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Abstract 

Classifier performance optimization in machine learning can be stated as a multi-objective 

optimization problem. In this context, recent works have shown the utility of simple 

evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the 

global performance of different anti-spam filters. The present work extends existing 

contributions in the spam filtering domain by using three novel indicator-based (SMS-

EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multi-objective 

algorithms. The proposed approaches are used to optimize the performance of a 

heterogeneous ensemble of classifiers into two different but complementary scenarios: 

parsimony maximization and e-mail classification under low confidence level. Experimental 

results using a publicly available standard corpus allowed us to identify interesting 

conclusions regarding both the utility of rule-based classification filters and the 

appropriateness of a three-way classification system in the spam filtering domain. 

 

Keywords: spam filtering, multi-objective optimization, parsimony, three-way classification, 

rule-based classifiers, SpamAssassin  
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1. Introduction 

Nowadays, the use of Internet mailing services has become indispensable in the daily life of 

millions of users worldwide. Additionally, the combination of e-mail with the latest mobile 

always-connected smart-phones provides a simple but powerful method to stay in touch with 

other people and efficiently exchange documents at any time. As a result, both instant 

messaging (IM) applications and e-mail are commonly used for this purpose. However, a 

fundamental difference between popular IM applications (including Whatsapp or GTalk) and 

Internet mailing services is the existence of consent management methods, which can be 

found only among the former (e.g. blocking users, etc.). This situation has greatly facilitated 

the use of e-mails as an aggressive/massive advertisement method and virus distribution 

platform, originating the spam phenomenon.  

Since the inception of spam, many companies and research teams have combined their efforts 

to fight against spam deliveries using different approaches and methods [1]. In this context, 

and from a scientific perspective, several machine learning (ML) algorithms have been 

successfully adapted and applied to filter spam messages, mainly including Naïve Bayes 

(NB) [2], ensemble techniques [3], Support Vector Machines (SVM) [4] and other memory-

based systems [5]. Additionally, the computer security industry and the open source 

community also contributed with effective techniques such as DNS black and white lists [6-

7], hashing schemes [8] and the development of SpamAssassin [9], the most popular filtering 

framework used to combine heterogeneous and complementary anti-spam techniques. 

Since its creation, SpamAssassin has been widely used as the base of commercial products 

and filtering services including McAfee SpamKiller and Symantec Brightmail [10]. It allows 

system administrators to define specific filters using ad hoc rules. Each rule contains a logical 

expression (used as a trigger) and defines its associated score. Every time an e-mail is 
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received for evaluation, SpamAssassin finds all the rules matching the target message and 

computes the sum of their scores. This accumulative value is then compared with a 

configurable threshold (required score) to finally classify the new incoming message as spam 

or legitimate (also known as ham).  

In order to define accurate anti-spam filters, the SpamAssassin framework provides 

implementations of several techniques including regular expressions, DNS black and white 

lists, Distributed Checksum Clearinghouses [11], Naïve Bayes  [12-13], Sender Policy 

Framework [14], Hashcash [15], DomainKeys Identified Mail [16], language guessing [17], 

as well as several extra protocol error checks. Additionally, SpamAssassin allows the use of 

user-defined plugins to further extend the number of available techniques that compose a 

given filter.  

Given the configurable structure of the SpamAssassin framework, and taking into 

consideration that the final accuracy of each user-defined filter strongly depends on the 

diversity of the underlying classifiers, the optimization of rule weights and other parameters 

governing the primary rule-based filtering process is still a challenge. In such a situation, 

initial approaches for the optimization of rule-based filters have been formulated as a single 

objective problem, where a general performance index (e.g., number of errors, kappa index or 

f-score, or Total Cost Ratio) is commonly used [18]. However, a more intuitive formulation 

of this problem involves several objectives. In fact, at least two complementary indexes 

should be simultaneously considered for minimization in the development of novel accurate 

anti-spam filters: (i) number of false negative (FN) errors (i.e., spam messages classified as 

legitimate) and (ii) number of false positives (FP) errors (i.e., legitimate messages classified 

as spam). Nevertheless, these objectives are in conflict, since minimizing the number of FP 

errors can be done only at the expense of increasing the number of spam messages going into 

e-mail boxes, and vice versa.  
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Single objective optimization approaches (also known as ‘a priori’ methods) require that 

sufficient preference information is expressed (blindly) before solution set is computed (i.e. 

assigning weights for the target objectives to aggregate objectives within a single objective 

which is optimized subsequently). In contrast, multi-objective optimization (‘a posteriori’) 

methods provide insights of conflicts between the objectives, i.e. at which extend one 

objective can be improved at the cost of other(s). Thus, user can select the resulting solution 

that best fits his/her preferences. In this context, some initial approaches [19-20, 10] have 

evaluated the suitability of applying different multi-objective evolutionary algorithms 

(MOEA) in the spam filtering domain for optimizing both FN and FP errors at the same time. 

However, in the aforementioned studies only classical MOEA techniques (NSGA-II and 

SPEA2) were applied, and questions such as how to better adapt these algorithms using 

domain specific knowledge and how to consider other objective functions remained 

unanswered. 

In this line, we carried out a preliminary study about the performance of several MOEA 

approaches to solve different optimization questions [21]. In detail, this study included the 

spam filtering problem as a part of the MOEA benchmarking protocol with the goal of 

showing the insights of conflicts between those objectives to be minimized. However, our 

past work did not contribute a method to accurately evaluate the structure of the decision 

space (i.e., a detailed analysis of the relevance of each rule), which is essential for 

administrators to maintain (and continuously improve) filtering services. 

Moreover, in order to fight against spam in environments where the cost associated to 

misclassification errors is high, the three-way classification scheme [22-24] emerged as a 

reliable way of mitigating information loss and security risks. Under this scheme, classifiers 

can avoid providing a solution in case there are not enough evidences to assign target 

instances to one of the two available classes (i.e., spam or legitimate). In such a situation, 
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these messages are labelled as ‘suspicious’, ‘doubtful’ or ‘borderline’, being the subject of a 

further examination manually carried out by the final user. In this context, to increase security 

while revising suspicious e-mails, images, links and dangerous attachments should not be 

automatically loaded. As long as suspicious e-mails do not count as errors but are classified at 

the expense of increasing user efforts, the amount of messages labelled in this way should be 

also minimized (i.e., if all the messages belonging to a given corpus are labelled as 

‘suspicious’, the number of misclassifications will be zero). Complementarily, the 

appropriateness of using a three-way classification scheme was also suggested as future work 

in our preliminary study [21].  

In the present work, we complement previous findings by using three modern plus two 

classic MOEA approaches in two different ways: (i) by studying the structure of the decision 

space in the optimization of traditional binary classification processes (i.e., minimizing the 

amount of necessary rules and the number of FP and FN errors) and (ii) evaluating the 

suitability of three-way classification schemes to accurately filter spam contents. In the 

former case, we take advantage of the first optimization objective (parsimony) to specifically 

assess the contribution of each rule when generating a correct classification. In the second 

case, we carry out a performance study about the minimization of FP and FN errors when 

working with a three-way classification filter. These analyses have been implemented as two 

different optimization scenarios, making use of a well-known publicly available corpus. 

