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Abstract—We investigated the association between individual 

differences in cognitive performance in old age and the 

approximate entropy (ApEn) measured from functional magnetic 

resonance imaging (fMRI) data acquired from 40 participants of 

the Aberdeen Birth Cohort 1936 (ABC1936) while undergoing a 

visual information processing task: inspection time (IT). 

Participants took a version of the Moray House Test No. 12 (MHT) 

at age 11, a valid measure of childhood intelligence. The same 

individuals completed a test of non-verbal reasoning (Raven’s 

Standard Progressive Matrices [RPM]) aged about 68 years. The 

IT, MHT and RPM scores were used as indicators of cognitive 

performance. Our results show that higher regional signal entropy 

is associated with better cognitive performance. This finding was  

independent of ability in childhood but not independent of current 

cognitive ability. ApEn is used for the first time to indentify a 

potential source of individual differences in cognitive ability using 

fMRI data. 

 
Index Terms—Approximate Entropy (ApEn), BOLD, fMRI, 

Inspection time, Raven’s matrices and Scottish Mental Survey. 

 

I. INTRODUCTION 

HE origins of inter-individual differences in cognitive 

ageing are unclear. Cognitive performance can differ 

significantly between individuals of similar age and age-

related pathology.  Identifying the structural and functional 

characteristics that accompany successful ageing may; 1) 

facilitate interventions that would promote the acquisition of 
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such characteristics; 2) identify individuals at risk of future 

cognitive decline; 3) identify a target for potential therapies 

that would maintain such characteristics.  

   Brayne et al. [1] identified education as enabling individuals 

to delay the effects of dementia pathology on cognition whilst 

not preventing such pathology itself; therefore, education may 

be considered as a proxy for cognitive reserve. Cognitive 

reserve is a phrase used to explain the discrepancy between 

pathology attributed to ageing and disease and the degree of 

cognitive impairment exhibited in an individual.  There is 

however no biological marker [2]-[4] for cognitive reserve, in 

addition there is no obvious mechanism through which its 

proxies are implemented.   An alternative perspective on this 

phenomenon is to consider reserve as the ‘adaptive capacity’ 

of the system.   Lipsitz [5] has argued that greater underlying 

system complexity better enables a system to restore the 

steady-state after perturbation and therefore, complexity may 

be a measure of adaptive capacity. 

   Complexity refers to the difficulties arising when describing 

or predicting a signal. Lipsitz [6] stated that, with ageing and 

disease, there is a loss of complexity in the dynamics of many 

integrated physiological processes. Normal physiological 

function requires the integration of intricate networks of 

control systems, feedback loops, and other regulatory 

mechanisms to enable an organism simultaneously to perform 

the many necessary and varied activities. 

   There are indications that measuring the complexity of the 

output signals of the brain might be a useful marker of ageing 

and disease-related decline. Researchers have argued that there 

is a general loss of complexity with ageing and disease 

[7],[5],[8]. Chaotic and complex behaviours indicate a healthy 

system whereas more predictable behaviours would be linked 

to pathological states [9].  

   Entropy is a concept used to quantify complexity. Increased 

uncertainty and complexity is quantified in higher entropy, 

while reduced uncertainty and complexity is quantified in 

lower entropy. Lipsitz defined ageing as a loss of “entropy and 

fractality” [6]. Also, a loss of entropy in cellular processes is 

observed during ageing [10] which implies a progressive 

reduction in an individual’s functional reserve [11].  

Approximate Entropy (ApEn) is a measure of the complexity 

of a system. A high ApEn indicates unpredictability and 

random variation (high complexity), whereas low ApEn 

indicates predictability and structure (low complexity) [12]. 

ApEn is applicable to a variety of systems such as stochastic, 

deterministic and composite systems.  
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     ApEn may correlate with “latent” or subclinical changes 

often undetected by other more classical time series analysis. It 

provides effective discriminatory capability in instances where 

measures such as spectral and autocorrelation analyses exhibit 

minimal distinctions [13]. ApEn changes have often been seen 

to be predictive of subsequent clinical changes. This has 

facilitated its application to numerous areas. Within medicine 

and biology, it has been applied to studies of hormone 

fluctuations. Using plasma concentration time series ApEn 

identified subtle system changes and insights separate from 

those given by pulse detection algorithm [14]. It has been used 

to identify gender and age-related differences in heart rate 

dynamics [15] and been used to classify arrhythmias [16]. It 

has also been used to study the human respiratory movement 

[17] showing that respiratory movement and 

electroencephalogram (EEG) signals are more regular during 

stage IV sleep than during other stages of consciousness. The 

relationship of hypothermia and EEG signals has been studied 

using ApEn [18] showing that the ApEn of the EEG changed 

in a sigmoidal fashion during cooling and rewarming. The 

relationship of the ApEn of EEG signals with Alzheimer’s 

disease has been investigated [19] showing that the degree of 

complexity of EEGs from control subjects is higher. 

