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ABSTRACT 

A great deal of research of the robotic peg-in hole assembly operation has evolved over the 

past decades. In the case of a chamfered peg-hole, it is normal to use a simple wrist such as 

the Remote Centre Compliance (RCC), which is fitted between the robot arm and the end 

effector to accommodate misalignments between the peg and the hole during the 

engagement stage. Otherwise jamming could occur and cause damage to the assembly 

robot and or the mating parts. However, in case of no chamfer on either of the mating 

parts, complicated and expensive devices are used to accommodate the same 

misalignments as the RCC. 

The objective of this research is to develop a new paSSIve assembly strategy and 

consequently a compliant wrist for the peg-hole insertion process. The wrist should adopt 

the passive technique as the RCC, but should accommodate positional errors even in case 

of no chamfer on either of the peg or the hole. Moreover, it should function from vertical 

as well as the horizontal directions. 

The thesis presents a new passive assembly strategy for chamferless peg-in hole assembly 

operation. This strategy was inspired from a theory known as the domino effect. One 

principle of this theory was implemented in the design and construction of a wrist called 

Chamferless-Vertical-Horizontal Remote Centre Compliance (CVHRCC). After a 

thorough literature survey, no report was found about any passive wrist that is capable of 

accommodating misalignment between chamferless mating parts as the CVHRCC. 

To validate the theoretical analysis, a series of peg-hole assembly experiments were carried 

out. The results of these experiments have coincided with the theoretical results obtained 

during the theoretical simulation process. It was proven that the CVHRCC could function 

reliably in accommodating positional misalignments between chamferlesss cylindrical 

parts with clearance over 0.3 mm for a given initial positional error of 2 mm and 3° from 

the vertical direction. But for mating parts with clearance of less than 0.2 mm, the wrist 

could not function reliably. 
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Chapter 1: Introduction 

CHAPTER! 

INTRODUCTION 

The cylindrical peg-in hole assembly operation is the most common task in assembly [So P. 

Chan et aI, 1997]. In the past, this task was performed by humans, because of their ability to 

sense and adjust to changes in the products being assembled. However, the technological 

progress has led to more complex parts being designed, and produced in large quantities 

and having small clearances that has to be assembled in a short time. This fact has resulted 

In: 

• an increase in the assembly time 

• a decrease in the reliability and quality of products, due to the complexity and 

repetitive actions of assembly which causes tiredness to the workers 

• an increase in the assembly cost, nearly 40% of manpower costs in production come 

from assembly 

Hence, in the past decades research and development have shifted towards the 

robotic/automated assembly technologies [Yo Xu et aI, 1990: H. Qiao, 1995]. However, the 

inaccuracy of an assembly robot in positioning an inserted peg into a hole, due to the 

uncertainty of the assembly environment, represents an obstacle in this area of automation. 

In addition, robotic assembly is not a simple task; solutions must be found for a number of 

problems, amongst which are: 

• precision and repeatability in positioning the end effector 

• motion in straight lines while maintaining fixed orientation of the end effector 

• automatic end effector changing, or a versatile gripper 

• rapid motion of the robot arm 

To overcome these problems, complex and expensive equipment has been designed. Also, 

to help reduce the cost of assembly operation much attention has been focused on 

minimising the number of components that need to be assembled from one direction and to 

ensure that the remaining ones can be assembled as easily as possible (Design-for­

Assembly, [G. Boothroyd, 1987 & 1988]). 
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Chapter 1: 
Introduction 

Although robots and automated machines have liberated the human operator from hard and 

dangerous tasks, they still rely on the human operator for feeding them with parts and e\'en 

undertaking the product inspection after the completion of assembly. 

1.1 ASSEMBLY PROBLEMS 

One critical problem that arises during component assembly is that small error in relative 

lateral position or angular position can produce large reaction forces. These forces can 

prevent successful completion of the assembly (jamming) and can cause damage to the 

parts and the robot. 

(a) 

I 

1 
I 

Lateral error 
\ 

(b) 

\ 

\~ 
\ 1 

\ 1 
\ 1 

\ I 

\1 
~ 

Angular error 

Figure 1.1 Misalignment of parts during an assembly operation, (a) lateral error and (b) 

angular error 

Figure (1.1) shows a lack of precision in the location (1.1a lateral error) of the peg and in 

the angular orientation (1.1b angular error) of the peg. To overcome these errors, such 

misalignments must be corrected at the interface stage between the parts to be assembled, 

taking into account part properties such as clearance and mating geometry. 

Considerable research has evolved in the past decades, which defines the two-dimensional 

mating of parts. Rigid parts, at least one compliantly held, have been assembled by 

researchers in Russia, Belgium, New Zealand, Japan and the Charles Stark Draper 
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Chapter 1: Introduction 

Laboratory in the US [D. E. Whitney, 1982]. The common element in their experiments is 

the use of a chamfer on either of the mating parts to reduce the alignment problem between 

the mating parts. Also, in case of chamferless assembly, success usually comes from 

initially tilting the peg by a small angle; so considerable misalignment of the two parts can 

then be tolerated. 

1.2 APPLICATION AND MOTIVATION 

So far, most advanced mechanicaVcompliant assembly systems perform assembly 

operations with the aid of a chamfer on either of the peg or the hole. For this reason, to 

achieve an insertion process, the allowable positional misalignment between the mating 

parts should be restricted to the chamfer width-something that constrains the assembly 

system to that specific application. Moreover, to make a chamfer, the part has to be set up 

on the relevant machine for machining which takes time and cost money; this can result in 

an increase in the overall assembly cost. 

The research presented in this thesis, aims at utilising the domino effect theory [W. 

Haskiya, 1997] for the robotic peg-hole application. The objective is to develop a passive 

compliant wrist that can accommodate effectively angular/lateral misalignment between 

chamferless cylindrical parts [W. Haskiya, 1998]. The wrist should function in the vertical 

as well as the horizontal directions. However, the sub-objective of this research can be 

summarised as follows: 

1. To develop a mathematical model from 2D and 3D for a peg-hole assembly strategy 

[W. Haskiya, 1997 & 1999] 

2. To demonstrate the new assembly strategy through a simulation process using Matlab­

Simulink 

3. The peg-hole experimental results should be at least of the same standing as those, with 

the use of a chamfer (see literature survey for results: chapter2, table 2.1) 

1.1 METHODOLOGY 

This research went through, in three stages: 

1. Literature survey: To stay updated on the latest in the area of robotic assembly, a 

thorough literature survey was carried out. Until the time of writing this thesis, it is 
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Chapter 1: Introduction 

not reported yet on any assembly method/compliant wrist, that functions as the one 

reported in this research. 

ll. Analysis and computer modelling: After comprehending the principles of the domino 

effect theory, the new assembly strategy was developed and presented in 2D and 3D 

space. Thereafter a mathematical model of the chamferless peg-in hole insertion 

process is developed. A computer simulation was made to establish peg-in hole 

theoretical limits of the insertion system. 

ill. Design/construction of the assembly rig and experiments: Following the design 

stage, the wrist is built, and tested for finding its stiffness. Also, the wrist was stress 

analysed using Finite-Element-Analysis package (ALGOR). Thereafter, the 

compliant wrist and the assembly rig were made. Note, throughout the design and 

construction stages, consultations with local manufacturers were made. Also, 

chamferless peg-hole assembly experiments were performed in stages to test and 

achieve the research objectives. 

1.2 THESIS ORGANISATION 

The organisation of the thesis is as follows: 

Chapter 2 This chapter is a literature survey. It presents the latest published research, 

about robotic assembly devices, methods and strategies used around the world 

that relates to the peg-hole assembly. In addition, advantages and 

disadvantages of each assembly technology are discussed. 

Chapter 3 This chapter relates the domino effect theory to the robotic peg-In hole 

assembly application. Subsequently, a new assembly strategy is developed and 

analysed in 2D space. 

Chapter 4 A 3D geometrical analysis of the chamferless peg-hole is described. To realise 

the geometric constraints of the peg-hole problem, and to establish the 

geometric conditions for a successful peg-hole insertion process. 

Chapter 5 This chapter is a progression from chapter 4. It describes phenomena such as 

friction, compliant motion stick/slip and their effect on the insertion process 

(e.g. jamming/wedging). In addition, investigation of the dynamics of the 

assembly process, taking into account those phenomena, the forces and 

moments between the mating parts are presented. 

4 



Chapter 1: Introduction --

Chapter 6 In this chapter, a modelling and simulation of the chamferless peg-hole 

insertion process is presented; to investigate and learn about the theoretical 

behaviour of the compliant wrist/assembly strategy. Also, to establish the 

required parameters for the assembly system (e.g. wrist stiffness, allowable 

misalignment etc,) 

Chapter 7 This chapter describes the compliant wrist (Chamferless-Vertical-Horizontal 

Remote Centre Compliance CVHRCC); the experiments to find the wrist 

stiffness. In addition, the wrist design and stress analysis using FEA package is 

presented. 

Chapter 8 Presents the experimental build-up and procedure for the chamferless peg-hole 

insertion process, and the data correlation. 

Chapter 9 This is a discussion for the research method; shortcoming of the research, the 

extent of the research objective that have been achieved, etc. 

Chapter 10 Conclusion and recommendation. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 INTRODUCTION 

The peg-hole example has many applications in automated assembly [J. L. Nevins et aI, 

1980: D. E. Whitney, 1979], and therefore it is widely used in the robotic assembly 

industry [J. L. Nevins et aI, 1978] e.g. bearing in housing, shafts in bearing and gear into a 

pump etc. Hence, much research [Yo Xu et aI, 1990: M. A. Badger, 1983] and development 

have been undertaken in this area. Despite the programmability and the flexibility of 

assembly robots, they are not yet widely employed in assembly operations [K. Park et aI, 

1994]. The reason for this is their inaccuracy; in precision assembly, the clearance between 

the mating parts is normally lower than the accuracy of the assembly robots. Accordingly, 

any positional misalignments between the mating parts can lead to jamming, which can 

cause damage to the mating parts or the assembly robot itself. One of the industrial 

examples for solving the inaccuracy problem during clearance fit assembly, is to heat the 

female part (bearing), as a result the diameter is increased by the several micro-millimetre 

and then the insertion of the male part (shaft) becomes possible. 

The following is the order of existing solutions for the assembly problems: 

Section 2.2 industrial examples 

Section 2.3 fine-motion strategies 

Section 2.4 compliant systems 

Section 2.5 summary 

2.2 INDUSTRIAL EXAMPLES 

A growing company, faced with a skilled labour shortage, and the need for consistently 

high quality products, naturally tends to consider automation for their product assembly as 

a means of tackling both these problems at the same time. 

2.2.1 The Rover Engine Line 

Rover-motors have introduced new engines called the K-series [A Motive, 1990]. The 

engines are made of aluminium casting. There are two types of the K-series: the K8 with 
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Chapter 2: Literature Survey 

two valves per cylinder and the K16 with four valves per cylinder. The assembly of the 

engine head is carried out on different stations (automatic and semiautomatic). The 

mounting for the head is tilted to three different locations so the valve stem is vertical for 

each different insertion operation. A robot fits the sub-assemblies produced on different 

lines to the valve stem. First, a spring seat and seal are assembled, followed by a spring and 

finally a cup and cotter. At one station, Pragma robot with vision system is used to identify 

components by the optical character recognition of grading details on the parts; it picks the 

shell from a conveyor. Altogether, the robot assembles the two thrust washers and five sets 

of bearing shells to the block and ladder. Note that a sensor attached to the gripper detects 

the orientation of the oil hole in the shell, if the shell is not aligned then the robot corrects 

the alignment during the loading operation. However, at one station the assembly of the 

con rods to the pistons is not fully automated. The ends of the con rods are heated to 3500 

C in an induction unit and then inserted into the piston and aligned. The assembly of the 

piston and con rods to the engine block are done manually. Also, the sump is fitted 

manually. 

One of the limitations of the Rover's assembly line is that it can not cope with horizontal 

assembly therefore parts have to be tilted after each vertical insertion to fit the other object 

from a different orientation. Also they still rely on manual assembly for parts of 

interference fit clearance, and complex components, but they have not yet automated this 

kind of assembly. 

2.2.2 Robot System Builds Customised Printed Circuit Boards 

Kent Modular Electronics (KME) [J. Hollingum, 1991] is a small company who makes 

colour and monochrome monitors for data display systems. The robot line makes the 

assembly of their printed circuit boards (PCB). An IBM 7576 robot with a total reach of 

800 mm and a high-speed payload of 1 kg is used at one station. The robot picks a 

component and places it on the board. If it is not aligned, a pressure sensor attached to the 

gripper sends a signal to the control unit and then the robot moves a small distance from 

the nominal position and starts a search routine for the hole. The robot does ten insertion 

attempts and if it still fails to insert the component, then it makes another ten attempts and 

if it still fails, then it discards the component in a reject box and picks another component. 

If the problem persists then it stops and calls for help. Once the robot inserts the 
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component into the PCB, it updates the location of the X-Y co-ordinate for the next 

component. According to the company, the overall insertion time for each cycle is 3 

seconds. 

It can be said that the overall insertion time is long, even if taking into account the number 

of components that need to be inserted onto the PCB. Considering other options to 

overcome the robot inaccuracy would save the company time and money which is needed 

to survive in today's market. 

2.2.3 Automatic Board Assembly 

Another example to the assembly of printed circuit boards is the use of one gripper for all 

parts of different shapes. CHAD industries' [G. W. Holcomb, 1995] uses a system called 

CHAD OFM (Odd Form Master) which includes Adept robots with 3D compliant gripper 

and single pin clinch system. According to the company, this gripper is the only one in the 

world that is capable of handling all parts of different shapes, without having to make 

tooling or gripper changes. This is achieved by the gripper's ability to compensate for 

variations in each part to be inserted, complying three-dimensionally similar to the human 

hand when picking up different shaped parts. Instead of changing tooling, one simply 

changes the software to handle any mix of parts. 

After all, in case of insertion failure, the system presented here has to resort to the search 

routine for the hole, the same as the one presented by the KME in the previous section. 

Moreover, it can be said about the assembly of printed circuit boards, since the boards 

contain multi-components of same shape/type, then why not have one assembly system 

which is capable of doing multi-insertion at one go? 

2.2.4 Acoustic Emission For Monitoring Assembly Operation 

The peg-in hole insertion process releases strain energy in the form of sound/stress waves, 

which is due to the peg and the hole contact. Hence, the term acoustic emission refers [C. 

R. Heiple et aI, 1993: R. Penfold, 1994: G. Bright et aI, 1995] to the elastic stress waves 

emitted during the engagement of the mating parts. A Puma MK II robot having Val II 

language is used for the peg-in hole insertion process. Several insertion attempts are 

carried out for different pegs. A condenser microphone is used to receive the sound waves 
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produced by the mating parts. The signal transmitted by the microphone is amplified and 

then processed by a dynamic signal analyser. The dynamic signal analyser converts the 

sound signal from the time domain to the frequency domain. The sound frequency 

component is displayed on a monitor, the process is repeated to find a mean frequency 

component for each process. So, in case of incorrect assembly, the frequency traces are 

different than the ones for correct assembly. Accordingly, the micro-computer detects that, 

and changes to the programme of the peg-hole insertion are made on-line. The values of 

the frequency traces for successful insertion process are used as references points for 

determining future incorrect insertion. If insertion fails, and values of the incorrect 

insertion are different to the ones stored for successful insertion, then the robot carries out 

a search for the exact location for the hole. If problems persists then the computer sounds 

an alarm and the assembly stops. 

In addition to what already has been said about the shortcomings of the previous methods 

in terms of the search procedure for the hole in case of incorrect insertion, the utilisation of 

sound characteristics require special equipment which add to the overall cost of the 

insertion process. Also, authors did not give information about the overall insertion time, 

which is likely to be similar to the one in previous methods. More importantly, such 

method may not suit practical assembly operations, because of noise produced by the 

surrounding environment. 

2.3 FINE-MOTION STRATEGIES 

The principles of the fine-motion strategies are the utilisation of the geometric constraints 

of the mating parts to guide the assembled parts to their destination through the 

employment of an algorithm. 

Bruno Dufay and Latombe [B. Dufayet aI, 1984] has suggested a new approach for fine 

motion strategies, which is based on automatic robot programming. His system embodies a 

two-phase approach for building such programmes. A training phase produces traces of 

execution, and an induction phase transforms these traces into an executable programme. 

However, this approach is good for research purposes, not for practical use. It needs 

several improvements so it can be used with different mating parts without having to 
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retrain or by simplifying the editing of the rules of the programme, perhaps for a better on­

line interaction with the human programmer. 

Other assembly methods have been developed under this scheme (see next section). One 

method is known as a strategy for peg-hole assembly without RCC or force sensor. 

Another one is called the pre-image strategy. Other strategies can be also found in 

"Automatic Synthesis of Fine-Motion Strategies for Robots" (see section 2.3.2). 

2.3.1 A Strategy For Peg-Hole Assembly Without RCC Or Force Sensor 

This strategy [H. Qiao et aI, 1994] is based on identifying the basic relationship between 

the peg-hole system and the movement of the peg and the contact forces during the mating 

process. This strategy can be divided into two stages: 

I search stage 

II insertion stage 

The search stage is to get the peg engaged with the hole, and this can be achieved through 

a series of sub-goals. This starts from any allowable initial state and ends at the final goal 

that is the completion of the insertion action. This strategy can be used with chamferless 

mating parts. However, one of its limitations is the 2.5 seconds duration of the insertion 

action that is much longer than that in the compliant systems. 

2.3.2 The Pre-Image Strategy 

The pre-image strategy [T. Lozano et aI, 1984] is "a set of points from which the goal can 

be attained in a single motion" (see figure 2.1). In other words, it is to identify a series of 

positions from where the tip of the peg can reach the bottom of the hole by a single motion. 

The direction of such motion can be represented as a unit velocity, and each unit velocity 

can compute one point at the tip of the peg, and such motion that reaches the goal by a 

single motion called the pre-image of the goal. 
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Figure 2.1 Basic idea for the pre-image concept [after T. Lozano et al] 

When the current position of the peg contains no pre-image of the goal, then the same 

computation can be applied recursively. By using each of the existing pre-images as a 

possible goal. This process is called backward chaining [N. Nilson, 1980]. Each of the pre­

images serves to define a new goal. This process is repeated until one of the pre-images 

contains the current position of P. 

In short, the basic approach is to chain backward from the goal towards the current 

position, characterising at each step the range of positions that can reach the current goal in 

one motion. A full description of this strategy can be found in [N. Nilson, 1980]. 

Because of the need to search for the hole, it can be said that the insertion time is longer 

than that in compliant systems. Furthermore the disadvantages of this strategy and the 

previous one, is the need for different algorithm for each unsimilar insertion task. 
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2.4 COMPLIANT SYSTEMS 

One question tends to arise when adopting compliant systems for solving assembly 

problems; Why is compliance needed in flexible assembly [K. W. Klaus, 1992]? 

Flexible assembly in a modern production environment poses very specific problems. The 

need for flexibility is well established and is mainly due to the desire to bring the economic 

advantages of mass production into a changing marketplace, where the trend goes towards 

smaller batches, larger product variety and faster response to the customer's expectations. 

In fact, all assembly automation relies on some form of compliance in the system. 

Sometimes the imprecision in the assembly machine/robot is sufficient to overcome the 

misalignment, particularly when the products themselves do not need high precision. 

Compliant system devices can be classified under three different techniques [J. H. Chao et 

aI, 1987]: 

2.4.1 passive accommodation 

2.4.2 active accommodation 

2.4.3 passive-active accommodation 

See table 2.1 for compliant systems features. 

2.4.1 Passive Assembly Accommodation 

This method utilises the passive concept to accommodate misalignments between the 

mating parts. This is achieved by the elastic deformation of the compliant devices, under 

the influence of the reaction forces generated through the contact between the mating parts 

or other externally generated forces, such as air-stream force or magnetic force. 

R. Stepourjine and Rouget [R. Stepourjine et aI, 1983] has proposed an automatic insertion 

device for light robotic assembly parts made of light alloys or plastic, parts with peg 

diameter from 0.5 to 8 mm. The system consists of pneumatic cylinders, elastomeric 

cylindrical rods, gripper and gripper holder combined with a force sensor. The strategy 

based on inclining the inserted peg by bending the elastomeric rods through the pneumatic 

cylinders. Detecting the hole edges is achieved with the aid of spherical joints. When 

reaction forces arise, the force sensor sends a signal to the pneumatic cylinders in which 

the stored energy by the elastic rods is released causing the peg to be aligned into the hole. 
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The author claims the system was tested in inserting chamferless peg inside a hole, the 

clearance was 0.01 mm between the mating parts. However, the inclination of the peg and 

the approach motion is said to be under visual and force feedback. 

Generally speaking, paSSIve assembly devices/methods can be classified into four 

categories: 

2.4.1.1 compliant wrists or work table 

2.4.1.2 air or gas stream 

2.4.1.3 magnetic force 

2.4.1.4 vibratory motion 

2.4.1.1 Compliant wrists or work station 

A variety of compliance concepts have been proposed and developed [H. McCallion et aI, 

1979: S. Havilk, 1983: H. J. Warnecke et aI, 1980: G. Belforte et aI, 1982: A. Fakri et aI, 

1984] that utilise the concept of passive compliance. The most successful device in this 

category is the Remote Centre Compliance developed by the Charles Draker Laboratories 

[Po C. Watson et aI, 1978] in the US. It was evaluated and tested by General Motors and 

used in several applications [J. D. Lane, 1980]. 

Remote Centre Compliance (RCC): The RCC is a passive compliant device [P. C. Watson, 

1977: D. E. Whitney et aI, 1979] mounted between the robot arm and the gripper, that 

enables peg-hole insertion without jamming or wedging, despite initial errors in the peg's 

position and orientation. The essential characteristic of the RCC is that the lateral and the 

angular errors are absorbed independently. This elimination is achieved by placing the 

centre of compliance at the tip of the peg. 

A typical remote centre compliance device is made of a frame (matrix) and a set of flexing 

members (rotational and translational springs). One of its limitations is the need for 

chamfer on one of the mating parts and thus the allowable positional error is restricted to 

the chamfer width. 

Work table: Due to problems caused by the previous devices (RCC's), such as vibration on 

positioning of the part, and large displacements generated by a small force, several 
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researchers [T. Arai et aI, 1981] have proposed a work table concept. The work table is a 

compliant table that carries either of the mating parts. A typical compliance system 

consists of a rotational and translational spring. In the work table, the alignment is 

achieved by the structure compliance rather than the robot compliance. 

2.4.1.2 Air-stream assisted method 

In this method [F. Caliot et aI, 1984: Y. A. Yakimovich, 1970], the alignment of the mating 

parts is achieved by the air-stream instead of the contact forces as with compliant devices. 

Here, the parts are fed into their corresponding holes and aligned by the air stream that 

passes through the corresponding holes and flows around the end of the parts. 

As it has been said, the air stream produces the reaction forces necessary to align the peg 

into the hole, while in compliant devices the reaction forces are generated by the contact 

between the mating parts. This fact is considered as advantage for this method over 

compliant devices similar to the RCC, because large errors can be allowed; the reason for 

that it is not restricted to the chamfer width. Moreover, this method requires no chamfer. 

2.4.1.3 Magnetic force method 

In this method [ V Mashinostroenya, 1976 & 1977] the alignment of the mating parts is 

achieved by magnetic forces that due to the magnetic fields. Therefor this method can be 

used only for ferromagnetic parts. 

The device that generates the magnetic fields comprises of a DC electromagnet with poles 

and an AC electromagnet in the form of solenoid coil and a vibrating ring. The mating 

parts are magnetised by the supply to the electromagnet, then the peg moves towards the 

hole into the area of greater magnetic field strength. Since the peg is also subject to the 

effect of the alternating field, its magnetisation is reversed during each half cycle of the 

alternating current with the result that the poles at its ends are continuously changing. The 

peg located within the solenoid is vibrated by the alternating torque produced by the 

magnetic force, while the axial force simultaneously seeks to pull the peg into the central 

area of the field between the poles of the permanent magnet. The condition for the entry of 

the peg into the hole during the search period depends mainly upon the vibration amplitude 

and the angle of the intersection of the parts' axes. 
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One of the advantages of this method is that possible welding can be eliminated by the 

vibration of the mobile part. However, this method is limited to ferromagnetic parts. 

