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Abstract

In this paper, the Type-Reduced Set (TRS) of the continuous type-2 fuzzy set is considered as an
object in its own right. The structures of the TRSs of both the interval and generalised forms of
the type-2 fuzzy set are investigated. In each case the respective TRS structure is approached by
first examining the TRS of the discretised set. The TRS of a continuous interval type-2 fuzzy set is
demonstrated to be a continuous horizontal straight line, and that of a generalised type-2 fuzzy set, a
continuous, convex curve. This analysis leads on to the concept of truncation, and the definition of the
truncation grade. The truncated type-2 fuzzy set is then defined, whose TRS (and hence defuzzified
value) is identical to that of the non-truncated type-2 fuzzy set. This result is termed the Type-2
Truncation Theorem, an immediate corollary of which is the Type-2 Equivalence Theorem which
states that the defuzzified values of type-2 fuzzy sets that are equivalent under truncation are equal.
Experimental corroboration of the equivalence of the non-truncated and truncated generalised type-2
fuzzy set is provided. The implications of these theorems for uncertainty quantification are explored.
The theorem’s repercussions for type-2 defuzzification employing the α-Planes Representation are
examined; it is shown that the known inaccuracies of the α-Planes Method are deeply entrenched.
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1. Introduction

Type-2 fuzzy sets are an extension of type-1 fuzzy sets in which the sets’ membership grades are
themselves type-1 fuzzy sets. The concept dates back to Zadeh’s seminal paper of 1975 [39]. They
take two forms, the interval, for which all secondary membership grades are 11, and the generalised,
where the secondary membership grade may take any value between 0 and 1. For the computation-
ally simpler interval type-2 Fuzzy Inferencing System (FIS) [31] applications in areas such as control,
simulation and optimisation have been developed [1, 4–8, 25]. So far, generalised type-2 fuzzy appli-
cations are few in number [22, 26, 31]. This is attributable to the enormous computational complexity
of generalised type-2 fuzzy inferencing. Strategies have been developed that reduce the computa-
tional complexity of all stages of the generalised type-2 FIS [15, 21, 27, 42]. We believe that the
research presented in this paper will lead to further complexity reducing techniques, in turn leading
to an increasing number of generalised type-2 FIS applications.

In a Mamdani Type-2 FIS (Figure 1), a crisp numerical input passes through three stages of pro-
cessing: fuzzification, inferencing, and lastly, the crucial stage of defuzzification. Through defuzzi-
fication, the type-2 aggregated set produced during the inferencing stage is converted into a crisp
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output. For discretised type-1 fuzzy sets, defuzzification is a simple procedure; defuzzification of a
discretised type-2 fuzzy set is more complicated, consisting of two stages [29]:

1. Type-reduction, which converts a type-2 fuzzy set to a type-1 fuzzy set known as the Type-
Reduced Set (TRS), and

2. defuzzification of the type-1 TRS.
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Figure 1: The Mamdani Type-2 FIS [14].

The TRS is an intermediate by-product of type-2 defuzzification, a link between the originating type-
2 fuzzy set and the type-1 TRS. In the interval case, Wu and Mendel [37] argue that the length of
the TRS provides a measure of the uncertainty relating to the set. The most widely adopted method
for type-reducing an interval type-2 fuzzy set is the Karnik-Mendel Iterative Procedure (KMIP) [23],
which gives rise to an interval, the midpoint of which is deemed to be the defuzzified value. The
endpoints of the interval are termed uncertainty bounds [37, page 622], reflecting the belief that the
interval length quantifies the uncertainty pertaining to the type-2 fuzzy set. The iterative procedure is
an efficient search method for locating these endpoints. It is not a precise technique [13], [23, Page
203], being a good approximation to the Exhaustive Method of Defuzzification (Section 2). Since the
publication of the KMIP, various more efficient enhancements have been proposed [35], which differ
somewhat in their search strategy whilst giving identical results.

Type-reduction does not necessarily give rise to the TRS; other type-1 fuzzy sets may result [19,
20, 33]. However this report is concerned specifically with the TRS.
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The research presented in this report is essentially theoretical. Having established the structure
of the TRS for a generalised type-2 fuzzy set, the innovative concept of truncating such a set is
introduced. Two theorems relating type-2 defuzzification to truncation are presented, and their impli-
cations for type-2 fuzzy inferencing explored. The paper is structured as follows: The remainder of
this section is concerned with assumptions and definitions. In Section 2 type-reduction is described.
TRS structure is investigated in Section 3. In Section 4 the truncated type-2 fuzzy set is defined,
leading into the Type-2 Truncation Theorem and the Type-2 Equivalence Theorem. Experiments cor-
roborating the equivalence of the truncated type-2 fuzzy set to the non-truncated type-2 fuzzy set
are described in Section 5. Implications of the Type-2 Truncation Theorem and Type-2 Equivalence
Theorem for type-2 defuzzification are examined in Section 6. Lastly, Section 7 concludes the paper.

1.1. Preliminaries
1.1.1. Definitions

In type-2 fuzzy set theory, notation can be problematic [3]; we have adopted terminology that we
believe to be clear and unambiguous. The following definitions are pertinent to this paper [12].

Let X be a universe of discourse, which in this paper is assumed to be the continuous closed unit
interval U = [0,1] . A type-1 fuzzy set A on X is characterised by a membership function µA : X →U
and it is expressed as follows [38]:

A = {(x,µA(x))| µA(x) ∈U ∀x ∈ X}. (1)

Note that the membership grades of A are crisp numbers. In the following we will use the notation u
to refer to the membership grades in U associated to elements of set X . The scalar cardinality of a
fuzzy set A defined on a finite universal set X is the summation of the membership grades of all the
elements of X in A, i.e.

|A|= ∑
x∈X

µA(x).

Let P̃(U) be the set of fuzzy sets in U . A type-2 fuzzy set Ã on X is a fuzzy set whose membership
grades are themselves fuzzy [39–41]. This implies that µÃ(x) is a fuzzy set in U for all x, i.e. µÃ : X→
P̃(U) and

Ã = {(x,µÃ(x))| µÃ(x) ∈ P̃(U)∀x ∈ X}. (2)

In type-2 fuzzy set theory, the universal set X is referred to as the primary domain; U is the secondary
domain. The support of the fuzzy set µÃ(x), Jx = {u ∈ U |µÃ(x)(u) > 0}, is known as the primary
membership of x ∈ X ; µÃ(x) : Jx → U defined by µÃ(x)(u) = µÃ(x)(u) is known as the secondary
membership function of x; while µÃ(x)(u) is known as a secondary membership grade of x. Thus,
Applying (1), we obtain:

µÃ(x) = {(u,µÃ(x)(u))| µÃ(x)(u) ∈U ∀u ∈ Jx ⊆U}. (3)

