
Modeling Security Requirements for
Context-Aware Systems using UML

Ph.D Thesis

Saad Matlaq Almutairi

This thesis is submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Software Technology Research Laboratory

De Montfort University

Leicester - United Kingdom

2013

Dedication

To my parents

For all the prayers, unconditional love and faith in me

To my wife

For her endless love, support and believing in me

Thank you for being there even during the hardest of times

I

Abstract

Modeling in general is “an abstract representation of a specification, design or sys-

tem from a particular point of view”. System modeling is ”a technique to express,

visualise, analyse and transform the architecture of a system”. The Unified Mod-

eling Language (UML) is “a language for specifying, visualising, constructing, and

documenting the artefacts of a software-intensive system as well as for business mod-

eling and other non-software systems”. UML consists of different types of diagrams

such as Use Case diagram, Activity diagram, State diagram and Class diagram.

Each type of these diagrams concerns a different aspects of the system development

process.

Context-Aware Systems (CASs) are primarily associated with Pervasive/Ubi-

quitous Computing, which has became most prominent since the advent of smart

phones and the inclusion of mobility features in computing devices. CASs can sense

different aspects of their environment and use the dynamic Context Information

(CI) to adapt their behavior accordingly. Hence, various precis of CI, such as User

context, Physical context, Computer context and Time context, play a major role

in controlling CAS behaviour and functions.

Security is considered one of major challenges in CAS specially because such

systems often gather sensitive user information; this information may compromise

the security of the system if disclosed to unauthorised users. Thus, the design of a

CAS must consider system security as a major requirement. Although security is

II

traditionally considered as a non-functional requirement and is delayed to a later

stage of the system development lifecycle, this thesis insists that security must be

considered as early as possible because of its high importance. This is also in line

with the “secure by design” concept.

Therefore, in this thesis the UML diagrams Use Case diagram, Activity diagram

and State diagram will be enhanced in order to enable them to model a CAS and

then capture its security requirements at the earliest possible stage of the software

development process.

The contribution to knowledge that this thesis makes is at least threefold, as

outlined blow:

• Enhancing Use Case diagram notations to express dynamic CAS functional

behaviour by showing the influences of CI changes. These extended notations

are then used to capture the CAS security requirements.

• Enhancing Activity diagram notations in order to demonstrate and clarify the

extended Use Case diagram by developing general diagram elements for CASs.

This helps to show the data flow during the execution of a CAS function, and

then present the security requirements.

• Enhancing State diagram notations to depict dynamism and security of a CAS

also at this level, and to ultimately support the enhancement on Use Case and

Activity diagrams.

These extended UML diagrams will be evaluated by applying them to a real-

world Case Study to show their practical applicability. The case study is about an

infostation-based mobile learning environment. This environment of Mobile Learn-

ing (M-learning) is deployed across a university boundary and provides a variety of

services such ‘download lecture’ and ‘do exam’ to mobile users.

III

In conclusion, this research proposes and demonstrates an applicable approach

to capture and model security requirements for CASs using innovative extensions of

existing types of UML diagrams: Use Case, Activity and State.

IV

Declaration

I declare that the work described in this thesis is original work undertaken by me for

the degree of Doctor of Philosophy, at the software Technology Research Laboratory

(STRL), at De Montfort University, United Kingdom.

No part of the material described in this thesis has been submitted for any award

of any other degree or qualification in this or any other university or college of ad-

vanced education.

This thesis is written and produced using LATEX.

Saad M Almutairi

V

Publications

1. S. Almutairi, A. Abu-Samaha, G. Bella and F. Chen. An enhanced Use Case

diagram to model Context Aware System. Science and Information Confer-

ence (SAI), London, UK, 7-9 October 2013.

2. S. Almutairi, H. Aldabbas and A. Abu-Samaha. Review on the Security Re-

lated Issues in Context Aware System. International Journal of Wireless and

Mobile Networks (IJWMN) Vol. 4, No. 3, June 2012.

3. S. Almutairi, A. Abu-Samaha and G. Bella. Specifying Security Requirement

for Context Aware System using UML. Seventh International Conference on

Digital Information Management (ICDIM) 978-1-4673-2430-4/12/ in Macau,

2012 IEEE.

4. W. Alkhaldi, S. Almutairi, A. Almutairi and K. Aldrawiesh. Toward De-

velopment Context Aware Advertisement System (Case Study). In proceed-

ings of the IEEE 2011 International Conference on Computer Applications

and Network Security (ICCANS 2011), Maldives, IEEE Press, CFP1182M-

PRT/ISBN: 978-1-4244-9764-5, May 27th-29th 2011.

VI

Acknowledgements

First and foremost, my truthful thankfulness goes to the most merciful ALLAH for

all the things he blessed me with throughout my whole life, without those blessings,

I would not be able to accomplish this work at all.

Most importantly, I would like to thank my mentor, supervisor and the one be-

hind this project, Dr Giampaolo Bella for his endless support, encouragement

and guidance. This thesis would not have been possible to achieve without him. I

am so fortunate and happy to complete my Ph.d under his supervision.

Also, many thanks and gratitude goes to my supervisor Prof- Hussein Zedan,

the director of the STRL, For his critical comments, technical suggestions and profes-

sional guidance. I admit that without his guidance this work would not be finished.

A very special thanks goes to Dr Ala Abu-Samaha, who gave me much time

and effort to finish this work. I can only say it is the day to see one of your students

become a doctor.

I want to express my deepest thanks to the one who all the good words would

not be enough to describe, without, I would not be the man I am today: to my

beloved father. What he has done for me, from big sacrifices to simple advice, is

beyond the limits. He was the one to push me forward, to guide me, and to plant

VII

every goodness in me. I owe it all to my father. I hope one day I can be a man just

the way you are.

Also, I would like to thank my mother for her endless support, prayers and guid-

ance since the day I was born. Thank you for being the perfect mother a person

can wish for, thank you Mom for everything.

I would like to express my deepest love and gratitude for my wife, who stood

by me in all these difficult times and has offered me her constant support, patience,

encouragement, unconditional love and life.

I also like to acknowledge my daughters Wajd and Taif : looking into their eyes

and playing with them gave me the happiness I needed through the bitter times.

I would like to thank my office mates Dr. Abdullah Alamarshed and Dr. Fayez

Alazmi, for the enjoyable time and scientific atmosphere we had in the office.

I would like to thank my dearest friends and family whom life has scattered

among different continents, thanks to everyone who showed his/her support through-

out the years.

Last but not least, I would not forget to thank every member of the STRL

for providing the academic and home-like environment and the support whenever

needed, especially Mrs. Lindsey Trent.

VIII

Contents

Dedication I

Abstract II

Declaration V

Publications VI

Acknowledgements VII

Table of Contents XIV

List of Figures XIX

List of Tables XXI

List of Abbreviations XXII

1 Introduction 1

1.1 Overview . 2

1.2 Motivation . 3

1.3 Research Methodology . 4

1.4 Contribution . 5

1.5 Thesis Scope and Research Questions 6

IX

CONTENTS

1.6 Measures of Success . 7

1.7 Thesis Structure . 8

1.8 Chapter Summary . 9

2 Literature review 10

2.1 Modeling . 11

2.1.1 UML . 12

2.1.1.1 Use Case diagram 15

2.1.1.2 Activity diagram . 16

2.1.1.3 State diagram . 19

2.2 Key Concepts . 20

2.2.1 Security . 21

2.2.2 Security Requirements . 22

2.2.3 Context and Context Aware System 23

2.2.3.1 Context . 23

2.2.3.2 Context Aware System (CAS) 25

2.2.3.3 Context Aware System Lifecycle (CASLC) 26

2.2.3.4 Context Aware System Security 28

2.3 Framework supporting CAS security and their limitations 31

2.4 UML variants supporting CAS security and their limitations 35

2.5 Chapter Summary . 39

3 Enhancing the Use Case diagram to model CASs and gather their

security requirements 41

3.1 Introduction . 42

3.2 Existing Use Case diagram elements 42

3.3 Enhancements . 44

3.3.1 Extending the Use Case elements to model CASs 48

X

CONTENTS

3.3.1.1 Adjusting the existing Use Case diagram elements . . 49

3.3.1.2 Defining new Use Case diagram elements 50

3.3.2 Gathering security requirements for CASs using the extended

Use Case . 54

3.3.2.1 Authentication . 55

3.3.2.2 Authorisation . 58

3.3.2.3 Confidentiality . 63

3.4 Chapter Summary . 67

4 Enhancing the Activity diagram to support the extended Use Case

diagram for CASs and gather their security requirements 68

4.1 Introduction . 69

4.2 Existing an Activity diagram elements 69

4.3 Enhancements . 70

4.3.1 Extending the Activity diagram to support the extended Use

Case diagram . 76

4.3.2 Gathering security requirements for CASs using the extended

Activity diagram . 82

4.3.2.1 Authentication . 84

4.3.2.2 Authorisation . 91

4.3.2.3 Confidentiality . 96

4.3.2.4 Integrity . 101

4.4 Chapter Summary . 107

5 Enhancing the State diagram to support the extended Use Case

diagram for CASs and gather their security requirements 108

5.1 Introduction . 109

5.2 Existing State diagram elements . 109

XI

CONTENTS

5.3 Enhancements . 110

5.3.1 Extending the State diagram to support the extended Use

Case diagram . 114

5.3.2 Gathering security requirements for a CASs using the ex-

tended State diagram . 119

5.3.2.1 Authentication . 120

5.3.2.2 Authorisation . 123

5.3.2.3 Confidentiality . 127

5.3.2.4 Integrity . 131

5.4 Chapter Summary . 135

6 A Real-World Case Study: An Infostation-based M-Learning Sys-

tem 136

6.1 Introduction . 137

6.2 M-learning definition . 137

6.3 M-learning Infrastructure . 138

6.4 Description of M-learning system . 139

6.5 M-learning system users and functions 141

6.6 Capturing the key security requirements for M-learning system func-

tions . 143

6.6.1 Authentication . 143

6.6.2 Authorisation . 144

6.6.3 Confidentiality . 146

6.6.4 Integrity . 146

6.7 Modeling the M-learning system using UML 147

6.7.1 Use Case diagram for the system 147

6.7.2 Activity diagram for the Download Materials function 151

XII

CONTENTS

6.7.3 State diagram for the Download Materials function 152

6.8 Capturing the security requirements for M-learning functions using

UML . 154

6.8.1 Authentication . 154

6.8.1.1 Using our Enhanced Use Case diagram 154

6.8.1.2 Using our Enhanced Activity diagram 156

6.8.1.3 Using our Enhanced State diagram 157

6.8.2 Authorisation . 159

6.8.2.1 Using our Enhanced Use Case diagram 159

6.8.2.2 Using our Enhanced Activity diagram 161

6.8.2.3 Using our Enhanced State diagram 163

6.8.3 Confidentiality . 164

6.8.3.1 Using our Enhanced Use Case diagram 164

6.8.3.2 Using our Enhanced Activity diagram 165

6.8.3.3 Using our Enhanced State diagram 167

6.8.4 Integrity . 168

6.8.4.1 Using our Enhanced Activity diagram 168

6.8.4.2 Using our Enhanced State diagram 170

6.9 Chapter Summary . 171

7 Conclusion and Future work 172

7.1 Research Summary . 173

7.2 Statement of Evaluation . 175

7.3 Research Questions Revisited . 176

7.4 Contribution to Knowledge . 177

7.5 Future Work . 178

Bibliography 195

XIII

CONTENTS

A Presenting the rest of UML diagrams 196

A.1 Modeling M-learning system functions 196

A.1.1 Use Case diagram . 196

A.1.2 Activity diagram . 200

A.1.3 State diagram . 205

A.2 Capturing security requirement for M-learning system functions using

UML . 210

A.2.1 Authentication . 210

A.2.2 Authorisation . 210

A.2.2.1 Using our Enhanced Use Case diagram 210

A.2.2.2 Using our Enhanced Activity diagram 213

A.2.2.3 Using our Enhanced State diagram 219

A.2.3 Confidentiality . 223

A.2.4 Integrity . 224

A.2.4.1 Using our Enhanced Activity diagram 224

A.2.5 Using our enhanced State diagram 230

XIV

List of Figures

2.1 Use Case diagram elements . 16

2.2 Activity diagram elements . 18

2.3 State diagram elements . 20

2.4 Context Aware System Lifecycle (CASLC) 27

3.1 Normal Use Case diagram . 45

3.2 Extended Use Case diagram . 52

3.3 Authentication process in CAS . 56

3.4 Authentication Use Case diagram . 57

3.5 Authorisation process in CAS . 59

3.6 Authorisation Use Case diagram . 61

3.7 Confidentiality process in CAS . 64

3.8 Confidentiality Use Case diagram . 65

4.1 CAS Activity diagram framework . 72

4.2 CASLC Activity diagram . 75

4.3 CASLC Activity diagram with proposed enhancements 79

4.4 Check books Use Case . 80

4.5 Check books Activity diagram . 81

4.6 Present Authentication by login action state 84

4.7 Expanded login action state . 85

XV

LIST OF FIGURES

4.8 Authentication with CASLC . 86

4.9 Library system login Use Case . 87

4.10 Librarian Authentication process . 88

4.11 Determining the Authentication process during CAS 90

4.12 Basic concept of Authorisation mechanism 91

4.13 Authorisation mechanism with CAS 92

4.14 Authorisation within CAS Activity diagram 94

4.15 Determining the Authorisation process during CAS 95

4.16 Basic concept of Confidentiality mechanism 97

4.17 Confidentially with CASLC . 98

4.18 Confidentiality within CAS Activity diagram 99

4.19 Determining the confidentiality process during CAS 100

4.20 Basic concept of Integrity mechanism 102

4.21 Integrity within CAS Activity diagram 104

4.22 Determining the Integrity process during CAS 106

5.1 General states for mobile device . 111

5.2 Decomposed Active state . 112

5.3 State diagram model with proposed enhancements 115

5.4 State diagram model with CASLC 116

5.5 Check book Use Case . 117

5.6 Check book State diagram . 118

5.7 Basic concept of Authentication mechanism 120

5.8 Authentication with CASLC . 122

5.9 Basic concept of Authorisation in State diagram 124

5.10 Authorisation with CASLC . 126

5.11 Basic concept of Confidentiality in State diagram 127

XVI

LIST OF FIGURES

5.12 Confidentiality with CASLC . 130

5.13 Basic concept of Integrity in State diagram 132

5.14 Integrity with CASLC . 134

6.1 The three-tier architecture of the infostation-based network 139

6.2 University environment divided in accordance with deployed CIPs . . 140

6.3 Main Use Case diagram for M-learning 148

6.4 Download materials Use Case . 150

6.5 Download materials Activity diagram 152

6.6 Download materials State diagram 153

6.7 Login Use Case . 155

6.8 Authentication through Activity Diagram 157

6.9 Authentication through State diagram 158

6.10 Authorisation for upload exam using Use Case diagram 159

6.11 Authorisation for upload exam using Activity diagram 162

6.12 Authorisation for upload exam using State diagram 163

6.13 Confidentiality for upload exam using Use Case diagram 164

6.14 Confidentiality for Upload exam using Activity diagram 166

6.15 Confidentiality for upload exam using State diagram 167

6.16 Integrity for upload exam using Activity diagram 169

6.17 Integrity for upload exam using State diagram 170

A.1 View materials Use Case diagram . 197

A.2 Do exam Use Case diagram . 197

A.3 Make a private chat Use Case diagram (Student) 197

A.4 Make a private chat Use Case diagram (Lecturer) 198

A.5 Mark students exams Use Case diagram 198

A.6 Upload lectures Use Case diagram 199

XVII

LIST OF FIGURES

A.7 View materials Activity diagram . 200

A.8 Do exam Activity diagram . 201

A.9 Make a private chat Activity diagram (Student) 202

A.10 Make a private chat Activity diagram (Lecturer) 203

A.11 Mark students exams Activity diagram 204

A.12 Upload lectures Activity diagram . 205

A.13 View materials State diagram . 206

A.14 Do exam State diagram . 206

A.15 Make a private chat State diagram (Student) 207

A.16 Make a private chat State diagram (Lecturer) 207

A.17 Mark students exams State diagram 208

A.18 Upload lectures State diagram . 209

A.19 View materials Authorisation Use Case 210

A.20 Make private chat Authorisation Use Case 211

A.21 Mark student exam Authorisation Use Case 211

A.22 Upload exam Authorisation Use Case 211

A.23 Make private chat Authorisation Use Case 212

A.24 Upload exam Authorisation Use Case 212

A.25 View materials Authorisation Activity diagram 213

A.26 Download materials Authorisation Activity diagram 214

A.27 Do exam Authorisation Activity diagram 215

A.28 Make a private chat Authorisation Activity diagram 216

A.29 Upload lectures Authorisation Activity diagram 217

A.30 Mark students exams Authorisation Activity diagram 218

A.31 Make a private chat Authorisation Activity diagram 219

A.32 View materials Authorisation State diagram 220

A.33 Do exam Authorisation State diagram 220

XVIII

LIST OF FIGURES

A.34 Make private chat Authorisation State diagram 221

A.35 Upload lectures Authorisation State diagram 221

A.36 Upload exam Authorisation State diagram 222

A.37 Mark students exams Authorisation State diagram 222

A.38 View materials Integrity Activity diagram 224

A.39 Make private chat Integrity Activity diagram 225

A.40 Do exam Integrity Activity diagram 226

A.41 Upload exam Integrity Activity diagram 227

A.42 Mark students exam Integrity Activity diagram 228

A.43 Upload lectures Integrity Activity diagram 229

A.44 Make private chat Integrity Activity diagram 230

A.45 View materials Integrity State diagram 231

A.46 Do exam Integrity State diagram . 231

A.47 Make private chat Integrity State diagram 232

A.48 Upload exam Integrity State diagram 232

A.49 Upload lectures Integrity State diagram 233

A.50 Mark student exam Integrity State diagram 234

XIX

List of Tables

2.1 Static and Dynamic diagrams of UML 14

2.2 Relationship between frameworks and security requirements 34

2.3 Summary of the above mentioned modeling methods based on the

defined assessment criteria . 38

3.1 Existing Use Case relationships . 44

3.2 Adjusted notations . 50

3.3 The proposed new elements to model CASs and to capture their se-

curity requirements . 51

3.4 Description of Use Case diagram . 53

3.5 Typical VS Adjusted Use Case Diagram 54

3.6 Presenting security requirement using Use Case diagram 55

3.7 Description of Authentication Use Case diagram 58

3.8 The proposed Authorisation Use Cases 60

3.9 Description of Authorisation Use Case diagram 62

3.10 The proposed Confidentiality Use Case 65

3.11 Description of Confidentiality Use Case diagram 66

4.1 CAS swimlanes functions . 73

4.2 CASLC swimlanes table . 74

XX

LIST OF TABLES

4.3 Proposed notations to enhance the Activity diagram to present the

adjusted Use Case diagram . 77

4.4 Icons used to present the security requirements in the extended Ac-

tivity diagram . 83

5.1 Description of Active state . 113

5.2 Description of Authentication states 121

5.3 Description of Authorisation states 125

5.4 Description of confidentiality states 129

5.5 Description of Integrity states . 133

6.1 Student functions . 149

6.2 Lecturer functions . 149

6.3 Download materials Use Case description 151

6.4 Authentication Use Case diagram description 156

6.5 Authorisation Use Case description 160

6.6 Confidentiality Use Case description 165

XXI

List of Abbreviations

UML Unified Modeling Language

CAS Context Aware System

OMG Object Management Group

CI Context Information

CASLC Context Aware System Life Cycle

OCL Object Constraint Language

CIS Context Information Store

FR Function Requirement

M-learning Mobile Learning

CIP Context Information Provider

SAY Study Academic Year

CenStat Central Infostation

PDA Personal Digital Assistant

UAC Uniform Access Control

RBAC Role-Based Access Control

GRBAC General Role Based Access Control

XXII

list of Abbreviations

XML Extensible Markup Language

D.B Data Base

GRBAC General Role Based Access Control

IRC Internet Relay Chat

ACI Authentication Context Information

BPMN Business Process Modeling Notation

CCAA Calculus of Context-Aware Ambient

FML Formal Modeling Language

PIM Platform Independent Model

BPSec Business Process Security

CIM Computation Independent Model

UCS Use-Case Specification

CCA Context-Aware Application

SML Structural Modeling Language

SFML Semi Formal Modeling Languge

EML Extensible Markup Language

XXIII

Chapter 1

Introduction

Objectives:

• To give an introduction and the motivation of this research

• To present the research methodology

• To list the research questions

• To present the measures of success

• To give the thesis structure

1

CHAPTER 1. INTRODUCTION

1.1 Overview

Modeling in general is “an abstract representation of a specification, design or system

from a particular point of view” [110]. System modeling is a technique for expressing,

visualising, analysing and transforming the architecture of a system. Here, a system

may consist of software components, hardware components (usually both), and the

connections between those components, all of which can be illustrated in a skeleton

model of the system [88]. The Unified Modeling Language (UML) is “a major tool

for specifying, visualising, constructing and documenting the artefacts of a software-

intensive system as well as for business modeling and other non-software systems”

[19].

UML provides different types of diagrams such as Use Case diagram, Activity di-

agram and State diagram. Each types of these diagrams concerns different modeling

aspect. This thesis demonstrates that they can be profitably enhanced to capture

and model security requirements at early stage of software development.

Context Aware Systems (CASs) are primarily associated with Pervasive/Ubiquitous

Computing, which became most prominent since the advent of smart phones and the

inclusion of mobility features in computing devices. CASs are those which can sense

different aspects of their environment and use the dynamic Context Information

(CI) to adapt their behaviour accordingly. Dey et al [31]. provided a comprehen-

sive definition of context as: “any information that can be used to characterise the

situation of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including the user

and applications themselves”. For that, CASs rely on three key processes;

• sensing the context in the surrounding environment;

• reasoning about changes in context;

2

CHAPTER 1. INTRODUCTION

• react to those changes.

As the CI that constitute CAS are rapidly changing, it is challenging to contin-

uously keep track of it while preserving the security and privacy of the system and

its users.

1.2 Motivation

As noted in the previous section, one of the most challenging features of CAS is the

system’s ability to keep track of rapidly changing CI, such as location and time of

day, as well as the presence of nearby people and devices. These constitute potential

threats to the system security. Hence, while capturing security requirements in

the initial stage of the CAS development process becomes necessity, it also turns

out to be challenging. Traditionally, security requirements have been perceived as

relatively static in nature, as access control decisions do not change with CI nor

do they account for changing conditions in the system/application environment.

However, the challenge of context awareness derives from the mobility of the user

and the changing context of his/her environment.

We select Use Case, Activity and State diagrams as the most widely used di-

agrams in the early stages of software devolvement though UML modeling. We

will refer to these three diagrams as our three “target diagrams”. Each target dia-

gram can be used to capture and define system requirements specially at the initial

phase of software development. It is important to highlight how limited the current

form of the target notations are, and at the same time, the need to extend/enhance

them to enable specifying the security requirements of a CAS. Firstly, current tar-

get diagrams are mainly capable of capturing and modeling the system’s functional

requirements; however, security requirements are known to be non-functional in na-

ture, and hence have so far been excluded from the target diagrams and the early

3

CHAPTER 1. INTRODUCTION

phases of the software development process. Secondly, the current target diagrams

are mainly capable of modeling traditional system functions and behaviour that are

static, and hence the system design is not influenced by any external condition. This

defies the basic nature of a CAS, which is adaptable to its environment in a constant

manner.

As a result of these shortcoming,a new set of extensions/enhancements for all

the three target diagrams are needed to enable them to fully model CASs and their

security requirements.

1.3 Research Methodology

The research methodology used in this work is Constructive method, which is a

customary scientific research technique. In constructive method, the novelty is es-

tablished using an inventive architecture, prototype or procedure A very high level

expertise is required in the area of research to establish novelty, with the literature

plays the pivotal role [116]. Consequently, the suggested approach is composed of

five work packages; starting with review of the state-of-the art, then proceeding to

the proposed extension on Use Case diagram. The third and fourth work package

present how Activity and State diagrams demonstrate the extension that is done on

Use Case diagram. The last work package deals with a comprehensive M-learning

Case study, which is used to emphasize the practicality of the proposed extensions

as discussed in work packages 2 to 4.

1. Work package 1: Research background

Literature review is an exploration of the existing work in the field of the

research taken in this research and it mainly focuses on the research ques-

tions raised earlier. The literature review has been done mainly using books,

journals, online resources, peer discussions, and paper reviews.

4

CHAPTER 1. INTRODUCTION

2. Work package 2: Extending Use Case diagram

Extending Use Case diagram notations to express dynamic CAS functional

behaviour and inculcating the effect of CI on CAS’s behaviour. These extended

notations are then used to capture the CAS security requirements.

3. Work package 3: Extending Activity and State diagrams

Extending Activity and State diagrams notations in order to demonstrate and

clarify the extended Use Case diagram by developing general diagram elements

for CASs. Extending Activity diagram demonstrates the data flow during

the execution of a CAS function. Consequently enhancing the State diagram

notations to depict dynamism and security of a CAS, and to ultimately support

the enhancement on Use Case and Activity diagrams.

4. Work package 4: Evaluation

In the final phase, a real-world case study is conducted using the proposed

enhancements; this case study is about a M-learning system. This case study

is employed in order to clarify how CAS functions can be modelled and its

security requirements can be gathered using the target diagrams.

1.4 Contribution

This thesis aims to develop an approach using UML diagrams to capture and model

the security requirements needed for CASs in an effective manner. Although many

aspects of security requirements and CASs have been studied, the combination of

the three aspects (UML, CASs and security requirements capturing) in one study

distinguishes the present research from others. The key contributions of this thesis

therefore are as follows:

5

CHAPTER 1. INTRODUCTION

• Enhancing the existing Use Case notations to model a CAS, and then us-

ing this extension to capture the security requirements in the initial stage of

the software development process. This extension will show how the CI can

manipulate a CAS functioning.

• Enhancing the Activity diagram notations to support our extended Use Case

diagram; this guides builds a clearly structured framework for modeling a CAS

and gathering its security requirements through an Activity diagram.

• Enhancing the State diagram notations to support our extended Use Case dia-

gram; this demonstrates our new framework for modeling a CAS and gathering

its security requirements through a State diagram.

1.5 Thesis Scope and Research Questions

The work in this thesis focuses on the following issues:

• UML firstly this research focuses on UML diagram types, namely Use Case

diagram, Activity diagram and State diagram. It also provides their definitions

as well as the limitations that hinder their capability to model CAS then gather

its security requirements.

• CAS secondly this research targets a main technology as its main goal, namely

a Context Aware System, and the general notion of context and lifecycle.

• Security requirement this research aims at capturing and modeling several

types of security requirements, specifically Authentication, Authorisation, Con-

fidentiality and Integrity. In order to secure a CAS, these types explored in

detail and then innovatively incorporated in the modeling tools.

In the light of the above arguments regarding the scope of this thesis, the main

research question is formulated as follows:

6

CHAPTER 1. INTRODUCTION

How to model CASs and gather its security requirements using UML?

However to answer this question appropriately requires, in turn, answering the

following sub-questions:

Q1. Are the current form of Use Case notations applicable to modeling a CAS?

If the answer is NO, then:

Q2. Can the Use Case notations be extended to model a CAS?

If the answer is Yes, this leads to another question:

Q3. Is the extended Use Case diagram capable to capture all the security re-

quirements, namely Authentication, Authorisation, Confidentiality and Integrity?

If the answer is Yes, this poses a new question:

Q4. Are the existing notations of both Activity and State diagram mature

enough to present the extended Use Case diagram?

If the answer is No,

Q5. Can the current notations of Activity and State diagram be enhanced to do

so?