2.4.1.4 Vibratory motion method 

In this method the alignment of the mating parts is achieved by vibrating the peg with 

respect to the hole. The vibration is carried out by: 

• Robot [St. Kaczanowski et aI, 1981] 

• vibrator fitted between the robot arm and the gripper [So Kang et aI, 1995: K Won et aI, 

1989] 

• vibrator fitted to a work table [J. Warnecke et aI, 1988] 

The robot vibration is made possible by making small movements in the X-Y plane that 

causes the gripper to vibrate a device similar to the RCC structure; but its insertion 

principles are different. The alignment is achieved by the wrist vibration that commences 

after the initial contact between the mating parts, which is detected by a force sensor 

installed on one of the sides plate springs. When the initial positional errors are corrected, 

the insertion force is reduced and the wrist vibration stops. The final alignment is achieved 

by the wrist flexibility. 

In the third version of the vibratory method, the alignment of the mating parts resorts to the 

search procedure for either of the peg or the hole. The robot's gripper holds one of the 

mating parts fixed, and a vibratory table holds the other part. 

One of the disadvantages of the vibratory method is that the search for finding the desired 

inserting position must usually resort to a trial and error procedure, which consumes 

additional time to the net-time of the insertion process. 

Advantages, disadvantages and applications of the passive accommodation 

Advantages: Passive compliant devices can handle small misalignment between mating 

parts (allowable error less than 2 mm and 3° in case of chamfered parts) with a simple 

configuration and scheme in a short time compared to the active accommodation method. 
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Disadvantages: The allowable positioning error is restricted by the chamfer width in the 

case of peg-hole assembly. Compliance of wrist alone often produces a large insertion 

force that depends upon the initial error and the clearance ratio of the mating parts. 

Adaptability that accounts for changing work environments is limited. 

Applications: Cylindrical parts (peg-hole), variable resistors, valve/ 4 cylinder engine, 

electric components, such as bearings in housings and shafts in bearings as in VCR. 

2.4.2 Active Assembly Accommodation 

Because of the limitations of passive compliant devices, much research and development 

has been made into the active assembly method [G. Hirzinger, 1985: S. Hopkins et aI, 

1988]. This method mostly employs force sensors to acquire information about the position 

of the mating states and uses the signals for position control of the robot end effector. 

Considering sensing method, these can be classified into: 

2.4.2.1 servoing with force sensors 

2.4.2.2 servoing with vision sensors 

2.4.2.3 servoing with proximity sensors 

2.4.2.1 Servoing with force sensors 

In this category there are: 

• Hi-T hand 

• programmable force controlled wrist 

• active sensory table 

Hi-T hand: It is a flexible wrist [T. Goto et aI, 1974 & 1980: K. Takeyasu et aI, 1976] 

instrumented with force sensors on its three axes (X-Y-Z). The wrist fits between the robot 

arm and its end effector. In this method the alignment of the mating parts is achieved by 

the search procedure which commences upon receiving the signal/s from the wrist. 

One of the advantages of this wrist over paSSIve compliant devices is that it can 

accommodate large initial errors between the mating parts, even in case of chamferless 

mating parts. However, this wrist yields much longer insertion time than passive compliant 

devices due to long search motion. 
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Programmable force controlled wrist: This device [V. Brussel et aI, 1978 & 1979 & 1979 

& 1980 & 1981 & 1983] has five degrees of freedom with no axial rotation and 

incorporates force sensors and programmable unit for position control. A DC motor via a 

servo loop actuates each axis. However, this wrist is quite complex and expensiye 

(compared with passive, active devices). 

Active sensory table: The system [K. Takeyasu et aI, 1981] consists of a coarse motion 

robot, active working table and its motion controller. The table has 6 degrees of freedom 

and equipped with force sensors and fine motion actuators. The controller consists of a 

signal processing unit and a driving unit. The controller generates the fine motion needed 

for the active table to overcome initial positional misalignment between the mating parts 

based on the sensor's infonnation obtained during the peg-hole contact. 

2.4.2.2 Servoing with vision sensors 

This method [K. McWalter, 1993: A. Sanderson et aI, 1983] provides the ability to 

visualise position and orientation of characteristic features of the parts' image. Parts' image 

can be taken by two techniques: 

Binary imaging: The binary imaging system is used for assembly of parts with a simple 

geometry. The problem with this method is that it can not provide a satisfactory solution 

for complex parts due to low image resolution of the extracted infonnation regarding the 

position and orientation of the part. 

Grey-level imaging: The concept of the grey-level imaging is the same as the binary 

method, except that this method provides a higher image resolution of the extracted 

infonnation regarding the position and the geometry of the parts. The problem with this 

method that it requires a complex processing algorithm, thus it takes longer processing 

time than the previous method. 

2.4.2.3 Servoing with proximity sensors 

In this method [H. Hanafusa et aI, 1976: J. Volmer et aI, 1982: J. Draz et aI, 1984] the 

alignment of the parts relative to the corresponding holes is achieved by the fine motion of 
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the robot or the gripper. The gripper's fine motion is provided by a pneumatic cylinder, 

which in tum is driven from the feedback signal of a set of pneumatic sensors. 

The advantages of this method are that it does not require signal processing and control 

units, and it can accommodate larger positional errors than the force or the vision sensor 

techniques. However, the limitation of this technique is the need to reconfigure the location 

of the sensor for different part shape. 

E. Paulos and Canny [E. Paulos et aI, 1994] has suggested a self-calibrating peg-in hole 

insertion strategy using several simple proximity beam sensors. The key to the strategy is 

the use of a fixed sensor to localise both the mobile sensor and the peg, while the mobile 

sensor localises the hole. The author claims to have achieved successfully peg-in hole 

insertion process with a clearance of 25 microns. 

Advantages, disadvantages and applications of the active assemble method 

Advantages: handling comparably large positioning errors (than the paSSIve 

accommodation) even in the case of chamferless parts. Also it can be used with different 

mating parts of different sizes and variable forces and moments. 

Disadvantages: Usually they are complex and expenSIve (more costly than paSSIve 

compliant devices), because of the need for using processing unit, therefore the insertion 

time is longer than that of the passive method. Also, difficult to compensate for small 

misalignments because of the high inertia of the robot arm. 

Applications: Electrical motor (shaftlbearing), electrical leads in PC board holes, peg-hole 

app lications. 

2.4.3 Passive-Active Assembly Accommodation 

This method is a technology that combines the advantages of both the passive and the 

active assembly methods. In this category there are various compliant devices[L. DeFazio, 

1980: M. Jung et aI, 1993: B Hakan et aI, 1996: H. Chao et aI, 1984]. A typical device is 

the Instrumented Remote Centre Compliance (IRCC). 
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The IRCC IS a general-purpose tactile sensor having the fast error-absorption 

characteristics of a passive compliance and the measurement capabilities of a multi-degree­

of-freedom sensor. The output can be used for contact detection, position and angle 

measurement, or force and torque measurement to aid the robot in the assembly operations. 

The IRCC is a normal remote centre compliance in which some or all of the internal 

deflections are instrumented with a suitable sensor. 

The basic strategies of the IRCC are that angular/lateral misalignment between the mating 

parts is corrected by the RCC (within allowable forces and moments). At the same time a 

measurement of forces and moments/position and orientation is taken by the suitable 

sensor to correct for programming errors. When forces and moments are above the 

allowable value, the instrumented part of the IRCC measures those values and uses them to 

correct the position of the peg. 

Advantages, disadvantages and applications of the IRCC 

Advantages: The main advantages are that it can handle small and large positioning errors. 

Also the adaptability for changing work environment is not limited (as in the passive 

method), and chamfers are not needed in the case of peg-hole assembly. 

Disadvantages: It is more expensive than the similar devices in the passive category. Also 

insertion time is longer than that in the passive method; this is due to the processing of 

signals to change the programme to minimise or overcome the positional error. 

Applications: Shafilbearing, gear pump, cylindrical objects as in peg-hole applications. 
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The following table summarises various assembly methods: 

Table 2.1 Perfonnance data for various assembly methods [J. H. Chao, 1987] 

Allowable 
positioning Chamfer Mating 

Assemblz: method Clearance error reguired sEeed ApElications Remarks 
1. Compliant device 

RCC O.Olmm E = 1.0 mm 
S = 1.0° 

yes 0.2 sec cylindrical parts commercially available 

McCaHon et al. 0.012-0.024 E=1-2mm yes peglhole dependent upon length 
mm S = 1.5-2.5° of the peg 

Haaf 0.03 mm E< 1 mm yes peglhole axial force sensor 
S < 2° 

Stepourjine 0.01 mm E=0.6mm no peg/bore force sensor used for 
S =7° 

2. Air-stream method 
detecting the contact 

Mashinostroeniya 0.06mm E<3mm yes variable resistors 96-100% successful 
Calliot 0.04mm E::S;4mm yes 1.25 sec valve/4 cylinder compliant wrist 

3. Vibratory method 
engine 

Jacobi E<l.4mm no arbitrary shape 
S < 1.0° 

Hoffman 0.75mm no 0.25 sec non-standard 99.8% successful 
electric components 

4. Servoing with 
force sensors 

Hi-T hand 0.003-0.02 mm E < 2-3.5 mm no 1.07-5 sec electric motors insertion search based 
(shaft and bearing) upon force pattern 

Kasai 0.02mm no 3-10 sec shaft and bearing skill-acquisition capability 
5. Servoing with 

visual sensor 
Mauri O.4mm E<0.2mm 0.5 sec electrical leads in lead pitch: 5-25.4 mm 

PC boards holes 
Baird 0.5mm E<2mm yes 6 sec loudspeaker/a 95% successful 

0.5° S < 0.8° mounting pin 
Agin E < 1.3 mm no 5 sec bolting visual servo accuracy: 

0.76mm 
Shirai 3mm no 10 sec square boxlhold 

Fehrenbach E<0.8mm no 1.0-5.5 sec DIPS in PC board dependent on hole size 
holes 

6. Servoing with 
proximity sensor 

Volmer 0.01 mm E<2mm yes shaftlbearing smooth surface 
Jacobi 0.01-0.04 mm E<3mm no 0.1 sec gear pump parts of arbitrary shape 

7. Servoing with 
displacement 

sensor 0.05-0.l5 mm E<5mm no 1 sec peglhole non- contracting inductive 
Sweizer sensor 

8. Assembly-
oriented 

robot 0.03 mm E < 10mm no 1.5 sec peglhole elastic cable-driven 
Liegeois S =2° manipulator 

E: initial lateral error, S: initial angular error. 

As shown in table 2.1, assembly technologies 1 to 3 are passive methods, 4 to 7 are active 

methods and the last one is the assembly oriented robot. Also, the same table includes all 

the relevant features for each method. So, the use of the relevant technique, will be based 

on the assembly application. 
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2.5 SUMMARY 

In this chapter, the relevant assembly methods have been introduced. Arguments can be 

made for the use of any of those methods. In regard to the fine motion strategies, it can be 

said that with some more development on the software (programming) and the teaching 

side of the machine, a better on-line interaction will be produced between the assembly 

machine/robot and the operator to suit any part size and shape. In reference to the passive 

and active methods, the choice tends to be coloured by the preferences of the individuals 

and their confidence in the technological solutions. Mechanical arrangements are better 

understood to the user (Passive compliant devices - mechanisms such as the RCC). 

However, they need a strict specification in regard to the parts to be assembled (Chamfer, 

no chamfer, size and shape etc,) due to the fact that they have a fixed centre of rotation. 

Also, the change to different components may result in hardware changes. Besides, robots 

using passive systems need to take the flexibility of the compliance into account for the 

planning of their own motion. On the other hand, active system methods must include the 

imperfections of the robot and its actuators. Therefore, by instrumenting the proper 

joints/parts a certain degree of decision can be made, by using the data in different context 

interpretation. Where a detailed resolution of the interaction forces can provide a 

monitoring facility of the whole matting process. Although the need for the advantages of 

both passive and active methods has led to the development of the passive-active 

technology, improving the applicability and performance of the assembly system has 

resulted in more elaborated and expensive devices. 

Following this literature review, the goal is to make a passive compliant wrist, having the 

advantages of passive devices (RCC's), that can operate without a chamfer on either of the 

mating parts. Clearance between the peg and the hole is in the range of passive and active 

devices (0.01-3 mm). With mating time less than that for RCC devices (Active systems 

have mating time of over 2 sec.). Furthermore, the wrist has to operate from both, vertical 

and horizontal directions. 
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CHAPTER 3 

A NEW ASSEMBLY STRATEGY AND THE DOMINO EFFECT 

THEORY 

3.1 INTRODUCTION 

In chapter (2), assembly devices and strategies to overcome the jamming problem during 

the peg-hole insertion process were presented and classified into three different groups: 

1. Passive accommodation 

II. Active accommodation 

III. Passive-Active accommodation 

The purpose of this chapter is to present a new assembly strategy. The difference between 

this strategy and other strategies is that all of these methods adopt the top-down assembly 

approach, and in some cases the mating parts must have a chamfer to facilitate the 

assembly operation. The approach presented here is a new strategy for chamferless peg­

hole assembly from XJY /Z directions. This strategy was born out of the Domino Effect 

Theory, in which the transition of one domino from angular tilt to axial slip was 

implemented in this assembly strategy. 

The structure of this chapter is as follows: 

Section 3.2 is a presentation of the new assembly strategy 

Section 3.3 is an explanation of the domino effect theory 

Section 3.4 

Section 3.5 

Section 3.6 

Section 3.7 

is a comparison between the new assembly strategy and the 

domino effect theory 

is domino effect analysis 

is the analysis of the new assembly strategy 

is the conclusion 
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3.2 A NEW ASSEMBLY STRATEGY 

The new assembly strategy is a passive method, which is made up of a sequence of 

positions in which the peg has to pass through to get to its destination (the hole). Unlike 

other strategies such for Inoue or Cervera and Pobil [H. Inoue, 1979: A. P. del Pobil et aI, 

1994], this technique requires no search procedure. Since the path of the peg is corrected 

by the reaction forces that arise during engagement with the hole. Also, it applies to 

assembly operations in which the mating parts have no chamfer. Besides, it works from 

vertical as well as the horizontal direction. The assembly operation itself requires no 

rotation around X/Y/Z axes (insertion axis), and it consists of the following stages (see 

figure 3.1 and 3.2): 

1. approach 

2. peg contacts the upper surface of the mating part 

3. peg tilts into the mouth of hole 

4. peg moves to the far side of the hole 

5. peg is aligned (completion of the insertion process) 

I (2) I (3) 

Figure 3.1 The new assembly strategy, main vertical stages 
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L L L 
D 

(2) (3) 

L 

Figure 3.2 The new assembly strategy, main horizontal stages 

3.3 THE DOMINO EFFECT THEORY 

The domino effect theory is a generic term, which IS used In Engineering, Science, 

Business and even in Politics. 

In mechanics, the domino phenomena starts off with a series of domino's standing near 

each other (see figure 3.3). Each one of which is initially in an equilibrium position. 

Perturbation of one domino so that it tilts to an unstable equilibrium position and falls over 

and generates a force (tilting moment) on the next domino which in tum becomes unstable 

and falls. As a result of this process a large number of domino's will finally have fallen 

over each one then occupying another equilibrium position. 

Figure (3.3) describes the domino effect theory while the last domino is sitting between 

two surfaces, and it is free to slide: 
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A New Assembly Strategy And The Domino Effect Theory 
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Figure 3.3 Graphical representation for the domino effect theory 

3.4 COMPARISON BETWEEN THE NEW STRATEGY AND THE DOMINO 

EFFECT THEORY 

To establish a relationship between the new strategy and the domino effect theory a 

minimum of two similar stages is required. Another look at figure (3.1-3 .3) will show (see 

table 3.1): 

Table 3.1 Similarities between the new assembly strategy and the domino effect theory 

Category New strategy New strategy Domino effect 

Vertical assembly Horizontal assembly theory 

Similar stages pi 3 & 4 3 & 4 2, 3,4 &5 

In the new strategy, the similarity between the vertical and the horizontal chamferless 

assembly is shown in figure (3.1 & 3.2). The important stages are (3) and (4). In both 

categories, stage (3) is caused by a moment, which is generated by the reaction force. Also 

in both categories, stage (4) caused by a lateral motion generated by an additional 

compliance. The difference between the vertical assembly and the horizontal assembly is 

that in the horizontal assembly the device holding the peg being inserted has to be stiff 

enough to withstand the bending moment (possible deflection of the peg) which caused by 

the gravitational force (weight). 

In the domino effect theory, stage (3, figure 3.3) can be any stage other than the first and 

the last, and it is caused by the tilting moment. While the last stage (5), is caused by a 

lateral motion (pushing force) of the previous stage. As shown in table (3.1), stages (3 & 4) 

25 



Chapter 3: A New Assembly Strategy And The Domino Effect Theory 

in the new assembly strategy and the domino effect theory are similar. Both are the result 

of a reaction moment and an axial force. 

3.5 DOMINO EFFECT ANALYSIS 

To tilt the first domino (see figure 3.4), 
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Figure 3.4 First domino in unstable position 

The required tilting moment is 

and the forces acting on the second domino can be shown as in figure (3.5), 

• 

12 

lW2 
~ 

~ 

Ii 
fi 

Figure 3.5 Forces acting on the second domino 

To tilt the second domino 
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and it is assumed that 11 )/2 ) .. . Ii · Then for a general case, the required tilting moment is 

M· = F xl. I I I (3.3) 

Eq. (3-3) shows that the tilting moment is decreasing, which is due to the decrease in the 

location (l) of the reaction force. For that reason, this chain of reaction (domino effect) is 

going to stop at one stage. 

3.6 ANALYSIS OF THE NEW ASSEMBLY STRATEGY 

The analysis of this strategy will be divided into two sections. Note that the pivoted point 

at which the peg rotates is approximate and not the actual one (the actual point will be 

dealt with in chapter 6). 

3.6.1 Vertical Assembly 

As shown in section (3.2), this strategy consists of (5) stages of which the last three are 

generated by reaction forces. 

Stage 1 

Approach, as shown in figure (3.6), the peg could approach the hole from 3 different 

positions; 

II II 
(a) (b) (c) 

Figure 3.6 Vertical approach stages 
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Stage 2: 

Peg touches the upper surface of the mating part; 

I 
I 

~ r I 
I" I 

I 
I 
I 

8e I I 

110 ~I 
: I . I 

fi 
F 

Figure 3.7 Peg during second stage, position (a) 

Position (a): The condition for this stage is described in figure (3.7), which is 8e(r 

and the initial required moment (tilt) is 

M= F(r-8e) 

Position (b): This position is the same as that in stage (3). 

Position (c), as shown in figure (3.8), this position consists of two sub-positions: 

I. aligning the peg to the top surface as in position (a) 

II. proceeding to stage (3) 

In the first sub-position the following relationship must be fulfilled: 

M =Fcos8xr 
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Fsin,q. 

FsinScosS 

fi F Feos& I 
Figure 3.8 Peg during second stage position (c) 

and 

F sin 8 cos 8 ) f.i F (3.6) 

Where F is the applied force, ~ is the angular misalignment between the peg and the hole 

and f.i is coefficient of friction. Therefore, 

sin 8 cos8) f.i (3.7) 

Note that in this stage, it's assumed that the peg tilt and movement occur at an equal pace. 

Stage 3 & 4 

As shown in figure (3.9), once stage (2) is achieved, the peg tilts into the hole's mouth and 

moves to the far side of the hole; The tilt moment at any time during stage (3) is 

M = Fcos8 (r -8e) (3.8) 

Then, in order to move the peg to the far side of the hole, the relationship should be: 

Fsin8)f (3.9) 

therefore 

tan 8) f.i (3.10) 
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compliance ~ 
r-------...., 

> 

Figure 3.9 The peg during stages 3&4 

Once the peg has moved to the far side of the hole (stage 4), then the insertion problem is 

reduced to jamming/wedging occurrence. Fulfilling the conditions of jamming/wedging 

avoidance will achieve stage (5). See chapter (5). 

stage 5 

Completion of the assembly operation; 

Figure 3.10 Completion of the assembly operation 

3.6.2 Horizontal Assembly 

This analysis is based on the assumption that the device, which holds the peg, is 

sufficiently stiff, and therefore the gravitational force has no effect on the peg's state 

during any stage of the assembly operation. In addition, the mass of the peg is too small to 

cause binding. 
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Stage 1 

Approach, the peg could approach the hole in 3 different positions, they are shown in 

figure (3.11); 

L L 

(a) 

L 

Figure 3.11 Horizontal approach stages 

Stage 2 

Peg touches the out-side surface of the mating part; 

Position (a): The condition for this stage is shown in figure (3.12), which is 8 e < r 

and the initial required moment is 

M= F(r-8e) 
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Be fl 
II' 

... 

- 0 0 to 0 

-!:.------- - F 

Figure 3.12 Peg during second stage, position (a) 

Position (b): This position is the same as that in stage (3). 

Position (c): This position consists of two subpositions that shown in figure (3.13) 

1. aligning the peg to the side surface of the hole as in position (a) 

II. proceeding to stage (3) 

---u-- fl 

Jtt!-... F 
FcosS 

FsinS 

Figure 3.13 Peg during second stage, position (c) 

In the first subposition the following relationship must be fulfilled: 
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M = Fcos!)xr (3.12) 

and 

F sin!) cos!)f.1 F (3.13) 

therefore 

sin!) cos!) ) f.1 (3.14) 

Stage 3 & 4 

As described in figure (3.14), once stage (2) is achieved, the peg tilts into the hole's mouth 

and moves to the bottom side of the hole; 

Ii 
FcosS 

~ .. F 

Figure 3.14 The peg during stages 3 & 4 

The moment at any time during stage (3) is 

M = F cos !)(r - £5 e) 

L 

(3.12) 

Then in order to move the peg to the bottom side of the hole, the relationship should be: 

F sin!) ) f.1 F cos!) (3.13) 

therefore 

tan!) ) f.1 (3.14) 
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Once the peg IS In stage (4), assembly problems are reduced to jamming/wedging 

occurrence. Fulfilling the conditions of jamming/wedging avoidance will complete stage 

(5). 

stage 5 

Figure (3.15) shows the completion of the insertion action; 

Figure 3.15 Completion of the assembly operation 

To summanse the new assembly strategy, figure (3.16) presents both, vertical and 

horizontal assembly stages with the sequence of occurrence. 

I I 

8: ~ 
J?, 

>d-
"lOr 

--~> 1------1 

L 
D 
I 

Figure 3.16 Summary of the steps of the new assembly strategy 
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3.7 CONCLUSION 

This chapter has led to the following conclusions: 

1. Some principles of the new strategy are based on those for the domino effect theory. 

2. The new assembly strategy is suitable for verticaVhorizontal chamferless mating parts. 

To ensure a successful verticaVhorizontal assembly the relationship sinScosS> J.! must 

be fulfilled during the initial tilt and tanS>J.! during the transition stages. 

3. Horizontal chamferless assembly has same conditions as those of the vertical assembly, 

in addition to that, the device which holds the peg being inserted has to be sufficiently 

stiff to withstand a possible deflection. 
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CHAPTER 4 

3D ANALYSIS OF THE GEOMETRICAL PEG-HOLE INSERTION 

4.1 INTRODUCTION 

A great deal of analysis of the peg-hole problem has evolved over recent years [T. 

Tsuruoka et aI, 1997: E. Gustavson, 1985: A. Kirz et aI, 1996: D. Pham, 1983: D Whitney, 

1986]. Provided in 2 or 3 dimensional space, these analysis assumed a chamfer on either of 

the mating parts, and where there is no chamfer, an assembly strategy was constructed and 

analysed. Such assembly strategies have to have either feed back from sensors or an 

algorithm for each different insertion task. 