Putting (2) and (3) together we obtain

Ã = {(x,(u,µÃ(x)(u)))| µÃ(x)(u) ∈U, ∀x ∈ X ∧∀u ∈ Jx ⊆U}. (4)

An interval type-2 fuzzy set is a type-2 fuzzy set with secondary membership functions identically
equal to 1. In the interval case, Equation 4 reduces to:

Ã = {(x,(u,1))| ∀x ∈ X ∧∀u ∈ Jx ⊆U}. (5)

Under our assumption of being X ≡ [0,1], a type-2 fuzzy set is contained within a unit cube and
may be viewed as a surface represented by (x,u,z) co-ordinates, where x ∈U , u ∈ Jx ⊆U and z =
µÃ(x)(u) ∈U . A slice of a type-2 fuzzy set Ã is the intersection of a plane either vertical (through the
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x-axis, parallel to the u− z plane) or horizontal (through the z-axis, parallel to the x− u plane) with
the graph of its membership function µÃ. Thus, a vertical slice of a type-2 fuzzy set Ã at x will be the
graph of the secondary membership function µÃ(x) : Jx→U , while a horizontal slice of a type-2 fuzzy
set Ã at z will be the interval type-2 fuzzy set Ãz with secondary membership functions µÃz(x) : Jx→U
defined as follows:

µÃz(x)(u) =

{
0, µÃ(x)(u)< z
z, µÃ(x)(u)≥ z

.

The degree of discretisation is the separation of the slices. For a computer to process type-2 fuzzy
sets, it is necessary to discretise both the primary and secondary domains, possibly with different
degrees of discretisation.

1.1.2. Assumptions
1. All secondary membership functions are convex, which implies that ∀x ∈ X , µÃ(x) : Jx→ [0,1]

is convex, i.e. for any u1,u2 ∈ Jx and any λ ∈ [0,1],

µÃ(x)[λu1 +(1−λ)u2]≥ λµÃ(x)(u1)+(1−λ)µÃ(x)(u2).

Thus, ∀x ∈ X we are assuming that µÃ(x) is continuous and Jx is a closed interval in [0,1]:
Jx = [µÃ(x),µÃ(x)], where µÃ(x) = inf{u| (x,u) ∈ Jx}; µÃ(x) = sup{u| (x,u) ∈ Jx}, are known
as the the lower and upper membership functions of type-2 fuzzy set Ã.

2. The centroid method of defuzzification for type-1 fuzzy sets is used.

3. The minimum t-norm is employed.

4. The Grid Method of Discretisation for generalised type-2 fuzzy sets [9, 21] is employed.

2. Type-Reduction of the Type-2 Fuzzy Set

2.1. The Wavy-Slice Representation Theorem
The concept of an embedded type-2 fuzzy set (embedded set) or wavy-slice [31] (Figure 2) is

crucial to type-reduction. An embedded set is a special kind of type-2 fuzzy set, which relates to the
type-2 fuzzy set in which it is embedded in this way: For every primary domain value, x(∈ X), there
is a unique secondary domain value, u(∈ Jx ⊆U), plus the associated secondary membership grade
that is determined by the primary and secondary domain values, µÃ(x)(u)(∈ [0,1]).

Definition 1 (Embedded Set). Let Ã be a type-2 fuzzy set on X. For discrete sets Xd = {x1,x2, . . . ,xN}
and Ud = {u1,u2, . . . ,uM}, an embedded type-2 fuzzy set Ãe of Ã is defined as the following type-2
fuzzy set

Ãe = {(xi,(uxi,µÃ(xi)(uxi)))| ∀i ∈ {1, . . . ,N} : xi ∈ Xd ∧ uxi ∈ Jxi ⊆Ud}. (6)

Ãe contains exactly one element from Jx1 , Jx2 , . . . , JxN , namely ux1 , ux2 , . . . , uxN , each with its associ-
ated secondary grade, namely µÃ(x1)(ux1), µÃ(x2)(ux2), . . ., µÃ(xN)(uxN ).

Mendel and John have demonstrated that a type-2 fuzzy set is definable as the union of its em-
bedded type-2 fuzzy sets [31]. This powerful result is known as the type-2 fuzzy set Representation
Theorem or Wavy-Slice Representation Theorem. The Wavy-Slice Representation Theorem is for-
mally stated thus [31, Page 121]:

Let Ã j
e denote the jth embedded type-2 fuzzy set for type-2 fuzzy set Ã, i.e.,

Ã j
e ≡

{(
xi,
(

u j
i ,µÃ(xi)(u

j
i )
))∣∣∣ ∀i ∈ {1, . . . ,N} : u j

i ∈ Jxi

}
.
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Figure 2: Two embedded type-2 fuzzy sets, indicated by different flag styles. The flag height indicates the secondary
membership grade. The degree of discretisation of the primary and secondary domains is 0.1. The FOU is the shaded
region.

Then Ã may be represented as the union of its embedded type-2 fuzzy sets, i.e.,

Ã =
n

∑
j=1

Ã j
e, where n≡

N

∏
i=1

Mi,Mi being the cardinality of Jxi.

Note: An alternative way of defining an embedded type-2 fuzzy set Ãe could be via a selection
function of the multimapping x→ Jx, say f (x) ∈ Jx ∀x. Then embedded type-2 fuzzy set
Ãe could then be defined as the set of triplets {(x, f (x),µÃ( f (x))} where f is a selection of Jx.
Clearly, a type-2 fuzzy set Ã will be union of the embedded type-2 fuzzy sets derived from all
possible different selection functions.

2.2. Exhaustive Defuzzification
Type-2 defuzzification strategies derive from and incorporate type-1 defuzzification techniques.

The strategy known as Exhaustive Defuzzification, so called because every embedded set is processed
in turn, is built upon the foundation of the Wavy-Slice Representation Theorem [31] and is therefore
precise2 [31]. However it is a very inefficient method owing to its high computational complexity. Its
first and main stage consists of type-reduction of the type-2 fuzzy set to form the TRS [12], formally
defined thus:

Definition 2 (TRS). The TRS associated with a type-2 fuzzy set Ã with primary domain X discretised
into N points Xd = {x1,x2, . . . ,xN}, is

CÃ =

{(
∑

N
i=1 xi ·uki

∑
N
i=1 uki

,µÃ(x1)(uk1)∗ . . .∗µÃ(xN)(ukN )

)∣∣∣∣∣
∀(uk1,uk2 , . . . ,ukN ) ∈ Jx1× Jx2× . . .× JxN ⊆UN

}
,

(7)

2Discretisation in itself brings an unavoidable element of approximation. However the Exhaustive Method does not
introduce further inaccuracies subsequent to discretisation.
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where ∗ is a t-norm.