If the answer is Yes, finally:

Q6. Can the proposed extensions for gathering and modeling the security re-

quirements of CAS be practically applicable to real-world case studies?

1.6 Measures of Success

The success criteria for the work reported in this thesis are as follows:

• The research questions must be clearly answered.

• A study showing how the proposed UML diagrams extensions contribute to

knowledge by advancing existing research in the area.

7

CHAPTER 1. INTRODUCTION

• A study illustrating the advantages of using UML diagrams as empowered

through the present work must be provided.

• A large real-world case study to demonstrate that the enhanced UML diagram-

ing techniques can effectively model a CAS and its security requirements.

1.7 Thesis Structure

The first chapter is the thesis introduction, and the remaining chapters are struc-

tured as follows:

• Chapter 2: this Chapter provides an overview of the literature that influenced

the proposed research. The review will present background information on

UML and its various diagram types, security and its requirements in general,

security requirements for CAS in practical, and frameworks for modeling CAS;

the Chapter provide in the same time definitions for context and CAS.

• Chapter 3: this Chapter investigate the Use Case notations in depth, extend

the Use Case diagram to model a CAS, and then to capture its security re-

quirements.

• Chapter 4: this Chapter studies Activity diagram notations, refining them and

assessing their capability in terms of supporting the extension that was done

on the Use Case diagram.

• Chapter 5: this Chapter presents the enhanced State diagram to support the

extension that was done on the Use Case diagram.

• Chapter 6: this Chapter presents a case study in order to demonstrate the

effectiveness of the UML extensions proposed in the previous Chapters.

8

CHAPTER 1. INTRODUCTION

• Chapter 7: this Chapter summarises the work discussed in the entire thesis,

highlights the significance of the proposed contributions and outline directions

for possible future work.

1.8 Chapter Summary

This chapter has highlighted the main aspects of this research, such as UML dia-

gram types, CAS and the importance of capturing the security requirements when

modeling a CAS. In addition this Chapter has introduced the motivation of the

thesis; moreover, it has clearly detailed the contribution, the research questions, the

measures of success and the structure of the thesis.

9

Chapter 2

Literature review

Objectives:

• To describe the concept of modeling

• To introduce UML and its diagram types

• To explain the security and security requirements

• To introduce the context, context aware system and its lifecycle

• To review the context aware system frameworks

• To investigate the related work

10

CHAPTER 2. LITERATURE REVIEW

2.1 Modeling

Modeling in general is “an abstract representation of a specification, design or system

from a particular point of view” [110], [97]. System modeling is a technique to

express, visualise, analyse and transform the architecture of a system. Here, a

system may consist of software components, hardware components, or both and the

connections between these components [88]. System modeling is intended to assist in

developing and maintaining large systems with emphasis on the construction phase

[120]. The idea is to encapsulate complex or changeable aspects of a design inside

separate components with well-defined interfaces indicating how each component

interacts with its environment [117].

System model can increase reliability and reduce development cost by making

it easier to build systems, to reuse previous built components within new systems,

to change systems to suit changing requirements such as functional enhancement

and platform changes, and to ultimately better understand systems. In this way, a

system model can support various goals, such as documenting the system, providing

a notation for tools, such as consistency checkers, and can also be used in the design

stage of system development [97].

There are several ways of expressing system modeling [35], [36], [49]. Here, we

only mention the most used ones:

• Structural Modeling Language (SML): it rests on diagramming techniques with

named symbols that represent concepts and lines that connect the symbols and

represent relationships, such as (UML, Flowchart, Business Process Modeling

Notation (BPMN)) [113]. SML is concerned with visually describing all the

“things” in a system and how these relate to each other.

• Formal Modeling Language (FML): it is a set of strings of symbols that may

11

CHAPTER 2. LITERATURE REVIEW

be constrained by rules that are specific to it, such as (Calculus of Context-

Aware Ambient (CCAA) [106]). FMLs have a number of advantages over

informal languages, such as their precise meaning and the possibility to derive

properties through formal proofs [96].

• Semi formal Modeling Language (STML): it is language that may use stan-

dardized keywords accompanied by parameters or natural language terms and

phrases to make computer-interpretable expressions, such as (Object Con-

straints Language (OCL)) [44].

This thesis chooses the Structural approach to modeling CASs and their secu-

rity requirements. In particular, it will adopt UML to do so both because of its

popularity and because of its flexibility.

2.1.1 UML

The Unified Modeling Language(UML) emerged in 1994 through the Object Man-

agement Group (OMG) [19]. The OMG claim that “UML is a language for specify-

ing, visualising, constructing, and documenting the artefacts of a software-intensive

system as well as for business modeling and other non-software systems”.

As a result, UML has become one of the most popular modeling languages in the

field of software engineering [113], [67]. UML is mainly characterized as a graphical

language based on rules for creating, designing and analysing the system devel-

opment methods [95],[117]. UML is a very expressive language, addressing all the

views needed to develop and then deploy software systems. UML is not restricted to

modeling software, it can also be utilised for many other purposes, such as building

models for system engineering, business processes and organizational structures [3].

UML represents a set of best engineering practices that have proven successful

in the modeling of a wide range of complicated systems. UML generally offers a set

12

CHAPTER 2. LITERATURE REVIEW

of modeling diagrams specialised in the different view of information, hence UML

is very useful for both illustrating designs and understanding them. UML allows

the separation of concerns by using several diagrams in order to focus on different

aspects of a software system. Therefore, a number of different diagram types may

be employed in order to describe different aspects of the system at various degrees

of abstraction [61], [63].

Therefore, using the UML diagrams will provide a standardised way to write

system blueprints, covering conceptual aspects such as business processes and system

functions, as well as more concrete aspects [87].

The UML diagrams can be classified into two main types as follows [117],[91]:

• Static. This describes the static semantics of data and messages within system

development. Structure diagrams also define the static architecture of a model,

representing the physical and conceptual elements. Such diagrams are mainly

concerned with modeling classes, objects, interfaces and physical components

in addition to the dependencies and relationships among them [8].

• Dynamic. This entails modeling the dynamic aspects of the system. A dy-

namic model represents the interactions and the activities within the system

and with the users and the environment [8]. A dynamic model can be also un-

derstood as a description of the behaviour of the system over time. Behaviour

diagrams capture all the various interactions and instantaneous states within

a model while it ’executes’ over time [41].

The Table 2.1 summarises the types of UML diagrams:

13

CHAPTER 2. LITERATURE REVIEW

UML diagram Type

Class diagram Static

Object diagram Static

Component diagram Static

Deployment diagram Static

Package diagram Static

Composite structure diagram Static

Communication diagram Dynamic

Timing diagram Dynamic

Use Case diagram Dynamic

Sequence diagram Dynamic

Activity diagram Dynamic

State machine diagram Dynamic

Table 2.1: Static and Dynamic diagrams of UML

This thesis endeavours to explore some of the most widely used behavioral di-

agrams of UML Modeling notations, namely, Use Case diagram, Activity diagram

and State diagram. The reason behind selecting these types over the others are

that the selected ones are all classified as behavioral modeling types which help to

define and model dynamic systems. In addition the Use case diagram is one of the

means of gathering security requirement [29], and also the Activity diagram and

State diagram are very beneficial to depict the system dynamic behaviour [80],[72].

Therefore, the key factor that distinguishes a CAS from other conventional sys-

tems is that CAS behaviour is inherently dynamic (based on changes in its envi-

ronment), and therefore the selected UML diagrams will prove beneficial in defining

CAS behaviour and then capturing its security requirements. Accordingly, the se-

lected diagrams are discussed in the sequel of this section.

14

CHAPTER 2. LITERATURE REVIEW

2.1.1.1 Use Case diagram

Use Case diagrams are used to describe the abstract view of the functionality offered

by a system through specifying typical interactions with the system environment

[75]. Moreover, a Use Case specifies a sequence of actions (including variants) that

the system can perform, detailing how actors interact with the system [55]. A Use

Case is the core element of a UML behavioural diagram, and is a methodology used

in system analysis in order to identify, clarify and organize system requirements [95].

However, a Use Case was originally defined by Jacobson as, “a sequence of trans-

actions in a system whose task is to yield a result of measurable value to an individual

actor of the system” [57]. A Use Case has been classified as an effective method for

gathering system requirements from the user perspective, particularly during the

elicitation phase [38], [56], [6]. Hence a Use Case entails a group of different sce-

narios; each scenario depicts in detail a sequence of interactions between the system

and its environment (users and other external systems and/or devices).

A Use Case diagram is a powerful tool because in addition to defining basic

system functions, it also serves to test individual case scenarios in order to assure

that those requirements have been met [113]. A Use Case diagram is typically used

to clarify the high-level functions of the system as well as the system scope. Conse-

quently, a Use Case diagram is usually the first diagram that should be constructed

when a software engineer starts modeling a system. Thus, the main purpose of utilis-

ing a Use Case diagram is to help software developers to identify, visualise, organise

and clarify system functional requirements. In addition, the Use Case construct can

be used to define the behaviour of a system without revealing its internal structure.

Use case diagram consists of three main elements as depicted in Figure 2.1

15

CHAPTER 2. LITERATURE REVIEW

Actor

Use Case

Figure 2.1: Use Case diagram elements

2.1.1.2 Activity diagram

An Activity diagram is defined by the OMG as a diagram derived from various

techniques to illustrate workflows in a visual manner [117]. An Activity diagram

specifies the control flow between several components within a system in order to

depicts the main dynamic aspects.

Activities eventually lead to some form of an action, which is composed of exe-

cutable atomic computations that result in a change in the state of the system or

in the return of a value. An Activity diagram can affectively model the dependency

between the activities as well as the decision points that enable the branching of

those activities (based on specified conditions). An Activity diagram can also model

the synchronisation of activates and map them through multiple threads and to cor-

responding actors [95]. Typically an Activity diagram is used for modeling the logic

captured in a specific Use Case diagram [24].

Thus, an Activity diagram is similar to a flowchart in behavior, which illustrates

the data flow between the various activities of a program or a business process.

Hence, an Activity can be described as a state of performing an action, either a

real-world process such as typing a report, or executing a software function, such as

16

CHAPTER 2. LITERATURE REVIEW

a method in a class [20]. Based on the above, Activity diagrams can be used inde-

pendently of Use Case diagrams for other purposes, such as to model the business

process of a system or to model the detailed logic of a business role [24].

Activity diagrams can also be used to visualise, construct, specify and document

the behaviour of a group of objects [80]. In short, “an Activity diagram in its

basic form is a simple and intuitive illustration of what happens in a workflow,

what activities can be done in parallel, and whether there are alternative paths

through the workflow” [59]. The rule for reading Activity diagrams is from top

right (presented as the initial node) to bottom (presented as the end node).

Figure 2.2 shows an example of Activity diagram

17

CHAPTER 2. LITERATURE REVIEW

State 1

State 2
State 3

State 4

Initial state

Decision

Transition

(Join)

Transition

(Fork)

End state

State 5 State 6

Figure 2.2: Activity diagram elements

18

CHAPTER 2. LITERATURE REVIEW

2.1.1.3 State diagram

State diagrams express the dynamic behaviour of an individual object or compo-

nent; hence events may cause a change in state or execution of actions [33]. A

State diagram is considered one of the most important UML types for modeling the

dynamic nature of a system [72].

A State diagram is mainly used to provide a very clear abstract description of the

system behaviour, taking into account all the possible states of an object when an

event occurs. This behaviour can be fully described and represented via a sequence

of events that could happen in one or more states. A State diagram is very beneficial

in modeling the interactions between a class and the system interface, and also in

realising Use Cases [92]. It is also used to specify the sequence and time behaviour

of the objects in any given class (State, Event and Transition) [47].

A State diagram illustrates the discrete behaviour of a part of the designed

system through finite State transitions [115]. State diagrams can also be used to

express the usage protocols of part of a system. In some cases, State diagrams

are considered as directed graphs, as the graph nodes can represent states and the

labels of the graph edges can represent actions. Moreover, a State diagram is similar

to a flowchart in terms of notation; however, it differs from other types of UML

diagram, such as Class diagram, Use Case diagram and Object diagram, in that a

State diagram expresses single objects whereas the others describe groups of objects.

Therefore, a State diagram is imperative for both system analyst and developer to

full express the behaviour of the objects in a system. It can be concluded that the

main purposes of using a State diagram are as follows [72].

• To model the dynamic aspect of a system.

• To model the life time of a reactive system.

• To describe the different states of an object during its life time.

19

CHAPTER 2. LITERATURE REVIEW

Figure 2.3 shows an example of State diagram

State 1
State 2

Initial state

Condition

Transition

End state

Figure 2.3: State diagram elements

2.2 Key Concepts

As explained in the thesis introduction, this study concerns many distinguishing

aspects, in particular, security, security requirements, context and context-aware

systems and thus it is necessary to highlight each concern in order to identify and

define any weaknesses that could represent an obstacle to capturing and modeling

the security requirements for a CAS using UML diagram types.

20

CHAPTER 2. LITERATURE REVIEW

2.2.1 Security

Security in a generic sense means “freedom from risk or danger”; in the context of

computer science, security is “the prevention of, or protection against access to in-

formation by unauthorised recipients, and intentional but unauthorised destruction

or alteration of that information” [54].

Security is the one of the key elements that can hinder the growth and spread

of software systems. Security is devoted to prevent any activity that may pose a

threat to either the stakeholders or the system itself [118]. In addition, security is

a system property that should remain dependable even following malicious activity,

error or misfortune [109], [66].

In spite of the huge numbers of studies currently available on general security,

they can broadly be classified into three main groups as follows:

• Group 1 concerns the modeling of malicious behaviour and vulnerabilities (for

example, Misuse Case [107], Abuse Case [75]).

• Group 2 concerns the countermeasures and the security requirements, for

instance Authentication, Authorisation, Confidentiality, Integrity, Non-repu-

diation and Availability [95], [61], [108].

• Group 3 concerns the protocols and the transformations of sensitive data [13],

[17].

This thesis falls within the second group of security studies, with its focus on

security requirements. They will be explored in depth and then utilised in order to

define a secure environment for CASs.

21

CHAPTER 2. LITERATURE REVIEW

2.2.2 Security Requirements

Security is the subset of quality requirements that describe certain qualities of sys-

tem services [60], [111], [45], [108]. Security requirements specifically deal with

determining how the system is to be protected against any kind of threat [45], [99],

[58]. The role of security requirements is to provide information on the actual needs

of a system or application with respect to security in order to accomplish its busi-

ness goals [21]. Each security requirement is defined in terms of security polices,

which state certain constraints on functionality. Thus, any inadequate understand-

ing of the security requirements could lead to serious consequences, such as leak of

sensitive information, or even system failure [118], [51]. Hence, such requirements

must be gathered and maintained in an efficacious manner in an initial phase of

the software development process along with other system functional requirements

[108]. Security requirements are classified into the following groups [40], [37], [39]:

• Authentication requirement. This type of requirements seeks to verify the

user identity (whether an end user, an external system or other integrated

applications).

• Authorisation requirement. This type of requirements is defined as the process

of granting permissions or access to authenticated users to benefit from system

facilities. At the same time, authorisation denies access to system utilities in

case of a fake or unauthorised user. In addition, authorisation helps users to

restrict each other from accessing their perspective private information.

• Confidentiality requirement. This security requirement ensures that informa-

tion is accessible only by authorised persons.

• Non-repudiation requirement. This security requirement specifies the extent to

which the system shall maintain tamper-proof evidence recording all accesses

22

CHAPTER 2. LITERATURE REVIEW

made to the system.

• Integrity requirement. This security requirement ensures that system data

cannot be deliberately corrupted or modified by any unauthorised entity.

• Availability requirement. This security requirement prescribes that services

and applications in the system should be accessible, when needed, even in the

presence of faults or malicious attack.

2.2.3 Context and Context Aware System

To fully comprehend context-aware system, it is essential to define a fundamental

related point, such as what context means in general, and then to classify the context

types.

2.2.3.1 Context

Defining the term ‘context’ is challenging because it has a variety of meanings. Ac-

cording to the Oxford Dictionary, context is a circumstance in which something

happens or in which something needs to be considered; it also refers to time and

situation. According to the Merriam-Webster Collegiate Dictionary, context is “the

interrelated conditions in which something exists or occurs”. However, many re-

searchers are not convinced by such general concepts, and so they have attempted

to produce a more applicable concept of context which is related to computing. In

this vein some consider context to be the user’s environment and others the system’s

environment.

However, more prominent definitions do consider context in relation to both

the users or persons and to the systems or objects as entities that are found in

a particular circumstance, such as Schmidt et al [102]. They defined context as

23

CHAPTER 2. LITERATURE REVIEW

“knowledge about the user’s and IT device’s state, including surroundings, situation,

and to a less extent, location”.

Schilit and Theimer [101] define context by providing examples associated with

location, identity of nearby people and objects and changes to those objects. The

definition of context in Ryan et al [98] also includes location of the user, identity

and time. However Dey and Abowd provided a foundational and comprehensive

definition of context that makes it easier to identify the various elements that context

features. That definition is emphasised in the following box [30];

“Context: any information that can be used to characterize the sit-

uations of any entity. An entity is a person, a place, or an object

that is considered relevant to the interaction between a user and an

application, including the user and application themselves”.

This definition is adopted coherently in this thesis as the main working definitions

of context. In consequence, the context of a user can be seen as information about

the user and their environment [1].

Most research studies have provided various categories of CI, the majority of

which agreed collectively upon four major categories [78], [31], [46], [1], [105], [43].

These are as follows:

• Computing context: it covers areas and information related to system connec-

tivity, network capabilities, Internet access and speed, and other computing

related assets such as printers and workstations, CPU size and speed, mem-

ory resources, etc. Another important aspect of context-aware applications

in terms of computing context is that, in order to avoid the use of multiple

devices, users may at times prefer those devices that provide the facility to per-

24

CHAPTER 2. LITERATURE REVIEW

form multiple functionalities at the same time. PDAs and smartphones are the

most obvious example of this kind of devices, which allow for the integration

of innumerable applications

• User context: it contains information relating to the user’s application usage,

which includes the user’s personal information, preferences, current location,

potential activity, etc. The choices users make in determining the context

are related to their preferences. For instance, some users are willing to go

to any specified location by public or private transport, whereas others are

willing only to travel within a walking distance. For this reason, a component

or facility for storing and efficiently using preference-related information is

required.

• Physical context: it is sometimes referred to as the environmental context, and

provides information regarding current location (public or private), intended

destination, time, environmental conditions (light or dark, noisy or imposed

silence),etc. For instance, the user may require access to information such as

weather forecasts, route directions, on-going traffic situations or just current

temperature updates, and therefore this requirement should be updated on a

regular basis and made always available to users.

• Time context: it provides information about the time and the date on a daily,

weekly or monthly basis.

As we shall see in the sequel of this thesis, CI plays a major role in controlling

CAS behaviour [31], [46].

2.2.3.2 Context Aware System (CAS)

The idea of CAS was first theorised by Mark Weiser in his paper ‘The Computer

for the 21st Century’ [114]. Weiser also provided us with predictions for context-

25

CHAPTER 2. LITERATURE REVIEW

aware computing: “computers will come invisible to common awareness. People will

simply use them unconsciously to accomplish everyday tasks”.

Weiser professes that computers will be location aware, will have the ability

to capture and retrieve information, and will offer seamless interaction in support-

ing tasks. Context-aware computing as we understand it today was first presented

by Schilit and Theimer [101]. They postulated that “CAS is about exploiting the

changes in the environment in which mobile and distributed applications run, there-

fore, the system should have the ability to adapt to changes such as user location

or connecting host over a period of time” [86]. Moreover, CASs should have a

monitoring mechanism that can react to changes in the environment [106].

According to Sheng and Benatallah [104], the system becomes aware once it can

sense information originating in a particular context and can profitably use it to

provide services to users. However Dey and Abowd give a very influenced definition

of CAS [30];

“A system is context-aware if it uses context to provide relevant

information and/or services to the user, where relevancy depends

on the user’s task”.

It was stated above that, the context of the user can be seen as information

about the user and their environment [100]. Therefore due to the mobility of both

user and device, the context of the user is not steady but is changing irregularly.

2.2.3.3 Context Aware System Lifecycle (CASLC)

A Context Aware System Lifecycle (CASLC) can be mainly classified into three

stages, namely Acquisition, Reasoning and Acting stages [84], [71], [82], [2], [43].

Each stage has distinctive behaviour and special duty. The various stages are pic-

26

CHAPTER 2. LITERATURE REVIEW

tured in Figure 2.4, and are discussed blow.

Acquisition stage

Reasoning stage

Acting stage

Figure 2.4: Context Aware System Lifecycle (CASLC)

• Acquisition stage: in this stage the system senses the surrounding environment

and then captures a raw data or information about the physical world or some

aspects of it. In this step, CAS collects CI from the provider of CI and then

passes it to a CI repository for further reasoning.

• Reasoning stage: this is metaphorically called the thinking stage but, it is also

known as context manager. In this stage, the data collected by the CI provider

is processed and analysed in order to make it understandable and usable for the

system to take an action upon it. Reasoning mechanisms enable applications

to take advantage of the available CI. The reasoning can be performed upon

the basis of a single piece of CI or of a collection of such information.

• Acting stage: this is also known in some studies as context consumer; this

stage provides the physical world with the result of processing the gathered

data.

Theses stages are fundamental to the study presented in this thesis because they

will help to clarify the modeling of a CAS using the UML diagrams.

27

CHAPTER 2. LITERATURE REVIEW

2.2.3.4 Context Aware System Security

Security is a vital issue in CAS [79], hence and needs to be considered in depth.

Tracking security requirements of CASs relies on the explicit definition of the system

environment [11]. This is a necessary prerequisite to allow the system to adapt to

the new security settings following a change of context parameters such as location.

Context aware security is defined as “dynamic adaptation of the system security

policy according to the context” [73], [79]. The reason for asserting that CASs need

more security than other systems is related to the nature of CAS communication; it

is wireless and so the data are radiated to anyone within a range, whereas ordinary

systems use cables that circulate the data only to authorised persons [15]. Therefore,

many researchers have developed and collectively agreed upon certain steps that

must be undertaken in an effort to implement the most efficient and effective level

of computer security that is possible for applications running in a CAS environment.

The main purpose of these steps is to ensure that the level of risk is reduced as far

as possible.

The security requirements will be discussed in order to determine the security

steps that need to be taken in order to provide reliable security to CASs and applica-

tions. The sequel of this section describes the security requirements that this thesis

identifies as the crucial once to minimise the risk related to CASs [79]. It is conve-

nient to term them the ‘key security requirements’ for future references throughout

this thesis [4], [69], [76], [112], [118], [53].

Authentication is the process of verifying the identity of the entity that is seeking

to access the facilities of CASs and its applications. Authentication is essential

for verifying the identity of each node in the system and its eligibility to

access the network. The authentication function in a CAS is required only

once; it occurs between the user device and the context-aware infrastructure

28

CHAPTER 2. LITERATURE REVIEW

supporting the system. In practise,this means that nodes in CASs are required

to verify the identities of all communicating entities in the network. This is

needed at least to ensure that these nodes are communicating with the correct

entity and that the user who is trying to access the CAS is eligible to do so.

Mutual authentication allows pairs of communicating nodes to get evidence

on each other identity. Furthermore, in order to validate and run the Authen-

tication process, it is not always required that the user or device be connected

to the application; the authentication process could be done in terms of the

user’s context, e.g. location, Activity or nickname in an Internet Relay Chat

(IRC) room.

Authorisation in practice often follows authentication; it manages user privileges

by retrieving the permissions associated with the authenticated user within

a given policy. Therefore, the authenticated user should have permission to

access the required resource. In a CAS, the CI is utilised to manipulate the

user privileges. Consequently, the authorisation behaviour must be dynamic

in order to address the context change. For example, a university may control

access to its resources, such as a library, depending on circumstances, and

authorisation can also occur between two contextually aware devices, such as

mobile computers.

In the first example, the context is known, and authorisation is easily im-

plemented; the administrator of the infrastructure can therefore define the

authorisation policies in terms of these known contexts. In the second ex-

ample, it becomes more difficult, as users of contextually aware devices move

around their environment; they may be involved in several contexts, and may

wish to implement authorisation (based on these contexts) to the data they

hold. These devices may ‘swap’ new authorisation policies depending on their

29

CHAPTER 2. LITERATURE REVIEW

context and on the wishes of the associated users.

Confidentiality (sometimes called privacy in this area) is related to protecting or

restricting the use of certain highly sensitive, private or secure information or

data from being shared or being made available to anyone without permission.

Each node in a CAS must secure both the data that is exchanged and the

location information and other data that are stored on these nodes.

Although confidentiality has been vastly studied for traditional system, impl-

ementing this concept in a context-aware environment is a very challenging

task. Most of the studies in this field have claimed that it is possible that

users who wish to access and use the functionalities and facilities of CASs can

be somehow drawn into sharing their contextual information.

In order to ensure that such users do not unwittingly share or provide access

to their private information to other entities, certain methods and tools are

needed to prevent sensitive information from being accessed by others, and

the user’s location can play a key role in this regard.

Integrity prescribes that the data transmitted between users in CASs should be re-

ceived by the intended entities without having been tampered with or changed

through any unauthorised modification. This requirement is essential, partic-

ularly in mission critical systems such as banking or aircraft control where

data modification could cause considerable damage. Previous studies have

shown that integrity of user’s data can be ensured by guaranteeing that the

data cannot be accessed and then altered by fake, illegal or invalid users. The

integrity requirement in CASs is defined as a guarantee in which access to a

user’s resources is not allocated or assigned to any illegal or incorrect user.

Integrity instantiated to data is essential in CASs, especially when commu-

nication occurs between a CI provider and a mobile user, and also during

30

CHAPTER 2. LITERATURE REVIEW

data exchange, whether the data are stored in the main server or in the user’s

device. Thus, transferring data is a fundamental issue in terms of integrity

because it needs that data is received as it was sent to be guaranteed, partic-

ularly in a wireless environment. It therefore necessary to continuously trace

and monitor the data flowing through the system.

2.3 Framework supporting CAS security and their

limitations

Previous studies have proposed various frameworks for implementing efficient and

effective security on user information in CASs. The main purpose of implementing

these frameworks is to acquire and state various security-related requirements and

models. However, each framework has developed its own means of implementing

security requirements and models. For this reason, each separate framework is

valuable in its own right and worth of consideration. The following subsections

briefly describe the most distinctive frameworks to capture some set of security

requirements within in the context-aware paradigm.

• Confab Framework. Users should be able to apply certain privacy and con-

fidentiality controls, thereby protecting their private or personal information

from illegal access by unauthorized users. Therefore, in an effort to fulfil this

security requirement, Jason et al. [51] proposed the Confab framework. Specif-

ically, this framework is designed to provide protection and reliable security

for information that is relevant to the user’s location in a ubiquitous system.

Moreover, its working hierarchy is based on specific analysis relating to the

basic privacy requirements of end-users and application developers [103]. For

security purposes, the private information of the user is acquired, stored and

31

CHAPTER 2. LITERATURE REVIEW

processed in the user’s device, instead of being stored in some other device.

• Uniform Access Control (UAC). Covington et al. [26] came up with a uniform

access control framework specifically for serving the purpose of environmental

roles. Moreover, it has been declared and claimed as a further extension to

the Role-Based.

• Uniform Access Control (UAC). Bardram et al [16] developed a uniform Access

Control framework specifically for environmental roles and declared to be an

extension to the Role-Based Access Control (RBAC) model. In the RBAC

model, specific privileges or access rights for the user, in terms of accessing

the system services, are linked with the environmental roles. More precisely,

in this concept, a role can be a developer or a manager in a top-level domain.

Moreover, a role is responsible for analysing and determining the security

aspects relating to CASs and any applications in ubiquitous environments

[74], [16].