    In order to assess the relationship between entropy and 

cognition in the context of ageing, we investigated its 

relationship with a cognitive task that changes with age. 

Recent attempts to explain cognitive ageing have focused on a 

small number of more “fundamental cognitive mechanisms” 

[20]. One hypothesis in cognitive ageing is that speed of 

information processing has a special place in understanding 

what happens in the older person's brain  [21],[22]. This 

hypothesis suggests that processing speed might not simply be 

one of many domains of cognitive function that decline with 

age, but that processing speed may be a phenomenon that 

underpins other functions. That is, if speed of information 

processing slows down, then this becomes the rate limiting 

step for other important cognitive functions. One technique for 

measuring processing speed is to use an inspection time task.  

In this study we employ a psychophysical task of speed of 

information processing that assesses the efficiency of iconic 

memory in the early stages of visual information processing. 

Inspection time (IT) is a visual backward masking task [23]. 

The task requires only a very simple visual discrimination, one 

that is almost error-free at longer stimulus exposure durations, 

such as the 150 ms duration included in the present study. 

    In the absence of dementia, the strongest predictor of 

cognitive function in old age is cognitive function in youth, 

accounting for around half of the variance [24]. Investigators 

have stressed that in addition to childhood intelligence there 

are many relevant environmental influences such as education, 

occupational complexity, a socially-engaged and intellectually 

stimulating lifestyle and good nutrition [25]. Along with 

unknown genetic factors, these are likely contributors to late 

life abilities in addition to education [4].  It is unclear if 

differences in adaptive capacity are related to current cognitive 

abilities or pre-morbid abilities.  A schematic representation of 

how these influences may fit together is shown in Fig. 1.  We 

hypothesize that there is an association between the entropy of 

the measured fMRI BOLD signal and the ability to perform an 

information possessing task (IT).  The figure also shows a 

simple model for lifelong cognitive ageing.  In this model we 

hypothesize that childhood ability has a direct effect on late 

life abilities and an indirect effect mediated by life experience 

brought about by the factors described above. The figure also 

indicates that these lifelong measures either separately or in 

combination influence our fMRI entropy measure and 

processing speed. We are in a privileged position to examine, 

in older people, whether estimates of entropy are explained by 

current or prior (childhood) intelligence. 

     The aim of this study is to investigate, in an age 

homogeneous sample of older people, differences in cognitive 

performance and information processing speed and their 

associations with differences in the ApEn calculated from 

fMRI data acquired during performance of the inspection time 

task. We also investigate whether these associations are related 

to childhood or current intelligence. We hypothesize that 

higher levels of ApEn (higher complexity) will be associated 

with better cognitive performance. 

 
 

 

 

 

 

II. MATERIALS AND METHODS 

A. Participants 

   All were surviving participants of the 1947 Scottish Mental 

Survey (1947SMS) [26] when about 95% eligible children 

born in 1936 and attending a Scottish school on 4
th

 June 1947 

sat a group administered IQ-type test, a version of the Moray 

House Test No. 12 (MHT). About age 64, survivors were 

recruited to a longitudinal study of health and cognitive 

ageing, the Aberdeen Birth Cohort 1936 (ABC1936). From the 

ABC1936 sample, 58 individuals aged 68 – 70 (28 female) 

with an age 11 IQ, calculated from the Moray House Test 

(MHT) raw scores, between 85 and 115 (i.e. within 1 Standard 

Deviation (SD) of the sample mean) were invited for fMRI 

scanning.  The age 11 IQ score was calculated by deriving a 

standard IQ-type scale within a mean of 100 and SD of 15 

from the ABC1936 sample’s age 11 MHT raw scores using the 

whole ABC1936 recruited at age 64 (N=661). Hence, only 

Fig.1. A schematic representation of how cognitive abilities 

measured over the life span influence the hypothesized association 

between IT abilities and entropy. Single headed arrows indicate 

potential causal influences and double headed arrows represent 

potential correlations. The dotted lines represent association where 

we found no significance.   
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participants with IQs greater than 84 and less than 116 were 

considered for this study. 

