.2.4 Need to Predict Program Transformation

It has been learned that experience often is employed as a pattern of practice. In

practical work, the choice and implementation of transformation sequence mainly

depends on the experience of software engineer. It is required that the engineer has to

read the WSL program and understand the source code features first. The success of the

process heavily relies on the expertise and domain knowledge of the software engineer.

Such dependence makes the transfonnation process short of efficiency and correctness

if the transfonnation is used inappropriately. Without the experience, the

transformation selection could not be perfonned. This is a common problem for a

recruit to use the tool. In addition, there is another crucial factor for the selection of the

transfonnations, i.e., the purpose of transformation. As discussed above, the

transformations are applied for specific purposes, called targets during software

reengineering. The satisficed degree of the targets needs to be measured properly.

Nonnally, this measurement is made by the engineer's estimation which could lack of

accuracy and efficiency.

Therefore, an intelligent feature of the transfonnation engine, which can guide the

transformation process smartly, is required. How to develop techniques to improve the

automation and efficiency of program transformations is a concern in both research and

68

Chapter 3 Target Driven Transformation Step Prediction

industry area [3, 4, 41, 104, 130, 134]. The proposed research aims to achieve the goal

by providing an appropriate mechanism to predict the suitable transformations then

consequently the efficiency and correctness for the target achievement can be enhanced.

A contribution of the thesis is to research and develop a prediction mechanism. The

transformation prediction can become a feature of the current transformation engine to

assist and present clues to the users and accordingly to improve the transformation

implementation's efficiency. To provide useful information guiding the transformation

process, the transformation engine is supposed to determine the suitable candidates and

predict the sequence of the transformations.

To develop such an intelligent predictor for transformation, there are three essential

factors, reengineering target, quantitative measurements of software and existing

transformations. In this thesis, the formal representation of reengineering targets and

metrics are correlated into a model by referencing existing techniques of requirement

representation [83] and measurement [89]. With the target based quantitative

information related to the program features, it is possible that the transformation engine

can smartly predict the candidates and their execution solution within the

transformation bank and perform the program transformation in an efficient way.

To summarise the need to predict the program transformation, the following points are

listed.

• To regard the expenence of implementing transformations as heuristic

knowledge for assisting the transformation activities

• To facilitate transformation process with domain knowledge

• To promote the automation of the transformation

69

Chapter 3 Target Driven Transfonnation Step Prediction

•

•

•

To predict the transfonnations for specific targets

To utilise target and its measurement as a knowledge to assess the impact of

the transfonnations

To improve the efficiency of transfonnation process to approach the specified

targets

3.2.5 Need to Extend WSL

Software engineers can take advantage of WSL as an intennediate language to achieve

various reengineering purposes. The current transfonnation applications are mainly

related to unstructured code, such as Assembler, or procedural High Level Language

(HLL), such as COBOL or C. The existing layered structure of WSL detennines that

WSL can only be utilised for such kinds of applications. In most practical cases, there is

also high demanding for analysing different types of programs, such as object-oriented

programs.

In the related previous work [72, 78] , the extension ofWSL with object orientation was

performed partially. However, their work only provides some new syntax constructs,

such as to declare a class only, which are not proposed based on the WSL levels

including both of the semantics and the syntax aspects. Besides, they did not define the

precise semantics for those new constructs so that the semantics-preserving

transfonnations based on those new constructs cannot be proved and performed either.

In addition the domain features are not taken into account when program ,

transfonnations based on WSL are performed. In practice, the domain features are

important knowledge for software reengineering. An aim of the proposed work is to

70

Chapter 3 Target Driven Transformation Step Prediction

utilise the domain features in the transformation process. For this purpose, the

multimedia domain is studied as an experiment. The study needs the extension of WSL

itself with the domain features. Correspondingly, the transformations based on the

language extension are extended.

To summary the need to extend WSL and the transformation bank, the following points

are listed.

• To extend WSL with more language features, such as object oriented features.

• To extend WSL with domain features.

• To extend WSL on both of the semantics and the syntax aspects.

• To give the precise semantic definition of the extended language.

• To extend the transformations based on the extended language.

3.3 Reengineering Targets, Metrics and Transformations

3.3.1 Definition of Reengineering Target

The targets of software reengineering through program transformation normally are

straightforward but abstraction. They can be described as quality improvement

requirements, such as 'having high performance' and 'improving the

understandability'. These non-functional targets are called soft-goal in [130,134]. The

other kinds of targets which may involve in the software reengineering are also taken

into account. For example, abstraction is an important aspect for program

comprehension. The target to improving the abstraction of the source code could be

71

Chapter 3 Target Driven Transformation Step Prediction

described by a variety of criteria.

Definition 3-1 (Target) a target T is an objective that the reengineering action under

consideration should achieve. Targets are optative statements as opposed to indicative

ones and bounded by the subject matter.

Definition 3-2 (Target Factor) A target factor t refers to an intended property to be

ensured. It is bounded and associated with the other target factors altogether to support

satisficing the target T . Each factor can be measured by one or more metrics.

Alternatively, a target factor is a sub-target of the targetT.

According to the definitions given above, a target might be affected by a set of factors.

For example, the target to decrease the complexity of the software could include a few

factors, such as component size, program complexity, structureness and component

nesting level. The definition of 'target factor' is more specific than the one of 'target' so

that a target can be shifted from an abstraction level down to a specific level. The unit

of a target can be normalised to a united range by utilising the target factors.

3.3.2 Relations between Targets, Metrics and Transformations

The target driven approach proposed in the thesis implies natural relations between

transformations, targets and metrics. Figure 3-1 illustrates these relations.

The diagram consists of two parts, i.e. the Process part and the Targets part. In the

Process part, every transformation can affect the code after it is implemented. The

impact of a transformation can be measured by one or multiple metrics which are

related to the specific targets. The Targets part describes the motivation of the Process.

In the beginning, the motivation is to pursue the specific targets and at the end, the

72

Chapter 3 Target Driven Transformation Step Prediction

result should be to approach the target as much as possible.

1- -,

1

1

1

: start

Process 1

- - - --- - - ---- - - - --. •
1 1 1
1

app{ied

00
00

metrics

app{ied

00
00

metrics

transit

modelled

1 1

app~ied app~ied
1

Y
end

transit ... --,..

00
00
metrics

00
00

metncs

Ii
/ I

/
l'IJ'> / 1

-- -----------~~--- ------. ------------~~~- ---J ----- I

/ / :
/' /

'{I~s
~oc>c,

/ c>f(f(
____ ~ Target2 ____

--~-- Targets 1

--

Figure 3-1 The Relations between Transformations, Targets and Metrics

To present the relations more clearly, Figure 3-2 gives a combined Model for

Target-Metric-Transformation (MOTMET), which displays the different models as

three layouts according to the entities in the model.

The top level is the most abstraction level which mode lies a reengineering target in a

Target Model (TM). In Chapter 4, the method of the model construction and the

computation related to target will be presented. The calculation based on the target

computation will be used to evaluate the impact of the transformations.

The middle level is the implementation level containing the transformation process

model, which results in the change of source code at the bottom level where the changes

over versions of source code are raised by the transformation implementations and

73

Chapter 3 Target Driven Transfonnation Step Prediction

measured by the metrics correlating to the target.

I

I

Transformation
Trace :

• target

target
dependence

metrics

_---=:>~ transformation

o

path

transformation
candidate

source code
versIon

--..::,~ version change

o start

Figure 3-2 Model for Target-Metrics-Transformations (MOTMET)

The combined model gives an overview of the interrelations between the models as

well as the means to predict the transfonnation steps for software reengineering. How

to use and implement the model in the proposed approach will be elaborated in the next

section.

By the analysis of the relations depicted as the above figure, it can be concluded that a

suitable solution to implement transfonnations can facilitate the approach to targets

efficiently. Therefore, to find the solution is crucial for the detennined task. Figure 3-3

simulates a paradigm to find possible transfonnation solutions. The solution is called as

Transfonnation Path (TP) within a Transformation Process Model (TPM). The problem

to find the TP(s) can be modelled as a search problem which is used to construct TPM.

Each node represents a state of program version. The nodes are valued by a vector

74

Chapter 3 Target Driven Transformation Step Prediction

which contains the transformation steps and the quantitative measurement value. The

details will be presented in Chapter 6.

(t51 , t552)

(t41,t542)

,

, ,

Figure 3-3 A Paradigm of the Transformation Process Model (TPM)

3.4 Program Transformation Prediction Framework

3.4.1 Target Driven Transformation Prediction Framework

To describe the proposed approach further, the technical steps in the approach are

presented in a framework called Target Driven Transformation Prediction Framework

(TDTPF) is proposed as the mechanism and shown in Figure 3-4. In the framework, the

extension of WSL and the process of the transformation predication are described as

follows.

(1) Based upon the basic levels of WSL, the secondary level of WSL are added

specific features, such as object-oriented feature or domain features. The

extension is performed on both semantics and syntax and developed in the

transformation engine. In addition to the extension with object-oriented

features, the specific domains, such as multimedia domain is studied as an

7

Chapter 3 Target Driven Transformation Step Prediction

instance. Along with the extension of the WSL language, the definition of

semantics and the behaviour-preserving transformations for corresponding

domains are presented. The work of the extension is described in Chapter 5.

--- -- -------- ----- ---- - --------
1

Procedure
Program

, translated

-

Object-Oriented translated

~

Multimedia
System

-
, 1

: __ ~o~r~e_ P!~g~a!!l __ :

translated

CJ source/res ult

data

action

- - - --, , , group
1--- --

~ workflow

- - - :;.. actor

- - .. extension

"-
Wide Spectrum

Language
Basic Level

extended :on both
semantics <\Od syntax ,

.... Wide Spectrum <:
-" lAnguage

Secondary Level

WSL Program

put

output

,

[
NewWSL 'I
Program)

translated

,
Target Program

-

(j
::r .,
'0
c;
'"1

V>

.... ,

~--------~ ,
Requirements

-

\1

Target Model

as resource as resource

Trans formation
Implementation

v
> Transformation

Predication

'0 ...,
~

9:
n .,
c;

\It tn

l Predicted Solutions l
1 ______ -

<T
'<

\it

Determined

J Solution

Figure 3-4 Target Driven Transformation Prediction Framework

1

QI ., ,
;:? ,
~ I
0\ ,

--~
~

maintainer

(2) Before having transformations applied, the source program is translated to a

WSL program according to the corresponding syntax of WSL. This process

is performed by a translator between source program and WSL which is

used as an intermediate language.

(3) By getting the translated WSL program, the transformation engine reads a

WSL program and the desired targets as the resources. The targets are

76

Chapter 3 Target Driven Transformation Step Prediction

modelled as a Target Model (TM) which contains the detailed target factors

affecting the targets. The TM is constructed formally by using the existing

requirement modelling approach. The leaf nodes of the model are measured

by the selected metrics. The metrics are used as the quantitative means to

scale the satisficed degree of the desired targets. In the implementation, the

TM is represented in XML format. The work is described in Chapter 4.

(4) The transformation engine pre-checks the source code and determines the

source code features. Pre-check is a necessary step for the transformation

prediction. At the pre-check step, the target model and the WSL program

are used as the resources. By referencing the resources, the transformation

engine constructs a model for predicting the solutions for the desired

transformations.

(5) During the prediction process, a Transformation Process Model (TPM) is

constructed according to the program. The heuristics obtained from a

metrics based algorithm, or pattern based algorithm that incorporates

expertise and domain features are essential to construct the TPM. The work

is described in detail in Chapter 6.

(6) The heuristic knowledge comes from common knowledge for applying

program transformation or expertise from the practical work. According to

the knowledge, the heuristic function is constructed and calculated by given

formulae or rules. This work is illustrated in Chapter 6.

(7) The TPM is a tree-structured diagram and composed of Transformation

Paths (TP). Each TP is expanded by three factors, i.e., the applicability of a

transformation, heuristics knowledge, which implies the relation between a

Chapter 3 Target Driven Transformation Step Prediction

transformation and the target, and measurement of the transformation

impact. When a node is added into the path, it will be valued by a formula

to evaluate the transformation's impact. At this step, the heuristics are used

to search and determine the transformations to be selected. This work is

presented in Chapter 6.

(8) As a TPM is constructed, the ranked transformation paths in the model are

generated and listed for software engineer as solutions. This work is

presented in Chapter 6.

(9) After obtaining the TPs, software engineer will be the one to determine the

final solution based on the predicted information. By comparing the impact

of the transformations, the software engineer decides to choose the solution

and sends to transformation engine to perform the solution. This work is

presented in Chapter 6.

(10) The transformation engme executes the selected determined solution

including the preferred program transformation steps and output the

generated new WSL program. The process to predicting and executing

transformations is repeated until the result is validated and satisfied by the

software engineer.

(11) The transformed and validated result is translated to the original language or

another targeted language according to the needs of the scenario. The final

translated result will have the desired properties which fulfil the targets.

78

Chapter 3 Target Driven Transformation Step Prediction

3.4.2 Dedicated Metrics

Software metrics are used to measure the software status and play the role as

coordinators between targets and transformations. In the thesis, a set of metrics are

selected and classified as six groups according to their characteristics. The six groups

of the metrics can be chosen and composed to serve desired target(s). The selection and

composition is performed based on the target model which will be exploited in the later

chapter. The dedicated metrics are reengineering-intensive ones and involved in

complexity metrics, abstractness metrics, object-oriented metrics, reusability metrics,

domain specific metrics and feature oriented metrics.

3.4.3 Correlation of Metrics to Reengineering Targets

According to the definition of the target and target factor, the satisficed degree of a

target can be measured by the correlation of metrics. The metrics are chosen and

correlated together from the developed metrics for the specified target. The target

formula describes how to correlate the metrics. The target score of a target is calculated

by the correlated metrics and the defined relations. The correlation formula is given

according to the target model which is defined by the goal driven techniques. The

correlations can be depicted as AND/OR relations.

3.4.4 Automating Transformation Steps

A key point of the transformation prediction is to automate the transformation process

towards the desired target. The automating process can be driven by the following

elements:

• The targets

79

Chapter 3 Target Driven Transformation Step Prediction

•

•

•

The dedicated metrics

The transformations

The state of the program

The automation of the process behaves in the following aspects:

•

•

3.4.5

Transformation determination

Transformation steps

Incorporating Expertise

Only by the assistance of the metrics correlated in a target model, the predicted result

could be so objective that too many candidates could be captured. Expertise is a crucial

factor in software analysis, especially in software reengineering, in that it provides an

efficient means to understand and give the hints to analyse software. Once incorporated

expertise, the prediction mechanism can be more appropriate due to the importance of

the expertise in practice. The transformation steps generated can be determined by the

software engineer who has the expertise for program transformation and reengineering.

Therefore, the expertise can be regarded as a kind of heuristic knowledge used in the

prediction process.

3.5 Summary

In the chapter, the motivations of the proposed approach are discussed and the technical

steps of the approach are illustrated. To recap, the purpose of the research is to develop

an appropriate mechanism to guide program transformation process towards

reengineering target with the assistance of quantitative means and heuristic knowledge.

As an overview of the proposed work, the chapter addressed the following points

technically.

80

Chapter 3 Target Driven Transformation Step Prediction

A Compare to the traditional program transformation process which is a

semi-automatic procedure characterised by the predefined transformation

sequence, the proposed research goal is to improve the automation and

efficiency of using transformations.

A The purpose of a reengineering activity through program transformation is

called target which is modelled with quantitative measurements, such as

software metrics.

A There are tight relations between targets, metrics and transformations. The

work is performed based on these relations to achieve the research goal.

A The proposed approach is called TDPTSP, taking the modelled target and

WSL source code as input and giving the predicted transformation steps as

output.

A The proposed approach is explored in specific domains; therefore WSL will

be extended to adapt these cases.

A For the target driven program transformation process, the transformation bank

needs to be extended as well.

The following chapters will exploit the details of the framework introduced in this

chapter.

81

Chapter 4
U sing Software Metrics to Describe
Reengineering Targets

Objectives

• To propose and justify six categories of software metrics

• To address the relationship between metrics and reengineering targets

• To define and formally model reengineering targets

• To propose the formula for measuring a specific target

4.1 Introduction

Software metrics can be used throughout the software life cycle to assist in cost

estimation, quality control, productivity assessment and project control and can be used

to help assess the quality of technical work products and to assist in tactical decision

making as project proceeds [125]. Reengineering includes reverse engineering and

forward engineering in order to achieve different objectives, such as improving the

quality of software or changing the code to a higher abstraction level. These objectives,

which are called reengineering targets in the thesis, can be measured and evaluated by

82

Chapter 4 Using Software Metrics to Describe Reengineering Targets

given metrics as the normal engineering disciplines. This chapter aims to propose and

justify the reengineering-intensive metrics, investigate the usage of metrics to measure

the reengineering targets and associate the metrics to the targets by a given model.

4.2 Software Metrics for Reengineering

Software metrics are used to quantify particular characteristics of software systems. By

combining the use of software metrics, the reengineering process is guided towards the

identified targets in the specific stages. Software metrics for forward engineering have

been developed maturely while for reverse engineering are a much neglected area.

Concrete measures for reverse engineering can be developed hierarchically and revised

from the measures which are for forward engineering. Numbers of selected measures

for forward engineering can be adapted for reverse engineering. Then new software

measures for reverse engineering can be developed, based on existing measures for

forward engineering or from scratch [125]. Zhou et al. [132] proposed five categories

of measures for reverse engineering. The five categories can be referred and adapted in

the proposed approach for measuring the reengineering targets.

4.3 Six Categories of Software Measures

In the thesis, six categories of software measures are selected. These measures are

classified according to their characteristics and used to guide the reengineering through

program transformation process. The choice the six categories of software measures

relies on the following reasons.

• The six categories of software metrics are selected to measure the essential

aspects of reengineering.

83

Chapter 4 Using Software Metrics to Describe Reengineering Targets

• Improving the internal structure of a program is a mission of program

transformation. The internal attributes of program contribute a crucial role to

most quality requirements. In both reverse engineering and forward

reengineering, complexity measure plays a crucial role for most of quality

measurement. Hence, complexity metrics are selected for non-functional

. .
reengmeenng target measurement. As for object-oriented program, the

object-oriented metrics are necessary for measuring its internal structure.

• As a vital part of reengineering, reverse engineering emphasises raIsmg

program representation from the low level of abstraction to the high level.

Without tackling abstractions properly, any design or specification recovery

method cannot succeed. Therefore, the metrics to measure abstractness are

included in the consideration of metric selection.

• Reusability can be regarded as a kind of external property and is an important

motivation of reengineering. By using the reusability metrics, it is possible to

measure the likelihood of utilising the existing software and pursue the further

. .
reengmeenng.

• The application of program transformation on domain specific applications,

such as multimedia is an extension to the traditional usage of reengineering

through transformations. To measure this process, the metrics to measure the

status of a multimedia application are taken into account.

• Feature oriented reengineering has been emerging as a proficient means for

software comprehension and software alteration. As an advanced metric

category, feature oriented metrics are used to facilitate the program

transformation process driven by the feature oriented targets.

84

Chapter 4 Using Software Metrics to Describe Reengineering Targets

4.3.1 Complexity Metrics

In most cases, the targets pursued in software reengineering have to conform to hard

and soft quality constraints (or non-functional requirements). These desired qualities

(or, more precisely, desired deltas on these qualities) playa fundamental role in

defining the reengineering process and the tools that support it.

Quality requirements of a system are attributes and characteristics of the system.

Several approaches such as IEEE Standard [55], ISO 9126 [57] and ISO 9421 [56] etc.

dealing specifically with quality requirements have emerged. International

Organisation for Standardisation (ISO) introduced taxonomies of quality attributes [57]

which divides quality into six characteristics: functionality, reliability, usability,

efficiency, maintainability and portability.

The above models classified the quality requirements at a high level and presented

factors or criteria for each quality. The internal attributes of program, such as

modularity and complexity, contribute a crucial role to most quality requirements. On

the other hand, a strongpoint of program transformation is the possibility of improving

the internal structure of a program. Therefore, the internal properties of program, i.e.

source code quality, are paid more attention. Complexity is one of the most pertinent

characteristics of computer software. In forward engineering, complexity measures are

mainly used to indicate the quality of software. In a reverse engineering process, people

mainly want to understand an existing program through reverse engineering from the

original program to less complex specifications, because the less complex a program is,

the easier it is for people to understand it. Low complexity is an important factor that

results in the high values for qualities, such as reusability and maintainability. The

complexity metrics chosen for the proposed research is shown in Table 4-1.

85

Chapter 4 Using Software Metrics to Describe Reengineering Targets

Metrics Definition
-, - - --- -- - • __ __ _ .i _ _

NCNB The non-comment non-blank number of statements in the program [125]

McCabe The number. of linearly independent circuits in a program flow-graph. This
measurement IS calculated as number of predicates plus one [74].

The sum of the weights of every construct in the program. The construct is defined
WOC subjectively according to experience gained by engineers and managers as show in

Table 4-1 (a) [125].

NON The number of nodes in the abstract syntax tree [125].

CFDF
The number of edges in the control flowgraph (CF) plus the number of times that
variables are used [125]

RNC The number of instances of recursion and nesting in the program [125]

Table 4-1 Selected Complexity Metrics

Construct Weight Construct Weight Construct Weight Construct Weight

+ 1 = 0 >= 0 IF 4

- 2 <> 0 Min 1 While 4

* 2 > 0 Max 1 Do 10

/ 3 < 0 Div 2 D IF 10

** 3 <= 0 Mod 2 Abort 2

Table 4-1 (a) Sample Weight Values of Constructs

• Component size is used to evaluate the ease of understanding of code by

developers and maintainers. Size can be measured in a variety of ways.

Non-comment Non-blank (NCNB) is sometimes referred to as Source Lines of

Code and counts all lines that are not comments and not blanks. In this context,

small source code size relates to low complexity and therefore leads to high

reusability, understandability and maintainability. The metric Number of Node

(NON) is also used for measuring the component size.

• Program complexity is fundamental to reduce overall program complexity

6

Chapter 4 Using Software Metrics to Describe Reengineering Targets

and enhancing quality. There are two ways to quantify method complexity:

information flow and internal control structure. Information flow relates to

complexity as measured by the number and types of formal parameters, as

well as the number of method invocations. The more control and data flows a

method has, the harder it is to be modified and consequently the harder it is to

be reused. Similarly, the internal control structure of a component relates to

the complexity of the control flow graph and it is measured by the McCabe

complexity [43]. The fan in - fan out complexity which maintains a count of

the number of data flows from a component plus the number of global data

structure that the program updated.

• Structureness is the sum of the weights of every construct in the program.

The construct is defined subjectively according to experience gained by

engineers and managers.

• Control-Flow and Data-Flow complexity (CFDF) is the number of edges in

the control flowgraph (CF) plus the number of times that variables are used

(defined and referenced) (DF).

• Recursion and Nesting Complexity (RNC) is the number of instances of

recursion and nesting in the program.

4.3.2 Abstractness Metrics

Both abstraction and refinement are used to enhance analysis and optimise program. A

refinement is an operation which modifies a program to make its behaviour more

defined and/or more deterministic. The opposite of refinement, abstraction, is a process

of generalisation, removing restrictions, eliminating detail, removing inessential

87

Chapter 4 Using Software Metrics to Describe Reengineering Targets

information (such as the algorithmic details). Without tackling abstractions properly,

any design or specification recovery method cannot succeed. In a broad sense,

abstraction corresponds to weakening in semantics and this weakening is due to the

following [72]: (1) Inessential design/implementation details are omitted; (2)

Non-determinism is increased; (3) 'How to do' is substituted by 'What to do'.

Within WSL supported environment, such as FermaT [118], refinement and abstraction

are performed as transformations for both forward and reverse engineering.

~ , 0' " "'... -~~ - ~ ~ ~ -~

i Metrics ~ 1 Definition , .
"~H MV/",VI',/;,.,{in"""',w;." ;., "',. ..,"""".~ N""'~'" #1;1/.",." ". <, ,.:::.-" ",~ ,~_ H;W_h }~"""",,,,,,,:;~_,,,,";J:. .. _,,,, __ ,,, ... _,,,,,,,.b>,,,~ .. =,,,:1 _~ .. ,,_~~,..;-. ,, __ .. -........\ ,, ___ ~......,..;.. ~ A_"' __ •• ~ ~_

ABST-LOC

AB ST-S TAT

ABST-CFDF

ABST-VOC

The quotient of Lines of Code (LOC) over the number of nodes (NON) in the
abstract syntax tree.

Percentage of statements at higher abstract levels over the total statements .

1
ABST - CFDF = --- , where n] is the number of times variables are

n1 +n2

referenced in procedures and function; n2 is the number of times that

variables are defined.

B .(SC) . ,
ABST - VOC = I the percentage of constructs at hIgher abstractIOn

B(SC) ,

levels in the total constructs in the programs.

Table 4-2 Selected Abstractness Metrics [124]

Due to the importance of abstraction, abstractness target is chosen to gear a program

into a proper abstraction level. To gather if the program is 'abstraction' enough to

capture the right' specification', the abstractness target can be measured by abstraction

measures proposed in [124,125,132]. The measurement of abstractness is presented in

Table 4-2.

Chapter 4 Using Software Metrics to Describe Reengineering Targets

4.3.3 Object Oriented Measures

Object orientedness is the degree to which a system or its components has a design or

implementation that is expressed in terms of objects and messages via encapsulation,

inheritance and polymorphism between the objects. Following the strong trend toward

object-oriented technology, object orientedness measures have become an unavoidable

subset of software metrics and engineers want to reengineer their huge number of

conventional procedural systems into object-oriented systems.

'" ,~ - - - - - -

Metrics : Definition
" "

, , v. , "" '" ,.,<." u , , - • M' A"'_"" ~, ~., 6"-"'.~' _ _ M _.~_~.""'--.~". ,_~ ~ - -

NMI The number of method invocations

DIT
DIT is the length of the longest path from the class to the root in the inheritance
hierarchy [23]

As for a class, it is the number of other classes to which it is coupled, It relates to
CBO the notion that two classes are coupled when methods in one class use methods or

instance variables defined by another class.

Wight of Methods in Class (WMC). Consider a class CI , with methods MI ,,,., Mn
that are defined in the class. Let CI, ... Cn be the complexity of the methods, then

n

WMC WMC=Lc i
if all method complexities are considered to be unity, then WMC =

i= l

n, the number of methods. Here the number of methods is calculated as the
summation of McCabe's cyclomatic complexity of all local methods .

NYC NYC is the average number of public variables and private variables per class.

Table 4-3 Selected Object Oriented Metrics [125]

In reengineering, the object oriented (00) measures give the complexity of classes and

relationships between classes. 00 measures can be used to measure source programs,

transitional program and specifications, which can help effective and efficient

reengineering of 00 system. The existing 00 measures for forward engineering can be

adapted for reverse engineering. These metrics selected are listed below for measuring

00 system in the reengineering process. In Table 4-3, the dedicated 00 measures are

chosen in the proposed approach.

9

Chapter 4 Using Software Metrics to Describe Reengineering Targets

4.3.4 Reusability Metrics

The mam attributes of reusability are generality, transportability and retrievability.

Understandability is also reflected by the feature of reusability. Generality measures

estimate whether the system or components of the system perform a broad range of

functions so that they can be used in more than one computer program or software

system. Transportability measures also give the ease of translating programs.

Retrievability refers to the ease of design recovery.

»"'" « ~, ({ '''i o 111 ". .. r '" 't"" " VN"'¥ ~ A) ¥ ~ ~'VX' v"," .. ,>, ' ' , .. ,
i'

, , , ' ' , , i: ,.: , ,t , . : . ,
) .

~ Metrics ' t,. : " '" ' , "', ' ' Definition' I

L"'""_I<$.'"",",l~'''';'«N~~.¥;;'#{;;:'«»>'''~~'''' ~,,/'>_ .. N;';';;::~# ."': i$;o,4 a;o.:; ,,~ .. ~.'W*' .. ~,..~"' ~..:,"'L._.,. _.A ~_.""'..:...{ ~~~~.-~ .. ~.~_~..0<4.s"""'- ~,~ Io<R_"" -,-

WOIL
Weight Of Interfaces in relation to Lines of code: this is a measure calculated by
dividing the number of lines of interface code by the total number of lines of code.

Human Interaction Level in relation to lines of code: This calculates human action
HIL level by lines of commands. HIL = Lines 0/ users' command

Source lines 0/ code

Average Module Size: This measure is calculated by number of statements over
AMS number of methods. AMS = LOC

Number of methods

Self-Descriptiveness: This estimates the weight of on-line comments and

SD
statements with the self-descriptiveness characteristic in the program.
SD = Number of on-line' comments and special statements

Tolal number of slatements

Error tolerance level (ETL): This measures the weight of parts in the program that

ETL can be used to detect errors and remind errors.
ETL - Lines 0/ error' indentifying components

- Source lines 0/ code

Table 4-4 Selected Reusability Metrics [125]

A main stream of reengineering is to reuse the existing software assets to accommodate

the requirement change. Depending on the measures of reusability, a software engineer

can know what should be done after reengineering. Reusability measures are always

used to measure resources and initial products in the initial stages of the reverse

engineering or the final stages of forward engineering. Normally, reusability measures

will not be supposed to measure the process and transitional products in reengineering.

Several reusability measures [125] are listed in Table 4-4.

90

Chapter 4 Using Software Metrics to Describe Reengineering Targets

4.3.5 Domain Specific Metrics

Domain features are crucial knowledge when an application is reengineered. Normally,

these features can behave in a number of aspects, such as program language, data,

control, measurement of the application and so forth. In the proposed transformation

prediction framework, the domain features are processed by four means:

• Source code in extended WSL which is augmented with the domain features

• Domain specific targets which concerns the characteristics of the domain

• Measurement of the domain specific application, i.e., software metrics

• Transformation prediction process assisted with the domain features

The reengineering targets identified in the specific domain could be different from the

reengineering targets in the general domain. Due to the difference, the measures

attached to the targets could be special compared to the common metrics. The section

will investigate the measurement in a specific domain, using the multimedia domain as

an example. In the later chapter, the further processing of domain features for

transformation prediction will be elaborated.

• Measures in Multimedia Domain

Multimedia languages are a new class of languages that have arisen in the past decade.

The term 'multimedia' refers to "a presentation or display that involves more than one

method or medium of presentation" [73]. Such media may include audio, video, still

images and animations that accompany the standard text display. Therefore, a

multimedia application is the one that uses and includes more than one of these media

91

Chapter 4 Using Software Metrics to Describe Reengineering Targets

in a cohesive manner. A multimedia language is "a set of software tools for creating

multimedia applications" [73]. All multimedia languages present the developer with a

set of software tools to aid in the development process. Although they all aid in

manipulating similar presentation media, the functionality of these software tools may

vary greatly from language to language. As of yet, no standard development

environment exists. Table 4-5 shows three metrics for the multimedia application. The

Number of External Interactions (NEI) measure is to evaluate the interaction triggered

by the users. The Percentage of Spatial Relations (PSR) and the Percentage of

Temporal Relations (PTR) measures are used to quantify the spatial relations and the

temporal relations respectively.

I
~

Metrics Definition
~"' " ,- " , " ",-" .. , , -n ~_ •

~ ~"" . , '" .~ "- "

NEI Number of external interactions triggered by users

PSR The percentage of spatial constructs in the total constructs in the program

PTR The percentage of temporal constructs in the total constructs in the program

Table 4-5 Multimedia Specific Metrics

4.3.6 Feature Oriented Metrics

Features are an effective media of communication between users and developers. On

the one hand, users focus on the problem domain to present their maintenance needs

such as adding a new function, where the system's features are the primary concerns. A

feature is a unique identifiable characteristic of an application domain in the view of

users or developers. It is represented by a single term or term pair. There are three kinds

of features [62]:

• Capability or functional features express the services or the way users may

interact with a product;

92

Chapter 4 Using Software Metrics to Describe Reengineering Targets

•

•

Interface features express the product's confonnance to a standard or a

subsystem;

Parameter features express enumerable, listable environment or non-functional

properties.

A very basic principle in object-oriented software engineering states that a class should

implement one single feature of the application domain [59]. Some violations of this

principle can be detected by using these assumptions: (i) a class that implements more

than one feature has probably low cohesion measurements, since these features can be

implemented separately, (ii) a class that by itself does not implement one feature (the

concept is distributed among many classes) could be tightly coupled to other classes.

Therefore, by collecting cohesion and coupling values of an object-oriented legacy

system, possible violations of the principles 'one class - one feature' [59] can be found.

Having such feature-oriented classes with high cohesion and low coupling, software

can be equipped with high maintainability, reusability and accordingly easily evolve.

The feature-oriented measures are used to quantify such high cohesion and low

coupling so that the one can detennine how to perform transfonnations to obtain the

feature oriented class.

The process to obtain the feature-oriented class as implies two necessary procedures:

(1) To find the source code that delivers the implementation of a feature

This action is also named as feature location or concept assignment. Feature location is

to locate a particular feature in the most relevant code, understand it and make the

change to minimise unwanted side effects. Through feature location, the relationship

between implementation module and a particular feature can be recreated or recovered.

93

Chapter 4 Using Software Metrics to Describe Reengineering Targets

Many researchers have studied dynamical and static approaches [22, 32, 38, 122, 123,

131] which suggest different way to locating features in their implementation modules.

In order to generate fine-grained components, the test case based location techniques

are suggested to use, such as [135, 136]. A program slicing technique integrating

backward slicing and forward slicing would be used to slice a fine-grained executable

module that serves a particular feature. Through program slicing technique [119], the

irrespective pieces of source code and variables can be sliced off and only the related

code blocks are left. The location relationship on the fine grain implementation can be

described by a cross reference table.

The first procedure is not included in the scope of the thesis. It is assumed that the

feature location has been done through the existing techniques. The program

transformations to be applied will be focused on the second procedure.

(2) To aggregate the located source code as a software module with high cohesion,

such as a class or a component

The aim of this step is to aggregate implementation modules which are involved in a

particular feature. After identifying the source code that is involved in the

implementation of a particular feature, the implementation modules are aggregated. In

addition, the interrelationship between features and implementation modules as well as

interaction between features can be discovered and used for the design recovery

process.

In order to formalise the mapping relationship between a feature and its implementation

module, the follow notation is given:

FE: a feature;

9~

Chapter 4 Using Software Metrics to Describe Reengineering Targets

FR ij: relationship between FEi and FE} in a feature model which describes the

relationship between features;

FIM} (V,F): the feature implementation module which is the located implementation

modules for a feature FE};

F} = {J;, 12"", In} is a set of functions implemented in FIM }, where J; , i = 1,'" ,n

represents a function. In object-oriented system, the reference of an attribute of an

object also can be regarded as a calling function;

Com: a feature-oriented module in the new system which fulfils the feature oriented

cohesion target;

Conn: the connection between components;

The mapping relationship between FIM and FE is FIM(V, F) = locate (FE), where

locate represents the process that FE is located in source code as FIM(V, F).