Though this definition does not explicitly mention embedded sets, they appear implicitly in Equa-
tion (7). When this equation is presented in algorithmic form (Algorithm 1, adapted from Mendel
[29]), explicit mention is made of embedded sets.

Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall embedded sets do
2 find the minimum secondary membership grade (z) ;
3 calculate the primary domain value (x) of the type-1 centroid of the embedded type-2 fuzzy

set ;
4 pair the secondary grade (z) with the primary domain value (x) to give set of ordered pairs

(x,z) {some values of x may correspond to more than one value of z} ;
5 end
6 forall primary domain (x) values do
7 select the maximum secondary grade {make each x correspond to a unique value} ;
8 end
Algorithm 1: Exhaustive type-reduction of a discretised type-2 fuzzy set to a type-1 fuzzy set,
using the minimum t-norm, (adapted from [29]).

For the TRS of an interval type-2 fuzzy set, Definition 2 reduces to:

Definition 3 (TRS of an Interval Type-2 Fuzzy Set). The TRS associated with an interval type-2 fuzzy
set Ã with primary domain X discretised into N points Xd = {x1,x2, . . . ,xN}, is

CÃ =

{(
∑

N
i=1 xi ·uki

∑
N
i=1 uki

,1

)∣∣∣∣∣ ∀(uk1,uk2, . . . ,ukN ) ∈ Jx1× Jx2× . . .× JxN ⊆UN

}
. (8)

3. Characterisation of the TRS Structure

3.1. Structure of the TRS of a Discretised Interval Type-2 Fuzzy Set
Starting from the previous result in Section 2.2, which states that a type-2 fuzzy set is the union of

its embedded type-2 fuzzy sets, a type-2 fuzzy set is reduced to a type-1 fuzzy set by computing the
centroid of all its type-2 fuzzy embedded sets. Thus, if Ãe = {(xi,(uxi,µÃ(xi)(uxi)))| ∀i ∈ {1, . . . ,N} :
xi ∈ Xd ∧ uxi ∈ Jxi ⊆Ud} is an embedded type-2 fuzzy set of Ã, we notice that the first component of

the elements of set (7),
∑

N
i=1 xi ·uki

∑
N
i=1 uki

, which is the centroid of the set of values {(xi,uxi|xi ∈X ;uxi ∈ Jxi},

is computed over a cartesian product of closed intervals. Thus, in the general continuous case, the
output values of such expression will form a closed interval. Each element in such closed interval
output will have associated a membership degree, as per the second component of the elements of set
(7), after the t-norm minimum is applied to the secondary membership values of the embedded set Ãe.
As we are assuming that µÃ(x) is continuous and all primary memberships, Jx, are closed interval in
[0,1], the range of µÃ(x) will be a closed interval, and consequently the set of secondary membership
values of type-2 fuzzy set Ã will be a closed interval subset of the unit interval U . This means that
the set of values µÃ(x1)(uk1)∗ . . .∗µÃ(xN)(ukN ) when N→ ∞ will be bounded above and below, and
therefore it will have a supremum and infimum. Consequently, expression (7) in the continuous case
is a type-1 fuzzy set. When Ã is an interval type-2 fuzzy set, its TRS will be a crisp closed interval
subset of the unit interval U , with membership function identically equal to 1. In this section we
investigate how the TRS tuples are positioned along the interval of the TRS.
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Figure 3 shows an interval type-2 fuzzy set. The primary domain X is discretised into N vertical
slices with degree of discretisation dx such that N = 1

dx
+1. The codomain (U) degree of discretisation

is du. E is an embedded set whose codomain value at the Ith vertical slice x = xI is uIE . E1
I is another

embedded set, identical to E apart from the codomain value on vertical slice xI , which is uIE +du. For
embedded set E2

I the codomain value at xI is uIE +2 ·du, and for embedded set En
I the codomain value

at xI is uIE + n · du. Let XE be the (centroid) defuzzified value of embedded set E. XE1
I
, XE2

I
, . . . XEn

I

are similarly defined.
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Figure 3: Embedded set E (dashed line), with related embedded sets E1
I ,E

2
I , . . . , En−1

I ,En
I .

The formula for the difference between two consecutive defuzzified values is (∀ j ∈ {1, . . . ,n}):

XE j
I
−XE j−1

I
=

|E| ·du · (xI−XE)

(|E|+ j ·du) · (|E|+( j−1) ·du)
. (9)

This formula is derived as follows:

Define P =
N

∑
i=1

xi ·uiE + j ·du · xI and Q = |E|+ j ·du.

XE j
I
=

I−1

∑
i=1

xi ·uiE +
N

∑
i=I+1

xi ·uiE + xI · (uIE + j ·du)

N

∑
i=1

uiE + j ·du

=

N

∑
i=1

xi ·uiE + j ·du · xI

|E|+ j ·du
=

P
Q
.

Similarly, we have XE j−1
I

=
P−du · xI

Q−du
. Because

N

∑
i=1

xi ·uiE = XE · |E|, it follows that

XE j
I
−XE j−1

I
=

|E| ·du(·xI−XE)

(|E|+ j ·du) · (|E|+( j−1) ·du)
.

7



3.2. Structure of the TRS of a Continuous Interval Type-2 Fuzzy Set
Because (‖E‖+ j ·du)(|E|+( j−1) ·du)> |E|2, it can be concluded that

d(XE j
I
,XE j−1

I
) = |XE j

I
−XE j−1

I
|< du · |xI−XE |

|E|
. (10)

In Inequation (10), as n increases, so does the number of points on the vertical slice xI . Conse-

quently the distance between these points, du, decreases, and
du · |xI−XE |
|E|

decreases with it. Thus,

∀ε > 0,∃n∈N such that
du · |xI−XE |
|E|

< ε. It follows that ∀ j ∈ {1,2, . . . ,n}, d(XE j
I
,XE j−1

I
)< ε, which

shows that the TRS of an interval type-2 fuzzy set with continuous domain and codomain is a closed
interval of [0,1]. Indeed, each vertical slice will produce a set of weighted averages (one for each
embedded set for the vertical slice) {XE j

I
| j = 1, . . . ,n}. When n tends to infinity, d(XE j

I
,XE j−1

I
) tends

to zero, and therefore the set {XE j
I
| j = 1, . . . ,n} tends towards a closed interval of [0,1]. We conclude

that the TRS of a continuous interval type-2 fuzzy set is an interval of the line u = 1 with least domain
value ≥ 0 and greatest domain value ≤ 1, i.e. the TRS of a continuous interval type-2 fuzzy set is a
closed interval subset of the unit interval U with membership function identically equal to 1.

