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Instructor/Presenter — Shengxia

Outline of the Tutorial

Part I: Fundamentals
@ Introduction to evolutionary computation (EC)
@ EC for dynamic optimization problems (DOPs): Concept and motivation
@ Benchmark and test problems
@ Performance measures

@ Education and career history:
@ PhD, Northeastern University, China, 1999
@ Worked at King’s College London, University of
Leicester, and Brunel University, 1999-2012
@ Joined De Montfort University (DMU) as Professor in
Computational Intelligence (Cl) in July 2012
@ Director of Centre for Computational Intelligence (CCl)
@ Research interests:
@ Evolutionary Computation (EC) and nature-inspired computation Part Il: Approaches and Case studies
@ Dynamic optimisation and multi-objective optimisation @ EC enhancement approaches for DOPs
@ Relevant real-world applications .
- . @ Case studies
@ Over 190 publications and over £1.2M funding as the PI
Part Ill: Issues, future work, and summary

@ AE/Editorial Board Member for 7 journals, including /EEE Trans.

Cybern., Evol. Comput., Inform. Sci., and Soft Compu. 9 Relevant issues
@ Chair of two IEEE CIS Task Forces @ Future work
@ EC in Dynamic and Uncertain Environments @ Summary and references

@ Intelligent Network Systems
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What Is Evolutionary Computation (EC)?

@ EC encapsulates a class of stochastic optimization algorithms, dubbed
Evolutionary Algorithms (EAs)

@ An EA is an optimisation algorithm that is

Generic: a black-box tool for many problems

Population-based: evolves a population of candidate solutions

Stochastic: uses probabilistic rules

Bio-inspired: uses principles inspired from biological evolution

¢ ¢ ¢ ¢

Black Box Solver

Problem to solve —= A set of soultions

Tutorial: EC for DOPs GECCO'15, 11/7/2015 5/84

EC Applications

@ EAs are easy-to-use: No strict requirements to problems

@ Widely used for optimisation and search problems
@ Financial and economical systems
@ Transportation and logistics systems
@ Industry engineering
@ Automatic programming, art and music design

Tutorial: EC for DOPs GECCO'15, 11/7/2015 7/84

Shengxiang Yang (De Montfort University)

Design and Framework of an EA

Given a problem to solve, first consider two key things:
@ Representation of solution into individual
@ Evaluation or fitness function

Then, design the framework of an EA:

@ Initialization of population

@ Evolve the population
@ Selection of parents
@ Variation operators (recombination &
mutation)
@ Selection of offspring into next
generation

@ Termination condition: a given number
of generations

Parent selection
Parents
Recombination
Population
Mutation
4@

Survivor selection

Inttialisation

Temnination

Tutorial: EC for DOPs GECCO'15, 11/7/2015 6/84

Shengxiang Yang (De Montfort University)

EC for Optimisation Problems

@ Traditionally, research on EAs has focused on static problems
@ Aim to find the optimum quickly and precisely

@ Optimal solution o @ Opi in population @ Oy

° o © o ¢ © @
o]

Search space Search space (Iniial population) Search Space (Population converging at time 1)

@ But, many real-world problems are dynamic optimization problems
(DOPs), where changes occur over time
@ In transport networks, travel time between nodes may change
@ In logistics, customer demands may change

Tutorial: EC for DOPs GECCO'15, 11/7/2015

Shengxiang Yang (De Montfort University)
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What Are DOPs?

@ In general terms, “optimization problems that change over time” are
called dynamic problems/time-dependent problems

F=f(X.6.t)
— X: decision variable(s); é: parameter(s); t: time

@ DOPs: special class of dynamic problems that are solved online by an
algorithm as time goes by

Tutorial: EC for DOPs GECCO'15, 11/7/2015

Why EC for DOPs?

@ Many real-world problems are DOPs

@ EAs, once properly enhanced, are good choice
@ Inspired by natural/biological evolution, always in dynamic environments
@ Intrinsically, should be fine to deal with DOPs

@ Many events on EC for DOPs recently

Tutorial: EC for DOPs GECCO'15, 11/7/2015 11/84

Shengxiang Yang (De Montfort University)

Why DOPs Challenge EC?