---3>~ reference - - - - -~ location - ~ abstraction

Figure 4-1 Feature-Source Code Mapping Relationship Diagram

The interactions of features can be reflected as the share part of their FIM. Meanwhile

the relationship between features in the feature model is a reference for constructing th

Chapter 4 Using Software Metrics to Describe Reengineering Targets

connections among components in the design model. The mapping relationships

between the different abstraction modules are depicted in Figure 4-1.

Metha [77] proposed four interactions between FIM to construct feature-oriented

components.

• Shared Stateless Functions (SS): A stateless function can be shared between

two feature implementation modules (FIM).

• Shared State-Full Functions (SSF): A state-full function can be shared

between two FIMs.

• Dependent Data (DD): An FIM may be dependent on the data accessed by

another FIM.

• Dependent Function (DF): An FIM may be dependent on a function that is

part of another FIM.

To construct a feature oriented module based on the feature interaction, the following

rules are taken into account [77].

Rule 4-1 If:3SS, f E F
J
n F

2
, then f is not encapsulated within Com \ and Com 2 ,

but its state is accessed via public interface.

Rule 4-2 If3SSF, j E F\ n F2, then j is encapsulated within Com\ and Com 2 •

Rule 4-3 If3DD, v E ~ n V
2

, then v leading to message communication between Com\

and Com 2 •

Rule 4-4 If 3DF,j E F\ n F2 then j is encapsulated within Com\ and Com 2 and

96

Chapter 4 Using Software Metrics to Describe Reengineering Targets

gives a clue to specify the message communication of the two components.

Rule 4-5 IfF; n F2 = <l> 1\ ~ n V2 = <l>, FlU. is encapsulated within Com
1
and FIM 2 is

encapsulated within Com2 •

Feature oriented metrics shown in Table 4-6 are used to measure the cohesion and the

coupling of the features. A high cohesion component for a feature has the high

reusability and maintainability.

ANFC Average number of features implemented in a class

ANSDF Average number of shared data module between two features

ANSFF Average number of shared functions between two features

NCIF Number of classes implementing a feature

OSC Overlap statements among the classes

Table 4-6 Feature Oriented Metrics

4.4 Reengineering Target Definition and Modelling

Over the past decade, goal models have been used in computer science in order to

represent software requirements, business targets and design qualities. Such models

extend traditional Artificial Intelligent (AI) planning techniques for representing

goals by allowing for partially defined and possibly inconsistent goals [45]. The

Non-Functional Requirements (NFR) approach [83, 84] is based on the notion of

soft-goals rather than (hard) goals. By referring the structure of the soft-goal model, a

Target Model (TM) is proposed. Using 'target' instead of 'soft-goal' because a target is

referred to not only a soft-goal which is referred to improve non-functional quality, but

also a task of software reengineering, which is needed in most of software

reengineering activities. For example, abstraction is not a soft-goal but a very useful

means for understanding legacy code and adding functions to the existing system. The

97

Chapter 4 Using Software Metrics to Describe Reengineering Targets

specific definitions related to target are given in Definition 3-1 and Definition 3-2.

Referring the concept of goal-driven techniques [84], a target is satisficied rather than

achieved. Target satisficed degree is introduced to express that target factors as

sub-targets are expected to achieve the parent target within acceptable limits, rather

than absolutely. Target non-satisficed is based on the notion that the target is never

totally achieved or not achieved. Targets can be related to their target factors in terms of

relations such as AND and OR [84]. The meaning of these relations has as follows:

are fulfilled and there is no negative evidence against it.

fulfilled and there is no negative evidence against it.

Given a constraint as a target factor for a transformation problem, one can look up the

target interdependency graph for that constraint and examine how it relates to other

target and what are additional transformations that affect the desired target positively or

negatively. The target interdependency graph is called Target Model (TM) containing

the target factors which interrelate to each other by the above relations and are

constructed within the model.

~ AND ~OR
NCNB: Non-Comment Non-Blank Statement Number
NON : Number of nodes on the AST
McCabe: McCabe Melric
CFDF: Conlrol Flow & Data Flow
RNC: Number of inslances of recursion and nesting In

lhe program
- negative melric-largel relation
+ positive metric-larget relation

Figure 4-2 Target Model of 'Low Complexity'

9

Chapter 4 Using Software Metrics to Describe Reengineering Targets

Figure 4-2 shows an example of the target model which represents the 'low complexity'

target. The root node on the tree is the pursued target. 'Component Size', 'Program

Complexity' and 'Program Nesting Level' are the target factors to the top target.

'Program Complexity' has its own target factors, such as 'Internal Control of Structure'

and 'Information Flow'. The leaf nodes are selected metrics attached to the related

target for measuring the target satisficed degree. The usage of metrics in the TM will be

stated in Section 4.5.

4.5 Measurement of Target Using Software Metrics

In addition to being equipped by the target model, to realise the target-driven

transformation step prediction needs more means which can measure the effects of

transformation and provide the quantitive information to guide the transformation

process. In the context of this issue, a number of software metrics and features that are

related to the reengineering have been examined in the previous section.

For the targets modelled in the interdependency graph, a set of metrics are selected to

compute the corresponding source code features, appearing as leaves in TM. The

metrics indirectly reflect the satisficing of the direct or indirect parents in the TM.

Furthermore, each program transformation is associated with a collection of features it

affects and consequently with the magnitude of change in the corresponding targets

being affected.

The attachment of the metrics to the target model depends on what the target is. User

can select the relevant metrics for an identified target. The selection relies on the user's

understanding of the problem domain and the usage of the metrics. This is at much

higher level and easier than to understand a massive number of program

transformations. The composition of the metrics can be justified by a domain expert.

99

Chapter 4 Using Software Metrics to Describe Reengineering Targets

The relationship between targets and metrics is not necessarily one-to-one that is a , ,

single target may be associated to more than one metrics. For example, as shown in

Figure 4-2, 'Component Size' can be measured by the number of non-comment

non-blank statements or the number of nodes on the AST.

It is allowed that a metrics contributes multiple targets. However, this is not suggested

because too many interlaced relationships could negatively affect the analysis results.

A metrics herein is regarded to measure a single target factor. To simplify the algorithm,

the given metrics are for the leafnodes ofTM merely. Therefore, only leaf nodes ofTM

can be measured by the metrics. The nodes over leaf nodes do not have relations with

any metrics.

To specify the quantitative relation between metric and target, there are two kinds of

relations, i.e. positive relation + and negative relation -.

• + (m, G) - metric m contributes positively to the fulfilment of target G.

• - (m, G) - metric m contributes negatively to the fulfilment of target G.

If the relation between metric and target is modelled as a function f(x) = y, where x is

the value of a metrics and y is the satisficed degree of target, then the two kinds of

satisficing relations can be described as follows.

Positive metric-target relation '+': a metrics positively contributes its parent if and

only if the relation function is increasing, i.e., feb) > f(a) for allb > a. This kind

metrics provide more benefit by increasing their values. The metric is called to be

positive to the target.

Negative metric-target relation '-': a metrics negatively contributes its parent if and

100

Chapter 4 Using Software Metrics to Describe Reengineering Targets

only if the relation function is decreasing, i.e., f(b) < f(a) for all b > a. This kind

metrics provide more benefit by decreasing their values. The metric is called to be

negative to the target.

For instance, the 'Low Complexity' is negatively contributed by the 'Lines of Code'

metric and the program complexity.

Formula 4-1 gives the formula developed by the author to compute the measurement

related to a target modelled in the TM. The formula is generated based on the three

points. (1) The AND/OR relations in the TM. (2) The positive and the negative effects

of metrics on a target. (3) The normalisation of the metrics.

Formula 4-1 Given a target T which is modelled as the target model r, f-lr is denoted

as the computation of the target, then

f-lr = - min((VI"", (Vp)

+ mine (VI , ••• , (V p)

/\ ml ,.··, m p is positive /\ m p+I"", mq

if OR(T,TI'''·,Tp)

/\ min(m l ,"', m p) is negative

if OR(T,TI'''·,T p)

is negative

where (V; is the computation function of T;, if T; is not a leaf node of the target

model, or (V; = f
j
(m;), f

j
(m;) is the normalisation method to normalise the value of

the metric computation corresponding to the T; if T; is leaf node of the target model

and represents a metric. In addition, some sub-targets are more important than others

and in this case goal weights are determined by the users and are added as a

coefficient c; .

101

Chapter 4 Using Software Metrics to Describe Reengineering Targets

The above definition of the computation of a target is recursive because the

computation of the sub-targets can also be obtained by the formula. The sub-targets'

general scores contribute the super-target. The computation formula can be used to

measure the impact of program transformations on targets. The usage will be explored

in Chapter 6.

For example, for the TM shown in Figure 4-2, the computation of the target 'Low

Complexity' which is the root target in the model can be calculated as follows.

f.lLowComplexity = min(f(NCNB) + f(NON)) + (f(McCabe) + f(CFDF)) + f(RNC)

The purpose to use normalisation function is to normalise the values in different ranges

into the range [0 .. 1]. The normalisation function is defined according to the scenario of

problem. In Chapter 6, the normalisation function will be defined in more detail for

constructing transformation impact function.

4.6 Summary

This chapter gives the method to modelling the top level of MOTMET introduced in

Chapter 3 including the representation of target and the correlated measurements. The

following points can be summarised from the chapter.

J... The definition of target is given and particularly refers to the objective of

reengineering activity.

J... Six categories of reengineering-intensive software metrics are presented.

These metrics are grouped and chosen in that their capabilities to measure

reengineering activity.

102

Chapter 4 Using Software Metrics to Describe Reengineering Targets

J... Correlated with the metrics, reengineering target can be modelled by the

target model by referring the existing goal modelling technique.

J... In order to evaluate the target satisficed degree, a formula is proposed for this

computation.

103

Chapter 5
Extension of Wide Spectrum
Language and Transformation Bank

Objectives

• To extend 5WetaWSL with the target-driven features

• To extend WSL with the object oriented features based on the hierarchy

ofWSL

• To extend WSL into the specific domain, using multimedia as a paradigm

• To extend the program transformations based on the extended WSL

• To present the meta-model and the catalogue of the program

transformations contained in the transformation bank

5.1 Introduction

The WSL language and transformation theory was created for software maintenance,

reverse engineering and migration. However, the application of WSL is limited in

unstructured program and procedural program. In this chapter, the application and

extension of WSL and the transformation bank is discussed. Object-oriented extension

104

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

will be performed from both of the syntax and the semantics aspects. By using WSL as

an intermediate language to extend the application of transformation into the specific

domains is another key in this chapter. The multimedia domain will be explored for the

application ofWSL's extension. Due to the extension, WSL can be extended by adding

more features for the new application in those domains. Furthermore, the extension of

transformations based on the extended WSL will be presented, correspondingly to

extend the transformation bank. In order to support the transformation prediction, a

method to manage the transformation bank is also described.

5.2 WSL Extension Approach

In Section 2.7.2 is introduced the extension of WSL kernel language by adding three

levels which cover the main syntax constructs of procedure HLL. The stepwise addition

of language levels enriches the flexibility of WSL and brings the high possibility to

extend WSL. The new language levels are built up with the language at each level being

defined in terms of the previous level. The kernel language forms the foundation for all

the others. Each new language level automatically inherits the transformation proved at

the previous level; these form the basis of a new transformation catalogue.

Transformations of each new language construct are proved by appealing to the

definitional transformation of the construct and carrying out the actual manipulation in

the previous language level [125].

Due to the capability and flexibility of WSL, the extension of WSL can be manipulated

consistently based on the existing hierarchy of the language, especially on the semantic

aspect which is the fundamental perspective for implementing and proving the

semantic preserving transformations. Figure 5-1 gives a paradigm of the WSL

extension which aims to add object-oriented features to generate a new level of WSL

105

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

and augment the application of WSL into some advanced domains by adding their

domain features.

/
/ ,

I .--_________ ~ \

I \

I

I
domain specific constructs

t _ ~ ____ ______ 0 e proposed
work

class

Secondary level

procedures/function

t
loop/action

t
I __---

_~ __ ___ _ __ __ ~ Theprevious
work

if/while
Basic levels

WSL Language

Figure 5-1 Extension Model of WSL

5.3 WSL Extension for Supporting Target Driven

Reengineering

In the FermaT transformation system, the program transformations are carried out in

WSL and the transformations themselves are written in an extension of WSL called

:MetaWSL which was specifically designed to be a domain-specific language for

writing program transformations. As a result, FermaT is capable of transforming its

own source code via meta-transformations [118].

In order to automatically predict program transformation steps driven by target, it is

necessary to test the current status of source code to determine the applicable

106

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

transformations. This needs to parse the source code and extract a list of constructs for

matching the application condition of transformations. In the existing toolset, it is

implemented by two important constructs, i.e., ifmatch and fill. The two constructs

support the pattern matching to examine if a transformation can be applied for the

current construct. However, the ifmatch or fill must be followed a given pattern for the

transformation. In terms of the proposed prediction approach, the identification of the

existing patterns in the source code is needed. In this section, .0\1etaWSL are extended

to support the target driven transformation step prediction for checking the pattern

contained in the source code.

@Get_Trans(POSN,SC): this function is used to detect the appropriate transformations

for a node of the source code AST. POSN represents the position list of the node on the

AST. SC is the WSL source code. The function returns a list of program transformation

candidates which are applicable on the current item. The pseudocode of the function

will be given as Algorithm 6-3 in Chapter 6.

For example, given the if statement as follows.

if (m = 1) then
p : = number[i];

line: = ((line++", ") ++ p);

fi' ,

The result returned from @Get_Trans(POSN,SC) is a list containing the applicable

transformations <absorb, add comment, add_skip, insert_assert, simplify,

simplify _ all_expressions, replace and simply, replace _ all_values_optimally>.

The function will be used for constructing the transformation process model for the

target driven prediction.

107

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

5.4 Extension of WSL with Object Oriented Features

Most of the current applications of using WSL are on the procedural programming.

There have not been the concepts of object orientation obviously. However, the

theoretical and implementation ofWSL provides a foundation for extending with these

object oriented features.

There are two aspects taken into account for this extension.

• Semantic aspect: Theorem 2-1 about recursion can be used to define the important

object oriented concepts. In the following sections, the relevant definitions and

theorems will be given based on the recursion.

• Syntactical aspect: The existing relevant constructs of WSL are at the third level.

The constructs V AR ... ENDV AR and STRUCTURE in WSL can be referred for

the definition of class. Upon the third level, the fourth level will be introduced

which specifies the object-oriented constructs and relations, such as inheritance,

instantiation, reference and polymorph. The Backus Naur Form (BNF) of

object-oriented extension of WSL is given in Appendix A.

5.4.1 Definition of Class and Object in WSL

Inheritance is a very important mechanism to support reusing code in object-oriented

language, which is for expressing similarity among classes, simplifying the definitions

of classes similar to one(s) previously defined. Cook [27] defined inheritance as a

mechanism for differential or incremental programming. He proposed a simple form of

inheritance as illustrated in Figure 5-2, where P is the original function, M is the

modification and the arrows represent invocation. In [69], the work was modified for

108

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

enhancing reusability and maintainability in object-oriented language.

client-~~ M p

Figure 5-2 Inheritance Model

This construction represents the essence of inheritance: it is a mechanism for deriving

modified versions of recursive definitions. Changes derived from incremental

programming can be made either to the input passed to the original module or the

output it returns, but the way in which the original works cannot be changed. However,

there is one way in which the inheritance is in the treatment of self-reference or

recursion in the original structure. As shown in Figure 5-2, the modification affects

external clients of the function - it modifies the function's recursive calls and the

self-reference in the original function is changed to refer to the modification.

To develop the informal account of inheritance into a formal model of inheritance in

object-oriented WSL, the fixed point semantics of recursive definitions which has been

used in the kernel language semantics can be referenced for this purpose. The central

theorem of fixed point semantics of recursive definitions and the relevant definitions

[117] in WSL may be stated as follows.

Definition 5-1 The 'flat' order on states sCt is defined as true when s = 1. or s = t.

Definition 5-2 If I, g E F H (V, W) are state transformations then J,. C 12 iff:

Vs E D/f (V).('\1't\ E 1; (S).3t2 E 12 (s).t\ C t2 /\ \it2 E 12 (s).3t\ E J,. (s).t\ C t2)

An equivalent formulation is: J,. C 12 iff \is E DH (V).(1.E J,. (s) V J,. (s) = 12 (s)) .

109

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

Definition 5-3 (Monotonic) A function F on state transformations is monotonic if

Vf E FH (V, V).f C F (f).

Definition 5-4 (Directed Set) A directed set F is such that for every 1;, f2 E F there

exists g E F such that 1; C g and f2 C g .

Definition 5-5 (Continuous) A monotonic function F on state transformation stratifies

F(ll F) = II {F(f) I f E F} for every directed set F c FH (V, V) then F is

continuous.

The procedures and functions in WSL are continuous [11 7].

Theorem 5-1 (Fixed Point) if a functionF E FH (V, V) is continuous, then there is a

state transformation C!..J.F) E FH (V, V) such that (Il.F) = F«Il.F)). This (Il·F) is

called the least fixed point ofF, writtenfix(F). It is given by II F n
(.1).

n

Throughoutly, functions like F will be called generators. The fixed point semantics

was used to describe the behaviour of objects with mutually recursive methods in [27].

Referred the work in [27] and the theory of WSL, an object-oriented denotational

semantics of WSL is stated as follows.

Definition 5-6 A structure containing a set of variables and procedures or functions

defined in WSL, denoted by R: x n ,with variable Xi' i = 1· .. n, called fields and

M,

Mm

110

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

M j' j = 1· .. m , called methods which represent procedures or functions.

Definition 5-7 A record is a set of states B c DH (V) and denoted by with XI H ... VI]

xn H vn

variables Xi called labels and values Vi .

The relevant definition of a class can be defined as follows.

Definition 5-8 Let Hbe a set of values. A structure R is a class that (u.R)= II R U (.0),
DF n<w

where Rn(n) is the 'nth truncation' of(/l.R) , i.e.,Rn(n) = Hn UP(RHn \ {-1}), P is a

power set. The 11 operation collects all this information together to form (/l.R). The

fixed point of (/l.R) as a record is an object of R. Class R is modelled as a generator.

Syntactically, a class definition is a named construct, optionally with genenc

parameters. In this construct shown in Figure 5-3, the constituents of the class are

defined and related. The main constituents are: fields and methods.

Class ClassName [generic parameters]: inherited classes

state schema

initial state schema

operation schema

Figure 5-3 Class Construct

Here, the state schema is the field declaration. The initial state schema IS the

constructor of the class. Operation schema actually is the method declaration.

III

Chapter 5 Extension of Wide Spectrum Language and Transfonnation Bank

Class Pointe a,b)

field x

field y

method x = a

method y = b

method distance (P) =

sqrt(square(selfx-p.x) + sequare(selfy-p.y))

Figure 5-4 The Class 'Point'

For example, class Point in Figure 5-4 is modelled as a generator MakeGenPoint(a,b),

defined in Figure 5-5. MakeGenPoint takes the coordinates of the new point and returns

a generator, whose fixed point is a 'point'.

As discussed in the last section, the fixed point semantics of class also defines the

semantics of instantiation, i.e., an object P = fix(Ji.Point), where Point is a generator of

an object. The keyword self embedded in a class represents the self-reference of the

class. Its definition in WSL will be given later. A point (3, 4) is created as shown in

Figure 5-6 .

MakeGenPoint(a,b) =J1.

[x H a,

y H b,

distance H

sqrt(square (selfx-p.x)+ square (selfy-p·y))]

Figure 5-5 The Generator Associated with 'Point'

p - fix(MakeGenPoint(3,4))

- {

}

X H 3,

y H 4,

distance (5,6) H 2,

Figure 5-6 A Point at Location (3, 4)

In other words, the correspondence between object-oriented tenninology and semantics

112

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

of WSL can be listed as: objects are modelled as record value whose fields represent

methods; the values may refer recursively to the whole record.

If R is the name of a class, the identifier R semantically also denotes the set of identities

of possible objects of class R. (In particular cases, it will be clear from the context

whether an identifier is being used as a name of a class or to denote the set of identities

of objects of that class.) Informally, we do not distinguish between an object and its

identity, i.e. if we refer to some object of R, it is with the understanding that we are in

fact referring to an object whose identity is in R. Because object identities uniquely

identify objects, no ambiguity arises.

Syntactically, in WSL, the object instantiation is defined as follows.

<class instance creation expression> ::= new <class> (<argument list>?)

<argument list> ::= <expression> I <argument list> , <expression>

<class> ::= <class name>

For example, to instantiate an object from the class Point, we can have:

p = new Point (3, 4);

Figure 5-7 An Object of Class Point

The class construction is the essential extension to WSL with Object Oriented Features

(OOF), which groups the definition of schema including the state schema and the initial

schema and the definitions of its associated operations. A class is a template for objects

of that class: for each such object, its states are instances of the state schema of the class

and its individual state transitions conform to individual operations of the class. An

object is said to be an instance of a class and to evolve according to the definition of its

113

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

class. On the above definitions, the fixed point semantics of class also defines the

semantics of instantiation.

WSL is a weak typed system. Although, the type system discussion is outside of the

scope of this thesis, as for the object-orientation, type cannot be neglected completely.

In object-oriented program, type is a term including two aspects, primitive type and

reference type. In the extension of WSL, reference type will be introduced for the

inheritance and instance relations.

After defining the essential constructions and giving the basic theorem, we continue to

discuss the inheritance based on WSL semantics.

5.4.2 Inheritance

Inheritance is modelled as an operation on generators that yields a new generator. There

are three aspects to this process: (I) addition or replacement of methods, (2) the

redirection of self-reference in the original generator to refer to the modified methods

and (3) the binding of super in the modification to refer to the original methods.

For example, the Point class may be inherited in defining a class of circles. Circles

have a different notion of distance from the origin. This definition gives only the

differences between circles and points:

Class Circle(a,b,r): Point(a,b)

field radius

method radius = r

method distFromOrig
= max(super.distFromOrig - self.radius, 0)

Figure 5-8 The Class Circle Inherited from the Class Point

114

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

The formal interpretation of inheritance presented above is formalised using generators.

The essential observation is that the manipulation of self-reference can be modelled as

an operation on generators.

Definition 5-9 Inheritance is the derivation of a new generator from one or more

existing generators, in such a way that the formal parameter of the derived generator

(representing self) is passed to all of the inherited generators.

The new generator inherits from the original generators. The original generators are

called parents; the derived generator is called the child. When there is no chance of

ambiguity, the corresponding fixed points may also be called the parent and child.

Since generators are closely related to self-referential definitions, the effect of

inheritance can be understood as an operation on definitions. In this context,

inheritance corresponds to textually embedding an existing definition inside a new

definition, when using the syntactic convention of representing self-reference by the

keyword self. Since the same identifier is used to represent self-reference in the

inherited definition and the definition in which it is embedded, self-reference is shared

between them.

The modifications effected during class inheritance are naturally expressed as a record

of methods to be combined with the inherited methods. The new methods M and the

original methods 0 are combined into a new record M EB 0 such that any method

defined in M replaces the corresponding method in O.

The modifications, however, are also defined in terms of the original methods (via

super). In addition, the modifications refer to the resulting structure (via self). Thus, a

modification is expressed as a function of two arguments, one representing self and the

))5

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

other representing super, which returns a record of locally defined methods.

5.4.3 Reference

In Object-Oriented WSL, a class consists of declarations and imperatives. The

declarations define the attributes possessed by instances of the class. The imperatives

are procedure or function in WSL that is evaluated when an instance is created. They

provide the primary behaviour of the class. Thus, a class may be viewed as a

combination of the block and procedure concepts.

Attributes may be accessed from outside the instance by a reference to the instance.

Imperative can be access by method invocation.

Class T: A

{

}

field Xi;

method m}(In pin}k : Tk,Out pout}1 :~.)

{A j }

This statement shown above is the class building declaration. It defines a class named T,

which has attributes, i.e. data fields Xi' i E 1 ... n and methods m} ,j E 1 ... f. pin}k stands

for the input parameters of method m} and pout}1 stands for the output parameters of

method m}. The input parameter passing convention is call by value and the output

parameter passing convention is call by value_return of WSL procedure. A} is the

methods body of method m}.

Let object t IS an instantiation of Class T, t = new T; the attribute reference IS

116

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

represented as t. Xj ; the method invocation is represented as t.m (In e
k

, Out y)) which

invokes the method m in object t.

To the specification of the class instantiation and the object reference can be written in

the program context as follows.

begin object

where

end

p = new P();

v) = p,x);"';vn = P'Xn;

p.F; ,

class P: S

end

field XI" "'Xn

method F; (P var r),

method Fm (P var r),

method Fq (P ~ r)

self. F; ;

5.5 Utilisation of Domain Features for WSL Extension

An essential task of WSL and its transformation theory is to analyse and understand

source code through program transformation. The features of source code which is

translated to WSL are taken into account in the development and research on WSL,

such as the error handling construction of assembler program. However, the domain

features have not been used as a means for applying program transformation. In many

cases, domain features are important knowledge for any analysis process on source

code, such as program comprehension, reverse engineering, maintenance and so on.

An aim of the thesis is to utilise domain features within the program transformation.

11 ~

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

The application from a specific domain is chosen for the proposed research, I.e.,

multimedia application. The reason to choose them is driven by their particular data

structures and operations on the data. For example, multimedia data can be divided as

static data and dynamic data, depending on whether or not the data change over time.

In the proposed approach, WSL is extended with the capability of dealing with and

analysing such applications. The extension focuses on the domain features of the areas.

As discussed above, the data and its control in the domains are the triggers for the

extension.

However, a challenge of the extension to the advanced domains is the definition of

semantics in the domains, i.e., the behaviour of their applications. The essential of the

transformation based on WSL is to alter the presentation of program without changing

the behaviour of it. The definitions of program behaviour alter over different domains.

On the other hand, the definition of the semantics will determine the application of the

program transformations. Therefore, it is important to define the semantics in a domain

for the transformation purpose. As a basis of the discussion, the semantics of WSL also

need to be modified according to the specific domains.

5.5.1 Domain Features of Multimedia Application

More recently, multimedia has appeared as a strong new force within the field of

information technology. The field is at the crossroads of several major industries:

computing, telecommunications, publishing, consumer audio-video electronics and

television/movielbroadcasting. Multimedia applications have existed at every corner in

our life.

The models of multimedia software described in [101], a multimedia application is

I 1 '\

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

constructed from a collection of multimedia objects. The primitive objects are media

objects of the same media type. The complex multimedia objects are composed from

these primitive objects and in general are of mixed media types. Spatial and temporal

composition rules must be taken into consideration.

5.5.1.1 Modelling Structure and Behaviour of Media Data

Structural models for multimedia data provide a framework for the structural

representation, interpretation and processing of media data. Other data related to

multimedia data units shown in Figure 5-9 are the so-called metadata. The metadata,

such as document data, representation of the primary document structure and structure

representation of the media, are used to describe the relationship between the

multimedia data and manage those data. Documents describe media data by means of a

formal language, which can be processed by a computer. Documents play two

distinctive roles within multimedia data modelling. First document data are handled in

a binary representation by the Database Management System (DBMS), like

unprocessed media data. For efficiency reasons, often only a partial interpretation of

the internal structure of the documents is performed. Second, document types are based

on the same abstraction used for the structural formula of media data.

~ __ Interpretation of the __ --I
Structural representation document structure

of the media
Representation ofthe

primary document structure

...... ~ ::l ~
~ ~

>d :l.
'""1 e:.. ~ .-

~ p.;l
::-. ::-.
0 0
::l ::l

Unprocessed media data f4--Document materialisation---il Document Data L_ _________ ----'

Figure 5-9 Relationships between Media, Documents and Structural Models [101]

119

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

5.5.1.2 Data Type Modelling

Different types of multimedia data have different properties and functions, so that it

appears intuitive to describe them by different data types. One possible division could

be drawn between static and dynamic data, depending on whether or not the data

change over time. In tum, the dynamic data can be divided into discrete and continuous

data according to how they change over time. Figure 5-10 demonstrates this division.

=r=:
~

Figure 5-10 Typical Specialisation Hierarchy for Multimedia Data [101]

5.5.2 Extension of WSL with Multimedia Features

Multimedia application involves a variety of individual multimedia objects presented

according to a set of specifications. These multimedia objects are transformed

(spatially and/or temporally) in order to be presented according to requirements.

Multimedia documents are composed, in time and space, of different media, i.e. video,

audio, image or text. Three important reasons make the management of multimedia

document a complex task: (1) the priori 'unstructured' (or at the best' semi-structured')

characteristic of multimedia document, (2) the organisation of the media content over

space, (3) the inherent temporal dimension of media (like audio and video). A

I:!O

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

multimedia document can be considered as semi-structured. Indeed, its structure is

priori unknown, irregular, without any generic definition, but eliciting and content

analysis tools can enable the underlying structure elements to be identified. The e ents

objects and elements composing the document can thus be identified due to a structure

automatically generated by these tools.

In the context of multimedia application, WSL is extended with such multimedia

features by defining the media data and the spatiotemporal relations among the data.

5.5.2.1 Media Data Class Declaration

In the object-oriented extension of WSL, the inheritance, instantiation and reference

relations are defined semantically and syntactically. The definition will be adopted in

the media data definition and declaration.

Multimedia

1> ~id h-
I

Dynamicmedia
Static media

~type
~region ~source
~uration ~uration

addO r--C>
~start

kJ-I' ~Iooping
I- deleteO ~\Olume II ~clickO

6 pauseO
resumeO

. repeatO

Text Image Audio
Video

~content ~ize ~size
~xcoord ~start ~region
~'ycoord ~ource

I_ query_bLkeywordsO I: reviseO

Figure 5-11 Class Diagram of Multimedia Data

As shown in Figure 5-11, there are seven classes defined for the media data. Th

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

superclasses are inherited by the subclasses. The behaviour and properties of each

media type is encapsulated into a class. The behaviour is classified as spatial behaviour

and temporal behaviour. Particularly, the dynamic data, such as audio and video, have

life cycle that is operated as start and stop process. Such features can be modelled as the

media's behaviour in the media class. On the other hand, the information can be

regarded as metadata of those media data. Below, the further description and the class

representations of the media types are listed as follows.

Multimedia: Multimedia is a superclass of all the media data and only contains a

property as 'ID' which is inherited by the subclasses, such as Staticmedia class and

Dynamicmedia class.

Staticmedia: Staticmedia is a superclass of Text class and Image class because the two

classes represent the static media data. The class includes the properties and actions of

the static data.

Dynamicmedia: Dynamicmedia is a superclass of Audio class and Video class which

represent particular dynamic data.

Text: Text is information that makes the context of document content intelligible as a

structure (e.g. syntactic structure, lexical information, reference, relation, table, etc).

Eliciting structure from a textual document enables to identify document items called

'elements'. An element can be a chapter, a section, a paragraph or a sub-paragraph, at

any embedded level. Hence, the specific structure of a given text document is

hierarchically detailed according to the granularity level (word, sentence, paragraph) of

the application.

Image: the segmentation of image can be identified as the shapes and the associated

122

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

patterns. The properties like color, texture, shape, key words (through OCR devices) or

any regular pattern (objects or regions and their spatial relationship) can be extracted.

Audio: the features of audio can be extracted as amplitude, bandwidth, pitch and

duration. As a continuous data, an audio data has its life cycle which can be triggered

by start operation and terminated by stop operation. Its life can also be paused and

repeated.

Video: video is made of audio-visual information.

By the instantiation relation, the concrete media objects can be declared and

instantiated as follows.

t1 := new TEXT()

image I := new IMAGE();

audiol := new AUDIO();

videol := new VIDEO();

5.5.2.2 Media Data Relation Modelling

Continuous media such as audio and video imposes new requirements on document

modelling. These requirements are essentially due to the intra-media and inter-media

temporal and spatial information. Multimedia document architecture can be defined as

an integrated and homogenous collection of data describing and structuring the content

and representing their temporal and spatial relationships in a single entity.

There are three ways for considering the structure of a multimedia document: logical

structure, spatial structure and temporal structure. Spatial structure usually represents

the layout relationships, defines the space used for the presentation of an image.

Temporal structure defines temporal dependencies between elements.

123

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

Logical relationships: The logical relationships define the hierarchical structure of

media, including super and sub relationships. The logical relationships are defined only

for the same media type. Therefore, it is an intra-relationship.

Spatial relationships: The spatial relationships have been widely studies as spatial

operators for handling spatial objects. Several classifications have been proposed like

[36]. Our purpose in the thesis is not to compare them or to define yet another one. The

classification are chosen, which proposed by [26], which groups all those spatial

elementary operators into a few sets. The list of spatial operators in the WSL extension

is: the disjunction, the adjacency, the overlapping and the inclusion. The topological

relationships between the objects (disjoint, meet, overlap etc.) shown as Figure 5-12.

Dw q
I

p q ~
disjoint(p,q) joint(p,q) overlap(p,q)

~ qwj ~J
covered _ by(p,q) inside(p,q) equal(p,q)

convers(q,p) contains(q,p)

Figure 5-12 Topological Relationships between the Media Objects

Temporal relationships: There are two classifications of time relationships: the time

between elements in a same document and the relationships between documents. The

first class consists in intra-document relationships, referring to the time among various

presentations of content elements. The second one consists in the inter-document

relationships, which are the set of relations between different documents (for example

the synchronisation of two audio segments during a presentation). The diffusion of

media are events and these events are organised using the qualitative relations of

124

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

Allen's algebra [5]. In Table 5-1, fourteen temporal relations between media are

presented.

Temporal Relation Symbol Inverse Temporal Symbol for Pictorial
Relation Inverse Example

Sequence X before Y < Y after X > xxx yyy

(X; Y) X meets Y m Y met_by X ml XXXYYY

X equals Y = Y equals X =
XXX
YYY

X overlaps Y 0 Y overlapped_by X
XXX

01
YYY

Parallel
X during Y d

XXX
(X II Y)

Y contains X di
YYYYYY

X starts Y s Y started_by X
XXX

SI
YYYYYY

X finishes Y f Y finished_by X fi
XXX

YYYYYY

Table 5-1 Temporal Relations between Media [5]

Definition 5-10 (Sequence Relation) The sequence relation Seq is defined as the

relation before or the relation meet, i.e. xSeqy E {(x,y) I (x :::y) vex !!!oY)}·

Definition 5-11 (Parallel Relation) Par can be presented as one of the following

relations, equal, overlaps, during, starts and finishes, i.e. xPar y E {(x,y) I (x = y) vex

QY) vex !!.y) vex ~y) v(xly)}·

The behaviour of activation is also frequently used in most of multimedia presentation,

such as link, trigger and interactivity by user. The defined operators start and finish

satisfy the needs to presenting the behaviour.