In Subsection 3.3.1 below, Figures 4 to 6 show how the TRS from a generalised type-2 fuzzy set
is built up point by point. The number of embedded sets of the originating type-2 fuzzy set runs into
many millions; the centroids of each embedded set, paired with the associated minimum secondary
membership grade, have been plotted as dots for 50 embedded sets (Figure 4), 500 embedded sets
(Figure 5), and 5000 embedded sets (Figure 6). Each horizontal line is analogous to the TRS of an
interval type-2 fuzzy set. It can clearly be seen that the points merge into a continuous line as the
number of TRS tuples increases3.

3.2.1. Ratio of Defuzzified Value Increments
Definition 4 ( jth Defuzzified Value Increment on Vertical Slice x = xI (DV I j

I )). The jth Defuzzified
Value Increment (DV I j

I ) on vertical slice x = xI is defined as XE j
I
−XE j−1

I
.

From Equation (9),

DV I j
I = XE j

I
−XE j−1

I
=

|E| ·du · (xI−XE)

(|E|+ j ·du)(|E|+( j−1) ·du)
.

It follows that

DV I j+1
I = XE j+1

I
−XE j

I
=

|E| ·du · (xI−XE)

(|E|+( j+1) ·du)(|E|+ j ·du)
. (11)

From Equations (9) and (11), we may calculate the ratio of DV I j+1
I to DV I j

I for domain value xI:

DV I j+1
I

DV I j
I

=
XE j+1

I
−XE j

I

XE j
I
−XE j−1

I

=
|E|+( j−1) ·du

|E|+( j+1) ·du
.

For any domain value xI , this ratio depends only on the scalar cardinality of the embedded set E and
the co-domain degree of discretisation du. Moving up the xth

I vertical slice, as j increases, the ratio of
a given DVI to its preceding DVI increases, tending to 1, i.e. the defuzzified values tend to become
evenly spaced out along the interval. Were du to be decreased, this would have the effect of increasing
the value of n. The continuous case is approached in which the defuzzified values merge together
along the interval of the line u = 1.

3In these figures, the lines appear continuous because the relatively large size of the dots eliminates the spaces be-
tween them. In the analysis presented above, the spaces between the tuples are eliminated as the codomain degree of
discretisation tends to 0.
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3.3. Structure of the TRS of a Discretised Generalised Type-2 Fuzzy Set
In 2008 Greenfield and John reported on the stratified structure exhibited by the TRS of a gen-

eralised type-2 fuzzy set [16]. This structure was observed during investigations into the sampling
method of type-2 defuzzification [18, 21]. The membership function of the TRS of a discretised
type-2 fuzzy set may be regarded as a set of tuples (Section 3.1).

3.3.1. Stratification in the Discretised TRS
The following shows how structure is revealed to exist in the TRS. Figures 4 to 6 show typical

TRSs derived from randomly generated samples of embedded sets of size 50, 500, and 5000, orig-
inating from the same discretised type-2 fuzzy set. Each tuple is shown as a dot; the dots clearly
align themselves into strata. The reason for the strata’s appearance is that since during type-reduction
the minimum secondary grade of each embedded set is selected, the same minimum values appear
repeatedly, but in association with different domain values.
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Figure 4: The TRS strata. A sample of 50 TRS tuples is shown.
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Figure 5: The TRS strata. A sample of 500 TRS tuples is shown.

Definition 5 (Stratum [16]). Let T be the TRS of a discretised generalised type-2 fuzzy set. A stratum,
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Figure 6: The TRS strata. A sample of 5000 TRS tuples is shown.

Sω, is a subset4 of T for which every element has the same membership grade.

Sω = {(x,µT (x)) ∈ T | µT (x) = ω} for some ω ∈ [0,1].

3.3.2. Mendel’s Probability Analysis of the Stratified Structure
Mendel’s observations on the stratified structure [30] are interesting and relevant. In relation to the

Sampling Method of Defuzzification [21], he has deduced that as the domain discretisation becomes
finer, the probability of a randomly selected embedded set containing at least one of the minimum
secondary grades (from one of the secondary membership functions) approaches 1. Consequently the
lower strata contain more tuples than the higher ones. Mendel’s argument is reproduced here:

“Assumptions:

1. Primary variable x is discretized into N values x1,x2, . . . ,xN .

2. We are free to choose N, e.g. make it as small as we choose.

3. All primary memberships are discretized into the same number of levels, M. (Even
if you do not do this, the analysis below is interesting, and can be modified to the
case of non-equal discretization.)

4. The smallest secondary grade for each of the N secondary MFs occurs exactly one
time in each of the secondary MFs (this is controversial, but it could be changed
with a more complicated analysis).

My first goal is to compute the probability of choosing an embedded T2 FS that contains
at least one of the minimum secondary grades.

1. The total number of embedded T2 FSs is MN .

2. The total number of embedded T2 FSs that do not contain at least one of the mini-
mum secondary values is (M−1)N .

3. The total number of embedded T2 FSs that contain at least one of the minimum
secondary values is MN− (M−1)N .

4. The probability of choosing an embedded T2 FS that contains at least one of the
minimum secondary values is p(1 or more|M,N), where

4In the commonly accepted crisp sense of the word. Klir and Folger [24, Page 19] give a different definition of subset
in the type-1 fuzzy context.
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p(1 or more|M,N) =
MN− (M−1)N

MN . (12)

Next, I want to study p(1 or more|M,N), especially as N increases. Note from (12) that

p(1 or more|M,N) = 1−
(

M−1
M

)N

. (13)

Because (M−1)/M < 1, it is true that:

Fact: As N increases

p(1 or more|M,N)→ 1′′ [for a fixed natural number M > 0.]� (14)

Conversely, if N is fixed and M increases, the opposite result holds, i.e. p(1 or more |N,M) →
0 for M→ ∞.

The Sampling Method was devised in order to circumvent the defuzzification bottleneck engen-
dered by the proliferation of embedded sets. Type-reduction (Algorithm 1) requires that every em-
bedded set be processed. The number of embedded sets within a type-2 fuzzy set is ∏

N
i=1 Mi, where

N is the number of vertical slices into which the primary domain has been discretised, and Mi is the
number of elements on the ith slice. The finer the discretisation, the better the representation of a
given fuzzy set, but the greater the number of embedded sets generated. A reasonably fine degree of
discretisation can give rise to astronomical (though finite) numbers of embedded sets. For instance,
when a prototype type-2 FIS was invoked using a primary and secondary degree of discretisation of
0.02, the number of embedded sets generated was of the order of 2.9×1063 [21].

Figures 4 to 6 are in accord with Mendel’s probability analysis; they show that the lower strata are,
generally, denser than the higher ones. Nevertheless, as more embedded sets are sampled, new strata
come into being, frequently at greater heights than the existing strata. Table 1 shows the increasing
height of the maximum TRS tuple. If all the embedded sets were to be sampled, would a strata be
produced at the height of the highest secondary membership grade of the originating type-2 fuzzy set?
This question is answered in the next subsection.