In chapter (3), a passive assembly strategy for chamferless peg-hole assembly operation 

was presented, and briefly analysed in 2 dimensional space. Consequently, the objective of 

this chapter is to analyse the peg-hole insertion of that strategy in the 3 dimensional space. 

However, for ease of presentation the analysis is divided into two parts, geometric analysis 

and force analysis. The 3D-force analysis will be dealt with in the next chapter. From this 

point on the aim will be to establish the geometric constraints of the 3D peg-hole problem 

and the geometric conditions for successful insertion of the peg into the hole. 

The structure of this chapter is as follows: 

Section 4.2 deals with a general case, where the peg is away from the hole. 

Section 4.3 

Section 4.4 

Section 4.5 

describes the peg when it is inside the hole. 

shows the effect of the tilt angle on the insertion depth. 

is a conclusion. 

4.2 PRELIMINARY ANALYSIS 

This stage of the analysis provides the 3D geometrical conditions of the peg and the hole 

for successful insertion, starting from the initial stage where the peg is away from the hole. 

As shown in figure (4.1), the peg's centre axis is misaligned by S with respect to the Z 

axis, both centre points of the peg and the hole (Oh & Op) are placed at the X-Y plane to 

define the initial lateral misalignment ex and ey between the peg and the hole. 

36 



Chapter 4: 
-- --~ .. --- --- ---

3d Analysis Of The Geometrjcal Peg-Ho{e Insertion 

z 

I 

S I 

I 
I 

I 

I 

Figure 4.1 Peg and a hole in 3D space 

So, the vertical projection of the peg tip over the hole of figure (4.1) is shown in figure 

(4.2). 
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hole 

peg 
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Figure 4.2 Vertical proj ection of the peg tip over the hole 

As shown in figure (4.2), to enable the peg to enter the mouth of the hole, the following 

conditions must be fulfilled: 

rcos-9 + ex <R 

r+ey <R 
(4.1) 

from the X and the Y directions respectively. From eq. (4.1) the following relationships are 

derived about the X axis: 

(
R-e J -9< cos-l r x or 

e <R -rcos-9 x-

and about the Y axis 

e < R-r y -

(4.2) 

(4.3) 
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In equations (4.1) through (4.3), it can be noticed that a decrease in the clearance between 

the peg and the hole (c = R - r) will dissatisfy the conditions given in those equations. 

Therefore the peg will not enter the hole. Also, an increase in the clearance will ease the 

insertion process, as described in those equations. 

Also in equations (4.1) through (4.3), the outcome of any stage of the insertion process 

depends upon the value of the variables ex, ey, 9. 

(a) (b) I (c) 

Figure 4.3 Peg and a hole in 3 different stages in the initial contact phase 

Figure (4.3) shows 3 different stages in the initial contact process between the peg and the 

hole. These stages are a result of: 

(a) 

9=0 

e > 0 x - (b) 

9(0 9)0 

(c) 

It should be understood that once the peg has passed stages a through c of figure (4.3), by 

satisfying the previous conditions, it should enter the hole through one-two or in some 

cases three-point of contact (see chapter 5), otherwise jamming could occur. 

4.3 PEG-INTO THE HOLE 

The analysis in this section is based on the fact that the geometric conditions of section 

(4.2) are satisfied, and the peg is already in either one or two-point contact with the hole. 
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Thus the aim of this analysis is to detennine the geometrical conditions for successful 

assembly while the peg is inside the hole. 

Once the peg is in contact with the inside of the hole, the geometric uncertainty of the 

positional misalignment becomes similar to the 2D analysis. Because the point/s of contact 

will always lie in one plane, either the X-Z or Y-Z plane. 

During either one or two-point of contact; the peg will slide down the hole if the tilt angle 

S between the peg and the hole becomes smaller. For a general case see figure (4.4), 

Peg tip ,," ~~~~--

~i'Hole '. "~y 
Vertical projection of the J...................... : 

peg tIp 

Artificial cut into the peg 
about the mouth of the 

hole 

Figure 4.4 General case, peg-hole in two-point of contact 

One-point of contact case: With reference to figure (4.4), and assuming contact between 

the peg and the hole on the top right hand side only, the plan view is shown in figure (4.5): 
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:- Hole 

r 
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cos .9 

r 
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Figure 4.5 A plan view on the peg artificial cut and the hole 

From figure (4.5) the following condition are drawn: 

a=cos-1
( r J 
R-e () 

(4.4) 

It can be seen in eq. (4.4), the e9 is dependent on .s, thus decreasing the tilt angle will 

decrease e 9 which will facilitate the insertion process. 

However, if the one-point contact is on the bottom left hand side of the hole (figure 4.4) 

then the analysis will be similar to that for two-point contact. 

Two-point of contact case: Another look at figure (4.4) where there is two-point of 

contact, though this time looking at the projection of the peg tip inside the hole will appear 

as in figure (4.6): 
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Figure 4.6 A top artificial view on the projection of the peg tip inside the hole 

As with the one-point contact case, of figure (4.6) the following conclusions are drawn: 

rcos8+e[)=R 

(4,5) 

(
R-e J 8=cos-1 r [) 

Again, as in eq. (4.4), for either the bottom left hand side one-point contact or for two­

point contact, the insertion process is dependent on the tilt angle. However, this time 

satisfying eq. (4.5) may lead to the completion of the insertion process. 

4.4 THE EFFECT OF THE TILT ANGLE ON THE INSERTION DEPTH 

In this section the insertion depth of the peg during one and two-point of contact with the 

hole will be analysed. The final equations will be plotted on a graph to give a clear picture 

of the effect of the tilt angle on the insertion depth and consequently on the insertion 

process, In figure (4.7), the peg is in 3D space contact with the hole. Once in one and then 

in two-point contact. 
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(a) (b) 

Figure 4.7 Peg is in a contact with the hole (a) two-point, (b) one-point of contact 

In figure (4.7), the centre of the peg and the centre of the hole are assumed to coincide. 

Also in figure (4.7), it can be noticed that the dimensions lying in the X-Z plane as in 2D 

space. The reason for that is that in 3D space, when mating cylindrical parts, the contact 

points will lie always on one plane either X-Z or the Y-Z. Also in figure (4.7a), for two­

point contact the following geometrical equation can be written: 

I = 2R - 2rcos9 
1 sin9 

I (
2R - 2r cos 9) n 2 . n 

2 = cos t7' - r sIn t7' 

sin9 

(4.6) 

Where It: one point contact insertion depth and h: two point contact insertion depth. For 

one-point of contact (figure 4. 7b) 

R - rcos9 
II = . n 

SIn t7' 

(4.7) 

To show the effect of the tilt angle on the insertion depth during one and two point 

contacts, both equations (4.6 and 4.7) were plotted and presented in figure (4.8 and 4.9). In 

both graphs the clearance between the peg and the hole is assumed to be 0.2 mm, and the 

radiuses of the peg and the hole, r = 9.8 mm and R = 10 mm respectively. 
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Figure 4.8 Tilt angle versus insertion depth during two-point contact 
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Figure 4.9 Tilt angle versus insertion depth during one-point contact 
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In figure (4.8), during two-point of contact between the peg and the hole, the increase in 

the value of the tilt angle decreases the insertion depth. As a result of this when the tilt 

angle is over 10° the peg attempts to get out of the hole. Although, the right side of the peg 

slides into the hole and as a result of that the peg contacts the hole in one point, the 

insertion depth of this point (right hand side) increases until a stage where the peg gets 

completely out of the hole. 

Also, in the chart of figure (4.9), during one-point of contact the increase in the value of 

the tilt angle decreases the insertion depth. However, from 15° upwards, the insertion depth 

starts to increase. The reason for this change in the insertion depth is that fromI5°, the peg 

moves from the one-point of contact to two-point of contact with the hole. 

4.5 CONCLUSION 

As stated in the introduction, from the geometrical point of view, the 3D geometrical 

analysis has given a better understanding of the chamferless peg-in hole assembly. 

However, it is inappropriate to base or to construct assembly strategies or even to give a 

definite solution to the peg-hole problem in 3 dimensional space before considering other 

factors, which are involve in the assembly process such as forces, friction and wrist 

stiffness etc. At this stage, a more general 3D analysis for the peg-hole problem can be 

made on the ground of the geometry. In the next chapter the dynamics of the peg-in hole 

insertion process will be analysed. 
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CHAPTERS 

DYNAMIC INVESTIGATION OF THE PEG-HOLE INSERTION 

PROCESS 

5.1 INTRODUCTION 

In previous chapters, the assembly strategy was presented and analysed in 2D space, 

followed by a 3D geometrical analysis, which dealt with the geometrical aspects of the 

insertion process, rather than the dynamic ones. The objective is to investigate the 

dynamics of the assembly process of the new strategy, taking into account the friction 

between the mating parts and the forces, moments involved in the insertion process. 

The friction between two surfaces/points as a result of the compliant motion stick-slip 

phenomena can determine the success or failure of each stage of the insertion process. In 

this instance, the friction can be considered in the form of the friction cone, and the 

compliant motion stick slip; are detailed. Once the peg is in initial contact with the top 

surface of the hole, several problems are raised and analysed in the 3D view. After that, the 

peg moves inside the hole in one/two point contact, the fact that the contact between the 

peg and the hole is in one plane, reduces the investigation to a 2D space problem. 

The structure of this chapter is as follows: 

Section 5.2 describes the friction cone. 

Section 5.3 presents the compliant motion and explains the stick-slip phenomena. 

Section 5.4 is a dynamic investigation of the insertion process. 

Section 5.5 shows the insertion force during one/two-point contact. 

Section 5.6 is wrist kinematics 

Section 5.7 is a general discussion of this work. 

Section 5.8 is a conclusion. 

One major point of this work, is that for a given positional misalignment and other 

parameters/variables (dimensions, forces etc,) the success or failure of the insertion process 

can be determined in theory. 
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5.2 THE FRICTION CONE 

When two objects such as cylindrical peg and a hole are in contact, and providing that the 

point of contact is governed by dry friction or Coulomb friction, the reaction force (f,.), as a 

result of the applied mass/force is the sum of both the normal force (In) and the friction 

force (ft). The maximum value of the tangential component (friction force) of the reaction 

force is, 

(5.1) 

Where the coefficient of friction J.l is static; Equation (5.1) can also be represented 

graphically (figure 5.1). This graphical representation of the frictional reaction forces 

known as the friction cone [E. Caine, 1982]. Where the half angle of the cone is called the 

friction angle (~), and it is given by the relation, 

¢ = tan -} f.1 ( 5.2) 

A set of vectors at this angle (contact point) to the normal defines the friction cone, and the 

perpendicular bisector of the cone is perpendicular to the contact point/surface. The 

interior of the cone specifies the possible range of reaction forces that one object can exert 

on another through one point of contact in the presence of friction. 

Figure 5.1 The friction cone 
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Another way to interpret the friction cone is to consider an applied force F (see figure 5.2). 

If the applied force points into the cone, then the tangential component of the reaction 

force will cancel the tangential component of the applied force and the object will not 

move (figure 5.2 a), for this case tan¢J < f.i. However, for tan¢J> f.i, the applied force lies 

outside the cone, and the friction force nullifies only a portion of the applied force and 

leaving a net force (Fnet) parallel to the contact surface that causes the object to slide 

(figure 5.2 b). When the applied force lies at the edge of the cone, the object is on the verge 

of slipping and tan¢J = f.i. 
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Figure 5.2 Sticking (a) and sliding (b) 

5.3 COMPLIANT MOTION 

(,. 

In robotic assembly operation of peg-in hole there are two types of motion: 

• position controlled motion, 

• compliant motion. 

The first type of motion is used primarily in the active assembly methods, where the 

motion of the peg is monitored by active sensors, and the trajectory of the peg to achieve 

the insertion is corrected through the feedback of the relevant sensors. 

On the other hand, in the compliant motion the trajectory of the inserted peg is corrected 

by the reaction forces that arise during the contact between the peg and the hole. In 
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practice, every linkage in the robot is compliant to some extent and this compliance is in 

universal use. 

To realise the effect of the compliant motion as producing sliding condition; sliding means 

that the moving object confines its motion to be tangent to the constraining surface. When 

there is no contact between the peg and the hole, the direction of the motion will be along 

the commanded velocity. 

5.3.1 Stick-Slip Motion 

As further to what was cited about the compliant motion, when the peg contacts the upper 

surface of the mating part, there are two possibilities, stick or slip on the surface of the hole 

could occur. Based on the initial contact velocity and the angular orientation of the peg and 

the coefficient of friction between the peg and the hole surfaces, the outcome will be 

determined. 

To understand the role of friction during contact between the peg and the hole, imagine 

two pieces of metal one above the other. To slide the top part, a pushing force is needed, 

and it should be larger than the sum of the microscopic frictional forces acting on each 

individual point of contact between the two parts. However, if the surfaces are very smooth 

then there are more points of contact and therefore a higher frictional resistance is 

generated. But for rough surfaces, there are fewer points of contact between the two 

surfaces and consequently the sum of the microscopic frictional forces is less than that for 

a smooth surface. So this time a smaller pushing force is needed to slide the upper part. 

In addition to what was cited about sticking and sliding, with reference to figure (5.2), if 

the angle of the force vector to the surface normal is less than $, then no motion will result. 

If the angle of the force vector to surface normal is greater than $, sliding will occur. In 

other words, if the velocity at the contact point is equal to zero then sticking occurs, but if 

only the normal velocity is equal to zero then slipping occurs. 
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Now, having presented the friction cone, compliant motion and the stick slip phenomena's~ 

more in depth analysis for the new assembly strategy can be made. 

5.4 INVESTIGATION OF THE DYNAMICS OF 3D INITIAL CONTACT 

BETWEEN THE PEG AND THE HOLE 

As presented in chapter (3) the insertion process consists of 5 stages. However, in this 

investigation for ease of analysis, the 5 stages are divided into 3 major stages: 

5.4.1 Approach 

5.4.2 Initial contact between the peg and the upper surface of the mating part 

5.4.3 Peg is inside the hole, one or two point of contact 

5.4.1 Approach 

The force balance of figure (5.3) is, 

LF=m{a-g) 

Vi = .J2ah 
(5.3) 

Where Vi is the initial contact velocity when the peg contacts the hole surface, m is the 

combined mass of the peg and the wrist, and h is the distance before the peg contacts the 

hole. In eq. (5.3) the acceleration a is constant, and it is assumed that there is no relative 

movement between the gripper/wrist (gripping force) and the peg. 
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Figure 5.3 Approach stage 
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It can be seen that in eq. (5.3), the relationship between the insertion force and the insertion 

velocity is proportional, which means that any change in either value will affect the 

outcome of the next stage. 

5.4.2 Initial Contact Between The Peg And The Upper Surface Of The mating part 

The investigation of this section will provide an analysis for predicting slipping or sticking 

occurrence and the possible 3 points of contact between the peg and the hole. 

5.4.2.1 Slipping or sticking occurrence 

The contact modes between the peg and the upper surface of the hole are detennined by 

factors such as the friction and its inconsistency, and the effect of impact and the 

conversation of energy etc. Although the last two phenomena are beyond the scope of this 

investigation, it is worth to mention here some of the other work in this area. Mason and 

Wang [Yo Wang et aI, 1987] propose a thorough investigation of impact model for 

removing frictional inconsistency. Also Featherstone [R. Featherstone, 1986] has 

addressed the impact inconsistency in the presence of friction. For the representation of 

friction in 3D space and also energy conservation, see Michael Erdman [M. Erdmann, et aI, 

1994 & 1988]. 

So, the goal of the following investigation is to determine the outcome mode 

(sticking/slipping) after the initial contact between the peg and the upper surface of the 

hole. To simplify the analysis, it is assumed that the coefficient of friction is static and 

constant between the peg and the hole. Also it is assumed that the forces during the 

collision (contact) are impulsive F imp, and these forces are much greater than the applied 

forces. 
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I 
I 

I 

I 

I 

Point 1 . 

Impulsive forces 

Figure 5.4 Initial contact between the peg and the upper surface of the hole 

As shown in figure (5.4), there are two points of contact which are affected by impulsive 

forces. In 3D space it is convenient to choose the reference point of an impulsive force for 

an object (peg) at its centre of mass. Now, it is possible to use Coulomb's law of 

friction/friction cone, to determine whether sticking or slipping will occur. Points (1, 2) of 

figure (5.5) are acted upon an equal impulsive force. Therefore the analysis will 

concentrate on just point (1) and the outcome should be correct for point (2) as well. The 

configuration space of the impulsive force acting on point (1) is shown in figure (5.5): 
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-y 
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Point 1 

Figure 5.5 3D space of point (1) and the impulsive force acting upon 

In figure (5.5), and at point (1), the reaction forcej, is the sum of the nonnal forcein and 

the friction forcej;. Also in figure (5.5), it can be seen that the impulsive force points out of 

the friction cone which means that the peg will slide along the constrained surface of the 

hole (tangential to the contact point). Also, it is seen that the impUlsive force and the 

reaction force lie in the same plane. Therefore to calculate the magnitude of the impulsive 

force, 

J = f Fimp dt or, 

J = mv f +mvi and, 

J = L1P = P f - Pi 

(5.4) 

Where J is the impulse of the force or the change in momentum (L1P), VI and Vi are the 

final velocity after the break of contact and the initial velocity. dt is the duration of the 

contact. Since this duration is short (L1t => 0), the dt is used, then rearranging eq. (5.4) will 

reveal eq. (5.5), 
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_ ~P _ m( V I - Vj ) 
F. - - - ---'---"":"" 

Imp d t d t 
(5.5) 

F. = mal Imp 

Where af is the breaking acceleration from the sticking to the slipping stage. A comparison 

between eq. (5.3) and eq. (5.5) shows that the difference between the two forces involved 

is the acceleration. Where in eq. (5.3) the acceleration is constant, but in eq. (5.5) is not, 

but large enough to overcome and break the contact between the peg and the upper surface 

of the mating part. 

In regard to point (2), the magnitude of the impulsive force is equal to that in eq. (5.5), 

which is equal to that acting on point (1). 

For a general case, to determine the contact mode, have a look at the plane (COM, A, point 

1) of figure (5.5); it can be said that 

Fjmp - fr = Fnet which is slipping, but if 

F jmp - fr = 0 then the peg is on the verge of slipping, for 

F jmp <fr the peg will stick. 

Table (5.1) summarises the results of this investigation for this section: 

Table 5.1 Contact mode conditions 

Slipping Verge of slipping ~ , ','; '~killg 
,:'<! ~ ~ ~ .-

s ( (nI2) - ~ S = (n/2) - ~ S ) (nI2) - ~ 

or S + a) ~ orS+a=~ or S + a (~ 

(tan~ ) Jl)+ (tan~ = Jl)+ (tan~ (Jl) 
+ 

• Refer to the friction cone section. 

5.4.2.2 The possibility of three points of contact (3 POe) 

(5.6a) 

(5.6b) 

(5.6c) 

When using passive compliant devices for inserting a peg into a hole, it is difficult to cope 

with three point of contact between the mating parts, due to the insufficient compliance of 

the wrist about the insertion axis. Where the need for rotation and motion to overcome this 

mode of contact is greater than in other phases of the assembly. Hence, the goal is to avoid 
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having 3 poe. Such mode of contact is a geometrical relation rather than force/moment 

relation. Because of that, identifying the variables (allowable angular error, lateral error 

etc.) during that stage of the insertion process will facilitate the design of an assembly task 

for avoiding this mode of contact. 

d/cosS 

Point 2 . 

Hole 

(a) (b) 

Figure 5.6 Peg is in 3 point of contact with the hole 

As shown in figure (5.6a), the peg is in contact with the hole in 3 different points, and this 

satisfies d/cosS larger than D. Where d and D are the peg and the hole diameters and S is 

the angular misalignment between the peg and the hole. 

To avoid 3 point of contact, the following relation must be satisfied: 

d 
--<D 
cos9 

(5.7) 

In regard to the contact at point (3) it will exist until the one or two point of contact break 

and the peg slides down the hole. 

The clearance between the peg and the hole is c = R-r, putting this relation in eq. (5.7) will 

give the maximum allowable clearance to avoid 3 poe (eq. 5.8), 

(1- cos9)r 
c > .-:.......-----'--

cos9 
(5.8) 
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In figure (5.6b), to avoid 3POC, d/cosS must be either smaller or equal to D. In the first 

case, 

r 
e =R---

x cos8 

this is the allowable lateral error along the X axis, which will not cause 3 POCo 

Substitute c = R-r in eq. (5.9) 

8 = cos-1 
( r J 

r + c+ ex 

And in the second case where ex = 0, the 

8 = cos-1
( r ) 

r+c 

(5.9) 

(5.10) 

(5.11) 

Both equations (5.10 & 5.11) give the range of admissible angular error in which 3 POC 

can be avoided. 

5.4.2.3 The ideal wrist stiffness 

The equilibrium equations that describe the peg sliding in during 3 POC, assuming that the 

peg is moving at a uniform velocity (figure 5.7) are then given by 

Fz = 21 + J-L13 

Fx = 2J-L 1 + 13 

because (I = It = 12) (5.12) 

(5.13) 

(5.14) 

Where the Fx is the lateral force, which is a result of the lateral stiffuess times the lateral 

deflection of the wrist. 

Substitute eq. (5.12) into eq. (5.13) 

f 
= Fx - J-LFz 

3 1 2 -J-L 
(5.15) 

Equating eq. (5.14) to the moment where the peg is rotating (centre of rotation, point 0), 
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(5.16) 

Figure 5.7 Schematic of peg-wrist during 3 POC 

Eq. (5.16) yields the relation between the insertion and the lateral forces: 

Fx 1 
(5.17) 

Considering both the compliant wrist and the inserted peg as one object during 3 POC 

(figure 5.7), the moment in the wrist is equal to the moment anywhere on the peg. 

Now, to find the optimum stiffness (ideal) that will enable the wrist to overcome the 3 

POC mode, equating the moment at the wrist to that at the third contact point between the 

peg and the hole, then 

K x ( e xo - ex )L g - K.9 ( .9 - .9 0) = Fz r + F x I (5.18) 
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Where Lg is the centre of rotation or the distance from the wrist to the point in space where 

the peg rotates. Also, 

Substitute eq. (5.17 & 5.19) into eq. (5.18) 

Fz (Lg + ,ur+Z) 
-IK a I =,u /) _ /) or 

o 

-IK 1= Fx(Lg + JL r+Z) 
() 58 

Where 58=8-80 

The ideal lateral wrist stiffness, can be found from the relation (eq. 5.19) 

K - -Fx 
x - or 

5 ex 

Fz 

(5.19) 

(5.20) 

(5.21) 

Where 5 ex = exo - ex; Both equations (5.20 & 5.21) give the ideal wrist stiffness to 

overcome the 3 poe mode. Note that the 8ex and the 83 are correspond to those 

displacements of the peg and they are equal. 

5.4.3 Peg Is Inside The Hole: The Conditions For Successful Assembly 

Once the wrist-peg overcome the 3 poe mode, the peg will either slide in or will contact 

the hole in one/two-point, which may cause jamming or wedging occurrence, if 

jamming/wedging avoidance conditions are not met. 

Jamming, defined as a condition in which the peg will not move during insertion action, 

because the forces and moments applied to them through the supports are in the wrong 

proportions. 
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Geometrically [So Simunovic, 1975 & 1979] this will happen when the applied force by the 

insertion device is inside the friction cone (refer to figure 5.1 & 5.2). Consequently 

jamming could occur during both one and two point contact (at least in theory). To 

overcome jamming, the direction of the insertion force must be changed so that the 

resultant force can lie outside the friction cone. This is achieved by removing the peg from 

the hole and changing its orientation and then to reinsert it into the hole. 