   The study was approved by the Grampian Research Ethics 

Committee. Written informed consent was obtained by a 

trained research nurse.  

 

B. Indicators of Cognitive Performance  

Inspection Time Testing 

   Inspection Time (IT) tasks used in the imaging sessions 

followed closely those described by [27] and detailed in [28, 

29]. Participants were instructed to make a simple visual 

discrimination i.e. to indicate which of two parallel, vertical 

lines of markedly different lengths, was longer (Fig. 2.).  

   58 participants volunteered for the functional imaging study 

and all had previously successfully completed the IT task as 

part of their cognitive testing. Immediately before brain 

imaging, participants practised the task to ensure their 

complete familiarity with the IT task demands. They were 

instructed that accuracy and not speed of responses was being 

assessed. 

   The IT experiment took place in the MRI scanner. We have 

previously described the brain-imaging inspection time session 

and procedures, and we reported on the functional anatomy 

associated with performing the IT task, and the extent to which 

the BOLD response mediates the association between 

inspection time performance and intelligence [28, 29]. Briefly, 

in the imaging IT session, twenty trials were presented at each 

of eight durations: 6, 12, 25, 37, 50, 75, 100, and 150 ms. 

Paradigms were programmed in Presentation (Neurobehavioral 

Systems Inc., CA) with instructions and stimuli presented 

visually on a computer monitor and viewed via a mirror on the 

head coil. The eye-to-screen distance was about 5 m. Visual 

acuity was assessed immediately before scanning and 

corrected with MRI compatible lenses as necessary. 

Pushbutton units were provided to allow participants to log 

responses. Participants indicated the position of the longer line 

by pressing a key with the left index finger (for ‘left’) or a key 

with the right index finger (for ‘right’). The same optimal inter 

stimulus interval (ISI) sequence was used for all trials. The 

same random sequence of stimulus durations was presented to 

all subjects. 

 

Cognitive tests 

   All participants had taken part in 1947SMS aged 11, when 

they sat a version of the Moray House Test (MHT) No. 12 of 

general mental ability (intelligence). MHT is a group 

administered test with a time limit of 45 min, a maximum 

score of 76 and a range of questions including verbal, 

numerical and spatial reasoning. In a national subset of 1000 

children, scores on MHT correlated about 0.8 with the 

individually administered Stanford-Binet IQ test [26]. 

    In order to test current cognitive ability, participants 

completed an individually administered test of non-verbal 

reasoning (Raven’s Standard Progressive Matrices [RPM]) 

[30] at age 68, not greater than 8 months prior to fMRI 

acquisition. 

 

 

 

 

This is a 60-item test in which subjects examine abstract 

patterns arrayed as a 3 x 3 matrix and, by inducing and then 

applying the logical rules underlying the rest of the pattern, 

indicate which of the answer options correctly completes the 

pattern. The RPM loads highly on the general cognitive ability 

factor, making it a good indicator of general mental ability 

[31]. RPM scores obtained in late adulthood and old age 

correlate (0.7-0.8) significantly with the MHT scores from age 

11 [32]. The ABC1936 wave 3 testing data was used to 

compute the RPM scores of the participant, around age 68. 

The ABC1936 participants used in this study had to have taken 

RPM at late life baseline (age 64) so as to ensure that they had 

similar experience with the RPM test at age 68. The whole 

cohort’s mean and SD for RPM at age 68 were 37.8 and 7.6 

respectively (Table 1). 

C. Brain Imaging Procedures 

   MRI data were acquired with a 1.5T scanner (NVi, General 

Electric Medical Systems, Milwaukee, WI, USA) using a 

standard head coil while performing IT task (160 trials). fMRI 

data were acquired using a T2* weighted gradient echo echo-

planar imaging sequence (EPI) in the axial plane with TR/TE 

of 2500/40 ms, matrix 64 x 64, field of view of 24 cm
2
, 

thickness of 5 mm, 30 slices per volume. 292 time 

points/volume in total of which the first 4 volumes were 

discarded. The total scanning time per fMRI test was 12 min 

and 10 s. 