• General Role Based Access Control (GRBAC). Ahamad et al. [74] highlighted

the main difference between the RBAC and GRBAC models. The RBAC

framework is a basic model that only covers the subject-oriented approach

whereas GRBAC allows the definition of access control policies depending

upon not only the subject but also on other essential factors such as object or

environment.

• Gaia. A framework designed to assist in the building of ‘smart space’ appli-

cations [100], [14], [50] such as smart homes and conference rooms, consists

of a framework for building distributed context-aware applications. Gaia’s

event manager service enables applications to be developed as loosely coupled

components, and can provide basic fault tolerance by allowing failed event

32

CHAPTER 2. LITERATURE REVIEW

producers to be automatically replaced. Gaia’s remaining services support

various forms of context-awareness, which include the following once.

– Presence service: it monitors the entities entering and leaving a smart

space(including people as well as hardware and software components).

– Space repository: it maintains descriptions of hardware and software com-

ponents.

– Context file system: it associates files with relevant CI and dynamically

constructs virtual directory hierarchies according to the current context

[93].

• Roman et al. [22] defined generic context-based software architectures for

physical spaces such as Gaia. Moreover, they defined a physical space as a

“geographic region with limited and well defined boundaries containing phys-

ical objects, heterogeneous networked devices and users performing a range of

activities”. Depending upon this very physical space, active space providers

assist the users of CASs and applications to directly connect and therefore

interact with the physical space. Again, this framework is being used to cover

the security requirement that is called Access Control. Its main purpose is

therefore to define the giving permissions for authentic and real users to ac-

cess or utilise the system facilities.

• Kerberos. Kerberos is designed to achieve the purpose of fulfilling and imple-

menting various security requirements in CASs and applications, such as Iden-

tification, Athentication and Access control. Kerberos, however, is a frame-

work for which the center of attention concentrates on verification of the iden-

tity of the user who is requesting access to services and facilities of CASs. This

verification can be done by making use of data relating to the user’s context

which includes fingerprint, voice and face recognition, etc [22].

33

CHAPTER 2. LITERATURE REVIEW

• Context Toolkit. provided by Dey [32], it introduces the concepts of owner-

ship. The Context Toolkit makes it easy to add the use of context to existing

non-context-aware applications and to evolve existing context aware appli-

cations. New components involved in this access control are the Mediated

Widgets, Owner Permissions, a modified Base Object and Authenticators.

Context Toolkit provides context widgets, and they can be used as reusable

software components for accessing and interpreting context data while hiding

details. Therefore, Context Toolkit can support various domains of context

aware applications [68], [50].

FRAMEWORKS SECURITY REQUIREMENTS

Confab Authentication

UAC Access Control

GRBAC Access Control

Gaia Authentication, Access Control

Kerberos Authentication, Access Control, Privacy

Context Toolkit Authentication, Access Control

Table 2.2: Relationship between frameworks and security requirements

Table 2.2 summarises the framework outlined above and the specific security

requirements each of them can handle. It can be seen none of the existing framework

allows for the representing of all the key security requirements selected above, namely

Authentication, Authorisation, Confidentiality and Integrity.

34

CHAPTER 2. LITERATURE REVIEW

2.4 UML variants supporting CAS security and

their limitations

In spite of the several researchers’ efforts in the field of context-aware applications

aimed at introducing extensions of UML diagrams for various purposes, there has

been no research using UML over CASs for the gathering and modeling of their

security requirements.

In this section, we present a number of past and current researches into UML

extensions whether utilised for specifying security aspects in general, or for modeling

mobile computing aspects in wider context. Two main criteria were used to properly

assess the strengths and weaknesses of previous research efforts; these criteria are:

• The ability of the proposed method in respect to model the context awareness

and the mobility aspect of the system using UML notations and diagramming

techniques.

• The ability of the proposed method to gather or specify security requirements

of the system using UML diagram notations techniques.

Choi [23] defined context and context-aware service as both concrete and evaluative

forms and introduced a requirement analysis process, context-aware Use Case dia-

grams, context-switch diagrams, as well as a dynamic service model based on those

definitions. His work is outstanding, and the extended Use Case diagram looks also

very intuitive. However, he did not s how CI can be presented. However, he did

not clarify how CI can be presented. In addition he proposed more notations which

make his approach to model a huge system very complected.

Hannes [81] presented some ideas related to the context-driven Use Case creation

process, and gave evidence for its advantages (compared with the goal-driven ap-

proach) using the example of the distronic function. He also noted the importance

35

CHAPTER 2. LITERATURE REVIEW

of context in Use Case creation, and thus introduced a process to capture context

situations. The main goal of such process is to bridge the gap between critical con-

text situations and the user goal by specifying the situations in details. However,

he did not depict CAS behaviour and the effect of CI on that behaviour.

Sheng et al. [104] presented a modeling language for the model-driven develop-

ment of context aware web services based on UML, emphasizing how UML can be

used to specify information related to the design of context aware services. Kang et

al [64] extended their previous research [65] to the use of UML 2.0 Activity Diagram

for modeling mobile agent applications, and discussed their computational models

to capture agents.

In relation to security requirements using UML, Sindre et al. [107] presented a

systematic approach to eliciting security requirements based on Use Case modeling,

which represents threats or abuse scenarios the users do not want to happen and

must be prevented or mitigated. Similarly McDermott and Fox [75] have adapted the

UML Use Case diagram to capture potential attacks by unauthorised stakeholders,

calling this extension Abuse Case diagram.

Jurjans [60] presented an extension (UMLsec) [61] that allows relevant security

information to be expressed within the diagrams of a system specification during

formalisation. Jurjans also developed an extended Use Case diagram for capturing

security requirements; however, his approach was only designed to describe the

situation to be achieved together with goals tree [60]. That approach is not well

suited to this research as it cannot describe the behavoure of CAS.

Houmb and Islam [52] proposed a security requirements engineering methodol-

ogy called SecReq. However, their work mainly aims at compensating the lack of

security expertise in software development teams. Mariscal et al [85] proposed an

approach to model security as a separate concern by augmenting UML with separate

and new diagrams for role-based, discretionary and mandatory access control, and

36

CHAPTER 2. LITERATURE REVIEW

providing visual access control diagramming techniques. Peralta et al [89] presented

a technique to specify UML security stereotypes aiming to guide developers by an-

notating vulnerable model parts, and to support automatic security test case study

generation.

Alghathbar et al [7] proposed a logic-based system (flowUML) to validate infor-

mation flow policies at the requirement specification phase of UML based design.

Alghathbar et al, introduced [8] an extension to the UML meta model with an access

control policy constraint specification and enforcement module, business tasks and

history log for method calls. The extension shows how access control requirements

of an application can be modeled in the design phase.

By contrast, in a different study, [6] Alghathbar focuses on the representation

of access control policies in the requirements phase of the lifecycle. In relation

to this work, Alghathbar and Wijesekera introduced [5] AuthUMLs, which is a

logic programming based framework that analyses static access control requirements

in the requirements phase of the life cycle to produce a consistent, complete and

conflict-free access control requirements.

Jurjens and Shabalin [62] developed a tool for the analysis of UML models against

difficult system requirements. More precisely, they described a UML verification

framework supporting the construction of automated requirement analysis tools for

UML diagrams. The framework is connected to industrial CASE tools using Exten-

sible Markup Language (EML) and allows convenient access to this data and to the

human user.

Alfonso Rodrigue et al [90] presented an extension of UML 2.0 Activity diagrams

which allowed security requirements to be specified in business processes. They

denominated as Business Process Security (BPSec), is Model Driven Architecture

compliant since it is possible to obtain a set of UML artifacts Platform Independent

Model (PIM) used in software development from a secure business process model

37

CHAPTER 2. LITERATURE REVIEW

specification (Computation Independent Model (CIM)).

Modeling Method
Models Context

Awareness and Mobility

Models Security

Requirements

Choi
√

×

Hannes
√

×

Sheng et al
√

×

Kang et al ×
√

Sinder et al ×
√

McDermott and Fox ×
√

Jurjens ×
√

Houmb and Islam ×
√

Pavlich et al ×
√

Rodriguez et al ×
√

Karine et al ×
√

Alghathber et al ×
√

Alghathber et al ×
√

Alghathber ×
√

Alghathbar and Wijesekera ×
√

Jan Jurjens and Pasha Shabalin ×
√

Alfonso Rodrigue et al ×
√

Table 2.3: Summary of the above mentioned modeling methods based on the defined
assessment criteria

Table 2.3 summarises our short accounts existing UML works that heve variously

CASs and some security requirements. It can be seen that none of them is specifically

tailored to gather security requirements for CASs.

This thesis aims to develop a practical and comprehensive approach to both

38

CHAPTER 2. LITERATURE REVIEW

model CASs and identify their security requirements using Use Case, Activity and

State diagrams.

2.5 Chapter Summary

This chapter has addressed the critical aspects underlying the present. It has also

shed light on UML by presenting an overview of it was presented, following which its

diagram types (either behavioral or structural) were described. Then, this chapter

highlighted system issues by grouping them into two: those related to security in

general, and then those related to security requirements gathering.

This chapter also examined context, giving the main working definitions, and

subsequently examined the notion of CASs, depicting it in detail and describing

its security requirements. It then identified the key security requirements of CASs,

namely Authentication, Authorisation, Confidentiality and Integrity. Finally, the

relevant related works that have been conducted using extended versions of UML

diagrams were assessed in order to identify the gap that this thesis intends to cover.

In short, this gap is the capability of treating all key security requirements of

CAS.

UML is universal modelling language , which has been utilised and extended

for many purposes. In both areas CAS and security requirements UML has been

enhanced.

However there is no a single study devoted to model security requirement for

CAS using UML. As result this thesis was aimed to enhance UML diagram types

namely (Use Case, Activity and State), which have enabled them to model a security

requirements at the early stage of developing CASs. These diagrams notations were

enhanced which became applicable to model the behaviour of CASs by showing

the effectiveness of CI in such behaviour, then latterly to model the key security

39

CHAPTER 2. LITERATURE REVIEW

requirements.

Furthermore, in regard to the chosen case study that has been presented in

this thesis is probably correct. The case study is modelled based on our proposed

enhancements on Use case diagram, Activity diagram and State diagram in order

to represent some scenarios.

40

Chapter 3

Enhancing the Use Case diagram

to model CASs and gather their

security requirements

Objectives:

• To describe the existing Use Case elements

• To reveal the weaknesses that hinder the current Use Case diagram notations

in modeling CASs

• To extend the Use Case diagram notations to model a CASs

• To gather security requirements using the extended Use Case notations

41

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

3.1 Introduction

Use Case diagram is a vital instrument for both modeling system functions and

gathering security requirements; however, the existing Use Case notations are not

adequate to describe and model the behaviour of a CAS, which is dynamic and

should fulfill the key security requirements identified in the pervious Chapter: au-

thentication, authorisation, confidentiality and integrity. As a result of this, the Use

Case diagram elements need to be extended to address the behaviour of a CAS as

well as to enable gathering its security requirements. Therefore, this Chapter aims

to show how to extend and adjust the existing elements of Use Case diagram to

address those needs.

3.2 Existing Use Case diagram elements

A Use Case diagram consists of three main elements that must always be considered

in order to complete the system blueprint [75]. These are enumerated here.

• Actor: an Actor is any stakeholder, whether a person, an organization, a

device or an external system, that interacts directly with the system [41].

Moreover, Actors thus define the roles that users can play, and they can be

used to model any other element that needs to exchange information with

that system. An Actor exists outside a system, and is not actually part of

the system itself. Actors in Use Case diagrams are graphically represented as

stick men, denoted underneath by their names [10].

• Use Case: a Use Case presents the essential system functions to be performed

by the actors; it also describes how a user and a system interact in order

to accomplish some defined goal [25]. Each Use Case constitutes a complete

course of events initiated by an actor, and specifies the interactions that take

42

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

place between that Actor and the system. The Use Case itself is divided into

two (similar) types: main Use Case, and dependent Use Case. A Use Case is

usually represented as an oval, and the Use Case name either appears inside

or outside that oval.

• Relationships: there are several types of relationships that may exist between

an actor and a use case(s) or a use case and another use case(s) [94]. Table

3.1 provides a summary of these relationships.

43

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Relation name Function Notation

Association The communication path between an

actor and a use case where the direc-

tion of the arrow specifies who starts

communication with whom.

Dependency The communication path between two

or more use cases to invoke an addi-

tional behaviour based on a condition.

Two stereotypes of this relationship ex-

ist in a use case diagram; extend and

include.

<<Extend>>

<<Include>>

Generalization A relationship between two or more en-

tities (actors) where the higher class

entity provides a generalisation of the

lower class entities.

Table 3.1: Existing Use Case relationships

3.3 Enhancements

Use Case diagram is mainly used to define the functional requirements for system

from user perspective, which is static in nature. In contrast a CASs functional

44

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

behaviour differs from other traditional systems as they are rapidly changeable based

on context [28], [23].

It is not straightforward to communicate about, analyse, design, and implement

systems. For example, customers and developers have communication problems in

the requirement phase, and they may face this question: What context does the

system function beng developed need? [23].

The current form of Use Case diagram notations are mainly capable of only

modeling traditional system functions, which are static, and hence the system design

is not influenced by any external condition. In other words, all the system functions

presented by existing Use Case diagram notations are not subject to any constraints,

and so they are always available and ready to be performed when the user desires.

To support this, the example shown in Figure 3.1 depicts a student in an M-

learning system invoking << Download materials >> or << Do exam >>. A

normal Use Case diagram is represented with immutable functions that are not

affected by any changes in context. This diagram is not subject to any other condi-

tions.

Student

Download materials

Do exam

Figure 3.1: Normal Use Case diagram

However, this defies the basic nature of a CAS, which is adaptable to its envi-

45

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

ronment in a constant manner. Specifically, a function in a CAS may or may not be

available and performed, as it is based on CI parameters such as time or place. The

reason for this is that the function in CAS is subject to such CI, and thus once this

context is fulfilled or satisfied, the function will be made accessible; otherwise it will

be prohibited. Therefore, CI plays a critical role in determining the CAS functions,

whose modeling necessitates the inclusion of CI in a Use Case diagram.

Accordingly, the existing Use Case notations need to be extended in order to

support the description of context-aware features. What we mean here by mobility

and dynamic is that the Use Case diagrams in a CAS should have the full ability to

describe when the system functions can or cannot be invoked.

Therefore it is necessary to detail the shortcomings of each existing Use Case

notation and to highlight why certain elements are unable to model a CAS.

• Actor

A context-aware actor is proposed to enable actor-oriented scientific workflow

to be more personalised, adaptive, intuitive and intelligent; this is achieved

by modeling the logic related to quality runtime adaptations [12]. In current

Use Case diagrams, the actor is considered to be static, always interacting

in a fixed environment and enjoying stable behaviour and attributes. More

importantly, it is assumed that the actor is not affected by any effects in the

surrounding environment; hence the current actor is always able to perform the

relevant system function. In a CAS, the actor’s behaviour should be treated

as dynamic and adaptable to its current CI which, means that the actor can

be influenced by the surrounding environment.

Returning to the example in Figure 3.1 for further clarification, in the M-

learning system the current status context of the actor << Student >> is

online; then, once s/he sits for the exam, and the system realises that the

46

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

location and time are for an exam, the student status will be switched to

<< Offline >> accordingly, which means that no other system functions

may be accessed.

In short, the Actor in a CAS must have the capability of being aware of

its physical environment or situation (context) and to respond proactively to

environmental changes based on such awareness. Therefore, a enhancement

that shows the dynamism of the actor in a CAS is required.

• Use Case

As explained above, CAS behaviour changes with changes in the environment.

Therefore, we propose two new extensions to the existing Use Case, producing

a new Use Case. One extension is that the Use Case (oval shape) is used

to represent the system functions and to identify whether the status of these

functions is optional or compulsory. It is impossible, however, to define the

status of any function in a CAS as being either compulsory or optional, as such

statuses are wholly dependent upon the CI. This idea was more extensively

explained in Almutairi et al [11].

For example, the user << Student >> invokes the function << Download ma-

terials >>, which in a normal Use Case shape is considered to be a fixed

function as it can be performed at any time and in any place. In contrast, a

CAS will check the CI first in order to determine whether or not the environ-

mental constraints will allow a function to be performed. Based on such an

argument, there is a need to extend the existing Use Case notations to model

the dynamic functions of a CAS, as well as to distinguish between the static

and dynamic functions of the CAS. Accordingly, the normal shape is altered

to a dotted shape represent function dynamism.

a Second extension stems from the observation that CI plays a key role in

47

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

deciding whether or not a particular CAS function can be invoked. Thus,

our new type of Use Case, termed Context Information Use Case or (CI Use

Case) for brevity, which is devoted to presenting the required CI that needs

to be addressed in order to execute the Use Case functionality. The difference

between a CI Use Case and a normal Use Case is that the newly proposed

Use Case is not utilised to present any particular system function; rather, it

depicts the CI that must be fulfilled to carry out the system functionality.

• Relationships

We have now proposed a new type of Use Case namely << CI Use Case >>,

and this makes it necessary to define the relationships that can serve. There-

fore, we have developed a new type of relationship stereotype, called <<

Require >>, which indicates the relationship between the CI Use Case and

the main Use Case. This means that each Use Case requires a certain CI

Use Case for it to be executed; therefore, this new relationship is used to link

these Use Cases. The existing relationship stereotype types << Extend >>

and << Include >> are not suitable for describing this kind of relationship

because their behaviour is limited.

3.3.1 Extending the Use Case elements to model CASs

This section is divided into two parts; the first part is conducted to fully describe

the proposed extension of Use Case diagram to model a CAS. The second is devoted

to capturing and modeling the security requirements for a CAS using the extended

Use Case diagram.

As a result of the aforementioned shortcomings in Use Case modeling that was

highlighted in previous section, a set of extensions are proposed to the existing Use

Case modeling technique, enhancing its flexibility, so that it can cope with CAS

48

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

behaviour [11]. The essential idea behind the proposed enhancement is to show how

the CI can affect the modeling of the CAS functions through a Use Case diagram.

This section continues by dividing the proposed extension that is to be added to

the existing Use Case diagram notations into two parts, as follows:

• Adjusting the existing Use Case diagram elements

• Defining new Use Case elements

3.3.1.1 Adjusting the existing Use Case diagram elements

The existing notations are limited in functionality; therefore, it is imperative to

adjust them to enable presenting the new behaviour. The notations that need to be

refined are:

• Actor

• Use case

Table 3.2 depicts our notation adjustments. It can be seen that both the stick

man and the oval are dotted in new notation.

49

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Existing notation Adjusted shape Description

The dotted stick man

indicates that the CI

can have an influence

on the actor, therefore

the actor is able to be

dynamic and adapt-

able in any a new en-

vironment.

The dotted oval means

the function availabil-

ity could be influenced

by changing CI.

Table 3.2: Adjusted notations

3.3.1.2 Defining new Use Case diagram elements

This is the most original contribution of this thesis, completing our extended no-

tation that assists in presenting an outstanding blueprint for a CAS and then in

capturing the relevant security requirements. The new elements can be seen in

Table 3.3.

50

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

New elements name Shape Description

CI Use Case It is used to define the

required CI to perform

some system function.

Require relationship It is used to express

the relation between

the main Use Case

and CI Use Case.

Table 3.3: The proposed new elements to model CASs and to capture their security
requirements

Having refined some of the existing use case diagram elements, and having de-

fined two new ones, let us consider an example and apply the proposed enhancements

in order to demonstrate their effectiveness and considerable benefits. Let us consider

the same example given above, and assume that there is required CI that must be

checked first, as follows:

• Download materials: in order to invoke this service, the user must be within

university boundary, say in location A. Additionally, the student status must

be << Online >>.

• Do exam: in order to invoke this service, the student must be in a predefined

location within the university, say in location B, and at a predefined time,

say between 10:00 and 12:00. Additionally, the student status must be <<

Offline >>.

51

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Thus, the extended Use Case diagram is enriched to reflect the CI as in Figure

3.2:

Student

Download materiles

Do exam

Location= A

Student status= Online

Location=B

Time=10:00-12:00

Student status= Offline

require

require

Figure 3.2: Extended Use Case diagram

From the new diagram, it can be clearly defined all the required CI; the function

is not available unless this context is fulfilled. Having provided a clear explanation

of the adjusted Use Case diagram, A Use-Case Specification (UCS) provides full

textual details for a Use Case [18], as may be seen in the Table 3.4 for <<

Download materials >> function.

52

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Name Description

Actor Student.

Main function Download materials.

Brief description The student can download the required ma-

terials.

Context Information Location= A. Student status= Online.

Pre-condition the student must be authenticated.

Post condition The student must be having the proper CI

to carry on downloading.

Flow of events

1. The student requests downloading ma-

terials the invokes a function

2. CAS checks whether the student has

gained the required CI

3. CAS provides the requested materials

to the student

Table 3.4: Description of Use Case diagram

To sum up this section, were presented a number of changes to the Use Case

notations to enable the use of Use Case diagram in order to model dynamic systems,

which is precisely the nature of CASs. These changes included the use of a new set

of notations in the Use Case Model to enable the representation of CI and its effect

on CAS functions. The Table 3.5 provides a compact comparison between the

existing Use Case diagram, termed ‘Normal Use Case’ and our enhanced version,

termed ‘Extended Use Case’.

53

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Method name
Models system

functionality

Describes static

functions

Describes CI

functions

Normal Use Case
√ √

X

Enhanced Use Case
√ √ √

Table 3.5: Typical VS Adjusted Use Case Diagram

3.3.2 Gathering security requirements for CASs using the

extended Use Case

Having provided a robust approach to modeling a CAS, we now need to gather

the key security requirements. The Use Case diagram notations could be used to

describe such requirements but is limited and found unable to model Integrity. Pre-

cisely, an Integrity prescribes to track information while it flows from an initial point

to a final one, for example, user A sending a message to user B and, additionally,

the receiver needs to know whether or not the data have been corrupted during

the transfer. The nature of a Use Case diagram makes it unable to describe such

requirement, and therefore we observe that a Use Case diagram is not capable of

modeling all key security requirements.

Hence, in this section we concentrate on how to gather the other key security

requirements, specifically Authentication, Authorisation and Confidentiality, for a

CAS using our adjusted Use Case diagram. Theses observations are summarised in

Table 3.6 which presents the security requirements that can or cannot be modeled

in a Use Case diagram.

However, Integrity will be modeled in the sequel of this thesis, at the level of

Activity and State diagrams, as we shall see.

54

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Security requirement types Use Case diagram

Authentication
√

Authorisation
√

Confidentiality
√

Integrity X

Table 3.6: Presenting security requirement using Use Case diagram

In the Section below, the adjusted Use Case diagram is employed to show how the

security requirements for a CAS can be gathered and modeled. This will necessitate

the inclusion of a few new elements in order to reflect the meaning of each security

requirement. It is worth mentioning that the CI will also be the main factor in

defining and managing the system’s security requirements.

3.3.2.1 Authentication

Authentication is the first stage in securing system in general [34]; it entails verify-

ing the user identity by checking certain authentication parameters, such as user-

name/password, location, time, etc.

55

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

User CAS

Authentication CI

E
n
te

r

Continuously m
onitoring

Login/Logout

Figure 3.3: Authentication process in CAS

As stated in Chapter 2, the authentication process in a CAS differs from how it

is carried out in other systems. It must be continuously re-iterated because the user

environment is rapidly changing, which can possibly result in the user becoming

unauthenticated by failing to satisfy the authentication parameters [70], [48]. Thus,

in order to authenticate system users using Use Case diagram, we accordingly group

two kinds of context parameter that must be addressed in verifying the user identity,

as follows:

1. Static parameters: these are fixed details such as username/password and

device IP address.

2. Dynamic parameters: these are changeable based on user context such as user

location; this type is imperative, as the user needs to be continuously tracked

to ensure their secure access to the system.

The authentication process can be presented in a Use Case diagram by expressing

the login stage, which requires verifying both static verification details (such as

56

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

username/password) and dynamic ones (such as location,time etc..). For example

in M-learning system the student has to have valid access details as well as be in

the university boundary in order to access the system functions.

Login

Location= University

Username/password= Valid

require

Student

Figure 3.4: Authentication Use Case diagram

As shown in Figure 3.4, the student needs certain CI in order to pass the

authentication stage to access and display the M-learning functions. The dotted

shapes demonstrates how the diagram benefits from the enhancements we have

described above.

Table 3.7 details how authentication information is captured; it describes all

elements of the diagram.

57

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Diagram elements Description

Actor Student.

Main function Login.

Brief description Describe the login process, which identifies the stu-

dent.

Security type Authentication.

CI Username,password. Location.

Precondition The student must be within the university bound-

ary.

Post-condition The student must not leave the university.

Flow of events

1. Student enters username password

2. CAS verifies the student Location

3. CAS check all the provided CI

4. CAS displays the functions

Table 3.7: Description of Authentication Use Case diagram

3.3.2.2 Authorisation

Authorisation concerns permitting or denying privileges to users, and thus CI plays a

major role in this. This implies that authorisation is particulary difficult to enforce

within a CAS. This service follows the authentication stage. Although Use Case

diagrams can visually present the behavioral system requirements, they are not

58

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

fully able to represent existing authorisation policies. At best, a Use Case diagram

can show some authorisation by stating the roles that actors are permitted to invoke

[6], [9]. Therefore, it is imperative to state through the extended Use Case diagram

how the CI can impact on the system’s decision of either permitting or denying an

actor‘s access to certain resources.

Use Case

(system

function)

Authorisation

policy

CI

N
ee

ds

M
onitoring

Deny-Permit

Figure 3.5: Authorisation process in CAS

The Figure 3.5 shows the impact that CI can have on the CAS function when

presented by a Use Case. For instance, once the user decides to invoke an available

service, s/he needs to provide certain CI and to fulfil certain constraints to be able

perform that service; for example, in our running example of an M-learning system,

the user << Student >> may want to download some files from the database;

however, the downloading materials function requires certain CI and constrains to

be in place, such as the user being in a particular location. Time may also be involved

(e.g. between 9:00 and 17:00), and so once the student has fulfilled the necessary

requirements, s/he can invoke the download function; otherwise, the service will be

denied.

59

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Thus, in order to present this, a new elements are defined for a use cases, namely

<< Permit >> and << Deny >>. Although these terms have been represented

before as scenarios [6], they are adopted here without ambiguity, as use cases that

are involved in the same Use Case diagram. This will help to reduce the complexity

of Use Case description. We shall see that the performance of << Permit >> and

<< Deny >> use cases is namely their outcome totally dependent on the user CI.

The Table 3.6 describes the new use cases.

New Use Case name Shape Description

Permit

permit

It means that the user

has fulfilled the CI

that is required for

utilising the service.

Deny

deny

It means that the cur-

rent user CI is not con-

sistent with the func-

tion requirements.

Table 3.8: The proposed Authorisation Use Cases

These new use cases << Permit >> and << Deny >> can be used continuously

60

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

(according to the CI). The example 3.6 depicts how the actor can invoke the service

once the CI has been fulfilled, and vice versa (i.e. how he cannot if the user CI is

not satisfactory). The reason for not providing as the shape of the classical use case

is that << Permit >> and << Deny >> use cases are not part of the system

functions, as they are considered as an action for process not a typical use case.

Student

permit

deny

Download materials

Location: A

Time: 8:00-21:00

include

include

require

Figure 3.6: Authorisation Use Case diagram

The Table 3.9 explains the Use Case Authorisation in depth by providing all

the details in the diagram:

61

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Name Description

Name of system user Student.

Main function Download materials.

Brief description

The student can access Download materials function

once s/he acquires the required CI, therefore once the

CAS approves these, the student will be permitted, oth-

erwise will be denied.

Security requirement Authorisation.