5.5.2.3 Syntax Extension of WSL

As aforementioned, the genenc structure of multimedia documentation can be

modelled as logical, spatial and temporal structure. The three essential relationship

also support the composition and synchronisation of media objects. The BNF notation

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

of multimedia-based extension of WSL is defined for a composite event e as follows.

e ::= el ReI e2

e 1, e2 ::= text I image I audio I video

Rel::= <logical relation> I <temporal relation> I <spatial relation> I <boolean _ op>

<logical relation> ::= sub I super

<temporal relation> ::= < I > I = I mimi I 0 I oi I d I di I s I si I f I fi

<spatial relation> ::= disjoint I joint I overlap I covers I inside I equal

<boolean_op> ::= AND I OR I NOT

In addition to the above definition, there are two new constructs to define the temporal

relations between two media objects, i.e. the sequential construct SEQ BEGIN ... END

and the parallel construct PAR BEGIN ... END.

SEQ BEGIN S 1; S2 END -DF Sequence (S 1; S2)

PAR BEGIN SI; S2 END -DF Parallel (S 11\ S2)

The construct '\I' is defined by Younger et al. in [128] which also presented its

semantics. Therefore, the two new constructs with regard to the temporal relations can

be extended semantically by using the existing WSL semantics. The detailed BNF of

the WSL extension is given in Appendix A.

5.6 Program Transformation Definition

Over the last three decades, the program transformation method has been proved as a

powerful technique for deriving programs from specifications, verifying program

properties, specialising programs with regard to their context of use and deriving more

efficient program versions from efficient ones. Research on program transformation

126

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

has historically focused on semantics-preserving transformations and program

refinements - be it in the context of transformational program development or program

optimisation. More recently, people have been considering the application of

transformation techniques to the case of 'programming in the large' [91].

In the proposed research, the definition of program transformation follows the one

given by Ward [117]. Program transformation refers to the process of changing a

software system in such a way that it does not alter the external behaviour of the code,

i.e., semantics of program, yet improves its internal structure for the specific purposes,

such as comprehension and other goals. The semantics here refers the defined WSL

semantics. The transformations are applied on the extended WSL source code.

---------------------r---

+ I

I - ~nd;YLe~ ~

I domain-specific constructs ~--->

Secondary Level

extended transformations

I

1

1 !
.§ L

I I
1 __ _ ___ J I

~

[I g' - - - - -- -
{JQ ----------'"1 f - -

§ I

~
Pi"
~. I

r
I

I

I

I

I Basic Level

I

The p~op~sed :vork:

r---

trans fonnation on procedures/function

trans fonnation on floop/action

transfonnation on Wwhile

Basic Level ------l L--- _____ _

I

_____________________________ ,!,~e_p~e_v~ous work:

Figure 5-13 Hierarchy of Transformation Mapping to the Levels of WSL

WSL includes a number of construct levels based on the kernel language rising by the

encapsulation granularity and allows the extension of the language itself. This feature

127

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

of WSL entitles the extension of the program transformations are developed based on

the corresponding hierarchical levels shown as Figure 5-13. The transformations can be

classified as two groups-basic transformations and secondary transformations.

Basic transformations: the transformations applied on the WSL construct at the basic

level.

Secondary transformations: the transformations applied on the constructs at the

secondary level of WSL, such as the class and the multimedia specific constructs.

5.6.1 Semantically Equivalent References and Transformation

Intuitively, program transformation should alter the syntax of a program and preserve

its behaviour. The transformations existing have been proved to have this capability

through Weakest Precondition (WP). However, they are only based on the basic level

of WSL language, such as the basic constructs.

Considering the transformations at the secondary level, the semantic equivalency has to

be looked at another perspective. A particular set of syntactic and semantic properties

of programs were found being easily violated when performing transformations on

object-oriented program. Opdyke [86] first discussed the relationship between

semantic equivalence and syntax change in the refactoring process. In [86], the

semantic equivalence was defined as follows: let the external interface to the program

be via the function main. If the function main is called twice (once before and once after

a refactoring) with the same set of inputs, the resulting set of output values must be the

same. The definition of semantic equivalence allows change throughout the program,

as long as this mapping of input to output values remains the same.

In the development of the transformations at the secondary level of WSL language, the

128

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

concept of semantic equivalence adopts the definition used by Opdyke [86]. This

allows for several important changes that do not affect equivalence:

•

•

•

Expressions can be simplified and dead code can be removed. Variables,

functions and classes can be removed if they are unreferenced.

Similarly, variables, functions and classes can be added if they are

unreferenced.

References to a variable and function defined in one class can be replaced by

references to an equivalent variable or function defined in another class. One

implication of this is that locally defined members can be replaced by

inherited members (and vice-versa) if the member declarations are equivalent.

Based on the discussion, the secondary transformations to be developed are allowed to

change the internal properties of a program but preserve its external behaviour. The

extended transformations developed in the transformation bank are listed briefly in the

following section.

5.7 Extension of Transformations

The existing transformations developed in FermaT are based on the WSL language

levels rising from the kernel language to the procedure/function level. Most of the

transformations work on the basic constructs of WSL, such as WHILE, IF, V AR and so

on. Those transformations which have been proved formally alter the syntax of WSL

but preserve the semantics of the program. They have been applied in practical projects

as well as academic experiments and proved the efficiency.

Nevertheless, as WSL and its application domains are extended, the transformation

129

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

bank is expanded for the needs of the extension. In subsequent sections, the

transfonnation extension based the extended WSL which has the object-oriented

features or the domain features will be discussed. The transformations called secondary

transformations in the proposed transfonnation bank. They are not the composite of the

basic transfonnations, but the ones based on the WSL language extension. Referring

[104], the object-oriented transfonnations adopted are movement transformations,

encapsulation transfonnation and wrapper transformation. The multimedia oriented

transformations are proposed based on the extended multimedia constructs in WSL.

5.7.1 Transformations on Object-Oriented Constructs

5.7.1.1 Movement Transformation

The transformation aims to move parts of an existing class to a component class and to

set up a delegating relationship from the existing class to its component. This

transformation needs three parameters: the name of the existing class (oldClass), the

name of the new class to be created (newClass) and the name of the method or field to

be moved.

For the applicability of the transformation, the condition function is needed to evaluate

precondition in the source code features: (1) the oldClass must exist, (2) the name ofthe

newClass must not be used and (3) the methods or the fields to be moved must belong to

the oldClass.

Then the transfonnation requires the following steps for its implementation: (1) an

empty class to be added to the program at first; (2) an exclusive component of this class

to be added to the oldClass; (3) each method to be moved first to be 'abstracted' by

constructing and returning a method which has same signature as a method; (4) each

130

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

filed to be moved to be 'abstracted' by defining a field which has same signature as a

method; (5) then move the method or the field to the new class.

Finally, the state functions must hold after applying the transformation: (1) a new class

called newClass has been added to the program; (2) the class oldClass has a field called

'movement'; (3) all methods or fields defined directly or indirectly in oldClass that are

used by a method in now public; (4) the given methods and fields have been mobbed to

the newClass and (5) the oldClass delegates invocations of the moved methods or fields

to those that exhibit the same behaviour in the newClass.

5.7.1.2 Encapsulation Transformation

The transformation aims to be applied when one class creates instances of another and

it is required to weaken the association between the two classes by packaging the object

creation statements into dedicated methods. The transformation requires three

parameters namely: name of the class to be updated (creator), name of the product class

(product) and name of the new constructor method.

For the applicability of the transformation, the condition functions in the source code

features as follows: (1) the class creator exists and (2) the creator class defines no

method and have the same signature as a constructor in the class product.

Then, the transformation requires the following steps to be implemented: (1) for every

constructor in the product class, a new method called createProduct is created in the

creator class, (2) all product objects created in the creator class are replace with

invocations of the appropriate createProduct method expression e with an invocation

of the method createProduct using the same argument list.

131

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

Finally, these state functions hold after applying the transformation: (1) for every

product object creation expression in the creator class, a method called creatorProduct

that creates the same object is added to the creator class and (2) every product object

creation is deleted.

5.7.1.3 Wrapper Transformation

The transformation aims to 'wrap' an existing receiver class with another class, in such

a way that all requests to an object of the wrapper class are passed to the receiver object

it wraps and similarly any results of such requests are passed back by the wrapper. It

requires two parameters namely: (1) the name of a single receiver class or a set of

receiver classes to be wrapped (client), (2) the name of an interface that reflects how the

receivers are used in the client class (interfaceName) and the name of the wrapper class

(wrapper Name).

For the applicability of the transformation, the condition functions required to evaluate

preconditions in the source code features as follows: (1) the given interface must exist

and (2) the name for the new wrapper class is not in use.

Then, the transformation requires the following steps to be implemented: (1) the

wrapper class is created and added to the program and (2) the wrapper class is used to

wrap each of the receiver classes and, consequently, any clients that use these receiver

classes are updated to wrap each construction ofa receiver class with an instance of the

wrapper class.

Finally, the following state function must hold after applying the transformation: (1)

the wrapper class has been added to the program, (2) all object references to receiver

classes is client have been changed to wrapperName and (3) all creations of receiver of

132

Chapter 5 Extension of Wide Spectrum Language and Transfonnation Bank

objects in the client have been updated.

5.7.2 Transformation Extension on Multimedia Application

The most distinguished feature of multimedia software is the temporal and spatial

relationship between multimedia objects. Therefore, the proposed transformations in

this area focus on the spatiotemporal relationships. The transfonnations looked into are

the ones to keep the semantics of the multimedia application after changing the syntax.

Semantically, the layout and the temporal arrangement of multimedia objects represent

the external behaviour of such an application. Any operation, which alters the external

behaviour, can result in the alteration of semantics. For the analysis of multimedia

application, the essential of the temporal and spatial relations are the most concerns.

Therefore, the transformations to be developed for multimedia application will devote

to the comprehension of the two characteristics.

5.7.2.1 Abstraction Transformations

Abstraction transformations used for a multimedia application aim to strip off the

statements which are irrelevant to the features for which the program is abstraction.

From the definition of a transformation, the abstraction transformations should be

regarded as partial transformation since the semantics of a program are not preserved

completely and only the interested semantics are preserved.

Transformation 5-1 (Spatial_Abstraction Transformation) The transformation is to

remove the statements which are irrelevant to spatial properties.

For example, the temporal properties can be removed by this transformation.

Transformation 5-2 (Temporal_Abstraction Transformation) The transformation is to

133

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

remove the statements which are irrelevant to temporal properties.

For example, the spatial properties can be removed by this transformation.

5.7.2.2 Replacement Transformations

The replacement transformations are to replace one construct by another construct

under the consideration of semantic preservation. This kind of transformations can be

used to increase or decrease the abstraction levels of a multimedia application.

For a temporal relation R defined in Table 5-1 on a media object setA, x,Y E A, there is

the following definition.

Definition 5-12 (Inverse Relation) R -1 is defined as R -1 = {(y, x) I (x, y) E R }.

For example, in the given relations, the inverse of ~ is si, i.e., ~ -1 = si.

Based on the definition, the transformation is given below.

Transformation 5-3 (Inverse Transformation) For x, YEA, xR y can be transformed as

yR -1 x.

For example, x ~y can be changed as y si x. By this transformation, the kinds of relation

operators can be replaced, thereby improving the understandability of program.

Some temporal and spatial relations are implicit because the temporal characteristics

are represented as the properties of multimedia objects. To understand the temporal and

spatial behaviour more specifically, the transformations are needed to extract the

explicit relations from the properties of media objects. The semantic definition of the

two temporal relations can be used to deduce such transformations.

\34

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

Transformation 5-4 (Replace_by _Concrete Transformation) The transformation is

used to replace the temporal properties by the concrete temporal relations. If the

properties of two multimedia objects satisfy one of the following conditions, then the

two objects can be transformed to having the corresponding relations.

• If ((x.start + x.duration < y.start) 1\ Seq(x;y)), then x;y can be transformed as x::: y;

• If ((x. start + x.duration = y.start) 1\ Seq(x;y)), then x;y can be transformed as X!!! y;

• If ((x.start = y.start) /\ (x.duration = y. duration) 1\ Par(x;y)), then xlly can be

transformed as x ::. y;

• If((x. start + x. duration> y.start) 1\ Par(x;y)), then xlly can be transformed as x !!y;

• If ((x.start < y.start) /\ (x. start + x. duration < y.start) 1\ Par(x;y)), then xlly can be

transformed as x d y;

• If (x.click 1\ (x.start = y.start) 1\ Par(x;y)), then xlly can be transformed as x ~ y;

• If (x.click /\ (x.start = y.start + y.duration) 1\ Par(x;y)), then xlly can be transformed

as x fy;

5.7.2.3 Absorb Transformation

In Table 5-1, fourteen temporal relations between media are presented including the

forward relations and the inverse relations. The properties of the temporal relations for

the transformations are gathered as follows.

Definition 5-13 (Transitive Relation) For a temporal relation R on a media object set A.

x, YEA, if xR y and yR z implies xR z for all x,)" Z E A, R is a transitive relation.

135

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

Based upon the definition, the temporal relations that are relevant to the sequence

relation and the parallel relation are transitive relations. Therefore, we can have the

absorb transformation according to this property.

Transformation 5-5 (Transitive_Absorb Transformation) If R is transitive, :lx, y, ::

satisfies xR y and yR z, when only media x and z are concerned, the media y can be

absorbed by replaced as xR z.

Transformation 5-6 (Elimination_Absorb Transformation) For x E A, xSeqx can be

transformed as x and xParx can be transformed as x.

The above two transformations can be used for simplifying program and improving its

understandability.

5.8 Program Transformation Catalogue

In this section, the existing program transformations are explored and classified into

eight categories. In the current transformation bank, there are about one hundred

transformations. A reasonable and clear catalogue is important for the transformation

management and operation. Further, the classification is also necessary for the

transformation predication and evaluation of their impacts. In order to make the

classification clear and reasonable, the criteria are defined as follows.

Hierarchy criterion: according to the language levels ofWSL, the transformations are

divided as two groups: basic transformations and secondary transformations,

corresponding to the WSL levels respectively.

Operation criterion: according to the effects of their operations, the transformations

can be classified as eight groups: Insert, Delete, Simplify, Join, Rewrite, Move,

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

Abstraction and Refinement.

•

•

•

•

•

•

•

Insert: The transformations in this group insert the program nodes or statement

into the program.

Delete: The transformations in this group remove the program nodes.

Simplify: The transformations are used to simplify a program by change its

construction rather than simply delete its nodes.

Join: The purposes of the transformations are to merge several constructs into a

single construct.

Rewrite: The transformations rewrite the program block according to the rules

without removing or inserting the program constructs.

Move: The transformations are used to move the position of program nodes.

Abstraction: The transformations III this group raIse the abstraction level of

statements.

• Refinement: The transformations in this group refine an abstraction specification to

a statement.

Strictly, the transformations in Abstraction and Refinement group are the

semi-semantics preserving transformations in that the semantics can be lost or added

partially during the abstraction and the refinement process.

The catalogue based on the operation of transformations has been adopted in the

existing work. The program transformations in the transformation bank are marked as

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

different groups. This catalogue is useful for the transformation predication or selection

since the effects of the transformations can be viewed by a straightfOlward way.

5.9 Meta-Model of Transformations

The process of devising and composing transformations that introduce source code

altering operation in an existing system poses an investigating challenge for the

reengineering of such systems. The process is both a top-down for advanced

transformations and a bottom-up for the lower level design motifs.

Figure 5-14 shows the meta-model of the transformations, which presents the

conceptual relations between transformations.

Secondary
Trans formation

- - - - - check -

State Functions

Condition
Functions

C . Atoml'c ___ --I Bas ic omposlte ~---ic
I---,contain-~ TransCormatl'on a Transformation Transformation l'

Figure 5-14 Meta-Model of the Transformations

The basic transformations and the secondary transformations are a number of small

simple atomic transformation rules called axioms to parts of a program's source code.

These axioms are formally proven correct in that they are semantic equivalence

preserving transformations. It is presumed that if each axiom preserves semantic

equivalence when a whole sequence of axioms ought to preserve semantic equivalence.

The secondary transformation is not the composite of the axioms but used for

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

processing the WSL constructs at the secondary level.

In defining a transformation, the condition functions and the state functions are used to

specify sets of preconditions and consequently assertions which should be made about

the program. Transformation process is presented with a concise and step-by-step

description on how to carry out and implement transformation. Consequently, the

atomic transformation can be combined to produce composite transformations. The

concepts involved in the meta-model will be specified further in the following sections.

5.10 Mathematical Notations of Program Transformation

In the proposed research, a transformation is stated as a state transformation process

which changes software system but preserve the external behaviour. The initial state

and final state to applying a transformation, i.e., precondition and postcondition of the

transformation are specified by First-Order Predicate Formulas (FOPF) [54]. In

addition to the standard logic symbols {--"A,V,-4,=,=,::I,V}, FOPF includes a set of

extralogical symbols that specify the various functions and predicates. In the proposed

transformation meta-model, the condition functions are used to test whether the initial

state is eligible to perform a transformation. In addition, the state functions are used to

specify the final state after applying a transformation. Both condition functions and

state functions are specified as FOPF. In the next two sections, the two kinds of

functions will be illustrated in detail. The mathematical notations, which are necessary

to be precise about the effect of a transformation on a program, are used to specify the

transformation model.

• P : the program to be transformed.

• T : the transformation based on WSL

139

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

• I p: denotes an interpretation of first-order predicate logic where the universe of

discourse comprises the program elements of P and the functions and predicates of

the calculus reflect the condition functions as applied to the program P.

• Pre(1): denotes the evaluation of the precondition of the transformation T on the

program interpretation I p. The precondition is written as condition functions

• Post(1): denotes the program interpretation I p, rewritten with the postcondition

of the transformation T. The postcondition is written as state functions.

5.10.1Condition Function and State Function

The condition functions serve the investigative role for performing transformations.

They are used as predicates examining whether a specific transformation can be applied

in a specific source code context. The condition functions are implemented as the test

functions in the FermaT transformation engine. To define the condition functions, it is

needed to define the test functions and specify the condition functions as the first order

predicate logic formula. The test functions are classified as two types:

Item type testing checks the type of the current node. To serve this testing, two test

functions are supplied as follows.

• @Specijic_Type?(@Item, type) returns true if the specific type of the current item

is the type otherwise returns false.

• @GeneraC Type?(@Item, type) returns true if the general type of the current item

is the type otherwise returns false.

1-10

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

• @Has_Type?(@ltem, type) returns true if the current item and its children

contains the type otherwise returns false.

Program pattern testing checks if a block of program matches a pattern on which a

transformation can be applied.

•

•

@1FMATCH?(@ltem, pattern) returns true if the current item matches the pattern

variables otherwise returns false.

@Target_Match?(target, pattern) returns true if the target and the program

variable match an expertise rule which is stored in the transformation engine as a

knowledge otherwise returns false.

Pattern variables in the schema are either matched against the current value of the

corresponding variable or, if the current value is < > then the corresponding variable is

set to the matched item or list of items.

Within the pattern checking function, the pattern variables are allowed:

• '-?x' matches any item and puts the matched result into variable x;

• '-*x' matches a sequence of zero or more items and puts the result into x;

• '-=x' matches the current item against the value of the expression e.

The Condition Functions are expressed as the combination of the testing functions by

logic operators.

Within 5\1etaWSL the condition @Trans?(name) tests if the given transformation is

valid at the current position and the statement @Trans(name, data) will apply the given

141

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

transformation at the current position, passing data as the additional argument. For

example, 'data' might be the new name to use for a procedure renaming

transformation).

State functions are used to express the final state of a transformation by FOPF. The

State Functions of a transformation denotes an interpretation of first-order predicate

logic where the universe of discourse comprises the program elements of postel) and

the functions and predicates of the calculus reflect the transformation as applied to the

program P.

5.11 Construction of Transformation Bank

The transformation bank is the container to store and manage the transformations in the

transformation engine. The metadata of the bank defines the properties of the

transformations. Each transformation has the properties for the further implementation

and predication. Internally, the transformation bank adopts the following attributes as

registration information of each transformation for the management and the prediction

approach.

• Index Number (ID): the ID of a transformation

• Name: the external name of transformation

• Proc Name: the identifier of transformation procedure

• Keywords: the keywords to specifying the usage of a transformation, such as

absorb, simplify and so on

• Applied Specific Type: the specific type on which a transformation can be

applied

• Category: the category which the transformation belongs to

• Help: the help information to describing the usage of a transformation

142

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

•

•

•

•

•

Prompt: the prompt when applying a transformation

Condition Function: the precondition of a transformation which consists of

condition functions by the first order predicate logic

State Function: the postcondition of a transformation which consists of

condition functions by the first order predicate logic

Impacted qualities: the qualities which can be effected by the transformation

Algorithmic description: the text-based description of the transformation

algorithmic

5.12 Transformation Composition

The transformations can be implemented with different effects, which consequently

can result in the change of source code features. However, a single transformation is not

enough to achieve some targets, such as 'high maintainability'. One or more

transformations need to collaborate to realise the transformation goal. When building

such collaboration of transformations, it is also crucial to determine which

transformations are mutually dependent and which transformations have to be applied

sequentially. The composition can be implemented into a process according to the

conditions of transformations, such as the functions defined in the above sections. The

composition patterns can be defined by the algebra operators as follows.

• Sequential Composition (;) is where a sequence of transformations is applied

one after the other. Tl; T2 denotes the sequential composition of two

transformations Tl and T2, If the application of Tl terminates then the

execution of T2 follows that of Tl. The sequential dependence with this kind of

relationship can be detected according to the condition functions and state

functions of the transformations, i.e., Pre (T2) = Post (Tl).

143

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

For the parallel composition, there is a constraint to determine the eligibility of the

relation, i.e., the constructs of a program. Definition 5-14 gives the definition of the

'independent relation' related to the constraint.

Definition 5-14 (Independent Relation) If two transformations can be applied to the

different positions which are at the same level on AST of a program and the execution

order of the transformations does not affect the result, then the transformations are

independent against each other.

• Parallel Composition (II) is where a set of transformations are performed in

parallel. TIIIT2 expresses that Tl and T2 can apply in parallel on different

program blocks, which are independent to each other.

If two transformations are independent, then the two transformations can be executed

'in parallel'. The parallel execution is different from the concurrent execution in the

definition. To execute two transformations in parallel is not to execute them at the same

time but means the two transformations are not executed depending on different parts

of the program.

5.13 Summary

This chapter explored the language extension of WSL as discussed about the needs.

The extensions on object-oriented program and multimedia program are performed by

utilising the existing construct levels of WSL and semantic theories. In addition, the

chapter addresses the transformation bank extension by developing new

transformations, providing a transformation catalog and presenting the method of

transformation management. The extension will support the proposed transformation

prediction. To summarise, the following contents are involved in the chapter.

144

Chapter 5 Extension of Wide Spectrum Language and Transformation Bank

In order to support the target driven approach, new functions are added in

MetaWSL, such as @Get_Trans(POSN,SC) to get all of the available

transformations for a position of an AST.

J... The fix point theory is used to extend the denotational semantics of WSL with

object-oriented semantics so that the new constructs can be consistent with

the current language semantically and syntactically.

J... New object-oriented constructs added include class, object, reference, and

inheritance.

J... By studying the features of multimedia application, WSL is extended to

present multimedia presentation. The extension is based on the three relations,

i.e., logic relation, temporal relation and spatial relation, which are the

fundamental features of the multimedia application.

J... The secondary transformations match the needs for transformations based on

the extension of WSL.

J... The precise transformation catalog can be used as knowledge or heuristics for

the prediction of transformation.

J... The meta-model and the mathematical notation of transformations will be

used for constructing the transformation path.

J... The definitions of the two composition relations show how the

transformations are executed together.

\45

Chapter 6

Algorithm of Program Transformation
Step Prediction

Objectives

• To model the transformation step prediction as a search problem

• To explore the relationship between transformation, metrics and target

• To give a metrics based prediction algorithm using a heuristic search

algorithm

• To incorporate expertise into the prediction algorithm

• To exploit domain features for implementing the prediction algorithm

6.1 Introduction

In the previous chapters, a number of dedicated software metrics are presented and the

concept of reengineering target and representation is given with the correlation of the

metrics. WSL is extended with advanced features, such as object-oriented features and

its applications are extended into the other domains, such as multimedia domain. The

146

Chapter 6 Algorithm of Program Transformation Step Prediction

extension of transformations as well as the management mechanism of the

transformation bank is presented. Based on the above work, this chapter discusses an

algorithm to predicting source-code transformations for specific reengineering targets.

The algorithm takes three scenarios into account, i.e. the one based on software metrics

merely, the one incorporating with expertise and the one dealing with specific domain

features.

6.2 Regarding Transformation Prediction Problem as a

Search Problem

In the transformation bank, a large number of transformations are developed for

different purposes. When implementing the transformations, software engineer selects

the transformation candidates from the transformation bank according to her/his

experience and the transformations' usages. For the one who is new to the

transformations, facing to the great amount of transformations, she/he could face the

difficulty to determine which transformations should be selected and how the steps of

the transformation execution should be determined.

Therefore, the capability of a transformation engine to assist and present clues to the

users will be useful to improve the transformation implementation's efficiency. Such a

functionality of the. transformation engine is called as prediction. To provide the useful

information guiding the transformation process, the transformation engine is supposed

to determine the suitable candidates and predict the impact of the transformations. By

the information, the efficiency of the system reengineering by transformation can be

improved.

How to predict the required transformations is an important issue of the proposed

147

Chapter 6 Algorithm of Program Transformation Step Prediction

approach. The prediction in practice is to search the applicable transfonnations.

determine which transformations should be applied, give the possible execution

sequence of the transformations and provide the information to the user. Therefore, the

prediction can be performed via a search operation to obtain the answer.

Search techniques usually involve a heavy computational burden. However, heuristic

search strategies that use some kind of additional (heuristic) information can reduce

these computational costs for many problem instances. In the proposed approach, the

prediction process is performed as an instance of a heuristic search algorithm. Before

applying the algorithm, the relevant entities and relations in the predication framework

need to be elaborated.

6.3 A Model of Target-Metric-Transformation Correlation

Representation

The proposed transformation process leads to achieving a set of reengineering targets

which can be measured by software metrics. Figure 6-1 presents an alternative view of

the MOTMET, which was introduced in Section 3.3.2, to show the specific relations

between the entities in the MOTMET.

In the figure, the relations are modelled as a directed graph (digraph) D represented as a

set of 3-tuple elements <N, E, L> where N is a set of vertices or nodes, divided into

target nodes, metric nodes, transformation category nodes and transformation nodes.

The set of nodes or vertices is called the vertex-set of D, denoted by N= V(D). The top

target is represented as the entry node. E is a set of edges or arcs which connect the

ordered pairs of the nodes. The list of arcs is called the arc-list of D, denoted by £=A(D).

If nand n. are vertices, then an arc of the form njnJ. is said to be directed from nj
I J

148

Chapter 6 Algorithm of Program Transformation Step Prediction

to n j , or to join n; to n j . In this case, node n j is said to be a successor of node
n,

and node nj is said to be a parent of node n, There are four kI'nds f (1)
J ' 0 arcs : arcs

which connect target and target factors; (2) arcs which connect targets and metrics ' (3)

arcs which connect transformation categories and targets, This kind of arcs provides the

heuristic information for support the search algorithm; (4) arcs which represent

ascription of a transformation to its category,

~---------------------------- -,
I

Target Modell 0 target/target factor

1\ I

• metrics
AND
relation

• transformation category

E9 trans formation

A OR
/ \ \ L label relation • \ \ • • • connection between

objectives

- - - -- connection between
objective and metrics

'\

connection between tranformation
/ catalogue and objectives

aI \
ascription of a transformation to

E9 E9 E9 E9 E9 E9 transformation catalogue

Figure 6-1 Target-Metric-Transformation Correlation Representation

Finally, L is a label of N x E which assigns to each node of D and to each edge an

impact rule as it will be elaborated later. The labels have different meanings

corresponding to different kinds of arcs, The meaning and the way to calculate the

value of a label will be explained later in this chapter.

6.4 Transformation Step Prediction Algorithms

The transformation step prediction algorithms aIm to provide the mean for th

reengineering target driven transformation process, The result is a set of olution

which include the transformation execution sequences for the desir d target. Th

149

Chapter 6 Algorithm of Program Transformation Step Prediction

resources used in the approach can be not only the program to be studied, but also the

expertise for performing reengineering. The transformation prediction algorithms are

presented by utilising those resources on different aspects. The basic algorithm is a

metrics based prediction algorithm. The second algorithm is to incorporate expertise

which is represented as rules. When the prediction algorithm is applied in a specific

domain, the domain features are necessary for leading the process.

This section formulises the problem and gives the details of the algorithm, finally gives

the pseudocode of the transformation prediction algorithms.

6.4.1 Transformation Path

In Section 5.12, the transformation composition is discussed and the relationship

between transformations in the composition process is defined by giving the

composition algebra operators. Transformation process is to execute transformations

following the composition rules to complete a set of transformation task.

Assuming to be given a specific target, the transformation process should be performed

toward the target. The process is implemented as a transformation sequence. It is called

the transformation path which is composed of a sequence of transformations connected

through the composition algebra. The formal definitions are given as follows.

Definition 6-1 (Transformation Path) Given a program P, Transformation Path A on P

is t1 op t 2 op ... op t n where t; = r; (parameters;) , r; (i = 1,.··, n) is a program

transformation on P, the parameters; specify the position where r; is applied and

the arguments r; needs for its execution, op can be the sequential composition

operator';' or the parallel composition operator' II'·

150

Chapter 6 Algorithm of Program Transformation Step Prediction

According to the definition of sequential composition, if two transformations are

connected by the sequential operator in a transformation path, i.e. t) ;t
2

, that means after

the program P is transformed to p' through t1, t2 is used on p' as the succeeding

transformation. If two transformations are composed by the parallel operator in a

transformation path, i.e., t1 II t 2, that means t1 and t2 are applied respectively on the

two independent blocks of the program P at one transformation step.

Definition 6-2 (Transformation Step) A transformation step in a transformation path is

the execution of a parallel composition of transformations or the execution of single

transformation. Alternatively, a transformation path A can be denoted as T),···, T m '

where T; (i = 1,. .. , m) is a transformation step on the path.

DO
DO

IF B=IO

00
00

THEN EXIT(2)
ELSIF B=20

THENX:=B;
DO X:=X-I;

double to single 100p«I,I» - - -

IF X <20 THEN EXIT(1)
ELSE B:=B-4 FI

00
ELSE B:=B+X FI;

EXIT(2)

IF FALSE simplify«1,2»
THEN X:= 1
ELSIF A = B

THEN WHILE X < 10 DO
!XP external 0;
{(X = I)} 00
ELSIF A < A + I

THEN X := (A + 2) - (A - I);
SKIP;
SKIP

ELSIF A < B
THEN X :=4
ELSE X:= 5 FI

p

DO IF B = 10
THEN EXIT(1)

ELSIF B = 20
THEN X :=B;

DO X:= X - I;
IF X < 20 THEN EXIT(I)
ELSE B := B - 4 FI

00
ELSE B := B + X FI;

EXIT(I)
00

IF A = B THEN
IF X < 10 THEN ABORT FI
ELSE X := 3 FI

P'

Figure 6-2 Example of Transformation Parallel Composition

151

Chapter 6 Algorithm of Program Transformation Step Prediction

The transformation execution composed by the parallel relation is regarded as a single

step of execution while the sequential composition of two transformations is regarded

as two individual steps. Therefore, the number of the transformations contained in a

transformation path may be greater than the number of the steps. For example, shown in

Figure 6-2, a transformation step on program P includes two transformations composed

by the parallel relation, i.e.,

double_to_single_loop«l,l» II simplify«1,2»

6.4.2 Problem Formulation

Conceptually, the target driven transformation process can be modelled as a

where state Si+l is yielded from state Si by a transformation step and both of the

versions are semantically equivalent. Each state Si is quantified by a set of metrics

chosen from the target model and represents the outcome of the system at the

transformation step 'fi .

Based on the constructed target model and software features of the source code versions,

the aim is to quantify the impact of the transformation step r towards the selected

target in terms of the target computation, which is referred to a formulation of target

score. For a selected target, each of the transformation t ij is associated with a target

score, ts.. which relates to the impact of transformation on the program towards the
IJ

desired target for the given system. The computation of target score will be exploited

later.

152

Chapter 6 Algorithm of Program Transformation Step Prediction

(t4,ts3)

(tl, ts 1)

Figure 6-3 Target Driven Transformation Process Model

Definition 6-3 (Transformation Process Model) Transformation Process Model (TPM)

is a tree structured model composed of possible transformation paths which have the

positive impacts towards the reengineering target.

The process model is shown in Figure 6-3 which can be modelled as a weighted tree.

Let G = (N (G), A (G)) to be a tree. N (G) to be the set of nodes in G that are state and

A (G) be the set of arcs in G that are the transition of states. Thus, A(G) c N (G) x N (G) .

The initial given problem is represented by a unique node in G called the state root so'

Furthermore, each node has value with a vector <T, ts>, where T is a transformation

step and ts *- 0 is target score which is to value the impact of the transformation step

with respect to the desired target. Any state whose ts is equal to 0 will not be added into

the tree. In G, a transformation path is the path from the initial state root to a node in the

tree.

In the proposed approach, a set of transformation sequences are predicted that may

yield the desired properties for the reengineered system. At the nth step the various

153

Chapter 6 Algorithm of Program Transformation Step Prediction

transformations 'in competition', tl ,t2 ,",tk are applied to the sequence (SJ of a

metric space E. The transformation candidates tin) ,t~n),.. ·,tkn) are obtained. Then, one

of them is predicted by the transformation engine. The one must be the best one at this

step. Such a problem can be formulated as a search in the space of alternative

transformations based on the transformation process model.

Given Problem:

• A target model representing the target which the program transformation

process aims to;

• A problem state-space, represented as a finite tree, where the states of a

program are represented the nodes and the transitions over the states are the

arcs;

• A root node in the tree to represent the initial state;

• A vector of transformation step and impact-valued criterion associated with

each node in the tree;

• A preference among paths on their impacts.

Find Solution:

• A list of ranked transformation paths as solutions (potential target-driven

transformation steps) in the tree.

From the formulation, there are three important factors as follows.

(1) How to compute the target score to evaluate the transformation impact towards

the desired target.

(2) How to construct TPM for a program. This is a key for the prediction problem.

\54

Chapter 6 Algorithm of Program Transformation Step Prediction

The model graph is generated according to the examination of the applicable

transformations for the current state based on the heuristic functions. The

heuristics are based on several rules obtained from experience, expertise and

domain features.

(3) How to find the solution for the target. After constructing the transformation

process model, the prediction will rely on the constructed paths and the

generated value of target score.

The above three questions will be addressed respectively in the next few sections.

After giving the solution of them, the prediction algorithms will be given in

pseudocode.

6.4.3 Transformation Impact Function

As aforementioned, source code changes occur as a transformation is applied in the

proposed framework. Every transformation can alter the system into a new version. The

semantics of the different versions over the transformation process are equivalent

according to the essential requirement of transformations. On the other hand, the

process of transformation can result in a new program with altered source code features.

The TM systematically models source code features that are related to a specific

reengineering target. Moreover, TMs provide a guideline on how to measure the

desired system features by the selected metrics. The target model thus gives a means to

software engineer for identifying the optimal combination of transformations that may

have the highest likelihood to yield the desired target during the software reengineering

process.