D. Pre-processing 

Spatial pre-processing was performed on the fMRI data 

using version 5 of Statistical Parametric Mapping (SPM5; The 

Wellcome Department of Imaging Neuroscience, UCL, 

London, UK) software. The data were realigned and each 

voxel time series standardized to a mean of zero and SD of 1.  

E. Calculation of ApEn 

   ApEn is defined for a given N-dimensional time series 
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Fig. 2. The cue, stimuli, and backward mask for the 

inspection time task. See text for procedure. 
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   In equation (1), N is the number of time points, m specifies 

the pattern length, r defines the tolerance value and τ  is the 

time delay. The two patterns i and j of m measurements of the 

time series are similar if the difference, d ji XX ,  between 

any pair of corresponding measurements of iX  and jX  is 

less than or equal to r, as shown in equation (3). iX  and jX  

are m-dimensional pattern vectors whose components are time 

delayed versions of the elements in the original time series 

with time delay, τ  as shown in equation (4) and (5).  

   ApEn measures the conditional probability of similarity 

between a chosen data segment of a given duration and the 

next set of segments of the same duration. When similar 

patterns in the time series are followed by additional similar 

patterns, the time series has relatively small ApEn value and 

when similar patterns are not repetitive it has a more complex 

pattern.  

   The parameters used for calculating ApEn are N=288 of 

fMRI time series, m = 2, τ  = 1 and r = the tolerance (rMx) 

value corresponding to the maximum ApEn (ApEnMx) value 

multiplied by the Standard Deviation (SD) of the fMRI time 

series. The choice of r to use has been recommended as 

0.1 ≤ r ≤ 0.2 times the SD of the time series [12].  Preliminary 

analysis of this data indicated that an r of 0.30 was appropriate 

(See Appendix A). 

   The ApEn algorithm was written in MATLAB and 

measurements on a voxel-by-voxel basis, for the whole brain 

were implemented. Fig. 3. shows the standardized Blood 

Oxygen Level Dependent (BOLD) signal of a voxel for one of 

the volunteers on which the ApEn algorithm was applied. The 

calculation of ApEn on the whole brain was thresholded at 0.1 

times the maximum signal to exclude background voxels. The 

thresholding was done to prevent voxels outside the brain from 

being processed and included in the analysis. The mean, 

median and maximum ApEn values for the whole brain were 

calculated. Whole brain ApEn maps for each individual were 

generated. Fig. 4. depicts the ApEn map of a whole brain for 

one of the volunteers. 

 

F.    Statistical Analysis 

   Associations between cognitive measures and ApEn were 

tested on a global and regional basis. The global analysis was 
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performed using Statistical Package for Social Sciences (SPSS 

17.0; Chicago, IL, USA). The ApEn maps of all the 

participants were normalised to a standard echo planar 

imaging (EPI) template after which the regional analysis was 

performed using SPM5. Correlations between the ApEn maps 

and the IT scores were then found by using standard SPM 

approach from the second-level group analysis. Correlation 

coefficients were also calculated between the ApEn maps and 

IT scores when the MHT and RPM scores were adjusted 

individually and together. 

 

III. RESULTS 

  Among 58 ABC1936 participants invited for fMRI, 13 fell 

below a pre-determined threshold of 18 correct responses out 

of a total of 20 for the 150 ms duration trials of the IT task. 

Passing this threshold implied that the participants understood  

the task and were able to perform it with the easiest stimulus 

duration. Five of the participants were excluded for medical 

reasons, such as our inability to correct their vision 

appropriately. Those who passed the threshold included 40 

participants (20 female). Table 1 shows the mean and SD of 

participant characteristics for the whole ABC1936 sample at 

wave 3, the 40 participants who passed the threshold and those 

who were excluded from the analysis.  Examining differences 

between the excluded participants and those included in the 

Fig. 3. Standardized BOLD signal for a typical voxel 

Fig. 4. A 3D whole brain ApEn map of 288 volumes with 

mean ApEn of 1.1991. 
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analysis found no difference between them in terms of their 

RPM, MHT scores and age at testing.  Fig. 5 shows how the 

participants performed at different trial durations. This was as 

expected with random responses at the shortest durations and 

almost perfect responses at the longest durations. The 

correlations among IT, MHT and RPM are shown in Table 2. 