While this section has introduced the motivation for this work, the rest of the paper is 

organized as follows: Section 2 presents the problem formulation, explains how to optimize 

ML classifiers with evolutionary algorithms (EAs) and summarizes previous works in anti-

spam filter optimization using MOEA. Section 3 introduces the two case studies, defines the 

benchmarking protocol, establishes the performance metrics to be used and presents and 
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discusses relevant issues regarding each case study. Finally, Section 4 provides conclusions 

and identifies future research work. 

2. Materials and methods 

In spite of the fast progress in computer technology and the constant increase of 

computational power, performing exhaustive searches in large continuous and combinatorial 

spaces is still challenging. In this context, the remarkable popularity of EAs over other 

optimization techniques is mainly motivated by their ability to search these spaces and find 

approximate (near) optimal solutions [25]. In the particular domain of multi-objective 

optimization, EAs stand for well-established computational methods where the population-

based approach makes them suitable to search for approximation sets to the efficient set. 

In this way, EAs were found to be particularly useful for dealing with multi-objective 

problems characterized by several conflicting goals, for which not simply a single optimum 

solution, but a set of Pareto optimal or non-dominated solutions need to be obtained. 

Together, these solutions represent the trade-offs between the existing objectives, being 

optimal in the sense of Pareto dominance. In such a situation, a Pareto optimal solution can 

only be improved in one objective at the expense of loss in other(s). As long as a population 

of possible solutions is used in parallel to solve these problems, the search is directed not a 

single optimum but towards multiple Pareto optimal solutions, which is the case of MOEAs 

(also known as Evolutionary Multi-objective Optimization Algorithms, EMOAs). 

The constant development of novel MOEAs while trying to achieve better performance with 

respect to the quality of the obtained set of solutions (according to both convergence and 

coverage of the Pareto front approximation) led to the existence of several generations of 

MOEAs [26] been created. The theoretical foundations of these approaches are thoroughly 

discussed in [27] while more recent approaches can be found in the works of Laumanns [28] 



- 8 - 

and Auger et al. [29]. Additionally, a large number of real-world applications are also 

discussed in the work of Coello [26]. 

2.1. Problem formulation: spam filtering domain perspective 

As previously discussed, in the context of traditional binary classifiers, misclassifications are 

commonly grouped into FP and FN errors. In order to correctly apply EA to optimize anti-

spam filters, a normalized counting of the false negative and false positive occurrences is 

adopted. These measures are called as false negative rate (FNR) and false positive rate (FPR), 

respectively. Expression (1) shows how to compute their corresponding values. 

FNFNR
TotalNumberOfSpamMessages

=  FPFPR
TotalNumberOfLegitimateMessages

=  (1) 

Additionally, when working with traditional ML classifiers, their hits can be separated into 

true positives (TP) and true negatives (TN) classes, depending on whether the target message 

was really spam or legitimate, respectively. In this context, the relationship between the true 

labels and the predicted ones can therefore be presented in a two-by-two straightforward 

confusion matrix as shown in Table 1. 

 

  True class 

  P N 

Predicted 

class 

P True Positives False Positives 

N False Negatives 
True 

Negatives 

 

Table 1 Confusion matrix of traditional (binary) classifiers. 

 

Taking into consideration the values that are part of the confusion matrix, FNR and FPR can 

be easily computed, as shown in Expression (2). 

FN
TP FN

FNR =
+

 
FP

TN FP
FPR =

+
 (2) 
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However, if we consider only rigid binary classifiers, for which every new instance is simply 

categorized as positive or negative, it may result in high number of misclassifications leading 

to high costs. To reduce these errors, the final user of an anti-spam filter could help in the 

classification task with the goal of improving the accuracy of the filter and reducing its 

associated cost. In this context, the use of a three-way classification scheme allowed us to 

take advantage of final users both to improve the classification accuracy of the filter and to 

maximize the user experience. In such a situation, the initial confusion matrix (introduced in 

Table 1) changes to become a three-by-two matrix, as shown in Table 2. 

 

  True class 

  P N 

Predicted 

class 

P True Positives False Positives 

N False Negatives 
True 

Negatives 

? Further Exam 

 

Table 2 Confusion matrix of three-way classifiers. 

 

2.2. Optimizing ML classifiers with EAs 

Traditional ML classification tasks involving parameter optimization and model selection can 

be successfully reformulated as multi-objective optimization problems. In fact, they usually 

require achieving improvements on several conflicting goals, such as recall/sensibility, 

precision/specificity and classifier complexity [21], simultaneously. Apart from this classical 

perspective, many other examples of multi-objective optimization of ML classifiers can also 

be considered, such as the trade-off between learning new information and/or forgetting old 

one, or between learning as many details as possible and generalizing the model to its 

maximum in pattern recognition [30]. However, it is only relatively recently that the design 

of ML systems was conceived from a multi-objective point of view, considering 

simultaneous optimization of multiple conflicting objective instead of combining them into a 

single objective. Due to large combinatorial space of such problems, solving them with exact 
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algorithms is not possible in most of cases, hence they are often solved using evolutionary 

approaches, MOEAs in particular. 

In this regard, a usual way to measure the performance of different ML classifiers (or 

different configurations of the same model) is through the Receiver Operating Characteristic 

(ROC) curve, which conveniently summarizes the classifier performance when varying 

discriminative thresholds for two-class classification problems. ROC Convex Hull (ROCCH) 

is currently being widely used by the scientific community, being able to represent the 

convex hull area of a set of points, each of which stands for an optimal classifier [21]. 

Maximizing ROCCH leads to finding the group of classifiers that together provides the best 

range of optimal classifiers.  

Even though the concepts of ROC Convex Hull and the Pareto front were reported to be 

similar (leading to the application of EMOA for approximating ROCCH [31]), a specific and 

important property of ROCCH makes it more valuable than the Pareto front. When using 

ROCCH, any two classifiers belonging to the Convex Hull can be joined using a line in 

which a new virtual classifier is represented as a point with its corresponding performance 

[32]. This property can be straightforwardly used to save computational resources [31]. 

When dealing with a multi-objective optimization problem, there are typically m objective 

functions, ( )1 2, , , mf f f f= K , which are simultaneously optimized (e.g., minimized) so that 

each { }, 1, ,kf k m∈ K  stands for a real-valued function evaluated in the multi-objective space. 