Figure Number of Maximum
TRS Tuples Stratum
Sampled Height

4 50 0.184
5 500 0.270
6 5000 0.575

Table 1: Maximum strata heights for different embedded sets sample sizes.

3.4. Structure of the TRS of a Continuous Generalised Type-2 Fuzzy Set
If the simplification stage (Lines 6–8) of Algorithm 1 is omitted, then Algorithm 2 results. We

term the type-1 fuzzy set resulting from this algorithm the Unsimplified Type-Reduced Set (UTRS).
We will now look at how the TRS strata relate to the originating type-2 fuzzy set.

Definition 6 (Minimum Secondary Membership Function). Let Ã be a type-2 fuzzy set. Given x ∈ X,
µÃ(x) its secondary membership function, and

µÃ(x)(u) = max
u∈Jx

µÃ(x)(u)

11



Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall embedded sets do
2 find the minimum secondary membership grade (z) ;
3 calculate the primary domain value (x) of the type-1 centroid of the embedded type-2 fuzzy

set ;
4 pair the secondary grade (z) with the primary domain value (x) to give set of ordered pairs

(x,z) {some values of x may correspond to more than one value of z} ;
5 end
Algorithm 2: Algorithm 1, omitting the simplification stage (Lines 6–8), so creating the UTRS.

the maximum secondary membership grade of x. A minimum secondary membership function of a
type-2 fuzzy set Ã is a secondary membership function, µÃ(x), whose maximum membership grade is
the least of all the maximum membership grades of the vertical slices comprising the set, i.e.

µÃ(x)(u) = min
x∈X

µÃ(x)(u).

When the degree of discretisation du → 0, the discrete secondary membership function of the
type-2 fuzzy set tends to the original assumed convex secondary membership function, and there-
fore the discrete secondary membership functions becomes continuous. By definition, the minimum
secondary membership function will become continuous and will take all values between its corre-
sponding minimum and maximum values. Each secondary membership grade gives rise to a stratum.
Therefore, in a continuous generalised type-2 fuzzy set, there is a stratum at every secondary mem-
bership grade that lies within the minimum secondary membership function. We have already shown
(Section 3.1) that the TRS of non-discretised interval type-2 fuzzy set is a continuous horizontal line.
Taking these two observations together, we conclude that the UTRS in the continuous case is a contin-
uous planar surface. On simplification (at which the UTRS is converted into the TRS), all the z-values
apart from the highest are eliminated, so forming a continuous type-1 membership function.

In 2008 Liu [27, 32] proposed the α-Planes Representation (Subsection 6.2). Via this technique
a generalised type-2 fuzzy set is decomposed into a set of α-planes, which are horizontal slices akin
to interval type-2 fuzzy sets. According to the assumptions in Subsubsection 1.1.2, all the secondary
membership functions of the originating type-2 fuzzy set are convex. Therefore any given α-plane
must fit within the contours of a lower α-plane. It follows that the stratum corresponding to a lower
α-plane must occupy an interval that includes the interval associated with a higher α-plane. A higher
α-plane cannot overhang a lower α-plane; the TRS of a continuous type-2 fuzzy set is convex, rising
to a maximum and then decreasing. From this it follows that the TRS of a continuous generalised5

type-2 fuzzy set comprises a convex membership function.

4. The Truncated Type-2 Fuzzy Set

In this section the concept of the truncated type-2 fuzzy set is introduced; the observations which
follow apply to both generalised and interval type-2 fuzzy sets. Figure 7 depicts a minimum secondary
membership function of a type-2 fuzzy set, behind which can be seen the rest of the set. Were the
originating type-2 fuzzy set to be truncated horizontally at the level of the maximum grade of the
minimum secondary membership function (Figure 8), the set’s TRS would be unchanged, since no
strata exist at grades higher than this level.

5Here the term ‘generalised type-2 fuzzy set’ is used in a way which excludes interval type-2 fuzzy sets.
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Figure 7: A generalised type-2 fuzzy set viewed from the u− z plane. The minimum secondary membership function is
shown in bold. The dashed line shows a non-minimum secondary membership function.

u

z

0

1

0 1

Figure 8: The generalised type-2 fuzzy set depicted in Figure 7. The dashed line shows a non-minimum secondary
membership function; the dotted line indicates where it has been truncated to the height of the maximum grade of the
minimum secondary membership function (i.e. the truncation grade).

Definition 7 (Truncation Grade). The truncation grade of a type-2 fuzzy set is the maximum member-
ship grade of the minimum secondary membership function.

Definition 8 (Truncated Type-2 Fuzzy Set [11]). A truncated type-2 fuzzy set is a type-2 fuzzy set for
which all secondary membership grades greater than the truncation grade have been reduced to the
truncation grade.

Recall that the TRS of a type-2 fuzzy set Ã is the type-2 fuzzy set derived from the application
of expression (7), and that this is a type-1 fuzzy set with elements the centroid of all type-2 fuzzy
embedded sets of Ã and membership function that associates each element a membership degree equal
to the minimum of all secondary membership grades of the corresponding type-2 fuzzy embedded
set. It is therefore clear that the membership function of the TRS will have a maximum value equal
to the truncation grade of the type-2 fuzzy set Ã, because the minimum t-norm will discard any other
value above it. Thus, the TRS of a continuous generalised type-2 fuzzy set Ã with convex secondary
membership functions is characterised by a continuous membership function with domain a closed
interval subset of the unit interval U with maximum value the truncation grade of Ã. Consequently,
we have that the TRS of a type-2 fuzzy set Ã will be identical to the TRS of its truncated type-2 fuzzy
set. This is summarised in the following result.
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Theorem 1 (Type-2 Truncation Theorem). The TRS of a truncated type-2 fuzzy set is identical to that
of the original type-2 fuzzy set, and consequently the defuzzified value of a truncated type-2 fuzzy set
is equal to that of the original type-2 fuzzy set.

Any number of type-2 fuzzy sets may be truncatable to the same type-2 fuzzy set; there is clearly
an equivalence between these fuzzy sets.

Definition 9 (Equivalence Under Truncation). Two type-2 fuzzy sets are equivalent under truncation,
if, when truncated, they give rise to the same truncated type-2 fuzzy set.

From this it immediately follows that,

Theorem 2 (Type-2 Equivalence Theorem). The defuzzified values of type-2 fuzzy sets that are equiv-
alent under truncation are equal.