Wedging is a condition in which the reaction forces are inside their friction cones and 

acting along the same line and thus movement can not occur. Wedging is worse than 

jamming because removal of the insertion force will not remove the reaction forces. Unlike 

jamming, the cause is geometric rather than ill-proportioned forces. Wedging occurs when 

the insertion depth (during two-point contact) is smaller than the coefficient of friction 

times the peg diameter. Also, the tilt angle should be smaller than the ratio clearance over 

coefficient of friction. 

Now, to determine whether an assembly will succeed or fail, it is necessary to consider the 

forces acting on the mating parts. Also, it is assumed that the friction is consistent all over 

between the peg and the hole. In figure (5.8), the peg is in equilibrium and slides down the 

hole in a uniform velocity, it is assumed that the angle of tilt between the peg and the hole 

is zero. The possible contact modes shown in figure (5.8) could be any of those of table 

5.2. As shown in chapter (4) section (4.3 & 4.4), once the peg is inside the hole then the 

problem can be treated as 2D rather than 3D, therefore from now on the analysis is 2D. 

Figure 5.8 Peg is inside the hole and tilt angle is zero 
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Table 5.2 Possible contact modes 

Where PI, P2,P3 and P4 are points of contact. In this analysis, situation ofP l & P2 & P 4 & 

P3 will not be dealt with because it is a surface contact (interference fit) which occurs when 

the peg is completely inside the hole or with the completion of a successful assembly 

process. 

Starting with two-point contact, then the equilibrium equations that describe the peg 

sliding in during PI & P3 (figure 5.9) are then given by, 

~fi 

fJ 1 

Figure 5.9 Peg in two-point contact (g = 0) 

Fx = 13 - f. 
Fz = f-l(f. + 13) (5.22) 

M 0 = f.1 - f-lr(/3 - f.) 

solving eq. (5.22) will result in 
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(5.23) 

So far the tilt angle has been ignored (3 = 0). But if the tilt angle is not zero, then as in 

figure (5.10) the X-Z axes is tilted by 3, and the rotational displacement of the peg is 

denoted by (s), which the peg makes with respect to the hole, in radians it is s = () r . 

Theoretically, point (0) in figure (5.10 & 5.9) will remain in the same position even after 

the tilt (Centre of rotation is at the peg tip.). Therefore the change in the moment about 

point (0) can be expressed in terms of sand S in place of r then put r =!...- into eq. (5.23), 
9 

z Z 

". 
\ 
\ 

\ 
\ 

\ X \ ,.,." \ ,; 

\ ,.,. ,.,. 

\ 
\ 

\ 
\ ,.,. 

X ,; 

0 

s = 9r 

Figure 5.10 Centre axis of the peg is tilted by S 

M9 91 Fx (91 ) 
sF

z 
= 2sJ.1 - Fz 2s + J.1 

M9 91 Fx 91 Fx 
--=---X---XJ.1s 
Fz 2 J.1 Fz 2 Fz 

(5.24) 

M 9 1 9 F x (I 9 J.1 s) --=---- -+-
Fz 2 J.1 Fz 2 1 

Define 

(5.25) 
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then eq. (5.24) can be expressed as 

y=mx+b 

that is a straight line, where 

Mf) 
y=­

Fz 

Fx x=-
Fz 

m = -.u(A +s) 

b = A and if the peg was tilted to the other side then 

b=-A 

(5.26) 

(5.27) 

To finish the derivation one must consider all the possible contact modes, half of which 

will suffice for illustration. Note, all of the moments have been taken about the centre of 

the peg tip if not otherwise stated. For figure (5.11) contact mode PI & P2, 

~f =~(fj +12 ) 
~jj 1 
fj 

I 
f=jj +12 

1/2 Mr 
Ii 0 Fx 

Fz 

Figure 5.11 Peg is in line contact with the hole 

the equilibrium equations are 

Fx =-/ 
Fz = .u / = -.u Fx 
Fx = 1 
Fz .u 
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and 

(5.29) 

When tilting the peg by S, the line contact between the peg and the hole becomes one­

point contact either PI or P2, which depends upon the direction of the tilt. In eq. (5.29), the 

insertion depth 112 becomes I, and put r = ~ into eq. (5.29) a 

M=-FX(I+JlX ;) 

M a = _ F x x a(1 + J.i x ~) 
Fz Fz a 
Ma = +~(I a + J.i s) 
Fz J.i 

Ma =21t+s 
Fz 

and for the other side of the peg (P3 & P4), one should get 

Fx 1 
-=- and 
Fz J.i 

M a = -(2 It + s) 
Fz 

The one-point contact mode (PI); in figure (5.12) 

~fi 1 
fj It:: 

~l J \:: 

I 
M r 

~ 

0 Fx 

... 
F z 

Figure 5.12 Peg is in one-point contact 
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the equilibrium equations are: 

Fx = -11 
Fz = f.-L 11 = - f.-L Fx 

Fx 1 
-=--

and 

M = 11 (l + f.-L r) = -Fx(! + f.-L r) 

When tilting the peg by S, then substitute r =.!...- into eq. (5.33) 
S 

M=-FX (I+ J1 X ;) 

MS Fx IS Fx Sf.-Ls 
--=--x---x--
Fz Fz 1 Fz S 

MS = _ Fx (IS + f.-L s) 
Fz Fz 

MS =..!.-(IS+f.-L s) 
Fz f.-L 

MS IS 
--=-+s 
Fz f.-L 

MS =2A+s 
Fz 

and for the other one-point contact (P 4)' one should get 

Fx =..!.- and 
Fz f.-L 

MS = -(2..1 + s) 
Fz 

For the bottom one-point contact (P2) of figure (5.13), 
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I ~h 1 
'\ ~ .~ ... 

f2 
'<: ~ 0 Fx P2 

r 
Fz 

Figure 5.13 Peg is in one-point contact from the bottom 

the equilibrium equations are 

Fx = -/2 

and 

Fz = f.1 /2 = -f.1 FX 

Fx 1 

when tilting the peg by S, then substitute r = ~ into eq. (5.37) a 
s 

M = -f.1-Fx a 
Ma Fx 
--=-f.1 sx -
Fz Fz 

Ma 
--=s 
Fz 

and for the other one-point contact (P3), one should get 

Fx 1 
-=- and 
Fz f.1 

Ma 
--=-s 
Fz 
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The results of this analysis are summarised in figure (5.14). The jamming parallelogram 

(figure 5.14) may be interpreted as follows, combination of Fx, Fz and M falling on the 

parallelogram's edges describe equilibrium sliding in. Outside the parallelogram lie 

combination which jam the peg either in one (which is unlikely to happen during assembly 

operation) or two-point contact. Inside the parallelogram, the peg is in disequilibrium 

sliding or falling in. Note that the vertical dotted lines (points PI & P2, P3 & P 4) describe a 

line contact. 

Also, as A approaches zero, that is, the insertion depth is small compared to the radius of 

the peg, the parallelogram collapses to a line from II/-!, -s on the right to -1I/-!, s on the left. 

Thus the initiation of two-point contact, the no-jam region is quite small, and the 

possibility of jamming is high. Jamming is most likely to occur during insertion tasks with 

very small tolerances, because the smaller the tolerances, the smaller the insertion depth at 

which two-point contact occurs. 

I 
I 
I 
I 

P I & P2 0 
I 
I 
I 

2,1, +s PI & P3 

Two-point 
contact 

Fx 
----~--~~------------~------------~~---+--~ F

z A 

1 

J.l 

1 

J.l 

P4 &P2 
Two-point 
contact 

-s 

-(2,1,+s) 

Figure 5.14 The jamming diagram [after Whitney, 1986] 
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5.5 THE INSERTION FORCE DURING ONE/TWO-POINT CONTACT 

The applied/insertion force during the assembly process assumed to be zero when no 

contact between the peg and the hole. For one-point contact, earlier it was found that 

during sliding mode of the peg the relation between the lateral and the insertion force is 

Fx <~, and from eq. (5.33) for one-point contact the lateral force is given by 
Fz f.1 

M 
Fx =---

1+ f.1r 
(5.40) 

The moment inside the wrist is the same as that about the contact pointls between the peg 

and the hole (M = K XoexLg - Kao8); Combining these relations will give 

(5.41) 

Also, during two-point contact the previous relations are still valid, therefore putting these 

relations into eq. (5.23) for two-point contact, one should obtain 

KxoexLg -Kao8 
FZ2 =----..::.....----

r 
(5.42) 

However, in ideal conditions the Lg = 0, because as mentioned earlier RCC's devices tempt 

to locate their support point at the tip of the peg (point 0, in figures 5.7-5.13), then eq. 

(5.4 7 & 5.48) will become 

and 

f.1Kao8 
F=---

ZI 1+ f.1r 
(5.43) 

(5.44) 

Both equations may be interpreted thus; the larger the angular misalignment, the larger 

insertion force is needed and vice versa. 
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5.6 WRIST KINEMATICS 

Since the wrist movement is restricted to one plane, it has 2 degrees of freedom, laterally 

and angularly. To understand the kinematics of the wrist, it is modelled in 2D space shown 

in figure (5.15) (refer to CVHRCC assembly drawing number 11 in appendix 3). 

Floating unit 

Fixed unit 

Figure 5.15 The wrist model in 2D space 

As shown in figure (5.15), the springs represent the rubber that provides the lateral and 

angular deformations. Also in figure (5.15), it can be seen that the wrist has two main 

units, the fixed and the floating units. The movements of the wrist are achieved by the 

lateral and angular deflection of the floating unit. To realise the kinematics of the wrist, the 

parameters ex, Sand d has to be derived from the wrist other features such as Kx, K 9, Lg 

and ~. In this chapter the peg diameter is to be determined, other parameters will be dealt 

with in the next chapter. The peg diameter that fits inside the wrist can be determined in 2 

different ways: 

1. Dynamically, in terms of peg mass and spring stiffnesses etc. 

2. Geometrically, in terms of jamming avoidance. 
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5.6.1 Peg Diameter From Dynamic Considerations 

In the first case, look at figure (5.16), the peg is assumed to be supported laterally. 

mg/2 

The wrist floating unit 

d 
H 

mg 

Figure 5.16 Peg is sitting inside the wrist 

In figure (5.16), exo is the spring initial deformation, which is due to the peg mass and 

diameter. The equilibrium equation that describe the peg inside the wrist is: 

SInce 

In =~! 

then put eq. (5.46) into eq. (5.45) 

Also, the mass is equal to the density times the peg volume 

m=pV 
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substitute eq. (5.48) into eq. (5.47) gives 

;rd 2 1 
KXe)fJ =px--xHx

g 
x-

4 2 fi 

8 fi K Xe)fJ 
d= 

(5.49) 

p;rHg 

and to get the peg diameter in millimetres equation (5.49) can be written as 

8 x 10
3 fi K Xe)fJ 

10-3 p;r H g 
d= (5.50) 

Now, equation (5.50) was simulated with different values and presented in figure (5.17). 

Note, the coefficient of friction between rubber and steel is 1, and the density for steel is 

7 .85x 10-
3 

Kglm
3

, the peg length His 67 mm, and the lateral stiffuess is 1.5 Nlmm. 
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Figure 5.1 7 Peg diameter versus the wrist initial lateral deformation 

In robotic/automated assembly of peg-hole, most passive techniques as well as the 

CVHRCC are supposed to accommodate up-to 3 mm allowable error (refer to table 2.1 in 

chapter 2). It is assumed that the actual lateral misalignment between the peg and the hole 
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is larger than the initial deformation then, in figure (5.17), this corresponds to a peg 

diameter of over 45 mm. However, technically the wrist can not accommodate a diameter 

of over 40 mm (see section 5.6.2, and refer to the wrist drawings in appendix 3). Also, the 

smallest practical allowable error is over 0.2 mm , which corresponds to a peg diameter of 

over the 10 mm. 

5.6.2 Peg Diameter from Geometrical Consideration 

In the second case, to determine the peg diameter geometrically; under jamming avoidance 

conditions the insertion force must lie within the friction cone angle +~. Also, the angular 

misalignment must be smaller than the friction angle. Look at figure (5.18), 

\ 

In figure (5.18), 

dmax = Htan¢ 
2 
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Figure 5.18 Peg geometry 
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and 

d. 
~ = Htanf) 

2 (5.52) 

In eq. (5.51), the friction angle is 12°, this will give a maximum diameter of over 30 mm. 

In eq. (5.52), it is normal to have an initial angular misalignment of up-to 5°, this will give 

a minimum diameter of over 15 mm. Another look at the results of the dynamic 

calculations of the peg diameter will show small difference between the minimum and 

maximum diameter in both methods. 

Now, to determine the allowable angular deformation of the CVHRCC, look at figure 

(5.18). Geometrically it can be said that the maximum angular error which the wrist can 

tolerate is 

t7' = tan --n _l(d 12J 
max H 

Equation (5.53) is plotted with various data and presented in figure (5.19). 
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Figure 5.19 Peg diameter versus the wrist angular deformation 
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Since the allowable error should be less than 120 (refer to the friction angle), in figure 

(5.19) this corresponds to a peg diameter of less than 30 mm. Note that these results are in 

terms of the geometrical conditions for jamming avoidance. Also in figure (5.19), it can be 

seen that for a minimum peg diameter of 10 mm the wrist can accommodate an initial 

angular misalignment of over 40
• 

5.7 DISCUSSION 

In this chapter, the dynamic investigation of the chamferless peg-in hole insertion process 

was detailed and analysed (Note: main discussion will be discussed in chapter 9). The peg 

approach, and initial contact with the hole in presence of friction and the possible stick-slip 

occurrence, demonstrated the need for a larger acceleration during the contact than the 

approach stage, to enable the peg not to stick, but to slip (break contact). To achieve that, 

two conditions must be met: 

1. The tangent of the friction angle has to be smaller than the coefficient of friction. 

2. The impulsive force has to be larger than the applied force. 

Once the peg gets into the mouth of the hole; 3 poe could occur. Since this is a 

geometrical relation, it is advisable to have the parameters/variables involved within the 

prescribed range given in equations (5.8 to 5.11). The reason for that is that RCC devices 

tend to accommodate angular/lateral errors independently, where the 3POC needs a device 

with the flexibility to accommodate both errors at the same time (Perhaps a vibrational 

wrist could achieve this!). 

Also, the kinematics results for the wrist movement have shown that the wrist can accept a 

range of peg diameters from 15 to 35 mm. 

5.8 CONCLUSION 

The major points of this chapter are as follows: 

1. To avoid jamming or sticking, tan~ < Jl 

2. During the initial contact stage between the peg and hole, the following conditions 

summarise the outcome stage, 
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Fimp - fr = Fnet 

Fimp - fr = 0 

Fimp < fr 

Dynamic Investigation Of The Peg-Hole Insertion Process 

slipping occur 

the peg is on the verge of slipping 

the peg will stick 

3. To avoid 3 point of contact, the allowable clearance must be c > (1- cos9)r 
cosS 

4. To avoid jamming during one/two point contact, one must maintain 

Fx <~ 
Fz f.1 

5. Theoretically, the CVHRCC can accept a range of peg diameters from 15 mm to 35 

mm. 
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CHAPTER 6 

PEG-HOLE MODELLING AND SIMULATION 

6.1 INTRODUCTION 

In previous chapters, the chamferless peg-hole insertion process was discussed and 

analysed geometrically and dynamically. The geometric and dynamic equations that were 

derived to establish the successful conditions for the insertion process are to be validated in 

this chapter. Rossitza Setchi and Bratanov [R. Setchi et aI, 1998] have suggested a 3D 

simulation programme for the peg-in hole insertion process. The approach considers the 

insertion process as a sequence of discrete events, and models the process as a transition 

from one contact situation to another. Rossitza Setchi et al claim that this simulation is a 

tool for developing insertion strategies and devices for a specific application such as 

chamferless mating parts. However, throughout the modelling stages it was assumed that 

the inserted peg is supported by a compliant wrist device (RCC). This assumption 

contradicts the fact that RCC devices cannot accommodate positional errors between 

chamferless mating parts [D Whitney et aI, 1979]. 

In this chapter, the objective of the modelling and simulation is to validate a new assembly 

strategy of a chamferless peg-in hole process for prescribed positional misalignments, for 

given system features, such as applied forces, moments, wrist stiffness and dimensions of 

the mating parts. A further objective is to examine the behaviour of the assembly system 

(wrist-peg-hole) by using different values of friction, clearances and stifnessses. Also, this 

simulation could be used as a tool for future assembly-systems design. 

It is assumed that the insertion process is subj ect to a mixture of viscous and friction 

damping. The viscous effect is negligible for there is little air resistance on the insertion 

process. In this chapter, the friction is assumed to be constant. 

The structure of this chapter is as follows: 

Section 6.2 is a background for the modelling-simulation process. 

Section 6.3 modelling each sub-process of the insertion process individually. 
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Section 6.4 the simulation process 

Section 6.5 conclusion 

The software used to simulate the peg-hole insertion process is Matlab (Simulink). The 

simulation results have demonstrated the insertion process and revealed the wrist stiffness 

and the initial positional misalignment region, which allows the wrist to overcome such 

errors. 

6.2 BACKGROUND 

In this model the insertion process is treated as 3D problem until the peg enters the hole 

(one/two-point contact), where the contact between the peg and the hole occurs just in one 

plane reducing the problem to 2D space. Also, note that the co-ordinate axes system of the 

peg and that of the hole are in the same plane. Now, the insertion process is divided into 

sub-processes, where each sub-process occurs independently. In some of the sub­

processes, the input is the output of the previous process. 

The concept of the modelling system is shown in figure (6.1), where the input is a pressure 

force provided by the piston, or the torque generated by the reaction forces. The system is 

the wrist or springs and the peg, and the output is the final peg position in each sub-

process. 

Inputs 
System 

Outputs 

Figure 6.1 Concept of a system 

Figure (6.2) shows a simulation block diagram for the insertion process. The pneumatic 

piston applies a constant force that drives the peg downward. If there is misalignment, 

. ., h' t d fl t Thl' s deflection is fed to the reaction forces wIll anse and cause t e spnngs 0 e ec. 
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summing point in the fonn of a reaction force to accommodate the misalignment. The 

process is repeated until the peg is completely inside the hole. 

Fore e Piston + 
Peg • '" ... ... ... ... 

- Positi on 

Springs l.. 

Figure 6.2 General block diagram of the insertion process 

In figure (6.3), the springs represent the compliant wrist. So, note that since the peg and the 

wrist moves as one object (there is no relative movement between the peg and wrist), and 

the mass of the peg is negligible compared to that of the wrist, the moment of inertia used 

in this analysis is for the wrist. 

Figure 6.3 Representation of peg-wrist during peg-in hole initial contact 

6.3 MODELLING STAGES 

In this section, the insertion process is divided into 5 sub-processes: 

6.3.1 Approach stage (no positional errors between the mating parts). 

6.3.2 Initial contact between the peg and the top surface of the mating part(angular error). 

6.3.3 Transition stage where the peg moves to the far side of the hole. 

6.3.4 Peg moves from one-point of contact with the hole to two-point of contact. 
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6.3.5 Alignment stage where the peg breaks the two-point of contact and slides down the 

hole. 

6.3.1 Approach Stage 

As shown in figure (6.4), it is assumed that the peg is above the hole and there is no 

positional misalignment. 

Peg and wrist has 
massm 

Hole with 
radius R 

r 
, ....... 
, 

F m 

z 

- .. -- .. --

Figure 6.4 A one-stage insertion process (no misalignments) 

Output z is the distance the peg has to travel to get into the hole. This stage is described by 

the differential equation: 

d 2 z 
~n(t) = m-2-dt 

(6.1 ) 

To find the output z, eq. (6.1) can be expressed in the s-domain, for zero initial condition 

yielding: 

~n(s) = ms
2 
Z(s) 

1 
Z(s) = ~n(s) --2 

ms 

(6.2) 

The simulation block diagram that describes this insertion process is shown in figure (6.5), 
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1 .. 
r 

Figure 6.5 A simulation block diagram for peg-hole (no misalignments) 

On the other hand, when there is an initial lateral misalignment between the peg and the 

hole, it will result in a reaction force during the initial contact, which causes either of the 

springs Ksxz or Ksyz to compress (see figure 6.3). The output z will be the vertical distance 

from the bottom surface of the peg to the upper surface of the hole. 

6.3.2 Initial Contact 

Looking back at figure (6.3), during the initial contact between the peg and the hole the 

reaction force generates a torque that tilts the peg into the mouth of the hole. Note that in 

3D space, during contact between the bottom of the peg and the upper surface of the hole, 

the springs will react in one plane either the X-Z or the Y-Z plane, despite the fact that the 

system has 4 degrees of freedom (2 transitional and 2 rotational). Also in figure (6.3), the 

lateral springs have lateral stiffness of Kx and K y which are equal, and angular stiffness of 

Ksxz and Ksyz which are also equal. Note that in this sub-process only one angular spring 

provides the torque to tilt the peg, either Ksxz or Ksyz. Also, their angular deflection is in 

the same plane and direction. 

The free body diagram (FBD) of the peg during this stage is shown in figure (6.6). 

I 

~ Ix d2!)ldt2 

------~ Ts 
I 

I 

T~ 

Figure 6.6 Reaction torque acting on the FBD of the peg during two-point contact 
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The dynamic differential equation of Newton's 2
nd 

law that describes this sub-process is, 

d 2
() 

1(t) = 1-
2
- + K 9XZ () 

dt 

d 2
() . 

(6.3 ) 

1(t) = 1 dt 2 + K 9 () SInce K 9XZ = K 9 yz, they are denoted by K.9 

The output S is the angular deflection of the springs, which corresponds to the angular tilt 

of the peg. d
2 
Sf dl is the angular acceleration, and 1 is peg/wrist moment of the inertia 

about either X or Y axis, and it was determined experimentally (see appendix 1). T is the 

reaction torque at the contact points between the peg and the hole. In figure (6.7), e is the 

lateral distance between the centre of the peg to the contact points. 

a 
I 
I P2 , ,... "-

;' ...... a ,,- , 
I I \ 

I )" \ 
/ '\ 

I 
I 'I 

I I \ 

I \ 

I \ 

\ 

b c I 

I 
Peg IHoie 

I 
\ a 
\ I 

\ I I 

'\ I / 

"- I / 
.I .- - - - - -- I "- / ,,- .... 

I / r "- ;' 

1/ ..... { ;' 

I --t---
\ } 

I \.. / .... ",. 

...... - --- -- -
_ ..... 

Figure 6.7 The peg in two point contact with the hole during the initial contact stage 

In figure (6.7, the peg circle) there are the followings relations: 
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a2 = be also, 

a 2 = R2 -(e+eoy and, 

b=r-e 

e = r + e then 

R2 -(e+eoy = (r-eXr + e) this should give 

R2 2 2 -r -e 0 
e=-----

Then, the reaction torque is given by: 

R 2 2 2 -r -e 0 
T = Fin X cos 8 X e = Fz X e = Fz X -----

2e 

(6.4) 

(6.5) 

To find the output S, substitute eq. (6.5) into eq. (6.3), then the system differential 

equation (eq. 6.3) can be expressed in the s-domain method for zero initial condition then, 

~s) = 1s2 8 + K,98 

~s) =8(ls
2 

+K,9) 

1 
8(s) = ~s) -2--­

Is + K,9 

The simulation diagram that describes this equation is, 

1 
.. s(S) 

I-----~ 

Figure 6.8 A simulation block diagram for the peg initial tilt 

6.3.3 Transition Stage 

(6.6) 

In this stage the peg moves to the far side of the hole by a distance ex (output), which 

corresponds to the spring Kx compression (of figure 6.3), and this is shown in figure (6.9). 
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(6.9) 

Expressing the system differential equation In the s-domain method for zero initial 

condition, yields: 

~n(s) (sin 9 - flCOS 9) = ms
2 
ex + K xex 

(6.10) 

The simulation block diagram for this stage is shown in figure (6.11), 

Fin(s)( sin-S-flcos-S) 1 .. 