Additionally, complementary constraints of equality or inequality could be imposed on the 

decision variables. The result of a multi-objective optimization approximates the set of Pareto 

optimal solutions that corresponds to the set of non-dominated solutions found, based on the 

evaluation of the Pareto dominance relation. In this context, a y the Pareto solution dominates 

any other 'y  alternative ( , ' my y R∈ ) if y  is better on at least one objective, and is not worse 
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in the remaining cases. The selection of a single solution among the set of Pareto optimal 

solutions is usually done by decision maker(s). As this is not an easy task, different decision-

aiding tools able to take into account the preferences of decision maker(s) are used to help 

judge. 

The Pareto fronts achieved by MOEAs are usually approximated by a finite number of points. 

In fact, the hypervolume indicator (i.e., a bounded size set of points that jointly dominates a 

maximal part of the objective space relative to a reference point) or the Convex Hull (which 

dominates a large part of this space) are commonly used for this purpose. The latter is argued 

to be more appropriate when it comes to ROC curves approximation [31]. 

In a three-way classification scenario, apart from the recommendable maximization of TPR 

and TNR, the third obvious objective is to maximize the number of instances labeled as spam 

or legitimate by the filter, namely, the classified instances rate (CR) or coverage. Considering 

a graphical 3D plot of all these variables (see Figure 1), the point (0,0,1) represents the 

situation in which all the instances are incorrectly classified by the filter. In the same line, the 

point (1,0,1) represents the situation where all the instances are classified as positive by the 

filter. And the point (0,1,1) corresponds to the case in which all the instances are classified as 

negative by the filter. Conversely, the point (1,1,0) represents the situation in which all the 

instances remain unclassified and therefore there are no misclassifications. Finally, the point 

(1,1,1) stands for the case with all the instances correctly classified, which corresponds to a 

perfect classifier. A perfect classifier does not usually exist, but the challenge here is to find 

some classifiers as close to the perfect one as possible, and explore the trade-offs among 

them. 
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Figure 1 3D ROC surface (TPR, TNR, CR) showing the possible situations in a three-way 

classification scenario. 

 

In Figure 1, the surface 2x y z+ + =  (where x axis represents TPR, y stands for TNR and z 

symbolizes CR) represents a situation in which all the instances categorized by the filter are 

randomly guessed. Establishing the ratio of positive and negative instances as ( )p p  and 

( ) 1 ( )p n p p= − , respectively, and also considering that 80 percent of the instances are 

processed by an expert, and the remaining 20 percent are predicted by a filter, the point to 

which the classifier is mapped to is (0.2 ( ) 0.8,0.2 ( ) 0.8,0.2)p p p n× + × + , as shown in 

Expression (3). 

0.2 ( ) 0.8TPR p p= × +  

(3) 0.2 ( ) 0.8TNR p n= × +  

0.2CR =  

Since ( ) ( ) 1p p p n+ = , it is easy to find out that the surface of 2TPR TNR CR+ + =  

graphically represents the set of worst possible solutions. Consequently, maximizing ROC 

Convex Hull in a three-way classification scenario consists of maximizing the volume above 
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the surface 2x y z+ + = , where the points (1,1,0), (0,1,1,) and (1,0,1) are treated as fixed 

points on a three-way classifier ROC plot. 

2.3. Relevant advances on multi-objective optimization methods 

Considering a general (not problem-specific) EMOA, the selection operator chosen has a 

huge influence over its efficiency. In each iteration, this operator picks out individuals to be 

passed to the next generation and hence, parents in the mating phase. In this context, the 

evolution of EMOAs has been widely influenced by all the research done in the scope of the 

selection operators. 

Pareto-based EMOAs, such as Non-dominated Sorting Genetic Algorithm (NSGA) [33] and 

Multi-Objective Genetic Algorithm (MOGA) [34] were the first approaches using Pareto 

non-dominance in the ranking and selection of individuals. The next is the group of elitist 

EMOAs, which includes NSGA-II [35] and Strength Pareto Evolutionary Algorithm (SPEA) 

[36], is characterized by selecting non-dominated solutions and allowing their preservation 

with respect to earlier generations. Another different approach was adopted in the design of 

region-based EMOAs, such as the Pareto Envelope-based Selection Algorithm (PESA-II) 

[37], with its focus centered in the competition of regions of the objective space instead of 

rivalry of individuals. This strategy is similar to the concept of niching [38] with a restricted 

amount of individuals being selected from each niche in the objective space (note that niching 

in the decision space is also common [39]). 

Later, the development of performance assessment measures (indicators) revealed the 

possibility of using EMOAs performance indicators directly in the selection operator, which 

gave birth to indicator-based EMOAs, such as the Indicator-Based Evolutionary Algorithm 

(IBEA) [40] and the Multi-objective Selection Based on Dominated Hypervolume (SMS-

EMOA) [41-42]. In general, any performance indicator may be used in IBEA, but binary 

indicators preserving Pareto non-dominance are commonly adopted. For instance, 
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hypervolume and epsilon indicators satisfy the desired properties (e.g., compliance with the 

Pareto dominance principle and monotonicity) and are commonly suggested as the default 

choice for the selection operator to be based on. Additionally, it was also reported that the 

hypervolume indicator selects extreme points and concentrates search around the knee region 

of the Pareto front [41].  

NSGA-II stems from its predecessor NSGA and adopts the same non-dominated sorting 

procedure for allocating all solutions to classes with respect to their non-dominating rank 

[43]. In order to address the mating selection of parents that will participate in offspring 

production and environmental selection (from both parents and offspring), individuals from 

the fronts with best (first) ranks are preferred. In particular, parents are randomly chosen from 

the population and compared in a binary tournament. If two individuals appear to be from 

fronts with different ranks, then the winner to enter matting pool of individuals is the one 

from the non-dominated front with better rank. Moreover, if two individuals appear to be 

from the same front, the comparison is done based on their crowding distance (the one with 

the largest crowding distance is preferred). Similarly, to fill the next population of individuals 

from the union of parents and offspring populations, individuals from fronts having better 

ranks are selected first. When there are more available individuals than needed from the last 

front, those with the largest crowding distance (having the largest distance to the nearest 

neighbors) are selected. However, the crowding distance mechanism of diversity preservation 

works poorly when there are more than three objectives. The general framework of NSGA-II 

is described in the algorithm showed in Figure 2 and details of non-dominated sorting and 

crowding distance sorting are provided in the algorithms showed in Figure 3 and 4, 

respectively. 
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Figure 2 General overview of NSGA-II algorithm. 

 

 
 

Figure 3 Details of non-dominated sorting. 

 

 
 

Figure 4 Details of crowding distance sorting. 

 

Many other methods were also developed to improve the performance of NCSGA-II and to 

address diversity preservation in the selection operator. In this line, SMS-EMOA, one of the 

earliest hypervolume-based methods, performs a non-dominated sorting of population to 

build a single offspring during an initial stage. Then, the offspring is ranked against the 

already sorted population and an individual from the last non-dominated front with the 
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smallest hypervolume contribution is removed. Figure 5 describes the general framework of 

the SMS-EMOA approach whilst Figure 6 introduces the details of its replace procedure. 