In order to differentiate the versions in terms of their impacts on software features,

1~5

Chapter 6 Algorithm of Program Transformation Step Prediction

every transformation in the predict results must conform to the following two rules:

Rule 6-1 and Rule 6-2.

Rule 6-1 Every transformation t on a target driven transformation process model causes

at least one change in a selected metrics.

Rule 6-2 The change caused by a transformation is quantified by the identified metrics

modelled as leaves in the target model.

Formulated in the previous section, target score is used to evaluate the impact of a

transformation step on the desired target. The target score ts(tj) of transformation I
j

can be calculated by a function, called impact function impact(tj) is defined as B~:~I ,
which have the best impact on the target by maximising Benefit and minimising Cost.

Any transformation performs the operations such as adding, modifying andlor deleting

source code entities. Such operations affect the efficiency of the transformations'

implementation. The entities referred here are the nodes on the AST of a transformed

program. By this consideration, the Cost for applying a transformation tj , which is used

to estimate the transformation cost, can be measured as Formula 6-1. The formula is

constructed according to the cost of adding, modifying and deleting nodes. It is

normalised in order to make the value within the united range.

Formula 6-1 Cost Function:

Cost(tj) = Normalisation of (number of nodes added + number of nodes modified

+ number of nodes deleted)

#added nodes+#modified nodes+#deleted nodes E [0,1)

(#added _nodes+#modified _nodes+#deleled _nodes)2 + 100

156

Chapter 6 Algorithm of Program Transformation Step Prediction

In order to measure the Benefit for a potential transformation to be applied, a summary

of proposed metrics needs to be evaluated. There are two kinds of metrics related to a

determined target. One is the metrics that their decreasing values provide more benefit

and the other one is the metrics that their increasing values provide more benefit. Since

the range of different metric values could be quite different, it is necessary to normalise

them into the same range. Regarding to the two considerations, the Benefit can be

defined as follows by extending Formula 4-1 which was made according to the

AND/OR relations of the target model and the positive or the negative effect of a metric

on a target. Formula 6-2 gives the more specific formula with the detailed

normalisation function to compute the benefit of a transformation.

Formula 6-2 Benefit function:

Benefit(t) =

+ min(wJ,·· .,wq)

where

/\ mine mJ , ••• ,m p) is negative

if OR(r,rp···,rq)

is negative

IS the value of the metric after applying the

transformation t. ,. m. is the value before applying the transformation; miO is the
I I

initial value of the corresponding metrics on the transformed program before doing any

transformations. Therefore, m~ - m. are used to evaluate the effect of the
I I

transformation t i •

The impact of a transformation step is calculated by the quotient of Benefit and Cost

according to the formulae. The value of the impact is the target score of the

Chapter 6 Algorithm of Program Transformation Step Prediction

transformation step. As stated in Rule 6.1, a transformation alters a system state. The

more features that are altered positively by a given transformation towards a desired

target as this is modelled by the target model, the higher the target score and the

likelihood that the transformation can contribute towards the desired targets. If a target

score of a transformation step is equal to 0, i.e., no any benefit to apply the

transformation step, then the step will not be added into the transformation process

model.

For example, given the target model shown in Figure 4-2, the values of the selected

metrics before r and after r in the model are listed in Table 6-1.

NCNB NON McCabe CFDF RNC

Before T 40 200 10 28 3

After T 35 186 8 24 2

Difference -5 -14 -2 -4 -1

Table 6-1 Example of the Altered Metric Values

Assuming that the transformation step r (1) adds 10 nodes on AST of a program, (2)

deletes 15 nodes and (3) modifies 8 nodes. Therefore, the cost value is equal to:

Cost = 10+15+8 ::::::: 0.957 ,
~ (10+ 15+8)2 + 100

According to the variation of the metrics, the benefit value is equal to:

The target score of r, i.e., the impact value of the transformation L on the specific target

is' ts(r) = Benefit = 2.92\ ::::::: 3.055 .
• Cost 0.957

Chapter 6 Algorithm of Program Transformation Step Prediction

6.4.4 Heuristic Function

Once the target driven transformation process model is constructed, the preference

transformation path can be predicted by comparing the target scores. However to

construct such a model is another mission to achieve the goal. When any transformation

path in the model is to be expanded, the transformation which yields the next state, i.e.

the state node in the model, must satisfy the condition that the transformation must be

applicable for the program.

To find such a transformation is a search problem whose search space is all of the

transformations in the transformation bank. With the request for the desired target, the

search is restricted to find the transformations which contribute the fulfilment of the

target. It is not ideal to add all of the applicable transformations into the transformation

model in that some of them might not positively impact the target even hurt the target.

A big scale transformation model involves a heavy computational burden. It is

necessary to narrow the search space and prune the branch of the model graph.

However, heuristic search strategies that use some kind of additional (heuristic)

information can reduce these computational costs for many problem instances.

To define the heuristic function, it is needed to explore the knowledge embedded in the

proposed framework. In general, three kinds of information can be considered.

• The usage of transformations

• The expertise using transformations

• The domain features of the application

The first one is obviously useful for narrowing the search space and can be used as a

159

Chapter 6 Algorithm of Program Transformation Step Prediction

kind of heuristic. Expertise obtained from the practical work is also an important

heuristic because it is quite straight for the certain target In add't' d . f:': •
. I lon, omalllleature IS

a crucial factor which can not be ignored when dealing with a domain specific

application.

For the nature of the three kinds of heuristics, the algorithms of the transformation

model construction the prediction process should address the three aspects according to

the status of program. Therefore, there are three cases of the algorithm to be proposed,

namely the metrics based algorithm, the expertise incorporated algorithm and the one

dealing with the specific domain application.

6.4.5 Metrics Based Prediction Algorithm

The metrics based prediction algorithm utilises the basic heuristic, i.e. the usage of

transformations, to expand the transformation process model. The problem to address is

what transformations and code changes should be applied to improve the corresponding

metrics and therefore the corresponding reengineering target. An intuitive solution is to

identify which transformation (or a set of transformations) allows changing the value of

a particular metric (or a set of metric). To respond to such a question, two steps are

needed to be considered: (I) to propose a catalogue of transformations as a predefined

set of transformations; and (2) to analyse the impact of each transformation on the

predefined set of metrics. The first step was completely discussed in Section 5.8 and a

comprehensive list of transformations is provided in Appendix C.

Each transformation in the transformation bank has a particular development purpose

and usage. Some transformations are used to remove code redundancy, some can raise

the level of abstraction, some enhance the reusability, some have a positive effect on

the performance and so forth. The relations can be captured by experience and the

160

Chapter 6 Algorithm of Program Transformation Step Prediction

purpose to develop a specific transformation.

These transformations modify the structure of a program which will possibly modify in

a positive way the values of the metrics related with the quality being improved. The

potential impact of applying each transformation on metrics is shown in Table 6-2 .

Note that the increase effect '+' means the transformation increases the metric's value ,

the decrease effect '-' means the transformation decreases the metric's value, the

uncertain effect '+/-' means that the transformation can decrease or increase the

metric's value and the non-effect 'N ' means that there is no impact. The knowledge

obtained from the connection can be used as an essential heuristic which contributes the

decision of predicting the proceeded transformations.

In terms of the relations between metric and target, i.e., the positive metric-target

relation and the negative metric-target relation detected in a target model, another two

relations with regard to the transformations impact on a target can be described as

Figure 6-4.

o
o

+

transformation

metric

(target) target

... ...

transformation-target relation

metric-target relation

transformation-metric relation

Figure 6-4 Impact Relations between Target, Metric and Transformation

161

Chapter 6 Algorithm of Program Transformation Step Prediction

I~ Metrics
Insert Delete Simplify Join Rewrite Move Abstraction Refinement

NCNB + - - N +/- N - +

McCabe +/- +/- - N +/- N N +

WOC + - +/- N +/- N - +

NON + - - N +/- N - +

CFDF + - - N - N - +

RNC N N - + - N - +

ABST-LOC +/- +/- +/- N +/- N - +

ABST-STAT - + + N + N - +

ABST-CFDF - + + N + N + -

ABST-VOC N N N N + N + -

NMI + - - - - - N N

DIT - + - - - - - +

CBO + - - - - +/- - +

WMC +/- +/- + N +/- N N +

NYC +/- N + +/- +/- - - -

WOIL + - + - +/- N + -

HIL + + - +/- N + --

AMS +/- +/- - - - N - +

SD + + N +/- N - + -

ETL + + N + N - + -

NEI + - - N - N N N

PSR + - - N - N N N

PTR N - N N N + - -

ANFC + - - N N + - -

ANSDF +/- + - - N N + -
ANSFF + - - - - - N N

NCIF +/- +/- - - - - N N

+/- - + OSC - -+ - -

Table 6-2 Impact of the Transformations on Metrics Suite

162

Chapter 6 Algorithm of Program Transformation Step Prediction

Transformation's positive impact on a target factor: a transformation t can

positively impact a target factor measured by metric m if t deceases the value of m and

m has a negative relation with target r, or t increases the value of m and m has a positive

relation with target r.

Transformation's negative impact on a target factor: a transformation t can

negatively impact a target factor measured by metric m if t deceases the value of m and

m has a positive relation with target r, or t increases the value of m and m has a negative

relation with target r.

Transformation's uncertain impact on a target factor: a transformation t has the

uncertain impact on a target factor measured by metric m if t could decrease or increase

the value of metric m.

Transformation's non-impact on a target factor: a transformation t has the

non-impact on a target factor measured by metric m if t could decrease or increase the

value of metric m.

Given a target model and the table presenting the relations between transformation and

metrics, the Transformation Qualification Score (TQS) is used to weight the relations.

Formula 6-3 (Transformation Qualification Score) Given a target r correlated with a

set of target factors which are measured by metric set M and a transformation category

T, TQS(T) = 1- # negative impact, where n is the number of metrics in M, #negative_
n

impact is the number of the target factors which are negatively impacted by T.

Rule 6-3 \:It E T, TQS(t) = TQS(T) , where t is a transformation, T is the transformation

category which t belongs to.

Chapter 6 Algorithm of Program Transformation Step Prediction

Rule 6-4 A transformation can be added into a transformation path if and only if

TQS(t) ~ 0.5.

The Rule 6-4 gIves the guidance to narrow the search space and construct the

transformation path. Therefore, the transformation path should contain the

transformations which positively impact the metrics towards a target.

The metrics based prediction algorithm is carried out only based on the above rules to

construct the transformation model without taking the expertise into account. By

modelling it as a searching algorithm, the search space of the problem could be all of

the transformations stored in the bank. The algorithm can be terminated according to a

predetermined number of steps. When the transformation steps have reached the

number, the transformation model expansion should terminate.

Another situation to stop the model expansion is the case when there is no program

state node added into the model yielded by a transformation step. This is caused

because the succeeding transformation step cannot alter the values of any metrics in the

target model, i.e., its benefit or target score is equal to O.

By using the basic heuristics and this algorithm, the desired result of the transformation

step prediction is the transformation path which has the highest summation of the target

scores. It can be formulated as Rule 6-5.

Rule 6-5 (Best Predicted Transformation Steps) Give a transformation model

containing several transformation paths rpr2,··,rpr;+1,··,rn which have m steps

with the vector < t .. , ts .. > (i = 1··· n, j = 1· .. m) as their labels, the best predicted
IJ IJ

fi . th th r where transformation steps P is the sequence of the trans ormatlOns on e pa q'

\6.t

Chapter 6 Algorithm of Program Transformation Step Prediction

m n m

'" ts qj = max(~ ts h.) . L..J h=1 L..J Ij
)=1)=1

For example, the predicted results included in Figure 6-5 are ranked as follows.

(11«1»,1.498)
(t2(<1, 1>llt3(< 1,1»,1. 736)

ts2

(t9«I, 1 ,2>lltl 0«1,1,2>-1171 i «1,1,2),1.425)

(t8«I,I»lltI4«I,I»,1.324) 0

Figure 6-5 Example of Transformation Process Model

TP2 = 11«1» ; t2«I,I» II t3«I,I» ; t5«I,I,2». TS2 = 4.576;

TP4 = t7«I» ; t8«I,I» II 114«1,1» ; 112«1,1». TS4 = 4.508;

TPI = 11«1» ; t2«I,I» II t3«I,I» ; t4«I,I,2». TSI = 4.468;

TP3 = t7«I» ; t8«I,I» II 114«1,1» ; t9«I,I,2» II 110«1,1,2» II tll«I,I,2».

TS3 = 4.091;

From the generated transformation paths, the best solution is T2 whose target score is

4.576.

6.4.6 Incorporating Expertise into Prediction Algorithm

In software design, the term pattern has been imported from architecture to describe an

application of an expert solution to a common problem in context. Learning the pattern

includes understanding the context, the problem, the solution and its merits and

165

Chapter 6 Algorithm of Program Transformation Step Prediction

demerits relative to other solutions. Patterns have been adopted enthusiastically by

software practitioners because a pattern is an effectively transferable unit of expertise.

The vocabulary provided by patterns is also an aid to discussion and clear thought, by

experts as well as novices. Importantly, patterns are small and specific enough for the

community to validate them effectively. The same benefits will accrue - and possible

be even more important - from the identification of program transformation patterns,

gained from the expertise.

Different from design pattern, the program transformation patterns obtained from the

expertise refer the rules followed by the software engineer when they perform the

transformation process. These rules may include the methods of how to select

transformations and how to execute transformations. Incorporating these rules as

heuristics to establish transformation path and driven the automation of transformation

prediction, the searching space of the transformations can be narrowed properly. A list

of rules will be given as follows.

Expertise Rule 6-1 (Action System) The program transformation selected for a given

action system should implement the heuristics for restructuring action systems. The

restructuring steps can include the following steps.

(1) Delete unreachable code;

(2) Remove the tail recursion in an action which calls: by introducing a double-nested

DO ... 00 loop and replacing the self-calls by exits. Further transformation are

then attempted to reduce the double loop to a single loop;

(3) Simplify all IF Statements which contain calls;

(4) Simplify action bodies to merge calls and remove recursion;

(5) Eliminate actions which are only called once;

(6) Shrink the action by creating procedures from blocks of code;

166

Chapter 6 Algorithm of Program Transformation Step Prediction

(7) Remove the last action;

The set of operations has been integrated in a united program transformation,

Collapse_Action_System. Therefore, if the object of the program is an action system,

i.e., the state function is @ST(@I) = T_A_S, the candidate of applicable transformation

can be Collapse_Action_System only. This expertise rule is suitable for the program

containing action system for the targets which need to collapse action system.

Expertise Rule 6-2 (Merging Similar Statements) The similar statements can be

merged and converted to a nested statement in the following scenarios.

(1) Two non-nested similar IF statements can be merged and converted to a nested IF

statement and taking the common code out of the two braches of the outer IF;

(2) If the statements appear at the end of a loop and also just before the loop, then

loop inversion can be applied to merge the two copies of the statement.

As for (1), for example, two copies "c := 1" can be combined by merging the two IF

statements as follows.

IF a = 1 THEN

c := 1; exit(2) FI;

IF b = 2 THEN

c := 1; exit(1);

ELSE d := 3 FI;

Transformed

"---->

Below the example is for (2)

a:= 1;

DO

b := 1;

IF c = 1 THEN

a:= 1;

ELSE d:= 1;

FI;

OD;

Transformed

IF a = 1 V b = 2 THEN

c:= 1;

IF a = 1 THEN exit(2) else exit(l) FI

ELSE d := 3 FI;

DO

OD

a:= 1;

DO b :=1;

IF c = 1 THEN a := 1;

ELSE d := 1; FI; 00;

16~

Chapter 6 Algorithm of Program Transformation Step Prediction

In the implementation, the 'absorb' transformations and the 'merge' tr i:' • anslormatlOns

can be regarded as the candidates.

Expertise Rule 6-3 (Abstracting a Specification) In order to get to an abstract

specification cross the abstraction levels, the heuristics can imply the abstracting as the

following steps,

(1) Change the data representation to a more abstract representation;

(2) Restructure data by split function;

(3) Remove ghost variables which have no effect on the execution of the program;

(4) Replace references to the concrete variables by references to the abstraction

variables;

(5) Construct abstract procedures to replace the blocks of statement.

The abstracting pattern is general for the most cases. It could vary from case to case. In

the transformation bank, the transformation Raise_Abstraction is an available for

abstracting purpose. In addition, the transformations, such as Abort_Processing,

Compute _ WP , Delete_Comments, Unfold _ Proc _Calls and so forth also can be used as

the candidates.

The rules can be used when constructing the transformation model. As the

transformation predictor detects both the target and the state of the program match the

pattern in the rules, the transformation path can be predicted as the steps proposed in

the expertise rules.

6.4.7 Exploiting Domain Features in Prediction Algorithm

It is necessary to take the domain features into account when applying transformations

in a specific domain. In the thesis, the domain features behave as the data and the

168

Chapter 6 Algorithm of Program Transformation Step Prediction

relationships between data over a domain. In the previous chapters, the multimedia

domain is chosen as the studied cases due to its particular data structures. It is

impossible to neglect the domain features and treat those applications as the normal

procedural or object-oriented program although they can be converted to the extended

WSL based programs.

When using expertise for transformation prediction, the knowledge based rules will

provide the hint to apply transformations. The instruction is to guide the users which

transformations they should choose. Normally, the domain specific transformations

should have the high priority when processing its own domain applications. In addition

to this case, by considering domain features, the users might be instructed which

transformations they should not choose or be recommended for the domain particularly

because of the difference between the normal program and the domain specific

program.

Therefore the clue stated above will be considered as another kind of heuristic used for ,

predicting the transformations for the domain specific program. In Section 7.6, a

multimedia case is studied to explore the usage of this kind of heuristic.

6.4.8 Pseudocode of Algorithms

In the implementation of the target driven transformation prediction algorithm, the key

procedure is to construct transformation model and generate the transformation path

list ranked by the summation of the target scores on the paths. The section gives the

pseudocode of the algorithm implementation.

Chapter 6 Algorithm of Program Transformation Step Prediction

Algorithm 6-1 Predict Program Transformation Steps (PPTS)

Description: To generate the ranked transformation paths from the tree-structured

program transformation process model.

PPTS (TM, SC, TL) =

Input:

TM: a target model with the desired reengineering target and the included metrics;

SC: a piece of WSL source code;

TL: the determined number of the tree levels;

Output:

TPs: a set of ranked transformation paths;

Variables:

G: a temporary tree to represent a transformation model tree;

i, j: iteration counter;

tp _sum: a string to present transformation step;

ts _sum: a float to present target score sum of transformation path;

node: a node on the tree

paths: a set of vectors including tp_sum and ts_sum of each path;

Method:

1 Initialise the tree G, tp_sum, ts_sum, visited_nodes, paths;

2 G:= CTPM (TM, SC, TL); II return the created transformation process model

3 j:= 0;

4 for (i:=O; i < G.length; i++) {

5 if(G[i].children == NIL) {

6

7

8

node := G[i];

while (node.parent<>NIL) {

tp_sum := node.trans_step + ";" + tp_sum;

Chapter 6 Algorithm of Program Transformation Step Prediction

9 ts_sum := node.target_score + ts sum;

10 node := node.parent;

11 } Ilend of while

12 paths[j] := <tp _sum, ts _sum>;

13 j := j + 1;

14 } Ilend of if

15 } Ilend of for

16 Sorting(paths, ts_sum); II descent sorting the elements in paths by ts_sum;

17 TPs:= paths;

18 retumTPs;

19 END.

The transformation process model G is represented as tree structure. It is defined as the

following structures.

Structure Node{

} ;

string . trans_step;

float target_ score;

int parent;

array(int) children;

Tree G := Array of Node;

The following algorithms give the method to generate the program transformation

model based on the above structure. In addition, there is an extra structure to be

defined and used for the value of tree node in the algorithm.

Structure QElem {

};

string .trans _ step;

float target_score;

int num;

171

Chapter 6 Algorithm of Program Transformation Step Prediction

Algorithm 6-2 Create Transformation Process Model (CTPM)

Description: To create the tree that represents the transformation process model

CTPM (TM, SC, TL, P A, AFlag) =

Input:

TM: a target model with the desired reengineering target and the included metrics;

SC: a piece of WSL source code;

TL: the determined number of the tree levels;

AFlag: a flag of prediction algorithm, 'MBP' - Metrics Based Prediction

Algorithm, 'TPBP' -Transformation Pattern (Expertise) Based Prediction

Algorithm;

Output:

G: a tree presenting the transformation process model;

Constant:

ExpertiseDB: a table to store the expertise rules including target, patterns and

transformation steps;

Variables:

q: a temporary link queue to store the tree node;

p, qq: a QElem type element;

i, j, 1, k: Iteration;

c: an array to store the child nodes;

T: a temporary tree;

algorithm_flag: a string to identify the algorithm to be used;

posn: the position on AST of SC;

trans: a set of transformations;

target: a target specified by TM;

pattern: a WSL pattern;

1~2

Chapter 6 Algorithm of Program Transformation Step Prediction

Method:

1 Initialise q, pp, qq, c, T, trans, target, pattern;

2 T[O].trans_step:=""; T[O].target_score :=0; T[O].parent = -1;

3 qq.trans_step:=T[O].trans_step; qq.target_score:=T[O]. target_score; qq.num := 0;

4 Enqueue(q, qq);

5 posn:= <1>; II the first node on the AST

6 i:= 0;

7 while (Depth(T) <= TL) {

8 Dequeue(q, qq);

9 if (algorithm_flag == "MB P") {

1 0 target := Get_ Target(TM);

11 pattern := Make_Pattem(posn, SC);

12 if (@Target_Match?(target, pattern) {

13 trans:= Get_ Tran _ Steps(ExpertiseDB, pattern, target);

14 } I I retrieve matched transformation steps incorporated with expertise

15 else trans:= GetTrans (posn, SC);

16 }

17 else trans:= GetTrans (posn, SC);

18 k := 1;

19 if (trans <> NULL) {

20 for (j := 0; j < length(trans); j++) {

21 ts := Generate_TargetScore(TM, SC); II in Section 6.4.5

22 if (ts == 0) break;

23 T[i].trans_step := trans[j];

24 T[i].target_score := ts;

25 T[i].parent = qq.num;

Chapter 6 Algorithm of Program Transformation Step Prediction

26 T[qq.num].children[k] := i;

27 k:= k+l;

28 p.trans _step := trans[j];

29 p.target_score := T[i].target_score;

30 p.num := 1;

31 p.parent := T[i]'parent;

32 p.children := T[i].children;

33 Enqueue(q, p);

34 i := i + 1;

35 }

36 }II end of if

37 if (?@Down) posn:= @Down(posn);

38 } II end of while

39 G:= T;

40 Return G;

41 END.

Algorithm 6-3 Get Trans (GT)

Description: Get a set of applicable and qualified transformations for the position on

the AST of WSL source code.

Get Trans (POSN, SC) =

Input:

POSN: a position on AST of SC;

SC: a piece of WSL source code;

Output:

Translist: a set of transformations;

Chapter 6 Algorithm of Program Transformation Step Prediction

Variables:

col: the number of columns of the temporary matrix;

row: the number of rows of the temporary matrix;

alltranslist: a complete set of transformations;

transforposn: a matrix containing the transformations for the parallel composition

Method:

1 @Goto(POSN);

2 alltranslist:= Get_ all_trans();

3 Initialise Translist, transforposn;

4 k:= 0;

5 repeat {

6 for (i := 0; i <= length(alltranlist); i++) {

7 j := 0;

8 if (@Trans?(alltranslist[i], POSN)) {

9 if (QTT(TM, alltranslist[i], 0.5) {

10 transforposn [k][j] := <alltranslist[i], POSN>;

11 j:=j+l;

12 }

13 } II end of if

14 } II end of for

15 if (@Left?(POSN) {

16 POSN := @Left(POSN);

17 k:= k + 1;

18 } else break;

19 } II end of repeat;

175

Chapter 6 Algorithm of Program Transformation Step Prediction

20 i:= 0; j:= 0;

21 II

22 col:= Column _ Number(transforposn);

23 row:= Row_Number(transforposn);

24 for (m_l := 0; m_l < col; m_l++)

25 for (m_2 := 0; m_2 <col; m_2++)

26

27

28

29

30

31

32 return Translist;

33 END.

Translist[m_row] := transforposn[l][m_l] + "II"

+ transforposn[1][m_2] + "II"

+ transforposn[l][m_row] + "II";

Algorithm 6-4 Qualify Transformation with Target (QTT)

Description: To check if a transformation is qualified for the target.

QTT (TM, Tran, QS) =

Input:

TM: a target model including selected metrics;

Tran: a single transformation;

QS: qualification score, such as 0.5 by default;

Output:

Boolean: If the Tran is qualified to the target then return true otherwise return false:

Variables:

TID: ID number of the catalog which Tran belongs to;

176

Chapter 6 Algorithm of Program Transformation Step Prediction

PM: the number of positive impact;

N: the number of metrics included in TM' ,

Method:

(l) N := Get_Metrics _ number(TM);

(2) PM := Get_Positive_Metrics_number(TM, Tran);

(3) if (PMIN > QS) return true

(4) else return false;

(5) END.

6.5 Summary

The chapter presents the algorithms of program transformation prediction. The

evaluation of the transformation impacts and measurement of the reengineering targets

are formularised. To recap, the following techniques are used in the proposed

algorithms.

J.. The transformation prediction algorithms are developed based on the relations

between target, metric and transformation. The relations are modelled in

MOTMET introduced in Chapter 3.

J.. To predict the transformation steps for a gIVen target is to construct the

transformation process model which includes the desired transformation path.

J.. The transformation process model is expended according to the heuristics,

which are addressed in three different scenarios, such as metrics based

heuristics, expertise incorporated heuristics and domain features related

heuristics.

177

Chapter 6 Algorithm of Program Transformation Step Prediction

J... The solutions generated from the transformation process are ranked according

to the target scores of each transformation path. Software engineer is the one

to determine the best solution from the ranked result.

J... The algorithm based on metrics without incorporating expertise is much less

efficient due to the time complexity of the algorithm. However, it is still a

basic algorithm for the scenario where no expertise can be used.

Chapter 7

Tool Support and Case Studies

Objectives

•

•

•

To illustrate the toolset which supports the proposed approach

To describe the architecture of the toolset and show the implementation

of the toolset

To gIve a case study for procedural programming and evaluate the

approach by comparing the two strategies, i.e. the one which utilises the

proposed approach and another one which does not

• To give a case study for object-oriented program

• To give a case study for multimedia application

7.1 Introduction

For predicting the transfonnation steps to achieve the reengineering targets, tool

support is essential. This chapter introduces a set of the prototype tools, which were

developed to provide help with program transformation, target modelling and

transformation prediction. Furthermore, the chapter presents three case studies related

179

Chapter 7 Tool Support and Case Studies

to the assessment of the transformation prediction based . reengmeering approach

introduced in this thesis. The case studies will demonstrate th . f e expenments 0 the

proposed approach for procedural program, object-oriented program and multimedia

program.

7.2 An Integration Platform

The toolset for the proposed approach is called FermaT Transformation Predictor

(F -TP) which acts as an application plug-in integrated in the integration platform called

FermaT Integrated Platform (FIP) [21], which extends FermaT Transformation Engine.

FIP is developed by the teamwork of Software Technology Research Laboratory at De

Montfort University.

7.2.1 Platform Architecture

FIP is a Java based extensible platform for software reengineering with a plug-in

mechanism, which provides a number of tools that dedicate to program transformation

and comprehension. Figure 7 -1 shows the general system architecture of FIP, expressed

in three layers: Repository, Core System and Application Plug-ins. F -TP is the plug-in

which is developed for the proposed approach in the thesis.

• The Repository provides a central place to store and maintain source code and

generated data. The data include the information in different representations

and in multiple abstract views at various levels stored in the repository.

• The Core System provides essential functionalities, including (1)

Transformation Engine, which provides the program transformation

functionalities, (2) Kernel Runtime, which provides the plug-in management

l~ll

Chapter 7 Tool Support and Case Studies

•

and communication functionalities, (3) Visualisation Engine which pro id

easy-to-us"e API to create and present diagram and (4) R " eposltory Acce

functionalities are t . use 0 retneve and store the information from th

repository.

interface

Appli cati on PI ug-i ns ~for the propo ed V approach

L...--F_-ME_---li I F -UML II F -DOC I I I

t
Transformation

Engine

t t
Core System

Kernel
Runtime

VIsualisation
Engine

Repository

Source
Code File

Figure 7-1 FIP Architecture

t
Repository

Access

The Application Plug-ins are a set of tools, providing user interfaces,

visualisation and analysis functionalities , for the end-users . FIP UML (F-UML)

tool provides the function to extract UML diagram from the legacy system.

FIP-Maintainers Environment (F-ME) tool provides an interface for viewing

source code and their AST and a transformation handler for applying

transformation on selected part of a WSL program. FIP-Documentation

(F-DOC) tool is used to extract documentation from WSL sourc cod .

FIP-Transformation Predictor (F -TP) is the tool to support the tran formati n

prediction and target modelling. The proposed approach i implcm nt d in

FTP by incorporating the other toolset of FIP.

I I

Chapter 7 Tool Support and Case Studies

As an integrated reengineering platform, FIP provides the interface to the oth r

software application. The interface includes the translators between the other language

and WSL and the data translation modules.

7.2.2 Platform Environment

The goal of FIP is to integrate the individual tools such as F-UML, F-DOC F-TP and

F-ME into one coherent toolset. To accomplish such a goal, the FIP environment wa

developed as shown in Figure 7 -2.

!!J 111 .!J z"'" I '"',jJ ...

+
..... -
~" ...

~
..... ,

r-.'~ r"~
. .. -
~. "-
.',
.... ,..-
. ..,

Figure 7-2 FIP Environment

The FIP environment provides the plug-in mechanism by which Application Plug-in

can be integrated into the prototype toolset. The FIP environment supports multi-u r

. ., ltd . Java RMI (Remote Method in distributed environment, whIch IS Imp emen e usmg

can help the maintainers with implem nt th Invocation). FIP environment

reengineering process.

.,

Chapter 7 Tool Support and Case Studies

7.3 FermaT Transformation Predictor

As an application plug-in of FIP, the FermaT Transformation Predictor (F-TP) is

composed of the following interfaces which incorporate the other tools of the

integration platform.

•

•

•

•

Parser for the WSL extension

Target modeller to model a target by constructing the sub-target relations and

selecting the metrics related to the target

Metrics viewer to visualise the change of the selected metrics after applying

transformations

Transformation predictor module to elicit the predicted transformations for the

determined target

7.3.1 Parser for WSL extension

As the extension ofWSL is applied in the proposed approach, the parser ofWSL needs

to adapt to the change of the language augmentation. For this purpose, Java Compiler

Compiler (JavaCC) [58] is used. JavaCC is the most popular parser generator for use

with Java applications. A parser generator is a tool that reads a grammar specification

and converts it to a Java program that can recognise matches to the grammar. In

addition to the parser generator itself, JavaCC provides other standard capabilities

related to parser generation such as tree building, actions, debugging, etc.

With JavaCC, the language extension IS easIer without considering the parser

implementation. Figure 7-3 shows that the language designer just needs focus on the

183

Chapter 7 Tool Support and Case Studies

language definition itself. The parser and AST can be generated automatically_

[de Edit ~ew tielp

CJ
WSL Defmition

WSL Parser

~ o
WSLAST

---Extend----.:;>~ CJ
Extended WSL

Extended WSL Parser

~ o
Extended WSL AST

Figure 7-3 Parser Implementation

"""'=
~~----------~4·rr ~----------------~----------------____________ ~~~I II:'B:=-T_ar...:D:....et_ExpI~_or_er ____ . :.... ... -:...... -:I ' ·Itr=E1=-D_ia...:g;".ram_ E_d_itO_r-_T_ar..;;,getOi_ -..,.;aur:.-am __ -:... -:..;.:;;;. _--' ____;:...._..;;.....;;.......;:....~ _________ D·_a"_..:~4

Target Repository
9 Model

~uMETA

9 uMODEL
TargetD iagram
Component Size
Low Complexity'
Program Complexity
Pno gram Nesting Level
NCN8
Information Flow
RNC
CFDF
Internal Contro l of structure
NON
McCabe

11~~ ,i-------------------------.------------------------,----------,I~ 1

Mt!lrics Dialog rg)

r

Reusability Metrics : Domain Specitic Metrics • Feature-Oriented Metrics I

Complexity Metrics t Abstractness -"';t~ - Ob]eci:otlented Metrics

Awilable Metrics

!!?J NCNB Metric: The nOB-COmment non-blzlllk number of statements in the program

,
. C woe Metric: The number of linearly independenlt circuits in a program now-gfaph

~ McCabe MetriC: The sum of the welgl1ls of IM!IY construct In nle program

I ~ NON Metric: The number of nodes in the abstract syntax tree

~ CFOf: The number of edges In the control OOwgraph plus the number Of limes ~ varlahles Me used

~ RNC: The number of instances of recursion and nesting in \he program

01\ I· CIlna!1 :

Figure 7-4 Target Modeller Interface

1 4

Chapter 7 Tool Support and Case Studies

7.3.2 Target Modeller

The Target Modeller provides a platform to construct the target model and attach the

relevant metrics by appending them as the leaf nodes on the model. In Figure 7-4, the

interface of the target modeller is given. In the interface, the target 'Low Complexity' is

chosen as an example. The constructed model is the F -TP is represented as a diagram

and stored in an XML file. Appendix B gives an example of a target model in XML.

7.3.3 Metrics Viewer

t Metrics Viewer - Proj01 ~1"51~
Project Metrics Help

proiOCi- E odel _ _,~ BEGIN
1'~::::.:......s=:::!:::::.:====r==1_ ! D_IF entrYJloint ;00 Ifnrr001A7"

i Ll WSL Prolect " ; _> C:" <ENTRY POINT> ";

[) fmIDOI aO.wsl j c: ". SAHPU PROGRAM WI11l MULTIPLE ENTRY POINTS";

Dfmt001a1 .wsl j' C: " ENTRY fMTS01";

[) FMT001A2 .wsl ! C: "ENTRY fMTS0 2" ;

D FMT001A3.wsl i l1ITSOl ()
~... -.! [1 ent.ryyoint = "fMTS01"
U FMT001A4 .wSI !. _> C:" <ENTRY POINT> "; nrrSOl ()
D FMT001AS.wsl
,.." _ FMTOU'1A6 wsl '" !: [J enttyyoint • "l1ITS02"
!....! i -) C:" <ENTRY POINT> " ;

[) FMT001A7 wsl i C:'" SAHPLE F1JNCTION 2";

1i!==;=![)====FM=T~20=OP=9.=WS=1 ===.:::'Jj . ____ -=-:.:< Ferma~_':.0000036.: ~ ______ _

~:_ :.:'" "_ '._ • __ .' .. _. ~,.:::::=~ .. _:;_, ____ • _'_' c
Metrics Cltange with TranSformation I MetriCS !