5. Experimental Confirmation of Equivalence of the Truncated Set

In the previous section it was demonstrated theoretically that “the defuzzified value of a truncated
type-2 fuzzy set is equal to that of the original type-2 fuzzy set” (Theorem 1, the Type-2 Truncation
Theorem). In this section the result is experimentally corroborated, to determine whether discreti-
sation choices have any bearing on the results. Six generalised type-2 fuzzy test sets were created,
depicted in Figures 9 to 14. These are aggregated sets output by the inferencing stage of a prototype
type-2 FIS, coded in MatlabT M. For each inference the degree of discretisation adopted was suffi-
ciently coarse to allow Exhaustive Defuzzification. Three rule sets were used. For each rule set the
FIS was run with two distinct sets of parameters6. Table 2 summarises the features of the test sets.
More information about the rule sets may be found in [12]. The FIS generated test sets were selected
because of the complexity and lack of symmetry evident in their graphs; their benchmark defuzzi-
fied values were found by Exhaustive Defuzzification. The defuzzification methods were coded in
MatlabT M R2014a and tested on a PC with a Pentium 4 CPU and a 0.99 GB RAM, with a clock speed
of 3.00 GHz. The MS Windows XP Professional operating system was used. Each test program was
run as a process with a higher priority than that of the operating system, so as to as far as possible
eliminate timing errors resulting from other operating system processes. The main purpose of the ex-
periments was to confirm that the defuzzified value of the truncated type-2 fuzzy set equals that of the
non-truncated type-2 fuzzy set. Defuzzification time was also investigated experimentally. Timings
were taken for each type-2 fuzzy set in its non-truncated, truncated and pre-truncated (i.e. truncated,
but with the time for truncation not counted) form.
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Figure 9: Heater0.125 — Heater FIS generated generalised test set, domain and co-domain degree of discretisation 0.125.

6For example Heater0.0625 is not a finer version of Heater0.125; it uses different parameters for the input rules. That
these two test sets differ can be clearly seen from their 3-D representations.
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Figure 10: Heater0.0625 — Heater FIS generated generalised test set, domain and co-domain degree of discretisation
0.0625.
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Figure 11: Powder0.1 — Powder FIS generated generalised test set, domain and co-domain degree of discretisation 0.1.
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Figure 12: Powder0.05 — Powder FIS generated generalised test set, domain and co-domain degree of discretisation 0.05.
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Figure 13: Shopping0.2 — Shopping FIS generated generalised test set, domain and co-domain degree of discretisation
0.2.
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Figure 14: Shopping0.1 — Shopping FIS generated generalised test set, domain and co-domain degree of discretisation
0.1.

NORMAL NORMAL NARROW NO. OF
TEST SET FOU SEC. MF FOU EMB. SETS
Heater0.125 yes no no 14580
Heater0.0625 yes no yes 13778100
Powder0.1 yes no yes 24300
Powder0.05 yes yes yes 3840000
Shopping0.2 no no no 16
Shopping0.1 yes yes no 312500

Table 2: Features of the generalised test sets.

Test Set Exhaustive Truncated Maximum Truncation
Defuzzified Exhaustive Secondary Threshold
Value Defuzz. Value Memb. Grd.

Heater0.125 0.6313618377 0.6313618377 0.6806 0.3438
Heater0.0625 0.2621587894 0.2621587894 0.9096 0.3875
Powder0.1 0.2806983775 0.2806983775 0.9167 0.8594
Powder0.05 0.8180632180 0.8180632180 1.0000 0.6191
Shopping0.2 0.5481044441 0.5481044441 0.6625 0.1563
Shopping0.1 0.5954109472 0.5954109472 1.0000 0.8594

Table 3: Defuzzified values for Exhaustive Defuzzification and Truncated Exhaustive Defuzzification for the six test sets.
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Test Set Exhaustive Truncated Pre-Truncated Number of
Defuzz. Exhaustive Exhaustive Embedded
Time Defuzz. Time Defuzz. Time Sets

Heater0.125 0.8706 s 0.8499 s 0.9758 s 14580
Heater0.0625 880.1 s 881.9 s 881.7 s 13778100
Powder0.1 1.45 s 1.45 s 1.44 s 24300
Powder0.05 268.08 s 268.98 s 268.39 s 3840000
Shopping0.2 0.0013 s 0.0014 s 0.0012 s 16
Shopping0.1 19.40 s 19.26 s 19.26 s 312500

Table 4: Defuzzification times for Exhaustive Defuzzification, truncated exhaustive defuzzification and Pre-Truncated
Exhaustive Defuzzification for the six test sets.

The results shown in Table 3 confirm that there is no difference whatsoever between exhaustive
defuzzification and truncated exhaustive defuzzification in relation to the defuzzified values obtained.
Discretisation choices are of no consequence. The timings recorded in Table 4 show that it matters
very little whether the type-2 fuzzy set is truncated or not, and if it is truncated, whether the timing for
the truncation itself is taken into account. These results are to be expected, as the truncation process
is much computationally simpler than exhaustive defuzzification.

6. Implications of Truncation

The Type-2 Truncation Theorem (Theorem 1) states that truncation does not alter the defuzzified
value of a generalised type-2 fuzzy set. The experiments described above show that truncation does
not appreciably alter the defuzzification time either. So is the notion of truncation merely of theoretical
interest? In this section, two practical applications of the concept of truncation are considered.

6.1. Truncation and Uncertainty
Zadeh’s 1975 innovation of the type-2 fuzzy set [39–41] intuitively models uncertainty. A type-2

fuzzy set (defined in Subsection 1.1.1) may be thought of as an adaptation of a type-1 fuzzy set [31,
page 118]:

“Imagine blurring the type-1 membership function . . . Then, at a specific value of x,
say x′, there no longer is a single value for the membership function (u′); instead the
membership function takes on values wherever the vertical line intersects the blur. Those
values need not all be weighted the same; hence, we can assign an amplitude distribution
to all of those points. Doing this for all x ∈ X , we create a three-dimensional membership
function — a type-2 membership function — that characterizes a type-2 fuzzy set.”

How type-2 fuzzy sets model uncertainty is the subject of [17]. In this 2009 book chapter it is
proposed that the type-2 fuzzy set’s third dimension (z) reflects the uncertainty arising out of a deficit
in information. From this premise it is argued that the volume under the surface of the type-2 fuzzy
set is a measure of the uncertainty relating to the set. On this measure, the minimum amount of
uncertainty possible is 0 (no uncertainty), and the maximum 1 (total uncertainty).