 

 
 

Figure 5 General overview of SMS-EMOA algorithm. 

 

 
 

Figure 6 Details of the replace procedure belonging to the SMS-EMOA algorithm. 

 

The success of SMS-EMOA motivated developers to create the steady state version of 

NSGA-II [44], in which only a single offspring is created in each generation. Therefore, only 

the worst individual is removed from the population at each iteration of the algorithm. 

Indeed, the steady state version of NSGA-II performs better than the original one [35] at the 

expense of higher computational costs. 

A completely different approach is used in Multi-Objective Evolutionary Algorithm Based on 

Decomposition (MOEA/D). This algorithm divides a multi-objective problem into different 

simpler optimization sub-problems (e.g., defined as scalar aggregation functions) and 

optimize them simultaneously by only taking into account the information on neighboring 

sub-problems [45]. To do so, MOEA/D uses an array of objectives and a set of weight vectors 

to search for different points on the Pareto front. The authors of MOEA/D suggested 
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decomposing the multi-objective problem into as many sub-problems as the number of 

objectives. For each sub-problem, the corresponding scalarization problem should be solved 

by using a mathematical programming method (e.g., weighted sum, Tchebycheff, boundary 

intersection, etc.). By following this approach, the first approximations of the Pareto front can 

be obtained and, consequently, a selection of the most convenient parents to produce the next 

generation of individuals can be made. Moreover, the mating pool of several closest 

neighbors is kept for producing offspring. Finally, all parents are substituted in new 

MOEA/D generations, but non-dominating solutions with respect to previous generations are 

preserved. 

The Convex Hull-based Multi-objective Optimization Genetic Programming algorithm (CH-

MOGP) [31] is an indicator-based MOEA that seeks to maximize the area under the ROC 

Convex Hull. CH-MOGP was developed under the hypothesis that AUCH is a better 

indicator to guide the search when compared to the hypervolume for optimizing classifier 

performance. In fact, two hard classifiers can be successfully combined into a new classifier 

with its FP and FN rates situated on the line segment connecting the two hard classifiers in 

the ROC space. Hence, instead of considering only the hypervolume of points representing 

the hard classifiers included in the population, the hypervolume covered by any linear 

combination of the points must also be considered. It can be computed as the area under the 

convex hull of the population augmented by the three additional points (1,0), (0,1) and (1,1), 

where x and y axes represent the FN and FP rates, respectively. 

The Convex Hull Evolutionary Algorithm (CH-EMOA) [21] can be used as an adaptation of 

CH-MOGP for parametric search spaces (with bit strings and continuous vectors). It can 

address different kinds of classification problems using the same selection scheme and using 

a representation of the solutions in the form of a parsed tree. In brief, CH-EMOA follows the 

same principles as SMS-EMOA but with three important differences. First of all, instead of 
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using non-dominated sorting to determine different ranks in the first selection step, Jarvis' 

algorithm for computing the convex hull is applied repeatedly on the population augmented 

by the point (1,1). In each step, those points lying on the convex hull are determined and 

removed from the set. Secondly, if the first ranking does not yield a decision about whether 

or not a point is selected, those points that most contribute to the AUCH are selected. In a 

 (µ +1)− selection this is accomplished with an exact scheme, otherwise a greedy scheme is 

applied to keep computational efforts low. In order to compute the contribution of a single 

point to the AUCH, its two neighboring points on the convex hull are retrieved and the area 

of a triangle spanned by these three points is computed. Finally, redundant points that are 

already present in the archive are always removed with priority. Figure 7a shows the AUCH 

indicator while Figure 7b presents the selection scheme. 

 

 
 

a)      b) 

 

Figure 7 a) Area under the convex hull (AUCH) indicator for an example set; b) CH-EMOA selection 

scheme. 
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2.4. Available datasets for anti-spam research 

With the goal of boosting the design of novel and accurate filters and the execution of new 

anti-spam experiments, several companies in conjunction with the scientific community have 

publicly shared their e-mail datasets (corpus). All these available corpora can be used for 

testing purposes, enabling results to be compared between different research works. Table 3 

compiles the most popular datasets that can be freely downloaded from the Internet. 

 

Dataset name Size %Ham %Spam URL 

SpamAssassin 9349 74.49 25,51 http://www.spamassassin.org 

CSDMC2010 4327 68.1 31.9 http://csmining.org/index.php/spam-email-datasets-.html 

TREC_Spam_2005 92189 43 57 http://trec.nist.gov/data/spam.html 

TREC_Spam_2006 37822 35 65 http://trec.nist.gov/data/spam.html 

TREC_Spam_2007 75419 33.5 66.5 http://trec.nist.gov/data/spam.html 

PRA_JMLR_2004 17 0 100 http://prag.diee.unica.it/public/datasets/spam/spamArchiveFull/ 

PRA_JMLR_2005 142876 0 100 http://prag.diee.unica.it/public/datasets/spam/spamArchiveFull/ 

PRA_JMLR_2006 25522 0 100 http://prag.diee.unica.it/public/datasets/spam/spamArchiveFull/ 

EnromCorpus 52076 37 63 http://prag.diee.unica.it/public/datasets/spam/Enron/ 

 

Table 3 Publicly available datasets for anti-spam research. 

 

3. Experimental study 

In order to correctly study the advantages of applying three novel indicator and 

decomposition-based evolutionary multi-objective algorithms (i.e., SMS-EMOA, CH-

EMOA, and MOEA/D) to the field of spam filtering, this section (i) defines two different but 

complementary scenarios: parsimony maximization and e-mail classification with three-way 

classifiers or under low confidence level, (ii) establishes the benchmarking protocol and 

documents the parameter setup, and (iii) identifies and comments the performance measures 

used in the experiments.  
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3.1. Instantiation of problem domain and definition of scenarios 

In our study, spam filtering is formulated as a multi-objective optimization problem 

characterized by real-valued objective functions  with values in the [0, 1] interval, such 

as FPR and FNR. Minimization is assumed for all the objectives, which are evaluated with 

individuals collected from decision space as a vector of decision variables   

where  represents the score vector of the filter. In the case of well-known rule-

based anti-spam filters (such as those generated by SpamAssassin), the vector of scores is 

represented by an array of decision variables,  of length,  (i.e., the total number of filtering 

rules), where each variable  corresponds to the score of one rule. The individuals that are 

part of the initial population are randomly generated with scores in the [-5, 5] real variable 

range. Additionally, new individuals are further generated by using of the crossover and 

mutation operators in the same range. These settings follow both SpamAssassin anti-spam 

filter guidelines and configuration included in Debian GNU/Linux OS (Operating System).  

As previously commented, with the specific goal of complementing our previous study [21], 

we have implemented two different but complementary optimization scenarios: (i) the 

minimization of the filter operation complexity through parsimony maximization and (ii) the 

use of three-way classifiers able to label a given message as spam, legitimate or ‘borderline’ 

(in case of low confidence). 