@ For DOPs, optima may move over time in the search space
@ Challenge: need to track the moving optima over time

© Candidate soultion in population @ Optimal solution © Candidate soultion in population @ Optimal solution

& e
& o B

Search Space (Population converging at time 1) Search Space (Optimum moved at time t+1)

@ DOPs challenge traditional EAs
@ Once converged, hard to escape from an old optimum

Tutorial: EC for DOPs

Shengxiang Yang (De Montfort University)
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Shengxiang Yang (De Montfort University)

Relevant Events

Shengxiang Yang (De Montfort University)

©

Books (Monograph or Edited):
@ Yang & Yao, 2013; Yang et al., 2007; Morrison, 2004; Weicker, 2003;
Branke, 2002
PhD Theses:
@ Mavrovouniotis, 2013; Helbig, 2012; du Plessis, 2012; Li, 2011; Nguyen,
2011; Simoes, 2010
Journal special issues:
@ Neri & Yang, 2010; Yang et al., 2006; Jin & Branke, 2006; Branke, 2005
Workshops and conference special sessions:

@ EvoSTOC (2004—-2015): part of Evo*
@ ECIDUE (2004-2015): part of IEEE CEC
@ EvoDORP (99, '01, 03, '05, '07, '09): part of GECCO

IEEE Symposium on CIDUE (2011, 2013, 2014, 2015)
IEEE Competitions: within IEEE CEC 2009 & CEC 2012

©

©

©

¢ ¢
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Benchmark and Test DOPs

@ Basic idea: change base static problem(s) to create DOPs

@ Real space:
@ Switch between different functions
@ Move/reshape peaks in the fitness landscape
@ Binary space:
@ Switch between > 2 states of a problem: knapsack
@ Use binary masks: XOR DOP generator (Yang & Yao’05)
@ Combinatorial space:
@ Change decision variables: item weights/profits in knapsack problems

@ Add/delete decision variables: new jobs in scheduling, nodes
added/deleted in network routing problems

Tutorial: EC for DOPs GECCO'15, 11/7/2015 13/84

Moving Peaks Benchmark (MPB) Problem

@ Proposed by Branke (1999)
@ The MPB problem in the D-dimensional space:

F(X,t) = max DH’(t)
S T W0 S (500 — Xi(0)2

— Wi(t), Hi(t), Xi(t) = {Xi1 - -- Xip}: height, width, location of peak i at ¢
@ The dynamics:

Hi(t) = Hi(t — 1) + height_severity = o
Wi(t) = Wi(t — 1) + width_severity « o

Vi(t) = m(u CNF A1)

Xi(t) = Xi(t)(t = 1) + vi(t)
—o ~ N(0,1); \: correlated parameter

— Vi(t): shift vector, which combines random vector 7 and v;(t — 1) and is
normalized to the shift length s

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 15/84

Shengxiang Yang (De Montfort University)

The DF1 Generator

@ Proposed by Morrison & De Jong (1999)
@ The base landscape in the D-dimensional real space:

f(X)= i:'??*p H; — R; x

D
> (5= X))2 1

j=1

—X = (x,---,xp): apoint in the landscape; p: number of peaks
— Hi, Ri, Xi = (Xi,- -+, Xip): height, slope, center of peak i
@ The dynamics is controlled by a logistics function:

A=A D q-(1-D¢y)

— A€ [1.0,4.0]: a constant; A;: step size of changing a parameter

14/84

Dynamic Knapsack Problems (DKPs)

@ Static knapsack problem:
@ Given n items, each with a weight and a profit, and a knapsack with
a fixed capacity, select items to fill up the knapsack to maximize the
profit while satisfying the knapsack capacity constraint

@ The DKP:
@ Constructed by changing weights and profits of items, and/or knapsack
capacity over time as:

n

>_wi(t) - xi(t) < (1)

i=1

Max f(X(t),t) = zn:p;(t) -Xi(t), s. t.:

—X(t) € {0,1}": a solution at time ¢

— xi(t) € {0, 1}: indicates whether item i is included or not
— pi(t) and w;(t): profit and weight of item i at ¢

— C(t): knapsack capacity at ¢

Tutorial: EC for DOPs GECCO'15, 11/7/2015
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The XOR DOP Generator

@ The XOR DOP generator can create DOPs from any binary f(X) by an
XOR operator “®” (Yang, 2003; Yang & Yao, 2005)

@ Suppose the environment changes every T generations
@ For each environmental period k = [t/7], do:

S @ Create a template T with p « / ones
M(1)=1001011010
State4 + * *

@ Create a mask M(k) incrementally
M(0) =0 (the initial state)
M(k +1) = M(k) ® T(k)
© Evaluate an individual:
(%, 1) = (% © M(K))

M(0)&T(0) M()T()

[M(O):oooooooooo] [M(3):1 101000101]

State 0 (Initial State) State 3
M(Q2)aT(2)
M(2)=0111010011

State 2

T(0)=1001011010  T(1)=1110001001 ~ T(2)=1010010110

@ 7 and p controls the speed and severity of change respectively

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015

Constructing Cyclic Dynamic Environments

Can extend the XOR DOP generator to create cyclic environments:

@ Construct K templates T(0),--- ,T(K—1)

