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Abstract—This paper presents a newly created significance
measure based on a variation of Bayes’ theorem, one which
quantifies the significance of any value contained within an
R-fuzzy set. An R-fuzzy set is a relatively new concept and
an extension to fuzzy sets. By utilising the lower and upper
approximations from rough set theory, an R-fuzzy approach
allows for uncertain fuzzy membership values to be encapsulated.
The membership values associated with the lower approximation
are regarded as absolute truths, whereas the values associated
with the upper approximation maybe be the result of a single
voter, or the vast majority, but definitely not all. By making
use of the significance measure one can inspect each and every
encapsulated membership value. The significance value itself is
a coefficient, this value will indicate how strongly it was agreed
upon by the populace for a specific R-fuzzy descriptor. There
has been no recent effort made in order to make sense of the
significance of any of the values contained within an R-fuzzy
set, hence the motivation for this paper. Also presented is a
worked example, demonstrating the coupling together of an R-
fuzzy approach and the significance measure.

I. INTRODUCTION

The work presented by Yang and Hinde in [12], was
the first work that proposed the concept of an R-fuzzy set.
Yet another approach to encapsulate uncertainty, but the first
one which adopted rough approximations for the bounding of
uncertain fuzzy membership values. The membership value of
an R-fuzzy set, is itself a set, more specifically a rough set. This
encapsulation is bounded by crisp approximations; the use of
lower and upper approximations directly from rough set theory.
The lower bound contains the membership values agreed upon
by all, whereas the upper bound contains membership values
agreed upon by at least one voter. There are several existing
paradigms and concepts related to uncertainty, all of which
have their own associated difficulties in extracting, crisp, clear
and concise information. The foundational understanding of
sets from a classical sense is with regards to absolute inclusion,
or absolute exclusion from the set [2]. With relation to human
inferencing, using such a precise and crisp manner did not
seem a fitting synthesis, everything is vague to some extent.
With this realisation came the notion of mereology, which
played on the ideals of an element having partial belonging-
ness to a set. For precise reasoning a crisp understanding is
needed, but this becomes problematic when considering natural
language. As is evident in our daily communications, we are
often obliged to use words which are themselves associated
with inherent vagueness and ambiguity. Therefore, to mimic
and understand human based reasoning, an entirely crisp,
classical use of logic can not solely be used. The paradigm
of fuzzy theory, which apart of its repertoire includes fuzzy

logic [13][14], adopts the notion of mereology. Whereby an
element can be attributed to belongingness to some degree; a
degree of membership inclusive of its membership function.

One problem that is still prevalent, is deriving a crisp
membership function for a type-1 fuzzy set, as it may still
involve a great deal a vagueness and ambiguity [12]. This has
led to various extensions and hybridisations, all in the hope
to alleviate this concern. Such concepts include; Atanassov
intuitionistic fuzzy sets [1], where a degree of membership
and degree of non-membership are presented. Shadowed sets
[10], where the evaluation of a membership is scored as
either (1), (0) or belonging to the shadowed region [0, 1].
Interval-valued fuzzy sets [11], where the membership of an
individual element is characterised as an interval itself. Type-2
fuzzy sets [5], where the secondary grade membership function
itself is a type-1 fuzzy set. These new approaches involve
the use of intervals, multiple parameters and additional fuzzy
sets to describe the uncertain membership function values of
fuzzy sets. However, there is still a problem, these approaches
will not be able to distinguish between the values contained
within their intervals or shadow regions. As R-fuzzy utilises
rough set approximations, all values contained in the populace
are included, thus conserving general and specific consensus.
There is no loss of information and every value is easily
distinguishable. Rough sets provide for a different perspective
to that of fuzzy sets, with relation to how uncertainty is
handled. A rough approach is with regards to ambiguity and
a lack of information. Whereas, a fuzzy approach is more
associated to vagueness and a lack of definable boundaries. As
a result there have been several hybridisations between fuzzy
sets and rough sets; [3][4][6], all of which mainly involve
the use of equivalence and similarity relations. R-fuzzy is
yet another approach which pairs fuzzy and rough aspects
together, but it was the first to use rough sets to approximate
the membership functions of fuzzy sets [12].