In the first scenario (parsimony maximization), we use a tri-objective binary-real 

representation formulation, where a typical user would wish to minimize FNR, FPR and 

Complexity Rate (CR) or percentage of active rules with a score different from zero. In this 

problem formulation all the objective values fall in the [0, 1] range, but a binary decision 

variable is added to the representation of the decision vector. The purpose is to have one bit 
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for representing each available rule, allowing its activation or deactivation depending on its 

associated relevance in the whole classification process. This problem formulation, initially 

introduced in [21], is maintained here with two main purposes: (i) assuring accurate 

performance comparisons with previous approaches and (ii) enabling a relevance analysis to 

consider the different types of rules. In detail, our previous work was focused in providing an 

appropriate benchmark procedure to compare several MOEA approaches aimed to solve 

different optimization problems. In contrast, the present work takes advantage of the same 

evaluation scenario to assess the contribution of each rule for accurately classifying incoming 

messages.  

The second scenario stands for a tri-objective real-valued representation for three-way 

classification. As in the previous case, a real decision vector is used for representing the 

scores of all the available anti-spam rules. Additionally, two real variables in the interval [0, 

1] are used with the goal of representing the two threshold values used for establishing the 

bounds that define ‘unclassified’ e-mails. An additional constraint is introduced here in order 

to guarantee that the lower bound value is smaller than the upper one. By following this 

problem formulation, three labels are required for classifying e-mails: legitimate, spam and 

unclassified. Therefore, whenever the target message achieves a score below the lower bound 

threshold, it is classified as legitimate. Conversely, if the e-mail score is above the upper 

bound threshold, the message is classified as spam. Otherwise, if the score is located inside 

the interval, the message is considered for a further exam (unclassified). Under this situation, 

the rationale is that it is better to leave an e-mail unclassified than to provide a wrong 

classification.  

In our second scenario, the three objectives are the minimization of FNR, FPR and the 

unclassified ratio of e-mails (UR). This third objective also falls in the range of [0, 1], as 

shown in Expression (4). 
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NumberOfUnclassifiedMessagesUR
TotalNumberOfMessagesInTheDataSet

=  (4) 

3.2. Benchmarking protocol and parameter setup 

In order to guarantee the reproducibility of our experiments, this subsection introduces a 

straightforward description of all the configuration details needed to run our experimental 

tests including the target filter definition, the available datasets, and different parameter 

details regarding the configuration of the executed algorithms. 

With reference to the target filter to be optimized, we selected the default and standard spam 

filter configuration included in the Debian GNU/Linux Squeeze distribution running 

SpamAssassin 3.3.1 [9]. This decision was mainly motivated by the fact that SpamAssassin 

(i) is the de facto standard in the spam filtering industry, (ii) it is publicly available for 

research projects and novel developments, and (iii) it achieves a good performance when 

considering the effectiveness of the classifications carried out. Regarding its initial 

configuration, we kept the default value for the required_score threshold in all the 

experiments (i.e., required_score = 5). The range of scores during the optimization process 

was limited to the [-5, 5] interval. Although the default filter definition contains a collection 

of 2,440 different rules, the great majority does not fit any incoming e-mails. In fact, only 330 

rules match some e-mails, so only those rules were finally selected to be part of our multi-

objective optimization process.  

From all the available alternatives shown in Table 3, we finally selected the well-known 

SpamAssasin corpus [46] in order to run our experimental testbed. Our selection guarantees a 

medium-sized corpus (containing 9349 e-mails) providing both legitimate and spam 

messages (6951 legitimate vs 2398 spam) characterized by a legitimate/spam ratio very 

similar to the proportion of current e-mail in-boxes. Moreover, SpamAssassin corpus has 

been distributed in the same raw format as messages were transmitted through Internet (RFC 
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5322 format [47]). Hence, using the spamc and spamd tools included in the SpamAssassin 

package [9], we can easily compute those matching rules for each available message (spamc 

–y < file.rfc5322.eml). The output of the previous command is saved to a file, which is later 

used to improve the evaluation speed for each configuration. 

As previously stated, in this work we apply three novel indicators and decomposition-based 

MOEAs for the three-objective optimization of two untested scenarios in the spam filtering 

domain. In detail, the tested algorithms are the Convex-Hull Evolutionary Multi-objective 

Optimization Algorithm (CH-EMOA), the Multi-objective Selection Based on Dominated 

Hypervolume (SMS-EMOA) and the Decomposition-based Multi-objective Evolutionary 

Algorithm (MOEA/D). Additionally, we also compare the results achieved by these novel 

approaches with those obtained by classic MOEAs (i.e., NSGA-II and SPEA2) acting as a 

baseline. All the experiments were performed with jMetal 4.3 [44], an optimization 

framework for the development of multi-objective metaheuristics in Java. 

Similar experiment configurations were adopted for both scenarios (parsimony maximization 

and three-way classification). In detail, the RealBinary encoding formulation was 

implemented using the jMetal RealBinary encoding scheme, where the chromosome is 

constituted by an array of real values in the [-5, 5] interval, plus a bit string. Each filtering 

rule was associated with a real score value within this interval, plus one bit in the 

chromosome. In this context, if the ith bit in the chromosome is 0, then the ith rule is ignored, 

otherwise the rule is active, being considered by the filter with the ith bit value corresponding 

to its real score (rule weight). Motivated by the number of rules comprising our filter (the 

standard spam filter configuration included in SpamAssassin 3.3.1), the length of the 

chromosome used in our experiments was330 2 660× = . 

For all the experiments, we established a maximum number of 25,000 function evaluations. 

Both the SBX single point crossover and bit flip mutation operators were applied to 
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manipulate binary data in the tri-objective binary-real representation experiments. 

Additionally, the SBX crossover and polynomial mutation operators were used to manipulate 

real data belonging to both problem representations (i.e., tri-objective real-valued and tri-

objective binary-real). For binary variables, a bit flip mutation was used with a probability of 

1
n

 for each single bit. The crossover probability was 0.9cp =  and the mutation probability 

was 1mp n= , being n the number of available filtering rules. The population size was set to 

100 individuals for all the algorithms. The archive size was established to 100 for the SPEA2 

approach, while the offset was assigned a value of 100 for SMS-EMOA and CH-EMOA. All 

the algorithms were executed 30 times in an independent fashion. 

3.3. Discussion of performance measures 

Although many global performance measures can be found in the scientific literature, 

comparing EMOAs results is still an open problem. In contrast to single objective algorithms, 

the performance assessment of algorithms with multiple objectives constitutes a complex 

task. Among others, it involves quality of the outcome assessment (i.e., how to measure 

quality), computing resources used (e.g., time, number of function evaluations, etc.) as well 

as the analysis of several runs of the (stochastic-based) algorithm to take randomness and 

parameterization into account. Therefore, the analysis requires extensions of comparison 

methods. Instead of comparing objective vectors, approximation sets of several independent 

runs of algorithms need to be compared. 