CI Location: A. Time: 8:00-21:00.

Precondition Student must remain having the proper CI.

Post-condition Student must remain gaining the authorised parameters.

Flow of events

1. Student requests download materials function

2. CAS verifies the student CI

3. CAS provides the requested materials

4. CAS continuously checks the student CI

5. CAS denies the service once the student CI is not

applicable

Table 3.9: Description of Authorisation Use Case diagram

It can be seen that the authorisation mechanism can now be managed thanks to

our enhanced notation and, in particular, the privileges for the user can be controlled

by continuously monitoring the user context. In short, the chief benefits of our

enhancement is that they simplify defining where and when a service can be granted

62

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

or denied in a CAS.

3.3.2.3 Confidentiality

Confidentiality is a significant requirement for a CAS and, as such, should be clearly

captured in the Use Case diagram. It generally concerns protecting and hiding data

from unauthorised persons or third parties. As explained above, each CAS function

is inherently dynamic because it is granted depending upon the calling user’s context

information.

For the sake of demonstration, we consider a user who has been authorised to

access a CAS function. We also assume that the function handles sensitive data,

hence their confidentiality becomes an important requirement. Accordingly, the

CAS will release the function to the user if and only if the user sits in a predefined

safe location such as his/her office.

Thus, user location has been used as crucial context parameter [51] to influence

the hiding of the data handled by the CAS function; as a result, user location will be

exploited here to demonstrate how to model confidentiality in a CAS. It is assumed

that:

the service has been already granted to the user, which means the user

has satisfied the required CI. Thereafter, the system will continually

check only the user location to control that service.

The Figure 3.7 shows the mechanism for protecting the data once the service is

running.

63

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

Use Case

(system

function)

User location

Context

Information(CI)

N
ee

d

M
onitoring

(Hide – Release)

sensitive information

Figure 3.7: Confidentiality process in CAS

Consequently, the hidden data will be dynamically hidden upon the based of

user location. In consequence, presenting confidentiality in a Use Case is slightly

different from presenting other security requirements such as authentication and au-

thorisation. As result, we propose a new use case called << Show information >>,

as depicted in the Table 3.10, to enhance the proposed Use Case diagram in order

to clearly present confidentiality for CASs.

64

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

New Use Case name Shape Description

Show sensitive

Information

Show Inforamtion

Indicates that

some of the data

in the running

function needs

to be hidden.

Table 3.10: The proposed Confidentiality Use Case

To illustrate the above explanation with an example, we build the Use Case

diagram in Figure 3.8. If a doctor wishes to check the record of a patient, the doctor

must be located in his/her private office to be able to do the check successfully.

Otherwise, the patient’s sensitive data, such as age and medical history, will be

concealed.

Check patient

record

Show all patient

sensitive information

-Location: Doctor office

Doctor

include

require

Figure 3.8: Confidentiality Use Case diagram

65

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

The Table 3.11 explains the Use Case Confidentiality in depth by providing all

the details in the diagram:

Name Description

Name of system user Doctor.

Main function Check patient’s record.

Brief description Doctor checks the patient’s record.

Security requirement Confidentiality.

Private location Doctor office.

Sensitive Information patient’s age. patient’s medical history.

Context Information Location.

Precondition Doctor must be located in his/her office.

Post-condition
Doctor location must not be changed, otherwise the pa-

tient sensitive information will be hidden.

Flow of events

1. The Doctor invokes a function

2. CAS checks the Doctor location

3. CAS hides any sensitive user information once the

Doctor location is deemed not private

Table 3.11: Description of Confidentiality Use Case diagram

66

CHAPTER 3. ENHANCING THE USE CASE DIAGRAM TO MODEL CASS
AND GATHER THEIR SECURITY REQUIREMENTS

3.4 Chapter Summary

In this Chapter, the researcher has studied how the Use Case notations can be made

applicable to modeling a CAS, and then how the key security requirements can be

gathered.

The Chapter started by detailing the proposed enhancements to the Use Case

notations, which can greatly enrich their capability in modeling CASs. Then, this

Chapter provided examples using our enhancements to depict how CI can affect the

behaviour of CAS function.

Then the Chapter described the approach taken to gathering the security require-

ments, specifically authentication, authorisation and confidentiality, by utilising the

extended Use Case diagram. Furthermore it clarified why the integrity could not be

presented through Use Case diagram.

In addition this Chapter showed how the CI can play a major role in securing a

CAS, either in the authentication stage, which can use static parameters and certain

dynamic once, or in the authorisation stage, which can be managed by some CI to

control the user privileges, and finally in the confidentiality stage, which exploited

user location in order to modulate the release of data.

In short, this Chapter has presented our innovative framework to model CASs

and gather most of their key security requirements by Use Case diagram.

67

Chapter 4

Enhancing the Activity diagram to

support the extended Use Case

diagram for CASs and gather their

security requirements

Objectives:

• To describe the existing Activity diagram elements and their weaknesses in

modeling CASs and their security requirements

• To extend the Activity diagram notations to model a CAS

• To use the extended Activity diagram to further demonstrate the extended

Use Case diagram of the previous Chapter

• To gather security requirements using the extended Activity diagram

• To specifically target the Integrity requirement, which could not captured at

Use Case level

68

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

4.1 Introduction

This chapter aims to describe how the Activity diagram can be used to develop a

unique framework for modeling CASs. The main purpose of utilising an Activity

diagram is to clarify each Use Case scenario. This will assist in demonstrating the

value of the extension advanced on Use Case diagram and described in the previous

chapter.

4.2 Existing an Activity diagram elements

For completeness of the presentation, we begin by outlining the main elements of

Activity diagram. Typically well known to software developers, these are [24]:

• Initial (start) node: indicates the beginning of a workflow in an Activity dia-

gram; it is drawn as a solid black circle.

• Control flow (Transition): an arrow showing the direction of the process be-

tween two or more actions or elements in the Activity diagram. It is drawn as

a solid line with an open arrowhead.

• Action state (Activity): a model element that represents the performance of

a task in the workflow or an operation in the process. It is presented as a

capsule-shaped rounded rectangle with a name or description.

• Decision: a choice for a workflow to proceed along one of a number of pos-

sible paths, according to the guard conditions, which has only one incoming

transition and has multiple outgoing transitions. It is presented as a diamond

shape.

• Swimlane : it divides activity diagrams into sections. Each swimlane is sepa-

rated from adjacent swimlanes by vertical, solid lines on both sides.

69

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

• Merge: a number of flows leading to the same Activity. It is indicated as a

diamond with several flows entering and one leaving.

• Synchronization: a facility for the modeling of simultaneous workflows. It is

of two different types:

– Fork: this is presented as a bar with one incoming transition and two or

more outgoing transitions.

– Join: this is presented as a bar with two or more incoming transitions

and only one outgoing transition.

• End (final) node: indicates the end of the workflow. The end state is drawn

as a filled circle inside a large unfilled circle. The name on it is optional.

4.3 Enhancements

As stated previously, a CAS depends totally on the CI and originating in a certain

context. In contrast, one of the advantages of an Activity diagram is that it can show

the sequence and conditions for action execution [27], [24]. Moreover, an Activity

diagram can also be used to specify the behaviour of parameters as well as the

conditions that control each function (based on the gathered CI).

Therefore using an Activity diagram to model the behaviour of a CAS is in-

credibly fruitful, as we shall see. Before we engage with innovative extensions, it is

necessary to evaluate the existing Activity diagram notation to assess whether or not

it is applicable to efficiently present CAS behaviour. To the best of our knowledge,

there seem to exist no studies conducting such assessment. We observe that using

Activity diagram to model a CAS necessitates finding a suitable representation of

object movement in order to make tracing and tracking the object in CAS possible.

70

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

More importantly, the notation ought to be able to show the influence of changing

CI on CAS functions.

In consequence, we propose a general model notation by taking into account the

sequential process of the object within a CAS (from the gathering and sensing CI

stage, then passing through the processing stage, until reaching the acting stage in

order to deliver the service). The behaviour of CASs will be depicted by presenting

the main CAS action states as well as their functions, all of which must be possible

in any CAS, regardless of their nature. In addition, it can be clarified who can carry

out the system functions and where they can be carried out. In consequence, we

prescribe that:

There are only two main swimlanes, namely << User >> and <<

Context Aware System >>, which describe the interaction between

the system user and the CAS.

Each swimlane contains the possible functions that can be invoked through it.

The user swimlane represents the functions that the user can do, whereas the CAS

swimlane contains all the functions that the system can do and provide. For ex-

ample, the << Login >> action state is only performed by the user, whereas

<< Get CI >> can only be done within the CAS. These can be seen in Figure 4.1,

which illustrates several functions:

71

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Context Aware SystemUser

Login

Request function

Is CI consistent with

requested function

Using system

Has saved

CI changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate running function

No

No

Yes

Get CI

No

Yes

End

Yes

Start

Yes

No

Figure 4.1: CAS Activity diagram framework

Figure 4.1 clearly shows the two main swimlanes, which represent the interac-

72

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

tion between the system user and the CAS. Table 4.1 describes the CAS functions

grouped by the swimlanes in which they can be performed.

User swimlane functions Context Aware System swimlane functions

Login Get CI

Using system Is CI consistent with requested function

Has saved CI changed

Get a new CI

Is CI still applicable for current function

Adapt a new CI

Is adaptation of new CI successful

Terminate running function

Table 4.1: CAS swimlanes functions

We have now defined all the CAS functions; it is therefore now time to classify

the CAS stages and to determine where each function can be run. For example, the

<< Get CI >> action state is considered as a context acquisition (gathering) stage,

which collects all the CI (upon which the rest of the system depends). On the other

hand, the reasoning stage mainly controls all the CAS functions by checking whether

or not the CI that has been gathered is applicable, which can be done through the

condition << Is CI consistent with requsted function >>. Finally, and based on

processing the user request, the acting stage yields the result, which is presented in

<< Using system >>.

As we discussed in the literature review (Chapter 2), Context-Aware System

Lifecycle (CASLC) is divided into three stages, as follows:

• Context Acquisition.

• Context Reasoning.

73

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

• Context Acting.

The reason for mentioning these types again here is to state that they will be

exploited to demonstrate where/how data can flow in a CAS via an Activity diagram;

as well as to define precisely where the system function is invoked. Therefore, we

advance the following enhancement to depict the CASLC clearly.

• Sub-swimlanes: as explained above in the Activity diagram elements, there is a

swimlane to present a certain separated system; however, in a CAS we need to

divide that swimlane into three parts (sub-swimlanes) to illustrate the CASLC.

The reason behind this is that the CASLC is not a different and separate

system; rather, the three are all parts of one swimlane and are connected to

each other (although each sub-swimlane does have a certain duty).

Notation name Proposed notation shape Description

Sub-swimlane

Sub-swimlane

To state that each main sys-

tem may have sub-systems

inside, these swimlanes are

not separated as each one is

part of each other.

Table 4.2: CASLC swimlanes table

Figure 4.2 shows how the CAS swimlane is separated into three sub-swimlanes,

74

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

presenting its stages individually, with each stage containing the functions that can

be executed in it.

Context Aware System

Reasoning stageAcquisition stage

User

Login

Request function

Is CI consistent with

requested function

Using system

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate running function

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

Yes

No

Figure 4.2: CASLC Activity diagram

It is worth noting that so far we have only modeled a CAS and its CASLC.

75

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Adaptation mechanisms will not be considered in this thesis.

4.3.1 Extending the Activity diagram to support the ex-

tended Use Case diagram

To enable an Activity diagram to describe the extended version of Use Case diagram

introduced in the previous Chapter, further extensions are necessary. These are as

follows:

• Context Information Store (CIS): this contains all the gathered context in-

formation during function execution; this store is continuously checked and

updated in order to ensure whether or not the user has applicable CI to invoke

the required function. The CIS mechanism is considered as an internal part

of the system, it is similar to a database, but it is very dynamic.

• Context links: these show how the context data can flow in an Activity di-

agram, and also depict how the decisions can be made. These links do not

partake in object flow, and therefore they differ from the other links.

• Function Requirements (FR): this is to depict the required CI that must be

fulfilled to perform the function.

Table 4.3 shows the proposed enhancements to the Activity diagram notations,

which help to explain the extended Use Case diagram.

76

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Notation name Proposed notation shape Description

Context

Informa-

tion Store

(CIS)

CIS

Contains all gathered CI

Context

links

This is not part of control

flow; it is only to show how

CI can affect system func-

tions.

Function

Require-

ments(FR)

FR

This contains the required

CI and constraints that

must be addressed to carry

out the function.

Table 4.3: Proposed notations to enhance the Activity diagram to present the ad-
justed Use Case diagram

Note that some relationships in the Activity diagram have been coloured to show

both how the CAS works in detail, and how the system checks the condition before

invoking any system function.

As shown Figure 4.3, the CIS is connected with the action state << Get CI >>

in order to store the gathered CI. This saved CI is then continuously checked in or-

der to ensure whether or not the CI is consistent with the required or running

77

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

function. Each function has a certain CI, which is stated in the FR, and there-

fore once the user invokes a function, the system checks whether s/he has ad-

dressed the requirements for the selected function. That is achieved through the

condition << Is CI consistent with requested function >>; this verification

is made in both the CIS and the FR at the same time. When a service is run-

ning, the system verifies that the CI has not changed after a limited period of

time. If the answer to this verification is ’yes’, the CIS will again capture the CI

and update the CIS through the action state << Get a new CI >>, and then

the CAS rechecks the new CI against the FR to determine whether or not the CI

is still applicable for continuing to use the service. This verification is done by

<< Is CI still applicable for current function >>.

78

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Context Aware System

Reasoning stageAcquisition stage

User

Login

Request function

Is CI consistent with

requested function

Using system

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate running function

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS

Update

Check

CI

FR

Save

Check

 FR

Yes

No

Require

Check FR

Figure 4.3: CASLC Activity diagram with proposed enhancements

As explained earlier, the CI is the key to extending the Use Case diagram in

order to model a CAS. Therefore, the benefits of proposing both the new relation

79

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

<< Require >> and Use Case << CI Use Case >> can be presented in the

Activity diagram by showing the conditions that verify whether or not the current

user CI matches the required function. Thus, once the required CI is satisfied, then

the service/function will be granted accordingly. The gathered CI, as can be seen

in Figure 4.3, is continually updated and checked.

First, let us have an example to illustrate what has been explained above in order

to show the value of our proposed extension on the Use Case diagram in modeling

a CAS.

Let us consider a library system: it is assumed that the Librarian wishes to utilise

the library system to check the books that have been borrowed. The library system

requires the Librarian to only invoke this service inside the library and between the

hours of 8:00 and 21:00.

Figure 5.5 portrays the Use Case diagram corresponding to this example.

Check books
Location= Library

Time= 8:00 -21:00

Librarian

require

Figure 4.4: Check books Use Case

We can use our extended Activity diagram as shown Figure 4.5 to present the

library Use Case scenario.

80

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Library CAS

Reasoning stageAcquisition stage

Librarian

Login

Check books

Is CI consistent with

requested function

Using system

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate checking books

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location= library

-Time= 10:30

Update

Check

CI

FR:

-Location= library

-Time: 8:00 -21:00

Save

Check

 FR

Yes

No

Require

Check FR

Figure 4.5: Check books Activity diagram

As it can be expected, the CI plays major role in controlling the << Check b-

ook >> function. Thus, Figure 4.5 demonstrates the ability of the enhanced Activ-

81

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

ity diagram in modeling the Use Case diagram. Notably the impact of the changing

CI on system functions is explicitly represented. This was not possible with tradi-

tional Activity diagram.

4.3.2 Gathering security requirements for CASs using the

extended Activity diagram

Activity diagrams are generally used to show the system process workflow. This

can assist in defining where the system security requirements can be performed.

Therefore, we seek out to develop a notations to model the key security requirements

also within an Activity diagram. We leverage upon the outcome of the similar effort

put for a Use Case diagram in previous Chapter.

• Authentication: in the extended Use Case diagram, the login Use Case was

exploited to present the process of capturing the required authentication pa-

rameters. Therefore, the Activity diagram will describe this through a set

of action states that show how to authenticate and validate the CAS user’s

identity.

• Authorisation: this was presented in the Use Case diagram as a mechanism

for showing when the function can be either permitted or denied. Hence, this

process will be depicted here in an extended Activity diagram through a set

of action states in order to manage the user authorisation process.

• Confidentiality: the extended Use Case diagram exploited user location to

manage the hidden data, and therefore this will be fully illustrated in the

enhanced Activity diagram; it will be done through a set of action states that

are used to protect and hide any user-sensitive information.

• Integrity: this security requirement could not be captured in the extended

82

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Use Case diagram because it needed an initial node and a final node, and the

extended Use Case diagram did not provide such elements. However, we find

out the Activity diagram is capable of presenting the integrity process; it can

be done through a set of action states that are used to ensure that the data

are not corrupted or modified by unauthorised persons or any third party.

Generally, one action state or a group of action states in an Activity diagram may

present a certain type of security requirement (based on performance). For example,

the<< Login >> action state is adequate for expressing the authentication process,

whereas we use a number of action states to explain the data integrity mechanism.

To present the key security requirements in an Activity diagram, we develop

some extended notations. It relies on suitable icons, and is summarised in Table

4.4. The lock symbol is used to state the security concept, and two letters are used

to identify the specific security requirement.

Authentication Authorisation Confidentiality Integrity

AC AR CO IN

Table 4.4: Icons used to present the security requirements in the extended Activity
diagram

83

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

4.3.2.1 Authentication

The authentication stage in an Activity diagram can be presented by the <<

Login >> action state, which mainly concerns verifying the user identity. To check

the user identity in a CAS, we may use several verification parameters together,

such as static and physical ones (user name/password, device IP, etc.) and dynamic

CI ones (location, time, etc).

Login

Start

Figure 4.6: Present Authentication by login action state

Thus, in order to express how the CI can be used to verify user identity as well as

to fully spell out the authentication procedure in a CAS, we have therefore expanded

the << Login >> action state; authentication stage passes through many action

states, starting with << Enter user details >>, through verifying the user identity,

until reaching the action stage << Show system function >>, as shown 4.7.

84

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Get CI

Are entered details

valid?

Here we can use any verification

parameters in order to check

user identity
Show system functions

End

Start
CIS

Enter Login details

Check

Save

No

Yes

Figure 4.7: Expanded login action state

Figure 4.7 shows that, as the user enters the required details, the CAS gath-

ers the user CI, and then all of this information is verified through the following

condition << Are entered detail valid >> in order to check whether or not the

user is authorised to access the system. If ‘yes’, all the system functions will be

displayed by the action state << Show system functions >>; otherwise, access

will be denied. However, authentication as we have just described needs yet to be

positioned within a CASLC. This is done in Figure 4.8.

85

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Context Aware System

Acting stageReasoning stageAcquistion stage

User

Get CIEnter Login details

Are entered details valid? Show system functions

Start

End

No

Yes

CIS

Check

Save

Figure 4.8: Authentication with CASLC

To further demonstrate our extended notation, we return to the liberian example

and focus on the login phase. Its Use Case diagram is presented in Figure 4.9.

86

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Login

Librarian

-Username: Saad

-Password: 1234

-Location: Library

require

Figure 4.9: Library system login Use Case

The user << Librarian >> wishes to access the library system. S/he is required

to enter the necessary authentication details, which are: username/password and a

certain location (for example, within the library boundary). Then, once the details

have been processed, the CAS checks whether the user has satisfied the necessary

authentication parameters.

87

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Library CAS

Acquistion stage

Start

End

Is CI consistent with

requested function

Yes

Using System

No

Has saved CI

changedGet a new CI

Is CI still applicable for

current function

Adapt a new CI

Yes

No

Is adaptation of new CI

successful

Yes

Terminate running function
No

NoYes

Reasoning stage Acting stage

Librarian

Enter Login details

Request function

Get CI

CIS:

Username= Saad

Password= 1234

Location= Library

Save

Are entered details

valid?

Yes
Show system functions

Check

CI

No

Update

Figure 4.10: Librarian Authentication process

88

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Figure 4.11 also demonstrates our notations for identifying the authentications

process. Our dedicated AC icon has been stretched to cover all elements in the

Activity diagram that pertain to this security requirement.

89

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Context Aware System

Acquistion stage

Start

End

Is CI consistent with

requested function

Yes

Using System

No

Has saved CI

changedGet a new CI

Is CI still applicable for

current function

Adapt a new CI

Yes

No

Is adaptation of new CI

successful

Yes

Terminate running function
No

NoYes

Reasoning stage Acting stage

User

Enter Login details

Request function

Get CI

Username= saad

Password = 1234

Location =A

Time = 9:10 am

Save

Are entered details

valid?

Yes
Show system functions

Check

CI

No

Update

AC

Figure 4.11: Determining the Authentication process during CAS

90

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Having illustrated Authentication in detail, we will use only the login action

state in the following for the sake of simplicity. This sharpens the focus on the other

key security requirements.

4.3.2.2 Authorisation

Authorisation can be presented in an Activity diagram without adding additional

elements to the proposed Activity diagram framework. Authorisation needs to be

checked frequently and through various conditions in order to ensure that the user

has full permission to perform the selected function. Therefore, user privileges

must be dynamic and continuously monitored in order for the system to address

the mobile nature of the CAS behaviour. As explained above, CI can manage the

function privileges, which precisely describes the authorisation behaviour.

Login Get CI

Using system

Is CI consistent with

requested function

Yes

No

End

Request function

Start

Figure 4.12: Basic concept of Authorisation mechanism

91

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

As depicted, authorisation process is required whenever the user requests any

available system function. It is necessary to highlight the context-aware condition

checker << Is CI consistent with requested function >> ; this checks whether or

not the required CI is adequate for invoking a CAS functions.

Context Aware System

Acquisition stage Acting stage

User

Login Get CI

Using system

Is CI consistent with

requested function

Yes

No

End

Request function

Start

Reasoning stage

Figure 4.13: Authorisation mechanism with CAS

Returning to our main running example of library system, the librarian wishes

to << Check books >>; to do this s/he needs to address all the required CI, such

as location (in our example, across the library) and time (between 8:00 and 21:00);

these constraints would be compulsory for all students. We can represent this in an

Activity diagram through << Is CI consistent with requested function >> as in

92

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Figure 4.14.

It can be seen that the authorisation condition occurs in the reasoning stage.

Having defined how/where the authorisation procedure can be done, we can develop

the Activity diagram that unveils the full details of authorisation within a CAS.

This can be found in Figure 4.14.

93

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Context Aware System

Reasoning stageAcquisition stage

User

Login

Request function

Is CI consistent with

requested function

Using system

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate running function

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS

Update

Check

CI

FR

Save

Check

 FR

Yes

No

Require

Check FR

Figure 4.14: Authorisation within CAS Activity diagram

Figure 4.15 also demonstrates our notations for identifying the authorisation

process. Our dedicated AR icon has been stretched to cover all elements in the

94

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Activity diagram that pertain to this security requirement.

Context Aware System

Reasoning stageAcquisition stage

User

Login

Request function

Is CI consistent with

requested function

Using system

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate running function

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS

Update

Check

CI

FR

Save

Check

 FR

Yes

No

Require

Check FR

AR

Figure 4.15: Determining the Authorisation process during CAS

95

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

4.3.2.3 Confidentiality

We have already discussed our approach of protecting potentially sensitive informa-

tion on the user depending on the user location. Therefore by checking the location

information, the system can control the decision over whether to hide or make

available any requested service. Confidentiality in an Activity diagram is achieved

through many steps. For seek of presentation, we assume that:

the service has been already granted to the user, which means the user

has already passed authorisation. Then, the CAS in its turn will con-

tinually check only the user location to control that service. Most im-

portantly, the CAS also checks whether or not the user is located in a

safe place before running that service.

The Activity diagram 4.16 fully illustrates this procedure.

96

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Login Get CI

Is CI consistent with

function requested

Check if the user in

public place
Hide a sensitive information

Using system

End

Start

Request function

No

Yes

Yes

No

Figure 4.16: Basic concept of Confidentiality mechanism

Confidentiality as we have just described needs yet to be positioned within a

CASLC. This is done in Figure 4.18.

97

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Context Aware System

Acting stageReasoning stageAcquisition stage

User

Login Get CI

Is CI consistent

with requested

function

Check if the user in

public place
Hide a sensitive information

Using system

End

Start

Request function

CIS

Check

CI

Save

Yes

Yes

No

FR

Require No

Check

location

Figure 4.17: Confidentially with CASLC

As can be seen in Figure 4.18, the confidentiality states are distributed through-

out CAS stages, based on each state’s nature and behaviour. However, these states

need to be joined in the whole CAS framework; this will greatly assist in showing

how/when the data can be concealed during any CAS execution, as presented in

Figure 4.18.

98

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

User Context Aware System

Acquistion stage Reasoning stage Acting stage

Is CI consistent with

requested function

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate running function

Get a new CI

Get CILogin

Request function

No

No

No

Yes

Yes

Start

End

CIS

Check

 CI

Save

Update

Check if the user in

public place

Yes
Hide a sensitive information

Using system
Has saved CI

changed

Yes

No

Yes

No

Check

Location

FR

Require

Check FR

Figure 4.18: Confidentiality within CAS Activity diagram

also with confidentiality, the Activity diagram can be enriched to express the

complete details of the CAS that orchestrates this important requirement. Our CO

99

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

icon be suitably drown, as Figure 4.19 shows.

User Context Aware System

Acquistion stage Reasoning stage Acting stage

Is CI consistent with

requested function

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate running function

Get a new CI

Get CILogin

Request function

No

No

No

Yes

Yes

Start

End

CIS

Check

 CI

Save

Update

Check if the user

in public place

Yes
Hide a sensitive information

Using system
Has saved CI

changed

Yes

No

Yes

No

Check

Location

FR

Require

Check FR

CO

Figure 4.19: Determining the confidentiality process during CAS

100

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

4.3.2.4 Integrity

We already observed that Integrity cannot be captured at the level of a Use Case

diagram. However, it can be described now using an Activity diagram. This type of

security requirement is concerned with ensuring that the data are as described and

in original condition, so the requirement is designed to prevent any modifications

by unauthorised persons and to protect all data from corruption. We assume that:

the user has already satisfied the required CI and accordingly the service

has already been granted. More specifically, once a service is invoked,

the CAS immediately and in parallel creates a record that has a unique

number, and that contains all relevant connection details, namely the

user CI and the function invoked.

To record the CI, we propose the use of a table that be updated continuously.

This table has a unique number per each user and that contains all relevant connec-

tion details, namely the user CI and functions invoked. The table should contain at

least three lines, but extended to record additional information driving form future

needs. The first line contains the name of the entity, which could be a virtual iden-

tity such as a number, a name, etc. The second line contains entity CI such as user

location, time, user name, etc. Finally, the third line shows the functions available

to entity, for instance, download, upload, etc. The table is continuously updated

and monitored in order to ensure that the entity details are up-to-date and hence

reliable while the system function.

This table containing user records can be profitably used to establish Integrity

of the crucial data, namely user CI and function invoked; it can be demonstrated

by means of an Activity diagram that describes its use as it can be seen in Figure

4.20.

101

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Login Get CI

Request function

Start using system Create user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

been modified?

Is CI consistent

with requested

function

No

No

Yes

Yes

Save

Here the generated

record will have unique

number which will be

checked continuously

Yes

Carrying using system

Final check: has

data record been

modified?

Yes

No

Terminate functionWish to continue

Start

End

No

Figure 4.20: Basic concept of Integrity mechanism

Its Activity diagram shows that a process that commences onec a user gains

access to a service, the CAS gathers the user’s current CI and saves it in a user record,

so that when s/he invokes any action within that service or moves to another one,

the CI is changed accordingly; the system in this case will then access and update

102

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

the user record.