Section II will describe the preliminaries for approxima-
tions and R-fuzzy sets. Section III presents the newly created
significance measure. Also included is a worked example
involving human-based visual perception, coupling together
the R-fuzzy approach with the significance measure. Section
IV concludes and summarises the advantages of using an R-
fuzzy approach, paired with a significance measure for human-
based perception modelling.

II. PRELIMINARIES

This paper will now present the definitions and notations
used, we begin with approximations. It is assumed that the



reader will be well-versed in the foundational aspects of fuzzy
and rough sets, hence why their definitions have been omitted
from this paper.

A. Approximation Preliminaries

Definition 1 (Approximations [8][9]): Assume that Λ =
(U, A) is an information system and that B ⊆ A and X ⊆ U.
One can approximate set X with the information contained in
B via a lower and upper approximation set.

The lower approximation is the set of all objects that
absolutely belong to set X with respect to B. It is the union
of all equivalence classes in [x]B which are contained within
the target set X , and is given by the formal expression:

BX = {x | [x]B ⊆ X} (1)

B(x) =
⋃
x∈U
{B(x) : B(x) ⊆ X}

The upper approximation is the set of all objects which can
be classified as being possible members of set X with respect
to B. It is the union of all equivalence classes that have a
non-empty intersection with the target set X , and is given by
the formal expression:

BX = {x | [x]B ∩X 6= ∅} (2)

B(x) =
⋃
x∈U
{B(x) : B(x) ∩X 6= ∅}

B. R-Fuzzy Set Preliminaries

We now present the concept of R-fuzzy sets, which makes
use of the approximations as given in Definition 1.

Definition 2 (R-fuzzy sets [12]): Let the pair apr =
(Jx, B) be an approximation space on a set of values Jx =
{v1, v2, . . . , vn} ⊆ [0, 1], and let Jx/B denote the set of all
equivalence classes of B. Let

(
MA(x),MA(x)

)
be a rough

set in apr. An R-fuzzy set A is characterised by a rough set
as its membership function

(
MA(x),MA(x)

)
, where x ∈ U,

given by the formal expression:

A = {
〈
x,
(
MA(x),MA(x)

)〉
|

∀x ∈ U,MA(x) ⊆MA(x) ⊆ Jx} (3)

A =
∑
x∈U

(
MA(x),MA(x)

)
/x

Where
∑

denotes the union of all admissible x elements
over the universe of discourse. For each xi ∈ U, there is an
associated membership description d (xi) which describes the
belongingness of the element xi to the set A ⊆ U. Assume
C is a set of available evaluation criteria. Each value v ∈ Jx
is evaluated by cj ∈ C to determine if it is described by the
membership description for xi with respect to A. The resulting
evaluation will either be a YES or a NO. Typically, evaluations
which result in a NO are ignored and only evaluations that
result in a YES are carried forward. If a membership value has

an association to the descriptor that the R-fuzzy set is being
modelled for, it will be included within that R-fuzzy set.

v
(d(xi),cj)−−−−−−→ YES or v

(d(xi),cj)−−−−−−→ NO

For each pair ((xi), cj) where xi ∈ U and cj ∈ C, a set
Mcj(xi) ⊆ Jx is created, given by the formal expression:

Mcj(xi) = {v | v ∈ Jx, v
(d(xi),cj)−−−−−−→ YES} (4)

The lower approximation of the rough set M(xi) for the
membership function described by d(xi) is given by:

M(xi) =
⋂
j

Mcj(xi) (5)

The upper approximation of the rough set M(xi) for the
membership function described by d(xi) is given by:

M(xi) =
⋃
j

Mcj(xi) (6)

The rough set approximating the membership d(xi) for xi
is given as:

M(xi) =

⋂
j

Mcj(xi),
⋃
j

Mcj(xi)

 (7)

Considering, v
(d(xi),cj)−−−−−−→ YES, it is perfectly possible for a

different criteria set C to produce an entirely different Mcj(xi)
and hence an entirely different M(xi). This means that an R-
fuzzy set can only be created when a membership set Jx and
criteria set C have already been established [12].

III. SIGNIFICANCE MEASURE

This section will present the newly derived significance
measure. Also included is a worked example, demonstrating
the pairing of an R-fuzzy and significance measure approach.