According to the Type-2 Equivalence Theorem (Theorem 2), the defuzzified values of type-2
fuzzy sets that are equivalent under truncation are equal. Yet two type-2 fuzzy sets may be equivalent
but have different uncertainty measures. Within an FIS (Section 1, Figure 1), the volume uncertainty
measure may be applied to the aggregated type-2 fuzzy set to give a quantification of the uncertainty
relating to the fuzzy inference. Thus two values may be obtain from the aggregated type-2 fuzzy set:
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1. The defuzzified value (i.e. the result of the fuzzy inference), obtained by defuzzification;

2. A quantification of the uncertainty relating to the fuzzy inference, obtained via the volume
measure of uncertainty.

6.2. Type-Reduction via the α-Plane Representation
In this section the impact of truncation on the α-Planes Method of type-2 defuzzification, (alluded

to in Section 3.4), is examined. This recognised technique for the defuzzification of generalised
type-2 fuzzy sets employs the α-Planes Representation, proposed by Liu in 2008, [27, 32]7. In this
strategy a generalised type-2 fuzzy set is decomposed into a set of α-planes, which are horizontal
slices equivalent to interval type-2 fuzzy sets. Each α-plane is then defuzzified via the Karnik-Mendel
Iterative Procedure [27], so forming an approximation to the TRS. By defuzzifying the resultant type-
1 fuzzy set, the defuzzified value for the generalised type-2 fuzzy set is obtained. Below this method
is presented algorithmically (Algorithm 3), and diagrammatically (Figure 15).

Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set

1 decompose the type-2 fuzzy set into α-planes ;
2 forall α-planes do
3 find the left and right endpoints using the KMIP ;
4 pair each endpoint with the α-plane height to give set of ordered pairs (i.e. a type-1

fuzzy set) {each α-plane is paired with two endpoints } ;
5 end

Algorithm 3: Type-reduction of a type-2 fuzzy set to a type-1 fuzzy set using the α-plane
method.

Alpha-Plane

Representation
Union

Centroid Type-

Reduction for Interval

Type-2 Fuzzy Set

Centroid Type-

Reduction for Interval

Type-2 Fuzzy Set

Type-2

Fuzzy Set

Alpha-Plane #1

Alpha-Plane #M

Alpha-Cut #1

Alpha-Cut

#M

Type-1

Fuzzy Set

Figure 15: Defuzzification using the α-Planes Representation (from Liu [27]).

Though the α-plane representation was envisaged by Liu as being used in conjunction with the
KMIP [27], any interval defuzzification method may be used. Any variation on the KMIP, such as the
Enhanced Iterative Algorithm with Stop Condition (EIASC) [36] will locate the endpoints of the TRS
interval. Other interval methods, such as the Greenfield-Chiclana Collapsing Defuzzifier [19, 20],
or the Nie-Tan Method [33], will defuzzify the α-plane [10]; their defuzzified values (located in the
vicinity of the centre of the interval) may then be formed into a type-1 fuzzy set equivalent to the
TRS.

7Independently of Liu, and at about the same time, Wagner and Hagras introduced the notion of zSlices [34], a concept
very similar to that of α-planes
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In [13] the α-Planes Method has been shown to be inferior to the Sampling Defuzzifier [21] and
Vertical Slice Centroid Type Reduction (VSCTR) [28] in relation to both accuracy and efficiency.
It is assumed that applying the α-Planes strategy to the truncated type-2 fuzzy set would make for
more efficient defuzzification, as there would be fewer α-planes to process. More importantly, it
is reasonable to suppose that accuracy would also be improved, as irrelevant α-planes (between the
maximum secondary membership grade and the truncation grade) would be eliminated and therefore
not be able to distort the defuzzified value.

Experiments were performed using the test sets described in Section 5, with the exception of
test set Powder0.05, which was not used since the defuzzification time required is exorbitant. These
test sets, whose exhaustive defuzzified values had already been determined, were defuzzified using
α-Planes/Interval Exhaustive Defuzzification, and then using α-Planes/Truncated Interval Exhaus-
tive Defuzzification. The number of α-planes actually defuzzified was recorded, for both the non-
truncated and truncated test sets. Five groups of experiments were performed using different potential
numbers of α-planes ranging from 11 to 201; the timings and defuzzified values for α-planes/interval
exhaustive defuzzification and α-Planes/Truncated Interval Exhaustive Defuzzification are recorded
in Tables 5 to 9. For the truncated test runs, the times for the truncation process itself were included
in the timings. The errors are calculated by subtracting the benchmark exhaustive defuzzified value
from the α-planes defuzzification value.

Test Set Exhaustive α-planes/ Error No. of Time α-planes/ Error No. of Time
Defuzzified Interval α-P. Trunc. Int. α-P.
Value Exh. DV Defuzz. Exh. DV Defuzz.

Heater0.125 0.6313618377 0.6202019617 -0.0111598760 8 0.11 s 0.6100619324 -0.0212999053 4 0.06 s
Heater0.0625 0.2621587894 0.2791839651 0.0170251757 11 34.7 s 0.2901775808 0.0280187914 4 13.9 s
Powder0.1 0.2806983775 0.2860677799 0.0053694024 11 0.60 s 0.2974284749 0.0167300974 9 0.53 s
Shopping0.2 0.5481044441 0.5381656623 -0.0099387818 8 0.018 s 0.5363791187 -0.0117253254 2 0.006 s
Shopping0.1 0.5954109472 0.5946460014 -0.0007649458 11 0.67 s 0.5810476375 -0.0143633097 9 0.54 s

Table 5: Defuzzified values and timings for α-Planes/Interval Exhaustive Defuzzification and α-Planes/Truncated Interval
Exhaustive Defuzzification. Each test set was decomposed into 11 α-planes.

Test Set Exhaustive α-planes/ Error No. of Time α-planes/ Error No. of Time
Defuzzified Interval α-P. Trunc. Int. α-P.
Value Exh. DV Defuzz. Exh. DV Defuzz.

Heater0.125 0.6313618377 0.6176441546 -0.0137176831 15 0.18 s 0.6099705337 -0.0213913040 7 0.09 s
Heater0.0625 0.2621587894 0.2839784863 0.0218196969 20 65.7 s 0.2884665979 0.0263078085 8 27.6 s
Powder0.1 0.2806983775 0.2903173044 0.0096189269 20 1.12 s 0.2961634579 0.0154650804 18 1.07 s
Shopping0.2 0.5481044441 0.5365375672 -0.0115668769 15 0.028 s 0.5363791187 -0.0117253254 4 0.009 s
Shopping0.1 0.5954109472 0.5929838018 -0.0024271454 21 1.24 s 0.5812827597 -0.0141281875 18 1.05 s

Table 6: Defuzzified values and timings for α-Planes/Interval Exhaustive Defuzzification and α-Planes/Truncated Interval
Exhaustive Defuzzification. Each test set was decomposed into 21 α-planes.

Test Set Exhaustive α-planes/ Error No. of Time α-planes/ Error No. of Time
Defuzzified Interval α-P. Trunc. Int. α-P.
Value Exh. DV Defuzz. Exh. DV Defuzz.