The results show only the IT and MHT were not significantly 

correlated (p>0.01).       

      Calculating the mean, median and maximum ApEn values 

across the whole head, no significant global ApEn associations 

were found with the IT score obtained from the sum of the 

number of correct responses at all durations of the IT task. 

Using an SPM regression approach and an initial threshold of 

p<0.005 with familywise error (FWE) corrected cluster level 

significance (p<0.05 N>250)[33], Fig. 6(a) shows the regions 

where there was significant positive correlation between IT 

and ApEn, i.e. the higher the IT score (better visual 

information processing) the more complex the fMRI signal, as 

hypothesized. No negative global or regional associations 

between IT and ApEn were found during this analysis. Using 

SPM we went on to examine the regional association between 

IT and ApEn after adjusting for childhood (MHT) and late life 

(RPM) cognitive ability. When the association between IT and 

ApEn was tested after adjusting for MHT, the significant 

positive correlation of IT with ApEn remained with some 

minimal changes in brain regions. After adjusting for RPM, 

the significant positive correlation of ApEn with IT remained, 

but with significant changes in brain regions. When both age 

11 IQ (MHT) and RPM were adjusted for, there was no 

correlation between IT and ApEn. Also, when the standardized 

difference between age 11 IQ (MHT) and RPM (life long 

cognitive change) was adjusted for, there was no correlation 

between IT and ApEn. Table 3 shows the association of IT 

with ApEn and adjustment for MHT and RPM separately. 

    These results suggest that the ApEn-IT association was 

explained by life long cognitive change.   Examining this 

suggestion closer, investigating effect size is difficult in terms 

of the cluster level significances we have demonstrated since 

they are a combination of contrast (t or Z statistic) and extent  

(size of the cluster).  However, extracting peak t value in each 

cluster showed that adjusting for age 11 IQ (MHT) had a small 

 

 

Table 1: Participants characteristics. Mean (SD) for each group.  

 The ABC1936 

sample at age 

68 (N=313)  

The 40 participants 

who passed the 

threshold 

The 13 

excluded 

participants 

Moray House 

Test score at 

age 11* 

103.7 (13.1) 105.7 (6.7) 100.0 (12.5) 

Raven’s 

Progressive 

matrices 

37.8 (7.6)  39.8 (9.2) 39.5 (6.8) 

Total number 

of correct 

responses (out 

of 160)  

      - 111.5 (9.3)       - 

Age at testing 

(years) 

68.8 (0.7)    69.8 (0.5) 68.4 (0.6) 

* The Moray House Test scores were standardized using all of the 

participants recruited at age 64 years (N=661) 

effect decreasing the r
2
 estimate between IT and ApEn.  RPM 

had a moderate effect decreasing the r
2
 value between IT and 

ApEn and adjusting for life long cognitive change had a large 

effect decreasing the r
2
 estimate between IT and ApEn.  For 

example using cluster D (Table 3), the cluster of median size 

and the peak voxel located at 38, 0, -14 an r
2
=.257 value was 

calculated for the ApEn-IT model.  Adjusting this association 

for age 11 IQ (MHT) the r
2
 was .242 (6% effect).  Adjusting 

for current ability (RPM) the r
2
 was .147 (43% effect).  

Adjusting for life long cognitive change (standardized 

difference between MHT and RPM) the r
2
 was .014 (95% 

effect). The dotted lines in Fig. 1 show how our original 

schematic structure is informed by our results. We found no 

evidence for an influence of childhood ability on IT and ApEn. 
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Table 2: Correlations among IT, MHT (age 11) and RPM (age 68).  

 IT – MHT 

correlation  

(N=4 0)  

IT – RPM 

correlation 

(N=40) 

MHT – RPM 

correlation 

(N=40) 

Pearson 

Correlation* 

0.213 0.466 0.489 

Significance 

(2-tailed) 

0.188 0.002 0.001 

* Correlation is significant at the 0.01 level (2-tailed). 

 

IV. DISCUSSION 

These results show that high ApEn values at some grey and 

white matter locations throughout the brain, while performing 

the IT task, are associated with better cognitive performance. 

This is consistent with our hypothesis that higher levels of 

entropy will be associated with better cognitive performance. 