Thus, the record is checked serval times; the important once are twice; the first

time is whilst the service is running (and the CI is changed), and the second is once

the service has been terminated by the user. The system will check before saving any

data whether the record has been changed. This is shown in Figure 4.21, where the

full CAS, expressing also integrity of crucial user data, is presented. In particular,

it can be seen how our IN icon pinpoints the integrity requirement being captured.

103

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Context Aware System

Acting stageReasoning stageAcquisition stage

User

Login Get CI

Request function

Start using systemCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

been modified?

No

No

Yes

Yes

Save

Yes

Carrying using system

Final check: has

data record been

modified?

Terminate serviceWish to continue

Start

End

Yes

No

No

CI

FR

Save

Check

CI

Is CI consistent

with requested

function

Check

FR
Require

Check

date

Check

data

Save

data

Check

CI

Figure 4.21: Integrity within CAS Activity diagram

The Activity diagram 4.21 shows that, the general processes for checking data

integrity is lengthy; it starts by invoking a system function through the << Start -

using system >> action state, and then a user record is automatically generated

104

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

through the action state << Create data record >>. the data record will be saved

in CIS. Following this, that record is checked by the condition << Has saved CI b-

een changed >>; if ’yes’, then the system will check the data record through <<

Check data record >>, and if not, the user will continue to use the service.

After verifying the data record, the system checks whether the record has been

modified; if ’yes’, then the user will be disconnected through the << Disconnect >>

action state, and it will then save the data, but if not, the service will then be

continued, and so on. Finally, once the user decides to end the current function

(through << Terminate service >>, the system will run a final check to ensure

that the recorded data have not been corrupted; this is done through the condition

<< Final checking has data record been modified >>. Finally, all the user’s

details are saved. The rest of the diagram shows that the data integrity is traced,

and thus any unauthrised access can be prevented.

Also with Integrity, the Activity diagram can be enriched to express the complete

details of the CAS that orchestrates this important requirement. Our IN icon be

suitably drown, as Figure 4.22 shows.

105

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Context Aware System

Acting stageReasoning stageAcquisition stage

User

Login Get CI

Request function

Start using systemCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

been modified?

No

No

Yes

Yes

Save

Yes

Carrying using system

Final check: has

data record been

modified?

Terminate serviceWish to continue

Start

End

Yes

No

No

CI

FR

Save

Check

CI

Is CI consistent

with requested

function

Check

FR
Require

Check

date

Check

data

Save

data

Check

CI

IN

Figure 4.22: Determining the Integrity process during CAS

106

CHAPTER 4. ENHANCING THE ACTIVITY DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

4.4 Chapter Summary

This chapter extends the Activity diagram technique coherently with the extension

advanced before for the Use Case diagram technique.

More precisely, the Chapter started clarifying the limitations that hinder those

notations in modeling CAS behaviour. The Chapter proposed a general framework

that is able to model and show the dataflow within a CAS.

Then the Chapter demonstrated the proposed adjustments on the Use Case

notations by extending also the Activity diagram notations. This Chapter presented

an example in terms of its Use Case diagram first, and of its Activity diagram later.

These examples support the evaluation of our innovative contribution to modeling

CASs using UML.

Finally the Chapter demonstrated how to model all the key security requirements

(Authentication, Authorisation, Confidentiality and Integrity) by means of an Ac-

tivity diagram, In particular, it showed how CI can play a major role in securing any

CAS, in the authentication stage (which can use static and dynamic parameters),

in the authorisation stage (which can be managed by certain CI to control user

privileges), and in the confidentiality stage (which exploits user location in order to

organise the intensive data display). At the end, an innovative technique for tracing

data integrity within a CAS was advanced and also demonstrated using an Activity

diagram. In conclusion all the key security requirements could be modelled at this

level.

107

Chapter 5

Enhancing the State diagram to

support the extended Use Case

diagram for CASs and gather their

security requirements

Objectives:

• To describe the State diagram elements

• To extend them in order to model CASs

• To extend them in order to capture all the key security requirements

• To verify whether the required extensions are in line with those previously

advanced on other diagrams

108

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

5.1 Introduction

No previous study has been dedicated to modeling CASs and capture CI using State

diagram techniques. Therefore, an original framework that uses a State diagram to

describe object movement in CASs is proposed here.

The main purpose of exploiting State diagram is at least twofold. First, State

diagram is good at describing the behaviour of an object across several Use Cases

[92]; second, as CAS is dynamic in nature, then using State diagram is very fruitful

to present the object mobility during a CAS functioning [72].

The following treatment shows at the level of State diagram how CI influence a

CAS, thus reconfirming what the previous Chapters found out at the different level.

5.2 Existing State diagram elements

Although a State diagram consists of several elements, it is useful to recall here the

main ones that will assist us in modeling a CAS [115].

• Initial state: an initial pseudo state represents a default vertex that is the

source for a single transition to the default state of a composite state. There

can be at most one initial vertex in a region. The outgoing transition from

the initial vertex may have a behaviour, but not a trigger or guard.

• State: state model is a situation during which some (usually implicit) invariant

condition holds. The invariant may represent a static situation such as an

object waiting for some external event to occur. However, it can also model

dynamic conditions such as the process of performing some behaviour (i.e.),

the model element under consideration enters the state when the behaviour

commences and leaves it as soon as the behaviour is completed).

109

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

• Transition: a transition is a directed relationship between a source state and

a target state. It may be part of a compound transition, which takes the state

from one state configuration to another, representing the complete response of

the state diagram to an occurrence of an event of a particular type.

• Transition (join/fork): forks and joins have the same notation: either a hor-

izontal or vertical bar (the orientation is dependent on whether the control

flow is running left to right or top to bottom). They indicate the start and

end of concurrent threads of control.

• Self-transition: a self-transition is a transition whose source and target states

are the same.

• Note and constraint: a note (comment) gives the opportunity to attach various

remarks to elements. A comment carries no semantic force, but may CI that

is useful to a modeler.

• End : the final state.

5.3 Enhancements

CAS behaviour can change rapidly based on a context changes [68], and a State

diagram notations are fully capable of presenting object changes based on event

or time; therefore, using state diagram to model CASs clearly becomes a line of

research and development. We start off by developing a skeleton for modeling CASs

using State diagram. This skeleton will be utilised as foundation for all the rest of

this Chapter work.

Generally, a CAS is considered to be part of Mobile computing, and therefore

it is convenient to begin our modeling by defining the main states for any mobile

device behaviour [77], [83], [35]. We identify two essential states for describing

110

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

mobile device behavoure: the first state is << Idle >> (sometimes referred to as

passive), in which nothing can be done until the device senses and responds to the

environment; when this happens, the devices switches to the second state, which is

<< Active >>, as Figure 5.1 shows:

Context

Information

Idle Active

[Relevant CI]

[Not relevant CI]

Figure 5.1: General states for mobile device

It can be seen that, the CI plays a major role in controlling the states behaviuor.

This general model will be employed to illustrate the blueprint of a CAS and its

states; for example, the portable device mode in a CAS is initially in the << Idle >>

state, which means that it has satisfied certain specific parameters that have led to

an Inactive state.

In contrast, once these parameters are changed and the surrounding environ-

ment is sensed, the mobile device mode changes accordingly into the << Active >>

state, which means the system moves into an operational mode. Hence, the <<

Active >> state is considered more imperative in modeling CAS states as it de-

scribes when/how the system becomes aware, therefore, it is necessary to decompose

the << Active >> state and express it in depth as sequential substates; this will

assist in expressing object mobility in CASs by defining the relevant states using the

111

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

observation made above as a basis, and specifically taking into account the CI either

in sensing or processing states, we have produced a coherent and reliable skeleton as

Figure 5.2 depicted to detail in details the << Active >> state taking into account

the sequential process of the object within a CAS (from the Sensing and Gathering

CI stage, then passing through the Processing stage, until reaching the Acting stage

in order to deliver the service).

This proposed diagram will be exploited as a foundation model and used in all the

subsequent sections to express the CAS states and later their security requirements.

Active

Idle CI gathering Processing

In operation

Inactive

End

Start

In this state the gathered

 CI will be continuously

checked in order to verify

 whether or not it is

 consistent with the

required function

Adaptation

Get in the range Request function

Out of

range

Logout

End function

Continuously

monitoring

If CI applicable

Cannot

If CI changes

If can be adapted

Continuous gathering

Logout

In this state the system

will try to adapt the user

 based upon the new

gathered CI

Get out of the

range

Figure 5.2: Decomposed Active state

Figure 5.2 indicates that, the << Active >> state is initiated when the CAS

senses the surrounding environment, gathers the required CI, and then processes it

once the user has requested any available function in order to ascertain whether or

112

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

not the CI is appropriate for accessing the requested service. Moreover, the diagram

shows when the function in the CAS can be adapted once the CI has changed. The

Table 5.1 lists all the CAS states and events:

State name Events in state Description

Idle Get in the range.

Logout

The initial state.

CI gathering Continuous

gathering. Re-

quest function.

Get out of the

range

The first state in Active mode, which senses

and gathers CI.

Processing Continuous

monitoring . If

CI is applicable

This starts once the user requests a function,

which checks whether or not the gathered CI

is consistent with the requested function.

In operation If CI changes

while using the

system. End

function

This state indicates that the system is in op-

eration mode, and the service is being per-

formed.

Adaptation If can be

adapted. Can-

not

This state tries to adapt a new CI.

Inactive Out of range.

Log out

This describes the system once there is no

running function.

Table 5.1: Description of Active state

The expressiveness of the diagramming techniques presented above will be demon-

113

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

strated below.

5.3.1 Extending the State diagram to support the extended

Use Case diagram

Having developed a reliable CAS model using a State diagram, it is imperative to

support the extension that was done previously on the Use Case diagram. Chapter

4 introduced appropriate notations for the CIS and Context links in an Activity

diagram. The same notations can be used also in a State diagram. To do this, a

State diagram must yet account the CIS and the Context links. For convenience,

we recall them here:

• Context Information Store (CIS): this contains all the gathered CI during a

function execution; this store is continuously checked and updated in order

to ensure whether or not the user has CI that is applicable for invoking the

required function.

• Context Links: these are to show how the CI can affect the CAS states an

State diagram as well as to depict how any decisions are made. These links

do not partake in object flow, and therefore they differ from the other links.

Accordingly, Figure 5.3 expands Figure 5.2.

114

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Idle

Inactive

End

Start

Adaptation

Out of range

Logout

End

 function

If CI applicable

Cannot

If CI changes

If can be adapted

Logout

In operation

Request function
CI gathering

Get in

the range
Continuously

monitoring

Continuous

 gathering

Processing

CIS

Save Check CI with

required function

requirement

Active

Accepted

CI

If CI not applicable
Get out of the range

Figure 5.3: State diagram model with proposed enhancements

To complete our CAS model based on a State diagram, we must yet consider the

CASLC stages of Acquisition, Reasoning and Acting. The reason behind this is to

clarify in which CAS stages the presented states can be performed. This is done in

Figure 5.4.

115

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

If CI changes

If can be adapted

Logout

In operation

Acquisition stage

Request function

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS
Save

Check CI

Get out of the range

Figure 5.4: State diagram model with CASLC

It can be seen that each stage has certain states that are invoked only in that

stage. As mentioned earlier, the adaption mechanism will not be covered, as we only

focus on the impact of CI on the CAS states.

We are not going to express the function itself in detail, we are rather

going to express how the object in CAS can be moved from state to

anther states.

116

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

In order to evaluate how the enriched State diagram can support the extended

Use Case diagram which showing how CI can control the object in CAS. We will

again recall the same example of library system Use Case 5.5 to apply the proposed

State diagram model.

Check books
Location= Library

Time= 8:00 -21:00

Librarian

require

Figure 5.5: Check book Use Case

We can use our extended State diagram as Figure 5.6shown to present the object

of library Use Case scenario.

117

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

If CI changes

If can be adapted

Logout

Start checking

Acquisition stage

Check books

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS
Location= Library

Time= 8:00-21:00

Save

Check CI

Get out of the range

Figure 5.6: Check book State diagram

This Section has convinced that a State diagram Model can be effectively used

to model a CAS and, in particular, to highlight the role that CI plays. The next

step is to account for security requirements.

118

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

5.3.2 Gathering security requirements for a CASs using the

extended State diagram

A vital reason for using a State diagram here is to describe the object mobility of

CASs, and therefore to model their security requirements (using a State diagram).

It is also necessary to make them dynamic, and this behaviour will be entirely

manipulated by CI. Thus, each security type needs several related states in order

to model and present the required actions. The proposed State diagram model

will be used to show how/when the security type can be invoked till reach the

<< Active >> or << In operation >> state, based on the nature of security type.

This section defines diagramming techniques to capture all the key security re-

quirements within a State diagram. In particular, we shall see that the complications

arising the dynamic nature of CI are only modest, and the resulting diagrams remain

very readable. For convenience, we begin by reviewing the key security requirement

in terms of states:

• Authentication: it is captured by a set of states representing how to validate

the user identity in a CAS.

• Authorisation: it is captured by a set of states representing how to manage

the user authorisation.

• Confidentiality: it is captured by a set of states representing how to protect a

any user-sensitive information.

• Integrity: it is captured by a set of states representing how to ensure that the

transferred data in CASs is not corrupted or modified by unauthorized persons

or any third party.

119

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

5.3.2.1 Authentication

Generally, the user details are utilised in order to verify whether or not that user

is allowed to access the system. There are many context parameters that could be

used to authenticate the user identity, such as username/password, location and

device IP, and they govern the process that occurs between the << Idle >> and

<< Active >> states. This process is detailed by the State diagram in Figure 5.7

Idle gathering CI Authenticated/Active

Unauthenticated

[continuously check]

End

Access portal

Out of range

Request

access

If CI

 applicable

LogoutGet out of the range

If CI not

applicable
Logout

Start Get in the

range

CIS
Save

Check

CI

Figure 5.7: Basic concept of Authentication mechanism

Our diagram shows that, the first state to model a mobile device system is

<< Idle >>; this state is maintained until the device is in range and can sense

the surrounding environment. Then, the user device may be activated, following

which, the CI is gathered. Some of this information is checked in order to verify the

user identity in case the user makes a request to access the CASs through an access

portal. Only two states become possible:

• Authenticated: if the required CI for verifying the user is applicable;

• Unauthenticated: otherwise.

120

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

The following table 5.2 summarises the states and events utilised in modeling

the authentication requirement of a CAS.

State name Events in state Description

Idle Get in the range. Lo-

gout

The initial state.

CI gathering out of range. Contin-

uously check. Request

access

Gathering CI and making it

ready to use once the user

has requested a service.

Access portal If CI applicable. If CI

not applicable

Interface to enter details.

Authenticated Logout User status once the details

are accepted.

Unauthenticated Get out of range User status once the details

are not accepted.

Table 5.2: Description of Authentication states

Finally, once the authenticated user has logged out, the user’s current state is

switched to the << Unauthenticated >> state, and then to the << Idle >> state

once s/he is detected as being out of range. These states need to be defined in terms

of the CASLC in which they can be preformed. Our diagram is modified as Figure

5.8, which also shows the use of CIS and related context link.

121

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Acting stage

Reasoning stage

Acquisition stage

Idle CI gathering

Authenticated/ActiveUnauthenticated

End

Start

Access portal

Out of range

Get in the range

Continuous

 gathering

Request

access

If CI applicable

If CI not applicable

Logout

Get out

of range

Logout

CIS :
Save

Check CI

Figure 5.8: Authentication with CASLC

Our latest diagram is the most detailed representations of the authentication

requirement for a CAS using an UML State diagram.

122

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

5.3.2.2 Authorisation

We shall see that also the authorisation requirement can be presented in a State

diagram through a number of appropriate states. We assume that:

the user is already identified and authenticated before reaching this

stage, and therefore we consider the user to be in the active mode.

Thus, the authorisation process in a State diagram commences with the <<

Sensing anew CI >> state; this state is devoted to double-checking whether or not

the user still has valid CI following authentication and prior to authorisation.

Immediately after authentication stage, the user may not be allowed to in state to

access any system functions, as it is likely that the CI will have changed. Therefore,

once the CI has been approved, the user request will be processed and checked

by the << Authorisation policy checker >> state, which may be considered the

fundamental state within authorisation as it decides whether or not to authorise

access to the required service by checking the authorisation parameters.

123

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Authenticated Sensing a new CI

PermissionDeny

Start

End

Authorisation policy checker

Unauthenticated

In operation
InactiveIdle

End function
Get out of

range

Grant

services

Continuous

 gathering Request function

CI not changed

Continuous

 checking

 Stay awhile

in same status

 Stay awhile

in same

status

 Authentication CI

changed

Process the request

CI applicable

CI not

applicable

Logout

Logout

Check

CI

Get out of range

CIS

Check

CI

Save

Figure 5.9: Basic concept of Authorisation in State diagram

The diagram 5.9 depicts the relevant states that involved for managing the

authorisation function for a CASs. The following Table 5.3 summarises the states

and utilised events.

124

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

State name Events in state Description

Authenticated Request function. Lo-

gout

The user is able to access the sys-

tem functions.

Sensing a new CI Continuous gathering.

CI not changed. Pro-

cess the request

Realising the environment and

gathering new sensor data.

Authorisation

policy checker

Continuous checking.

CI applicable. CI not

applicable. authenti-

cation CI changed

Here, the system continuously

checks authorisation conditions.

Deny Stay a while in the

same statue

The required service cannot be

performed.

Permit Grant services The required service will be acti-

vated.

In operation Check CI. End func-

tion. Logout

Once the service is being used.

Unauthenticated Stay a while in the

same statue

The system functions will not be

displayed.

Inactive Get out of range This describes the system once

there is no running function.

Idle End The end state.

Table 5.3: Description of Authorisation states

Accordingly, all the aforementioned states will be utilised in order to illustrate

the authorisation function in a CASs as well as to show in which stages they can

be run. The next step is to frame our diagram for authorisation within the CASLC

stages. This is represented in Figure 5.10. It can be seen that the main logic of

125

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

authorisation is captured in Acting stage.

Acquisition stage

Acting stage

Reasoning stage

Authenticated Sensing a new CI

PermissionDeny

Start

End

Authorisation policy checker

Unauthenticated

In operation
InactiveIdle

End functionGet out of range

Grant

 services

Continuous

 checking

Request function

CI not changed

Continuous

 checking

If stay

awhile

 in same

status
If stay awhile

in same status

If authentication CI

changed

Process the request

CI applicable
CI not applicable

Logout

Logout

Check CI

Get out of range

CIS

Save

Check CI

Figure 5.10: Authorisation with CASLC

126

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

5.3.2.3 Confidentiality

How to define confidentiality within a CAS was explained in previous Chapters. It

involved determining specific constraints that hide or release a service. Thus the

user’s location will be exploited as a key parameter for managing the confidentiality

requirement in a State diagram. The State diagram below 5.11 depicts the mecha-

nism for confidentiality in a CAS; it also illustrates how the location parameter can

be used to control CAS functions.

Idle

Sensing location

Hide a sensitive information

End

Start

In operation

Inactive

User in private

location

User in public

location

Continuously

monitoring

Check

 location

Carry using the running service

Get out of the range

CIS

End the service

Save location

Check the current

location

Verifying the location

Produce

the result

Figure 5.11: Basic concept of Confidentiality in State diagram

The reason for starting the presentation of confidentiality by the << In operation >>

state is that we assume that:

127

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

the user has already been authorised to access the required service; the

confidentiality function should be invoked the moment a service is re-

quested, and that service will not be granted until the user has satisfied

all the authentication and authorisation requirements.

Therefore, as Figure 5.11 stated, the main CAS states that are invoked to ensure

confidentiality are firstly the << In operation >> state, which means the service

has been already granted and invoked, and then the CAS state is changed once the

user requests a function to << Sensing location >>; then the result of sensing the

location will be passed to the next state << V erifying the location >>, in this

state, the CAS detects the environment and decides whether it is public or private.

Thus, the service will be granted in accordance with the system decision; if it detects

a public place, then some sensitive information will be hidden, and if not, the whole

service will be released.

128

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

State name Events in state Description

In opera-

tion

Check location. End

service. Save location

The user is already in active

mode, following the authen-

tication step.

Sensing lo-

cation

Continuous monitor-

ing. Produce the re-

sult

Sensing user location only

and pass the result to next

state.

Verifying

the loca-

tion

Check the current lo-

cation. User in private

location. User in pub-

lic location

Deciding whether the user is

in a private or public loca-

tion.

Hide a

sensitive

informa-

tion

Carry using the run-

ning service

Hiding the sensitive infor-

mation while the user is lo-

cated in public place.

Inactive Get out of the range Once a user terminates the

service.

Idle End Final state.

Table 5.4: Description of confidentiality states

Having identified all the CAS states that assist in modeling confidentiality within

a CAS, it is important to frame them within the CASLC stages; this facilities

presenting the whole blueprint for a CAS as well as revealing what functions are

carried out within what stages. For example, it can be seen that the decision on

whether it is safe or not to release the sensitive information or service is taken during

the Reasoning stage.

129

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Acquisition stage

Acting stage

Reasoning stage

In operation Sensing location

Verifying the location

Hide a sensitive information

End

Start

Inactive

Check location

Continuously

monitoring

User in public

location

Get out of

range

Idle

End the

service

User in private

location

CIS
Save location

Check the

current location

Produce the result

Carry using the running

 service

Figure 5.12: Confidentiality with CASLC

From all diagrams that describe the mechanism for protecting the sensitive

user information, and they also demonstrate where/how user confidentiality can

be achieved in a CAS through a State diagram.

130

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

5.3.2.4 Integrity

This type of security requirement concerns protecting data integrity, and seeks to

ensure that it is not modified through any unauthorised source. Therefore, we

would also utilise here the data record approach as explained in Activity diagram

(Chapter 4). State diagrams are outstanding for describing data integrity in a CAS,

as diagram 5.13 clearly shows; they can demonstrate how to model data integrity,

which technically comes after authentication and authorization steps, and, once the

user has already invoked the function to either send or retrieve data.

In order to track any user request and to protect data from unwanted alteration,

a number of states are necessary.

131

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

Active

Storing in D.B

In operation

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request

 function

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End

function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted
Can not be

 adapted

Idle

Get out of the

range

Logout

If data not

corrupted

Process the request

with a new CI

CI Sensing

Here the system will

generate a table that contains

(unique number,User CI and

provided function details) .

 This table will be

continuously

monitored.

CIS
Save

Check CI

Figure 5.13: Basic concept of Integrity in State diagram

The following Table 5.5 summarises the states and events utilised in modeling

the Integrity function for a CAS.

132

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

State name Events in state Description

Active Request function This mode is initiated once there is in-

teraction with the environment.

CI sensing Continuous check. Process

the request with a new CI.

Save

Gather a new CI and pass it to the CI

checker.

CI status

checker

Check CI. CI consistent

with a required function. CI

changed

As CI is rapidly changeable, it is im-

perative to keep checking to decide

whether or not the CI is applicable for

the requested function.

Adaptation Can be adapted. Cannot be

adapted

The state that can depict whether or

not the object can be adapted.

In operation Create table. End function Once the service is being used, the table

will be created.

Monitoring data

integrity

Continues updating. If data

corrupted. If data not cor-

rupted

To keep checking whether the data have

been altered.

Disconnected Save This state is initiated on discovering

that the data have been modified.

Storing in D.B Data saved Saving the data.

Inactive Get out of the range Once the service is terminated.

Idle Logout The mode becomes an Idle.

Table 5.5: Description of Integrity states

Through the above, we can guarantee user confidentiality by protecting the data

133

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

from any alteration or unauthorized modification. These states can also be applied

to show how the data can be kept safe through the CAS stages, as shown in Figure

5.14.

Acting stage

Reasoning stages

Acquisition stage

Active

Storing in D.B

In operation

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request function

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End

function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted

Can not be

 adapted

Idle

Get out of the

range

Logout

If data not

corrupted

Process the request

with a new CI

CI Sensing

CIS

Save

Check CI

Figure 5.14: Integrity with CASLC

For example, during the Acquisition stage, the user CI is gathered only through

the << Sensing CI >> state, whereas many states are involved in the Reason-

ing stage, such as << Active >>, << Monitoring data integrity >> and <<

134

CHAPTER 5. ENHANCING THE STATE DIAGRAM TO SUPPORT THE
EXTENDED USE CASE DIAGRAM FOR CASS AND GATHER THEIR
SECURITY REQUIREMENTS

CI status checker >>. Finally, in the Acting stage, the service is used through the

<< In operation >> state, and is terminated through the << Disconnected >>

state.

5.4 Chapter Summary

This Chapter has provided the general diagram technique for presenting a CAS and

then expressing its security requirements using a UML State diagram. This frame-

work is mainly utilised to demonstrate the extension that was done on the Use Case

diagram by showing the high impact of changing CI on CAS states. These find-

ings indicate that the same enhancements seen in the previous chapter for Activity

diagram scale up to the State diagram level.

The Chapter started by describing in depth the State diagram notations. It also

underlined the limitations that hinder the notations in modeling CAS behaviour.

Accordingly, the Chapter then advanced a general diagramming technique to ac-

count for the changing context in a CAS.

The rest of the Chapter described our techniques for gathering the key security

requirements by leveraging upon the proposed State diagram enhancement. It was

also showed how the CI can play a major role in securing any CAS, either in the

authentication stage, which can use static and certain dynamic parameters, or in

the authorisation stage, which can be managed by certain CI to control the user

privileges, or in the confidentiality stage, which exploits user location in order to

organise the intensive data display. Then, our State diagram presented the way of

tracing data in a CAS in order to check their integrity.

Finally, it can be observed that the diagraming techniques developed in this

Chapter rest on extensions (to the State diagram) that are in line with those made

in previous chapters on Use Case and Activity diagrams respectively.

135

Chapter 6

A Real-World Case Study: An

Infostation-based M-Learning

System

Objectives:

• To introduce an M-learning system(definition - structure - work explanation)

• To define the M- Learning users and their functions

• To define the security requirements for M-learning

• To model the M-learning system functions using the UML diagrams

• To model the security requirements for an M-learning system using UML di-

agrams

136

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.1 Introduction

The main aim of this work is to extend existing UML diagrams elements; specifically,

the Use Case diagram is extended to model a CAS, and then to capture its security

requirements, and the proposed framework for both Activity and State diagrams will

demonstrate that extension. Accordingly, this Chapter presents a case study in order

to apply the proposed modifications on a real-world system; this is conducted in the

M-learning environment. M-learning is a classic example of a system that needs

to be context aware if it is to function properly. It is necessary for the M-learning

system to be aware of the user’s changing requirements for two main reasons: the

mobility of the users and the diversity of the devices (such as smartphones, personal

digital assistants (PDAs), etc.).

Education methods have passed through many evolutionary stages to reach the

M-learning stage. This started with the traditional approach of face-to-face learning,

and then passing on to e-learning with the advances in technology. M-learning

methods are becoming common in the educational environment and are thought

of as representing the future of learning, in which mobile systems and bricks-and-

mortar universities will complement each other.

6.2 M-learning definition

The M-learning technology is one step ahead of e-learning, as users are free to access

lessons and download material onto their mobile devices with unlimited choice in

terms of location and time. This new technology has dramatically changed the con-

cept of delivering lessons, as the user is not required to physically attend lessons in a

classroom. The main concept behind M-learning represents a shift of environment,

mainly from wired to wireless technologies in order to make the learning experience

137

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

more flexible and accessible for users.

6.3 M-learning Infrastructure

To better understand the concept of M-learning, we consider here a real-world case

study, which is about an infostation-based M-learning system [42]. The infostation

system paradigm was initially posited by Frenkiel et al [119], and entails short-range

communication between wireless nodes. This service enables the user to maintain

an uninterrupted service when moving between different infostations. The major

idea behind this system is to allow the user to access M-learning services, such as

m-lecture, m-tutorial and m-test, and also to use a range of other communication

services, such as private chat, intelligent message notification and phone calls; all of

these are performed through portable devices such as phones, laptops and PDAs.