Heater0.125 0.6313618377 0.6149552604 -0.0164065773 36 0.45 s 0.6097558940 -0.0216059437 18 0.24 s
Heater0.0625 0.2621587894 0.2845118383 0.0223530489 47 159 s 0.2876980149 0.0255392255 20 69 s
Powder0.1 0.2806983775 0.2928844669 0.0121860894 47 2.69 s 0.2963359791 0.0156376016 43 2.51 s
Shopping0.2 0.5481044441 0.5362804955 -0.0118239486 35 0.07 s 0.5363791187 -0.0117253254 8 0.02 s
Shopping0.1 0.5954109472 0.5920110566 -0.0033998906 51 2.99 s 0.5812602023 -0.0141507449 43 2.51 s

Table 7: Defuzzified values and timings for α-Planes/Interval Exhaustive Defuzzification and α-Planes/Truncated Interval
Exhaustive Defuzzification. Each test set was decomposed into 51 α-planes.

6.2.1. Discussion of Results
The timings show that, as expected, the defuzzification time is roughly proportional to the num-

ber of α-planes defuzzified. Truncation, therefore, is a device which may be used to improve the
efficiency of the α-Planes Method.
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Test Set Exhaustive α-planes/ Error No. of Time α-planes/ Error No. of Time
Defuzzified Interval α-P. Trunc. Int. α-P.
Value Exh. DV Defuzz. Exh. DV Defuzz.

Heater0.125 0.6313618377 0.6146732228 -0.0166886149 70 0.88 s 0.6097638065 -0.0215980312 35 0.44 s
Heater0.0625 0.2621587894 0.2857559640 0.0235971746 92 315 s 0.2876829504 0.0255241610 39 135 s
Powder0.1 0.2806983775 0.2909086286 0.0102102511 93 5.37 s 0.2960372128 0.0153388353 86 5.02 s
Shopping0.2 0.5481044441 0.5361962986 -0.0119081455 68 0.12 s 0.5363791187 -0.0117253254 16 0.03 s
Shopping0.1 0.5954109472 0.5919454769 -0.0034654703 101 5.92 s 0.5812947933 -0.0141161539 86 5.02 s

Table 8: Defuzzified values and timings for α-Planes/Interval Exhaustive Defuzzification and α-Planes/Truncated Interval
Exhaustive Defuzzification. Each test set was decomposed into 101 α-planes.

Test Set Exhaustive α-planes/ Error No. of Time α-planes/ Error No. of Time
Defuzzified Interval α-P. Trunc. Int. α-P.
Value Exh. DV Defuzz. Exh. DV Defuzz.

Heater0.125 0.6313618377 0.6149272030 -0.0164346347 138 1.73 s 0.6097715004 -0.0215903373 69 0.87 s
Heater0.0625 0.2621587894 0.2843776382 0.0222188488 183 630 s 0.2875788268 0.0254200374 78 270 s
Powder0.1 0.2806983775 0.2903453151 0.0096469376 185 10.8 s 0.2959017026 0.0152033251 172 10.1 s
Shopping0.2 0.5481044441 0.5363170602 -0.0117873839 134 0.24 s 0.5363791187 -0.0117253254 32 0.06 s
Shopping0.1 0.5954109472 0.5917184848 -0.0036924624 201 11.8 s 0.5812980253 -0.0141129219 172 10.1 s

Table 9: Defuzzified values and timings for α-Planes/Interval Exhaustive Defuzzification and α-Planes/Truncated Interval
Exhaustive Defuzzification. Each test set was decomposed into 201 α-planes.

Regarding accuracy, truncation worsened the defuzzification errors in 22 out of 25 cases. Those
cases in which it was helpful all relate to the Shopping0.2 test set (with 51, 101 and 201 α-planes
employed). In Tables 7 to 9 the reduced errors are shown in bold. Rather than being a remedy for the
inaccuracies of the α-Planes Method, truncation exacerbates the problem, pointing to issues with the
accuracy of the technique that are deeper than those noted in [12]. These unexpected, counterintuitive
results warrant further investigation.

7. Conclusions

This paper contributes to the theory of type-2 fuzzy logic, particularly in relation to defuzzifica-
tion. The structure of the TRS of the continuous type-2 fuzzy set in both its interval and generalised
forms has been investigated by first looking into the structures of the discretised sets. The TRS of a
continuous interval type-2 fuzzy set has been shown to be a continuous straight line, specifically an
interval of the line u = 1 with least domain value ≥ 0 and greatest domain value ≤ 1, i.e. i.e. the
TRS of a continuous interval type-2 fuzzy set is a closed interval subset of the unit interval U with
membership function identically equal to 1. The TRS of a continuous generalised type-2 fuzzy set Ã
with convex secondary membership functions is characterised by a continuous membership function
with domain a closed interval subset of the unit interval U with maximum value the truncation grade
of Ã.

The innovative concept of the truncated type-2 fuzzy set has been introduced. Its characteristic
property is that its TRS is identical to that of the originating non-truncated type-2 fuzzy set. From
this it immediately follows that its defuzzified value equals that of the non-truncated type-2 fuzzy set.
Experiments have corroborated the equivalence of the truncated to the non-truncated type-2 fuzzy set
as regards defuzzified values (the Type-2 Truncation Theorem), and shown that there is no time to be
saved by defuzzifying the truncated set in place of the non-truncated set. A corollary of the Type-2
Truncation Theorem is the Type-2 Equivalence Theorem, which states that the defuzzified values of
type-2 fuzzy sets that are equivalent under truncation are equal.

Two type-2 fuzzy sets may be equivalent under truncation, yet be associated with different amounts
of uncertainty as quantified by the volume measure of uncertainty as applied to the originating type-2
fuzzy set.

Unsurprisingly, experiments have shown that truncating the generalised type-2 fuzzy set improves
the efficiency of the α-Planes Method. Surprisingly, these experiments have shown that truncating the
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generalised type-2 fuzzy set does not improve the accuracy of the α-Planes Method; on the contrary,
accuracy is diminished.

7.1. Further Work
7.1.1. The Uncertainty Represented by a Type-2 Fuzzy Set

In relation to Subsection 6.1, it would be interesting to explore further how the volume measure
of uncertainty for a type-2 fuzzy set [17] relates to the concept of truncation.

7.1.2. Issues with the α-Planes Method
As observed in Subsection 6.2, there are unexpected, intriguing, experimental results in relation

to the α-Planes Method. These experiments have shown that truncating the generalised type-2 fuzzy
set diminishes, rather than improves, the accuracy of the α-Planes Method. Further investigation into
this matter is desirable.

7.1.3. More Specific Characterisation of the Shape of the TRS
At the end of Section 3 the shape of the TRS of a generalised type-2 fuzzy set is outlined. A more

specific characterisation of the TRS shape is desirable. This would be interesting in its own right, and
hopefully open the way for the development of another defuzzification strategy for generalised type-2
fuzzy sets. An algorithm that computes the TRS is likely to be amenable to parallelisation.
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