~. ~.------.-.-----.. -.---- -_.- Metrics of FMT001 A7

800 ,

750 1
700 '

050

! eoo '
! ~5O ;
, ~oo <

j 460 4

! ..00 -

! 350

! 300 -

~ :!&l of

! 200 4

! 150 J

~ 100 "

50 -

0 -
_1

l ! O

7JJQ02~
8Q

3lj , 21 , ~j~)3~ •
...:2 wo3 ~ WI!5

WSL Files of FMTOO1A7

• Statemenls _ Expressions McCabe CF DF Branch-Loa Structural

Figure 7-5 Metrics Viewer Interface

I ,

17!)

Jl '!;

woe

The tool Metrics Viewer (MV) contained in the toolset provides the function to

visualising the variation of the metrics while applying the transformations. Figure 7-5

shows an example of the interface which includes the tree view of the WSL project the

source code view of the transformed WSL code and the metrics changing view over the

1 5

Chapter 7 Tool Support and Case Studies

transformation process. The view provides an effective means to the maintainer that

how the transformations applied affect the source code valued by the selected metrics.

7.3.4 Transformation Predictor

The Transformation Predictor displays the VIews of source code, a list of

transformations and the prediction result for the determined target, where, the

following functions are implemented. Its interface is shown in Figure 7-6.

'.. Statements

'" b var

•

•

a Cj Asslgns
I 8 CJ Ass4Qn

; • Vat _lvalue (ErrorState)
'-.. • Strng ()

'. \.:J Statements

8 "Q A_S
~ • Name (PROG)

S\,) Actions

F.;. 0 Action

! r • Name (PROG)
8 · \:,'.J statements

IJ'i b AsslQnmert
i (~ -~2:J Assign

• Vat_l

i • Strlnt;

~ ·t;:, Assl<;inment
. o As~n

\ . • Strint;

'2 b Assignment

-0 AssiQn
,- • Var_l _
. • Numb

; • Cal (lOOP)

~ t::\ Actlon
: :." . Name (lOOP)
! 8· D statements

8 ·iJ Cond
8 o Guarded
, $ b less

, - . V
'- • V , '

8 a State

8 -t:I A
. 8 "

v

FunctionCall : = II sw.::thiag- :
ErrorState :- • success" ;
FileIndex :- 0;

CALL LOOP.

- IF (E<F) THEN

X:=8 ;
IF HOT (X-' error!') THEN

ErrorState:~' FileFiN:IError ll
:

Coiapse Action System
Colapse All Action Systems

0: Corrblne Whete Structures
I : Constant Propagation

1~~;;~ii~~~~!§~~~~~~~~i~~I::2 : DDoTOAOOP J : Delete AI Asserbons
1: Delete AI Convnent:s
5: Delete AI Red.ndant

VAA < Enorstate :-'. >:
FunctionCoi :- "something";
ErrorState := ·success·j
Fllelndex :- 0;
DO IFE < F

THEN X: = B;
IF NOT (X - "errol'1")

THEN Errorstate :- ·FieFndError";
FunctlonCail :- "someth;,o";
EXlT(I) FI;

IF NOT (X - "error3'')
THEN Errorstate :- "FieOverwrteError";

FLnCtionCall := ·something";

Delete AI Sk\ls

Delete lIrYeachabie Code
Delete What Folows Double to SnQ1e loop
Else If To Eisf
Eisl To Else If
Expand And Sopor ate AI

Expand And Separate ,
r a fermdTTrdnstormation Predictor .. Solutions ~~~ :

27: Expand Col
28 : Expand Forward
29 : Fnd_Termonais

Solution Execution Exit ._-_._- --
tions:

8(1,1,2,1»;T58«I,I,2,2» ;T4«1 ,2» 123, 21, SO, 5, 6.086
I 1(<1 »;T8(<1, 1,2, I »;T6(<1,1,2,4» 125,30, 55, 6, 6 .090
75«I» ;T8« I,I,2,1»;T59«I» 140,30,50, 6,6.100
11«I»;T8«I , I ,2, 1» ;T56«I ,I,2,4» 130,35, 55,7,6 .243

: Fix Dispatch
FIDopToWhoIe
For _TO_While
Force Double .. SinIlIe loop

FlAy Absorb RJ<fi
Fuly Expand Forward

"no· " . GlobaIs_To_Pars

. Insert Asser~on(s)
: Join AI Cases

Figure 7-6 Transformation Predictor Interface

To determine if the expertise incorporated algorithm is eligible for the WSL

program;

To retrieve all of the applicable transformations, whose qualification scores are

greater than the threshold, for determined nodes on AST of a WSL program"

1 6

Chapter 7 Tool Support and Case Studies

•

•

•

•

To calculate the target score of a program according to the selected metrics

modelled in the Target Modeller;

To construct the tree structured program transformation model including the

transformation paths whose step number is predefined;

To elicit the predicted result which contains a list of ranked transformation steps;

To apply the chosen transformation steps and show the result on which the

transformation prediction analysis can be continued.

7.4 A Case for Procedural Programming

The first case studied is a PASCAL program given in [75]. The program, which is

shown in Figure 7 -7, purges a group of files. It first gets a group of files to purge, then

finds each file, opens it, overwrites it and erases it. The reengineering target in the case

study is reducing the complexity of the program and avoiding OOTO statements. It

checks for errors at each step. There are two points addressed in the case study:

(l) To discuss the advantage of the proposed approach against the traditional one

without using the approach

(2) To experiment the proposed approach on procedural program

1
2
3
4
5
6
7
8
9
10
11

PROCEDURE PurgeFiles(var ErrorState: ERROR_CODE);

var
FileIndex:
FileHandle:
FileList:

Integer;
FILEHANDLE_T;
FILELIST _ T;

NumFilesToPurge: Integer;
label

END_PROC;
begin

MakePurgeFileList(FileList, NumFilesToPurge);
ErrorState := Success;

\87

Chapter 7 Tool Support and Case Studies
12 Filelndex: 0;
13 while (Filelndex < NumFilesToPurge) do
14 begin
15 Filelndex := Filelndex + l' ,
16 if not FindFile(FileList[Filelndex], FileHandle) then
17 begin
18 ErrorState := FileFindError ,
19 goto END _PROC
20 end;
21 if not OpenFile(FileHandle) then
22 begin
23 ErrorState := FileOpenError;
24 goto END_PROC
25 end;
26 if not OverwriteFile(FileHandle) then
27 begin
28 ErrorState := FileOverwriteError' ,
29 goto END _PROC
30 end;
31 if Erase(FileHandle) then
32 begin
33 ErrorState := FileEraseError;
34 goto END _PROC
35 end
36 end; { while}
37 END PROC:
38 DeletePurgeFileList(FileList, NumFilesToPurge)
39 end;

Figure 7-7 A PASCAL Program

7.4.1 Strategy without Using Transformation Prediction Approach

Without using the proposed transformation prediction method, the user needs to keep

the two aspects of the target in mind. In order to eliminate the GOTO statement, a

standard, textbook, structured-programming approach is to rewrite with nested if

statements, nest the if statements so that each is executed only if the previous test

succeeds.

By this standard approach, the transformation Reverse_if, which reverses the two arms

of a simple if statement, can be adopted to nest the if statements. The transformation

needs to be applied for the if statements at Line 16, 21, 26, 31 respectively. The process

merely follows the guidance of the structured-programming. The result of the GOTO

removing can be acquired by performing the transformation for 4 times and shown in

Figure 7-8. The manual determination of the three factors, i.e., the transformation, the

188

Chapter 7 Tool Support and Case Studies

position where the transformation is applied and the transformation execution steps,

can result in the program without GOTOs as shown in Figure 7-8.

1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

PROCEDURE PurgeFiles(var ErrorState: ERROR_CODE);

var
FileIndex: Integer;
FileHandle: FILEHANDLE T' - ,
FileList: FILELIST T' -'
NumFilesToPurge: Integer;

begin
MakePurgeFileList(FileList, NumFilesToPurge);
ErrorState := Success;
FileIndex := 0;
while (FileIndex < NumFilesToPurge and ErrorState = Success) do

begin
FileIndex := FileIndex + 1;
if FindFile(FileList[FileIndex], FileHandle) then

begin
if OpenFile(FileHandle) then
begin

if OverwriteFile(FileHandle) then
begin

if not Erase(FileHandle) then
begin

ErrorState := FileEraseError
end

end
else
begin

ErrorState := FileOverwriteError

end
end
else
begin

ErrorState := FileOpenError

end
end
else
begin

ErrorState := FileFindError

end
end; { while}

DeletePurgeFileList(FileList, NumFilesToPurge)

end;

Figure 7-8 A Result by the Strategy without Using the Proposed Approach

However, it is observed that the result neglects another aspect of the target, i.e., the

deep nesting level raises the complexity of the program. With nesting like this, to

understand the code, the user has to keep the whole set of nested ifs in hislher mind at

once. Moreover, the distance between error-processing code and code that invokes it is

too far: the code that sets ErrorState to FileFindError, for example, is Line 22 from the

189

Chapter 7 Tool Support and Case Studies

if statement that invokes it. On the other hand, it is hard to assess the process and the

result without quantitative control although the feature of the result that the GOTOs

have been removed is obvious.

In short, the target is not satisficed by the traditional approach without using the target

driven transformation prediction. Next section will discuss the effect of using the

proposed approach.

7.4.2 Strategy with Target Driven Transformation Prediction

The proposed transformation prediction approach follows three main steps, namely (1)

modelling the target; (2) constructing the transformation process model; and (3)

generating transformation paths as solutions. The target model chosen is the 'Low

Complexity (LC)' model and several metrics are selected as constrain of the prediction

approach. The model is depicted as Figure 7-9. In this model, the elimination of

GOTOs is not included obviously, because this sub-target can be achieved by selection

of predicted solution whose transformation result does not have GOTOs.

E] DiagramEditor -TargetDiagram

III

Figure 7-9 'Low Complexity' Target Model

190

Chapter 7 Tool Support and Case Studies

Before performing the transformation, the PASCAL source code is translated to WSL

program. In order to translate the procedural program which has GOTO statements

shown in Figure 7 -7 to WSL, all the labels need to be at the top level, so that they can be

converted to actions in an action system. This is easily accomplished by implementing

the while loop as action LOOP at the top of the top of the loop and a call LOOP at the

end of the loop. The translated WSL program is shown in Figure 7-10. Figure 7-11

displays the Abstract Syntax Tree (AST) generated by FME [21].

I VAR <ErrorS tate := "">:
2 ACTIONS PROG:
3 PROG ==
4 <FileIndex := 0; NumFilesToPurge := 0>;
5 !P MakePurgeFileList(FileList,NumFilesToPurge) ;
6 ErrorState := "Success";
7 FileIndex := 0;
8 CALL LOOP.

LOOP ==
9 IF (FileIndex < NumFilesToPurge) THEN
10 FileIndex := FileIndex + I;
II IF NOT !P FindFile(FileList[Filelndex],FileHandle) THEN
12 ErrorState := "FileFindError";
13 CALL END_PROC
14 FI;
15 IF NOT !P OpenFile(FileHandle) THEN
16 ErrorState := "FileOpenError";
17 CALL END _PROC
18 Fl '
19 IF 'NOT !P OverwriteFile(FileHandle) THEN
20 ErrorState := "FileOverwriteError" ;
21 CALL END_PROC
22 FI ;
23 IF !P Erase(FileHandle) THEN
24 ErrorState := "FileEraseError" ;
25 CALL END_PROC
26 FI;
27 CALL LOOP
28 FI
29 CALL Z.
30 END PROC=
31 !P DeletePurgeFileList(FileList, NumFilesToPurge) ;

32 CALL Z
33 END
34 ENDACTlONS
35 ENDVAR

Figure 7-10 Translated WSL Program

191

Chapter 7 Tool Support and Case Studies

e Abstract Syntax Tree LJLQJ~
View - -- - --
~~ ~~

CJ Statements

a···10 Var

$"'10 Assigns

f a"'IO Assign

j f······. Var _Lvalue (ErrorState)
i L • String 0
a·"10 Statements

B '''O A_S
t...... . Name (PRO G)

B .. ·rO Actions ,

$· .. rO Action
f t...... . Name (PRO G)

! fE· .. ro Statements

$'''10 Action
f f .. · .. ·• Name (LOOP)
1 ffi .. ·ro Statements

8"'10 Action

~ " . Name (END PRO : - '~I

l±J .. ·b Statements

Tree Row=3

< I>

< 1,1>
< 1, 1, 1>

< 1,1,1,1>

< 1,1,1, 1, 1>

< 1, 1, 1, 1,2>

< 1, 1,2>

<1,1,2,1>

< 1, 1,2,1, 1>

<1,1,2,1,2>

<1,1,2,1,2,1>

<1, I ,2,1 ,2, I , I>

<1,1,2,1,2,1,2>
< 1,1,2,1,2,2>

<I, I ,2, I ,2,2, 1>

< 1, I ,2, I ,2,2,2>

<1, 1,2, 1,2,3>
< 1,1,2, 1,2,3,1>

< 1,1,2, 1,2,3 ,2>

Figure 7-11 A View of the WSL Program AST

In the target model, the target 'Low Complexity' can be positively satisficed by the four

selected metrics. Therefore, the target score representing the impact of a transformation

on the program can be evaluated by Formula 6-1 and Formula 6-2. The impact function

is formulated as B~:~t. In the case study, the impact can be evaluated as the following

formula.

_ ((valuep(NCFC)-29) + (valuep(McCabe-22) + (valuep(CFDF)-13) + (value p(RNC)-I))

~(valuep (NCFC -29)2 +29 ~(valuep (McCabe)2 +22 ~(valuep (CFDF -29)2 +\3 ~(valuep (RNC-I) 2 +1
impact p (t i) = ----=--------#a....:.d-de-d-n-o-des-+- #-m-od-iji-Ied-n-od..:.-es- +-#d- e-,el-ed- n-od-es------'-------

)(#added _ nodes+#mod ijied _ nodes+#deleted _ nodes)2 +100

By usmg the metrics based prediction approach, the transformation predictor will

construct the transformation process model which represents the state transition of the

program. The process starts at the AST node at the position <1>, i.e ., the Statement

node. The results at the first step are the transformations, which can be applied on the

Chapter 7 Tool Support and Case Studies

whole WSL program.

According to the algorithm to construct the transformation process model, if the target

score of a transformation is equal to 0, i.e., the program is not changed or affected after

applying the transformation, then the transformation will not have any succeeding

vertex in the transformation process model.

In this case, the transformation candidates include Constant_Propagation,

Delete _ All_Redundant, Remove _ All_Redundant _ Vars and Simplify whose condition

functions are matched the state functions of the program and qualification scores are

greater than threshold 0.5. However, after testing the four transformations, the values

of the metrics are still same as before. The result is shown in Table 7-1 . Therefore, the

four transformations are not taken into account for the identified target 'Low

Complexity' for the case although they can be used for the program.

~ Transformation NCNB McCabe CFDF RNC Impact

Before Transformation 29 13 22 1 -

Constant Propagation «1» 29 13 22 1 0
Delete All Redundant «1» 29 13 22 1 0
Remove All Redundant Vars «1» 29 13 22 1 0
Simplify «1» 29 13 22 1 0

Table 7-1 Impact of the Transformation on Node <1 >

With the failure of finding the transformations at the position <1> on the AST, the

prediction algorithm will go down to the next level on the tree and construct the search

graph for the nodes at the second level as well as the succeeding levels. Before running

the algorithm, the parameter Iteration is initialised as 11 , i.e. , the prediction algorithm

for this case will dig over the transformations for the nodes on the AST up to 11 levels.

The algorithm cannot find any positive result since no metrics are affected until the

algorithm reaches the node at the position <1, 1, 2, 1>. For this node whose specific

19

Chapter 7 Tool Support and Case Studies

type is A _ S, after testing the available transformations, the code can be transformed by

being affected with the selected features which measured by the metrics. The impact of

the transformations is calculated in Table 7-2. Meanwhile, the value of the heuristic can

be obtained according the defined heuristic function. Herein, T 1:

Collapse_Action _ System belongs to the Rewrite group which has the qualification

score 1 to the target 'Low Complexity', while T3 : Merge_Calls belongs to the Simplify

group which has the qualification score 1 to the target. The transformations which do

not change the source code features will not be taken into account.

~ Benefit

Transformation Cost Impact
NCNB McCabe CFDF RNC

Before Transformation - 29 13 22 1 -
T8 (P 1 <1, 1,2,l» 0.832 22 6 22 2 1.172
T15 (PI <1,1,2,1» 0.734 29 13 22 1 0
T41 (Pl<I,I,2,1» 0.625 26 8 22 1 2.076
T68 (Pl<I,1,2,1» 0.563 29 13 22 1 0
T75 (PI <1,1,2,1» 0.732 29 13 22 1 0
T31 (P2<1,1,2,4» 0.894 25 6 20 2 1.412
T56 (P2<1,l,2,4» 0.447 27 7 21 2 1.262
T31 (P3<1,1,2,4» 0.813 26 7 23 2 0.970
T75 (P3<1,1,2,4» 0.707 27 7 20 2 1.374
T50 (P4<1,l,I,I,2,1,2» 0.514 22 7 20 4 1.245
T50 (P5<1,1,1,1,1,2 ,1,2» 0.447 20 7 20 5 1.209
T50 (P6<1, 1 ,2,2, 1,1,1,2,2,1,1» 0.371 24 6 22 3 1.221
T50 (P7<1,1,2,2,1,l,1,2,2,1,2» 0.371 23 6 22 4 1.220
T8 (P8<1,1,2,1» 0.707 20 7 23 5 1.561
T8 (P6<1,1,2,1» 0.748 25 7 22 2 1.439
T56 (P9<1,1,2,4,1,1» 0.514 26 7 22 2 1.314
T84(P9<1 ,1,2,4, 1, 1» 0.371 24 6 20 1 1.125

Table 7-2 Impact of the Selected Transformations on the Case Study 1

At this step, the transformation process model can be generated as follows. In this case,

the constructed model only contains the sequence relations between transformations

because there is no effective transformation which can be applied for the parallel

statements. The tree is constructed by taking both cost and benefit into account.

After applying a transformation, the source code could be altered so that the nodes at

194

Chapter 7 Tool Support and Case Studies

the same position are changed as well. Therefore, the predictor has to search the

transformations applied from the node at the position <1>. Any transfonnation, whose

impact is 0, is not added into the graph. The graph in Figure 7-12 is only for the

transformation process containing three steps. After finding the non-dominated

transformation sequence, the software engineer can continue the prediction process

based on the current state of the program after applying the predicted transfonnations.

From the transformation process model, the transfonnation paths can be ranked as the

predicted steps, which are the potential solutions for the given problem.

... -
... -

(T1S<I, 1,2, 1>,0) __ /0

"'... - lr68~I,I,2,1>,0)
"'... -- .0

...
(T7S<l ~1 .. 2, 1>,0)

o

(TSO< I, 1, 1,1,2,1,2>, 1.245)

(T31 < 1, 1 ,2,4>, 1.412)

(T7S< I, 1 ,2,4>, 1.374)

(TSO< 1,1 ,2,2, 1, 1, 1,2,2, 1,2>, 1.220)

(TSO<I, 1 ,2,2, 1,1,1,2,2, 1, 1>,1.22 1

(TS6< 1,1 ,2,4, 1, 1>, 1.314)

T8 : Collapse Action_System; TIS: Delete_AltRedundant; T41: Merge_Calls ;. T68: Restore_Local_Vars; T7S : Simplify
T31: Floop3o_ While; TS6: Reduce_Loop; T7S: Simplify; TSO: Move_To_Right; T84: Take_Qut_Right

Figure 7-12 Constructed Transformation Process Model

TP6: Merge_Calls<I,I,2,1> /\ Collapse_Action_System<I,I,2,1> /\

Double_to _Single _ Loop< 1,1,2,4>

TS6: 5.140

TP5: Merge _ Calls< 1,1,2,1> /\ Collapse_Action _ System< 1,1,2,1> /\

Reduce Loop<l, 1,2,4,1,1>

TS5: 4.829

19

Chapter 7 Tool Support and Case Studies

TP4: Merge_Calls<1,1,2,1> /\ Move_To_Right<1,1,2,2,1,1,1,2,2,1,1> /\

Move_To _Right<l, 1 ,2,2, 1,1,2,2,1,1>

TS4: 4.517

TP2:Collapse _Action _ System<l, 1,21>J\Reduce _ Loop<l, 1,2,3>/\

Floop_To_ While<I,I,2,4>

TS2: 3.846

TP 1: Collapse_Action _ System< 1,1,21> /\ Floop _ To _ While< 1,1,2,4>

/\ Move_To_Right<l, 1,1,1,2,1,2>

TS 1: 3.829

TP3: Collapse_Action _ System< 1,1,21> /\Reduce _Loop< 1,1,2,3> /\S imp lify< 1,1,2,4>

TS3: 3.808

The user will determine which transformation path to apply the transformations. From

the results, TP6 is the best solution due to the highest target scores. After applying the

transformation steps, the new WSL program is altered as shown in Figure 7-13.

1 V AR < ErrorState := '"' >:
2 <File Index := 0; NumFilesToPurge := 0>;
3 !P MakePurgeFileList(FileList,NumFilesToPurge);
4 ErrorState := "Success";
5 FileIndex := 0;
6 DO
7 IF (FileIndex < NumFilesToPurge)
8 THEN FileIndex:= FileIndex + 1;
9 IF NOT !P FindFile(FileList[Filelndex],FileHandle)
10 THEN ErrorState := "FileFindError";
11 !P DeletePurgeFileList(FileList, NumFilesToPurge);
12 EXIT(l)
13 ELSIF NOT !P OpenFile(FileHandle)
14 THEN ErrorState := "FileOverWriteError";
15 !P DeletePurgeFileList(FileList, NumFilesToPurge);
16 EXIT(l)
17 ELSIF NOT !P OverwriteFile(FileHandle)
18 THEN ErrorState := "FileOpenError";
19 !P DeletePurgeFileList(FileList, NumFilesToPurge);
20 EXIT(I)
21 ELSIF !P Erase(FileHandle)
22 THEN ErrorState := "FileEraseError";
23 !P DeletePurgeFileList(FileList, NumFilesToPurge);
24 EXIT(I)
25 FI
26 ELSE EXIT(1)
27 FI
28 OD
29 ENDVAR

Figure 7-13 Transformed WSL Program by Applying TP6

196

Chapter 7 Tool Support and Case Studies

The result from the TP6 does not contain any GOTOs and nesting level of if statements

is only 2. It does not have the problem that the first strategy caused. Besides, the

variation of the metric value shows the quality w.r.t complexity is improved.

The other sequences contained in the model are also elicited to the software engineer

who makes the decision which sequence is chosen to apply. After applying the selected

transformation sequence, the transformed program will be regarded as a new start on

which the software engineer can carry on the further reengineering analysis.

7.4.3 Comparison of Two Strategies

By comparing the results from the two different strategies, the following conclusions

can be gained.

• U sing the proposed approach, the correctness of the result, which is required

to satisfice the given reengineering target, can be improved. The first strategy

to remove the GO TO statements resulted in the deepest nesting level as 6. The

result increases the complexity rather than decreases it. However, the deepest

nesting level is only 3. In terms of the result about the nesting level, the

second one has a better result. The strategy with the proposed approach can

give attention to both aspects of the target.

• The first strategy lacks of the quantitative means to control the process so that

it is hard to evaluate the target satisficed degree. While the second one is

guided by the quantitative approach towards the desired target. It is easier to

compare the potential solutions and predict the needed one by the latter

strategy.

197

Chapter 7 Tool Support and Case Studies

• Although in this case studied by using the second strategy the expertise the

expertise incorporated algorithm is not applied, it is obvious that in some case

if an expertise rule is eligible for the proposed problem and it is applied, the

correctness and efficiency can be ensured against the situation where the user

selects and applies transformations without the help of the expertise.

7.5 A Case for Object Oriented Program

As for the object oriented case, a bioinformatics application Linkage Disequilibrium

Analyser (LDA) [35], which was published in the Bioinformatics journal, is selected to

for this study. LDA is an integrated java-based program that provides elaborate graphic

and plain-text output of pair-wise linkage disequilibrium analysis of single nucleotide

polymorphism genotypic data. It takes a simple flat-file as input, provides a dialogue to

set up parameters and for optional selection of the different test method and presents

the analysis results both in the form of graphics and plain-text. Figure 7-14 shows a

screenshot of the application.

? Ll Result

; 0 Summary

. D Frequency Spectrum

<>- Ll LD Measures

0- Ll LD Tes l

0- Cj LD Decav

D ~djllCenu;p wlndO\!J

1.0

0.9

1.1

D.7

D.'
D.s
1.4

Dol

0.2

D.1

8.0 L-~-~12D-~-1~64D--'--246~U---'--~J21O-~~41IU

PaiNit. LD Meuure D· Wmbw Analysu (D. VS Mldpeiat C •• rdWlI»

__ : SNPPain .radjuont SNPI

• : SNP Pain in .. monin& by OM SNP
__ : SNP Pain inll>"",nl:ag by _ SN1'I

please view the result by clickmg tree node

Figure 7-14 Screenshot of LOA

19

Chapter 7 Tool Support and Case Studies

Average Module Size: This measure is calculated by number of stateme nts~o--er .J
number of methods. AMS = LOC

Number of methods
AMS

ANFC Average number of features implemented in a class
NCIF Average Number of classes which implement a feature
OSC Overlap statements among the classes

Table 7-3 Selected Metrics for the LOA Analysis

Feature Classes Feature Classes

Open LoadFile Summary Nuc1eotideDiversity

Save FileUtility FS FreqSpec

Print
JComponentVista

FS Graphic
Vista

FreqSpec

Cut CutTextAction LD Measures LdMeasure EM

Copy CopyTextAction
LD Measure

LdmGraphic
Graphics

Paste PasteTextAction LD Test LdTextOutput

Main GUI LDAaPP LD Test
Event OptionsSettingsTree _ mouseAdapter Graphics

LddGraphic

LDDecay LdDecay
LD Decay LdDecayGraphic
Graphic

Main GUI LD AaPP, LDTree, OptionsSeeting_ TreeN odes

OptionsDialog_ hwechichk _ changeAdapter
OptionsDialog_hwechk _ changeAdapter

Option OptionsDialog_ldtchichk _ changeAdapter
OptionsDialog_ldtchk _ changeAdapter
OptionsDialog

Table 7-4 Feature-Class Table of the LOA

The application has about 5000 lines of code and 2 packages which contain 29 classes

and 1 class respectively. To choose it as a case study relies on three reasons: (1) it is a

normal scale program which is suitable for the transformation experiment; (2) it is used

by the bioinformaticians in practice; (3) After analysing the source code, it is found that

the code is not well structured and the modules are high coupled. The reengineering

target for the application is to extract the feature-oriented modules. To evaluate the

state of the program with respect to the reengineering target, in the target mod 1, th

metrics shown in Table 7-4 are selected from the object-oriented, reusability and

199

Chapter 7 Tool Support and Case Studies

feature oriented metrics group. In the target model, they are correlated by A D

relations and negatively contribute the target.

Before performing the transformation prediction process, the feature-oriented analysi

is necessary for the determined target. In the stage, the main features of the application

and the relations between the features and the classes are captured. Table 7-4 lists th

main features of LDA and the implementation of those features. In the analysis, it can

be examined that there are two problems, which may not help the maintenance and

reuse of the application.

~ Transformation
Cost

AMS

Before Transformation - 163
T9l (PI, Cl, <posnl» !\
T9l (P 1, C2, <posn2» !\ 0.234 145
T9l (PI, C3, <posn3»
T39 (PI, Cl, <posnl»!\
T39 (P 1, C2, <posn2» !\ 0.342 145
T39 (PI, C3, <posn3»
T79 (P2, Cl, <posn4»!\
T79 (P2, C2, <posn5»!\ 0.622 140
T79 (P2, C3,<posn6»
T93 (P2, Cl, <posn7» !\
T93 (P2, C2, <posn8»!\ 0.434 143
T93(P2, C3, <posn9»

T 100 (P3, Drawgraph) 0.234 132

T79 (P4, Cl, <posnlO»!\
T79 (P4, C2, <posnll»!\ 0.523 145
T79(P4,C3,<posn12»

T91: Movement; T93: Wrapper;

T39: Make_Procedure; T50: Move_to_Left;

T79: Substitute_and_Delete; T82: Take_Qut_Left;

Benefit

ANFC NCIF OSC

4 3 20

4 3 20

4 3 20

3.6 2.6 20

3.6 2.5 14

3.6 2.4 10

3.6 2.4 10

T100: Make Class

T66: Rename_Proc;

T83: Take _ Qut_ Right

Table 7-5 Impact of the Selected Transformations on the Case Study 2

Impact

-

0.432

0.342

0.234

0.563

0.244

0.256

• The classes for 'Main GU!' are not well structured. The class 'LDAaPP to

draw the main frame has 1510 lines of code and contained the code to draw

the frame and write the event. It is hard to read and locate the maintenance

_ 0

Chapter 7 Tool Support and Case Studies

•

needs. The code of the presentation and the event are so coupling that could

cause more problems during the maintenance.

The statistic graph generation feature is cross-cutting in the data analysis

modules which have their own functions to draw the graphs. The three classes

'LdDecayGraphic', 'LdmGraphic', 'LddGraphic' have the overlap part to

initialise the graphic environment, render the graph and process the

parameters. This overlap can cause the problem that software engineer has to

modify the code in the three class if the graph initialisation feature.

In the case study, the second problem is investigated and given the solution based on

the proposed approach. The transformation prediction algorithm is used for the

feature-oriented class extraction and generation. The selected metrics will guide the

prediction process. The transformations are selected according to their condition

functions and the state functions of the classes.

P; , (i = 1,2,· ..) : Program version number;

C
j
,(} = 1,2,3,4): The three classes and the new feature-oriented class.

The details of the TPM computation is shown in Table 7-5. By performing the

prediction algorithm, the transformation process model generated only contains one

transformation path as follows.

T9l(Pl, Cl, <posnl» A T9l (PI, C2, <posn2» A T9l (PI, C3, <posn3»;

T93 (P2, Cl, <posn7» A T93 (P2, C2, <posn8» A T93 (P2, C3, <posn9»;

TlOO (P3, DrawGraph);

T79 (P4, Cl, <posnll» A T79 (P4, Cl, <posn12» A T79 (P4, Cl, <posn13»

201

Chapter 7 Tool Support and Case Studies

The result is to generate a new class DrawGraph and modified the corresponding code

of the other three classes.

Class DrawGraph {

Method DrawGraph (colour, sizearr, opaque) {

setbackground (colour);

setsize (sizearr);

setOpaque (opaque);

}

The transformed result including the new generated class and the revised old classes

can be translated back to Java.

7.6 A Case for Multimedia Program

Multimedia languages are a new class of languages that have arisen in the past decade.

The term 'multimedia' refers to "a presentation or display that involves more than one

method or medium of presentation"[73]. Such media may include audio, video, still

images and animations that accompany the standard text display. Therefore, a

multimedia application is one that uses and includes more than one of these media in a

cohesive manner. A multimedia language "is a set of software tools for creating

multimedia applications" [73]. All multimedia languages present the developer with a

set of software tools to aid in the development process.

For example, the Synchronised Multimedia Integration Language (SMIL) is a popular

multimedia synchronised language and allows a user to define how independent media

objects are to be integrated into a media representation and it provides rules and define

when (and if) various media objects are actually rendered for the end-user. Existing

popular players for Synchronised Multimedia Integration Language (SMIL) [19]

includes Microsoft Internet Explorer, Apple QuickTime, RealNetworks Realplayers,

202

Chapter 7 Tool Support and Case Studies

AMBULANT Open SMIL Player [30] and GriNs [87]. The generator of the

presentation normally can be a specific editor, such as GriNs or a normal text editor.

However, without these players, it is not easy to understand the plain XML source

code and capture the spatial as well as the temporal relations between the media

objects.

The case study is performed based on an SMIL application. The reengineering target

identified for the multimedia program is to extract the abstraction of the temporal

behaviour of the multimedia application. In the other word, the program

transformations applied for approaching the target should be able to strip off the other

information irrelevant to the temporal properties as much as possible. This target can be

obtained through the transformations, which raise the abstraction level of the

multimedia presentation.

In Chapter 5, the WSL language and the transformations are extended to accommodate

the analysis of object oriented program and multimedia application. It has been

concluded that the most distinct characteristics in this area is the data type and

operation on the data. Different types of multimedia data have different properties and

functions, so that it appears intuitive to describe them by different data types. This

approach allows the specification of a class for each data type; normally, this includes

classes like text, image, audio and video.

Figure 7-15 is a simple multimedia application written in SMIL.

<?xml version=" 1.0"?>
<!DOCTYPE smil PUBLIC "-//W3CIIDTD SMIL 2.01IEN"

''http://www.w3.org/200l/SMIL20/SMIL20.dtd''>
<smil xmlns=''http://www.w3.org1200l/SMIL20/Language''>

<head>
<meta name="title" content="Happy Birthday, Large Screen Version"l>
<meta name="generator" content="GRiNS Pro for SMIL 2.0, v2.2 Mobile win32 build 151 "I>
<meta name="author" content="Dick Bulterman"l>

203

Chapter 7 Tool Support and Case Studies
<layout>

<root-layout id="Player-Window" backgroundColor="gray" width="380" height="270"1>
<region id="audio" soundLevel="lO%"/>
<region id="bkgdjmage" left="O" width="380" top="O" height="270"1>
<region id="Video" left="92" width="280" top="6" height="216" z-index=" 1 "/>
<region id="Captions" left="130" width="220" top="229" height="20" z-index="2"/>
<region id="Menu" left="2" width="84" top="7" height="260" z-index="l"l>
<region id="unnamed-region" title="unnamed region" left="O" top="O"/>
<region id="unnamed-region-l " title="unnamed region" left="O" top="O"/>

</layout>
<transition id="slideover" type="slideWipe"/>
<transition id="fade" type="fade"/>
<transition id="push" type="pushWipe"/>

</head>
<body>

<par id="BigBirthday">
<seq>

<par id="Intro" endsync="Skiplntro">
<seq>

<img id="FBT" region="Video" begin="5" dur="4s"
fill="transition" src="In-l.gif' transln="fade"/>

<img id="FBT-O" region="Video" begin="O.9"
dur="3.2s" fill="transition" src="In-2.gif' transln="fade"l>

<img id="FBT-l" region="Video" begin="2" dur="15s" fill="freeze"
src="In-3.gif' transln="fade" transOut="fade"l>

</seq>
<audio id="HmGeb" region="unnamed-region-l" src="HappyBirthday.mp3"1>
<img id="Skiplntro" fill="freeze" end="HmGeb.end;activateEvent"

src="Skip.png" region="Menu" top=" 193" I>
</par>
<par id="Menulmages" dur="indefinite">

<img id="Fls" region="Menu" src="HBdatalFlsjpg"
width="81" top="5" height="54" transln="slideover"l>

<img id="Wls" region="Menu" src="Wlsjpg" width="80"
top="66" height="53" transln="slideover"l>

<img id="Als" region="Menu" src="Alsjpg" width="81"
top=" 123" height=" 54" transln="slideover"/>

<img id="FBTs" region="Menu" src="FBTs.jpg" width="81"
top=" 195" height="54" transln="slideover"/>

<excl id="Videos" dur="indefinite" fillDefault="freeze">
<par id="Fz3" begin="O; F 1 s.activateEvent">

<video id="Fz3-0" region="Video" src="Fz3-g.mpg"/>
<audio id="Birthday" region="audio" src="Birthday.mp3"/>

</par>
<par id="Wz3" begin="Wls.activateEvent">

<video id="Wls-l" region="Video" src="Wz3-g.mpg"l>
<audio id="Birthday-O" region="audio" src="Birthday.mp3"/>

</par>
<par id="Az3" begin="Al s.activateEvent">

<video id="Az3-0" region="Video" src="Az3-g.mpg"/>
<audio id="Birthday-l" region="audio" src="Birthday.mp3"1>

</par>
<par begin="FBTs.activateEvent">

<seq> 11" .." "FBT' "I> <img id="FBT-n" region="Video" dur="5.9s" fi = transItion src= .Jpg
<video id="BTz3" region="Video" fill="transition"

src="BTz3-g.mpg" transln="fade"l>
<img id="FBP" region="Video" dur="9.56667s" fill="transition"

204

Chapter 7 Tool Support and Case Studies
src "FBP' "t I "I'd " .Jpg rans n- s 1 eover transOut="push"/>

<video id="BPz3" region="Video" src="BPz3-g.mpg" transIn="fade"/>
</seq>
<audio id="VORBOKFJ" region="audio" src="Ballgame.mp3"/>

</par>
</exc1>

</par>
</seq>

</par>
</body>

</smil>

Figure 7-15 An SMIL Multimedia Application

In the process of translation from SMIL to the extended WSL, the translator needs to

retrieve the media data from the XML document and construct the media class for those

data. At this step, only the constructs and attributes related to the spatial and the

temporal features are translated to WSL corresponding constructs. The result of this

step is shown as follows.