The M-learning system is principally comprised of three aspects, as described below:

• Central Infostation (CenStat): this is the system server that controls all trans-

actions and functions. This can also be used to save all the data and to send

requested files to the user via the context information provider (CIP).

• Context Information Provider (CIP): these are generally considered as nodes

that are deployed regularly on the university boundary in order to cover all

university faculties. Each CIP can be accessed by different mobile nodes using

various technologies (such as Wi-Fi, Local Area Network (LAN) or Bluetooth).

• Mobile devices: these can be used to utilise the available services, and include

mobile phones, laptops and PDAs; these mobile devices are used by multiple

users such as students, lecturers and administrators.

There are three levels in the architecture of the infostation-based M-learning

system, as depicted in Figure 6.1:

138

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

3rd Tier :

infostation

2nd Tier:

Context

information

providers

1st Tier:

users

Figure 6.1: The three-tier architecture of the infostation-based network

6.4 Description of M-learning system

The M-learning system provides several functions/services to users; however, each

service/function has special and required CI and constraints. These constraints

are already predefined and stored in the CenStat in order to match them with

any user-required function. User CI is essentially gathered through many sensors

that are deployed within the university boundary and then automatically saved in

the CenStat database; for example, when a user attempts to access an M-learning

service, the current user CI is gathered by the CIP and relayed to the CenStat. The

CenStat then matches the CI with the given constraints to allow or deny the user

139

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

access to that particular service. To better define and track the user, the university

environment is divided into geographical boundaries based on the locations of the

CIPs, each of which may cover a complete university faculty. Therefore each CIP

can provide different services to the users, for example faculty-based information or

general announcements. Figure 6.2 depicts how CIPs could be deployed around the

university campus (at key points to provide a uniform service):

CIP DCIP D

CIP BCIP B

CIP ACIP A

CIP CCIP C

User AUser A

User CUser C

User BUser B

A B

C
D

Central InfostationCentral Infostation

User DUser D

Figure 6.2: University environment divided in accordance with deployed CIPs

We begin by putting our focus on a user who is in the service area of one of the

university’s CIPs. The system under consideration is an M-learning environment,

and hence, it is assumed that the service area is defined by the coverage of the

wireless signals from the CIP. The next step starts with the user trying to access a

system service; before being able to access a service, the user first needs to register

with the system through the CIP. All user information will be passed to the CenStat,

which will check whether the user is an existing one or new, and then will search

the user identity in its database of existing users.

140

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

In the case of using an M-learning system for the first time, the user will be

required to complete user details on a special entry page; both these details and

the user CI will be processed and stored in the CenStat database. In another

scenario, if the user is already registered, the system will gather the user CI, such as

location, time, user name, user status, etc., and create a special record that contains

the entire user CI during the connection. Once the registration is approved, the

m-system will send an acknowledgement to the user and display all the available

functions/services. In this case, the system will constantly monitor the user’s moves

and update his/her newly created record accordingly. The user is therefore allowed

to choose any available system service and can access it through their mobile device.

Once the user requests a service, the CIP will pass this request to the CenStat,

which in turn will check whether or not the current user CI is sufficient to grant the

required service. If so, the service will be granted, otherwise the user request will

be rejected and the user will be informed of the reason.

Whilst accessing the M-learning system, the CIP will keep track of the user

moves as well as monitor any user CI changes, and will then update the CenStat

accordingly; all user information will be saved in the user-created record. Moreover,

the CIP will also check the user’s device type, and then pass it to the CenStat in

order to respond to the user with the most applicable format.

6.5 M-learning system users and functions

It is imperative to State that we assume that all the user duties must be performed

within the university campus. The M-learning system is mainly designed to be used

by the following users:

• Student: These are intended to be the main users of the M-learning system;

they have a variety of services available to them. The students are classified

141

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

based on their Study Academic Year (S.A.Y), for example foundation year,

first year, second year and final year, therefore each of the M-learning system

services is designed accordingly to the following:

– Download materials: this service allows the students to access their lec-

tures using portable devices.

– View materials: this service allows the students to display the relevant

course materials. Therefore the user device should be compatible with

the required materials.

– Make test: having a testing service is crucial to the efficacy of the M-

learning system. The m-test allows the students to take their exams and

submit them, and then receive their results via their mobile devices.

– Make Private chat: This service provides a private forum for two (or

more) students within the same CIP range. Thus, the student is free to

choose from a list of available students with whom to chat. In addition,

the user can select chatting types, such as the face-time service for privacy

purposes; however, this service will not always be available as the system

will have to check that there is no other student nearby.

• Lecturers: a lecturer is allowed to perform only two functions in the M-learning

system: upload materials and mark student exams.

– Upload materials: the lecturer can utilise this service in order to upload

both lecture materials and student exams; the uploaded files should be

consistent with all lecture formats, whether text, video or audio. This

service requires a high connection speed in order to quickly upload all the

necessary materials.

142

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

– Mark student exams: this service enables the lecture to access the com-

pleted student exams and mark them. This needs a high speed and secure

connection.

– Make Private chat: this is the same service that is provided to the stu-

dents, as mentioned above.

6.6 Capturing the key security requirements for

M-learning system functions

The M-learning system is subject to all the key security requirements treated earlier

in this thesis (Authentication, Authorisation, Confidentiality and Integrity). As

illustrated above, the university boundary is divided into four distinct geographical

regions, and these are named A, B, C and D. Each geographical region may contain

one university faculty, and thus each part has special and different privileges based on

faculty regulations and policies. Accordingly, these policies will assist in determining

the security requirements for the M-learning system functions, and examples for this

system are given below.

6.6.1 Authentication

This is an essential requirement for any M-learning system, and is invoked at the

earliest stage of using the system. This step is designed to guarantee that the

accessing user is not an imposter; only after this has been satisfied is the user

allowed to access the system and view its functions. Thus, in order to authenticate

system users, accordingly two kinds of context parameters are specified that must

be addressed in verifying the user identity, as follows:

• Static parameters: user name/password.

143

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

• Dynamic parameters: user location.

In this case study, the verification of both parameters are required. Thus, the

user is required to enter the username and password, and the CAS verifies the user’s

location in order to check whether or not s/he is within the allowed boundary. Only

once the appropriate and valid details are provided, can the user access the CASs.

The CAS will continue to monitor the user’s movement, and therefore once the CAS

senses and realises that the user has left the CASs signal coverage area, the service

is terminated accordingly. Therefore, to continue accessing that service, s/he will

need to register again.

6.6.2 Authorisation

This type of security requirement follows the authentication stage; it is devoted to

managing access to the system functions. Therefore, in this case study, we utilize

certain CI to achieve this, for instance, user location, time and user status. Thus,

the user must address all of these predetermined CI data in order to access the CAS

functions. However, each function requires its own CI in order for it to be accessed,

as follows:

• Download Materials: firstly, this service can be only delivered to the user once

s/he is enrolled in the relevant faculty. Therefore the CAS will check the

user status first to ensure that s/he belongs to the relevant faculty. The user

is required to be within the university campus boundary whilst downloading

materials. In respect of time and university regulations, the student must

typically invoke this service between 8:00 and 21:00.

• View Materials: in order to invoke this service the user must be within the

university boundary.

144

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

• Do exam: this service is strictly controlled by the CAS; it prevents the use of

any other CAS services during the exam. Consequently, the CAS changes the

student status to << Offline >> once the exam has started. Moreover, this

service is also subject to a specific timeframe which means there is limited time

to start and finish the exam. Also, the user must be located in a predefined

location.

In this case, the CAS will verify each student’s identity using some physical

identification methods, such as speech-recognition or fingerprint. Should the

online connection be lost for any reason during the exam, the user must return

to the m-test within a predefined number of minutes; otherwise, s/he will

forfeit the opportunity to complete the exam on the same day.

In the case of the m-test becoming dysfunctional (and dropping the connec-

tion), the saved CI will help the CAS to restart the exam from the point of

disconnection. However, this can only be done with human intervention based

on approval by the invigilator.

• Upload Materials: this service is divided into two main services as follows:

– Upload lectures: to invoke this service, the lecturer is required to be

within the university boundary.

– Upload exam: this service is crucial, and therefore requires strict con-

straints. The lecturer must be located in his/her office and not be con-

nected to any other CAS service; accordingly, the lecturer’s status will

automatically become << Offline >>.

• Mark student exam: this service also is designed for the lecturer, and can

only be performed in the lecturer’s office, and thus the lecturer’s status will

accordingly be << Busy >>; therefore, s/he must not be connected to any

145

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

other service.

• Make private chat: the service is only available using the university network;

also, the user status must be online to establish any chat.

6.6.3 Confidentiality

This is used to protect sensitive user information from unauthorised persons. In an

M-learning environment, the exam tests are most sensitive, and the examiner must

keep them confidently, from student specially. The user location is the key context

element in achieving this. We will accordingly consider the M-learning service that

needs high levels of confidentiality.

• Upload exam: this service is devoted to lecturers, and to favour confidentially

of the exam tests, the key condition to access this service is that it must be

done in the lecturer’s office. This means that only the office is a consider a safe

location, and therefore if the lecturer invokes this service and moves outside

his/her office, the CAS will sense that, and will then hide any test details

accordingly.

6.6.4 Integrity

This type of security requirement concerns ensuring that the user data cannot be

modified during transmission over work, and it thereby allows the user to move

within the system boundary and to switch from one CIP to another. The purpose

of an M-learning system is to send and receive data, and during these operations the

CAS must check that the data are not modified or corrupted. Accordingly, in this

case study, we seek to protect the user’s connection whilst utilising the M-learning

system; in addition, the data must not be affected once the CI has changed. For

example, once the user connects to a CIP and starts invoking a CAS function, and

146

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

should that user then move from one CIP to another, the CAS must ensure that no

data are altered during the transition.

6.7 Modeling the M-learning system using UML

This section demonstrates on the M-learning case study the proposed extensions

and enhancements that have been done in this thesis on the UML diagrams in order

to model a CAS. We have seen that UML can be utilised to model and specify CAS

functions and behaviour. UML has several diagrams, each of which is designed for

specific purposes. This case study by means of Use Case diagram, Activity diagram

and State diagram. Therefore the aforementioned functions will be fully presented

by these diagrams. As documented fully in the preceding chapters, the Use Case

notations are not mature enough to cope with and present CAS functions or to

define their security requirements, and consequently extensions have been advanced

to enable the Use Case notations to address this shortcoming. This then necessitated

developing corresponding extensions for both the Activity and State diagrams to

support the Use Case extension (Chapter 4 and 5).

6.7.1 Use Case diagram for the system

This diagram of UML is mainly concerned with defining system functions as well as

capturing security requirements from the user’s point of view. Therefore, it is the

first important step to express the M-learning functions as well as the relevant CI.

This is done using the proposed extension, as in Figure 6.3.

147

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Student

lecturer

Download materials

View materials

Do exam

Make private chat

Upload materials

Mark students exam

Login

Upload Lectures

Upload exam

extend

extend

extend

extend

extend

extend extend

extendextend

-Location= All

-Time:8:00 -21:00

-S.A.Y= 3
rd

 year

-Location= All

-Time= 8:00 – 21:00

-Specific location= True

-During time= True

-Other activity= Null

-User status = Offline

-Location= Office

-Other activity=Null

-Location=All

-User status= Online

-Location= All

-Location= Office

-Other activity=Null

-User status = Offline

-Username/

password= Valid

- location= All

require

require

require

require

require

require

require

require

Figure 6.3: Main Use Case diagram for M-learning

The diagram in Figure 6.3 shows the M-learning system Actors and their possible

functions. In addition, it shows the required CI to carry out each of these functions.

The Tables 6.1, 6.2 list the system Actors, functions and required CI.

148

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Student function name Required CI

Login Username/password= Valid. Location= All.

Download materials Location= All. Time= 8:00 - 21:00. S.A.Y= 3rd year.

View materials Location= All. Time= 8:00 - 21:00.

Do exam Specified location= True. During specified time= True.

Other activities= Null. User status= Offline.

Make private chat Location= All. User status= Online.

Table 6.1: Student functions

Lecturer function name Required CI

Login Username/password= Valid. Location= All.

Upload lecture Location= All.

Upload exam Location= lecturer’s office. Other activity= Null. User

status= Offline.

Mark student exam Location= lecturer’s office. Other activity= Null.

Table 6.2: Lecturer functions

149

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

We have seen that one of the main function of the M-learning system is <<

Download materials >> Figure 6.4 focuses on it. This function will be modeled

in both Activity and State diagrams in the sequel of this Chapter, while all other

function models are deferred to the Appendix.

-S.A.Y= 3rd year

-Location= All

-Time= 8:00 -21:00

Student

Login Download materials

require

extend

Figure 6.4: Download materials Use Case

The Table 6.3 depicts the description of << Download materials >> Use Case

diagram.

150

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Name Description

Actor Student

Main function Download materials

Brief description The student can access the download materials function

once he successfully gains the required CI.

Context Information Location= All. Time= between 8:00 and 21:00. S.A.Y=

3rd year.

Precondition The student must be firstly authenticated, and be in

location A with the time between 8:00 and 17:00.

Post-condition The student must remain having the proper CI.

Flow of events

1. Student requests download materials function.

2. CAS verifies the student‘s CI with required CI.

3. CAS provides the service.

Table 6.3: Download materials Use Case description

6.7.2 Activity diagram for the Download Materials function

As described in Chapter 4, we have enhanced also the Activity diagram in or-

der to demonstrate the value of the Use Case enhancement; these can be seen

in the Activity diagram Figure 6.5 to describe the scenario of the function <<

Download materials >>.

151

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Context Aware System

Reasoning stageAcquisition stage

Student

Login

Download materials

Is CI consistent with

requested function

Start downloading

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate downloading

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location= A

-Time = 10,30

-S.A.Y= 3
rd

 year

Update

Check

CI

FR:

-S.A.Y= 3rd

-Location= All

-Time= 8:00 -21:00

Save

Check

 FR

Yes

No

Require

Check FR

Figure 6.5: Download materials Activity diagram

6.7.3 State diagram for the Download Materials function

As described in Chapter 5, we have enhanced also the State diagram to demonstrate

the value of the Use Case extension; therefore, these elements are shown in the State

diagram given in Figure 6.6 to model the function << Download materials >>.

152

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

If CI changes

 Can be adapted

Logout

Downloading

Acquisition stage

Download materials

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:
-S.A.Y= 3rd year

-Location= All

-Time= 8:00- 21:00

Save

Check CI
Start

Figure 6.6: Download materials State diagram

To conclude this section, all the proposed extensions and enhancements have

been applied for modeling the CAS through the M-learning function << Download ma-

terials >>.

The extended Use Case diagram shows the required CI that must be fulfilled

before performing the requested function. The Activity diagram depicts the flow

of the << Download materials >> function together with the effect that CI has

on it. Finally, the State diagram illustrates the M-learning states once the user has

invoked << Download materials >> as well as the impact that CI has on the

states.

153

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.8 Capturing the security requirements for M-

learning functions using UML

This section captures the security requirements for the M-learning system modelled

above. This is done by utilising the techniques for capturing security requirements

this thesis discussed previously.

6.8.1 Authentication

All UML diagrams developed in the previous chapters will be used here to capture

the authentication requirement for an M-learning system.

6.8.1.1 Using our Enhanced Use Case diagram

As explained above in the security requirements section, there are two required forms

of authentication in the M-learning system; one of them originates with dynamic

behaviour (we saw that the existing Use Case diagram notations are limited in

modeling dynamic behaviour). For example, in order to access M-learning, the user

is strictly required to be inside the university boundary, and therefore it would be

profitable to be able to use some Use Case notations to model this. We observe that

this can be clearly presented by the extended Use Case diagram as shown in Figure

6.7.

154

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Login

Student

-Username/

Password= Valid

-Location= All

require

Figure 6.7: Login Use Case

The diagram elements are described in Table 6.4

155

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Name Description

Actor Student

Main Function Login Use Case

Brief description

The student can be verified by entering user-

name/password, and meeting other CI such as location.

Once the system approved these, the user can choose

one of the available services.

Security Requirement Authentication

Context Information Usename/Password. Location

Precondition
The Student must be in a certain and known location

as well as using an applicant device.

Post-condition The Student must remain in an authorised location.

Flow of events

1. The user enters username/password.

2. The CAS verifies the user location.

3. The CAS verifies all user access details.

4. The CAS connects the user.

Table 6.4: Authentication Use Case diagram description

6.8.1.2 Using our Enhanced Activity diagram

The CAS is exploited here to present the authentication process through the Activity

diagram; therefore, in order to verify the user, the M-learning system checks the

parameters username/password and user location, as is clearly shown in the diagram

Figure 6.8.

156

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Context Aware System

Acquistion stage

Start

End

Is CI consistent with

requested function

Yes

Using System

No

Has saved CI

changedGet a new CI

Is CI still applicable for

current function

Adapt a new CI

Yes

No

Is adaptation of new CI

successful

Yes

Terminate running function
No

NoYes

Reasoning stage Acting stage

Student

Enter user details

Request function

Get CI

CIS:

-Username/Password= Valid

-Location= All

Save

Are entered details

valid?

Yes
Show system functions

Check

CI

No

Update

Figure 6.8: Authentication through Activity Diagram

6.8.1.3 Using our Enhanced State diagram

The State diagram for Authentication describes the user states during the Authenti-

cation process; the Authentication parameters (username/password, user location)

are verified as shown in Figure 6.9.

157

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Acting stage

Reasoning stage

Acquisition stage

Idle Active

AuthenticatedUnauthenticated

End

Start

Access portal

Out of range

In operationInactive

Get in the

 range

Continuous

 gathering

Request

access

CI applicable

CI not applicable

Logout

End function

Get out

of range

Stay while

in this status

Logout

Logout

Continuous

checking

CIS :

-Username/Password= Valid

-Location= All

Save

Check CI

Request

function

Sensing

Figure 6.9: Authentication through State diagram

158

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.8.2 Authorisation

All UML diagrams developed in the previous chapters will be used here to capture

the authrisation requirement for an M-learning system.

6.8.2.1 Using our Enhanced Use Case diagram

As described in Chapter 4, it can be assumed that the user will not reach this stage

until s/he has been authenticated. We consider that the lecturer wishes to access

<< Upload materials >> and then << Upload exam >>; the major reason behind

choosing these services rather than any other M-learning functions is to demonstrate

the sequence of actions, as these functions also need to present confidentiality and

then integrity (as we shall see in the following sections).

permit

deny

Login

Lecturer

include

include

Upload materiles Upload exam

-Location= Office

-Other activity= Null

-User status= Offline

require

extend extend

Figure 6.10: Authorisation for upload exam using Use Case diagram

The diagram elements are described in the Table 6.5.

159

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Name Description

Actor Lecturer

Main Function Upload exam

Brief description The lecturer can access the download materials function

once s/he successfully gains the required CI.

Security Requirement Authorisation

Context Information Location= Office. Other activity= Null. User status=

Offline

Precondition The lecturer must be in a certain and known location as

well as using an applicant device.

Post-condition The lecturer must be in location A,B as well as during

the time between 8:00 and 17:00.

Flow of events

1. User requests download materials.

2. The CAS verifies the user CI.

3. The CAS provides the requested function.

4. The CAS continuously checks the user CI.

5. The CAS denies the service once the user CI is not

applicable.

Table 6.5: Authorisation Use Case description

160

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.8.2.2 Using our Enhanced Activity diagram

The Activity diagram 6.11 shows the authorisation process for managing the func-

tion << Upload exam >> by following the gathered CI.

161

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Context Aware System

Reasoning stageAcquisition stage

Lecturer

Login

Upload exam

Is CI consistent with

requested function

Start uploading exam

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate uploading

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: Office

-Time :10,30

-Lecturers status: Offline

-Device: Laptop

Update

Check

CI

FR:

-Location= Office

-Other activity= Null

-User status = Offline

Save

Check

 FR

Yes

No

Require

Check FR

Figure 6.11: Authorisation for upload exam using Activity diagram

162

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.8.2.3 Using our Enhanced State diagram

The State diagram 6.12 shows the authorisation process for managing the function

<< Upload exam >> by following the gathered CI.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

Upload exam

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:
-Location= Office

-Other activity= Null

-User status= Offline

Save

Check CI

Figure 6.12: Authorisation for upload exam using State diagram

163

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.8.3 Confidentiality

All UML diagrams developed in the previous chapters will be used here to capture

the confidentiality requirement for an M-learning system.

6.8.3.1 Using our Enhanced Use Case diagram

As presented in the above section, << Upload exam >> needs certain CI to be

performed. The location parameter is one of the required constraints, and we assume

that the lecturer has fulfilled the necessary CI; the service is granted accordingly.

Therefore, in order to demonstrate the confidentiality mechanism, as shown in Figure

6.13, the M-learning system continuously checks the lecturer’s location (i.e. whether

or not s/he leaves the office); if the location changes, the exam information will be

hidden (otherwise, the service will be provided in full).

Show exam

information
Login

Lecturer

include
Upload materials Upload exam

-Location= Office

require

extend extend

Figure 6.13: Confidentiality for upload exam using Use Case diagram

The diagram elements are describe in Table 6.6.

164

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Name Description

Actor Lecturer

Main Function Upload exam

Brief description The lecturer can be verified by entering user-

name/password, and meeting other context information

such as location. Once the system approved these, the

user can choose one of the available services.

Security Requirement Confidentiality

Context Information Location= Office

Precondition The Lecturer must be in a certain and known location

as well as using an applicant device.

Post-condition Lecturer must remain in private location.

Flow of events

1. Lecturer performs (upload exam) services.

2. CAS verifies the Lecturer location.

3. CAS realises that the Lecturer sits in the office.

4. CAS provides the whole such service.

Table 6.6: Confidentiality Use Case description

6.8.3.2 Using our Enhanced Activity diagram

The Activity diagram in Figure 6.14 shows the confidentiality process for managing

the hiding of sensitive information during the execution of the << Uploadexam >>

function.

165

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Lecturer Context Aware System

Acquistion stage Reasoning stage Acting stage

Is CI consistent with

requested function

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate uploading

Get a new CI

Get CILogin

Upload exam

No

No

No

Yes

Yes

Start

End

CIS :

-Location: Office

-Time :10,30

-Lecturers status: Offline

-Device: Laptop

Check

 CI

Save

Update

Check if the user

in public place

Yes
Hide a sensitive information

Uploading Exam
Has saved CI

changed

Yes

No

Yes

No

Check

Location

-Location= Office

-Other activity= Null

-Lecturer status=

Offline

Require

Check FR

Figure 6.14: Confidentiality for Upload exam using Activity diagram

166

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.8.3.3 Using our Enhanced State diagram

The State diagram in Figure 6.15 shows the confidentiality process for managing

the hiding of sensitive information during the execution of the << Upload exam >>

function.

Acquisition stage

Acting stage

Reasoning stage

Upload exam Sensing location

Verifying the location

Hide a sensitive information

End

Start

Inactive

Check location

Continuously

monitoring

User in public

location

Get out of

range

Idle

End the

service

User in private

location

CIS :

Location= Office
Save location

Check the

current location

Produce the result

Carry using the running

 service

Figure 6.15: Confidentiality for upload exam using State diagram

167

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.8.4 Integrity

As explained in Chapter 3, the Use Case diagram is inherently inadequate for mod-

eling Integrity, as Integrity behaviour requires tracing a package from its initial

point to its end point; the Use Case diagram is unable to present this process, and

therefore we do must skip this modeling via a Use Case diagram.

6.8.4.1 Using our Enhanced Activity diagram

The Activity diagram below 6.16 depicts the integrity process for the << Upload e-

xam >> function; we assume that the lecturer has already fulfilled the required CI,

and then requests << Upload exam >>. As soon as the service has been provided,

the M-learning system generates a table that contains all transaction details. This

table will be the key to deciding whether or not the data are corrupted.

168

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

Context Aware System

Acting stageReasoning stageAcquisition stage

Lecturer

Login Get CI

Upload exam

Start uploadingCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

been modified?

No

No

Yes

Yes

Save

Yes

Carrying uploading

Final check: has

data record been

modified?

Terminate serviceWish to continue

Start

End

Yes

No

No

CI:
-Location= Office

-Time= 10:30

-Lecturer status= Offline

FR
-location= Office

-Other activity= Null

-Lecturer status = Offline

Save

Check

CI

Is CI consistent

with requested

function

Check

FR
Require

Check

date

Check

data

Save

data

Check

date

Figure 6.16: Integrity for upload exam using Activity diagram

169

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.8.4.2 Using our Enhanced State diagram

The State diagram in Figure 6.17 expresses all the states that can present the in-

tegrity process for the << Upload exam >> function; it is assumed that the lecturer

has already fulfilled the required CI, and then requests << Upload exam >>. As

soon as the service has been provided, the M-learning system generates a table that

contains all transaction details. This table will be the key to deciding whether or

not the data are corrupted.

Acting stage

Reasoning stages

acquisition stage

Active

Storing in D.B

Uploading exam

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request Upload

 exam

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted

Can not be

 adapted

Idle

Get out of the

range

Logout

If CI not

corrupted

CIS:
-Specific location= True

-During time= True

-Other activity= Null

-User status = Offline

Check CI

CI Sensing

Continuous

check

Save

Figure 6.17: Integrity for upload exam using State diagram

170

CHAPTER 6. A REAL-WORLD CASE STUDY: AN INFOSTATION-BASED
M-LEARNING SYSTEM

6.9 Chapter Summary

The purpose of this M-learning system case study is to demonstrate the proposed

extension that was done on the Use Case diagram as well as the refinements that

were done on both the Activity and State diagrams; they now have a documented

ability to assist in modeling the CAS and capturing its security requirements. We

recall that the M-learning system is a type of mobile system, which is applied in the

university environment to provide various educational functions to users, including

students and lecturers, so its significance is clear today.

This Chapter is divided into several sections; the first section provided an overview

and definition of the M-learning system as well as explaining its structures. The

subsequent sections illustrated in detail how M-learning works by utilising the in-

fostation system. Then, the modeling of the M-learning system was carried out by

exploiting the extended Use Case diagram, and the enhanced Activity and State

diagrams. Towards the end of this chapter, we described the security-requirement

gathering process for the M-learning system by utilising the enhanced UML dia-

grams that form the core of this thesis.

171

Chapter 7

Conclusion and Future work

Objectives:

• To summarise the work carried out in this thesis

• To list the main contributions of this work

• To give a statement of evaluation

• To revised the research questions

• To sketch the future work

172

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Research Summary

CAS are dynamic in nature and modelling such systems is not trivial. Security

is considered one of major challenges in CAS specially because such systems often

gather sensitive user information; this information may compromise the security

of the system if disclosed to unauthorised users. Thus, the design of a CAS must

consider system security as a major requirement. Although security is traditionally

considered as a non-functional requirement and is delayed to a later stage of the

system development lifecycle, this thesis insists that security must be considered as

early as possible because of its high importance. This is also in line with the “secure

by design” concept.

Therefore, in this thesis the UML diagrams Use Case diagram, Activity diagram

and State diagram have been enhanced in order to enable them to model a CAS and

then capture its security requirements at the earliest possible stage of the software

development process. The summary of the work presented in this thesis is as follows:

The first Chapter sought to introduce the research motivation, the research ques-

tions and scope. Then, we identified the measure of success, and finally outlined the

thesis structure.

The second Chapter presented the background of the topics discussed in this the-

sis. The main topics covered are modelling language ways with a detailed overview

on UML and its diagram types such as Use Case diagram, Activity diagram and

State diagram. The chapter also discussed security requirements and context-aware

systems on its own, and then finally reviewed the work related to security require-

ments and context-aware systems using UML.