These regions have previously been shown to be associated 

with visual processing tasks and speed, using structural and 

functional imaging.  The cerebellum has previously been found 

to be involved in age related differences in visual processing 

speed [34] and has been found to contribute to general 

cognitive ability independent of other brain structures [35]. 

Neurophysiological and neuropsychological evidence have 

implicated temporal regions in visual discrimination and 

inferior parietal regions in the allocation of attention to 

locations in the visual field [36]. The frontal gyrus is 

Fig. 5.  The group mean performance curve on the IT task (mean ± 2 SD) 

and median (Representative Individual). 
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associated with high-level executive functions and decision-

related processes [37]. The insula is associated with visual 

anticipation which is a critical component for visual processing 

[38]. The basal ganglia have been associated with cognitive 

fatigue with time [39]. The posterior cingulate has been shown 

to be involved in Alzheimer’s disease and associated with 

reduced processing speed in older adults using resting state 

fMRI [40]. Collectively, the literature shows that each of the 

locations identified using entropy has previously been 

associated with abilities that intuitively would contribute to 

superior information processing ability as we have measured 

it. 

   The locations found (as a result of a significant positive 

correlation between IT performance and ApEn) in this study 

have some similarities with those found in this data set by 

Waiter et al. [28] using a conventional fMRI analysis approach 

investigating BOLD response correlations with IT duration. 

The study found that the relative preservation of cognition in 

old age may be associated with the preservation of 

fundamental information processing networks found in the 

young. A location in the posterior cingulate and left precuneus 

is common to both analyses, shown in Fig. 6(b). Waiter et al. 

also found a negative association between activation and IT in 

the posterior cingulate and the left precuneus. This suggests 

that the variety of signal patterns produced while performing 

the IT task is an indication of ability. A greater variety of 

signal pattern will give larger entropy. Our analysis also found 

associations in a number of regions, described above which 

were not identified by the previous analysis.  These regions do 

not exhibit a measureable response (measured using contrast) 

during the task and may be part of an extended network used 

to perform it. Estimates of signal entropy at these locations 

may, therefore, be a proxy for ability, or conversely decreasing 

entropy in these regions may be an early correlate of cognitive 

decline. IT and intelligence have a well-established significant 

association of moderate effect size, and so any association with 

entropy may be due to intelligence rather than being specific to 

the task. The survival of the ApEn-IT associations after 

adjusting for concurrent intelligence (RPM) suggests that it is 

the non-intelligence variance in IT that is in part responsible 

for association at these locations. 

    The minor impact on the regional results after adjusting for 

MHT indicates that early life ability does not explain the 

ApEn-IT association.  Similarly, the considerable impact of 

adjusting for RPM on the regional result indicates that at least 

part of the ApEn-IT association is explained by current higher 

cognitive abilities.  Since MHT and RPM are significantly 

correlated it could be that it is the variance in RPM not 

explained by MHT that explains the ApEn-IT association.  

After adjustment for the standardized difference between MHT 

and RPM (life long cognitive change) no significant ApEn-IT 

association was observed.  The adjustment resulted in an r
2
 

reduction of 95% in the ApEn-IT association at particular 

locations.  In other words, higher cognitive abilities acquired 

since age 11 explain the ApEn-IT association. These changes 

may be brought about by life experiences such as educational 

and occupational attainment. More education and a more 

cognitively complex occupation predict higher cognitive 

ability in old age than would be expected for a person’s 

childhood ability and accumulated brain burden [41] who 

found that the intellectual challenges experienced during life, 

such as education and occupation, accumulate reserve and 

allow cognitive function to be maintained in old age. In 

addition to these mental or intellectual activities, genetics, 

lifestyle and diet have also been shown to maintain ability in 

late life [25].  It is clear that the factors affecting the ability of 

an individual to adapt to the changing demands of ageing and 

disease are multifactor in nature.  

    This study departs from previously recommended tolerance 

values, r of 0.1 ≤ r ≤ 0.2 times the SD [12]. The tolerance value 

we have used corresponds to the ApEnMx value. This was 

calculated as part of our initial analysis of the data to be 0.3 

(Appendix A). The choice of r is possibly data set specific.  

Here we have selected r based on the ApEn variance it 

produced between individuals and minimising the sensitivity 

of ApEn to r. It was clear from our initial analysis that an 

individual’s ApEnMx occurred at slightly different values of r.  