Begin
regionaudio := HASH_TABLE;
regionaudio.("soundlevel"):= 0.1;

regionhkgd_image := HASH_TABLE;
regionhkgdjmage.("left") := 0; regionhkgd_image.("width") := 380;
regionhkgd_image.("top") := 0; regionhkgdjmage.("height"):= 270;

regionVideo := HASH_TABLE;
regionVideo.("left") := 92; regionVideo.("width") := 220;
region Video.("height") := 216;

regionCaptions := HASH_TABLE;
regionCaptions.("left") := 130; regionCaptions.("width"):= 220;
regionCaptions.("top") := 229; regionCaptions.("height"):= 20;

regionMenu:= HASH_TABLE;
regionMenu.("left") := 2; regionMenu.("width") := 84;
regionMenu.("top") := 7; regionMenu.("height") := 260;

region unnamed _region := HASH_TABLE; regionunnamed Jegion.("left") := 0;
regionunnamed Jegion.("top") := 0;

regionunnamedJegion_1 := HASH_TABLE; regionunnamed_region_l.("left") := 0;
regionunnamed _region _l.("top") := 0;

PAR
BEGIN

SEQ
BEGIN

PAR
BEGIN

SEQ
BEGIN

Chapter 7 Tool Support and Case Studies
imgFBT: new IMAGE(); imgFBT.region :- regionVideo; imgFBT.start := 5;
imgFBT.duration := "4s"; imgFBT.source := "In-l.gif';

imgFBT-O := new IMAGE(); imgFBT-O.region := "Video"; imgFBT-O.start := 0.9'
imgFBT-O.duration := "3.2s"; imgFBT-O.source := "In-2.gif'; ,

imgFBT-l := new IMAGE(); imgFBT-1.region := "Video"; imgFBT-1.start := 2;
imgFBT-1.duration := "15s"; imgFBT-1.source:= "In-3.gif';

END;
audHmGeb:= new AUDIO(); audHmGeb.region:= regionunnamed_region_l;
audHmGet.source := HappyBirthday.mp3;
imgSkiplntro := new IMAGE(); imgSkipIntro.source := Skip.png;
imgSkipIntro.region := regionMenu.("top") + 193;

END;

PAR
BEGIN

imgF 1 s := new IMAGE();
imgFls.region := regionMenu+5; imgFls.source:= "Fls.jpg";
imgFI s.size := <81,54>;

imgWls := new IMAGE();
imgWls.region:= regionMenu+66; imgWls.source := "Wls.jpg";
imgWI s.size := <80,53>;

imgAls := new IMAGE();
imgAls.region := regionMenu+123; imgAls.source := "Als.jpg";
imgAls.size := <81,54>;

imgFBTs := new IMAGE();
imgFBTs.region := regionMenu+ 195; imgFBTs.source := "FBTs.jpg";
imgFBTs.size := <81,54>;

SEQ
BEGIN

PAR
BEGIN

vidFz3 0:= new VIDEO();
vidFz3 - O.region := region Video; vidFz3 _ O.source := Fz3-g.mpg;

audBirthday := new AUDIO();
audBirthday.region := regionaudio; audBirthday.source := Birthday.mp3;

END;

IF(imgFls.Click) THEN
PAR
BEGIN

vidFz3 0:= new VIDEO();
vidFz3=0.region := regionVideo; vidFz3_0.source := Fz3-g.mpg;

audBirthday := new AUDIO(); .
audBirthday.region := regionaudio; audBirthday.source := Buthday .mp3;

END;
ELSIF(imgWls.Click) THEN

PAR
BEGIN

vidW 1 s 1 := new VIDEO();
vidWls=1.region:= regionVideo; vidWls_l.source:= Fz3-g.mpg;

audBirthday 0:= new AUDIO(); .
audBirthday=O.region:= regionaudio; audBirthday_O.source:= Blrthday.mp3;

END;
ELSIF(imgA 1 s.Click) THEN

PAR

206

Chapter 7 Tool Support and Case Studies

END

BEGIN
vidAz3 _0 := new VIDEO();

vidAz3_0.region := regionVideo; vidAz3_0.source := Fz3-g.mpg;

audBirthday_ 1 := new AUDIO();

audBirthday_1.region := regionaudio; audBirthday l.source := Birthday mp3 '
E®; - . ,

ELSIF(imgFBTs.Click) THEN

FI

PAR
BEGIN

SEQ
BEGIN

!mgFBT_n := new IMAGE(); imgFBT_n.region := regionVideo;
l~gFBT_n .dur := "5.9s"; imgFBT_n.source := "FBT.jpg" ;
vldBTz3 := new VIDEO(); vidBTz3.region := regionVideo '
vidBTz3.source := "BTz3-g.mpg" ; ,
!mgFBP := new IMAGE() ; imgFBP.region := regionVideo;
ImgFBP.source := "BPz3-g.mpg" ;

E®
audVORBOKFJ := new AUDIO();
audVORBOKFJ.region := regionaudio; audVORBOKFJ.src := "Ballgame.mp3" ;

E®;

END;
END
imgBkgdImg := new IMAGE();
imgBkgdImg.region := regionhkgd_image; imgBkgdlmg.src := "Back3s.gif' ;

END

Figure 7-16 Translated WSL Program of the Multimedia Application

In order to perform the multimedia program abstraction related to the spatial feature or

the temporal feature, the transformations guided by the expertise and the domain

features are used with the evaluation of the abstractness features and the multimedia

domain-specific metrics. In this case, the target to abstraction the temporal feature will

be experimented as an example. For this target, the following metrics in Table 7-6 are

selected and contained in the target model. The three metrics positively contribute the

abstractness target.

r " " ''I,', ' " . " ~w~ ,~~'" . " "" -, ~ ~ ~ . . ~ ,. '

I

'Metrics ' ,
DefinitiOil

I::, ~" .. ~'" ~ ""'" ""' ""W>. "'''''''''.~_,~~, ... """'"' """',,,,,:;,, ,"'~" __ ,~J.., "._.o...t""';10.;"",,-. __ _=--_~ __ _", ___ _ ~'-"'-' __ .-..:. __ ,, MI....o. __ ~~_ ... __ ____ ,~ - ..

ABST-STAT The J2..ercentage of statements at h!gher abstract levels over the total statements

ABST-VOC
The percentage of constructs at higher abstract levels in the total constructs in
the Rro...[fam

PTR The percentage of temporal constructs in the total constructs in the program

Table 7-6 Selected Metrics for the Multimedia Application Abstraction

As the target is quite specific, the expertise on using transformation for abstraction i

207

Chapter 7 Tool Support and Case Studies

essential for this work. By referring the expertise rules given in Chapter 6, the rules can

be altered according to the domain features of the multimedia program as follows .

(1) Remove the irrelevant statements to the temporal feature;

(2) Remove ghost variables which have no effect on the execution of the program'

(3) Change the data representation to a more abstract representation;

(4) Replace references to the concrete variables by references to the abstraction

variables;

~
Benefit

Transformation
Cost

ABST-STAT ABST-VOC PTR

Before Transfonnation - - - 0.165
T95 (PI, posn1) /\ T95 (PI, posn2) /\ ...

0.989 0 0 0.372 /\T95 (PI, posnm)
TI5 (P2) 0 0 0 0.422
T52 (P3) 0.894 0.279 0.1 32 0.521
T97 (P4) 0.707 0.563 0.324 0.712

T95: Temporal_Abstraction; TI5: Delete_AlI_Redundant; T52: Prog_To_Spec;

T97: Replace_by _Concrete;

Table 7-7 Impact of the Selected Transformations on the Case Study 3

Impact

-

0.652

0
0.947
0.704

The given rules present the guidance for the transformation prediction. In this

circumstance, the prediction process does not adopt the metrics based heuristics but the

expertise incorporated and domain specific approach. However, the transformations

used for abstraction and other purpose, such as simplifying or rewriting, are also tested

if their condition functions satisfice the state function of the program. Therefore, by

attempting the applicable transformations, the evaluation data can be generated as

follows. The transformations predicted by the expertise rules.

Figure 7-17 is the result after applying the transformation T52 (P3) that transform th

20

Chapter 7 Tool Support and Case Studies

program to the specification.

Begin
Parallel(

Sequence(
Parallel(

)

Sequence(~imgFBT :=.~ew IMAGE(); i~gFBT.start := 5; imgFBT.duration := "4s lO
);

(~mgFBT-O ::::: new IMAGE(); ~mgFBT-O.start := 0.9; imgFBT-O.duration := "3.2s lO
);

(lmgFBT-l .- new IMAGE(); ImgFBT-1.start:= 2; imgFBT-l.duration:= "ISs"))
II (audHmGeb := new AUDIO();)
II (imgSkipIntro := new IMAGE(););

Parallel «imgFls := new IMAGE())
II (imgWls := new IMAGE())

)

II (imgAls := new IMAGE())
II (imgFBTs := new IMAGE())
II (Sequence(

)

Parallel«vidFz3_0 := new VIDEO())II(audBirthday := new AUDIO())'
IF(imgF 1 s.Click) THEN '

Parallel«vidFz3_0 := new VIDEO())llaudBirthday := new AUDIO());
ELSIF(imgWls.Click) THEN

Parallel«vidWls_1 := new VIDEO())llaudBirthday_O:= new AUDIO());
ELSIF(imgAls.Click) THEN

Parallel«vidAz3 _0 := new VIDEO())llaudBirthday _1 := new AUDlO());
ELSIF(imgFBTs.Click) THEN

Parallel(
Sequence«imgFBT_n := new IMAGE(); imgFBT_n.dur := I05.9s");

(vidBTz3 := new VIDEO());
(imgFBP := new IMAGE()))

II (audVORBOKFJ := new AUDlO())
)

)
II (imgBkgdlmg := new IMAGE())

Figure 7-17 Transformation Result from Program to Specification

Through the expertise incorporated algorithm and the domain features, the

transformation steps predicted are

T95 (PI, posnI) /\ T95 (PI, posn2) /\ .. , /\T95 (PI, posnm) ; TI5 (P2) ; T52 (P3) ;

T97(P4)

Figure 7-18 gIves the final result of the abstraction process. The result is the

specification related to the temporal features of the multimedia application. From the

specification, it is easy to understand the temporal relations between the media data.

209

Chapter 7 Tool Support and Case Studies
(

)

(imgFBT> imgFBT_O >imgFBT_I) 0 (audHmGeb) 0 (imgSkiplntro»
> (imgFIs = imgWIs = imgAIs = imgFBTs)

o «vidFz3_0 = audBirthday)
>
(imgFIs.Click s (vidFz3_0 = audBirthday) OR

imgWIs.Click s (vidWIs_I = audBirthday_O) OR

)
)

imgAIs.Click s (vidAz3_0 = audBirthday 1) OR
imgFBTs.Click s «imgFBT_n> vidBTz3 > i~gFBP)
)

o imgBkgdlmg

audVORBOKFJ)

Figure 7-18 Abstraction Result of the Transformations

7.7 Summary

The chapter shows the tool prototype support for the proposed approach and

experiments the proposed approach on three case studies, including a procedural

program by the metrics based algorithm, an object-oriented program by incorporating

expertise and a multimedia application in SMIL by the algorithm involved in the

domain features.

A The toolset F erma T Transformation Predictor (F -TP) is integrated into the

FermaT Integration Platform (FIP) and composed of four modules, i.e. the

extended WSL parser, the target modeller, the metrics viewer and the

transformation predictor.

A The toolset has not been mature enough to apply for the practical application

but supplied an academic prototype to demonstrate the transformation

prediction approach. The efficiency of toolset still needs to improve.

A The case on the procedural program by the metric based algorithm shows how

the transformation paths are generated and ranked without the help of the

expertise. The case shows the proposed approach is more promising, efficient

and correct than the traditional approach without using the prediction means.

210

Chapter 7 Tool Support and Case Studies

A The case on the object-oriented program shows how the transformation paths

containing the parallel transformations are predicted.

A The case on the multi-media program shows how the expertise incorporated

algorithm and the utilisation of domain features are used in the transformation

prediction process.

A The reengineering targets can be achieved by the proposed transformation

prediction approach.

A From the three case studies, it is concluded that the expertise incorporated

algorithm is more efficient than the metric guided algorithm if the expertise

algorithm can be used.

A The validation of the predicted result and the transformed result is performed

by software engineer.

211

Chapter 8
Conclusion and Future Work

Objectives

• To summarise the thesis and give the conclusions

• To evaluate the research described in the thesis

• To illustrate the limitation of the work

• To propose the future work

8.1 Summary of the Thesis

The thesis aims to improve and augment the applications of program transformation for

software reengineering. A systematic method for using program transformation in

software reengineering, called Target-Driven Program Transformation Step Prediction

framework (TDPTSP), is proposed to achieve the aim.

In the framework, in order to realise the aIm to improve the implementation of

transformation for determined reengineering targets, the target model referring the

goal-driven technique [89] is used to specify the targets for which the program

transformations are implemented. In the model, the relevant software metrics are

21~

Chapter 8 Conclusion and Future Work

selected to measure the status of the source code and evaluate the impact of the

transformations applied. By using this model, the suitable transformation candidates

and their execution sequence are predicted through a precisely heuristic based

algorithm. The aim to augmenting the program transformation with domain features is

experimented by extending the WSL and its transformation theory into the multimedia

domain.

The features of the proposed approach (including the toolset) are listed as follows.

• Using WSL as an intermediate language to explore the theory and

implementation of program transformation for software reengineering.

• Utilising the hierarchical characteristics of the WSL constructs to extend the

language. To distinguish the existing constructs, called the basic level of WSL,

the extended levels are named as secondary level.

• Using the fix-point theory to extend WSL with object-oriented features. The

extension covers the basic object-oriented concepts, such as class, object,

instantiation and reference.

• Extending WSL with multimedia features by the extended object-oriented

features. The media are modelled as classes in WSL. The spatial, the temporal

and the logical relations are defined as constructs of WSL.

• Proposing the transformations based on object-oriented extension of WSL.

• Proposing the transformations based on multimedia extension of WSL.

• Defining the mathematical notations of program transformation in order to

2\3

Chapter 8 Conclusion and Future Work

•

•

•

•

•

manage the transformation process.

Extending the transformation bank which is a library contained III the

transformation engine and giving the meta-model of transformation.

Classifying the transformations according to the effects of their operations.

Defining the concept of target in the proposed approach.

Selecting and justifying six categories of reengineering intensive software

metrics which are used to measure reengineering target.

Building the target model which represents the relations of targets, target

factors and metrics related to the target.

• Correlating targets, metrics and transformations within a united model

(MOTMET) and give the formula to compute the target satisficed degree.

• Formulating the transformation prediction as using heuristic based algorithm

to construct a transformation process model which includes the ranked

solutions.

• Incorporating expertise into the prediction algorithm.

• Predicting transformations for the domain specific applications by taking the

domain features into account.

• Developing the toolset based on the transformation engine and investigating

the proposed transformation prediction approach in three case studies on a

procedural program, an object-oriented program and a multimedia program.

214

Chapter 8 Conclusion and Future Work

8.2 Conclusion

To conclude this thesis: a target driven program transformation approach for software

reengineering is proposed. The work is based on WSL which IS a program

transformation-intensive language. The reengineering activities are represented as

target models which correlate software metrics. WSL is extended on both syntax and

semantics with the new features, including object-oriented and multimedia domain

features, so that the proposed work can be applied in the domain specific application.

The prediction algorithms including metrics based algorithm, the expertise

incorporated prediction algorithm as well as taking domain features into account, are

proposed to improve efficiency and correctness of the target driven program

transformation process for reengineering. A supporting prototype FermaT

Transformation Predictor (F -TP), which implements the approach, based on FermaT

Integration Platform (FIP) is developed to speed and scale up practical reengineering.

8.3 Evaluation of Research Questions

In Chapter 1, a set of research questions were proposed as criteria to judge the success

of the approach described in this thesis. In this section, the detailed analyses of our

approach are presented based on these criteria .

./ What are the advantages of the implementation of reengineering with the program

transformation prediction approach against the one without using the approach?

The aIm of the transformation step prediction based reengineering approach is to

improve the efficiency and automation of the transformation process for reengineering

target. Traditionally, without such automation assistant means, there might be some

obstacles in the process, such as:

215

Chapter 8 Conclusion and Future Work

The program transformation steps must be predefined by an expert \\'ho is

familiar with the transformation system and understand the program

throughout.

~ The lack of quantitative evaluation of the process makes the assessment of the

transformation result for the reengineering targets hard,

~ In most case, the needs of reengineering imply a number of criteria not just a

single one therefore taking all the relevant reengineering concerns into

account is impossible by using the traditional approach even if implemented

by an expert.

Equipped with the proposed approach, the advantages against the above obstacles can

be summarised as follows.

o The proposed transformation prediction approach can provide clues for doing

the practical reengineering of software. With the approach, the software

engineer can find the proper candidates to implement transformations for the

given targets. It can be much more efficient than searching the

transformations by the experience manually only. The prediction does not

mean automating the transformation process completely because the

prediction is to search a set of solutions and it is the software engineer to

determine which solution is applied. The software engineer can benefit from

learning and applying the predicted result.

o The utilisation of software metrics provides the quantitative measurement.

The measurement can be used to assess the impact of a target and guide the

transformation process towards the target.

216

Chapter 8 Conclusion and Future Work

Traditional program transformation process without the assistant of prediction

normally only follows a predefined step which is determined according to

experience or a standard method. With the proposed approach, a set of

potential solutions could be obtained automatically.

o The solutions generated by the approach can be used to research the order of

the transformation sequence which can be useful information for the

development of new transformations.

o If the state of a program matches the condition of the expertise rules, a

preferential solution can be predicted straightway. This facilitates the

automation and efficiency of the transformation process .

./ Are the extended constructs consistent with the syntax and semantics of WSL?

The extension starts from the object-oriented constructs by using the fix-point theory.

The denotational semantics of the object-oriented constructions is consistent with the

existing semantics ofWSL. The specification of the new constructions is also presented.

When a multimedia application is reengineered, the media data is translated to objects

of WSL. The control of the media data is translated to the extended constructs of WSL.

Therefore, the extension is consistent with WSL on the semantics and syntax .

./ Is the target model correct and complete to represent the identified target?

A target could include the sub-targets, which are affected by several factors. They are

identified according to the experience and common knowledge of the software engineer.

The target model covers the relevant sub-targets and the relations between them. The

model has to be validated by human being, rather than by machine.

217

Chapter 8 Conclusion and Future Work

Can the prediction be modelled as a search problem?

To provide the useful information guiding the transformation process, the

transformation engine is supposed to determine the suitable candidates and predict the

impact of the transformations. The transformation candidates are chosen by an

automated process from the transformation bank that contains a large number of

transformations. Therefore, the prediction can be performed via a search operation to

obtain the answer.

What kind heuristics will be used in the proposed approach? Is the heuristic

knowledge useful for the transformation prediction?

Heuristic search strategies that use some kind of additional (heuristic) information can

reduce the computational costs for many search problem instances. The heuristics used

in the proposed prediction algorithm are three kinds of knowledge, i.e. the relations

between metrics and program transformations, the expertise obtained in practice and

the domain features. Without the heuristic knowledge, the procedure of constructing

the transformation process model will have a very heavy burden to expend the model

by adding all of the available transformations. The heuristics can facilitate the process

by pruning the transformation paths, which could negatively impact the desired target.

Especially when a state of a program matches a pattern and conditions of an expertise

rule, the transformation process model can become more explicit and straightforward.

By investigating the experiments, the efficiency of using the expertise as the heuristics

can be improved approximately 250/0 by comparing the one without using the expertise.

Furthermore, the predicted transformation steps generated by the expertise are more

reliable than the metrics based approach because it is from the experts who apply the

transformations in practice. Therefore, the answer to the second question is positive.

218

Chapter 8 Conclusion and Future Work

./ How can the quantitative approach be used to control the transformation

prediction process?

The usage of software metrics provides a quantitative means to evaluate the impact of

transformations. A computation formula is given for this purpose. The formula is

constructed by taking into four factors account: (l) the program feature change resulted

by a transformation. The difference of metric value caused by this change is referred in

the formula; (2) the normalisation of the calculation; (3) the relations of metrics

modelled in the target model; (4) the cost of the transformation execution. With the four

considerations, the formula is complete to measure the impact of a transformation .

./ Will the prediction result be a good solution?

The answer is positive for the transformations within the finite steps and the traversed

levels. The process is guided by the heuristics and quantitative measurement based on a

well-formed representation of the desired target. Hence, it is more efficient to approach

the required constraints by applying transformations. However, the correctness of the

result could be negatively affected if the target model is constructed inappropriately.

This should be addressed by introducing a more formal approach for the target

representation. It can be considered in the future work.

8.4 Limitations

Although the proposed approach has a number of advantages and facilitates the

reengineering process, there are limitations with it. Because of the program

transformation's nature that preserves semantics and alters syntax, the target to

changing software functions driven by evolution needs cannot be fulfilled by the

program transformation prediction approach. To achieve such a target, more techniques

219

Chapter 8 Conclusion and Future Work

are needed, such as re-specification. In addition, in the proposed approach, there are

some technique steps prone to subjectivity. For example, the target modelling relies on

the user's know ledge about the desired target. Any misunderstanding of the target wi 11

result in an incorrect result. The solution of this problem will be worked on in the future

work.

8.5 Future Work

The research presented in this thesis is not the terminus. The following future work can

be pursued based on the present work.

-$- Modelling Target

As a center of the proposed approach, the target modelling is performed based on the

discussion about the relations between targets, metrics and transformations. In the

proposed approach, the target is modelled by using the goal-driven technique.

AND/OR relations are included in the model. In terms of the level of abstraction, a

target is a kind of requirement which is at much high abstraction level. The validation

of the model depends on the experience of software engineering so that this process is

very 'subjective'. In the future work, a more formal and precise technique is needed for

this representation. With regard to this consideration, ontology [60] could be used to

introduce more precise relations for the target modelling.

-$- Generating heuristic relations between metrics and transformation

Heuristics are essential for improving the transformation step prediction. The relations

between metrics and transformations are used as a heuristic used in the construction of

the transformation process model so that only the transformations which positively

220

Chapter 8 Conclusion and Future Work

impact the target are included. This heuristic is generated according to the definition of

transformations and their possible impacts on the program features with regard to

selected metrics. However, this is not precise enough to ensure the actual relations

between the two entities are captured. Therefore, a statistical approach could be

suggested in the future for this purpose. The approach is to simulate the running of a

great number of test cases in which how a transformation affects program features and

the selected metrics can be reviewed and accordingly obtain more accurate results.

U sing the result, the transformation prediction can be more promising.

4- Obtaining expertise rules

Expertise rules are the ones gained from the practical work and experimented as

accepted strategy to follow. In the thesis, several expertise rules have been introduced

and represented. However, there are still more existing expertise rules that are not

included in the proposed approach. To explore a complete expertise library is also an

aim of the future work.

221

References

[1] G. Agosta, G. Palermo and C. Silvano, "Multi-Objective Co-Exploration of

Source Code Transformations and Design Space Architectures for Low-Power

Embedded Systems", Proceedings of the ACM Symposium on Applied

Computing (SAC), Nicosia, Cyprus, March, 2004, pp.891-896.

[2] A. Aho, R. Sethi and 1. Ullman, Compilers: Principles, Techniques and Tools:

Addison-Wesley, 1986.

[3] R. L. Akers, I. D. Baxter, M. Mehlich, B. J. Ellis and K. R. Luecke,

"Reengineering C++ Component Models VIa Automatic Program

Transformation", Proceedings of the 12th Working Conference on Reverse

Engineering Pittsburgh, PA, USA, November 2005, pp.13-22.

[4] R. L. Akers, I. D. Baxter, M. Mehlich, B. J. Ellis and K. R. Luecke, "Case Study:

Re-engineering C++ Component Models VIa Automatic Program

Transformation", Information & Software Technology, vol. 49, 2007, pp.

275-291.

[5] J. F. Allen, "Maintaining Knowledge about Temporal Intervals",

Communications of the ACM, vol. 26, 1983, pp. 832-843.

[6] A. W. Appel, Modern Compiler Implementation in ML: Cambridge University

Press, 1998.

[7] G. Arango, 1. D. Baxter, C. Pidgeon and P. Freeman, "TMM: Software

Maintenance by Transformation", IEEE Software, vol. 3,1986, pp. 27-39.

[8] R. Arnold, "A Road Map Guide to Software Reengineering", Software

Reengineering: IEEE Computer Society Press, 1994.

[9] M. Balazinska, E. Merlo, M. Dagenais, B. Lague and K. Kontogiannis,

"Advanced Clone-Analysis to Support Object-Oriented System Refactoring",

Proceedings of Working Conference on Reverse Engineering, Queensland.

Australia, November 2000, pp.98-107.

[10] R. Balzer, "A 15 Year Perspective on Automatic Programming", IEEE

222

References

Transactions on Software Engineering, vol. 11,1985, pp. 1257-1267.

[11] 1. D. Baxter, "Transformational maintenance by Reuse of Design Histories",

PhD Thesis: University of California at Irvine, Irvine, USA, 1990.

[12] 1. D. Baxter, "Using Transformation Systems for Software Maintenance and

Reengineering", Proceedings of International Conference on Software

Engineering, Toronto, Canada, May 2001, pp.739-740.

[13] K. Bennett and V. Rajlich, "Software Maintenance and Evolution: a Roadmap",

Proceedings of the Conference on the Future of Software Engineering, 2000,

pp.73-87.

[14] S. Black, "The Role of Ripple Effect in Software Evolution", Software

Evolution and Feedback: Theory and Practice: Wiley Publishers, 2006.

[15] J. W. Brackett, "Software Requirements", Technical Report SEI-CMV-19-1.2,

Software Engineering Institute, Carnegie Mellon University, 1990.

[16] M. V. D. Brand and E. Visser, "Generation of Formatters for Context-Free

Languages", ACM Transactions on Software Engineering and Methodology,

vol. 5, 1996,pp.I-41.

[17] M. Bravenboer, A. v. Dam, K. Olmos and E. Visser, "Program Transformation

with Scoped Dynamic Rewrite Rules", Fundamenta Informaticae, vol. 69, 2005,

pp. 1-56.

[18] M. Bravenboer, R. Vermaas, J. Vinju and E. Visser, "Generalized Type-Based

Disambiguation of Meta Programs with Concrete Object Syntax", Proceedings

of the 4th International Conference on Generative Programming and

Component Engineering (GPCE'05), Tallinn, Estonia, September 2005,

pp.157--172.

[19] D. C. A. Bulterman and L. Rutledge, SMIL2.0 Interactive Multimediafor Web

and Mobile Devices, Berlin Heidelberg New York: Springer, 2004.

[20] R. M. Burstall and J. Darlington, "A Transformation System for Developing

Recursive Programs", Journal of the ACM (JACM), vol. 24, 1977, pp. 44-67.

[21] F. Chen, M. Ladkau, S. Li and S. Natelberg, "Technical Report: FermaT

223

References

Intergrated Platform (FIP) Development Strategy", Technical Report, Software

Technology Research Laboratory, De Montfort University, Leicester, UK,

December 2005.

[22] K. Chen and V. Rajlich, "Case Study of Feature Location Using Dependence

Graph", Proceedings of International Workshop Program Comprehension

(IWPC'OO), Limerick, Ireland, June 2000, pp.241-249.

[23] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented

Design", IEEE Transactions on Software Engineering, vol. 20, 1994, pp. 476 -

493.

[24] E. J. Chikofsky and J. H. C. II, "Reverse Engineering and Design Recovery: A

Taxonomy", IEEE Software, vol. 7, 1990, pp. 13-17.

[25] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional

Requirements in Software Engineering: Kluwer Academic Publishers, 2000.

[26] E. Clementini, P. D. Felice and P. v. Oosterom, "A Small Set of Formal

Topological Relationships Suitable for End-User Interaction", Proceedings of

the 3rd International Symposium on Advances in Spatial Databases Singapore,

June 1993, pp.277 -295.

[27] W. R. Cook and 1. Palsberg, "A Denotational Semantics of Inheritance and Its

Correctness", Information and Computation, vol. 114, 1994, pp. 329-350.

[28] K. D. Cooper, P. J. Schielke and D. Subramanian, "Optimizing for Reduced

Code Space Using Genetic Algorithms", Proceedings of the ACM SIGPLAN

1999 Workshop on Languages, Compilers, and Tools for Embedded Systems,

Atlanta, Georgia, United States, May 1999, pp.I-9.

[29] J. Cordy, T. Dean, A. Malton and K. Schneider, "Software Engineering by

Source Transformation - Experience with TXL", Proceedings of International

Workshop on Source Code Analysis and Manipulation, Florence, Italy,

November 2001, pp.168-178.

[30] Centrum Voor Wiskunde en Informatica (CWI), "The AMBULANT Player",

http://www.cwi.nl/projects/Ambulant/. 2007.

[31] S. Demeyer, "Maintainability versus Performance: What's the Effect of

224

References

Introducing Polymorphism?" Universiteit Antwerpen (UA), Antwerpen,
Belgium, September 2002.

[32] J. C. Deprez and A. Lakhotia, "A Formalism to Automate Mapping from

Program Features to Code", Proceedings of International Workshop on

Program Comprehension (IWPC), Limerick, Ireland, June 2000, pp.72-83.

[33] A. v. Deursen, 1. Heering and P. Klint, "Language Prototyping: An Algebraic

Specification Approach", AMAST Series in Computing, vol. 5, 1995.

[34] E. W. Dijkstra, A Discipline of Programming, Upper Saddle River, NJ, USA:

Prentice Hall PTR, 1997.

[35] K. Ding, K. Zhou, F. He and Y. Shen:, "LDA - A Java-Based Linkage

Disequilibrium Analyzer", Bioinformatics, vol. 19,2003, pp. 2147-2148

[36] C. Djeraba, Multimedia Mining, a Highway to Intelligent Multimedia

Documents: Kluwer Publicshers, 2003.

[37] S. Ducasse, M. Rieger and S. Demeyer, "A Language Independent Approach for

Detecting Duplicated Code", Proceedings of International Conference on

Software Maintenance (ICSM'99), Oxford, UK, August, 1999, pp.1 09-118.

[38] T. Eisenbarth, R. Koschke and D. Simon, "Locating Features in Source Code",

IEEE Transactions on Software Engineering, vol. 29,2003, pp. 210-224.

[39] R. Fanta and V. Rajlich, "Reengineering Object-Oriented Code", Proceedings

of International Conference of Software Maintenance, Bethesda, MD, USA,

November 1998, pp.238-246.

[40] R. Fanta and V. Rajlich, "Restructuring Legacy C Code into C++", Proceedings

of International Conference of Software Maintenance, Oxford, UK, August

1999, pp.77-85.

[41] D. Fatiregun, M. Harman and R. M. Hierons, "Evolving Transformation

Sequences using Genetic Algorithms", Proceedings of the 4th IEEE

International Workshop on Source Code Analysis and Manipulation (SCAM),

Chicago, IL, USA, September 2004, pp.66-75.

[42] M. S. Feather, "A Survey and Classification of Some Program Transformation

225

References

Approaches and Techniques", Proceedings of Working Conference on Program

Specification and Transformation, Ailz, Germany, 1987, pp.165-195.

[43] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical

Approach (2nd edition), London: International Thomson Computer Press, 1998.

[44] M. Fowler, K. Beck, J. Brant and W. Opdyke, Refactoring: Improving the

Design of Existing Code: Addison-Wesley, 1999.

[45] P. Giorgini, J. Mylopoulos, E. Nicchiarelli and R. Sebastiani, "Reasoning with

Goal Models", Proceedings of the 21st International Conference on Conceptual

Modeling, Lecture Notes in Computer Science 2503, Tampere, Finland, October

2002.

[46] F. Glover, "Tabu Search: A Tutorial", Interface, vol. 20, 1990, pp. 74-94.

[47] M. Godfrey and Q. Tu, "Evolution in Open Source Software: A Case Study",

Proceedings of International Conference on Software Maintenance (ICSM) ,

San Jose, California, USA, October 2000, pp.131-142.

[48] D. E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine

Learning, Reading, MA: Addison-Wesley, 1989.

[49] J. Guyon, P.-E. Moreau and A. Reilles, "An Integrated Development

Environment for Pattern Matching Programming", Proceedings of 2nd eclipse

Technology eXchange workshop, Barcelona, Spain, April 2004.

[50] M. Halstead, "Natural Laws Controlling Algorithm Structure?" ACM SIGPLAN

Notices,vol. 7, 1972,pp.19-26.

[51] M. Harman and 1. A. Clark, "Metrics Are Fitness Functions Too", Proceedings

of thel0th IEEE International Software Metrics Symposium (METRICS'04) ,

Chicago, IL, USA, September 2004, pp.58-69.

[52] M. Harman and B. Jones, "Search Based Software Engineering", Journal of

Information and Software Technology, vol. 43, 2001, pp. 833-839.

[53] M. Harman and J. Wegener, "Getting Results from Search-Based Approaches to

Software Engineering", Proceedings of the 26th International Conference on

Software Engineering (ICSE'04), Edinburgh, UK, May 2004, pp.728-729.