Figure 6.11 Simulation block diagram for the peg transitional stage 

However, if the peg approaches the hole with negative initial angular misalignment (figure 

6.12), then during contact between the mating parts, the input is the torque generated from 

the reaction forces and the output is -S. Note that to accommodate this initial misalignment, 

the springs should react in one plane, either the rotational springs K,9xz or K ,9yz. The 

differential equation that describes this stage is 

d 29 
1(t) =I-2-+K9 9 

dt 

d 2 9 
1(t) =I-2-+K9 9 

dt 

(6.11) 

Which is the same as eq. (6.3), except -S is negative and, the torque is (refer to chapter 3, 

figure 3.8), 
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T = Fin COS a x r = Fz x r 
(6.12) 

I -' . 

Figure 6.12 left-side angular misalignment 

The simulation block diagram for this stage is the same as that for eq. (6.3) apart from the 

value of T, which is given in eq. (6.12). 

6.3.4 Transition From One To Two-Point Contact 

The next stage is where the peg slides into the hole and two-point contact occurs (see 

figure 6.13). In this stage the insertion system will continue in providing the peg with the 

vertical motion (sliding-in) while maintaining the one-point contact with the hole until a 

stage where the peg changes from one to two point contact with the hole. 

I .,_---- ; I 
I .- ", - -..... - - - -""; :- ~ I 

~' 'J , / 

..... _--""-----

Figure 6.13 The peg is in transition from one-to-two point contact 

The forces that act on the FBD of the peg are shown in figure (6.14). Note that the line of 

action of all forces lies in the X-Z plane, something that reduces the 3D problem to 2D. 
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Figure 6.14 The FBD of the peg during transition stage 

The following equation is derived from Newton's 2nd law (see figure 6.14): 

Fz - Ii It = rna (6.13) 

Also in figure (6.13), the following relation exist: 

It = Fx (6.14) 

Then putting the relations of eq. (6.14) into eq. (6.13), should give the system dynamic 

equation, which is: 

(6.15) 

Now, eq. (15) is expressed in the s-domain method should give: 

F:n(s) (cos 8 - Ii sin 8) = ms
2 

Z(s) 

Z( ) = F. ( ) (cos 8 - Ii sin 8 )~ 
Sins ms 

(6.16) 
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The simulation block diagram for this stage is shown in figure (6.15). 

F in(s)( cosS-)lsinS) 1 
... ... 

Figure 6.15 Simulation block diagram for the peg during one-point contact sliding 

3.5 Final Alignment 

The final stage is where the peg is in two-point contact with the hole (figure 6.16). The 

input is the torque generated by the reaction forces due the two-point contact. The output is 

the angular tilt. In the final alignment, the angular tilt becomes zero degrees. It is assumed 

that once the peg is inside the hole and the angular error is zero, this is a success, and 

hence becomes the end of the insertion process. 

- -- - . - - - .. -

~ --I ----- _____ ------- I 
I .,.,. .,.,. - -- -- --- -... ""'- ""'-....... I 

~' ~ , / , ~ 

........ _------ -

Figure 6.16 The peg tilting from two-point contact to zero angular misalignment 

As before, on the FBD of the peg of figure (6.16), the forces acting on it are all lying in 

one plane. The actual diagram is the same as that of figure (6.6). 

Newton's 2nd law for this system is: 

d 2 f) 
1(t) - TS(t) = I dt 2 
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Where T(t) is the input and S is the output of the system. In eq. (6.17) the input T(l) is equal 

to the moment at the wrist ( refer to eq. 5.l8, recovery torque) and it is shown in eq. (6.18). 

Rearranging eq. (6.17 and 6.18) and then transferring into the s-domain method 

d 2 f) 
1(t) = 1-

2
-+ K 9 f) 

dt 

1(s) = 1s2 f)(S) + K 9 f)(s) 

f)(S) 1 

1(S) 1s2 + K9 
or 

1 
f)(S) = 1(s) -2-­

Is +K9 

(6.18) 

, 

(6.19) 

To complete the insertion process, the output S (in eq. 6.19) has to become zero. This is 

achieved when the spring/wrist tilts the peg to the other side until contact between the 

mating parts is broken from both sides, and no reaction forces exist. Also, it is assumed 

that once the peg is inside the hole with zero angular misalignment, peg sliding could 

continue until the desired insertion depth without risking j amminglwedging occurrence. 

The simulation block diagram that describes the final stage of the insertion process is 

shown in figure (6.17). 

1 

Figure 6.17 Simulation block diagram for the peg during two-point contact-completion 

stage 

6.4 SIMULATION 

A simulation programme was designed to simulate the insertion process model of that 

developed in this chapter. The software used to simulate the insertion process is Matlab-

Simulink, and the default parameters were as follow: 

For the wrist various values were used for angular and lateral stiffness, , 
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Kx= 0 to 10 Nlmm 

K 9 or Ka = 0 to 1 0000 Nmmlrad 

For the peg-hole and wrist: 

m = 3.10 Kg this is the mass of the wrist, mass of the peg is negligible 

R = 10 mm 

I '" 0.0035 Kg.m
2 

(see appendix 1 for experimental detennination of the moment of 

inertia for the wrist) 

The initial lateral and angular misalignments between the mating parts were, 

exo or e = 1.5 mm 

90 = 3° 

Coefficient of friction, f.1 = 0.2 

c= 0.2 mm 

A constant force used as input, it is equal to 500 N. 

Figure (6.18) shows a schematic of the simulation programme designed to simulate the 

wrist during chamferless peg-in hole insertion process. 
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.1 1 

1000" ls4Ka 

Reaction torque 

In itial co ntact 

I nse rti 0 n fo rce Re covery Torque 

Product 

Product1 

Simulation Diagram of The Peg-Hole Insertion Pro cess N 
(Doub le click on the "7' for more information) ~ 

To start and stop the simulation , use the "Start/Stop" 
selection in the "Simulation" pull-down menue 

1 

ms4Kx 

Tra nsit ion al stage 

1 

ms2 

Slid ing stage 

I yout2 

Lateral tr ansition 

~ Start II I e ~ ~ ~ I J II MA TLAB Command Windowl..:.;;,~~; _sim_u'_ink ____ ....lll ,...:r: simull 

~ 
0-
o 
II) 
o 

... ;=t-
~ r 

.~~~. 14.49 

Figure 6.18 Simulation programme for wrist during the peg-in hole insertion process 

The principles of the programme presented in figure (6.18) are the same as those for fi gure 

(6.2). Note that either the initial angular or the initial lateral misalignment must not be zero 

at all times. In figure (6.18), the applied force is in the form of a step-input which provides 

the system with a constant force/signal to run the transfer function blocks, that were 

derived from the mathematical models of the insertion process. The input force generates a 

reaction torque (eq. 6-5), which is in tum, fed into the initial contact transfer function block 

(eq. 6.6). The output is an angular tilt. The angular tilt is fed into function blocks to create 

sine S) and cos( -S) which in tum is fed into the system to generate the input forces needed 

for each of those stages (refer to equations 6.10 and 6.16) to slide the peg laterally and then 

to slide it down inside the hole to form one or two point of contact (refer to eq. 6.19). At 

the same time the recovery torque does the final alignment (refer to eq. 6.1 8). The scope 

blocks throughout the programme are to monitor the progress of the simulation process. 
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Figure (6.19) is a summary of a successful insertion attempt. 
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Figure 6.19 Summary of the simulation process for initial error of 1.5 mm, C = 0.2 mm 

As shown in figure (6.19), for a given force of 500 N, the wrist can tilt the peg inside the 

hole to about 2.5 0 and then slides the peg to about 1.4 mm. After that, the peg moves from 

one-to-two point contact with the hole. At the same time the wrist tends to align the peg 

with the hole. Note that in the maximum lateral transition graph, the results indicate that to 

overcome the initial lateral misalignment the wrist has to slide the peg axially to a distance 

of at least the value of the initial positional misalignment. Since the clearance between the 

mating parts is 0.2 mm, the 1.4 mm lateral movement of the peg becomes sufficient to 

overcome the 1.5 mm initial lateral misalignment. 

Also, figures (6.20 and 6.21) present successful assembly examples. Figures (6.22 and 

6.23) present jamming occurrence due to insufficient wrist stiffness. In both figures (6.20-

21), the wrist tilts the peg inside the hole 50 and 130 and then the peg moves to the far side 

of the hole to overcome the initial lateral errors, and slides down the hole to form one and 

two point contact. To complete insertion, the wrist aligns the peg inside the hole. 
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Figure 6.20 Successful assembly for initial error of 1 mm, C = 0.2 mm 
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Figure 6.21 Successful assembly for initial error of 0.5 mm, C = 0.2 mm 
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Figure 6.22 Jamming, zero angular stiffness and 1 mm initial lateral error, C = 0.2 mm 
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Figure 6.23 Jamming, angular stiffness 5000 Nmmlrad and 1 mm initial error, C = 0.2 mm 
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As shown in figure (6.22), for zero angular stiffness and 1 mm initial lateral error, the wrist 

tilts the peg to over 50°, and moves the peg to over 0.4 mm but does not keep it in position. 

However, in figure (6.23) for 5000 Nmmlrad angular stiffness and 1 mm initial errOL the 

wrist tilts the peg to over 8 degrees and moves the peg laterally over the 1 mm. But in this 

case the wrist could not recover the peg during the final alignment stage (final angular tilt 

must become zero). 

Now, to evaluate the simulation model, different clearances were used for variable initial 

lateral misalignment. The results are shown in figure (6.24 and 6.25). 

I-+- c=0.1 mm -ll-c=0.2 mm --,\- c=0.3 mm I 
25 ,.......--_. ___ .~_ .. _._~c~~_. ____________________ ~ ___ .. , _____ _ 
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~5 ! 

I 

-5~---------------------------------------
Initial lateral misalignment (mm) 

Figure 6.24 Progress of the maximum angular tilt for given initial lateral misalignment 

and different clearances 

In figure (6.24), for 0.5 mm initial error and a clearance of over 0.2 mm, this results in a 

large angular tilt (over 15°) during the simulation process, which will cause a 3POC 

jamming. On the other hand in figure (6.25), initial lateral error of over 1.5 mm leads to 

insufficient lateral transition to overcome the initial lateral error, therefore jamming 

occurring is inevitable. 
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Figure 6.25 Progress of the maximum lateral transition for given initial lateral 

misalignment and different clearances 

So far, the initial angular misalignment in the presence of initial lateral misalignment was 

ignored because it has little effect on the insertion process. However, if there is a situation 

were the initial lateral misalignment is zero, and the initial angular misalignment is not 

zero, then the reaction torque given in eq. (6.5) would become: 

T = ~n cos9 x r (6.20) 

Which is the same as eq. (6.12) except that S is positive. So putting eq. (6.20) in the 

simulation programme would give the results shown in figure (6.26). 

The results presented in figure (6.26) indicate a complete jamming occurrence. To 

understand the reasons behind that, one should refer to the principles of remote compliance 

devices. It is known that RCC's accommodate angular errors within the range of their 

friction angle. In the case of the CVH-RCC the friction angle is 12°, therefore both of 811 

and Smax must be smaller than 12° otherwise jamming occurring is inevitable. To 
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understand the effect or the relation between the friction angle Sand (\ h I 
,0 \7 max ave a ook at 

figure (6.27). 
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Figure 6.26 Summary of the simulation process for initial angular misalignment, from 10 

to 12°, c = 0.2 mm 

Figure 6.27 Relation between the applied forces and the angle of tilt 
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As shown in figure (6.27), by increasing the applied force the F F d . , z, x an reaction torque 
will be increased and as a result, the angular tilt increases and th th' . us e InsertIOn force Fz 
will lie outside the friction cone and the outcome is J' amming Sl'n th I . ce e on Y parameter that 

can be controlled is the applied force (Fin) in the actual simulatI'o d' , n programme, ecreasma 
b 

the applied force will give the results shown in figure (6.28). 
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Figure 6.28 Summary of the simulation process for initial angular misalignment, from 10 

to 12°, c = 0.2 mm, the applied force is 100 N 

Figure (6.28), presents same insertion process with 100 N applied force; the outcome is 

successful assembly. However, one point can be noticed in both figures (6.27 and 6.28) is 

that the initial angular misalignment has same effect on the simulation process, whether it 

is small or large. Hence, to determine whether jamming could occur based on the initial 

angular error, then one should consider the relation rlcosS :::; R (see eq. 5.7). So, variable 

angular misalignments were substituted into eq. (5.7) along with different clearances, and 

the data generated was plotted in figure (6.29). 
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Figure 6.29 Angular error, clearance and the possible 3 point of contact 

In order to avoid jamming, in figure (6.29) and for a given clearance the initial angular 

misalignment or the maximum angular tilt should correspond to that particular clearance at 

the trend line, otherwise jamming occurring is inevitable. 

Now, after finding the regIon of the allowable initial positional misalignment, the 

theoretical wrist stiffness has to be determined. To find the angular stiffuess, for 0.2 mm 

clearance, the range of the initial lateral misalignment which will give maximum angular 

tilt without causing jamming is 0.5 to 1.5 mm. These values were put in the simulation 

programme and assuming that the default value of the lateral stiffness is zero, revealed the 

results shown in figure (6.30). 
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Figure 6.30 Behaviour of angular tilt versus angular stiffness 

In figure (6.30), for variable angular stiffness, different values of the maximum angular tilt 

were generated. During the simulation process, the angular stiffness that led to successful 

assembly is between 6800 Nmmlrad to 7500 Nmmlrad. On the chart of figure (6.30) this 

corresponds to maximum angular tilt of 6.20 and 5.50 respectively. Also, during the 

simulation process for angular stiffness of 6800-7500 Nmmlrad the maximum lateral 

transition was -1.15 mm and -1.2 mm respectively. To find the wrist theoretical lateral 

stiffness, refer to figure (5.7), assuming that the peg is in contact with the hole at points PI 

and P2 (for lateral transition). Then taking moments about point 0 1, which is the centre of 

the wrist, should give: 

(6.21) 

Also, 

(6.22) 

Substitute eq. (6.22) into eq. (6.21) should give: 
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Then substitute eq. (5.19, Fx4xex) into eq. (6.23) should give: 

K = 2K99 maxJ.1 eo 
x e

max 
(R2 - r2 - e2 0 ) (6.2.+) 

Also, the lateral stiffness should have theoretical, minimum and maximum values. The 

same as the theoretical angular stiffness for which the minimum and maximum angular tilt 

and lateral transition (5.50 to 6.20 and -1.2 mm to -1.15 mm) are achieved. No\\' , 

substituting the minimum and maximum values of angular stiffness, angular tilt and lateral 

transition in addition to the initial value of the positional misalignment (l mm: This is the 

allowable value for the RCC. Also this is the value in which successful assembly is 

achieved during the simulation process for different clearances.), should give: 

N 
KXmin - 82-and 

mm 
N 

K X max ::: 86-­
mm 

However, this value of lateral stiffness is much larger than the ones were used in the 

simulation programme (84 Nlmm as opposed to 2 Nlmm). So, this time the new values of 

the wrist theoretical stiffness (7150 Nmmlrad and 84 Nlmm) were put in the simulation 

programme and same process for generating figure (6.25) is repeated to generate figure 

(6.31). 

A comparison between figure (6.25) and figure (6.31) shows that there is a decline in the 

lateral transition for a prescribed initial lateral error. In fact, the results of figure (6.25) 

indicate a maximum lateral transition which the wrist could achieve in order to overcome 

the initial lateral error. In figure (6.31) the results indicate the actual value which the wrist 

could achieve to overcome the initial lateral error without having to move the peg more 

than the value of the initiallateral error. Because the actual value plus the clearance should 

become sufficient to overcome the initial lateral error. 
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Figure 6.31 Progress of the maximum lateral transition for given initial lateral 

misalignment and different clearances using wrist theoretical stiffness 

To summarise figure 6.31, to avoid jamming: 

For c = 0.1 mm 

c= 0.2 mm 

c = 0.3 mm 

eo < 1.5 mm 

eo < 1.2 mm 

0.5 mm < eo < 1 mm. 

3 

Now to summarise the relation between the wrist stiffness, allowable errors, and clearance 

for successful assembly, the previous results are presented in figure (6.32): 
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Figure 6.32 Summary of theoretical results 

Now to show the effect of the peg size on the insertion process, the theoretical values of 

the wrist stiffness were entered into the simulation programme to generate data for the 

initial lateral error versus the maximum angular tilt for different peg radiuses (see figure 

6.33). 
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Figure 6.33 Maximum angular tilt for different peg sizes, C = 0.2 mm 
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As shown in figure (6.33) for a peg of radius 15 mm, the wrist could not overcome the 

initial lateral misalignment at all times. For radius of 5 mm, the initial lateral misalignment 

should be up-to 1.5 mm to enable the wrist to accommodate, and for radius of 10 mm. the 

initial lateral misalignment should be up-to 1 mm. 

6.5 CONCLUSION 

In this chapter a mathematical model of the chamferless peg-in hole insertion process using 

a passive compliant wrist is presented. Subsequently, a Matlab-Simulink simulation 

programme for this model has been designed. The results of the simulation programme 

presents some recommendations for avoiding jamming, the design of the inserted peg and 

hole, and the wrist. These recommendations are summarised as follow: 

1. Wrist stiffness should be: angular stiffness 6800 Nmmlrad to 7500 Nmmlrad, and the 

lateral stiffness 82 Nlmm to 86 Nlmm. 

2. For c < 0.2 mm, the initial angular misalignment So ~ 9°, and when c ~ 0.2 mm then the 

initial angular tilt 9° < So < 12°. 

3. For c < 0.2 mm, the initial lateral misalignment 1 mm < eo < 1.5 mm, and when c ~ 0.2 

mm, then the initial lateral misalignment 0.5 mm < eo < 1 mm, otherwise jamming could 

happen (see chapter 9, for discussion and explanation). 

4. The wrist should accept a peg from 5 to 1 0 mm radius. 
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CHAPTER 7 

THE CHAMFERLESS-VERTICAL-HORIZONTAL COMPLIA~T 

WRIST (CVHRCC) 

7.1 INTRODUCTION 

There have been many devices and strategies developed to accommodate positional errors 

between chamferless mating parts during an assembly operation (see chapter 2). The 

difference between those devices and the device presented here is that these devices adopt 

either the passive -active technique or the active technique to accommodate positional 

errors between chamferless mating parts. This approach is quite complex and expensive 

compared to the device presented in this chapter which was designed to operate passively. 

The purpose of this chapter is to present a new compliant wrist that was designed for 

chamferless peg-in hole assembly from vertical and horizontal directions. The wrist 

stiffuess should be within the boundary of the theoretical stiffuess presented in chapter 6. 

The structure of this chapter is as follows: 

Section 7.2 describes the wrist and how it functions. 

Section 7.3 presents a series of experiments that were carried out to measure the wrist 

deflection' to detennine the wrist minimum stiffuess which corresponds to , 

the wrist stiffness when the peg is inside the hole in either one or two point 

contact. 

Section 7.4 describes the testing procedure for finding the wrist maximum stiffuess 

Section 7.5 provides the design procedure and shows the wrist stress analysis using a 

finite element package (Algor: PEA). 

Section 7.6 presents a general discussion of this work. 

Section 7.7 is a conclusion. 

. . 'ffn h d th t th CVHRCC has a low The experimental detenninatIon of the wnst stI ess s owe a e 

stiffuess compared to other devices in its category, but it can accommodate the same range 

. d' assembly operation. The of positional errors between chamferless matIng parts unng an 
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finite element analysis of the wrist has validated the wrist structural de' H . 
SIgn. 0\\ eyer. due 

to the large weight of the CVHRCC (4 Kg); some weight was removed from it. from 

around the bottom and the top major units after it had been built (see figure 7.1). 

7.2 WRIST DESCRIPTION 

The Chamferless-Vertical-Horizontal remote centre compliance (CVHRCC) is a 

modification of the remote centre compliance (RCC) model (refer to section 2.4.1.1. 

chapter 2). CVHRCC differs from the RCC in that it can function with chamferless mating 

parts and from both the vertical and the horizontal directions. CVHRCC is a passi\'e 

compliant wrist mounted between the robot armJassembly machine and the end effector 

that enables peg-in hole assembly without jamming or wedging, despite initial errors in the 

peg position and orientation. 

An essential characteristic of the CVHRCC is the ability to provide the peg being 

assembled with two different points for rotation (see next section) at the insertion axis, 

which enables it to accommodate positional errors even in the case of no chamfer on either 

of the mating parts. Also, the independent accommodation of the lateral and the angular 

error is achieved by placing the centre of compliance near the tip of the peg. 

CVHRCC is made of two major units, the fixed unit and the floating unit. The fixed unit is 

a frame made of 2 aluminium plates mounted parallel to each other and connected by 3 

steel rods. The top plate is attached to the robot/assembly machine end effector, while the 

bottom plate contains the floating unit. The floating unit is located inside a sandwich of 

soft rubber (sponge) and it is made of2 aluminium plates connected with 3 converged steel 

rods, and one vertical centre steel rod. The bottom plate of the floating unit contains an 

internal sandwich of sponge for grasping the part to be assembled (see figure 7.1). 

7.2.1 Wrist Operation 

As shown in figure (7.2), CVHRCC places the centre of compliance (COC) near the tip of 

the peg (point 0). This enables the peg to rotate about the insertion point in case of 

angular/lateral misalignment to correct that error. Also in figure (7.2), when the reaction 

. b . 0 (COC) d at the same time it tilts force Fl anses, it causes the peg to rotate a out pOInt an 

the upper side of the peg (point A) into the sponge sandwich in the tilt direction (point B). 

104 



Chapter 7: 

. . p zant nsf (CvhrcCj 

The peg tIlt, results In another axial reaction force in th d' . 
. ' e IrectlOn of the tilt, which causeS 

both the sponge sandwIch and the peg to move to th . d h 
e SI e Were there are fewer forces 

applied from the hole on the peg. 

Figure 7.1 CVHRCC mechanism 

Since the CVHRCC floating unit is inside a sandwich of sponge, and it weighs only 791 g. 

during horizontal assembly it causes the sponge sandwich to compress in the gravitational 

direction. This compression is designed to be small. CVHRCC can achieve the peg-in hole 

insertion process from the horizontal direction, provided that the positional error to be 

accommodated is less than the deflection of the assembly machine in the vertical direction. 
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Figure 7.2 Operational principles of the CVHRCC 

7.3 WRIST STIFFNESS 

During the peg-in hole insertion process, there are small and large forces that act on the 

inserted peg. Small forces act on the peg while it is in one or two point contact with the 

hole. At that stage, the rubber attempts to manipulate the peg inside the hole, rather than 

both wrist structure and rubber. Therefore in this section experiments will be carried out to 

work out the minimum wrist stiffness. On the other hand, during the initial engagement 

between the peg and the hole, large reaction forces arise which cause both the wrist 

structure and rubber to manipulate the peg to the next stage of the insertion process. 

Testing for finding out the wrist maximum stiffness of this stage is presented in section 

7.4. 

To find the angular and the lateral wrist minimum stiffness, the CVHRCC was placed on a 

three axis milling machine. Two separate experiments were carried out to measure 

CVHRCC angular and lateral deflections. The angular and the lateral stiffness were 

calculated from the values of the wrist deflections. 

Six angular deflection measurements were carried out, the mean measurement of each load 

was recorded, the angular stiffness of each mean measurement was calculated and the 
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subtotal was found. The mean angular stiffness of the wrist was the average of the subtotal 

angular stiffneses. 

Also, six lateral deflection measurements were carried out, a mean measurement for each 

load was made, and the lateral stiffness of each mean measurement was calculated and 

subtotal was found. The wrist lateral stiffness was the mean/average of the subtotal lateral 

stiffnesses. 

7.3.1 Wrist Angular Stiffness 

CVHRCC was mounted on a milling machine, and a rig as shown in figures (7.3 and 7. -+) 

was constructed. An angular force in the form of a variable weight hung at the edge of a 

beam used to create the angular deflection (see figure 7.4). 

.. . 
' .. 

"" ""'10, 

, 
, 

. -._--.' 

F 

.. 
..... ~ _r __ --111-~ - -. - : __ --: ~ 

Figure 7.3 Sketch of the experimental rig, CVHRCC during the angular stiffness 

measurements 

h d fl t· f th beam at its edge The gauge A Vernier height gauge used to measure tee ec Ion 0 e . 