The third Chapter initially identified the shortcomings that Use Case diagram

suffer in modelling CAS’s and their security requirements. In the later part of this

chapter, we have described the proposed enhancements to address these limitations;

173

CHAPTER 7. CONCLUSION AND FUTURE WORK

and then presented some examples to demonstrate how these enhancements can be

used to model CAS’s and their security requirements.

In Chapter 4, initially an enhancement to Activity diagram was proposed; this

enhancement proposed a framework, which enables to model CAS’s. This enhance-

ment to activity diagrams introduces two separate swim lanes: one representing the

user functions (for e.g. login, request function) and the second represents the CAS

functions (for e.g. get CI). The CAS Swim lane is further sub-divided into three

swim lanes: Acquisition, Reasoning and Acting. These three sub-swim lanes repre-

sents the CAS complete life cycle. These Activity diagrams were used not only to

support the previously enhanced Use Case diagrams but also to tackle the security

requirements for CAS’s.

In the fifth Chapter, we continued our line of enhancements over State diagram

notations. As a result, it became possible to model CASs behaviour, these new

enhancements make it possible to define states which are dynamic and is based on

users CI. Just like Activity diagram, the State diagram is divided into three different

levels to represent the complete life cycle of a CAS. This new addition to the State

diagram, also enables it to gather the security requirements of CAS’s.

In the sixth Chapter, we applied all the proposed work to an M-learning system

case study. This particular M-learning system represents a University boundary,

where online provision of resources is a requirement for both the students and the

staff. Also, this requires separate security provisions for different type of mobile

users with changing context in both spatial and temporal domain.

Thus, modelling of this system and gathering of security requirements shall fully

cater for the CI. This M-learning system is represented with our proposed enhance-

ments, with the extended Use Case diagram and showing how the functions of a

CAS can be modeled, and then continuing on by capturing its security requirement.

Then, we presented one of the main Use Case functions using the proposed Activity

174

CHAPTER 7. CONCLUSION AND FUTURE WORK

diagram for the sake of demonstration, deferring a similar treatment of the other

functions to the Appendix. Finally we modeled the example Use Case function by

the enriched State diagram. In the end of this Chapter, we defined how the security

requirements can be gathered for the example M-learning system using our full set

of enhancements.

7.2 Statement of Evaluation

UML is universal graphical modeling language [113], [67], which contains several di-

agrams. UML is generally used to model systems and define requirements on system

functions. UML has been utilised and extended to be appropriate for such areas.

In both CAS and security requirements areas, the UML also has been enhanced

for many purposes such as formalisation aspect and to show adaptation mechanism

[23], [81], [61].

To the best of our knowledge, there is no a single study devoted to model security

requirement for CAS using UML diagrams types (Use Case, Activity and State).

These diagrams were found to be severely limited to present CASs behaviour; also

this was found that it is incapable to show the effectiveness of changing CI on CASs

functions.

There was a requirement to enhance these diagrams to present CAS behaviour.

In the work presented the said UML diagrams were enhanced in order to overcome

those limitations and then also to gather the key security requirements at the early

stage of developing CASs.

The proposed enhancements have added at least the following features:

• Enabling the Use Case diagram technique to properly define and model CAS

functions and the required CI to perform that functions, and allowing for

the gathering of the security requirements for CASs at such an early stage of

175

CHAPTER 7. CONCLUSION AND FUTURE WORK

software development.

• Enabling the Activity diagram technique to model CASs as well as to show

the dataflow while executing any system function, and then clearly capturing

CASs security requirements.

• Enabling the State diagram technique to present the various objects in a CAS

by means of a general skeleton to account for the influence of IC in a CAS and

to gather their key security requirement.

Furthermore, in regard to the chosen case study that has been presented in

this thesis, which is probably correct. The M-learning was modelled based on our

proposed enhancements on Use case diagram, Activity diagram and State diagram

in order to represent some particular scenarios.

7.3 Research Questions Revisited

To evaluate the work presented in the thesis, the research questions formulated in

Chapter 1 are revisited here.

The main research question was: How to model CASs and gather its security

requirements using UML?

However, this question poses a couple of questions as follows:

Q1. Are the current form of Use Case notations applicable to modeling a CAS?

Q2. Can the Use Case notations be extended to model a CAS?

Q3. Is the extended Use Case diagram capable to capture all the main security re-

quirements, namely (Authentication, Authorisation, Confidentiality and Integrity)?

All of the above questions were fully answered in Chapter 3 by means of our

enhancements to the Use Case diagram.

In relation to the other target diagrams Activity and State, more questions arose:

176

CHAPTER 7. CONCLUSION AND FUTURE WORK

Q4. Are the existing notations of both Activity and State diagram mature to

present the extended Use Case diagram?

Q5. Can the current notations of Activity and State diagram be enhanced to do

so?

These two questions were answered respectively in chapters 4 and 5.

And finally there was a concluding question in term of practicality of the proposed

enhancements, which is:

Q6. Can the proposed extensions for gathering and modeling the security re-

quirements of CAS be practically applicable to real-world case studies?

Chapter 6 presented a case study, where these enhancement have been practically

applied to model a M-learning system.

In summary, the proposed enchantments derived from a deep and synergistic

understanding of two main aspects: one is the nature of CAS and more specifically

the influence that CI plays on the system functions; the other one is the strength

and limitations of existing UML diagramming techniques.

7.4 Contribution to Knowledge

This thesis contributes to knowledge at least in the following ways:

• It provides an in-depth understanding of system modeling in general and in

particular of pros and cons of UML diagramming techniques.

• It shows the main modeling stakeholders for CAS, with a focus on the role of

CI.

• It defines a practical approach to modeling CAS and capture their key secu-

rity requirement using appropriate enhancements to the most common UML

diagram types.

177

CHAPTER 7. CONCLUSION AND FUTURE WORK

• It provides the full modeling of real-world case study an infostation based

M-learning system using these enhancements.

7.5 Future Work

Context-aware systems are gaining increasing interest, at least due to the avail-

ability of smart portable devices such as smart phones and mobile services such

as electronic learning and electronic banking. On the other hand, UML is one of

the most widely adopted modelling techniques for a variety of systems development

projects. This thesis began with and under-penning assumption that while UML is

a valuable development tool, UML suffers from a number of limitations in coping

with the distinctive features of CAS. Another startling observation of this thesis is

that challenging task of capturing information systems security requirements in an

early stage of systems development. Despite the above made observations; UML is

a flexible tool that can accommodate enhancements to make it fir for the distinctive

features of CASs and eliciting and documenting systems security requirements.

The enhancements recommended in this thesis have addressed a set of UML Mod-

els (Use Case Modelling, Activity Modelling and State Diagrams); the researcher

will undertake a similar effort to identify UML enhancements necessary to Class

Diagrams, Sequence Diagrams and Deployment Diagrams to make them fit for both

CAS development and security requirements elicitation and modelling.

Another direction of future work is to develop a dedicated Object Constraint

Language (OCL) to clearly describe the various specifications of CASs. Security

requirements need to be both expressed clearly and functionally modelled into the

design of the CAS; hence an OCL will provide such level of sophistication and clear

definition of needs.

Another area of future work will require a survey of industrially utilised devel-

178

CHAPTER 7. CONCLUSION AND FUTURE WORK

opment methods and approaches and an assessment of their ability to successfully

develop CASs and elicit their security requirements. Industrially utilised develop-

ment approaches the likes of Microsoft Development Framework would be candidates

for such enquiry and attempts of enhancements.

Another avenue for future work will be to adopt the set of UML enhancements to

other aspect of CAS Development in addition to security requirements elicitation and

modelling for example control and end user support. CASs pose a set of challenges

to systems developers in both the tools used and the approaches deployed. More

and more challenges can be identified to CASs for example the challenges of control

and ownership in cloud computing, the physical challenges in cross border travel

facing mobile phone operators, etc.

179

Bibliography

[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton.

Cyberguide: A mobile context-aware tour guide. Wireless Networks, 3(5):421–

433, Oct. 1997.

[2] M. H. Al-Sammarraie. Policy-based Approach for Context-Aware Systems.

PhD thesis, De Montfort University, September 2011.

[3] S. Albir. UML in a Nutshell: A Desktop Quick Reference. In a Nutshell

(o’Reilly) Series. Oreilly & Associates Incorporated, 1998.

[4] H. Aldabbas, T. Alwada’n, H. Janicke, and A. Al-Bayatti. Data confidentiality

in mobile ad hoc networks. International Journal of Wireless Mobile Networks

(IJWMN), abs/1203.1749, 2012.

[5] K. Alghathbar. Validating the enforcement of access control policies and sepa-

ration of duty principle in requirement engineering. Information and Software

Technology, 49(2):142–157, Feb. 2007.

[6] K. Alghathbar. Enhancement of use case diagram to capture authorization

requirements. Software Engineering Advances, International Conference on,

0:394–400, 2009.

180

BIBLIOGRAPHY

[7] K. Alghathbar, C. Farkas, and D. Wijesekera. Securing UML information flow

using flowuml. In Journal of Research and Practice in Information Technology,

pages 229–238. INSTICC Press, 2006.

[8] K. Alghathbar and D. Wijesekera. Modeling dynamic role-based access con-

straints using UML. In proc. of the 1st International Conference on Software

Engineering Research & Applications (ICSERA’03), San Francisco, CA. June

2003.

[9] K. Alghathbar and D. Wijesekera. Consistent and complete access control

policies in use cases. In P. Stevens, J. Whittle, and G. Booch, editors, UML,

volume 2863 of Lecture Notes in Computer Science, pages 373–387. Springer,

2003.

[10] J. M. Almendros-Jiménez and L. Iribarne. Describing use-case relationships

with sequence diagrams. The Computer Journal, 50(1):116–128, Jan. 2007.

[11] S. Almutairi, G. Bella, and A. Abu-Samaha. Specifying security requirements

of context aware system using UML. In Digital Information Management

(ICDIM), 2012 Seventh International Conference on, pages 259 –265, aug.

2012.

[12] G. C. J. Anne Ngu. Context aware actors. In Presented at the Ninth Biennial

Ptolemy Miniconference, Berkeley, CA, 16, February, 2011.

[13] W. Arsac, G. Bella, X. Chantry, and L. Compagna. Multi-attacker protocol

validation. Journal of Automated Reasoning, 46(3-4):353–388, 2011.

[14] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context aware systems.

International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263–277,

June 2007.

181

BIBLIOGRAPHY

[15] M. Bandinelli, F. Paganelli, G. Vannuccini, and D. Giuli. A context-aware se-

curity framework for next generation mobile networks. In Security and Privacy

in Mobile Information and Communication Systems. Springer Berlin Heidel-

berg, 2009.

[16] J. E. Bardram, R. E. Kjear, and M. Pedersen. Context aware user authenti-

cation supporting. In Proximity Based Login in Pervasive Computing, Proc.

Ubicomp 2003, pages 107–123, 2003.

[17] G. Bella. What is correctness of security protocols?. Journal of Universal

Computer Science, 14(12):2083–2106, 2008.

[18] K. Bittner and I. Spence. Use Case Modeling. The Addison-Wesley Object

Technology Series. Addison Wesley Professional, 2003.

[19] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language

User Guide, The (2Nd Edition) (Addison-Wesley Object Technology Series).

Addison-Wesley Professional, 2005.

[20] J. Booch, G. Rumbaugh and I. Jacobson. El Lenguaje Unificado de Modelado.

The Addison-Wesley Object Technology Series. Addison-Wesley, 1999.

[21] F. Braz, E. Fernandez, and M. VanHilst. Eliciting security requirements

through misuse activities. In Database and Expert Systems Application, 2008.

DEXA ’08. 19th International Workshop on, pages 328–333, 2008.

[22] L. Bussard, Y. Roudier, and R. Molva. Untraceable secret credentials: trust

establishment with privacy. In Pervasive Computing and Communications

Workshops, 2004. Proceedings of the Second IEEE Annual Conference on,

pages 122–126, March 2004.

182

BIBLIOGRAPHY

[23] J. Choi. Context-driven requirements analysis. In Proceedings of the 2007 in-

ternational conference on Computational science and its applications - Volume

Part III, ICCSA’07, pages 739–748, Berlin, Heidelberg, 2007. Springer-Verlag.

[24] B. Columbia. Activity diagram modeling standards and guidelines version 1.0.

Information and Technology Management Branch, December 2, 2005.

[25] B. R. Consensus. Building requirements consensus for business process soft-

ware requirements. http://www.building-requirements-consensus.com/, 2008-

2009. [Online; accessed 10-Feb-2011].

[26] M. Covington, P. Fogla, Z. Zhan, and M. Ahamad. A context-aware security

architecture for emerging applications. In Computer Security Applications

Conference, 2002. Proceedings. 18th Annual, pages 249–258, 2002.

[27] V. T. da Silva, R. C. Noya, and C. J. P. de Lucena. Using the UML 2.0

activity diagram to model agent plans and actions. In Proceedings of the

fourth international joint conference on Autonomous agents and multiagent

systems, AAMAS ’05, pages 594–600, New York, NY, USA, 2005. ACM.

[28] W. Dargie. Context-Aware Computing and Self-Managing Systems. Chapman

& Hall/CRC Studies in Informatics Series. Taylor & Francis, 2010.

[29] D. Desmond F. D’Souza and A. Wills. Objects, components, and frameworks

with UML: the catalysis approach. The Addison-Wesley object technology

series. Addison-Wesley, 1999.

[30] A. K. Dey. Understanding and using context. Personal Ubiquitous Computing,

5(1):4–7, Jan. 2001.

183

BIBLIOGRAPHY

[31] A. K. Dey and G. D. Abowd. Towards a better understanding of context and

context-awareness. In HUC ’99: Proceedings of the 1st international sympo-

sium on Handheld and Ubiquitous Computing, pages 304–307, 1999.

[32] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a

toolkit for supporting the rapid prototyping of context-aware applications.

Human-Computer Interaction, 16(2):97–166, Dec. 2001.

[33] J. Dong and J. Woodcock. Formal Methods and Software Engineering: 5th

International Conference on Formal Engineering Methods, ICFEM 2003, Sin-

gapore, November 5-7, 2003, Proceedings. Number v. 5 in Lecture Notes in

Computer Science. Springer, 2003.

[34] P. D.Shekar Goud, Ishaq Md. A secured approach for authentication system

using fingerprint and iris. Global Journal of Advanced Engineering Technolo-

gies, Vol1,Issue3, 2012.

[35] C. L. Dym. Structural Modeling and Analysis. Cambridge University Press,

1997.

[36] L. Engelen and M. van den Brand. Integrating textual and graphical mod-

elling languages. Electronic Notes in Theoretical Computer Science (ENTCS),

253(7):105–120, Sept. 2010.

[37] T. Farkhani and M. Razzazi. Examination and classification of security re-

quirements of software systems. In Information and Communication Tech-

nologies, 2006. ICTTA ’06. 2nd, volume 2, pages 2778–2783, 2006.

[38] D. Firesmith, B. Henderson-Sellers, and I. Graham. Open Modeling Language

(OML) Reference Manual. Sigs Reference Library Series. Sigs, 1998.

184

BIBLIOGRAPHY

[39] D. G. Firesmith. Analyzing and specifying reusable security requirements. In

Proc. Solid Freeform Fabrication Sym, pages 507–514, 2003.

[40] D. G. Firesmith. A taxonomy of security-related requirements. International

Workshop on High Assurance Systems (RHAS’05), 2005.

[41] L. B. Frank Armour and M. Sood. Use case modeling concepts for large

business system development. In OOPSLA 95, Workshop on Use Cases, 1995.

[42] I. Ganchev, S. Stojanov, M. O’Droma, and D. Meere. An infostation-based

multi-agent system supporting intelligent mobile services across a university

campus. Journal of Computers, 2(3):21–33, 2007.

[43] H. gerd Hegering. Management challenges of context-aware services in ubiq-

uitous environments. In Proceedings of the 14th IFIP/IEEE Workshop on

Distributed Systems: Operations and Management (DSCOM 2003, pages 246–

259, 2003.

[44] I. Global and I. Association. Enterprise Information Systems: Concepts,

Methodologies, Tools and Applications. Premier reference source. IGI Global,

2010.

[45] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements engi-

neering: A framework for representation and analysis. IEEE Transactions on

Software Engineering, 34(1):133–153, 2008.

[46] L. Han, S. Jyri, J. Ma, and K. Yu. Research on context-aware mobile com-

puting. In Advanced Information Networking and Applications - Workshops,

2008. AINAW 2008. 22nd International Conference on, pages 24–30, 2008.

[47] D. Harel. Statecharts: A visual formalism for complex systems. Science of

computer programming, 8(3):231–274, June 1987.

185

BIBLIOGRAPHY

[48] E. Hayashi, S. Das, S. Amini, J. Hong, and I. Oakley. Casa: Context-aware

scalable authentication. In Proceedings of the Ninth Symposium on Usable

Privacy and Security, SOUPS ’13, pages 3:1–3:10, New York, NY, USA, 2013.

ACM.

[49] X. He, Z. Ma, W. Shao, and G. Li. A metamodel for the notation of graphi-

cal modeling languages. In Computer Software and Applications Conference,

2007. COMPSAC 2007. 31st Annual International, volume 1, pages 219–224,

2007.

[50] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam. Middle-

ware for distributed context-aware systems. In International Symposium on

Distributed Objects and Applications (DOA), pages 846–863. Springer, 2005.

[51] J. I. Hong. An architecture for privacy sensitive ubiquitous computing. In Pro-

ceedings of the 2nd international conference on mobile systems, applications,

and services, pages 177–189. ACM Press, 2004.

[52] S. H. Houmb, S. Islam, E. Knauss, J. Jurjens, and K. Schneider. Eliciting

security requirements and tracing them to design: an integration of common

criteria, heuristics, and umlsec. Requirements Engineering, 15(1):63–93, 2010.

[53] J. Hu and A. C. Weaver. A Dynamic, Context-Aware Security Infrastructure

for Distributed Healthcare Applications. In Proc. 1st Workshop on Pervasive

Privacy Security, Privacy, and Trust (PSPT), 2004.

[54] V. Illingworth. A Dictionary of Computing. Oxford University Press, Incor-

porated, 1996.

[55] I. Jacobson. Object-oriented software engineering: a use case driven approach.

ACM Press Series. ACM Press, 1992.

186

BIBLIOGRAPHY

[56] I. Jacobson. The Unified Software Development Process. Object technology

series. Pearson Education, 1999.

[57] I. Jacobson, M. Ericsson, and A. Jacobson. The object advantage: business pro-

cess reengineering with object technology. ACM press books. Addison-Wesley,

1995.

[58] H. Janicke, A. Cau, F. Siewe, and H. Zedan. Dynamic access control policies:

Specification and verification. The Computer Journal, 56(4):440–463, 2013.

[59] P. Jones. Fundamentals Of Object-Oriented Design In UML. Pearson Educa-

tion, 2000.

[60] J. Juerjens. Using UMLsec and goal trees for secure systems development.

In Proceedings of the 2002 ACM Symposium on Applied Computing, SAC ’02,

pages 1026–1030, New York, NY, USA, 2002. ACM.

[61] J. Juerjens. Secure Systems Development with UML. SpringerVerlag, Berlin,

Heidelberg, 2003.

[62] J. Juerjens and P. Shabalin. Automated verification of UMLsec models for

security requirements. In UML 2004 . The Unified Modeling Language. volume

2460 of LNCS, pages 412–425. Springer, 2004.

[63] J. Jurjens. Umlsec: Extending UML for secure systems development. In Pro-

ceedings of the 5th International Conference on The Unified Modeling Lan-

guage, UML ’02, pages 412–425, London, UK, UK, 2002. Springer-Verlag.

[64] M. Kang and K. Taguchi. Modelling mobile agent applications by extended

UML activity diagram. In ICEIS (4), pages 519–522, 2004.

187

BIBLIOGRAPHY

[65] M. Kang, L. Wang, and K. Taguchi. Modelling mobile agent applications in

UML2.0 activity diagrams. In:Proc. of 3rd SELMAS Workshop at ICSE, April

2004.

[66] N. Koblitz and A. Menezes. Another look at security definitions. IACR Cryp-

tology ePrint Archive, 2011:343, 2011.

[67] J. Krogstie and S. Telecom. Evaluating UML using a generic quality frame-

work. In Chapter in UML and the Unified Process, Idea Group Publishing,

pages 1–22. Press, 2003.

[68] S. Lee, S. Park, and S. goo Lee. A study on issues in context-aware systems

based on a survey and service scenarios. In Software Engineering, Artificial

Intelligences, Networking and Parallel/Distributed Computing, 2009. SNPD

’09. 10th ACIS International Conference on, pages 8–13, 2009.

[69] W. Li and A. Joshi. Security issues in mobile ad hoc networks- a survey. Dept.

Computer Science Electrical Engineering, University of Maryland, Baltimore

County., 2007.

[70] J. C. D. Lima, C. C. Rocha, I. Augustin, and M. A. R. Dantas. A context-

aware recommendation system to behavioral based authentication in mobile

and pervasive environments. In Proceedings of the 2011 IFIP 9th International

Conference on Embedded and Ubiquitous Computing, EUC ’11, pages 312–319,

Washington, DC, USA, 2011. IEEE Computer Society.

[71] S. Loke. Context-Aware Pervasive Systems: Architectures for a New Breed of

Applications. Taylor & Francis, 2006.

[72] I. Lutkebohle. UML Statechart Diagram. http://www.tutorialspoint.com/

uml/uml_statechart_diagram.htm/, 2008. [Online; accessed 19-July-2012].

188

 http://www.tutorialspoint.com/uml/uml_statechart_diagram.htm/
 http://www.tutorialspoint.com/uml/uml_statechart_diagram.htm/

BIBLIOGRAPHY

[73] A. R. Masoumzadeh, M. Amini, and R. Jalili. Context-aware provisional access

control. In Proceedings of the Second International Conference on Information

Systems Security, ICISS’06, pages 132–146, Berlin, Heidelberg, 2006. Springer-

Verlag.

[74] M. C. Matthew, YMatthew, J. Moyer, and M. Ahamad. Generalized role-

based access control for securing future applications. In Proceedings of the

National Information Systems Security Conference (NISSC), October 2000.

[75] J. Mcdermott and C. Fox. Using abuse case models for security requirements

analysis. In Proceedings 15th IEEE Annual Computer Security Applications

Conference, 1999.

[76] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied

Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[77] A. W. Min, R. Wang, J. Tsai, M. A. Ergin, and T.-Y. C. Tai. Improving

energy efficiency for mobile platforms by exploiting low-power sleep states.

In Proceedings of the 9th conference on Computing Frontiers, CF ’12, pages

133–142, New York, NY, USA, 2012. ACM.

[78] M. Mori. A software lifecycle process for context-aware adaptive systems.

In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, ESEC/FSE ’11, pages 412–

415, New York, NY, USA, 2011. ACM.

[79] B. Morin, T. Mouelhi, F. Fleurey, Y. Le Traon, O. Barais, and J.-M.

Jézéquel. Security-driven model-based dynamic adaptation. In Proceedings of

the IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE ’10, pages 205–214, New York, NY, USA, 2010. ACM.

189

BIBLIOGRAPHY

[80] P. Muller. Instant UML. Springer-Verlag New York Incorporated, 1997.

[81] H. Omasreiter and E. Metzker. A context-driven use case creation process for

specifying automotive driver assistance systems. In Requirements Engineering

Conference, 2004. Proceedings. 12th IEEE International, pages 334–339, 2004.

[82] F. Paganelli, G. Bianchi, and D. Giuli. Context model for context-aware

system design towards the ambient intelligence vision: Experiences in the

etourism domain. In Universal Access in Ambient Intelligence Environments,

9th ERCIM Workshop on User Interfaces for All (ERCIM UI4ALL), Lecture

Notes in Computer Science, pages 173–191. Spring-Verlag, 2006.

[83] G. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli. Policy optimization

for dynamic power management. In Design Automation Conference, 1998.

Proceedings, pages 182–187, 1998.

[84] J. Pascoe. Adding generic contextual capabilities to wearable computers. In

Wearable Computers, 1998. Digest of Papers. Second International Symposium

on, pages 92–99, 1998.

[85] J. Pavlich-mariscal, L. Michel, and S. Demurjian. Enhancing UML to model

custom security aspects. In Proceedings of the 11th International Workshop

on Aspect-Oriented Modeling,, 2007.

[86] A. Ranganathan and R. H. Campbell. A middleware for context-aware

agents in ubiquitous computing environments. In Proceedings of the

ACM/IFIP/USENIX 2003 International Conference on Middleware, pages

143–161, New York, NY, USA, 2003. Springer-Verlag New York, Inc.

[87] M. Rayner, B. A. Hockey, N. Chatzichrisafis, and K. Farrell. OMG unified

modeling language specification. In Version 1.3, 1999 Object Management

Group, Inc, 2005.

190

BIBLIOGRAPHY

[88] Renaissance. Technology briefing report system modelling. Technical report,

School of Computing and Communication, Lancaster university, 15 Sep 1996.

[89] A. Rodraguez, E. Fernandez, E indez Medina, and P. Mario. M-bpsec: A

method for security requirement elicitation from UML 2.0 business process

specification. In Advances in Conceptual Modeling Foundations and Applica-

tions, volume 4802, pages 106–115. Springer Berlin Heidelberg, 2007.

[90] A. Rodŕıguez, E. Fernández-Medina, J. Trujillo, and M. Piattini. Secure busi-

ness process model specification through a UML 2.0 activity diagram profile.

Decision Support Systems, 51(3):446–465, June 2011.

[91] A. Rodriguez, E. Fernandez Medina, E.Medina, and M. Piattini. Security

requirement with a UML 2.0 profile. In Availability, Reliability and Security,

2006. ARES 2006. The First International Conference on, pages 8 pp.–, 2006.

[92] J. Roff. UML: A Beginner’s Guide. Beginner’s Guide. McGraw-Hill Education,

2003.

[93] M. Roman, C. Hess, R. Cerqueira, R. H. Campbell, and K. Nahrstedt. Gaia a

middleware infrastructure to enable active spaces. IEEE Pervasive Computing,

1:74–83, 2002.

[94] D. Rosenberg and M. Stephens. Use Case Driven Object Modeling with

UMLTheory and Practice. Books for professionals by professionals. Apress,

2007.

[95] C. Ruan. UML specification of e consent requirements in a health care sys-

tem. In Computer Science and its Applications. 2008. CSA 08. International

Symposium on, pages 275 –280, oct. 2008.

191

BIBLIOGRAPHY

[96] F. Ruiz, F. Harmelen, M. Aben, and J. Plassche. Evaluating a formal mod-

elling language. In L. Steels, G. Schreiber, and W. Velde, editors, A Future

for Knowledge Acquisition, volume 867 of Lecture Notes in Computer Science,

pages 26–45. Springer Berlin Heidelberg, 1994.

[97] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Refer-

ence Manual, The (2nd Edition). Pearson Higher Education, 2004.

[98] N. Ryan, J. Pascoe, and D. Morse. Enhanced reality fieldwork: the context-

aware archaeological assistant. In V. Gaffney, M. van Leusen, and S. Exxon,

editors, Computer Applications and Quantitative Methods in Archaeology

(CAA 97), Oxford, 1997.

[99] J. H. Saltzer and M. D. Schroeder. The protection of information in computer

systems. Fourth ACM Symposium on Operating System Principles (October

1973). Revised version in Communications of the ACM 17, 7 (July 1974).,

63(9):1278–1308, 1974.

[100] B. Schilit, N. Adams, and R. Want. Context-aware computing applications.

In Proceedings of the 1994 First Workshop on Mobile Computing Systems and

Applications, WMCSA ’94, pages 85–90, Washington, DC, USA, 1994. IEEE

Computer Society.