226

References

[54] J. L. Hein, Discrete Mathematics (2nd Edition), London: Jones and Bartlett
Publishers International, 2003.

[55] IEEE, "IEEE Standard for a Software Quality Metrics Methodology", 1998.

[56] ISO, "ISO 9241-11: Guidance on Usability ",1998.

[57] ISO/IEC, "ISO/IEC JTC1, ISO-9126-1: Software Engineering - Product Quality
- Part 1: Quality Model", 2005.

[58] JavaCC, "Java Compiler Compiler", in http://javacc.dev.java.netl.

[59] Jia Liu, D. S. Batory and C. Lengauer:, "Feature oriented refactoring of legacy

applications", Proceedings of the 28th International Conference on Software

Engineering (ICSE), Shanghai, China, May 2006.

[60] H. Kaiya and M. Saeki, "Ontology Based Requirements Analysis: Lightweight

Semantic Processing Approach", Proceedings of the 5th IEEE International

Conference on Quality Software (QSIC), Melbourne, Australia, September 2005,

pp.223-230.

[61] Y. Kataoka, M. D. Ernst, W. G. Griswold and D. Notkin, "Automated Support

for Program Refactoring Using Invariants", Proceedings of IEEE International

Conference of Software Maintenance (ICSM), Florence, Italy, November 2001,

pp.736-743.

[62] R. Kazman and S. Carriere, "Playing Detective: Reconstructing Software

Architecture from Available Evidence", Technical Report, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, USA, 1997.

[63] S. E. Keller, J. A. Perkins, T. F. Payton and S. P. Mardinly, "Tree

Transformation Techniques and Experiences", Proceedings of ACM SIGPLAN

Symposium on Compiler Construction, Montreal, Canada, June 1984,

pp.190-20 1.

[64] B. L. Kovits, Practical Software Requirements: A Manual of Content and Style,

Greenwitch, CT: Manning Publications Co., 1999.

[65] D. H. Krantz and R. D. Luce, Foundations of Measurement: Academic Press,

1971.

227

References

[66] H. E. Kyburg, Theory and measurement, Cambridge: Cambridge University
Press, 1984.

[67] P. 1. M. v. Laarhoven and E. H. L. A arts , Simulated Annealing: Theory and

Practice, Dordrecht, the Netherlands: Kluwer Academic Publishers, 1987.

[68] M. M. Lehman and 1. F. Ramil, "Software Evolution -- Background, Theory,

Practice", Information Processing Letters, vol. 88,2003, pp. 33-44.

[69] X. Li and G. Zheng, "A Modified Inheritance Mechanism Enhancing

Reusability and Maintainability in Object-Oriented Languages", Proceedings of

the 3rd IEEE Asia-Pacific Software Engineering Conference(APSEC), Seoul,

South Korea, December, pp.93-1 02.

[70] G. Linden, H. Tirri and A. 1. Verkamo, "ALCHEMIST: a General Purpose

Transformation Generator ", Source Software-Practice & Experience Archive,

vol. 26, 1995, pp. 653-675.

[71] L. Liu and E. Yu, "Designing Information Systems in Social Context: a Goal

and Scenario Modelling Approach", Information Systems, vol. 29, 2004, pp.

187-203.

[72] X. Liu, "Abstraction: A Notion for Reverse Engineering", in Software

Technology Research Laboratory, PhD Thesis: De Montfort University,

Leicester, UK, 1999.

[73] A. C. Luther, Authoring Interactive Multimedia: Morgan-Kaufman Pub, 1994.

[74] T. 1. McCabe, "A Complexity Measure", IEEE Transactions on Software

Engineering, vol. 2, 1976, pp. 308-320.

[75] S. McConnell, Code Complete: A Practical Handbook of Software Construction:

Microsoftware Press, 1993.

[76] T. Mens and T. Tourwe, "A Survey of Software Refactoring", IEEE

Transactions on Software Engineering, vol. 30, 2004.

[77] A. Metha and G. T. Heineman, "Evolving Legacy System Features into

Fine-Grained Components", Proceedings of International Conference of

Software Engineering (ICSE2002), Orlando, Florida, USA, May 2002.

22S

References

[78] R. Millham, "Evolution of Batch-Oriented COBOL Systems into

Object-Oriented Systems through Unified Modelling Language", in Software

Technology Research Laboratory, PhD Thesis: De Montfort University,

Leicester, UK, 2005.

[79] D. Millicev, "Domain Mapping Using Extended UML Object Diagrams", IEEE

Software, vol. 19,2002,pp. 90-97.

[80] P.-E. Moreau, C. Ringeissen, M. Vittek and 1. G. Hedin, "A Pattern Matching

Compiler for Multiple Target Languages", Proceedings of 12th Conference on

Compiler Construction, Warsaw, Poland, May 2003, pp.61-76.

[81] R. E. Mortimer and K. H. Bennett, "Maintenance and Abstraction of Program

Data Using Formal Transformations", Proceedings of International Conference

on Software Maintenance, Monterey, CA, USA, November 1996, pp.30 l.

[82] S. Muchnick, Advanced Compiler Design and Implementation:

Morgan-Kaufman Publishers, 1997.

[83] J. Mylopoulos, L. Chung and B. Nixon, "Representing and Using Nonfunctional

Requirements: A Process-Oriented Approach", IEEE Transactions on Software

Engineering, vol. 18, 1992, pp. 483-497.

[84] J. Mylopoulos, L. Chung and E. Yu, "From Object-Oriented to Goal-Oriented

Requirements Analysis", Communications of the ACM, vol. 42, 1999, pp.

31-37.

[85] M. R. Olsem, "An Incremental Approach to Software System Re-engineering",

Journal of Software Maintenance: Research and Practice, vol. 10, 1998, pp.

181-202.

[86] W. F. Opdyke, "Refactoring: A Program Restructuring Aid in Designing

Object-Oriented Application Frameworks", PhD Thesis: University of Illinois,

Urbana-Champaign, USA, 1992.

[87] Oratrix, "GRiNS for SML", www.oratrix.com. 2007.

[88] C. R. Pandian, Software Metrics: A Guide to Planning, Analysis, and

Application: Auerbach Publications, 2004.

References

[89] R. E. Park, W. B. Goethert and W. A. Florac, "Goal-Driven Software

Measurement? A Guidebook", Technical Report, Software Engineering

Institute, Carnegie Mellon University, 1996.

[90] 1. Pashov, "Feature-Based Methodology for Supporting Architecture

Refactoring and Maintenance of Long-Life Software Systems", PhD thesis:

Technical University of Ilmenau, Ilmenau, Germany, 2004.

[91] A. Pettorossi and M. Proietti, "Program Transformation: Theoretical

Foundations and Basic Techniques (Part1),', Fundamenta Informaticae, vol. 66,

2005, pp. i-iii.

[92] R. S. Pressman, Software Engineering - A Practitioner's Approach, New York:

McGraw-Hill, 2005.

[93] Program-Transformation.Org, "Program Transformation Wiki", 2002.

[94] M. Proietti and A. Pettorossi, "Semantics Preserving Transformation Rules for

Prolog", Proceedings of the ACM Symposium on Partial Evaluation and

Semantics-Based Program Manipulation (PEPM'9i), New Haven, Connecticut,

USA, September 1991, pp.274-284.

[95] F. S. Roberts, Measurement Theory with Applications to Decision Making,

Utility, and the Social Sciences, Reading, MA: Addison-Wesley, 1979.

[96] L. H. Rosenberg and L. E. Hyatt, "Software Re-engineering", Technical Report

SA TC-TR-95-iOOi , NASA Software Assurance Technology Center,

Washington, USA, October 1996.

[97] C. Ryan, Automatic Re-engineering of Software Using Genetic Programming,

vol. 2: Kluwer Academic Publishers, 1999.

[98] D. Sands, "Total Correctness by Local Improvement in the Transformation of

Functional Programs", ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 18, 1996, pp. 175-234.

[99] K. Slonneger and B. L. Kurtz, Formal Syntax and Semantics of Programming

Languages: Addison-Wesley Publishing Company, 1995.

[100] D. R. Smith, "KIDS: A Semiautomatic Program Development System", iEEE

230

References

Transactions on Software Engineering, vol. 16, 1990, pp. 1024-1043.

[101] R. Steinmetz and K. Nahrstedt, Multimedia Applications, Berlin, Germany:
Springer-Verlag, 2004.

[102] B. S. Stewart and C. C. White, "Multiobjective A *", Journal of the

ACM(JACM), vol. 38,1991, pp. 775-814.

[103] L. Tahvildari, "Quality-Driven Object-Oriented Reengineering Framework",

PhD Thesis: University of Waterloo, Waterloo, Ontario, Canada, 2003.

[104] L. Tahvildari and K. Kontogiannis, "A Software Transformation Framework for

Quality-Driven Object-Oriented Re-engineering", Proceedings of the IEEE

International Conference on Software Maintenance (ICSM), Montreal, Canada,

October 2004, pp.596-605.

[105] S. Tilley, "Perspectives on Legacy Systems Reengineering", Reengineering

Center, Software Engineering Institute (SEI), Carnegie Mellon University,

Pittsburgh, USA, 1995.

[106] E. Visser, "A Survey of Rewriting Strategies in Program Transformation

Systems", Proceedings of Workshop on Reduction Strategies in Rewriting and

Programming (WRS'OJ), Utrecht, the Nethelands, May 2001.

[107] E. Visser, Z.-e.-A. Benaissa and A. Tolmach, "Building Program Optimizers

with Rewriting Strategies", Proceedings of the 3rd ACM SIGPLAN

International Conference on Functional Programming (ICFP'98) , Baltimore,

Maryland, USA, September 1998, pp.13--26.

[108] E. Visser, T. Mens and M. Wallace, "Program Transformation Wiki", in

http://www.program-transformation.org/Transform/ProgramTransformation,

2004.

[109] W3C, "XML Path Language (XPath) Version 1.0. W3C Recommendation ",

Proceedings of http://www.w3.org/TRIxpath, November 1999.

[110] W3C, "XSL Transformation (XSL T) Version 1.0. W3C Recommendation ",

Proceedings of http://www.w3.org/TRlxslt, November 1999.

[111] M. Ward, "Proving Program Reginements and Transformations", PhD Thesis:

231

References

Oxford University, Oxford, UK, 1989.

[112] M. Ward, "A Definition of Abstraction", Journal of Software Maintenance:

Research and Practice, vol. 7, 1995, pp. 443-450.

[113] M. Ward, "Program Analysis by Formal Transformation ", The Computer

Journal, vol. 39, 1996, pp. 598-618.

[114] M. Ward, "Assembler to C Migration Using the FermaT Transformation

System", Proceedings of International Conference of Software Maintenance

(ICSM) Oxford, UK, August 1999, pp.67-76.

[115] M. Ward, "The FermaT Assembler Re-engineering Workbench", Proceedings

of International Conference of Software Maintenance (ICSM), Florence, Italy,

November 2001, pp.659-662.

[116] M. Ward, "WSL Manual ", FermaT Transformation Engine3, 2002.

[117] M. Ward, "Pigs from Sausages? Reengineering from Assembler to C VIa

FermaT Transformations", Science of Computer Programming. Special Issue

on Program Transformation, vol. 52/1-3,2004, pp. 213-255.

[118] M. Ward and H. Zedan, "MetaWSL and Meta-Transformations in the FermaT

Transformation System", Proceedings of the 29th Annual International

Computer Software and Applications Conference (COMPSAC), Edinburgh, UK,

July 2005.

[119] M. Ward and H. Zedan, "Slicing as a Program Transformation", ACM

Transactions on Programming Languages and Systems (TOPLAS) , vol. 28,

2006.

[120] B. Wegbreit, "Goal-Directed Program Transformation", IEEE Transactions on

Software Engineering, vol. 2, 1976, pp. 69-80.

[121] J. V. Wijngaarden, "Code Generation from a Domain Specific Language", vol.

Master Thesis: Utrecht University, 2003.

[122] N. Wilde, M. Buckellew, H. Page, V. Rajlich and L. Pounds, "A Comparison of

Methods for Locating Features in Legacy Software", Journal of Systems and

Software, 2002, pp. 105-114.

232

References

[123] W. E. Wong, S. S. Gokhale, J. R. Horgan and K. S. Trivedi, "Locating Program

Features using Execution Slices", Proceedings of the 1999 IEEE Symposium on

Application-specific Systems and Software Engineering Technology,

Richardson, Texas, USA, March 1999, pp.194-203.

[124] H. Yang, P. Luker and W. C. Chu, "Measuring Abstractness for Reverse

Engineering in a Re-engineering Tool", Proceedings of the International

Conference on Software Maintenance (ICSM) , Bari, Italy, September 1997,

pp.48-57.

[125] H. Yang and M. Ward, Successful Evolution of Software Systems, Boston,

London: Arteth House Computing Library, 2003.

[126] X. Yao, "Details of Grant of EPSRC Project SEBASE: Software Engineering

By Automated Search", http://gow.epsrc.ac.ukIViewGrant.aspx?GrantRef=

EPID05278511, 2006.

[127] T. I. Yoshio Kataoka, Hiroki Andou, Tetsuji Fukaya, "A Quantitative

Evaluation of Maintainability Enhancement by Refactoring", Proceedings of

International Conference of Software Maintenance (ICSM'02) , Montreal,

Quebec, Canada, October 2002.

[128] E. Younger, Z. Luo, K. H. Bennett and T. M. Bull, "Reverse Engineering

Concurrent Programs Using Formal Modelling and Analysis", Proceedings of

International Conference of Software Maintenance (ICSM) , Monterey, CA,

USA, November 1996, pp.255-264.

[129] E. Younger and M. Ward, "Understanding Concurrent Program using Program

Transformations", Proceedings of the 2nd Workshop on Program

Comprehension, Capri, Italy, July 1993, pp.160-168.

[130] Y. Yu, J. C. Leite, J. Mylopoulos, L. L. Liu, E. Yu and E. D. Hollander,

"Software Refactoring Guided by Multiple Soft-Goals", Proceedings of the

First International Workshop on REFactoring: Achievements, Challenges,

Effects (REFACE), in conjunction with the 10th Working Conference on

Reverse Engineering, Victoria, Canada, November 2003.

[131] W. Zhao, L. Zhang, Y. Liu, 1. Sun and F. Yang, "SNIAFL: Towards a Static

Non-Interactive Approach to Feature Location", Proceedings of International

Conference on Software Engineering (ICSE), Edinburgh, UK, May 200.f.

References

[132] S. Zhou and H. Yang, "Measuring Software Components through

Object-Orientation and Abstraction for Reengineering", Proceedings of the

ACM and IEEE International Symposium on Internet Technology (ISIT), Taibei,

1998.

[133] Y. Zou, "Techniques and Methodologies for the Migration of Legacy Systems

to Object Oriented Platforms", PhD Thesis: University of Waterloo, Ontario,

Canada, 2003.

[134] Y. Zou and K. Kontogiannis, "Incremental Transformation of Procedural

Systems to Object Oriented Platforms", Proceedings of the 2 7th IEEE Annual

International Computer Software and Applications Conference (COMPSAC),

Dallas, Texas, USA, November 2003, pp.290-295.

234

Appendix A
Backus Naur Form of Extended WSL

WSL statements <EOF>
statements ::=
statement ..

statement «S_SEMICOLON> statement)*
stat if

stat if

stat d if

stat d do

stat while -

stat do -

stat exit
stat for

stat var

stat d if
stat d do
stat while
stat do
stat exit
stat for
stat var
stat_comment
stat assert
stat_assignment
stat'-push
stat.-pop
staUoin
stat_actions
stat call
stat'-print
stat_ mw _ func _ decl
stat_begin
stat foreach
stat ateach
stat ifmatch
stat ifmatch2
stat_map hash
stat error
stat_spec
stat_ single_assign
stat'-pattern
stat'-proc _call
stat_require
stat class
stat_seq
stat'-par
«S_SKIP>)
«S_ABORT>)
«S_STAT_PLACE>)

" ((<S _IF> condition <S _THEN> statements) ((<S _ ELSIF> condition <S _THEN>
statements))* ((<S_ELSE> statements <S_FI» I pseudo_else <S_FI»)
,,= ((<S_D_IF> condition <S_ARROW> statements) ((<S_BOX> condition <S_ARROW>
statements))* <S _ FI>)
" ((<S_D_DO> condition <S_ARROW> statements) ((<S_BOX> condition <S_ARROW>
statements))* <S _ OD>)

,,= «S_ WHILE> condition <S_DO> statements <S_OD»
" «S_DO> statements <S_OD»
" T Exit
" (<S_FOR> T_ Var_Lvalue <S_BECOMES> expression <S_ TO> expression <S_STEP>
expression <S_DO> statements <S_OD»
I (<S_FOR> T_ Var_Lvalue <S_IN> s_expression <S_DO> statements <S_OD»
,,= «S_ VAR> <S_LANGLE> assigns <S_RANGLE> <S_COLON> statements <S_ENDVAR»

235

Appendix A Backus Naur Form of Extended WSL
stat_comment .. T Comment
stat_ass~rt ::= «S_LBRACE> condition <S_RBRACE»
stat_assIgnment ::= «S_LANGLE> assigns <S RANGLE»

stat---'push" «S_PUSH> <S_LPAREN> T_ V~r_Lvalue <S_COMMA> s_expression <S RPAREN»
stat--?~p " «S_POP> <S_LPAREN> T_ Var_Lvalue <S_COMMA> T_ Var_Lvalue <S - RPAREN»
staUom " «S_JOIN> statements <S_COMMA> statements <S_ENDJOIN» -

stat actions::=
stat call ..

«S_ACTIONS> T_IdentifierName <S COLON> actions <S ENDACTIONS»
T Call --

stat---'print" «S_PRINT> <S_LPAREN> expressions <S_RPAREN»
I «S_PRINFLUSH> <S_LPAREN> expressions <S_RPAREN»

stat_mw_func_dec1 ::= «S_MW _PROC> T_AtName <S_LPAREN> « Ivalue «S COMMA> Ivalue)*)*)
var_lvalues <S_RPAREN> <S_DEFINE> statements «S END> I <S FULLSTOP»)
I «S_MW _FUNCT> T_AtName <S_LPAREN> ((l~alue (<S_COMMA> Ivalue)*)*)
<S_RPAREN> <S_DEFINE> « <S_ VAR> <S_LANGLE> assigns <S_RANGLE> <S COLON>
statements <S_SEMICOLON> <S_LPAREN> expression <S_RPAREN> «S END> 1-
<S_FULLSTOP») I «S_COLON> statements <S_SEMICOLON> <S LPAREN> expression
<S_RPAREN> «S_END> I <S_FULLSTOP»») -
1 «S_MW_BFUNCT> T_AtName <S_QUERY> <S_LPAREN> « Ivalue «S COMMA>
Ivalue)*)*) <S_RPAREN> <S_DEFINE> « <S_ VAR> <S_LANGLE> assigns <S RANGLE>
<S_COLON> statements <S_SEMICOLON> <S_LPAREN> condition <S_RPAREN> «S_END> I
<S_FULLSTOP») I «S_COLON> statements <S SEMICOLON> <S LPAREN> condition
<S_RPAREN> «S_END> I <S_FULLSTOP»») -

stat_begin ::= «S_BEGIN> statements <S_ WHERE> defines <S_END»
stat_foreach::= <S_FOREACH> « <S_STATEMENT> <S_DO> statements <S_OD» I «S_STATEMENTS>

<S _DO> statements <S _ OD>) I (<S _VARIABLE> <S _DO> statements <S _ OD>) I «S GLOBAL>
<S_ VARIABLE> <S_DO> statements <S_OD» I «S_LVALUE> <S_DO> statements <S OD» 1

«S_STS> <S_DO> statements <S_OD» I «S_NAS> <S_DO> statements <S_OD» I -
«S_EXPRESSION> <S_DO> statements <S_OD» 1 «S_CONDITION> <S_DO> statements
<S_OD» 1 «S_TERMINAL> « <S_STATEMENT> <S_DO> statements <S_OD» 1

«S_STATEMENTS> <S_DO> statements <S_OD»»)
stat_ateach ::= <S_ATEACH> « <S_STATEMENT> <S_DO> statements <S_OD» 1 «S_STATEMENTS>

<S_DO> statements <S_OD» I «S_ VARIABLE> <S_DO> statements <S_OD» I «S_GLOBAL>
<S_ VARIABLE> <S_DO> statements <S_OD» 1 «S_LVALUE> <S_DO> statements <S_OD» 1

«S_STS> <S_DO> statements <S_OD» 1 «S_NAS> <S_DO> statements <S_OD» 1

«S_EXPRESSION> <S_DO> statements <S_OD» 1 «S_CONDITION> <S_DO> statements
<S OD» I «S_TERMINAL> « <S_STATEMENT> <S_DO> statements <S_OD» 1

«S_STATEMENTS> <S_DO> statements <S_OD»»)
stat ifmatch ,,= <S_IFMATCH> « <S_STATEMENTS> statements <S_THEN> statements

« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»» 1 «S_STATEMENT>
statement <S_THEN> statements « «S_ENDMATCH») I «S_ELSE> statements
<S_ENDMATCH»» I «S_EXPRESSION> expression <S_THEN> statements
« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»» 1 «S_EXPRESSIONS>
expressions <S_THEN> statements « «S_ENDMATCH») 1 «S_ELSE> statements
<S ENDMA TCH>))) I (<S _CONDITION> condition <S _THEN> statements
«(<S_ENDMATCH») 1 «S_ELSE> statements <S_ENDMATCH»» 1 «S_DEFINITION>
define <S THEN> statements « «S_ENDMATCH») I «S_ELSE> statements
<S_ENDMATCH»» I «S_DEFINITIONS> defines <S_THEN> statements .
« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»» I «S_ASSIGN> assIgn
<S THEN> statements (((<S _ ENDMA TCH>)) I (<S _ELSE> statements <S _ ENDMA TCH>))) 1

«5_ASSIGNS> assigns_node <S_THEN> statements « «S_ENDMATCH») I «S_ELSE>
statements <S_ENDMATCH»» I «S_ACTION> action <S_THEN> statements
« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»» 1 «S_GVARDED>
guarded <S THEN> statements (((<S _ ENDMA TCH>)) 1 (<S _ELSE> statements
<S END MATCH»» I (<S _LV ALUE> Ivalue <S _THEN> statements (((<S _ ENDMA TCH>)) 1

(<5_ ELSE> statements <S _ ENDMA TCH>))) I (<S _LV ALVES> Ivalues <S _THEN> statements
« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»»)

stat i fmatch2 " <S IFMA TCH2> ((<S _ ST A TEMENTS> statements <S _THEN> statements
« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»» 1 «S_STATEMENT>
statement <S THEN> statements « «S_ENDMATCH») I «S_ELSE> statements
<S ENDMATCH»» 1 «S_EXPRESSION> expression <S_THEN> statements
«(<S_ENDMATCH») 1 «S_ELSE> statements <S_ENDMATCH»» 1 «S_EXPRESSIONS>
expressions <S_THEN> statements « «S_ENDMATCH») I «S_ELSE> statements

236

Appendix A Backus Naur Form of Extended WSL
<S_ENDMATCH»» I «S_CONDITION> condition <S THEN> statements
« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»» I «S DEFINITION>
define <S_THEN> statements « «S_ENDMATCH») I «S ELSE> statements
<S_ENDMATCH»)) I «S_DEFINITIONS> defines <S THEN> statements
« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»» I «S ASSIGN> assign
<S_THEN> stateme~ts « «S_ENDMATCH») I «S_ELSE> statements <S ENnMATCH»» I
«S_ASSIGNS> assIgns_node <S_THEN> statements « «S_ENDMATCH>)") I «S ELSE>
statements <S_ENDMATCH»» I «S_ACTION> action <S THEN> statements -
« «S_ENDMATCH») I «S_ELSE> statements <S_ENDMATCH»» I «S GUARDED>
guarded <S_THEN> statements « «S_ENDMATCH») I «S ELSE> statements
<S _ ENDMA TCH>))) I (<S _LV ALVE> lvalue <S _THEN> statements ((«S ENDMA TCH>)) I
(<S _ELSE> statements <S _ ENDMATCH>))) I (<S _LV ALVES> lvalues <S THEN> statements
(((<S _ ENDMA TCH>)) I (<S _ELSE> statements <S _ ENDMA TCH>)))) -

stat_maphash ::= «S_MAPHASH> <S_LPAREN> T_Name <S_COMMA> expression <S_RPAREN»
stat_error ::= «S_ERROR> <S_LPAREN> expressions <S_RPAREN»
stat_spec ::= «S_SPEC> <~_LANGLE> Ivalues <S_RANGLE> <S_COLON> condition <S_ENDSPEC>)
statyroc_call ::= (T_IdenttfierName <S_LPAREN> « expression «S_COMMA> expression)*)*)

var _lvalues <S _ RP AREN>)
I «S_PLINK_P> T_IdentifierName <S_LPAREN> ((expression «S COMMA>
expression)*)*) var_Ivalues <S_RPAREN» -
I (T_AtName «S_LPAREN»* « expression «S_COMMA> expression)*)*) var Ivalues
«S_RPAREN»*) -
I (T_AtPatOneName <S_LPAREN> « expression «S_COMMA> expression)*)*) var_Ivalues
<S _ RP AREN>)
I «S_PLINK_XP> T_IdentifierName <S_LPAREN> « expression «S_COMMA>
expression)*)*) <S_RPAREN»

statyattem .. T _ Stat_ Pat_One
I T _ Stat_Pat_Many
I T_Stat_Pat_Any

stat_single_assign .. ((lvalue <S_BECOMES> expression))
I (Ivalue <S_FULLSTOP> <S_LPAREN> expression <S_RPAREN> <S BECOMES>

expression)
guarded .. (condition «S_THEN> I <S_ARROW» statements)

« T_Cond_Pat_One I T_Cond_Pat_Many I T_Cond_Pat_Any) «S_THEN> I <S_ARROW»

statements)
defines .. - define « <S_COMMA> define) I (define»*
define .. (statjunc_decll T_Defn_Pat_One I T_Defn_Pat_Many I T_Defn_Pat_Any)
stat func decl.. «S_PROC> T_IdentifierName <S_LPAREN> « Ivalue «S_COMMA> Ivalue)*)*)

var_Ivalues <S_RPAREN> <S_DEFINE> statements «S_END> I <S_FULLSTOP> »
I «S_FUNCT> T_IdentifierName <S_LPAREN> « Ivalue «S_COMMA> Ivalue)*)*)
<S RPAREN> <S DEFINE> ((<S _ V AR> <S _ LANGLE> assigns <S _ RANGLE> <S _COLON>
<S - LPAREN> exPression <S_RPAREN> «S_END> I <S_FULLSTOP») I «S_COLON>
<S-LPAREN> expression <S_RPAREN> «S_END> I <S_FULLSTOP»»)
I - «S_BFUNCT> T_IdentifierName <S_QUERY> <S_LPAREN> « Ivalue «S_COMMA>
lvalue)*)*) <S_RPAREN> <S_DEFINE> («S_ VAR> <S_LANGLE> assigns <S_RANGLE>
<S COLON> <S LPAREN> condition <S RP AREN> «S END> I <S FULLS TOP>)) I
«S_COLON> <S_LPAREN> condition <S_RPAREN> «S_END> I <S_FULLSTOP»»)

statJequire::= «S_REQUlRE> ((lvalues «S_COMMA> Ivalues)*)*)
stat class .. - «S_CLASS> T_IdentifierName «S_COLON> T_IdentifierName) <S_LBRACE>

« field_value «S_COMMA> field_value)*) (method <S_COMMA> method)*) «S_RBRACE>

«S_END> I <S_FULLSTOP»»)
stat_seq .. «S_SEQ> <S_BEGIN> (lvalue «S_COMMA> lvalue)*)*)

statyar .. «S_PAR> <S_BEGIN> (lvalue «S_D_LINE> Ivalue)*)*)
field value::= «S_FIELD> (lvalue «S_COMMA> Ivalue)*)*)*)
method .. _ «S_METHOD> T_IdentifierName <S_LPAREN> « Ivalue «S_COMMA> Ivalue)*)*)

var Ivalues <S RPAREN> <S DEFINE> statements «S_END> I <SJULLSTOP»)
actions ::= - «S_METHOD> T_Iden'tifierName <S_LPAREN> ((Ivalue «S_COMMA> Ivalue)*)*)

<S RPAREN> <S DEFINE> « <S_ VAR> <S_LANGLE> assigns <S_RANGLE> <S_COLON>
<S - LPAREN> exPression <S_RPAREN> «S_END> I <S_FULLSTOP») I «S_COLON>
<S - LPAREN> expression <S_RPAREN> «S_END> I <S_FULLSTOP»»)

action ::=- «S METHOD> T_IdentifierName <S_QUERY> <S_LPAREN> « Ivalue «S_COMMA>
Ivalue)*)*) <S_RPAREN> <S_DEFINE> ((<S_ VAR> <S_LANGLE> assigns <S_RANGLE>
<S_COLON> <S_LPAREN> condition <S_RPAREN> «S_END> I <S_FULLSTOP») I

237

Appendix A Backus Naur Form of Extended WSL
. «S_COL.ON> <S_LPAREN> condition <S_RPAREN> «S_END> I <S_FULLSTOP»)))

assIgns_node::= (assIgn «S_COMMA> assign)*)
assigns .. assign «S_COMMA> assign)*
assign .. (T_ Var_Lvalue <S_BECOMES> expression)
var Ivalues::= ((<S _V AR> (Ivalue (<S _COMMA> Ivalue)*)*)*)
Ivalues .. (Ivalue (<S _COMMA> Ivalue)*)
Ivalue ::= (T_ Var_Lvalue I T_Lvalue_Pat_One I T_Lvalue_Pat_Many I T_Lvalue Pat Any)

«S_LBRACKET> a_expressions <S_RBRACKET> I <S_LBRACKET> a ~xpr~ssion <S DOTDOT>
(<S_RBRACKET> I a_expression <S_RBRACKET» I <S_LBRACKET> ~ expression -
<S_COMMA> a_expression <S_RBRACKET> I (T Struct Lvalue))* -

condition
b term
b factor

b atom

.. (b_term «S_OR> b_term)*) --

.. - (b_factor «S_AND> b_factor)*)

.. «S_NOT> b_factor)
b atom
(<S _ LP AREN> condition <S _ RP AREN>)
«S_TRUE>)
«S_FALSE>)
«S_COND_PLACE>)

condyrefix

condyat ..
rel_exp I condyat
T _ Cond_Pat_ One
T_Cond_Pat_Many
T_C on d_P at_Any

rel_exp .. expression «S_EQUAL> expression I <S_NEQ> expression I <S_LANGLE> expression I
<S_RANGLE> expression I <S_LEQ> expression I <S_GEQ> expression I <S_IN> expression I
<S_NOTIN> expression)

condyrefix .. «S_EVEN> <S_QUERY> <S_LPAREN> expression <S_RPAREN»
I «S_ODD> <S_QUERY> <S_LPAREN> expression <S_RPAREN»
I «S_SUBSET> <S_QUERY> <S_LPAREN> s_expression <S_COMMA> s_expression

<S _ RP AREN>)
I (<S _MEMBER> <S _QUERY> <S _ LPAREN> expression <S _ COMMA> s _expression

<S_RPAREN>)
I (T_IdentifierName <S_QUERY> <S_LPAREN> « expression «S_COMMA> expression)*)*)

<S _ RP AREN>)
I (T_AtName <S_QUERY> <S_LPAREN> « expression «S_COMMA> expression)*)*)

<S _ RP AREN>)
I «S_PLlNK_XC> T_IdentifierName <S_QUERY> <S_LPAREN> ((expression
«S COMMA> expression)*)*) <S_RPAREN»

expressions::= (expression (<S_ COMMA> expression)*)

expression ::= a_expression
fill_expression
fill 2 _expression
iC expression

I
I
I
I new _expression
I multi_expression

iCexpression ::= «S_IF> condition <S_THEN> expression <S_ELSE> expression <S_FI»
fill_expression.. «S_FILL> <S_STATEMENTS> statements <S_ENDFILL»

I (<S _FILL> <S _ STATEMENT> statement <S _ ENDFILL>)
I «S_FILL> <S_EXPRESSION> expression <S_ENDFILL»
I «S_FILL> <S_EXPRESSIONS> expressions <S_ENDFILL»
I «S_FILL> <S_CONDITION> condition <S_ENDFILL»
I «S_FILL> <S_DEFINITION> define <S_ENDFILL»
I (<S_FILL> <S_DEFINITIONS> defines <S_ENDFILL»
I «S_FILL> <S_ASSIGN> assign <S_ENDFILL»
I (<S_FILL> <S_ASSIGNS> assigns_node <S_ENDFILL»
I «S_FILL> <S_ACTION> action <S_ENDFILL»
I «S_FILL> <S_GUARDED> guarded <S_ENDFILL»
I «S_FILL> <S_LVALUE> Ivalue <S_ENDFILL»
I «S FILL> <S LV ALUES> Ivalues <S _END FILL>)

fill2 expression ::= - «S_FILL2> <S_STATEMENTS> statements <S_ENDFILL»
I «S_FILL2> <S_STATEMENT> statement <S_ENDFILL»
I «S_FILL2> <S_EXPRESSION> expression <S_ENDFILL»
I (<S_FILL2> <S_EXPRESSIONS> expressions <S_ENDFILL»
I «S_FILL2> <S_CONDITION> condition <S_ENDFILL»
I «S_FILL2> <S_DEFINITION> define <S_ENDFILL»

23R

Appendix A Backus Naur Form of Extended WSL
I «S_FILL2> <S_DEFINITIONS> defines <S_ENDFILL»
I «S_FILL2> <S_ASSIGN> assign <S_ENDFILL»
I «S_FILL2> <S_ASSIGNS> assigns_node <S_ENDFILL»
I «S_FILL2> <S_ACTION> action <S_ENDFILL»
I «S_FILL2> <S_GUARDED> guarded <S_ENDFILL>)
I «S_FILL2> <S_LVALUE> lvalue <S_ENDFILL»
I «S_FILL2> <S_LVALUES> lvalues <S_ENDFILL»

new_expressIOn ::= «S_NEW> T_IdentifierName <S_LPAREN> lvalues <S_RPAREN»
multi_expression::= (lvalue <T _ReI> lvalue)
s _expression a_expression
a_expreSSIOns ° ° a_expression
a_expreSSIOn 00 term «S_PLUS> term I <S_MINUS> term I <S_CONCAT> term I <S_UNION> term)*
term 00 factor «S_TIMES> factor I <S_SLASH> factor I <S_MOD> factor I <S_DIV> factor I

factor
<S _ BACKSLASH> factor)*
::= (true_factor I «S_MINUS> factor)) «S_CARET> a_expression I <S_CARET> <S_CARET>
s_expression I <S_LBRACKET> a_expressions <S_RBRACKET> I <S_LBRACKET> a_expression
<S_DOTDOT> «S_RBRACKET> I a_expression <S_RBRACKET» I <S_LBRACKET>
a_expression <S_COMMA> a_expression <S_RBRACKET> I (T_Struct) I <S_FULLSTOP>
<S _ LP AREN> expression <S _ RP AREN>)*

true_factor ::= exp_atom «S_EXPONENT> factor)*
exp _atom 00 <S _ LP AREN> a_expression <S _ RP AREN>