@ Form a partition of the search space
@ Each contains p x [ = I/K ones

@ Create 2K masks M(i) as base states

Partition Templates: T(0)=1001011010 v T(1)=0110100101

Base State |

M(1)=1001011010

Base State
(Initial State)

M(0)=0000000000

M(0)& T(0) MOITD
Base State 2

M@=1111111111

M(0) =0 (the initial state)

MEDT) M2)0 T0) M(i +1) = M(i) ® T(i%K),i =0, ,2K—1

M(3)=0110100101
Base State 3

© Cycle among M(i)'s every 7 generations

(X, 1) = f(X @ M(h)) = (X & M(k%(2K)))
— k = |t/7]: environmental index
— It = k%(2K): mask index

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 18/84
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Constructing Cyclic Environments with Noise

We can also construct cyclic environments with noise:

@ Each time before a base state is entered, it is bitwise changed with a
small probability

Base State 1

M(1)=100101101]]

\ Base State 2

M@)=0l 11111111

/ Bit 1 changed

M(3)=01101fp101 | by noise

Base State 3

Base State 0
(Initial State)

M(0)=0000000000

Bit 10 changed
by noise

Bit 6 changed
by noise

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 19/84

Dynamic Traveling Salesman Problems

@ Stationary traveling salesman problem (TSP):

@ Given a set of cities, find the shortest route that visits each city once and
only once

@ Dynamic TSP (DTSP):
@ May involve dynamic cost (distance) matrix

D(t) = {dj(D)}nn

— dj(t): cost from city i to j; n: the number of cities
@ The aim is to find a minimum-cost route containing all cities at time ¢
@ DTSP can be defined as f(x, t):

f(x,t) = Min(Xn: Ay x4 (1)

i=1

where x; € 1,--- ,n. If i # j, Xi # X, and X1 = X4

Shengxiang Yang (De Montfort University)
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Dynamic Permutation Benchmark Generator

@ The dynamic benchmark generator for permutation-encoded problems
(DBGP) can create a DOP from any stationary TSP/VRP by swapping
objects:

@ Generate a random vector 7(T) that
contains all objects every f iterations

s 023 @ Generate another randomly re-order vector
s s 102 r’(T) that contains only the first m x n
d B0 objects of F(T)
Swap City Location (4,2)
B © Modify the encoding of the problem instance
oo 15 e with m x n pairwise swaps

@ More details: M. Mavrovouniotis, S. Yang, & X. Yao (2012). PPSN XII, Part Il,
LNCS 7492, pp. 508-517

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 21/84

Effect on Algorithms

@ Similar with the XOR DOP generator, DBGP shifts the
population of an alg. to new location in the fithess landscape

@ The individual with the same encoding as before a change will have a
different cost after the change

Evolutionary Algorithms

Population of Individuals Population of Individuals
1=(01,34,20)=18
2=(14,2301)=16
3=(043210)=9

1=(0,13420)=12
2=(1,4.230,1) =16
3=(04.321,0)=15

1=(304213)=15 1=(304213)=21

Ant Colony Optimization

Heuristic Information Matrix Heuristic Information Matrix

0 1 2 3 4
0 033 1 02016
033 0 033033 05
1 033 0 05 0.25
0203305 0 1
0.16 05 025 1 O

0 1 2 3 4
0 033016008 1
033 0 05 0.330.33
0.16 0.5 0 1 0.25]
02033 1 0 05
1 03302505 0

0
1
,,,,,,, . |2
3
4

»wN RO

@ Can extend for cyclic and cyclic with noise environments

Tutorial: EC for DOPs GECCO'15, 11/7/2015 22/84

Shengxiang Yang (De Montfort University)
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Generalized DOP Benchmark Generator (GDBG)

@ Proposed by Li & Yang (2008), GDBG uses the model below:

Generalized DBG

Real Space ‘ ‘Comblnatory Spac%
T I T I I T I
@ In GDBG, DOPs are defined as:

F=f(x,¢,1),

— ¢: system control parameter
@ Dynamism results from tuning ¢ of the current environment

o(t+1) =o(t) © A¢

— A¢: deviation from the current control parameter(s)
@ The new environment at { + 1 is as follows:

f(x, 0, t+1) = f(x, 6(1) © A, 1)

Tutorial: EC for DOPs

Binary Space ‘

¥ BoueIsU|

3 B0UISU]

Z B0URSU]

2 eouejsu)

Shengxiang Yang (De Montfort University) GECCO'15, 11/7/2015

GDBG: Dynamic Change Types

@ Change types:
@ Small step: Ad = a-||¢|| - rand()
@ Large step: Ap = ||¢] - (o« + (1 — a)rand())
© Random: A¢ = ||| - rand()
@ Chaotic: ¢(t+1) = A-¢(t) - (1 — o(1)/[|9)
@ Recurrent: ¢(t + 1) = ¢(t%P)
© Recurrent with nosy: ¢(t + 1) = ¢(t%P) + - ||4|| - rand()

@ More details:
@ C.Li&S. Yang (2008). SEAL08, LNCS 5361, pp. 391-400

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015




DOPs: Ciassication

@ For EC for stationary problems, 2 key performance measures

@ Convergence speed
@ Success rate of reaching optimality

@ For EC for DOPs, over 20 measures (Nguyen et al., 2012)

@ Optimality-based performance measures

Collective mean fitness or mean best-of-generation
Accuracy

Adaptation

Offline error and offline performance

Mean distance to optimum at each generation

Classification criteria:

@ Time-linkage: Does the future behaviour of the problem depend on the
current solution?