[101] B. Schilit and M. Theimer. Disseminating active map information to mobile

hosts. Network, IEEE, 8(5):22–32, 1994.

[102] A. Schmidt, K. A. Adoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, and

W. V. D. Velde. Advanced interaction in context. In In Proceedings of First

International Symposium on Handheld and Ubiquitous Computing, pages 89–

101. Springer Verlag, 1999.

192

BIBLIOGRAPHY

[103] N. Shankar, D. Balfanz, and N. Shankar. Enabling secure ad-hoc communica-

tion using context-aware security services (extended abstract). In Proceedings

of UBICOMP2002 - Workshop on Security in Ubiquitous Computing, 2002.

[104] Q. Sheng and B. Benatallah. ContextUML: a UML-based modeling language

for model-driven development of context-aware web services. In Mobile Busi-

ness. ICMB 2005. International Conference on, pages 206–212, 2005.

[105] B. Shneiderman. Designing the user interface: strategies for effective human-

computer-interaction. Number v. 85. Addison Wesley Longman, 1998.

[106] F. Siewe, H. Zedan, and A. Cau. The calculus of context-aware ambients.

Journal of Computer and System Sciences, 77(4):597–620, July 2011.

[107] G. Sindre and A. L. Opdahl. Eliciting security requirements by misuse cases.

In Technology of Object-Oriented Languages and Systems, 2000. tools-Pacific

2000. Proceedings. 37th International Conference on, pages 120–131, 2000.

[108] M. I. Smriti Jain. Software security requirements gathering instrument. Inter-

national Journal of Advanced Computer Science and Applications (IJACSA),

Vol. 2, No. 7, 2011.

[109] F. Stajano. Security for Ubiquitous Computing. John Wiley and Sons, Feb.

2002.

[110] P. Stevens and R. Pooley. Using UML software engineering with object and

components. Addison-Wesley, 2006.

[111] I. Tondel, M. Jaatun, and P. Meland. Security requirements for the rest of us:

A survey. Software, IEEE, 25(1):20–27, 2008.

[112] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. A semantic context

aware access control framework for secure collaborations in pervasive comput-

193

BIBLIOGRAPHY

ing environments. In Collaborations In Pervasive Computing Environments

5th Intl. Semantic Web Conference, pages 5–9. ACM Press, 2006.

[113] A. Wegmann and G. Genilloud. The role of roles in use case diagrams. In

Proceedings of Third International Conference on The Unified Modeling Lan-

guage. Advancing the Standard (UML 2000), pages 210–224. Springer-Verlag,

2000.

[114] M. Weiser. The computer for the 21st century. Scientific American, 265(3):94–

104, 1991.

[115] T. Welte. Using state diagrams for modeling maintenance of deteriorating

systems. Power Systems, IEEE Transactions on, 24(1):58–66, 2009.

[116] E. Wilson. An Introduction to Scientific Research. Dover books explaining

science. Dover Publications, 1990.

[117] P. S. with Rob Pooley. Using UML: software engineering with objects and com-

ponents. Object Technology Series. Addison-Wesley Longman, 1999. Updated

edition for UML1.3: first published 1998 (as Pooley and Stevens).

[118] K. Wrona and L. Gomez. Context-aware security and secure context-

awareness in ubiquitous computing environments. in XXI Autumn Meet-

ing of Polish Information Processing Society, 2005. [Online]. Available:

http://proceedings2005.imcsit.org/docs/75.pdf.

[119] T. Ye, H.-A. Jacobsen, and R. Katz. Mobile awareness in a wide area wireless

network of info-stations. In ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom), pages 109–120, 1998.

[120] E. S. K. Yu. Towards modeling and reasoning support for early-phase require-

ments engineering. In Proceedings of the 3rd IEEE International Symposium

194

BIBLIOGRAPHY

on Requirements Engineering, RE ’97, pages 226–, Washington, DC, USA,

1997. IEEE Computer Society.

195

Appendix A

Presenting the rest of UML

diagrams

This appendix targets to only present the rest of the UML modeling diagrams for

both the M-learning system functions and the security requirements. This Appendix

is divided into two main sections, the first one is to present the rest of modeling

M-learning system functions, the second is to list the rest of capturing security

requirement for M-learning system.

A.1 Modeling M-learning system functions

A.1.1 Use Case diagram

- View materials

This is to state the required CI in order to perform view materials function

using Use Case diagram.

196

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Student

Login View materials

require

extend

-Location: All

-Time:8:00 -21:00

Figure A.1: View materials Use Case diagram

- Do exam

This is to state the required CI in order to perform do exam function using

Use Case diagram.

Do exam

-Specific location= True

-During time= True

-Other activity= Null

-User status = Offline

require

Student

Login

extend

Figure A.2: Do exam Use Case diagram

- Make private chat for student

This is to state the required CI in order to make a private chat function using

Use Case diagram.

Student

Login Make private chat

require

extend

Location: All

User status: Online

Figure A.3: Make a private chat Use Case diagram (Student)

197

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

- Make private chat for lecturer

This is to state the required CI in order to make a private chat function using

Use Case diagram.

Lecturer

Login Make private chat

require

extend

Location=All

User status= Online

Figure A.4: Make a private chat Use Case diagram (Lecturer)

- Mark student exams

This is to state the required CI in order perform make student exams function

using Use Case diagram.

Lecturer

Login Mark students exam

require

extend

-Location= Office

-Other activity= Null

Figure A.5: Mark students exams Use Case diagram

- Upload lectures

This is to state the required CI in order to perform upload lectures function

using Use Case diagram.

198

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Lecturer

Login Upload Materials

require

extend
Upload Lectures

-Location= All

extend

Figure A.6: Upload lectures Use Case diagram

199

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

A.1.2 Activity diagram

- View materials

This is to state the required CI in order to perform view materials function

using Activity diagram.

Context Aware System

Reasoning stageAcquisition stage

Student

Login

View material

Is CI consistent with

requested function

Start viewing materials

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate viewing

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time: 10:30

-Student status: 3rd year

-Device: Laptop

Update

Check

CI
FR:

-Location: All

-Time: 8:00 -21:00

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.7: View materials Activity diagram

- Do exam

This is to state the required CI in order to perform do exam function using

Activity diagram.

200

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Student

Login

Do exam

Is CI consistent with

requested function

Start doing exam

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate the exam

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time: 10:30

-S.A.Y: 3rd year

-Student status: Offline

Update

Check

CI

FR:

-Specific location: True

-During time: True

-Other activity: Null

-Student status: Offline

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.8: Do exam Activity diagram

- Make private chat for student

This is to state the required CI in order to perform make a private chat function

using Activity diagram.

201

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Student

Login

Make private chat

Is CI consistent with

requested function

Start chatting

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate chatting

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time : 9:45

-S.A.Y: 3rd year

Update

Check

CI
FR:

-Location: All

-User status: Online

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.9: Make a private chat Activity diagram (Student)

- Make private chat for lecturer

This is to state the required CI in order to perform make a private chat function

using Activity diagram.

202

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Lecturer

Login

Make private chat

Is CI consistent with

requested function

Start chatting

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate chatting

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time: 9:45

-S.A.Y: 3rd year

Update

Check

CI

FR:

-Location: All

-User status: Online

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.10: Make a private chat Activity diagram (Lecturer)

- Mark student exam

This is to state the required CI in order to perform Mark student exam function

using Activity diagram.

203

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Lecturer

Login

Mark student exam

Is CI consistent with

requested function

Start marking exams

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate marking exams

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time: 10:30

-Lecturers status: Offline

Update

Check

CI

FR:

-Location: Office

-Other activity: Null

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.11: Mark students exams Activity diagram

- Upload lectures

This is to state the required CI in order to perform Upload lectures function

using Activity diagram.

204

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Lecturer

Login

Upload Lectures

Is CI consistent with

requested function

Start uploading lectures

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate uploading

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: Office

-Time :10:30

-Lecturers status: Offline

-Device: Laptop

Update

Check

CI
FR:

-Location= All

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.12: Upload lectures Activity diagram

A.1.3 State diagram

- View materials

This is to state the required CI in order to perform View materials function

using State diagram.

205

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

View materials

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS

-Location: All

-Time: 8:00 – 21:00

-S.A.Y: 3rd year

Save

Check CI

Figure A.13: View materials State diagram

- Do exam

This is to state the required CI in order to perform do exam function using

State diagram.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 can be adapted

Logout

In operation

Acquisition stage

Do exam

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:

-Specific location: True

-During time: True

-Other activity: Null

-User status: Offline

Save

Check CI

Figure A.14: Do exam State diagram

- Make private chat for student

206

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

This is to state the required CI in order to perform Make private chat for

student function using State diagram.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 can be adapted

Logout

In operation

Acquisition stage

Make private chat

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:

Location: A

Time : 9:45

S.A.Y: 3rd year

Save

Check CI

Figure A.15: Make a private chat State diagram (Student)

- Make private chat for lecturer

This is to state the required CI in order to perform Make private chat for

lecturer function using State diagram.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 can be adapted

Logout

In operation

Acquisition stage

Make private chat

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:

Location: A

Time : 9:45

S.A.Y: 3rd year

Save

Check CI

Figure A.16: Make a private chat State diagram (Lecturer)

207

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

- Mark student exam

This is to state the required CI in order to perform Mark student exam function

using State diagram.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 can be adapted

Logout

In operation

Acquisition stage

Mark student

exams

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS :

-Location: A

-Time :10,30

-Lecturers status: Offline

-Device: Laptop

Save

Check CI

Figure A.17: Mark students exams State diagram

- Upload lectures

This is to state the required CI in order to perform Upload lectures function

using State diagram.

208

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

Upload lectures

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:

-Location: Office

-Time:10:30

-Lecturers status: Offline

-Device: Laptop

Save

Check CI

Figure A.18: Upload lectures State diagram

209

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

A.2 Capturing security requirement for M-learning

system functions using UML

A.2.1 Authentication

All the diagrams that can explain the authentication mechanism using Use

case diagram are already presented in Chapter 6.

A.2.2 Authorisation

A.2.2.1 Using our Enhanced Use Case diagram

This section is to explain the authorisation process using Use case diagrams.

- View materials

This is to show the authorisation process for viewing materials using Use Case

diagram.

permit

deny

Login

-Username/

password

- Location: All

Student

include

include

require

View materiles

-Location: All

-Time:8:00 – 21:00

require

extend

Figure A.19: View materials Authorisation Use Case

- Make private chat

This is to show the authorisation process for making a private chat using Use

Case diagram.

210

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

permit

deny

Login

-Username/

password

- Location: All

Student

include

include

require

Make private chat

-Location=All

-User status= Online

require

extend

Figure A.20: Make private chat Authorisation Use Case

- Mark student exam

This is to show the authorisation process for marking student exam using Use

Case diagram.

permit

deny

Login

-Username/

password

- Location: All

Lecturer

include

include

require

Mark students exams

-Location= Office

-Other activity= Null

require

extend

Figure A.21: Mark student exam Authorisation Use Case

- upload exam

This is to show the authorisation process for uploading exam using Use Case

diagram.

permit

deny

Login

-Username/

password

- Location: All

Lecturer

include

include

require

Upload materiles Upload Lectures

-Location= All

require

extend extend

Figure A.22: Upload exam Authorisation Use Case

211

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

- Make private chat

This is to show the authorisation process for making a private chat using Use

Case diagram.

permit

deny

Login

-Username/

password

- Location: All

Lecturer

include

include

require

Make private chat

-Location: All

-User status: Online

require

extend

Figure A.23: Make private chat Authorisation Use Case

- Upload exam

This is to show the authorisation process for uploading exam using Use Case

diagram.

permit

deny

Login

Lecturer

include

include

Upload materiles Upload exam

-Location= Office

-Other activity= Null

-User status= Offline

require

extend extend

Figure A.24: Upload exam Authorisation Use Case

212

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

A.2.2.2 Using our Enhanced Activity diagram

This section is to explain the authorisation process using Activity diagrams.

- View materials

This is to show the authorisation process for viewing materials using Activity

diagram.

Context Aware System

Reasoning stageAcquisition stage

Student

Login

View material

Is CI consistent with

requested function

Start viewing materials

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate viewing

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time: 10:30

-Student status: 3rd year

-Device: Laptop

Update

Check

CI
FR:

-Location: All

-Time: 8:00 -21:00

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.25: View materials Authorisation Activity diagram

- Download materials

This is to show the authorisation process for downloading materials using

Activity diagram.

213

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Student

Login

Download materials

Is CI consistent with

requested function

Start downloading

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate downloading

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location= A

-Time = 10,30

-S.A.Y= 3
rd

 year

Update

Check

CI

FR:

-S.A.Y= 3rd

-Location= All

-Time= 8:00 -21:00

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.26: Download materials Authorisation Activity diagram

- Do exam

This is to show the authorisation process for doing exam using Activity dia-

gram.

214

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Student

Login

Do exam

Is CI consistent with

requested function

Start doing exam

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate the exam

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time: 10:30

-S.A.Y: 3rd year

-Student status: Offline

Update

Check

CI

FR:

-Specific location: True

-During time: True

-Other activity: Null

-Student status: Offline

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.27: Do exam Authorisation Activity diagram

- Make private chat

This is to show the authorisation process for making a private chat using

Activity diagram.

215

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Student

Login

Make private chat

Is CI consistent with

requested function

Start chatting

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate chatting

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time : 9:45

-S.A.Y: 3rd year

Update

Check

CI
FR:

-Location: All

-User status: Online

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.28: Make a private chat Authorisation Activity diagram

- Upload lectures

This is to show the authorisation process for uploading lectures using Activity

diagram.

216

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Lecturer

Login

Upload Lectures

Is CI consistent with

requested function

Start uploading lectures

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate uploading

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: Office

-Time :10:30

-Lecturers status: Offline

-Device: Laptop

Update

Check

CI
FR:

-Location= All

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.29: Upload lectures Authorisation Activity diagram

- Mark student exams

This is to show the authorisation process for marking student exams using

Activity diagram.

217

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Lecturer

Login

Mark student exam

Is CI consistent with

requested function

Start marking exams

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate marking exams

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time: 10:30

-Lecturers status: Offline

Update

Check

CI

FR:

-Location: Office

-Other activity: Null

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.30: Mark students exams Authorisation Activity diagram

- Make private chat

This is to show the authorisation process for make a private chat using Activity

diagram.

218

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Reasoning stageAcquisition stage

Lecturer

Login

Make private chat

Is CI consistent with

requested function

Start chatting

Has saved CI

changed

Get a new CI

Is CI still applicable

for current function

Adapt a new CI

Is adaptation of

new CI successful

Terminate chatting

No

Yes

Get CI

No

Yes

End

Yes

No

Start
Acting stage

CIS:

-Location: A

-Time: 9:45

-S.A.Y: 3rd year

Update

Check

CI

FR:

-Location: All

-User status: Online

Save

Check

 FR

Yes

No

Require

Check FR

Figure A.31: Make a private chat Authorisation Activity diagram

A.2.2.3 Using our Enhanced State diagram

This section is to explain the authorisation process using State diagrams.

- view materials

This is to show the authorisation process for viewing materials using State

diagram.

219

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

View materials

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:
-Location: All

-Time:8:00 – 21:00

Save

Check CI

Figure A.32: View materials Authorisation State diagram

- Do exam

This is to show the authorisation process for doing exam using State diagram.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

Do exam

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:
-Specific location=true

-During time=true

-Other activity= null

-user status = offline

Save

Check CI

Figure A.33: Do exam Authorisation State diagram

Make private chat

This is to show the authorisation process for making private chat using State

diagram.

220

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

Make private chat

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:
Location=All

User status= online
Save

Check CI

Figure A.34: Make private chat Authorisation State diagram

- Upload lectures

This is to show the authorisation process for uploading lectures using State

diagram.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

Upload lectures

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:

-Location= AllSave

Check CI

Figure A.35: Upload lectures Authorisation State diagram

- Upload exam

221

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

This is to show the authorisation process for uploading exam using State dia-

gram.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

Upload exam

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:
-Location= Office

-Other activity= Null

-User status= Offline

Save

Check CI

Figure A.36: Upload exam Authorisation State diagram

- Mark students exams

This is to show the authorisation process for marking student exams using

State diagram.

Reasoning stage

Acting stage

Idle

Processing

Inactive

End

Start

Adaptation

Out of

range

Logout

End function

If CI applicableCannot

CI change while using

system

 Can be adapted

Logout

In operation

Acquisition stage

Mark students exams

CI sensing
Get in the range

Continuously

monitoring

Continuous

 gathering

Active
Accepted CI

CI not

 applicable

CIS:
-location= Office

Other activity= Null

Save

Check CI

Figure A.37: Mark students exams Authorisation State diagram

222

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

A.2.3 Confidentiality

All the diagrams that can explain the confidentiality mechanism using Use

case diagram are already presented in Chapter 6.

223

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

A.2.4 Integrity

A.2.4.1 Using our Enhanced Activity diagram

This section is to express the integrity process using Activity diagrams.

- View materials

This is to show the integrity process for viewing materials using Activity dia-

gram.

Context Aware System

Acting stageReasoning stageAcquisition stage

Student

Login Get CI

View Materials

Start viewingCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

modified?

No

No

Yes

Yes

Save

Yes

Carrying viewing

Final check: has

Data record

modified

Terminate viewingWish to continue

Start

End

Yes

No

No

CIS :Location: Office

Time :10,30

Lecturers Status: offline

Device: laptop

-Location: All

-Time:8:00 -21:00

Save

Check

Is CI consistent

with requested

function

CheckRequire

Figure A.38: View materials Integrity Activity diagram

- Make private chat

This is to show the integrity process for making a private chat using Activity

diagram.

224

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Acting stageReasoning stageAcquisition stage

Student

Login Get CI

Make private chat

Start chattingCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

modified?

No

No

Yes

Yes

Save

Yes

Carrying chatting

Final check: has

Data record

modified

Terminate chatting sessionWish to continue

Start

End

Yes

No

No

CIS :Location: Office

Time :10,30

Lecturers Status: Offline

Device: laptop

Location=All

User status= Online

Save

Check

Is CI consistent

with requested

function

Check

Require

Figure A.39: Make private chat Integrity Activity diagram

- Do exam

This is to show the integrity process for doing exam using Activity diagram.

225

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Acting stageReasoning stageAcquisition stage

Student

Login Get CI

Do exam

Start the examCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

modified?

No

No

Yes

Yes

Save

Yes

Carrying chatting

Final check: has

Data record

modified

Terminate chatting sessionWish to continue

Start

End

Yes

No

No

CIS :Location: office

Time :10,30

Lecturers Status: offline

Device: laptop

-Specific location=true

-During time=true

-Other activity= null

-user status = offline

Save

Check

Is CI consistent

with requested

function

Check

Require

Figure A.40: Do exam Integrity Activity diagram

- Upload exam

This is to show the integrity process for uploading exam using State diagram.

226

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware SystemLecturer

Login Get CI

Upload Exam

Start uploadingCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

modified?

No

No

Yes

Yes

Save

Yes

Carrying uploading

Final check: has

Data record

modified

Terminate uploadingWish to continue

Start

End

Yes

No

No

CIS :Location: office

Time :10,30

Lecturers Status:

offline

Device: laptop

-location= office

-Other activity=null

Lecturer status =

offline

Save

Check

Is CI consistent

with requested

function

Check

Require

Acquisition stage Acting stageReasoning stage

Figure A.41: Upload exam Integrity Activity diagram

- Mark students exam

This is to show the integrity process for marking students exam using Activity

diagram.

227

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Acting stageReasoning stageAcquisition stage

Lecturer

Login Get CI

Mark student exams

Start chattingCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

modified?

No

No

Yes

Yes

Save

Yes

Carrying chatting

Final check: has

Data record

modified

Terminate chatting sessionWish to continue

Start

End

Yes

No

No

CIS :Location: Office

Time :10,30

Lecturers Status: Offline

Device: Laptop

-location= office

Other activity=null

Save

Check

Is CI consistent

with requested

function

Check

Require

Figure A.42: Mark students exam Integrity Activity diagram

- Upload lectures

This is to show the integrity process for uploading lectures using Activity

diagram.

228

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Acting stageReasoning stageAcquisition stage

Lecturer

Login Get CI

Upload lectures

Start chattingCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

modified?

No

No

Yes

Yes

Save

Yes

Carrying chatting

Final check: has

Data record

modified

Terminate chatting sessionWish to continue

Start

End

Yes

No

No

CIS :Location: Office

Time :10,30

Lecturers Status: Offline

Device: Laptop

-location= All

Save

Check

Is CI consistent

with requested

function

Check

Require

Figure A.43: Upload lectures Integrity Activity diagram

- Make private chat

This is to show the integrity process for making a private chat using Activity

diagram.

229

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Context Aware System

Acting stageReasoning stageAcquisition stage

Lecturer

Login Get CI

Make private chat

Start chattingCreate user record

Check data record

Disconnect

Has saved CI

changed?

Has data record

modified?

No

No

Yes

Yes

Save

Yes

Carrying chatting

Final check: has

Data record

modified

Terminate chatting sessionWish to continue

Start

End

Yes

No

No

CIS :Location: office

Time :10,30

Lecturers Status: Offline

Device: laptop

Location=All

User status= Online

Save

Check

Is CI consistent

with requested

function

Check

Require

Figure A.44: Make private chat Integrity Activity diagram

A.2.5 Using our enhanced State diagram

This section is to express the integrity process using State diagrams.

- View materials

This is to show the integrity process for viewing materials using State diagram.

230

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Acting stage

Reasoning stages

acquisition stage

Active

Storing in D.B

Reviewing materials

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request view materials

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted

Cannot

Idle

Get out of the

range

logout

If CI not

corrupted

CIS:
-Location: All

-Time:8:00 – 21:00

Check CI

CI sensing

Save

Figure A.45: View materials Integrity State diagram

- Do exam

This is to show the integrity process for doing exam using State diagram.

Acting stage

Reasoning stages

Acquisition stage

Active

Storing in D.B

Doing exam

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request do exam

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End

function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted

Can not be

 adapted

Idle

Get out of the

range

Logout

If data not

corrupted

Process the request

with a new CI

CI Sensing

CIS
-Specific location= True

-During time= True

-Other activity= Null

-User status = Offline

Save

Check CI

Figure A.46: Do exam Integrity State diagram

Make private chat

231

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

This is to show the integrity process for making a private chat using State

diagram.

Acting stage

Reasoning stages

Acquisition stage

Active

Storing in D.B

Chatting

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request make private chat

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End

function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted

Can not be

 adapted

Idle

Get out of the

range

Logout

If data not

corrupted

Process the request

with a new CI

CI Sensing

CIS
Location=All

User status= Online

Save

Check CI

Figure A.47: Make private chat Integrity State diagram

- Upload exam

This is to show the integrity process for uploading exam using State diagram.

Acting stage

Reasoning stages

Acquisition stage

Active

Storing in D.B

Uploading exam

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request upload exam

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End

function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted

Can not be

 adapted

Idle

Get out of the

range

Logout

If data not

corrupted

Process the request

with a new CI

CI Sensing

CIS
-Specific location= True

-During time= True

-Other activity= Null

-User status = Offline

Save

Check CI

Figure A.48: Upload exam Integrity State diagram

232

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

- Upload lectures

This is to show the integrity process for uploading lectures using State diagram.

Acting stage

Reasoning stages

Acquisition stage

Active

Storing in D.B

Uploading lectures

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request upload lectures

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End

function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted

Can not be

 adapted

Idle

Get out of the

range

Logout

If data not

corrupted

Process the request

with a new CI

CI Sensing

CIS

Location= All

Save

Check CI

Figure A.49: Upload lectures Integrity State diagram

- Mark student exam

This is to show the integrity process for marking student exam using State

diagram.

233

APPENDIX A. PRESENTING THE REST OF UML DIAGRAMS

Acting stage

Reasoning stages

Acquisition stage

Active

Storing in D.B

Marking exams

Monitoring data integrity

Disconnected

Start

End

CI status checker

Request mark student exams

CI consistent

with required

function

Create table

Continuous

 updating

Save

If data

corrupted

End

function

CI Change

Data saved

Continuous

check

Adaptation

Inactive

Can be

adapted

Can not be

 adapted

Idle

Get out of the

range

Logout

If data not

corrupted

Process the request

with a new CI

CI Sensing

CIS
-location= Office

Other activity= Null

Save

Check CI

Figure A.50: Mark student exam Integrity State diagram

234

	Dedication
	Abstract
	Declaration
	Publications
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Overview
	Motivation
	Research Methodology
	Contribution
	Thesis Scope and Research Questions
	Measures of Success
	Thesis Structure
	Chapter Summary

	Literature review
	Modeling
	UML
	Use Case diagram
	Activity diagram
	State diagram

	Key Concepts
	Security
	Security Requirements
	Context and Context Aware System
	Context
	Context Aware System (CAS)
	Context Aware System Lifecycle (CASLC)
	Context Aware System Security

	Framework supporting CAS security and their limitations
	UML variants supporting CAS security and their limitations
	Chapter Summary

	Enhancing the Use Case diagram to model CASs and gather their security requirements
	Introduction
	Existing Use Case diagram elements
	Enhancements
	Extending the Use Case elements to model CASs
	Adjusting the existing Use Case diagram elements
	Defining new Use Case diagram elements

	Gathering security requirements for CASs using the extended Use Case
	Authentication
	Authorisation
	Confidentiality

	Chapter Summary

	Enhancing the Activity diagram to support the extended Use Case diagram for CASs and gather their security requirements
	Introduction
	Existing an Activity diagram elements
	Enhancements
	Extending the Activity diagram to support the extended Use Case diagram
	Gathering security requirements for CASs using the extended Activity diagram
	 Authentication
	Authorisation
	Confidentiality
	 Integrity

	Chapter Summary

	Enhancing the State diagram to support the extended Use Case diagram for CASs and gather their security requirements
	Introduction
	Existing State diagram elements
	Enhancements
	Extending the State diagram to support the extended Use Case diagram
	Gathering security requirements for a CASs using the extended State diagram
	Authentication
	Authorisation
	Confidentiality
	Integrity

	Chapter Summary

	 A Real-World Case Study: An Infostation-based M-Learning System
	Introduction
	M-learning definition
	M-learning Infrastructure
	Description of M-learning system
	M-learning system users and functions
	Capturing the key security requirements for M-learning system functions
	Authentication
	Authorisation
	Confidentiality
	Integrity

	Modeling the M-learning system using UML
	Use Case diagram for the system
	Activity diagram for the Download Materials function
	State diagram for the Download Materials function

	Capturing the security requirements for M-learning functions using UML
	Authentication
	Using our Enhanced Use Case diagram
	Using our Enhanced Activity diagram
	Using our Enhanced State diagram

	Authorisation
	Using our Enhanced Use Case diagram
	Using our Enhanced Activity diagram
	Using our Enhanced State diagram

	Confidentiality
	Using our Enhanced Use Case diagram
	Using our Enhanced Activity diagram
	Using our Enhanced State diagram

	Integrity
	Using our Enhanced Activity diagram
	Using our Enhanced State diagram

	Chapter Summary

	Conclusion and Future work
	Research Summary
	Statement of Evaluation
	Research Questions Revisited
	Contribution to Knowledge
	Future Work

	Bibliography
	Presenting the rest of UML diagrams
	Modeling M-learning system functions
	Use Case diagram
	Activity diagram
	State diagram

	Capturing security requirement for M-learning system functions using UML
	Authentication
	Authorisation
	Using our Enhanced Use Case diagram
	Using our Enhanced Activity diagram
	Using our Enhanced State diagram

	Confidentiality
	Integrity
	Using our Enhanced Activity diagram

	Using our enhanced State diagram