. .. 168 30 from the table of the milling zero/reference point in the vertIcal dIrectIon was . mm 

d· I th 168 30 mm The sin9 for machine. The gauge measurement was the gauge rea lng ess e. . 

t the beam radius (r = 90 the beam/wrist angular deflection was the gauge measuremen over 
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mm from the point of the applied force). Note that the accuracy of the V . h 'gh 
enuer el t gauge 

is ± 0.01 mm. 

Figure 7.4 CVHRCC on a milling machine, for angular stiffness detennination 

Table 7.1 Shows experimental data, which was taken during the angular stiffness 

experiment. 
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Table 7.1 CVHRCC angular deflection data 

Load Test #1 Test #2 Test Test Test Test Mean Mean Theor. Mean Ang.st 
(N) mm mm #3mm #4mm #5mm #6mm (mm) (degr (rad) 

Mean Ang. st 
mean Nmmlrad Nmmlrad 

ees) (degre 
esJ 

0 0 0 0 0 0 0 0 0 0 0 0 
0.5 0.88 0.5 0.5 0.4 0.8 0.8 0.6466 0.352 0.537 0.0061 7317.073 

67 8 5 171 
1 1.8 1.42 1.36 1.2 1.9 1.8 1.58 0.862 1.074 0.015 6000 

19 
1.5 3.1 2.5 2.4 2.3 3.18 3.04 2.7533 1.502 1.611 0.026 5192.307 

33 59 692 
2 4.35 3.4 3.44 3.38 4.34 4.3 3.8683 2.111 2.148 0.0368 4891.304 

33 348 
2.5 5.82 4.62 4.7 4.66 5.7 5.9 5.2333 2.856 2.686 0.0498 4518.072 

33 8 289 
3 7.1 5.7 6.02 6.1 7.1 7.3 6.5533 3.578 3.223 0.0624 4326.923 

33 077 
3.5 8.54 7 6.7 7.4 8.66 8.9 7.8666 4.296 3.76 0.0749 4205.607 

67 6 477 
4 10.12 8.5 8.7 8.8 10.2 10.34 9.4433 5.159 4.297 0.09 4000 

33 9 
4.5 11.3 9.8 10 10.1 11.7 11.8 10.783 5.894 4.834 0.103 3932.038 

33 5 835 
5 12.52 11.2 11.4 11.2 13.1 13.14 12.093 6.613 5.371 0.115 3913.043 

33 69 478 
48296.37 4829.637037 

037 
4800 
Nmm/rad 

Note: The actual wnst angular stIffuess is based on the sponge stiffuess. 

The angular stiffuess of each mean measurement was calculated from the following 

equation (of figure 7.3): 

K =Fxr 
[) 88 

(7.1 ) 

The wrist angular stiffuess is the mean stiffuess of each mean measurement and was found 

to be 4800 Nmm . 
rad 

The fact that the wrist angular stiffuess is smaller than that of other devices in its category 

(30 x 103 - 60 X 103 Nmm), provides it with more flexibility to accommodate angular 
rad 

errors. Moreover, the wrist flexibility does not cause the peg being assembled to vibrate, 

because this type of sponge does not tend to vibrate after it is compressed. 
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7.3.2 Wrist Lateral Stiffness 
-~---

Again, CVHRCC was mounted on a milling machine (figure 7 5 and 7 6) A I 
. " ateral force 

in the form of a variable weight suspended through a string over a pulle I' d h . Y app Ie at t e tIP 
of the peg. 

Y2 , 
0., , 

X2 
, . 

.: 

Xl 

YI 

F 

. , 

. 
I . 

, . 
, . 

Figure 7.5 Sketch of experimental rig, CVHRCC during lateral stiffness measurements 

A dial gauge measured the peg deflection in millimetres from point Xl to X 2 (&) was 

used. In figure (7.5), for ease of calculations, the distance & is assumed to be a straight 

line. Note, the accuracy of the dial gauge is + 0.01 mm. 

110 



Chapter 7: The Chamferless- Vertical-Horizontal Compliant Wrist (C\'hrcc) 

Figure 7.6 CVHRCC on a milling machine, for lateral stiffness detennination 

The reason why 8 x was chosen but not 8 y , is that 8 x is located near the point where 

the CVHRCC places its centre of compliance. 

The following equation was used to calculate the lateral stiffness for each mean 

measurement (refer to figure 7.5): 

K =~ 
x 8 x 

(7.2) 

As shown in table 7.2, during the measurement process several problems where 

encountered, among which are the compressibility of the sponge and the starting position 

of the peg. The first problem was overcome by turning the wrist through 120
0 

periodically. 

To ensure that the starting position of the peg is the same for every measurement, an 

alignment from the operator was made before and after each deflection. 
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Table 7.2 shows experimental data, which was taken during the lateral stiffness 

experiment. As can be seen in table 7.2 the wrist lateral stiffness is 1 5 11.'1 thi 1 . . IVlmm, s va ue IS 

far less than that for other devices of the same category (4.5-10 Nlmm). As stated earlier 

with respect to the angular stiffness, this low stiffness does not cause the wrist/sponge to 

vibrate, because this kind of sponge has one phase recovery after removing the applied 

force. 

Table 7.2 CVHRCC lateral deflection data 

Load';;"" Test #1 Test #2 Test #3" Test#4 Test#S Test #6 Mean Theoreti Lat st Mean/at 
(NJ mm mm mm mm mm mm (mm) carmean (N/mm) st 

meas. (N/mmJ 
I (mm) 

0 0 0 0 0 0 0 0 0 0 
0.5 0.2 0.053 0.14 0.18 0.09 0.18 0.1405 0.333333 3.558718 

3 9 
1 0.45 0.3 0.485 0.49 0.595 0.45 0.461666 0.666666 2.166065 

7 7 
1.5 0.79 0.8 0.82 0.79 0.96 0.74 0.816666 1 1.836734 

7 7 
2 1.27 1.17 1.185 1.12 1.33 1.19 1.210833 1.333333 1.651755 

3 3 
2.5 1.66 1.55 1.515 1.5 1.71 1.66 1.599166 1.666666 1.563314 

7 7 2 
3 2.23 1.92 1.83 1.81 2.085 2.08 1.9925 2 1.505646 

2 
3.5 2.53 2.5 2.29 2.24 2.55 2.59 2.45 2.333333 1.428571 

3 4 
4 2.9 2.92 2.83 2.75 3 3.07 2.911666 2.666666 1.373783 

7 7 6 
4.5 3.36 3.35 3.34 3.19 3.42 3.49 3.358333 3 1.339950 

3 4 
5 3.98 4.31 3.9 3.59 3.96 4.12 3.976666 3.333333 1.257334 

7 3 5 
5.5 4.33 4.71 4.5 4.29 4.49 4.48 4.466666 3.666666 1.231343 

7 7 3 
18.91321 1.576101 

7 4 
Lat. st. 
=1.5 
N/mm 

Note: The actual wrist lateral stiffness is based on the sponge stiffness. 

In figures (7.7 and 7.8), the charts demonstrate the relationship between the applied force 

and the wrist actual and theoretical deflections. Where the theoretical lines were made 

from the value of the mean angular stiffness and the mean lateral stiffness, which were put 

in equations (7.1 and 7.2) respectively. Also in figure (7.7 and 7.8), it can be seen that up­

to 3 N the wrist experimental deflections are almost similar to the theoretical ones. 

Thereafter the actual deflections are higher than the theoretical ones, the reason for that is 

that the higher the applied force becomes, the larger the sponge is compressed and 

therefore the less efficient the wrist recovers. 
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Figure 7.7 Comparison between experimental, theoretical CVHRCC angular deflection 
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Figure 7.8 Comparison between experimental, theoretical CVHRCC lateral deflection 
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7.4 MAXIMUM WRIST STIFFNESS 

In section 7.3, the minimum angular and lateral wrist stiffness was found. However that 

stiffness is correct for a situation where the peg is already inside the hole in either one or 

two point contact. In this section the maximum wrist stiffness is to be detennined based on 

the movement of both, the rubber and the wrist structure as a result of the peg deflection. 

Thus, a 30 mm peg is attached to the wrist and the wrist is mounted on a Mays Tensile 

Testing Machine. Then, the bottom surface of the peg is confined to a square metal block 

(the peg just touching the surface of the block). So the peg overlaps the block by 1 mm (see 

figure (7.9) and also refer to figure 3.7 in chapter 3). 

Lg= 150 mm 

eo ,1-------__ l ,/ 
-f ~ ----t---------_______,/ 

° f / --._-__ ) 
0-

Figure 7.9 Sketch of peg-wrist during the test 

h . I d' tance from the table surface to Four experiments are carried out to measure t e vertIca IS 

r d £ is from 100 to 500 N. As the lowest point at the peg bottom surface. The app Ie orce 

. d the vertical distance h. shown in figure (7.9), a Vernier height gauge IS use to measure 

Then the angle S is given in the relation: 
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. n flh 
Slnl7' =--

d-e o (7.3 ) 

To find the wrist angular stiffness, a moment is taken about the centre point of the bottom 

surface of the peg that shown in figure (7.9), it yields: 

Fz{r - eo) = K XexLg - K[}9 

F';n cos 9{r - eo) = F';n sin 9 Lg - K[}9 

[L g sin 9 - cos 9 (r - eo)] 
K [} = --==----------= 

9 

Also, there is the relation, 

Kx = Fx = F';n sin 9 
ex eo 

providing that eo = ex 

(7 . .+) 

(7.5) 

Using eq. (7.3 to 7.5), the value of the angular tilt and wrist stiffness is determined and 

placed in tables 7.3 to 7.6. 

Table 7.3 First test, experimental data and wrist stiffness 

Fin(N) H(mm) h(mm) L\h (mm) 80° Ks Nmmlrad Kx N/nllu 

100 38 36.5 1.5 2.96 16053 7 

150 38 36.25 1.75 3.45 16395 12 

200 38 36 2 3.95 14021 18 

250 38 36 2 3.95 13178 23 

300 38 35.5 2.5 4.94 4771 34 

350 38 35.5 2.5 4.94 4186 40 

400 38 35.5 2.5 4.94 6363 45 

- nd 2bfrffm Mean stIffness 10710 Nmmlrad a, m 
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Table 7.4 Second test, experimental data and wrist stiffness 

FJlf') H (mm) h (mm) Ah (mm) .so Ks l\; mm/rad Kx :\/mm 

100 38 36 2 395 7010 9 
150 38 35.75 2.25 4.45 5958 15 

200 38 35.75 2.25 4.45 7944 21 

250 38 35.5 2.5 4.94 3977 29 

300 38 35.5 2.5 4.94 4771 35 

350 38 35.5 2.5 4.94 5567 40 

400 38 35.25 2.75 5.44 1589 50 

Mean stiffness = 5260 mmlrad and 2 , 8 Nlmm 

Table 7.5 Third test, experimental data and wrist stiffness 

Fill(N) H(mm) h(mm) Ah (mm) .so Ks Nmm/rad Kx N/I11I11 

100 38 36.5 1.5 2.96 16054 7 

150 38 36 2 3.95 7907 14 

200 38 35.5 2.5 4.94 3181 23 

250 38 35.5 2.5 4.94 3977 29 

300 38 35.5 2.5 4.94 4771 35 

350 38 35.25 2.75 5.44 1390 44 

400 38 35.25 2.75 5.44 1589 51 

Mean stiffness = 5553 Nmmlrad and, 29 Nlmm 

Table 7.6 Fourth test, experimental data and wrist stiffness 

Fill(N) H(mm) h(mm) Ah (mm) 8 0 Ks Nmm/rad Kx N/l11m 

100 38 36 2 3.95 7010 9 

150 38 35.75 2.25 4.45 5958 15 

200 38 35.75 2.25 4.45 7944 21 

250 38 35.75 2.25 4.45 9930 26 

300 38 35.5 2.5 4.94 4771 35 

350 38 35.5 2.5 4.94 5567 40 

400 38 35.25 2.75 5.44 1589 51 

- Mean stIffness = 6110 Nmmlrad an ,28 N, mm 

From the data presented in tables 7.3-6, the mean wrist stiffness is found to be: 

Angular stiffness, K3 = 6900 Nmmlrad 

Lateral stiffness, Kx = 30 Nlmm 
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To show the behaviour of the wrist stiffness in the presence of different applied forces, the 

data presented in tables 7.3 to 7.6 is plotted and presented in figures (7.10 and 7.11). 

• Mean angular stiffness - Linear (Mean angular stiffness) 

14oo0~------------------------------------------------____________________ ~ 

12000 
• 

~ 10000 
f 
l 
E 
~ 
1/1 8000 
1/1 
CP 

~ 
1/1 .. 
.!! 6000 
::I 
CI 
C 
1\1 .. 
1/1 
';: 
~ 4000 

2000 

o1o-------5~O-------10~O-------1~50-------2~OO-------2~50-------30~O------~35~0----~4=OO~--~4~ 
Applied force (N) 

Figure 7.10 The applied force versus the wrist angular stiffness 
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• Mean lateral stiffness -Linear (Mean lateral Stiffness) 

60r------------------------------------------______________ __ 

50 

10 

O~----~------~------~----~------~----~------~----~----~ 
o 50 100 150 200 250 300 350 400 450 

Applied force (N) 

Figure 7.11 The applied force versus the wrist lateral stiffness 

As shown in figure (7.10), the larger the applied force becomes, the larger the peg tilts and 

accordingly the more flexible the wrist becomes (the angular stiffness decreased). On the 

other hand, in figure (7.11) the increase in the magnitude of the applied force, results in a 

larger lateral stiffness. Because the lateral force increases as a result of the increase in the 

peg angular tilt (refer to eq. 7.5). 
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7.5 WRIST DESIGN 

The requirements are to have a wrist mechanism that adopts the passive technology to 
'--

accommodate errors between chamferless mating parts during an assembly operation from 

vertical and horizontal directions. The wrist should have a projection of 150 mm of its 

centre of compliance and should have stiffness within the boundary of the theoretical one, 

Also, the wrist has to accommodate positional errors within the theoretical limits (refer to 

theoretical results in chapter 6). Also, the wrist should accommodate a peg of variable 

diameter. 

The wrist design covers: 

• the dimensions of the elements which make the wrist, 

• and the wrist/components stress analysis using Algor-FEA. 

The dimensions of the wrist elements were based on the size of a general RCC model. The 

dimensions were chosen to be (see figure 7.12): 
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Figure 7.12 Scheme for the wrist design parameters 

BC=150mm 

DE=60mm 

Based on 

and 

Jl = 0.15 (coefficient of friction) 

tan ¢ must be larger than coefficient of friction, otherwise jamming could occur while the 

wrist is in use. To verify that, the above values were checked as follow: 

tan 12 0 - 0.21 ) 0.15 

therefore the above values are valid. 
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For 

In triangle ABC 

Be 150 
AB = - -- 31.88 mm 

tan 78 tan 78 

In triangle AD E 

DE 60 
AD = - -- 61.34 mm 

Slna sin 78 

The wrist dimensions were chosen to be 

Lg =150mm 

¢ = 12° 

a = 78° 

AB = 31.88 mm 

DE=60mm 

AD = 61.34 mm 

(7.6) 

(7.7) 

Based on the values of the wrist theoretical stiffness (refer to chapter 6), the wrist sponge 

thickness was chosen through personal communication with several rubber manufacturers 

and consultants amongst, (Metalastic LTD. Leicester). Based on this advice the sponge 

thickness was chosen as in the design drawing section (see appendix 3). 

The wrist stress analysis; the objective of this investigation is to verify the stresses inside 

the wrist and the possible failure of any of the wrist components subjected to different 

forces. Due to the limited capabilities in the Algor software, which was discovered in the 

final stages of the FEA; modelling the CVHRCC as a whole model was not possible. 

Therefore, the model was simplified and broke into seven major components (see drawings 

in appendix 3), and each component was converted into 3D bricks. Note that this analysis 

assumed the critical case, when the rubber fails and large reaction forces exist. 
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The bottom plate of the fixed unit is shown in figure (I appendix 3) It' full . 
, . IS Y constramed 

and subjected to several forces starting from 50 to 500 N and 50 t 500 N' h' . 
o m t e 'l: and the 

Z directions-where possible collision with the inside plate could hap A d' 
pen. ccor mg to the 

FEA results, the maximum stress is far less than the allowable stress .c-. I " lor a ummlUm. Also , 
the worst deformation at any node is: 

DX= -1.164e-010 mm, DY= 1.080e-090 mm, DZ= -9.770e-012 mm 

Therefore, these deformations are negligible and there is no risk of whatsoever of material 

failure. 

Again, looking at the FEA results figures (1 to 10, in appendix 3), and in partiCUlar the one 

in figure (7), where the rod was subjected to different reaction forces (50-500 N). The 

maximum stress in the steel rod is over 350 Nlmm2 and the deformation at the worst node 

in that area is: 

DX= 5.267e-011 mm, DY= 6.965e-007 mm andDZ= 1.951e-007 mm. These defonnations 

are still negligible. 

7.6 DISCUSSION 

The CVHRCC mechanism was built as a prototype for research and experimental use. The 

two types of measurements that were carried out on it for finding the minimum and 

maximum lateral and angular stiffness have yielded stiffness values, which coincide with 

the theoretical ones that were obtained in chapter 6. 

As stated earlier, the capability to rotate the peg being inserted into a hole about its centre 

of rotation so it can align itself to the hole in case of a positional error, has made the 

CVHRCC unique among other devices in its category (passive compliant devices). 

Normally, other devices combine more than one technique to accommodate positional 

errors between chamferless mating parts. There have been no reports to date of writing the 

thesis up, of any other device in that category with the ability to work in the horizontal 

direction, unlike the CVHRCC which was designed and built for this purpose (Further 

discussing is presented in chapter 9.) 
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One problem was encountered after CVHRCC was built is that it weighed about --+ K I? 

including the sponge, therefore some material from around the top and the bottom plates 

were taken out reducing the weight to 3.1 Kg. Also, despite the inability of Algor-FEA in 

modelling the CVHRCC as one unit, it was proved that the structure of the CVHRCC is 

strong enough to withstand against reaction forces, which may arise in case of failure of 

the rubber. Note, after completing the FEA using Algor, other packages were disco\cred 

that can do modelling and simulation and thereafter stress analysis for solid parts and 

assembly parts (product made of several parts). These packages are: MARC K7.3, A~SYS 

FEA and Unigraphics (UG V16). 

7.7 CONCLUSION 

This chapter has led to the following conclusions: 

1. CVHRCC is a passive wrist, which utilises its flexibility to operate with chamferless 

mating parts from vertical and horizontal direction. 

2. The CVHRCC characteristics are: 

• 
• 

• 

the centre of compliance is projected at a distance of 150 mm, 

minimum stiffuess: angular stiffness 4.8 x 103 Nmm/rad, and 1.5 x 103 Nlmm 

lateral stiffness, 

maximum stiffness: angular stiffness 6.9 x 103 Nmmlrad, and 30 Nlmm lateral 

stiffness. 

• weight is 3.10 Kg. 
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CHAPTER 8 
~~----- Experiments And Data Correlation 

EXPERIMENTS AND DATA CORRELATION 

8.1 INTRODUCTION 

It is already been said that the peg-in hole example is the most common task in assembly. 

To support that, here are some case-studies: Kondoleon [A. Kondoleon, 1976] has 

examined ten products such as a refrigerator compressor, an electric jigsaw, an induction 

electric motor, a toaster-oven, a bicycle brake and the automobile alternator etc. Three 

principal directions to insert components into each other has been identified (X-Y-Z axes), 

and the most frequent task was the cylindrical peg-in hole task. Other study by General 

Motors [Po Lynch, 1976] found that 90% of the components used in the assembly of an 

automobile weigh less than 2 Kg. Moreover, the round peg-in hole tasks using a chamfer 

on either of the mating parts are the most frequent in the assembly of metal products with 

machined or cast parts. 

So, the objective of this chapter is to present a series of experiments that have been carried 

out to test the CVHRCC in real assembly environment of chamferless pegs and a hole of 

different sizes and from different directions. Also, to compare the experimental results with 

the theoretical ones obtained in previous analysis. 

The structure of this chapter is as follows: 

Section 8.2 is the first stage of experiments. 

Section 8.3 is the second stage of experiments include the wrist-rig instrumentation 

Section 8.4 is a general discussion of this work and its shortcomings. 

Section 8.5 is the conclusion. 

A series of peg-hole assembly experiments were carried out to test the CVHRCC. The 

results have shown that the CVHRCC could accommodate over 2 mm and 3° allowable 

.. . . 'th I ce of 0 3 mm Although the poslhomng error between matIng parts WI c earan . . 
. h h h f I ones the assembly experimental results have shown some agreement WIt t e t eore lca, .; 

( I H7/h6) has a success rate of of chamferless mating parts with small clearance to erance 

under 40%. Also, from the horizontal direction still some improvement is needed. 
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8.2 FIRST STAGE OF EXPERIMENTS 

In this stage of experiments, the CVHRCC was tested in an assembly operation of 

chamferless mating parts. Several pegs of different diameters and a hid 
o e rna e of carbon 

steel with coefficient of friction 0.2 (commercial steel has a coefficient of friction from 0.1 

to 0.2) to be used. At this stage of the research the ob1ective of these e' , 
'J xpenments IS to 

demonstrate the capabilities of the CVHRCC from vertical and horizontal directions, and 

also, to examine its success rate. 

8.2.1 Experimental Rig 

At this stage, it is not advisable to mount the CVHRCC on an assembly robot for 

experimental use, because of the high risk in causing damage to the robot in case of the 

occurrence of jamming. Therefore an alternative to the assembly robot has to be found, 

A basic assembly machine was built for providing the CVHRCC with motion and the 

insertion force needed to achieve the peg-in hole insertion process. As shown in figure 

(8.1) the assembly rig comprises of a platform made of extruded aluminium, and a cylinder 

mounted on top of it for providing the necessary forces and motion to perfonn an assembly 

operation. A fixture for aligning the hole laterally was made and mounted at the bottom of 

the platform. Also an electro-pneumatic valve with 2 regulators for controlling the 

assembly speed, connected the cylinder to the air supply station. A power supply device 

used to provide the voltage necessary for switching the system on and off. 

8.2.2 Experimental Procedure 

CVHRCC was connected to the piston rod and a constant pressure of 4 bar used to 

provide the motion. A supply of 12 V was used to power the system. A micrometer was 

used to create different initial lateral misalignments for each insertion action. The 

accuracy of the micrometer was + 0.01 mm. Also, a Vernier protractor was used for 

creating the initial angular misalignment. The accuracy of the Vernier protractor was ± 5 

min (- 0.08°). The assembly operations were performed from the vertical and the 

horizontal directions. The assembly operations from the vertical direction were carried out 

on 4 stages: 
. . 5 hId' ameter were tested \\'ith 1. In the first stage a 16 mm peg dIameter wIth a 16.7 mm 0 e I 

, , , I lar error WJS 
a varied initial lateral error De = 0.4, 0.6, ... 2.00 mm, and the Imha angu 
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from 0 to 5°. The clearance between the peg and the hole was 0.375 mm. In thi~ sta2e .... 

50 insertion actions were performed and just twice the peg missed the hole Uammed). 

2. In the second stage a 16.30 mm peg diameter with a 16.75 mm hole was tested. The 

clearance between the peg and the hole was 0.225 mm. This time, due to the small 

clearance and difficulties in pre-aligning the peg to the hole before the start of the 

insertion actions, a fixed lateral error of 2 mm and angular error of 3° were used. In 

this stage 50 insertion attempts were performed and just 15 times the peg missed the 

hole. 