A. Significance

The significance measure proposed in this paper is based
on the certainty factor employed by rough set theory, which
itself is based on a variation of Bayes’ theorem [8]. The
certainty factor presented from a rough set perspective is given
as follows:

cerx(A,D) =
|A(x) ∩D(x)|
|A(x)|

(8)

For every decision rule A →x D, there is an associated
certainty factor, where A is the rule, D is the decision and supp
is a frequency count. Eq. (8) can be viewed as a conditional
probability that y belongs to D(x) given that y belongs to
A(x). If cerx(A,D) = 1, then A →x D will be called a
certain decision rule, if 0 < cerx(A,D) < 1 the decision
rule will be referred to as an uncertain decision rule. As R-
fuzzy sets are not used on rule based systems, one cannot
simply transfer over the certainty factor without modification.



The significance measure must be made relative to the subset
of all values based on Mpj(x) ⊆ Jx.

Definition 3 (Degree of significance): Using the same
notations given in Definition 2 that described an R-fuzzy set,
assume that an R-fuzzy set M(xi) has already been created,
and that a membership set Jx and a criteria set C are also
known. Given that |N | is the cardinality of all generated
subsets Mcj(xi), and that Sv is the number of subsets that
contain the specified membership value being inspected. As
each value v ∈ Jx is evaluated by cj ∈ C, the significance
measure therefore counts the number of instances that v
occurred over |N |, given by the formal expression:

γĀ{v} =
Sv

|N |
(9)

The significance measure expresses the conditional prob-
ability that v ∈ Jx belongs to the R-fuzzy set M(xi), given
by its descriptor d(xi). The value will initially be presented
as a fraction, where the denominator |N | will be indicative
of the total number of subsets. The numerator Sv will be the
number of occurrences, that the observed membership value
was accounted for. This fraction in turn can be translated
into a normalised real number, which will be indicative of
its significance and given by its membership function γĀ{v} :
Jx → [0, 1]. If the value returned by γĀ{v} = 1, then that
particular membership value has been agreed upon by all in
the criteria set C. As a result one will know that it absolutely
belongs to the lower approximation; as for it to be included,
the entire populace must agree:

MA = {γĀ{v} = 1 | v ∈ Jx ⊆ [0, 1]} (10)

The notation for an R-fuzzy set given by Eq. (3), indicated
that a lower approximation was a subset of the upper approx-
imation. Therefore, any membership value with a significance
degree of γĀ{v} = 1, will also be included within the upper
approximation. If γĀ{v} = 0, this particular membership value
will be disregarded as it does not satisfy the descriptor at all.
If 0 < γĀ{v} < 1, then this particular membership value has
some significance to some degree relative to the descriptor
d(xi). As a result this particular value will knowingly be
contained within the upper approximation as its significance
is greater than 0:

MA = {γĀ{v} > 0 | v ∈ Jx ⊆ [0, 1]} (11)

The interpretation of the membership value from a sig-
nificance measure perspective, is different to that from a
fuzzy perspective. A fuzzy element can be described by its
membership function such that it returns any real number in
the range [0, 1], implying its belongingness to its fuzzy set.
The significance measure however returns the degree of sig-
nificance of a membership value relative to its descriptor d(xi).
This is based on its conditional probability of distribution.

Eq. (9) can be rewritten so that the collected significance
degrees constitute a set, given by the following expression:

Ā = {〈v, γĀ{v}〉 | v ∈ Jx ⊆ [0, 1]} (12)

Ā =
∑
v∈Jx

γĀ{v}/v

Where Ā is a set describing the distribution of a specified
descriptor d(x), for which the generated R-fuzzy set was
created for. It’s noteworthy to mention that fuzzy sets are not
associated with probability, merely the degree of inclusion. As
the newly derived significance measure that this paper proposes
is based on Eq. (8), the significance is indeed associated
with the conditional probability of distribution. The greater
the returned value for γĀ{v} the greater its significance with
regards to the descriptor that the R-fuzzy set is being modelled
for. By inferring from the returned degree of significance for
any membership value, one can use this information to better
understand the populace it was generated from. R-fuzzy sets
allow for every conceivable perception to be incorporated,
that includes all possible outliers. The associated degrees of
significance will quantify just how important, or unimportant
a membership value truly is based on the perceptions collected.