In multi-objective optimization, it is often impossible to know the (true) Pareto optimal set to 

be used in the comparison with the outcomes of EMOAs. Thus, general performance 

assessment criteria for multi-objective optimization algorithms should be considered 

including accuracy, coverage and variance, also called convergence, uniformity and spread. 

Under the best of circumstances, the obtained Pareto-optimal solutions are accurate, which 
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means they are as close as possible to the true Pareto front of non-dominated solutions, well 

distributed and widely spread. Coverage and spread measures are closely related but are not 

exactly the same, because the former requires a representation of each region of the Pareto 

front, while the latter makes sure that the distance between points of the Pareto front 

approximation is evenly distributed (apparently it tends to give higher preference to boundary 

points). 

In this context, theoretical and empirical techniques can be used for performance assessment. 

On the one hand, theoretical (analytical) approaches are usually difficult to adopt because of 

their limited scope (working effectively only with small data sets) and/or use of 

computational resources (many conditions should be checked). On the other hand, empirical 

(simulation) techniques are based in multiple runs of the algorithms under consideration, 

requiring the evaluation of standard parameters and the application of statistical testing 

procedures for comparing sets of Pareto front approximations. 

In such a situation, and with the goal of accurately evaluating different approximation sets 

from multiple runs belonging to several stochastic multi-objective algorithms, 

complementary techniques can also be combined. To this end, we adopted both dominance-

compliant quality indicators and 3D graphical representations of the reference fronts 

(composed of Pareto front solutions selected from all runs of an algorithm) for carrying out 

the performance assessment. While the former reduces each approximation set to a single 

quality value applying statistical tests to the samples, the latter shows the samples of the 

approximation sets giving information about how and where the performance differences 

occur. 

Quality indicators allow the analysis of two algorithms to determine how much, and in which 

specific aspects, one of them is better than the other. However, these alternatives can only 

measure specific/limited quality aspects. Therefore, in our study we compute and analyze two 
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complementary quality indicators that have reasonable properties related to the domain 

specific multi-objective optimization algorithms used in our experiments: SPREAD [35] and 

VUS [49-50]. 

The SPREAD indicator is commonly used for the comparison of different EMOAs. This 

indicator can be evaluated in either the objective or decision spaces, showing how far the 

Pareto front or set spreads in the objective or decision space, respectively. Hence, the larger 

the spread of the Pareto front is, the wider the range of values on objectives/variables it 

covers [51].  

Volume Under the ROC hypersurface indicator (VUS) has a great significance in studying 

ML approaches for classification problems by the means of a ROC centered analysis. This 

indicator provides information on the volume under the convex hull, and can evaluate the 

solution set directly. Therefore, the better solution set is the one that obtains the higher value 

of VUS. The set of solutions on the ROC curve represents an approximation towards the set 

of optimal solutions (optimal ROC curve). However, although VUS closely resembles the 

commonly used hypervolume indicator, VUS is specific for the learning task. In particular, 

VUS considers the volume of the convex hull instead of the volume of the Pareto dominated 

subspace, working with a fixed reference point (also called the anti-ideal classifier). The 

reason for using VUS instead of the hypervolume indicator is that, for an ensemble of hard 

classifiers, it is always possible to create classifiers that have characteristics in the criterion 

space, which are given by the convex combinations of the objective function vectors of the 

classifiers in the ensemble. Therefore, VUS is the hypervolume indicator of the ensemble 

augmented by all these convex combinations. 

Although the area under the (ROC) convex hull (AUC) has become a standard performance 

evaluation criterion in binary pattern recognition problems (being widely used to compare 

different classifiers independently of priors and costs), the AUC measure is only applicable to 
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binary classification problems. The ROC curve (originally used in binary classification 

problems) was extended to a multi-class scenario in the work of Srinivasan and Srinivasan 

[52]. Moreover, some simpler generalizations to compute VUS [49] as well as more complex 

approaches to compute the ROC hyper-surface (VUS) [53] were also proposed. 

During several years, computational complexity and precision of MOEA trade-offs were 

discussed. In this regard, Edwards et al. [54] showed that the VUS value of a near guessing 

classifier is about the same as of a near perfect classifier when more than two classes are 

considered. Alternative definitions of VUS were subsequently introduced for dealing with 

such situations. In our work, we focus on finding sets of classifiers with optimal VUS, 

considering the simplified ROC proposed in the work of Landgrebe and Duin [50].  

3.4. Results and discussion 

This section introduces and discusses the results achieved from our experimental testbed, 

outlining relevant aspects concerning the behavior and performance of the proposed 

algorithms. The results analyzed in this section are organized following the two previously 

defined scenarios: parsimony maximization (3D-BinaryReal) and three-way classification 

(3D-Real).  

In detail, in the first scenario we extend our previous study [21] by addressing not only the 

complexity of the classifier, but also the analysis of the rules as well as their type and 

relevance, with the goal of improving the classifier accuracy. Moreover, in the second 

scenario we test a three-way classification approach as an effective method to mark messages 

that need to undergo further examination by the user because of their low classification 

confidence. 

On the one hand, optimization results achieved in the first scenario confirmed that the 

increment in the number of rules does not necessarily lead to an improvement in anti-spam 

filtering classification. On the other hand, increasing the number of anti-spam filtering rules 
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has an impact on the classifier complexity, not only in the computational resources 

consumption for e-mail classification, but also in the administrators’ ability to understand the 

filtering behavior and to maintain the anti-spam system. 

From all the executed experiments, we can state that the classifier was able to reach high 

levels of accuracy in both FNR and FPR dimensions. In particular, it was found that FPR was 

close to zero even when using only 20% of the anti-spam rules. Additionally, the best 

accuracy trade-offs were also achieved using only those 20% of the available rules. From 

another complementary perspective, increasing the number of rules used in the classification 

process to exceed this 20% only produced a marginal impact on the classifier accuracy. 

With the goal of better understanding those types of rules, we specifically studied the set of 

20% anti-spam rules having the major impact in achieving the maximal classification 

accuracy. Table 4 presents the rank of the best rules (being used by all the algorithms in all 

the experiments), which are part of the best solutions of the reference Pareto front. 

The rules shown in Table 4 are sorted according to their appearance in the reference Pareto 

front solutions (activation frequency). As we can see from Table 4, these rules are applied to 

both the e-mail header (e.g., messages origin domain) and body (i.e., message content). While 

the former is based on administrative measures and information sharing mechanisms between 

different anti-spam systems, the latter has a more customized nature according to language, 

economic area or activity of the institutions, and user preferences.  