I T Number
I a ---'prefix _ op
I (T_IdentifierName <S_LPAREN> ((expression «S_COMMA> expression)*)*)
<S _ RP AREN>)
I (T_AtName <S_LPAREN> « expression «S_COMMA> expression)*)*) <S_RPAREN»
I «S_PLINK_XF> T_IdentifierName <S_LPAREN> « expression «S_COMMA>
expression)*)*) <S_RPAREN»
I < S_EXPN_PLACE>
I <S _V AR _PLACE>

I
I
I
I
I
I

T_Expn_Pat_One
T_Expn_Pat_Many
T_Expn_Pat_Any
T Variable
T_String
T Set

IT_Sequence
I numb_type
I s ---'prefix _ op

a---'prefix_op::= «S_ABS> <S_LPAREN> a_expression <S_RPAREN»
I «S_FRAC> <S_LPAREN> a_expression <S_RPAREN»
I «S_INT> <S_LPAREN> a_expression <S_RPAREN»
I «S SGN> <S LP AREN> a_expression <S _ RP AREN>)
I «S-MAX> <S_LPAREN> a_expression <S_COMMA> a_expression <S_RPAREN»
I «S=MIN> <S_LPAREN> a_expression <S_COMMA> a_expression <S_RPAREN»
I «S LENGTH> <S_LPAREN> s_expression <S_RPAREN»
I «S=REDUCE> <S_LPAREN> T_Name <S_COMMA> s_expression <S_RPAREN»
I «S_HEAD> <S_LPAREN> s_expression <S_RPAREN»
I «S_LAST> <S_LPAREN> s_expression <S_RPAREN»

T Set 00 «S LBRACE> expression <S_ VBAR> condition <S_RBRACE»
T=Sequence::= «S=LANGLE> « expression «S_COMMA> expression)*)*) <S_RANGLE»

T ReI 00= <T _ LogicRel>
I <T_TemporaIRel>
I <T _ SpatialRelation>

T _ LogicRel 00= <S SUB>
I <S SUPER>

T _ TemporalRel ::= <S BEFORE>
I <S_AFTER>
I <S_MEET>
I <S_MET_BY>
I <S_T_EQUAL>
I <S_T_OVERLAP>
I <S_T_OVERLAPPED_BY>
I <S_DURING>

239

Appendix A Backus Naur Form of Extended WSL
I <S_CONTAINS>
I <S_STARTS>
I <S STARTED BY>
I <S=FINISHES>
I <S_FINISHED_BY>

T_SpatialRel ::= <S_DISJOINT>
I <S_JOINT>
I <S_S_OVERLAP>
I <S _COVERS>
I <S_INSIDE>
I <S_EQUAL>

numb_type::= <S _RATS>
I <S_REALS>
I <S_NATS>
I <S_INTS>

s~refix_op ::= «S_MAP> <S_LPAREN> T_Name <S_COMMA> s_expression <S_RPAREN»
I «S_POWERSET> <S_LPAREN> s_expression <S_RPAREN»
I (<S _TAIL> <S _ LP AREN> s _expression <S _ RP AREN>)
I (<S _ BUTLAST> <S _ LP AREN> s _expression <S _ RP AREN>)
I «S_SLENGTH> <S_LPAREN> s_expression <S_RPAREN»
I «S_SUBSTR> <S_LPAREN> expressions <S_RPAREN»
I (<S _INDEX> <S _ LP AREN> expressions <S _ RP AREN>)
I «S_REDUCE> <S_LPAREN> T_Name <S_COMMA> s_expression <S_RPAREN»
I «S_HEAD> <S_LPAREN> s_expression <S_RPAREN»
I (<S _LAST> <S _ LPAREN> s _expression <S _ RP AREN>)

T_Cond_Pat_One ::= <S_PAT_ONE> <S_IDENTIFIER>
T_Cond_Pat_Many .. - <S_PAT_MANY> <S_IDENTIFIER>
T_Cond_Pat_Any .. <S_PAT_ANY> <S_IDENTIFIER>
T_Expn_Pat_One .. <S_PAT_ONE> <S_IDENTIFIER>
T_Expn_Pat_Many .. <S_PAT_MANY> <S_IDENTIFIER>
T_Expn_Pat_Any .. <S_PAT_ANY> <S_IDENTIFIER>
T_Lvalue_Pat_One .. <S_PAT_ONE> <S_IDENTIFIER>
T_Lvalue_Pat_Many.. <S_PAT_MANY> <S_IDENTIFIER>
T_Lvalue_Pat_Any .. = <S_PAT_ANY> <S_IDENTIFIER>
T Stat Pat One .. <S PAT ONE> <S IDENTIFIER>

- - - - - -
T_Stat_Pat_Many .. <S_PAT_MANY> <S_IDENTIFIER>
T_Stat_Pat_Any .. <S_PAT_ANY> <S_IDENTIFIER>
T Action Pat One .. <S PAT ONE> <S IDENTIFIER> - - - - - -
T_Action_Pat_Many.. <S_PAT_MANY> <S_IDENTIFIER>
T_Action_Pat_Any .. <S_PAT_ANY> <S_IDENTIFIER>
T_Defn_Pat_One .. <S_PAT_ONE> <S_IDENTIFIER>
T_Defn_Pat_Many .. <S_PAT_MANY> <S_IDENTIFIER>
T_Defn_Pat_Any .. <S_PAT_ANY> <S_IDENTIFIER>
T_String .. = <S STRING>
T Number .. <S NUMBER>
T Variable .. <S IDENTIFIER>

-
T Name .. = <S STRING>

-
T IdentifierName .. <S IDENTIFIER>
T AtName .. <S AT> «S_IDENTIFIER> I <S_AMBIGOUS_IDENTIFIER»
T_AtPatOneName .. = <S=AT_PAT_ONE> «S_IDENTIFIER> I <S_AMBIGOUS_IDENTIFIER»

T Var Lvalue .. = <S IDENTIFIER>
T_Exit .. <S EXIT> <S_LPAREN> <S_NUMBER> <S_RPAREN>
T_Comment .. <S_COMMENT> <S_STRING>
T Call .. <S CALL> <S IDENTIFIER>
T=Struct_Lvalue ::= - <S_FULL-STOP> T_IdentifierName
T Struct .. <S FULLSTOP> T IdentifierName

Appendix B

XML-based Representation of Target
Model

In F -TP, the constructed target model is represented as a diagram and stored in an XM L

file. Below is there an example of the target model in XML file.

<?xml version=" 1.0" encoding="ISO-8859-1 "?>
<TargetRepository name="Target Repository" version=" 1.0" idCounter="51"

guid="ID _1123C8C 13BCOOOOOOB3 ">
<ModelSpace name="Model" guid="ID _1123C8CI3BCOOOOOOB4">

<MetaLevel name="META" guid="ID_1123C8C13BCOOOOOOB5">
<MetaTarget guid="ID _1123C8C 13BCOOOOOOB6">
</MetaTarget>
<MetaTargetNode guid="ID _1123C8C 13FAOOOOOOD3 "I>
<MetaCardinality guid="ID _1123C8C 141 AOOOOOOE 1 ">
</MetaCardinality>
<MetaGroup guid="ID_1123C8CI439000000FO">
<lMetaGroup>

<!MetaLevel>
<ModelLevel name="MODEL" guid="ID _1123C8CI448000000FF">

<Target name="Component Size" description="" premature="false"
guid="ID _1123C923DDCOOOOOI07" constraintId="7">

</Target>
<SubTarget name="Complexity" description="" premature="false"

guid="ID _1123CA3AE8500000 1 09" constraintId="9">
<IS ub Target>
<SubTarget name="Program Complexity" description="" premature="false"

guid="ID _1123CA4416EOOOOO 1 OB" constraintId=" 11 ">
</SubTarget>
<SubTarget name="Program Nesting Level" description="" premature="false"

guid="ID _1123CA4804COOOOO 1 OD" constraintld=" 13 ">
</SubTarget>
<Metric name="NCNB" description="" premature="false" impact="negative"

guid="ID_1123CA4B5950000010F" constraintId="15">
<!Metric>
<SubTarget name="Information Flow" description="" premature="false"

guid="ID_1123CA5475500000115" constraintld="21 ">
</SubTarget>
<Metric name="RNC" description="" premature="false" impact="negative"

guid="ID _1123CA5A8EEOOOOOI17" constraintId="23">
<!Metric>
<Metric name="CFDF" description="" premature="false" impact="negative"

guid="ID _1123CA62C9500000 11 B" constraintld="27">
<!Metric>
<SubTarget name="Intemal Control of Structure" description="" ." "

premature="false" guid="ID_1123CA888C50000012B" constramtld= 36 >
</SubTarget>
<Metric name="NON" description="" premature="false" impact="negative"

guid="ID _1123CA8DOF900000 12D" constraintId="38">

241

Appendix B XML-based Representation of Target Model
<!Metric>
<Metric name="McCabe" description="" premature="false" impact="negative"

guid="ID _1123CA91881 0000012F" constraintld="40">
<!Metric>
<Diagram name="TargetDiagram" guid="ID _1123C8DBDC200000 1 00" xpos="O"

ypos="O" width="754" height="687">
<TargetNode guid="ID_ll23CA3AE8500000l0A" retFeatureName="Complexity"

refGuidFeatureTree="ID _1123CA3AE85000001 09" xpos="202"
ypos="36" constraintld="l 0">

<Group guid="ID _ll23CA9A9l900000 137" constraintld="48">
<Limit min="l" max="1 "I>
<TargetNode guid="ID_1123C923DEBOOOOOI08"

retFeatureName="Component Size"
refGuidF eatureTree="ID _ COA80041 00 0001 123C923 DDCOOOOO 1 07"
xpos="55" ypos="96" constraintld="8">

<Cardinality guid="ID _1123CA6B65600000 120" constraintld="32 ">
<Limit min=" 1 " max=" 1 "I>
<MetricNode guid="ID_1123CA4B59500000110"

retFeatureName="NCNB"
refGuidFeatureTree="ID _1123CA4B59500000 10F"
xpos=" 1 " ypos="241" constraintld=" 16">

<!MetricN ode>
<ICardinality>
<Cardinality guid="ID _1 123CA93CA300000131 " constraintld="42">

<Limit min=" I" max="1 "I>
<MetricN ode guid="ID _1123 CA8DOF900000 12E"

retF eatureN ame="NON"
refGuidFeatureTree="ID 1123CA8DOF900000 12D"
xpos="98" ypos="240" constraintld="39">

<!MetricN ode>
<ICardinality>

</TargetNode>
<TargetNode guid="ID _1123CA4416EOOOOO 1 OC"

retFeatureName="Program Complexity"
refGuidFeatureTree="ID _1123CA4416EOOOOO lOB"
xpos="230" ypos="96" constraintld=" 12">

<Group guid="ID _1123CA9C54COOOOO 138" constraintld="49">
<Limit min="I" max=" 1 "I>
<TargetNode guid="ID _1123CA888C500000 12C"

retFeatureName="Internal Control of Structure"
refGuidFeatureTree="ID _1123CA888C500000 12B"
xpos="176" ypos=" 162" constraintld="37">

<Cardinality guid="ID_1123CA94A6FOOOOOI32" constraintld="43">
<Limit min="I" max="1 "I>
<MetricNode guid="ID _1123CA91891 00000 130"

retFeatureName="McCabe"
refGuidFeatureTree="ID _1123CA9l881 00000 12F"
xpos=" 173" ypos="241" constraintld="41 ">

<!MetricNode>
<ICardinality>

</TargetN ode>
<TargetNode guid="ID_1123CA5475500000116"

retFeatureName="Information Flow"
refGuidFeatureTree="ID _1 123CA5475500000 115"
xpos="369" ypos=" 161 " constraintld="22">

<Cardinality guid="ID _1 123CA96951 00000 135" constraintld="46">
<Limit min=" 1 " max=" 1 "I>
<MetricNode guid="ID_II23CA62C950000011C"

refFeatureName="CFDF"
refGuidFeatureTree="ID _1123CA62C9500000 11 B"
xpos="470" ypos="236" constraintId="28">

<!MetricNode>
<ICardinality>

</TargetN ode>

242

Appendix B XML-based Representation of Target Model
<IGroup>

</TargetN ode>
<TargetNode guid="ID_1123CA4804COOOOOI0E"

refFeatureName="Program Nesting Level"
refGuidFeatureTree="ID 1123CA4804COOOOO 1 OD"
xpos=" 412" ypos="96" constraintld=" 14 ">

<Cardinality guid="ID _1123CA9750900000 136" constraintId="47">
<Limit min=" 1" max=" 1 "I>
<MetricNode guid="ID_l I 23CA5A8EEOOOOO I 18"

refFeatureName="RNC"
refGuidFeatureTree="ID 1123CA5A8EE00000117"
xpos="598" ypos="235" constraintld="24">

<lMetricNode>
<ICardinality>

</TargetN ode>
</Group>

</TargetN ode>
<!Diagram>

</ModeILevel>
</ModeISpace>

</TargetReposi tory>

243

Appendix C
List of Transformations

TO Abort_Processing The transformation simplifies statement sequences containing an ABORT. Simplify

Tl Absorb Left The transformation will absorb into the selected statement the one that precedes it. Join

I

T2 Absorb _Right The transformation will absorb into the selected statement the one that follows it. Join

T3 Actions To Where
The transformation converts an action system to a WHERE clause and uses the variable exit_flag

Rewrite
to indicate whether the Z action has been called.

Add Assertion
This transformation will add an assertion after the current item, if some suitable information can

T4 Insert
be ascertained.

Add Left
This transformation will add the selected statement (or sequence of statements) into the statement

Join T5
that precedes it without doing further simplification.

This transformation takes a guarded clause whose first statement is a IF and integrates it with the

T6 Align _Nested_Statements outer condition by absorbing the other guarded statements into the inner IF and then modifying Rewrite

its conditions appropriately. This is the converse of Part.

This transformation will apply the current program item to the one to its immediate right. For

T7 Apply_to _Right example, if the current item is an assertion and the next item is an 'IF' statement, then the Simplify

transformation will attempt to simplify the conditions using the assertions.
-- -

244

Appendix C List of Transformations

TS Collapse_Action _System
The transformation will use simplifications and substitution to transform an action system into a

sequence of statements, possibly inside a DO loop.
Rewrite

The transformation will attempt to collapse the action systems within a program which is a
T9 Collapse_AII_Action_Systems Rewrite

WHERE stmcture.

The transformation combines Where Structures' wi ll combine two nested WHERE structures into

TlO Combine _ Wheres
one structure which will contain the definitions from each of tbe original WHERE structures.The

selected WHERE structure will be merged into an enclosing one ifthere is one or, failing that,
Rewrite

into an enclosed WHERE stmcture.

Constant Propagation finds assignments of constants to variables in the selected item and

Tll Constant_Propagation propagates the values through the selected item (replacing variables in expressions by the Simplify

appropriate values)

Tl2 D_Do_ToJloop The transfonnation converts a D _ DO loop to an equivalent DO .. OD loop. Rewrite

This transfonnation will delete all the 'ASSERT' statements within the selected code. If the

Tl 3 Delete _ All_Assertions resulting code is not syntactically correct, the program will be 'tidied up' which may well result Simplify

in the re-instatement of'ASSERT' or 'SKIP' statements.

This transformation will delete all the 'COMMENT' statements within the selected code. If the

T l4 Delete_All_Comments resulting code is not syntactically correct, the program will be ' tidied up' which may well result Simplify

in the insertion of ' SKIP' statements.

The transformation searches for redundant statements and deletes all the ones it finds. A

Tl S Delete_All_Redundant statement is 'Redundant' ifit calls nothing external and the variables it modifies will all be Delete

assigned again before their values are accessed.
- - -- - -

245

Appendix C List of Transfonnations

This transformation will delete all the 'SKIP' statements within the selected code. If the

Tl6 Delete _ All_ Skips resulting code is not syntactically correct, the program will be 'tidied up' which may well result Simplify

in the reinstatement of' SKIP' statements.

Tl7 Delete Item This transformation will delete a program item that is redundant or unreachable Delete

Tl8 Delete _Redundant_Registers
Delete Redundant Registers uses dataflow analysis to find and delete redundant register

Delete
assignments (assignments to registers which are overwritten or never accessed).

The transformation checks whether the current statement is 'Redundant' (because it calls nothing

T19 Delete Redundant Statement external and the variables it modifies will all be assigned again before their values are accessed). Delete - -

If so, it deletes the Statement.

T20 Delete Unreachable Code
The transformation will remove unreachable statements in the selected object. It will also remove

Simplify - - unreachable cases in an IF statement, e.g those which follow a TRUE guard

The transformation will delete the code which follows the selected item if it can never be
T2l Delete What Follows Simplify - - executed

T22 Double _to _Single_Loop
The transformation will convert a double nested loop to a single loop, if this can be done without

Rewrite
significantly increasing the size of the program.

The transformation will replace an 'Else' clause which contains an 'If statement with an 'I~ lsi f'

T23 Else If to Elsif clause. The transformation can be selected with either the outer' If statement, or the' Else' Rewrite - - -

clause selected.
~~--, -

The transformation will replace an 'Elsif clause in an 'If statement with an 'Else' clause which

'12'+ USlf To Else If itself contains an 'If statement. The transformation can be selected with either the' II' statement, Rewrite
- -

or the 'Elsif clause selected.
i -- ---- ----. --- ------ --------

24()

Appendix C List of Transformations

The transformation will expand the selected IF statement to include all the following statements,

T25 Expand_and _Separate
then separate all possible statements from the resulting IF. This is probably only useful if the IF

Rewrite
includes a CALL, EXIT etc. which is duplicated in the following statements, otherwise it will

probably achieve nothing.

T26 Expand_and _Separate_All
The transformation will attempt to apply the transformation Expand_and _Separate to the first

Simplify
statement in each action in an action system.

T27 Expand_Call
The transformation will replace a call to an action, procedure or function with the corresponding

Rewrite
definition.

The transformation will copy the following statement into the end of each branch of the selected

T28 Expand _Forward IF or D _IF statement. It differs from Absorb Right in that the statement is only absorbed into the Join

'top level' of the selected IF.

Find and mark the terminal statements in the selected statement.
T29 Find Terminals

If a terminal statement is a local proc call, apply recursively to the proc body.
Rewrite

This transformation will search for simple procedures in Assembler code and convert them to

T30 Fix_Dispatch
WSL PROCs.A simple procedure is a collection of actions with a single entry point and possibly

Rewrite
multiple exit points. All the exits are calls to dispatch (ie normal returns), or calls to an action

which must lead to an ABEND (ie error returns).

T31 Floop_To_ While The transformation converts a suitable 00 ... 00 loop to a While loop Rewrite

T32 for To While Convert any FOR loop to a V AR plus WHILE loop Rewrite

Force Douhle to Single_Loop
The transformation will convert a double nested loop to a single loop, regardless of any increase

ReWrIte T33
111 program size which this causes

--- ----- ---- --- - --._-- --- ---

247

Appendix C List of Transfonnations

- ---

T34 Fully_Absorb _Right This transfonnation will absorb into the selected statement all the statements that follow it. Join

T35 Fully _Expand _Forward The transfonnation applies Expand_Forward as often as possible Join

T36 Globals to Pars The transfonnation converts global variables in procs to extra V AR parameters. Rewrite

T37 Insert Assertion
This transfonnation will add an assertion inside the current item, if some suitable infonnation can

Insert - be ascertained.

This transfonnation will join any guards in an 'If statement which contain the same sequence of

T38 Join All Cases statements (thus reducing their number) by changing the conditions of all the guards as Rewrite

appropriate.

T39 Make Proc The transfonnation will make a procedure from the body of an action or from a list of statements. Rewrite

T40 Merge _ Call_in _Action The transfonnation will attempt to merge calls which call the same action, in the selected action Simplify

T41 Merge_Calls The transfonnation reduces the number of calls in an action system. Simplify

T42 Merge _ Cond _Right
The transfonnation merges a binary cond with a subsequent Cond which uses the same (or the

Simplify
opposite) test

T43 Merge_Left
This transformation will merge the selected statement (or sequence of statements) into the

Join
statement that precedes it.

T44 Merge_Right This transformation will merge the selected statement into the statement that precedes it. Join

1'45 Meta Trans Convert a FOREACH with a long sequence of IFMATCH commands to a more efficient form Simplify
- - - -- ------

248

Appendix C List of Transformations

--- --

T46 Move Comment Left The transformation moves the selected Comment Left. Move - -

T47 Move _Comment_Right The transformation moves the selected Comment Right. Move

The transformation will move any comments which appear at the end of actions within an action

T48 Move Comments system and which follow a call. The comments will be moved in front of the call. This will help Rewrite

tidy up the output of the Herma translator.

T49 Move to Left
This transformation will move the selected item to the left so that it is exchanged with the item

Move
I - - that precedes it.

T50 Move to Right
This transformation will move the selected item to the right so that it is exchanged with the item

Move
that follows it.

This transformation will join any guards in an IF statement which contain almost the same

T51 Partially_Join _Cases sequence of statements (thus reducing their number) by introducing a nested IF and changing the Join

conditions of all the guards as appropriate.

T52 Prog_to_Spec The transformation converts a given program to an equivalent specification statement. Abstraction

T53 Prune_Dispatch
Simplify the dispatch action by removing references to dest values which do not appear in the

Simplify
rest of the program.

T54 Push_Pop
Look for a statement sequence with a PUSH of a var followed by a POP

Rewrite
of the same var. Put the sequence inside a V AR to show that the variable is unchanged.

Remove Recursion in Action
Remove Redundant Vars takes out as many local variables as possible from the selected V AR

Delete '1'55 - - - structure. If they can all be taken out, the V AR is replaced by its (possibly modified) body.

::'4()

Appendix C List of Transformations

-

The transformation automatically makes the body of a DO ... OD reducible (by introducing new

T56 Reduce_Loop procedures as necessary) and either remove the loop (if it is a dummy loop) or convert the loop to Simplify
I a WHILE loop (if the loop is a proper sequence).
I

I
T57 Reduce_Multiple_Loops This transformation will reduce the number of multiply nested loops to a minimum. Simplify

T58 Refine_Spec The transformation refines a specification statement into something closer to an implementation Refinement

T59 Remove All Redundant
The transformation applys Remove_Redundant_ Vars to every V AR structure in the statement or

Delete
sequence

T60 Remove Galileo Comments Removes Galileo comments without a sequence number (SSL or SSE). Delete - -

T61 Remove _Dummy_Loop The transformation will remove a DO loop which is redundant Simplify
,

T62 Remove Redundant Vars
The transformation takes out as many local variables as possible from the selected V AR

Delete
- - structure. If they can all be taken out, the V AR is replaced by its (possibly modified) body.

The transformation renames PROC definitions to avoid name clashes. This allows us to move all
T63 Rename Defns Rewrite - the definitions to a single outer WHERE clause.

T64 Rename Local Vars The transformation removes all local V AR statements by renaming the variables. Rewrite
- -

T65 Rename Proc The transformation renames a PROC to given new name Rewrite

- --- --

250

Appendix C List of Transfonnations

T66 Replace Accs with Value
This transformation will apply Replace_With _ Value to all variables with the names aO, al, a2

Rewrite - - - and a3 in the selected item.

T67 Replace_with _ Value
This transformation will replace a variable (in an expression) by its value -- provided that that

Rewrite
value can be uniquely determined at that point in the program.

T68 Restore Local Vars
The transformation restores the local var clauses that were converted to global variables by

Rewrite - - Rename Local Vars - -

T69 Reverse Order
This transformation will reverse the order of most two-component items; in particular

Rewrite - expressions, conditions and If which have two branches.

I T70 Semantic Slice
The transformation performs semantic slicing on a subset of WSL. Enter the list of variables to

Simplify - slice on as the data parameter.

T71 Separate _Both The transformation will take code out to the right and the left of the selected structure. Rewrite

The transformation will take code out to the left of the selected structure. As much code as

T72 Separate _Left possible will be taken out; if all the statements are taken out then the original containing structure Rewrite

will be removed

T73 Separate_Right The transformation will take code out to the right of the selected structure. Rewrite

The transformation attempts to remove actions and calls from an action system by successively

T74 Simple _Action_System applying simplifying transformations. As many of the actions as possible will be eliminated Simplify

without making the program significantly larger.
-

251

Appendix C List of Transformations

--

T75 Simplify This transformation will simplify any component as fully as possible. Simplify

The transformation will remove false cases from an IF statement and any cases whose conditions

T76 Simplify_If imply earlier conditions. Any repeated statements which can be taken outside the if will be and Simplify

the conditions will be simplified if possible.

This transformation will simplify an item, but not recursively simplify the components inside it.

T77 Simplify_Item In particular, the transformation will simplify expressions, conditions and degenerate conditional, Simplify

I local variable and loop statements.

T78 Static_Single_Assignment
The transformation converts WSL code to Static Single Assignment (SSA) form by renaming

Rewrite
variables and adding phi function assignments.

T79 Substitute and Delete
The transformation will replace all calls to an action, procedure or function with the

Rewrite - - corresponding definition and delete the definition

The transformation will replace all calls to any action within the selected list of actions with the

T80 Substitute and Delete List corresponding definition and delete the definition. Actions which are called more than once will Rewrite - - -

not be affected.

T81 Syntactic_Slice
The transformation performs Syntactic Slicing using SSA and control dependencies. Enter the list

Simplify
of variables to slice on as the data parameter.

T82 Take out Left This transformation will take the selected item out of the enclosing structure towards the left. Move

T83 Take Out of Loop
This transformation will take the selected item out of an appropriate enclosing loop towards the

Move
- -- right.

- --

252

Appendix C List of Transfonnations

T84 Take _ Out_Right This transformation will take the selected item out of the enclosing structure towards the right. Move

T85 Unfold Proc Call
The transformation unfolds the selected procedure call, replacing it with a copy of the procedure

Rewrite - - body.

T86 Unfold Proc Calls
The transformation unfolds Proc Calls searches for procedures which are only called once,

Simplify - - unfolds the call and removes the procedure.

I

T87 Use Assertion
If the current item is an assertion, the transformation tries to use the assertion to simplify the

Simplify - following program.

T88 Var Pars to Val Pars
The transformation adds all V AR pars as extra value pars where needed. This is needed by the

Rewrite - - - - SSA transformation so that the input and output parameters can get different names.

T89 While to Abort This transformation replaces a non-terminating while loop with a conditional abort. Simplify

T90 While _to _Floop The transformation changes a WHILE loop to an equivalent DO .. OD loop. Rewrite

T91 Movement Transformation
The transformation moves parts of an existing class to a component class and to set up a

Move
- delegating relationship from the existing class to its component.

The transformation is applied when one class creates instances of another and it is required to

T92 Encapsulation _ Ttransformation weaken the association between the two classes by packaging the object creation statements into Join

dedicated methods.

The transformation wraps an existing receiver class with another class, in such a way that all

T93 Wrapper_Transformation requests to an object of the wrapper class are passed to the receiver object it wraps and similarly Join

any results of such requests are passed back by the wrapper.
- - - -- -- --

2))

Appendix C List of Transfonnations

i

T94 Spatial_Abstraction The transformation is to remove the statements which irrelevant to spatial properties. Delete

T95 Temporal_Abstraction The transformation is to remove the statements which irrelevant to temporal properties. Delete

T96 Inverse Transformation) The transformation is to transform the statement to its inverse representation. Rewrite

The transformation is used to replace the temporal properties by the concrete temporal relations.

T97 Replace_by _Concrete If the properties of two multimedia objects satisfy one of the following conditions, then the two Abstraction

objects can be transformed to having the corresponding relations.

T98 Transitive Absorb
If R is transitive, 3x, y, z satisfies xR y and yR z, when only media x and z are concerned, the

media y can be absorbed by replaced as xR z.
Delete

T99 Elimination Absorb For x E A, xSeqx can be transformed as x and xParx can be transformed as x. Delete

TlOO Make Class The transformation will make a class Rewrite

- -

254

Appendix D
List of Publications

F. Chen, S. Li and H. Yang, "Enforcing Role-Based Access Controls with Service

Oriented Agentification", the 2007 IEEE International Conference on Networking,

Sensing and Control (ICNSC2007), London, UK, April 2007.

F. Chen, S. Li and H. Yang, "Feature Analysis for Service-Oriented Reengineering", the

12th IEEE Asia-Pacific Software Engineering Conference (APSEC), Taibei, December

2005.

S. Li, F. Chen, Z. Liang and H. Yang, "Using Feature-Oriented Analysis to Recover

Legacy Software Design for Software Evolution", the 2005 International Conference of

Software Engineering and Knowledge Engineering (SEKE), Taibei, July 2005.

S. Li and H. Yang et aI, "Building a Dependable Enterprise Service Assembly Line

(ESAL) for Legacy Component Integration", the 2004 IEEE International Conference

on Cyberworlds (CW2004) , Tokyo, Japan, November 2004.

S. Li and H. Yang, "Leveraging Legacy Assets with Enterprise Application Integration

Using a Grey-box Modernisation Approach", the 2004 EPSRC Postgraduate

Research Conference in Electronics, Photonics, Communications & Networks and

Computing Science (PREP), Hatfield, UK, April 2004.

Z. Liang, S. Li and H. Yang et aI, "A Multiple-Tier Model Manipulation Architecture on

Enterprise Decision Making", the 27th IEEE Annual international Computer Software

Appendix D List of Publications

and Applications Conference (COMPSAC), Dallas, Texas, USA, October 2003.

1. Pu, S. Li and H. Yang, "Modelling Legacy Code with UML Class", the 9th Chinese

Automation and Computing Society Conference in the UK, Luton, UK, September 2003.

H. Liao, S. Li and H. Yang et aI, "Building Dynamical Enterprise Application

Expansion Model by Integrated Development Platform", the 9th Chinese Automation

and Computing Society Conference in the UK, Luton, UK, September 2003.

S. Li, B. Qiao and H. Yang et aI, "System Quality Propagation in Reverse

Architecturing", the 7th World Conference on Integrated Design and Process

Technology (IDPT), Austin, Texas, USA, December 2003.

H. Zhou, S. Li and H. Yang et aI, "A Multiple-tier Distributed Data Integration

Architecture", the 7th World Conference on Integrated Design and Process Technology

(IDPT), Austin, Texas, USA, December 2003.

	522959_0000
	522959_0001
	522959_0002
	522959_0003
	522959_0004
	522959_0005
	522959_0006
	522959_0007
	522959_0008
	522959_0009
	522959_0010
	522959_0011
	522959_0012
	522959_0013
	522959_0014
	522959_0015
	522959_0016
	522959_0017
	522959_0018
	522959_0019
	522959_0020
	522959_0021
	522959_0022
	522959_0023
	522959_0024
	522959_0025
	522959_0026
	522959_0027
	522959_0028
	522959_0029
	522959_0030
	522959_0031
	522959_0032
	522959_0033
	522959_0034
	522959_0035
	522959_0036
	522959_0037
	522959_0038
	522959_0039
	522959_0040
	522959_0041
	522959_0042
	522959_0043
	522959_0044
	522959_0045
	522959_0046
	522959_0047
	522959_0048
	522959_0049
	522959_0050
	522959_0051
	522959_0052
	522959_0053
	522959_0054
	522959_0055
	522959_0056
	522959_0057
	522959_0058
	522959_0059
	522959_0060
	522959_0061
	522959_0062
	522959_0063
	522959_0064
	522959_0065
	522959_0066
	522959_0067
	522959_0068
	522959_0069
	522959_0070
	522959_0071
	522959_0072
	522959_0073
	522959_0074
	522959_0075
	522959_0076
	522959_0077
	522959_0078
	522959_0079
	522959_0080
	522959_0081
	522959_0082
	522959_0083
	522959_0084
	522959_0085
	522959_0086
	522959_0087
	522959_0088
	522959_0089
	522959_0090
	522959_0091
	522959_0092
	522959_0093
	522959_0094
	522959_0095
	522959_0096
	522959_0097
	522959_0098
	522959_0099
	522959_0100
	522959_0101
	522959_0102
	522959_0103
	522959_0104
	522959_0105
	522959_0106
	522959_0107
	522959_0108
	522959_0109
	522959_0110
	522959_0111
	522959_0112
	522959_0113
	522959_0114
	522959_0115
	522959_0116
	522959_0117
	522959_0118
	522959_0119
	522959_0120
	522959_0121
	522959_0122
	522959_0123
	522959_0124
	522959_0125
	522959_0126
	522959_0127
	522959_0128
	522959_0129
	522959_0130
	522959_0131
	522959_0132
	522959_0133
	522959_0134
	522959_0135
	522959_0136
	522959_0137
	522959_0138
	522959_0139
	522959_0140
	522959_0141
	522959_0142
	522959_0143
	522959_0144
	522959_0145
	522959_0146
	522959_0147
	522959_0148
	522959_0149
	522959_0150
	522959_0151
	522959_0152
	522959_0153
	522959_0154
	522959_0155
	522959_0156
	522959_0157
	522959_0158
	522959_0159
	522959_0160
	522959_0161
	522959_0162
	522959_0163
	522959_0164
	522959_0165
	522959_0166
	522959_0167
	522959_0168
	522959_0169
	522959_0170
	522959_0171
	522959_0172
	522959_0173
	522959_0174
	522959_0175
	522959_0176
	522959_0177
	522959_0178
	522959_0179
	522959_0180
	522959_0181
	522959_0182
	522959_0183
	522959_0184
	522959_0185
	522959_0186
	522959_0187
	522959_0188
	522959_0189
	522959_0190
	522959_0191
	522959_0192
	522959_0193
	522959_0194
	522959_0195
	522959_0196
	522959_0197
	522959_0198
	522959_0199
	522959_0200
	522959_0201
	522959_0202
	522959_0203
	522959_0204
	522959_0205
	522959_0206
	522959_0207
	522959_0208
	522959_0209
	522959_0210
	522959_0211
	522959_0212
	522959_0213
	522959_0214
	522959_0215
	522959_0216
	522959_0217
	522959_0218
	522959_0219
	522959_0220
	522959_0221
	522959_0222
	522959_0223
	522959_0224
	522959_0225
	522959_0226
	522959_0227
	522959_0228
	522959_0229
	522959_0230
	522959_0231
	522959_0232
	522959_0233
	522959_0234
	522959_0235
	522959_0236
	522959_0237
	522959_0238
	522959_0239
	522959_0240
	522959_0241
	522959_0242
	522959_0243
	522959_0244
	522959_0245
	522959_0246
	522959_0247
	522959_0248
	522959_0249
	522959_0250
	522959_0251
	522959_0252
	522959_0253
	522959_0254
	522959_0255
	522959_0256
	522959_0257
	522959_0258
	522959_0259
	522959_0260
	522959_0261
	522959_0262
	522959_0263
	522959_0264
	522959_0265
	522959_0266
	522959_0267
	522959_0268
	522959_0269
	522959_0270
	522959_0271
	522959_0272