Example 1: Assume that F = {f1, f2, . . . , f9} is a set
containing 9 different colour swatches, all of which are a
variation of the colour red:

f1 → [204, 0, 0]→
f2 → [153, 0, 0]→
f3 → [255, 102, 102]→
f4 → [51, 0, 0]→
f5 → [255, 153, 153]→
f6 → [102, 0, 0]→
f7 → [255, 204, 204]→
f8 → [255, 0, 0]→
f9 → [255, 51, 51]→

The colours themselves are given by their [RGB] val-
ues, from which the average is taken for each one and
passed to N . The values contained are given as N =
{68, 51, 153, 17, 187, 34, 221, 85, 119}. Each average Ni value
will correspond to a specific colour swatch Fi. For example,
the swatch associated with f1 has a value of 68, f2 will
be related to 51, and so on. Assume that the criteria set
C = {p1, p2, . . . , p6} contains the perceptions of 6 individuals,
all of whom gave their own opinions based on the available
descriptors and the swatches themselves. These values have
been collected and are presented in Table I.

TABLE I. HUMAN PERCEPTION BASED ON THE VARIATIONS FOR THE
COLOUR RED

f1 f2 f3 f4 f5 f6 f7 f8 f9

p1 DR DR LR DR LR DR LR R R

p2 R DR R DR LR DR LR R R

p3 R DR LR DR LR DR LR R LR

p4 DR R LR DR LR DR LR R LR

p5 DR DR R DR LR DR LR R LR

p6 DR DR LR DR LR DR LR R R

The terms contained within the table can be understood as
meaning:

LR→ Light Red R→ Red DR→ Dark Red

One must now create a fuzzy membership set Jx. As it
was stated in Definition 2, the criteria set C and membership



set Jx must be made available as a prerequisite, so that an
R-fuzzy set can be established. Applying the values contained
in N on the linear function given in Eq. (13):

µ(fi) =
Ni −Nmin

Nmax −Nmin
(13)

One is then able to obtain a fuzzy membership set, the
resulting fuzzy membership set is given as follows:

Jx = {0.25, 0.17, 0.67, 0.00, 0.83, 0.08, 1.00, 0.33, 0.50}

It is not always possible to know the exact RGB value of
a particular colour swatch, nor do people have to know the
exact value in their communications with one another [12].
An R-fuzzy approach provides an answer to the question, how
to express a fuzzy membership function if the exact colour
saturation levels are not known? Assume that a 10th colour
swatch is presented to the populace, and has an associated
descriptor of being Red (R), what fuzzy membership value or
values would one assign to this swatch? A traditional fuzzy
approach would give an exact value, however, as Table I
shows, individuals can give different perceptions for the same
initial observation. What maybe perceived as Red to some may
not be Red to all. R-fuzzy allows for any membership value
with an affinity to the descriptor it is being modelled for, to
be included within its membership set. Thus allowing for a
general consensus and also individual nuances.

Assuming that the 10th colour swatch f10 has been been
described as being Red, the descriptor can be set to d(f10) =
‘Red’. Based on what has already been collected in Table
I, any value that correlates with R, will provide for a valid
membership value. Each individual from the criteria set C is
inspected, such that each value v ∈ Jx is evaluated against
pj ∈ C to conclude if it fits with the description given for
d(f10), and for f10 ∈ U, using:

v
(d(xi),cj)−−−−−−→ YES

For each pi ∈ C there is a corresponding row in Table I.
For the columns where there is a match with the descriptor
given for d(f10), its corresponding colour swatch fi will be
used to provide the membership values. Using Red as the
descriptor for swatch f10 and the perceptions given in Table I,
one can create a subset of values Mpj(f11) ⊆ Jx. For example,
take p1, one can infer that swatches f8 and f9 were the only
swatches that satisfy the descriptor when set to d(f10) = ‘Red’.
Therefore, the correlating membership values for f8 and f9

provide the subset Mp1(f10) = {0.33, 0.50}. This is repeated
for all observations contained in the criteria set C, the results
of which are given as follows:

Mp1(f10) = {0.33, 0.50}
Mp2(f10) = {0.25, 0.33, 0.50, 0.67}
Mp3(f10) = {0.25, 0.33}
Mp4(f10) = {0.17, 0.33}
Mp5(f10) = {0.33, 0.67}
Mp6(f10) = {0.33, 0.50}