Figure 8.1 The assembly rig/machine 
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3. In stage three and four 16.50 and 16.70 mm pegs were tested with a 16 7)- -- h I 
. mm 0 e 

respectively. The clearance was 0.125 and 0.025 mm re t ' I . . spec 1ve y. Agam as In the 

second stage and for the same problems, a fixed lateral erro f 1 5 . '. r 0 . mm and a 3° InItIal 

angular error were used. For 0.125 mm clearance the peg missed th hI ' e 0 e 25 tImes of 
50 attempts, but for 0.025 mm the peg did not enter the hole at all. 

Figure (8.3) shows the CVHRCC during action. Also, table 8.1 IS a summary of the -+ 

stages in which the assembly experiments went through. 

Table 8.1 A summary of the assembly experiment 

Initial lateral error Initial angular error Success rate (%J 
(mm) (degrees) 

0.025 1.5 0 

0.125 1.5 3 50 

0.225 2 3 70 

0.375 0.4 - 2 0-5 96 

• The success rate is the total of tasks being succeeded over the total inserted tasks . 

A look at table 8.1 shows that the CVHRCC works better with clearances larger than OJ 

mm. The reason for this is that the rubber that holds the peg is designed to hold a peg of a 

certain diameter, the larger the peg becomes the more tight the rubber gets, and results in a 

larger initial positional error prior to the start of the assembly process. Table 8.1 is also 

presented in a chart to give a better understanding of the experiments being carried out; 

this is shown in figure (8.2). As shown in figure (8.2), the success rate for a clearance 

OJ75 mm is the highest. However, when the initial angular error exceeded the 3°, 10 

attempts were carried out and the peg could not enter the hole. Note that for this clearance 

the peg missed the hole twice, when the angular error is 2°. Also, for clearance 0.025 mm 

the peg could not enter the hole at all, even when the angular and lateral initial errors were 

zero. 
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Figure 8.2 The success rate for the experimental positional error 
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Figure 8.3 CVHRCC performing assembly operation 

In horizontal assembly, several attempts were carried out. However, due to the gravity, the 

piston rod that drives the peg into the hole has bent (up-to 5 mm at the end of the rod). This 

is because of the weight of the wrist; the results that have been achieved can not be 

considered at this stage of the research. 
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8.3 SECOND STAGE OF EXPERIMENTS 

In this stage of the assembly experiments, a range of pegslhol 'th d' 
es WI lameters from 15 to 

35 millimetres and different clearances will be tested However thO . 
. , IS hme the assembh' rio 

and the wrist are to be instrumented with strain gauges (see fi 8 4) " ,:: 
19ure . to pronde a 

feedback information in terms of the insertion force to understand th b h ' e e aVlOur of the 
peg-wrist during an insertion process. In addition the force infonnat' Co h' . , IOn lrom t e InSertIOn 

process should validate and give an understanding to the new assembly strategy. 

Figure 8.4 Instrumentation of the CVHRCC and the assembly rig 

8.3.1 Assembly Rig, Wrist Instrumentation And Calibration 

A cross plate made of mild steel was instrumented with strain gauges. On two arms of the 

plate, four gauges were connected in a full Wheastone-bridge, two gauges on each arm, 

one on top and one on bottom of the arm. The top gauges should react under tension and 

the bottom gauges should react under compression loads. The cross plate thickness is 2 

mm. The cross plate was fixed firmly from its four arms to a circular plate. A weight 

carrier was suspended through the plate centre hole, and weight units of 5 Kg each applied 

to it. See figure (8.5) for plate instrumentation and calibrations. 
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Figure 8.5 Cross plate instrumentation and calibration 

Table 8.2 includes the progress of the calibration process for the instrumented cross plate. 

Table 8.2 The progress of the cross plate calibration 

Cross plate calibration: load vs. micro-strain 

Test #1 

Load (Kg) with load Without load Mean micro-strain 

0 0 0 0 

5 120 -0.2 61 

10 238 114 176 

15 357 230 293.5 

20 475 348 411 .5 

25 592 465 528 .5 

30 709 581 645 

35 823 700 761 .5 

40 936 816 876 

Test #2 

Load (Kg) With load Without load Mean micro-strain 

0 0 0 0 

5 118 -1 59 .5 

10 237 115 176 

15 355 231 293 

20 473 349 411 

25 588 466 527 

30 706 583 644.5 

820 700 760 
35 

875 
40 934 817 

Test #3 
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233 2921 r- 20 470 349 409.5 
25 587 466 526.5 
30 703 583 643 
35 818 699 758.5 
40 933 816 874.5 

As shown in table (8.2), three tests were carried out to calibrate the cross plate with the full 

bridge. An average micro-strain reading was made for each test, and for the three tests. 

This data is presented and plotted in figure (8.6). Also in figure (8.6), the nearest two 

points on the line were found and the slope for these points was detennined (the two points 

correspond to the 25-30 Kg load of the same figure). Accordingly, the calibration equations 

IS: 

. fi Micro - strain reading 9 81 Insertzon orce = x . 
23.36 

(8.2 ) 

Equations (8.2) gives the value of the insertion force (in Newton's) which could arise 

during any stage of the insertion process during contact between the mating parts. 
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Figure 8.6 The calibration data for the cross plate 
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8.3.2 Peg-Hole Experiments 

In this stage of the assembly experiments pegs with diameter 15 to 35 mm were tested with 

holes of the same diameters (Note that the peg diameter where it sets inside the rubber is 

constant and is 16 mm). The pegs length is 67 mm. The clearance between the pegs and the 

holes were 0.2 and 0.1 mm. In addition, a clearance of transition fit of H7!h6 was used . 

Each diameter and clearance was tested 5 times in total, to see the progress of the 

experiments refer to table 1 in appendix 3. The data taken during the experiments is 

presented statistically in figures (8.7 to 8.10). 
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Figure 8.7 The success rate of range of pegs of different diameter 
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Figure 8.8 The success rate against range of lateral misalignment on the X axis 
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Figure 8.10 The success rate against a variable angular misalignment 

Figure (8.7) shows the optimum peg diameter with the highest success rate is between 15 

to 20 mm. The larger the size of the peg, the less chances for successful insertion actions . 

The reason for that is because the larger the peg diameter, the less flexible is the wrist and 

consequently it can not overcome the initial positional error during the initial contact stage. 

Also, in figure (8.7), the success rate for mating parts having large clearance is higher than 

for mating parts with smaller clearance; the reason for this is the clearance ratio. Where the 

larger the clearance ratio the easier the insertion and vice versa. In figures (8.8 and 8.9), 

despite that the success rate is not as high as with large clearances (over 0.3), they show 

that best results are achieved, for small clearance such as H7 !h6, the maximum lateral error 

should be between 0.25 to 0.5 mm. For large clearance such as 0.2 mm the allowable error 

should be up-to 1 mm. Again, the reason for these results is the clearance ratio, small 

clearance ratio causes 3POC which leads to jamming. Note that in figure (8.10) where the 

angular misalignment is zero, it is assumed that there is other positional errors on either of 

the X or the Y-axis. 
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Also in the same figure, the reason why the Success rate for -3° i h'gh h 
s 1 er t an that for -2: is 

because at _3° the lateral error varied from 0.25 to 0.5 mm howeve t 20 h 
' r a - t e lateral error 

is higher (1 mm). Generally speaking about figure (8.10) if the angul . l' . , ar mlsa 19nrnem IS 

Positive (direction of the mouth of the hole), then there is higher chances c: 
lor success rather 

if it was negative. This is due to the extra stage in which the peg has to pass and to transfer 

from negative to positive angular tilt (refer to the initial contact, stage 2 of the new 

assembly strategy in section 3.61 chapter 3) which cause inefficient rubber recovery due to 

the applied forces. To have a better understanding of the peg-hole experiments. a Scope 

and plotter were used to plot the traces of the insertion force against time, A selection of 

these charts are presented in figures (8.12 to 8.16). 

8.3.2.1 Further experiments 

As shown in figure (8.7) the larger the size of the peg becomes the lower the success rate 

becomes. The reason for that is because the rubber which holds the peg gets stiffer and the 

wrist looses its flexibility. To prove this, some experiments were repeated with peg 

diameters of 30 and 35 mm using the same clearances as before. However, this time the 

bore (rubber) which holds the peg (parts # 3 and 4 in assembly drawings, see appendix 3) 

was enlarged and thicker rubber is bonded by the same ratio for success which are shown 

in figure (8.7). From the same figure, 

Peg diameter = 20 = 3.33 
Current rubber thickness 6 

This means that the new rubber thickness which is needed to hold the peg and provide the 

same success rate as for the 20 mm peg diameter, 

___ 3_0 ___ = 3.33 
New rubber thickness 

. . h bb to the new thickness, the This should give a 9 mm thickness. So, after changlng t e ru er 

d (D perimental progress same diameters (30 and 35 mm) from figure (8.7) were teste or ex 

refer to table 2 in appendix 2) and the results are shown in figure (8.11). 
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Figure 8.11 The success rate for 30 and 35 mm peg diameter 

° C=OL 
· c=o 
Dc = H~ 

As shown in figure (8.11), the success rate has increased from that shown in figure ( . 

but it is still not the same as for peg diameter of 20 mm. The reason for that is that th 3 

and 35 mm new pegs have become heavier which reduces the flexibility of the wrist. 
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Figure 8.16 Peg diameter 35 mm clearance 0.2 mm 

It can be noticed that the common element in figures (8.12 to 8.16) is the insertion time 

which is identical in all cases and it is about 0.075 seconds with the exception the one in 

figure (8.14) where initially the peg tends to jam inside the hole and suddenly it snaps 

inside the hole. Also, it can be noticed that the impulse force tends to increase dramatically 

with pegs having diameter over 20 mm. In normal assembly operations the impulse force 

has to be as small as possible. This fact indicates that the wrist functions better with pegs 

of diameter between 15 to 20 mm. 

8.4 DISCUSSION 

The preceding assembly experiments have demonstrated the capability of the CVHRCC in 

a real assembly operation environment. Though they highlighted the points where the 

CVHRCC works less effectively, whether because of an imperfect design of the wrist or 

the related environment. A full discussion of the experimental results compared to the 

theoretical ones is presented in chapter 9. 

It can be seen in table (8.1), the relationship between the clearance, the positional error and 

the success rate is proportional. The smaller the clearance becomes the fewer chances are 
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for the peg to enter the hole. Although the success rate is over 960/0 for clearances over 0.3 

mm in the first stage of experiments, in the second stage of the experiments the success rate 

has dropped, which is due to the increase in the peg diameter. In the second stage of the 

experiments, the instrumentation is attached to the wrist and the assembly machine to 

provide a direct reading of the insertion force without having to affect the insertion 

process. The illustrations of the insertion force shown in the scope charts (refer to figures 

8.12-16) have demonstrated the sequence of the new assembly strategy and shown that best 

results are achieved with peg sizes between 15 to 20 mm. Also, best results are achieved 

when the clearance between the mating parts is over 0.2 mm (further discussion is 

presented in chapter 9). 

Theoretically, it has been shown that horizontal assembly has similar conditions to the 

vertical one. However one of the lessons that can be learnt about the horizontal assembly, 

is that if possible to avoid it, then avoid it. 

8.5 CONCLUSION 

This chapter has led to the following conclusions: 

1. The objective of the assembly operation experiments is to test the CVHRCC, and to 

learn more about the chamferless assembly from different directions. 

2. The assembly rig used in the experiments is a basic assembly machine that has two 

functions: 

a. to provide the CVHRCC with the motion and insertion force needed to 

achieve the peg-in the hole, 

b. and to change the position of the hole as required (to displace). 

3. The preceding experiments have shown that CVHRCC can accept a range of pegs from 

15 to 35 mm however it works more reliably with sizes between 15 to 20 mm in , 
diameter. Also, it shows that the wrist can accommodate initial positional errors of up­

to 2 mm and 3° with clearances over 0.3 mm between the peg and the hole from the 

vertical direction. In addition, it was demonstrated that the larger the clearance is, the 

larger positional misalignment can be allowed. 
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CHAPTER 9 

DISCUSSION 

Considering the objective of the research in this thesis, a passive compliant wrist that can 

accommodate positional errors between chamferless cylindrical parts is described. The 

wrist was designed to function from the vertical as well as the horizontal directions. 

However, in practice the wrist did not operate correctly in the horizontal attitude due to the 

weight of the wrist, which causes the piston rod to bind at its end (at the CVHRCC). 

The results of the peg-in hole insertion process which are presented in this thesis, can be 

discussed under two categories: 

1. The peg-in hole simulation results: In chapter 6, the peg-in hole insertion process 

using a passive compliant wrist is modelled. The mathematical model was 

simulated using matlab-simulink software. The simulation results have suggested 

that for under 0.2 mm clearance, the CVHRCC can accommodate an initial 

misalignment between 1 mm to 1.5 mm, and for clearance of over 0.2 mm the wrist 

can accommodate an initial error between 0.5 mm to 1 mm. The reason, why for 

small clearance the allowable initial misalignment is larger than that for large 

clearance, is that the smaller the clearance, the larger the lateral distance (e) 

between the centre of the peg to the contact point becomes. Consequently, the 

reaction torque gets larger, which results in a greater angular tilt and lateral 

transition. Also, it was shown that in the presence of initial lateral misalignment, 

the initial angular misalignment has no effect on the outcome of the insertion 

process. Because the change in the magnitude of the insertion force is not 

significant (F z = Fin cosSo). Also, when there is only initial angular error, then the 

initial angular misalignment has to be smaller than the friction angle. Therefore, for 

clearance of less than 0.2 mm the allowable angular error is up-to 9°, and for 

clearance of over 0.2 mm the allowable angular error is between 9° to 12°. 

In terms of stiffness, the simulation results showed that the wrist could have 

angular stiffness between 6800 Nmmlrad to 7500 Nmmlrad, and the lateral 

stiffness 82 Nlmm to 86 Nlmm. Also, the wrist can accept a peg of up-to 20 mm 
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diameter. During the simulation process it was noticed that whenever there is 

jamming occurring, then reducing the applied force facilitates the insertion process. 

2. The peg-in hole experimental results: On the other hand, the experimental results of 

the chamferless peg-in hole insertion process have shown that the CVHRCC can 

accommodate reliably initial positional errors of up-to 1 mm and 3° for mating parts 

having clearance of over 0.3 mm (see figure 8.2). For clearance less than 0.2 mm, 

the success rate for pegs of 15 to 20 mm diameter is in the region of 60%, and the 

lower the clearance becomes, then the lower the success rate gets (see figure 8.9). 

Also, it was shown that for mating parts with diameter over 20 mm the success rate 

is low. However, when the wrist stiffness was decreased (section 8.5.2.l), then the 

success rate of mating parts of large diameter (> 30 mm) has increased (figure 

8.13). In other words, providing the wrist with more flexibility has increased the 

assembly success rate of parts having small clearance. For instance, in the first 

stage of the experiments, the results obtained for a peg of over 16 mm diameter and 

clearance over 0.3 mm, the success rate is over 90%. Consequently, for 15 to 20 

mm peg diameter and H7/h6 clearance the success rate is about 40% and the wrist 

has accommodated an initial misalignment of 0.5 mm and about 2.5°. However, for 

a large clearance (c = 0.2 mm) and the same peg diameters the success rate was 

about 60% and the initial misalignment is 1 mm and about 3.5°. It can be noticed 

that during the peg-hole experiments the larger the peg diameter is, the lower the 

success rate gets. 

The experimental determination of the wrist stiffness has revealed two values for 

the angular and the lateral stiffness. Under small reaction forces on the peg while it 

is inside the hole in one or two point contact the wrist stiffness is 4800 Nmmlrad 

and 1.5 Nlmm. However during the peg initial engagement with the hole the wrist 

stiffness found to be 6900 Nmmlrad and 30 Nlmm. 

Discussing the results, the empirical wrist stiffness lies within the boundary of the 

theoretical stiffness. Although the theoretical lateral stiffness is higher than the empirical 

one, during the simulation process there was not much difference in the simulation results 
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when using values of lateral stiffness of up-to 86 N/mm, the agreement between both 

theoretical and experimental results. 

The wrist was designed to accept a peg of up-to 20 mm in diameter. In practice the wrist 

worked effectively with diameters between 15 mm to 20 mm, which lies within the 

boundary of the suggested theoretical diameter (refer to figure 6.33, chapter 6). Also, when 

working with peg of over 20 mm in diameter the wrist was struggling with this size and in 

particular when working with small clearance. Also, the reason why the wrist could not 

function properly with large pegs (over 20 mm diameter) is because the larger the peg, the 

more stressed gets the rubber/wrist and consequently the wrist less flexible to 

accommodate positional misalignments with the hole during the engagement stage. In 

addition, in theory the wrist is supposed to accommodate positional misalignment even in 

case of a small clearance between the peg and the hole. In practice when using mating 

parts with small clearance, during the engagement stage the wrist tilts the peg inside the 

hole creating 3 POC, which resulted in jamming. It can be said that there is an agreement 

between the theoretical and the experimental results for large clearances (over 0.2 mm) and 

below that the gap gets wide. 

Now considering other assembly strategies and devices and comparing them to the 

CVHRCC; For instance, the RCC can accommodate positional errors with a clearance of 

0.01 mm, but the allowable positioning error is 1 mm and 10 respectively (see table 2.1, 

chapter 2). Also, the RCC needs a chamfer on either of the mating parts. Other devices 

listed in table (2.1), when no chamfer on either of the peg or the hole, then the clearance 

has to be large (from 0.75 to 3 mm) to enable these devices to accommodate the required 

positional errors. Also, in some cases the mating speed is over the 1 second, while the 

mating speed of the CVHRCC is less than 0.1 second (Mating speed/time, is the time 

duration from the moment the peg contacts the upper surface of the hole until it breaks 

either one or two point contact and slides inside the hole). So, in terms of reliability and 

accuracy, when the clearance between the mating parts is over 0.3 mm and the initial 

misalignment is up-to 2 mm and 30 the CVHRCC is far more superior to these devices 

because of its simplicity and its low cost to use. On the other hand, if the assembly requires 

accommodating positional error with smaller clearances «0.3 mm), then it is preferred to 

consider other alternatives. 
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In fact, a passive mechanism linkage developed by E. Caine [E. Caine et aI, 1989] claims 

to be successfully used in a chamferless peg-in hole assembly ope t' H h' ra Ion. owe\'er, t IS 

mechanism requires manipulation from the operator during the assembly. Also this 

mechanism can not be used with assembly robot/machine due to the non-compatibility of 

its design. 

Here is a summary of the advantages and disadvantages of the CVHRCC over other 

devices of the same category: 

1. It is an inexpensive and simple wrist. 

2. It can accommodate misalignment between chamferless mating parts. 

3. It has low stiffness, which enables it to accommodate positional errors of up-to 1.5 mm 

and 3° with clearance over 0.2 mm. 

4. The CVHRCC can accept peg of different diameters between 15 to 35 mm, however 

for reliable operation preferably have diameters in the range of 15 to 20 mm. 

5. Unlike other devices, the technology used in this wrist can apply to other technologies, 

such as airborne fuelling and underwater assembly of oil pipes, etc. 

Disadvantages: 

1. It is heavier than other devices; weighing 3.10 Kg as opposed to < 1 Kg. 

2. It is limited to large clearances between the peg and the hole; over 0.3 mm it works 

very reliably, but with smaller clearances the CVHRCC becomes less efficient. 

3. The soft housing (rubber) of the peg creates an undesirable initial positioning. 

4. The projection of the centre of compliance is restricted to 150 mm, limiting the peg to 

a fixed length, or limited variations thereof. 

The research went through stages to reach its final objective, starting from the new 

assembly strategy and the domino effect theory. The aim at that stage was to present the 

idea behind the strategy-so in the subsequent chapters the idea gets developed. As shown 

in chapters three through six, the aim was to establish the conditions for implementing the 

new assembly strategy by investigating the strategy dynamically and geometrically, Then a 

simulation model was built and used to establish an understanding of the behaviour of the 

passive compliant wrist during assembly operation. During the wrist structure stress 

analysis, the Algor finite element package was used. The problem with this software is that 
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it did not have the right processor to allow the user to perfonn an FEA of the wrist as a one 

unit. In the final stages of the FEA work, other packages were discovered that could do 

FEA for the whole mechanism. 

Finally, as discussed in this chapter, the overall objective is to make a passive compliant 

wrist that can overcome positional errors between chamferless mating parts, this objective 

has been achieved. However, other points such as clearance between the mating parts or 

the horizontal assembly were not fully satisfied. Perhaps these features could be considered 

in other research and used as a reference for other researchers. 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarises the research documented in the thesis and provides 

recommendations for possible future research in this area or an area of a similar 

application. 

10.1 CONCLUSIONS 

In this thesis, a passive compliant wrist that can overcome positional errors between 

cylindrical mating parts is presented. The contribution of this wrist and research to the 

general knowledge is in that the wrist requires no chamfer on either of the peg or the hole, 

which is necessary to have when using other devices such as the RCC. Moreover, the 

theoretical model could be for future design of other devices that adapt the approach 

presented in this thesis. Also, different robotic assembly technologies to overcome the 

inaccuracy of the robot in positioning the peg into the hole were introduced. Considering 

the domino effect theory a new passive assembly strategy is proposed. An analysis of 2 and 

3 dimensional space for the peg-hole problem (new assembly strategy) was detailed 

followed by a simulation programme for the proposed strategy. Following the wrist design, 

a passive compliant wrist was built. Wrist testing in a real assembly environment of 

chamferless peg-in hole is also described. General discussion of the achievements of this 

research and its shortcomings are also presented. 

The major points of each chapter in the thesis are as follow: 

• Chapter 1: This chapter has provided a brief background about the peg-in hole 

insertion process and its related problems. Also, it outlines the research objective and 

the methodology for achieving that objective. 

• Chapter 2: In this chapter, robotic assembly methods to accommodate the 

angular/lateral misalignments between cylindrical mating parts during assembly 

operations were introduced. These methods are of different category from each other. 

Arguments for the use of any of those methods were put-up. However, it was noticed 

that the more complicated the assembly application become the more elaborated and 

expensive the assembly technique is required. 
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• Chapter 3: In this chapter, a new assembly strategy was presented. The strategy was 

inspired from the domino effect theory. A 2D-space analysis for this strategy IS 

presented. 

• Chapter 4: This chapter has dealt with the geometrical aspects of the 3D problem of the 

peg-hole strategy during the insertion process. Also it provided a better understanding 

for the geometrical conditions for successful or unsuccessful insertion process. 

• Chapter 5: Unlike the previous chapter, this one describes the dynamics of the peg-hole 

process. It considers the friction between the mating parts and its related effects on the 

insertion process. Also, of the forces and moments that involved in the insertion 

process, the successful conditions were derived. 

• Chapter 6: This chapter presents the modelling and simulation process for the 

chamferless peg-in hole assembly strategy. The simulation results have shown the 

theoretical behaviour and capabilities of the compliant wrist that needed to perform a 

real peg-in hole insertion process. 

• Chapter 7: A passive compliant wrist (CVHRCC) is presented. The wrist description 

and the way it functions are described. Experiments for finding the wrist stiffness 

through practical and theoretical deflections of the wrist are detailed. Also, it shows the 

wrist design and stress analysis. A FEA to investigate the stresses inside the wrist 

structure have proved the wrist design. 

• Chapter 8: In this chapter real assembly experiments along side the preparation for the 

assembly rig and its related tools is presented. It describes the process for calibrating 

the peg-wrist and its shortcomings. The assembly experiments have shown that the 

CVHRCC functions well in accommodating misalignments between the peg and the 

hole of over 0.2 mm clearance and within the 1.5 mm allowable lateral errors and 3° 

allowable angular error. In addition the experimental work have demonstrated the fact 

that the wrist can accept different pegs of different diameters and preferably 15 to 20 

mm. Also, the wrist/assembly rig is incapable of achieving peg-in hole insertion 

process from the horizontal directions due to gravitational forces. 

• Chapter 9: This is a general discussion of the research documented in the thesis. It 

discusses the differences in the theoretical and experimental results. In addition, a 

discussion and comparison between the compliant wrist of this research and other 

assembly methods and devices is presented. Also, arguments for the use of the 

148 



Chapter 10: 
Conclusion And Recommendations 

CVHRCC over other devices when and why are provided. Shortcomings of the 

research and the methodology used to achieve this research are also presented. 