Moreover, the information shown in Table 4 indicates that 32.11% of relevant rules are 

related to the message body content and 6.5% are based on regular expressions, manually 

created by system administrators for parsing and checking e-mail structure, syntax and 

content. Remaining rules are related to e-mail message headers and different e-mail system 

administration policies. 
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Rules Name 

Present in best 

individual 

solutions (%) 

Present in best 

individual solutions 

(#) 

body (message content) or 

header (meta-data) rules 

BAYES_99 100.00% 99 body 

SPF_HELO_FAIL 100.00% 99 header 

T_LOTS_OF_MONEY 100.00% 99 header 

BAYES_00 98.99% 98 body 

FREEMAIL_FROM 96.97% 96 header 

RDNS_NONE 96.97% 96 header 

NO_DNS_FOR_FROM 92.93% 92 header 

NORMAL_HTTP_TO_IP 83.84% 83 header 

HTML_MESSAGE 82.83% 82 body 

SPF_SOFTFAIL 81.82% 81 header 

FROM_EXCESS_BASE64 80.81% 80 header 

MISSING_MIMEOLE 78.79% 78 header 

RCVD_HELO 71.72% 71 header 

RCVD_NUMERIC_HELO 71.72% 71 header 

BAYES_80 57.58% 57 body 

RDNS_DYNAMIC 55.56% 55 header 

RATWARE_MS_HASH 54.55% 54 header 

BAYES_95 52.53% 52 body 

IMPOTENCE 52.53% 52 body 

 

Table 4 Rank of the 20% anti-spam rules being used in the best solutions (i.e., individuals) comprising 

the reference Pareto front. 

 

As previously commented, for the second analyzed scenario (aiming at the minimization of 

FNR, FPR and UR) we provide a performance assessment based on the graphical and 

indicator-based analysis of the Pareto front. In this way, boxplots depicting median, quartiles 

and outliers on the multi-criteria performance indicators (SPREAD and VUS) are shown for 

the five algorithms under consideration. The comparison of those algorithms is done with 
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respect to the reference Pareto front, which is taken as a closest approximation of the true 

Pareto front.  

In order to find statistically significant differences corresponding to VUS and SPREAD 

performance indicators among the MOEAs described above, and also taking into 

consideration that the underlying data do not fit a normal distribution, we performed a 

statistical analysis of the median differences by executing several Kruskal-Wallis tests. 

In detail, Shapiro-Wilks tests were firstly carried out for the five EMOAs revealing low p-

values, which allowed us to reject the hypothesis that the data come from a normal 

distribution, except for the 3DCH-EMOA approach with a p-value greater than 0.1 (for both 

indicators) and the NSGA-II alternative (for the SPREAD indicator). Tables 5 and 6 show the 

results of these Shapiro-Wilks tests corresponding to the VUS and SPREAD performance 

indicators, respectively. 

 

 NSGA-II SPEA2 
SMS-

EMOA 
MOEA/D 3DCH-EMOA 

Lowest p-value amongst 

the tests 
0.0000168 1.88E-9 0.0354759 0.0148229 0.116923 

Reject the hypothesis 

that the data comes from 

a normal distribution 

(confidence level) 

99% 99% 95% 95% lower than 90% 

 

Table 5 Shapiro-Wilks tests for the VUS performance indicator. 

 

 NSGA-II SPEA2 
SMS-

EMOA 

MOEA/

D 

3DCH-

EMOA 

Lowest p-value amongst 

the tests 
0.593221 

0.0283

8 

0.00018402

5 

0.000098

3 
0.268165 

Reject the hypothesis 

that the data comes from 

a normal distribution 

lower 

than 90% 
95% 99% 99% 

lower than 

90% 
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(confidence level) 

 

Table 6 Shapiro-Wilks tests for the SPREAD performance indicator. 

 

After that, we used the Kruskal-Wallis test to check the null hypothesis that the medians 

within each of the five algorithms are the same. Since the p-value was less than 0.05 for both 

VUS and SPREAD indicators, we can confirm that there are statistically significant 

differences amongst the medians. In order to specifically show which medians are 

significantly different from each other, Figures 8 and 9 show the Box-and-Whisker plot 

corresponding to VUS and SPREAD indicators, respectively. 

 
Figure 8 VUS boxplot for the second analyzed scenario: minimization of FNR, FPR and unclassified 

ratio of e-mails in three-way classification. 
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Figure 9 SPREAD boxplot for the second analyzed scenario: minimization of FNR, FPR and 

unclassified ratio of e-mails in three-way classification. 

 

Complementarily, a comparison of the statistically significant differences amongst each pair 

of algorithms is also shown in Tables 7 and 8 for VUS and SPREAD indicators, respectively. 

 

 3DCH-EMOA MOEA/D NSGA-II SMS-EMOA 

SPEA2 
DIF 95% conf. 

p-value: 2.872E-11 

DIF 95% conf. 

p -value: 3.17E-11 

NO DIF 

p -value: 0.813 

NO DIF 

p -value: 0.214 

SMS-

EMOA 

DIF 95% conf. 

p-value: 2.872E-11 

DIF 95% conf. 

p -value: 3.175E-11 

NO DIF 

p -value: 0.214 
- 

NSGA-II 
DIF 95% conf. 

p -value: 2.872E-11 

DIF 95% conf. 

p -value: 3.175E-11 
- - 

MOEA/D 
DIF 95% conf. 

p -value: 2.872E-11 
- - - 

 

Table 7 Kruskal-Wallis analysis corresponding to the VUS performance indicator. 

 

 3DCH-EMOA MOEA/D NSGA-II SMS-EMOA 

SPEA2 
NO DIF 

p-value: 0.0712747 

NO DIF 

p-value: 0.756201 

DIF 95% conf. 

p-value: 0.0034 

NO DIF 

p-value: 0.604838 

SMS-

EMOA 

DIF 95% conf. 

p-value: 0.000748948 

NO DIF 

p-value: 0.169143 

DIF 95% conf. 

p-value: 0.0000286438 
- 

NSGA-II 
NO DIF 

p-value: 0.169143 

DIF 95% conf. 

p-value: 0.00000133477 
- - 

MOEA/D 
DIF 95% conf. 

p-value: 0.000672439 
- - - 

 

Table 8 Kruskal-Wallis analysis corresponding to the SPREAD performance indicator. 

 

As expected, the three-objective CH-EMOA implementation (3DCH-EMOA) performs much 

better than all the other tested algorithms, presenting not only a high classification quality 

average, but also stable (predictable) behavior evidenced by a low VUS variance. This good 

performance is mainly motivated by the fact of CH-EMOA being an indicator-based 
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algorithm, which precisely uses VUS as a selection criterion. The second position is occupied 

by the decomposition-based algorithm MOEA/D, showing a much worse VUS average and a 

higher variance, which is far from reaching the same performance level and stability obtained 

by the 3DCH-EMOA approach. 