We would recommend investigating this relationship prior to 

examining individual differences between subjects as 

inappropriate selection could lead to reduced sensitivity and/or 

erroneous findings. 

    The limitation of fMRI and other functional approaches 

such as functional positron emission tomography, 

magnetoencephalography and electroencephalogram are that 

they predominantly rely on a stimulus initiated response for 

signals to be detected and locations and or network to be 

implicated.  All parts of the brain involved in a particular 

function are unlikely to demonstrate a measurable stimulus 

induced response.  Measuring signal entropy in this way may 

identify locations and networks that are required for functions 

that do not demonstrate this stimulus induced response. This 

study has been conducted in a narrow age range which restricts 

generalizing our findings to other age ranges, particularly 

younger ones.  Our previous work using these data [28] has 

noted that successful ageing produced activation patterns 

similar to that found in a younger sample [27] for this task.  It 

is unclear if measures of entropy would be similar in the 

younger samples that were without age related brain changes.  

In addition in this study we have selected participants based on 

a limited range of childhood abilities. This could have 

restricted the ability of the MHT to explain the association 

between ApEn and IT and it is possible that including those 

with a wider range of childhood ability may reveal an 

association with ApEn. 

   A limitation of this study includes the fact that we had a 

short time series. ApEn is dependent on time series length. A 

superior estimation of ApEn may be obtained from longer time 

series since a longer time series corresponds to higher ApEn 

values which gives a better approximation of the entropy. Our 

study was task dependent; therefore the variability of entropy 

using the same, different and no task requires further 

investigation. Alternative measures of complexity are Sample 

Entropy (SampEn), Multiscale ApEn, Multiscale SampEn and 

Fractal analysis which have found use in a variety of 

applications. However, the optimal approach for fMRI data 

such as this is unclear. 
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V. CONCLUSION 

   To the best of our knowledge, this is the first use of temporal 

signal entropy to investigate individual differences in fMRI 

related to late life cognitive ability. Our results show that 

individual differences in IT are associated with regional 

differences in ApEn calculated from fMRI data. These results 

suggest that the association between IT and ApEn is a 

consequence of life long cognitive change, rather than early 

life ability. Explicitly, these results suggest that differences in 

life long cognitive change explains patterns of brain activity 

measured using fMRI and entropy.  These changes are brought 

about by the balance between subclinical pathology, genetic 

predisposition and environment. In addition we have shown 

that a measure of fMRI temporal signal entropy is a viable tool 

to identify a potential source of individual differences. 

 

 

APPENDIX A 

Estimation of Tolerance value, r in the Calculation of ApEn 

   The tolerance value, r is essentially a filter, where the type of 

filter depends on the choice of r. The choice of r to use has  

 

 

 

 

 

 

been recommended as 0.1 ≤ r ≤ 0.2 times the SD of the time 

series [12]. This range of r has been used with applications  

with relatively slow dynamic signals such as heart rate 

variation [42],[43] and hormonal release data [44]. Recent  

studies have shown that this recommended range is not always 

appropriate for fast dynamic neural signals [45]. FMRI data 

are an example of signals that are the result of fast dynamic 

neural signals.  In order to compare like with like, a fixed 

value of r was required. An appropriate value of r is one that 

produces a large enough variance in ApEn, between 

individuals to detect differences.  The value of r should be 

such that minor changes in its value do not produce large 

changes in ApEn.  In addition, the selection of r should be 

based on a reproducible strategy.  For example here we have 

selected a value of r that gives the largest value of ApEn.  Fig. 

A. shows the plot of ApEn versus r for two of the volunteers, 

S1 and S2. Here, the rMx value for S1 and S2 are 0.28 and 

0.32 respectively.  The rMx values occur in a flat region of the 

curve.  The recommended values of r are in the steepest part of 

the curve where a small variation in r would produce a large 

change in ApEn.  A plot of ApEn versus r for 30 of the 

volunteers using the algorithm described in the methods  

Fig. 6. ( a) Axial image slices of regions in the brain showing significant positive correlations between IT and ApEn. (b)  A 3D image showing a comparison 

between the conventional fMRI analysis approach (green/red) of this data (Waiter et al. [32]) at a threshold of (p < 0.005, N>250, corrected cluster p<0.05) and 

the ApEn-IT findings (yellow). Yellow represents the significant ApEn-IT correlations, green represents negative activations during the IT task, red represents 

the positive activation during the IT task.  The overlap (black) is located at Left Cerebrum, Limbic Lobe, Posterior Cingulate, Left Precuneus. 
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Table 3:  Location that show a positive association of IT with ApEn before and after adjustment for MHT and RPM (with initial 

threshold of p<0.005 and extent voxel of N>250), ns – not significant. 