Based on the individual subsets collected Mpj(f10), one
can now apply the concept of approximations as given in

Definition 1. Beginning with the lower approximation given
by Eq. (5), each subset is inspected to find if any membership
value from Jx occurred in each and every subset. One can
conclude that the fuzzy membership value {0.33} was the
only value that was agreed upon by all, and that it satisfied
the descriptor d(f10) = ‘Red’. As a result {0.33} is the
only value contained in the lower approximation. If no such
value was agreed upon by all, then the lower approximation
would remain empty. The upper approximation given by Eq.
(6), can be understood as containing values that have been
considered by at least one voter, such that it satisfies the de-
scriptor. Therefore, all instances contained within the generated
subsets will also be contained in the upper approximation:
{0.17, 0.25, 0.33, 0.50, 0.67}, notice the removal of duplicated
elements.

The actual rough set approximating the uncertain member-
ship for d(f10) is constructed using Eq. (7), the result of which
is given as follows:

M(f11) = ({0.33}, {0.17, 0.25, 0.33, 0.50, 0.67})

Therefore, the membership value 0.33 was the only fuzzy
membership that was agreed upon, as being a suitable value
for when describing the descriptor Red. Referring to Table I,
one can see that the swatch for f8 was the only colour that
was agreed upon unanimously. It correlates to the swatch with
an RGB value of [255, 0, 0], which from a digital perspective
is absolutely red. Also, the swatches associated with the
memberships 0.17, 0.25, 0.50 and 0.67 were also considered
Red by some, but not all. It is a this point that the significance
measure would be beneficial, as it will be able to obtain the
importance of each and every value contained in the R-fuzzy
set. Using Eq. (9) one can apply a significance coefficient to
each of the membership values contained in the membership
set Jx. The greater the value the greater its significance
in relation to its descriptor, and the more individuals that
agreed with its sentiment. This is achieved by simply counting
the number of occurrences that each inspected membership
occurred throughout all the generated subsets Mpj(f10). As
a result, we can obtain the following significance measure
values for each of the membership values associated when the
descriptor is set to Red.

γ R{0.00} =
0

6
= 0.00 γ R{0.08} =

0

6
= 0.00

γ R{0.17} =
1

6
= 0.17 γ R{0.25} =

2

6
=

1

3
= 0.33

γ R{0.33} =
6

6
= 1.00 γ R{0.50} =

3

6
=

1

2
= 0.50

γ R{0.67} =
2

6
=

1

3
= 0.33 γ R{0.83} =

0

6
= 0.00

γ R{1.00} =
0

6
= 0.00

The plot given in Fig. 1, represents a discrete visualisation
for when the descriptor is set to Red, all based on the returned
degrees of significance. The membership value 0.33 returned
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Fig. 1. A discrete visualisation for Red, based on the returned degrees of
significance

a degree of significance of γ R{0.33} = 1, indicating that it
was agreed upon unanimously. Fig. 1 represents this by having
the apex of the stick height for 0.33 at the maximum value for
significance, which is 1. For any value to score a significance
of 1, it must satisfy the requirement stipulated by Eq. (10).
The other membership values contained in the R-fuzzy set, in
particular the upper approximation, all have their stick heights
defined relative to their returned degrees of significance. The
membership values that returned a degree of significance of
0, these memberships were ignored as being valid candidates
to represent the descriptor when set to Red. The closer the
significance of a membership value is to 1, the stronger its
sentiment is agreed with. The closer to 0, the less likely that
it is to be treated as a valid candidate.

If one was inclined to create a set that encapsulated the
degrees of significance for a specific descriptor, then one has
inadvertently created the equivalence of a type-1 fuzzy set.
Such are the similarities, the returned degree of significance
will be equivalent to the degree of membership to the de-
scriptor, if and only if the values for the significance degree
provide the values for the membership function parameters.
Fig. 2 provides a continuous interpretation for when the
descriptor is set to Red. One can easily see that the degrees of
significance would be the equivalent degrees of membership
for all triggered membership values, as would be the case
from a fuzzy perspective. The parameter values given were
based on the apex height of the membership values’ degree
of significance, hence why they intersect through each apex.
However, notice that a triangular membership function was
not utilised, but instead a trapezoidal membership function
was. This was done, as it seems more fitting that the values
either side of a membership that scored a 1 for its significance
would also score a 1. As this is the continuous representation,
and we know that γ R{0.33} = 1, it is likely that 0.32 and
0.34 would also score a significance of 1. By making use of
a plateau for the function’s apex, allows for a more realistic
encapsulation. At what point does plateau taper off will be an
arbitrary assumption, the chosen values for this instance were
to have the plateau cover the interval [0.3, 0.45], hence why
this is one possible continuous representation of the descriptor
Red. By making use of the returned degrees of significance for