Additionally, the SPREAD indicator is useful for assessing the diversity of the solutions 

obtained by all the algorithms under consideration. As shown in Figure 9, 3DCH-EMOA 

achieves a medium performance level with respect to this indicator. In fact, the average 

performance obtained by SMS-EMOA and MOEA/D algorithms is clearly better. The reason 

for this behavior is related to the fact that SMS-EMOA and MOEA/D can also approximate 

concave parts of the Pareto front. This is not allowed for the 3DCH-EMOA alternative and, 

as previously discussed, it is not necessary in the context of ROC performance. The relatively 

low variance of MOEA/D can be explained by the fact that it always uses the same set of 

reference points. A high variance in the results of both 3DCH-EMOA and SPEA2 approaches 

can be also observed. This last fact requires further investigation. 

The 3D complementary plots of the reference Pareto front shown in Figure 10 reveals the 

boundary between the dominated and non-dominated space (also known as attainment curve), 

where all the values are relative to the number of available rules (330) and the total number 

of messages (9349). Instead of representing the selected rates (i.e., FNR, FPR and UR) we 

used the absolute values to clearly show the practical impact of the decision alternatives. 

With respect to Figure 10, if the filter is forced to classify all the e-mails (using only 

‘legitimate’ or ‘spam’ labels) the number of errors could be minimized to 13 

misclassifications. Additionally, misclassifications could be further reduced up to 5 (in 20 out 

of 9349 cases) if the ‘unclassified’ label is allowed. Considering these results, the use of a 

three-way classification scheme seems very effective in reducing the number of classification 

errors. 



- 34 - 

 

 
a)       b) 

Figure 10 3D complementary plots of reference Pareto front for the second analyzed scenario. 

 

Indeed, results shown in Figure 11 confirm the effectiveness of maintaining a small number 

of e-mails unclassified, with the goal of increasing the classification quality. From Figure 11 

we can observe that the Pareto front with a few unclassified e-mails (20) dominates the 

Pareto front with less than 10 errors (3 FP and 3 FN). Therefore, we confirm the utility of 

those filters that keep messages unclassified when the computed solution has a low 

confidence level. 

 

 
Figure 11 Reference Pareto front for the second scenario showing the number of FN and FP errors as 

well as the number of unclassified messages. 
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Finally, to check the burden of these filter optimization methods, we measured both the 

overall time required to run the full experiments and also the relative burden of each EMOA. 

To this end, we executed the experiments in a quad-core Intel Xeon E5520 CPU at 2.27GHz 

with 8GB RAM computer running Debian GNU Linux operating system. Table 9 shows the 

obtained results. 

 

 NSGA-II SPEA2 SMS-EMOA MOEA/D 3DCH-EMOA 

Execution 

time per run 

(in seconds) 

53.02 58.77 258.78 50.56 1759.70 

 

Table 9 Comparison of the execution times belonging to each algorithm. 

 

As shown in Table 9, NSGA-II, SPEA2 and MOEA/D execution times are very similar. 

These algorithms are approximately five times faster than the SMS-EMOA approach and 

thirty times faster than the 3DCH-EMOA alternative. The high computational burden of 

steady state methods such as SMS-EMOA is in this specific case worsened by the increased 

dimensionality (i.e., three objectives to minimize) of the optimization problem. The 3DCH-

EMOA high computational burden is related to the convex hull calculation complexity, as 

described in [21, 31]. MOEA/D is the algorithm that requires the smallest amount of 

computational time to compute an optimized SpamAssassin ruleset. However, the 

computational footprint of these EMOAs seems to limit their applicability in real domains. 

To cope with these issues, next subsection introduces a set of practical considerations to 

properly deploy these optimization techniques in real environments. 

3.5. Practical deployment considerations 

As previously discussed, the use of different MOEAs to optimize SpamAssassin filter scores 

presents an important computational footprint. As long as this issue should be taken into 
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consideration to use them in real environments, we have compiled a set of recommendations 

to deploy score optimization mechanisms into production e-mail filtering servers. 

First of all, the optimization process requires the use of target domain messages previously 

classified. As long as the filtering process in a Mail Transfer Agent (MTA) can be 

customizable through a configurable script, these e-mails can be easily compiled by 

modifying this script. Moreover, the classification could be also achieved by using 

SpamAssassin client (spamc). To cope with SpamAssassin misclassifications, two e-mail 

users (e.g., not_spam and not_ham) could be created to receive feedback from the final user. 

With this configuration, those messages compiled within an appropriate time period could be 

further used to execute the optimization process. 

Complementarily, and keeping in mind the nature of the proposed methods, the optimization 

process should be periodically repeated once a month, or a week, depending on the specific 

computational capabilities. However, the proposed optimization process should not be 

implemented in a production e-mail filtering server to avoid lags in message exchanging.  

Finally, with the goal of improving speed at affordable costs, the use of high performance 

parallel computing and cluster techniques (e.g., MapReduce, CUDA, etc.) is usually 

conducted. We found the application of these techniques suitable to achieve the improvement 

of MOEAs. 

4. Conclusions and future work 

In this work, we have evaluated the utility of several multi-objective evolutionary algorithms 

to optimize rule-based anti-spam filters from different but complementary perspectives. To 

this end, we presented two experimental case studies where filter complexity and three-way 

classification strategy were considered as additional objectives. The first scenario (parsimony 

maximization) revealed that the number of rules could be significantly reduced without 
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affecting the filter performance. Moreover, experimental results related to the use of a three-

way classification approach demonstrated the utility of defining a boundary region (where the 

classifier confidence is too low) to reduce the number of misclassification errors. 

In this context, and from the experiments carried out, we would like to emphasize that from 

the 330 rules that match messages in the SpamAssassin corpus, only 5% to 20% of rules are 

really needed to achieve an optimal classification. Moreover, and taking into consideration 

the particular nature of the spam filtering domain, a considerable amount of relevant rules are 

based on regular expressions. These rules are used to specifically parse and check the e-mail 

structure, syntax and content, representing a major contribution in anti-spam filtering 

customization. The design of this type of rules constitutes an important share of the effort 

made by systems administrator to release novel and accurate anti-spam filters. Therefore, 

research aiming at the automatic generation of regular expressions from any given corpus is 

of high interest, having been initially addressed in the work of Basto-Fernandes et al. [55].  

With regard to our three-way classification experiments, it was revealed that indicator-based 

algorithms perform well when carrying out multi-objective optimization of ROC curve 

performance. The best results for the VUS indicator were achieved by 3DCH-EMOA. 

Additionally, according to SPREAD indicator results, this algorithm also achieves good 

performance taking into account that this approach does not allow including points in the 

concave parts of the Pareto front. Finally, with the introduction of an extra ‘unclassified’ 

label in the filter (targeted to inform the user of those messages with a low confidence level), 

a considerable improvement in quality can be achieved to avoid harmful misclassifications at 

low cost for e-mail users (time). 

Current and future work includes the investigation of whether obtained results generalize to 

data sets from other domains (e.g., web spam) where classification is commonly used. 



- 38 - 

Moreover, as previously stated, the automatic generation of regular expression remains an 

interesting challenge in the domain of spam filtering. 

All algorithms used in this study were implemented in JMetal Java framework and are 

available upon request by the authors. 
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