10.2 RECOMMENDATIONS 

As already have been said in chapter (8), to solve the problem of the excessive forces that 

arise during the engagement between peg and the hole; an actuator could be integrated with 

the instrumented cross plate and the top floating unit of the CVHRCC. So, when reaction 

force arises and exceeds the prescribed value, a signal will be sent from the strain gauges 

to the actuators, then the actuator takes control over the wrist and it should rotate or slide 

the peg into the mouth of the hole where there is less reaction forces. One of the 

advantages of this method, is the ability to accommodate positional errors even in case of 

small clearance between the mating parts. On the other hand, the insertion time will get 

longer. 

In regard to the horizontal assembly, a new design for the assembly rig could be made, for 

example, the wrist could be attached to a bracket from one side and the bracket attached to 

the top surface of the assembly machine through stiff rods. So in case of binding during 

horizontal assembly, the supporting rods should counteract the weight of the wrist, and this 

way side-assembly becomes possible. 

Also, the CVHRCC could be used in applications other than assembly; such as tooling 

interface in machine tools or guiding pins in automated machines etc. 

Also this research could be used as a reference for other applications such as air-borne , 

fuelling, where the problem is to align and to insert one fuel hose from the first aircraft into 

the fuel tank of the second aircraft. Another application is in the under-water pipe 

assembly. To engage the two pipes, they need to be aligned and then assembled. The 

common element in these examples is the alignment and insertion process, which is similar 

to the peg-in hole example. 
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APPENDIX 1 

EXPERIMENTAL DETERMINATION OF THE MOMENT OF INERTIA FOR 

THE CVHRCC: 

To detennine the moment of inertia for the wrist, a Trifilar suspension was used. Firstly, 

the moment of inertia for the Trifilar, and then for both the trifilar and the wrist. Secondly, 

the moment of inertia for the wrist was the combined one minus the one for the trifilar. 

Figure (1) shows the trifilar, initially it was rotated about its centre for 30 seconds. The 

average cycles was 16 for that period. 

\ 
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Figure 1 Schematic view of a Trifilar suspension 

The periodic time for rotating the trifilar is given by 

~
L 

T = 21r 2 
mgr 

159 

(1) 



Where: 

T 

I 

L 

m 

g 

r 

periodic time = 30116 (sec/rev) 

moment of inertia 

length of suspension wire = 1 m 

mass oftrifilar disc = 4.43 Kg 

acceleration due to gravity = 9.81 mls2 

radius of suspension = 0.15 m 

Rearranging eq. (1) and substitute the above values, 

I=(1.875)2(4.43X9.81XO.15
2J_ 2 

2 
- 0.087 Kg.m 

1r 1 

This is the moment of inertia for the trifilar. Now placing the wrist in the centre of the 

trifilar (m = 4.43+3.1) and rotating the system about its centre for 30 seconds gave 20 

cycles or, 

T = 30 = l.5 sec 
20 cycle 

then the moment of inertia for both the trifilar and the wrist is 

I = (~.~) 2 ( 7.53 x 9. ~ 1 x 0.15
2 J = 0.094 Kg.m 2 

So the moment of inertia for the wrist is the difference between both wrist and trifilar, , 

I = 0.094 - 0.087 - 0.007 Kg.m
2 

Therefore the moment of inertia about the X or the Y axis is, 

I = I z = 0.007 = 0.0035 Kgm 2 

x 2 2 
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APPENDIX 2 

Table 1 Peg-Hole Assembly Experiments 
Peg dia. Clearance ex max (mm) evrnax (mm) 8°max Assembly Success rate 

(mm) (mm) result (Total 0/0 
tries =5) 

15 02 1 0 0 5 of 5 in 100 
15 0.2 0 1 0 5 of 5 in 100 
15 0.2 1 1 0 4 of 5 in 80 
15 0.2 0 0 4 3 of5 in 60 
15 0.2 0 0 -4 1 of 5 in 20 
15 0.2 1 0 4 3 of 5 in 60 
15 0.2 1 0 -4 2 of 5 in 40 
15 0.2 1 1 4 3 of 5 in 60 
15 0.2 1 1 -4 2 of5 in 40 
15 0.2 0 1 4 3 of 5 in 60 
15 0.2 0 1 -4 2 of 5 in 40 
15 0.1 0.5 0 0 4 of 5 in 80 
15 0.1 0 0.5 0 4 of 5 in 80 
15 0.1 0.5 0.5 0 3 of 5 in 60 
15 0.1 0 0 3 3 of 5 in 60 
15 0.1 0.5 0 3 3 of 5 in 60 
15 0.1 0.5 0 -3 1 of 5 in 20 
15 0.1 0 0.5 3 3 of 5 in 60 
15 0.1 0 0.5 -3 2 of 5 in 40 
15 0.1 0.5 0.5 3 3 of5 in 60 
15 0.1 0.5 0.5 -3 2 of 5 in 40 
15 H7/h6 0.25 0 0 3 of5 in 60 
15 H7/h6 0 0.25 0 3 of 5 in 60 
15 H7/h6 0.25 0.25 0 3 of 5 in 60 
15 H7/h6 0 0 3 2 of 5 in 40 

15 H7/h6 0 0 -3 1 of 5 in 20 

15 H7/h6 0.25 0 3 2 of 5 in 40 

15 H7/h6 0.25 0 -3 1 of 5 in 20 

15 H7/h6 0 0.25 3 2 of5 in 40 

15 H7/h6 0 0.25 -3 1 of 5 in 20 

15 H7/h6 0.25 0.25 3 2 of 5 in 40 

15 H7/h6 0.25 0.25 -3 1 of 5 in 20 

20 0.2 1 0 0 5 of 5 in 100 

20 0.2 0 1 0 4 of 5 in 80 

20 0.2 0 0 3.5 3 of 5 in 60 

20 0.2 0 0 -3.5 2 of5 in 40 

20 0.2 1 0 3.5 3 of5 in 60 

20 0.2 1 0 -3.5 2 of 5 in 40 

20 0.2 0 1 3.5 3 of 5 in 60 

20 0.2 0 1 -3.5 2 of5 in 40 

20 0.2 1 1 3.5 3 of5 in 60 

20 0.2 1 1 -3.5 2 of 5 in 40 

20 0.1 0.5 0 0 4 of 5 in 80 

20 0.1 0 0.5 0 4 of 5 in 80 

20 0.1 0 0 3 3 of5 in 60 

20 0.1 0 0 -3 2 of 5 in 40 

20 0.1 0.5 0 3 3 of 5 in 60 
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20 0.1 0.5 0 -3 2 of 5 in 40 
20 0.1 0 0.5 3 3 of 5 in 60 
20 0.1 0 0.5 -3 2 of 5 in 40 
20 0.1 0.5 0.5 3 3 of5 in 60 
20 0.1 0.5 0.5 -3 2 of 5 in 40 
20 H7/h6 0.5 0 0 3 of 5 in 60 
20 H7/h6 0 0.5 0 3 of 5 in 60 
20 H7/h6 0 0 2.5 2 of 5 in 40 
20 H7/h6 0 0 -2.5 1 of 5 in 20 
20 H7/h6 0.5 0 2.5 2 of5 in 40 
20 H7/h6 0.5 0 -2.5 1 of 5 in 20 
20 H7/h6 0 0.5 2.5 2 of 5 in 40 
20 H7/h6 0 0.5 -2.5 1 of 5 in 20 
20 H7/h6 0.5 0.5 2.5 2 of 5 in 40 
20 H7/h6 0.5 0.5 -2.5 1 of 5 in 20 
25 0.2 1.5 0 0 4 of 5 in 80 
25 0.2 0 1.5 0 3 of5 in 60 
25 0.2 0 0 3.5 3 of 5 in 60 
25 0.2 0 0 -3.5 2 of 5 in 40 
25 0.2 1.5 0 3.5 3 of 5 in 60 
25 0.2 1.5 0 -3.5 1 of 5 in 20 
25 0.2 0 1.5 3.5 3 of 5 in 60 
25 0.2 0 1.5 -3.5 1 of 5 in 20 
25 0.2 1.5 1.5 3.5 3 of 5 in 60 
25 0.2 1.5 1.5 -3.5 1 of 5 in 20 
25 0.1 1 0 0 3 of 5 in 60 
25 0.1 0 1 0 2 of5 in 40 
25 0.1 0 0 2 4 of 5 in 80 

25 0.1 0 0 -2 2 of5 in 40 

25 0.1 1 0 2 2 of5 in 40 

25 0.1 1 0 -2 1 of 5 in 20 

25 0.1 0 1 2 2 of 5 in 40 

25 0.1 0 1 -2 1 of 5 in 20 

25 0.1 1 1 2 2 of 5 in 40 

25 0.1 1 1 -2 1 of 5 in 20 

25 H7/h6 1 0 0 2 of5 in 40 

25 H7/h6 0 1 0 3 of5 in 60 

25 H7/h6 0 0 2.5 1 of 5 in 20 

25 H7/h6 0 0 -2.5 o of 5 in 0 

25 H7/h6 1 0 2.5 2 of 5 in 40 

25 H7/h6 1 0 -2.5 1 of 5 in 20 

25 H7/h6 0 1 2.5 2 of5 in 40 

25 H7/h6 0 1 -2.5 o of5 in 0 

25 H7/h6 1 1 2.5 2 of 5 in 40 

25 H7/h6 1 1 -2.5 o of5 in 0 

30 0.2 1.5 0 0 3 of5 in 60 

30 0.2 0 1.5 0 2 of 5 in 40 

30 0.2 0 0 3.5 2 of 5 in 40 

30 0.2 0 0 -3.5 o of 5 in 0 

0.2 1.5 0 3.5 3 of 5 in 60 
30 

1.5 0 -3.5 1 of 5 in 20 
30 0.2 

0 1.5 3.5 2 of5 in 40 
30 0.2 

0 1.5 -3.5 o of 5 in 0 
30 0.2 

1.5 1.5 3.5 2 of 5 in 40 
30 0.2 

1.5 1.5 -3.5 o of 5 in 0 
30 0.2 
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30 0.1 1.5 0 0 2 of5 in 40 
30 0.1 0 1.5 0 2 of 5 in .+0 
30 0.1 0 0 3.5 1 of 5 in 20 
30 0.1 0 0 -3.5 o of5 in 0 
30 0.1 1.5 0 3.5 2 of 5 in .+0 
30 0.1 1.5 0 -3.5 o of5 in 0 
30 0.1 0 1.5 3.5 1 of 5 in 20 
30 0.1 0 1.5 -3.5 o of 5 in 0 
30 0.1 1.5 1.5 3.5 2 of 5 in 40 
30 0.1 1.5 1.5 -3.5 o of5 in 0 
30 H7/h6 1.2 0 0 2 of5 in 40 
30 H7/h6 0 1.2 0 1 of 5 in 20 
30 H7/h6 0 0 3 o of 5 in 0 
30 H7/h6 0 0 -3 o of5 in 0 
30 H7/h6 1.2 0 3 1 of 5 in 20 
30 H7/h6 1.2 0 -3 o of 5 in 0 
30 H7/h6 0 1.2 3 1 of 5 in 20 
30 H7/h6 0 1.2 -3 o of5 in 0 
30 H7/h6 1.2 1.2 3 1 of 5 in 20 
30 H7/h6 1.2 1.2 -3 o of 5 in 0 
35 0.2 2.2 0 0 2 of 5 in 40 
35 0.2 0 2.2 0 2 of 5 in 40 
35 0.2 0 0 4 1 of 5 in 20 
35 0.2 0 0 -4 o of 5 in 0 
35 0.2 2.2 0 4 1 of 5 in 20 
35 0.2 2.2 0 -4 o of 5 in 0 
35 0.2 0 2.2 4 1 of 5 in 20 
35 0.2 0 2.2 -4 o of 5 in 0 
35 0.2 2.2 2.2 4 1 of 5 in 20 
35 0.2 2.2 2.2 -4 o of 5 in 0 
35 0.1 1.8 0 0 1 of 5 in 20 
35 0.1 0 1.8 0 o of 5 in 0 

35 0.1 0 0 3.5 o of 5 in 0 

35 0.1 0 0 -3.5 o of5 in 0 

35 0.1 1.8 0 3.5 1 of 5 in 20 

35 0.1 1.8 0 -3.5 o of 5 in 0 

35 0.1 0 1.8 3.5 o of 5 in 0 

35 0.1 0 1.8 -3.5 o of 5 in 0 

35 0.1 1.8 1.8 3.5 o of5 in 0 

35 0.1 1.8 1.8 -3.5 o of5 in 0 

35 H7/h6 1.6 0 0 o of 5 in 0 

35 H7/h6 0 1.6 0 o of 5 in 0 

35 H7/h6 0 0 3.3 o of 5 in 0 

35 H7/h6 0 0 -3.3 o of 5 in 0 

35 H7/h6 1.6 0 3.3 o of5 in 0 

35 H7/h6 1.6 0 -3.3 o of5 in 0 

35 H7/h6 0 1.6 3.3 o of 5 in 0 

35 H7/h6 0 1.6 -3.3 o of 5 in 0 

35 H7/h6 1.6 1.6 3.3 o of 5 in 0 

35 H7/h6 1.6 1.6 -3.3 o of5 in 0 
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Table 2 The additional peg-hole assembly experiments 

Peg dia. (mm) Clearance ex max (mm) evmax (mm) SOmas Assembly result Success rate (mm) (Total tries =5) % 30 0 0 4 of 5 in 80 
30 0.2 0 1.5 0 4 of5 in 80 
30 0.2 0 0 3.5 3 of 5 in 60 
30 0.2 0 0 -3.5 2 of 5 in 40 
30 0.2 1.5 0 3.5 3 of 5 in 60 

02 1 5 

30 0.2 1.5 0 -3.5 2 of5 in 40 
30 0.2 0 1.5 3.5 3 of 5 in 60 
30 0.2 0 1.5 -3.5 2 of 5 in 20 
30 0.2 1.5 1.5 3.5 2 of 5 in 40 
30 0.2 1.5 1.5 -3.5 o of 5 in 0 
30 0.1 1.5 0 0 3 of 5 in 60 
30 0.1 0 1.5 0 3 of 5 in 60 
30 0.1 0 0 3.5 2 of5 in 40 
30 0.1 0 0 -3.5 1 of 5 in 20 
30 0.1 1.5 0 3.5 3 of 5 in 60 
30 0.1 1.5 0 -3.5 2 of 5 in 40 
30 0.1 0 1.5 3.5 3 of 5 in 60 
30 0.1 0 1.5 -3.5 1 of 5 in 20 
30 0.1 1.5 1.5 3.5 3 of 5 in 60 
30 0.1 1.5 1.5 -3.5 1 of 5 in 20 
30 H7/h6 1.2 0 0 2 of 5 in 40 
30 H7/h6 0 1.2 0 2 of 5 in 40 
30 H7/h6 0 0 3 1 of 5 in 20 
30 H7/h6 0 0 -3 o of 5 in 0 
30 H7/h6 1.2 0 3 2 of 5 in 40 
30 H7/h6 1.2 0 -3 o of 5 in 0 
30 H7/h6 0 1.2 3 2 of 5 in 40 
30 H7/h6 0 1.2 -3 o of 5 in 0 
30 H7/h6 1.2 1.2 3 2 of 5 in 40 

30 H7/h6 1.2 1.2 -3 1 of 5 in 20 

35 0.2 2.2 0 0 3 of 5 in 60 

35 0.2 0 2.2 0 2 of5 in 40 

35 0.2 0 0 4 2 of5 in 40 

35 0.2 0 0 -4 1 of 5 in 20 

35 0.2 2.2 0 4 3 of 5 in 60 

35 0.2 2.2 0 -4 1 of 5 in 20 

35 0.2 0 2.2 4 3 of 5 in 60 

35 0.2 0 2.2 -4 1 of 5 in 20 

35 0.2 2.2 2.2 4 2 of 5 in 40 
o of 5 in 0 2.2 2.2 -4 35 0.2 
3 of5 in 60 1.8 0 0 35 0.1 
2 of 5 in 40 

0.1 0 1.8 0 35 
3.5 2 of 5 in -10 

35 0.1 0 0 
-3.5 1 of 5 in 20 

35 0.1 0 0 
40 1.8 0 3.5 2 of 5 in 35 0.1 o of5 in 0 1.8 0 -3.5 35 0.1 

3 of 5 in 60 0 1.8 3.5 35 0.1 o of 5 in 0 0 1.8 -3.5 35 0.1 60 
1.8 1.8 3.5 3 of 5 in 

35 0.1 
1 of 5 in 20 

1.8 1.8 -3.5 35 0.1 o of 5 in 0 
1.6 0 0 35 H7/h6 
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35 H7/h6 0 1.6 0 o of 5 in 0 
35 H7/h6 0 0 3.3 o of 5 in 0 ! 

35 H7/h6 0 0 -3.3 o of 5 in 0 i 
35 H7/h6 1.6 0 3.3 o of 5 in 0 I 

35 H7/h6 1.6 0 -3.3 o of 5 in 0 

35 H7/h6 0 1.6 3.3 o of 5 in 0 

35 H7/h6 0 1.6 -3.3 o of 5 in 0 i 
35 H7/h6 1.6 1.6 3.3 o of 5 in 0 ! 
35 H7/h6 1.6 1.6 -3.3 o of 5 in 0 , 
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APPENDIX 3 

SUMMARY OF FINITE ELEMENT RESULTS 

Figure 1 Results of FE A for the bottom plate 
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Figure 2 Results of FEA for the bottom plate of the floating unit 
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Z=82_7Z36 

Figure 3 A slice into the bottom plate offigure (2) 
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Z=96.5533 

Figure 4 Results of FEA for the centre rod 
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Z--a ..... 

Figure 5 A birds eye view of the centre rod 
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Figure 6 Results of FEA for the vertical connection rod 

171 

Vrn~ 

nLEIi 
tffi..1E 
~12 
181.35 
1R~ 

~iM 
111.21-1 



Y=S9.71~1 ~1.7.3293 

Figure 7 Results ofFEA for the inclined rod 

172 



Figure 8 Results of FEA for the top plate of the floating unit 
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Y=36 .. 4629 Z=1 ... 3M3 

Figure 9 A slice into the top plate of figure (7.17) 
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V=-36.3a41 Z=28.8192 

Figure 10 Results of FE A for the top plate of the fixed unit 



DRAWINGS & PUBLICATIONS 

Table I Components References 

Reference No. Name Material Quantity Manuf.! 
Assembly , ¥--~ --_. 

1 External base Aluminum I As in dwg. 
2 Bottom sponge Sponge I 2 Strips to glue 

FOIOIII then glue on 1 
Bostik 1 GA 167 

3 Internal sponge Sponge 1 2 Strips to glue 
FOIOI04 then glue on 4 

Bostik I GA 167 
4 Internal base Aluminum 1 _ As in dwg. 
5 Supporting rod Mild steel 3 As in dwg. 
6 Angular rod Mild steel 3 As in dwg. 
7 Straight rod Mild steel 1 As in dwg. 

8 Upper base Aluminum 1 As in dwg. 

9 Upper sponge Sponge 1 & I 2 Strips to glue 
FOIOI09 & then glue on 

FOI0111 IO, Bostik 
IGA167 

10 Top plate Aluminum I As in dwg. 
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Proc. of The 13th National COnf. on Manufactun'ng Research. pp. 201-~JO. Gla5g0~' UK Sept i'lY­

W. Haskiya, H. Qiao, J. I\:night. F Pritchard 

Peg-Hole Strategy And The Domino Effect Theory 

Abstract: The purpose of this paper is to present a new strategy for chamferless peg-hole 

assembly from different directions that is based on the domino effect theory. This paper 

shows the differences and similarities in the chamferless peg-hole assembly from different 

directions, through analysis and simulation and a comparison with the domino effect 

theory. The major points of this paper are that the vertical and horizontal chamferless peg­

hole assemblies have same conditions and that the coefficient of friction has to be as small 

as possible. 

Indexing terms: new strategy, chamferless peg-hole assembly, verticallhori:olltal 

assembly, simulation results 
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IEEE Int. Symp. on Assembly and Task Planning. pp. 90-95, Marina del Rey, CA-USA. Aug. 199-

W. Haskiya. H. Qiao. J Knight 

A New Strategy For Chamferless Peg-Hole Assembly 

Abstract: One problem that arises during component assembly is that snlall errors in 

relative position or angular position can produce large forces. These forces can pre\'~nt 

successful completion of the assembly (jamming) and can cause damage to the parts or the 

assemb ly machine/robot. 

To overcome these problems, its normal to use a Remote Centre Compliance (RCC)device. 

The limitation of the RCC is that it can only be used for top-down (vertical) assembly. and 

also the mating parts must have a chamfer to facilitate the assembly operation. 

The approach presented here is a new strategy for chamferless peg-hole assembly from 

X/Y /Z directions. An investigation and a comparison between the vertical and horizontal 

assembly are presented followed by a simulation programme for testing the new strategy. 

The major conclusion is that both assembly methods have same assembly conditions, and 

that the coefficient of friction has to be as small as possible. 

Indexing terms: new strategy, chamferless peg-hole assembly, verticallhorizontal 

assembly, simulation results 
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Proc. of The Inst. of Mech. Eng.. Pan B. V 21l. pp . .:'3-r' 1998 

W. Haskiya, K. 'Ia~cock. J Knight 

A Passive Compliant Wrist For Chamferless Peg-In Hole Assembly Operation From 

Vertical & Horizontal Directions (CVHRCC) 

Abstract: This paper presents a Chamferless-V ertical-Horizontal Remote Centre 

Compliance (CVHRCC) mechanism developed for robotic peg-in hole assembly 

operations. The wrist adopts the passive accommodation approach and differs from other 

devices in its category, in its ability to accommodate positional errors between the mating 

parts without a chamfer on either part. In addition, the wrist is designed to work from both 

the vertical and the horizontal directions. 

A senes of experiments have been carried out for testing the new wrist. The mam 

conclusion of the assembly experiments is that the CVHRCC can work effectively from 

the vertical direction in accommodating positional errors between chamferless mating parts 

with large clearance (over O.2mm) between the peg and hole. 

Keywords: Robotic assembly; Assembly strategy; CVHRCC; Chamferless peg-in hole: 

Vertical/Horizontal direction. 
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Robolica. V. 17.pp. 6:1-63..: 1999 

W. Haskiya, K. 'la~·cock. J Knight 

Robotic Assembly: Chamferless Peg-Hole Assembly 

SUMMARY:The peg-in hole insertion process is the most common task in the 

robotic/automated assembly industry. However, the inaccuracy of the assembly robot in 

positioning the inserted peg into the hole due to the uncertainty of the assembly 

environment, represent an obstacle in this area of automation. To overcome this problem. 

complex and expensive equipment has been designed. The objective of this paper is to 

provide an in depth understanding of the chamferless peg-hole assembly, by showing the 

geometrical, dynamical conditions for a successful assembly operation. Also, the results of 

this analysis have been simulated to demonstrate the chamferless peg-hole insertion 

process. 

Keywords: Peg-in hole; Geometrical analysis; Dynamical analysis; Simulation. 
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Submitted to the f.\fECHE Pan B 

W. Haskiya, K 'laycock, J Knight 

A THEORETICAL AND EXPERIMENTAL STUDY FOR THE CHAMFERLESS 

PEG-IN HOLE INSERTION PROCESS, USING A PASSIVE COMPLIA~T \YRIST 

Abstract: The paper presents a mathematical model for the chamferless peg-in hole 

insertion process. The insertion model is simulated using Matlab-Simulink software. The 

simulation results are correlated to the design of a passive compliant wrist that fits between 

the robot arm and the gripper. The wrist can overcome positional misalignment between 

cylindrical mating parts even in case of no chamfer on either the peg or the hole. The wrist 

has been tested in real assembly operations and proved to be successful. 

Keywords: peg-in hole insertion process, simulation programme/results, compliant wrist, 

experimental results 
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