Jx

1

0.83

0.67

γ

0.33

0
0.00

0.08
0.17

0.25
0.33 0.50 0.67 0.83 1.00

γ R{0.50} = 0.5

µR(0.50) = 0.5

R

Fig. 2. A possible continuous visualisation for Red, based on the returned
degrees of significance

a specific descriptor, one is able to create a set that encapsulates
all associated membership values. This correlates correctly
with each returned degree of significance and the equivalent
fuzzy degree of membership, only if the parameters used to
create the set, are based on the apex of the stick heights of the
triggered membership values.

If one was to use a traditional type-1 fuzzy approach
to define the membership Red, and attribute it to a single
membership value, the average may be taken, in which case
the result would be:

µ(f10) =
1

14

∑
x∈U

µ(x)/x = 0.39

This value is based on the summation of each and ev-
ery membership value contained in the generated subsets
Mpj(f10) ∈ Jx. The value itself 0.39, is greater than the
returned R-fuzzy value of 0.33, meaning that the fuzzy value
would be too skewed. If one was to apply an interval-valued
fuzzy set to define the descriptor, utilising the most pessimistic
lower bound and the most optimistic upper bound, one would
be presented with an interval [0.17, 0.67]. With this being
the case, it is not possible to distinguish which values were
agreed upon by all. The same problem would be the case for
Atanassov intuitionistic fuzzy sets. As stated in Section I, the
current extensions to fuzzy and its associated hybridisations,
find it difficult to identify individual elements from their
interval regions or shadow areas.

The plot given in Fig. 3, collectively presents a visuali-
sation of all 3 R-fuzzy set descriptors. As one can see, the
transition from one descriptor to the next conserves the degree
of significance for each and every triggered membership value.
For example the membership value 0.17, scores a degree of
significance of γ DR{0.17} = 0.83 when the descriptor is set
to Dark Red. The same membership value scores a degree
of significance of γ R{0.17} = 0.17, when the descriptor is
set to Red. A single membership value can be interpreted
differently depending on the descriptor that the R-fuzzy set
is being modelled for. The plot also provides a means to
understand the overall assumptions made by the populace. As
it has been shown, the plots for each descriptor or perspective,
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Fig. 3. A continuous visualisation for Example 1, based on all the generated significance measures for the R-fuzzy sets of Dark Red, Red & Light Red

does not follow uniformed symmetry. This synthesis of human
perception is more probable and in keeping, rather than the
strictness associated with symmetrical uniformed sets.

IV. CONCLUSION

This paper has presented a newly derived significance
measure Eq. (9), one that quantifies the membership values
contained within an R-fuzzy set. As it has been shown, an
R-fuzzy approach for encapsulating uncertainty allows for
a general consensus, and also specific held assumptions to
be incorporated into a single R-fuzzy set. Current existing
extensions to fuzzy and the various hybridised concepts, would
still struggle to identify individual elements from their interval
or shadow regions, the significance of the value itself would be
lost. This is also true to some extent to the upper approximation
of an R-fuzzy set, as for it to be included it merely has
to be selected by at least one voter, or the vast majority
but not all. This could effectively be a very large interval
depending on the size of the populace; just creeping into the
upper approximation would be not different to unanimously
belonging there. The significance measure proposed uses the
conditional probability of distribution relative to the generated
subsets that the R-fuzzy is being modelled for. As Example
1 has demonstrated, understanding the importance of the
membership values contained within the upper approximation
allows for a better understanding on the perception being
modelled. If a value just missed out on being included in the
lower approximation, one may be inclined to treat it as such.
Any such instance where human-based perception is being
modelled, an R-fuzzy and significance degree coupling would
provide for a powerful tool.
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