Cluster 

ID 

 

 

 

 

Talairach 

coordinate 

(XYZ) 

 

 

 

Regions in the brain included in each 

cluster 

 

 

 

 

Cluster  p 

value (FWE 

corrected) 

(ApEn-IT 

correlation) 

Cluster 

Extent 

(ApEn-IT 

correlation) 

Cluster  p 

value 

(FWE 

corrected) 

(ApEn-IT 

correlation 

after 

adjusting 

for MHT)  

Cluster 

Extent 

(ApEn-IT 

correlation 

after 

adjusting 

for MHT) 

Cluster  p 

value 

(FWE 

corrected) 

(ApEn-IT 

correlation 

after 

adjusting 

for RPM) 

Cluster 

Extent 

(ApEn-IT 

correlation 

after 

adjusting 

for RPM) 

     A 
-26 -76 -44 Left Cerebellum, Cerebellum Posterior 

Lobe,  Pyramis 

 

0.000 

 

360 

 

0.000 

   

417 

 

ns 

 

- 

B 
16 -76 -40 Right Cerebellum, Cerebellum Posterior 

Lobe,  Pyramis 

 

0.002 

 

293 

 

0.001 

   

325 

 

ns 

 

- 

C 

-38 -54  -8 

 

-32 -68  2 

 

-10 -52 -26 

Left Cerebrum, Temporal Lobe, Sub-

Gyral, White Matter 

Left Cerebrum, Occipital Lobe, Middle 

Occipital Gyrus, White Matter 

Left Cerebellum, Anterior Lobe,  Gray 

Matter, Dentate 

 

0.000 

 

 

1214 

 

0.000 

 

 

1737 

 

 

0.000 

 

 

941 

D 

 38   0 -14 

 

 38 -10 -6 

 

 28   0   6 

Right Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, White Matter 

Right Cerebrum, Sub-lobar, Insula, 

White Matter 

Right Cerebrum, Sub-lobar, Lentiform 

Nucleus, Gray Matter, Putamen  

 

0.000 

 

436 

 

ns 

 

- 

 

ns 

 

- 

E 

-22  30 -10 

 

-12  48   6 

 

-16  50  -4 

Left Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus, Gray Matter  

Left Cerebrum, Frontal Lobe, Medial 

Frontal Gyrus, White Matter  

Left Cerebrum, Frontal Lobe, Medial 

Frontal Gyrus, White Matter 

 

0.000 

 

757 

 

0.000 

 

659 

 

0.000 

 

793 

F 

24 -52   8 

 

30 -52 32 

 

16 -46 14 

Right Cerebrum, Sub-lobar, Extra-

Nuclear, White Matter 

Right Cerebrum, Parietal Lobe, Sub-

Gyral, White Matter 

Right Cerebrum, Sub-lobar, Extra-

Nuclear, White Matter, Corpus Callosum  

 

0.000 

 

437 

 

0.000 

 

394 

 

ns 

 

- 

G 

-4 -46  26 

 

 4 -48  24 

 

Left Cerebrum, Limbic Lobe, Cingulate 

Gyrus, White Matter 

Right Cerebrum, Limbic Lobe, Posterior 

Cingulate, Gray Matter 

 

0.000 

 

370 

 

0.001 

 

351 

 

ns 

 

-  

 

 

section was produced. The mean ApEn of 100 voxels in the 

frontal lobe, sub-lobar and occipital lobe of the brain for each 

of these volunteers was evaluated with r increasing from 0 to 

0.6 at intervals of 0.02. The rMx value corresponding to the 

ApEnMx value in the frontal lobe, sub-lobar and occipital lobe 

of the brain of each of the 30 volunteers was obtained and the 

median rMx value was calculated as 0.3.  This median rMx 

value was used as the value of r in the main study. 
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Fig. A.  Plot of ApEn versus r at the sub-lobar of the brain for two 

volunteers. The two solid vertical lines on 0.1 and 0.2 delimitate the 

recommended r range. 
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