@ Predictability: Are changes predictable?
@ Visibility: Are changes visible or detectable
@ Cyclicity: Are changes cyclic/recurrent in the search space?

@ Factors that change: objective, domain/number of variables, constraints,
and/or other parameters

[ 2“3~ -

@ Behaviour-based performance measures
Reactivity

Stability

Robustness

Satisficability

Diversity measures

[ =3 I I -~
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DOPs: Common Characteristics Performance Measures: Examples

@ Collective mean fitness (mean best-of-generation):

_ 1 i=G 1 j=N
Fgoc = G X Zl_:1 (N X Z}_:1 FBOG,-,-)
Common characteristics of DOPs in the literature: — G and N: number of generations and runs, resp.

® Most DOPs are non time-linkage problems — Fiog,: best-of-generation fitness of generation i of run j

@ For most DOPs, changes are assumed to be detectable @ Adaptation performance (Mori et al., 1997)

@ In most cases, the objective function is changed 1

© Many DOPs have unpredictable changes Ada= = D (oest(1)/Topt(1))
@ Most DOPs have cyclic/recurrent changes T

@ Accuracy (Trojanowski and Michalewicz, 1999)

Acc = 1? Z (foest (1) — fopt ()

i=1..K

— frest(f): best fitness for environment i (best before change)

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 26/84 Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015
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Part II: Approaches and Case studies EC for DOPs: General Approaches

@ Many approaches developed to enhance EAs for DOPs
@ Typical approaches:

@ EC enhancement approaches for DOPs o Memory: store and reuse useful information
@ Case studies Q Dlvelrsny: harjdle. convergence directly .
@ Multi-population: co-operate sub-populations
@ Adaptive: adapt generators and parameters
@ Prediction: predict changes and take actions in advance

@ They have been applied to different EAs for DOPs

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 29/84 Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 31/84

EC for DOPs: First Thinking Memory Approaches

@ Cyclic DOPs: change cyclically among a fixed set of states

© Candidate soultion in population @ Optimal solution

@ Recap: traditional EAs are not good for DOPs
. . e
@ Goal: to track the changing optimum . \
@ How about restarting an EA after a change? o .
@ Natural and easy choice
@ But, not good choice because: Search space (Optimum moves cyclicaly)
It may be inefficient, wasting computational resources . . . .
It may lead to very different solutions before and after a change. @ Memory works by storing and reusing useful information

For real-world problems, we may expect solutions to remain similar @ Two classes regarding how to store information

9 Extra approaches are needed to enhance EAs for DOPs @ Implicit memory: uses redundant representations

@ Multiploidy and dominance (Ng & Wong, 1995; Lewis et al., 1998)
@ Dualism mechanisms (Yang, 2003; Yang & Yao, 2005)

@ Explicit memory: uses extra space to store information

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015
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Implicit Memory: Diploid Genetic Algorithm

Same Phenotypic

Alleles )
Evaluating

Genotype—to—Phenotyp $ |
Mapping ? Dominance Scheme

)

Fitness

Genotypic Alleles: T [FX77 rZ77]
Phenotypic Alleles: [ M

Encoding Dominance Scheme
Genotype olol1]i
=T F777] [ 1 Chromosome 1| 0 0 0 |0/1] O
T p777] [~ -] Chromosome 2 o 0 0 1 0/1
1 jon| 1 1
1

Phenotype

2005)

Shengxiang Yang (De Montfort University)

Explicit Memory Approaches

@ Each individual has a pair of chromosomes
@ Dominance scheme maps genotype to phenotype
@ Dominance scheme may change or be adaptive (Uyar & Harmanci,

Tutorial: EC for DOPs

Basic idea: use extra memory
@ With time, store useful information of the pop into memory
@ When a change occurs, use memory to track new optimum

Al B| C| D
AJoO|lO0]O0]1
Blo|lo]|o]|1
clpo o1 1
D] 1 1 1 1

Lewis et al. (1998)

GECCO'15, 11/7/2015

© Candidate soultion in population @ Optimal solution ~ © Candidate soultion in population @ Optimal solution ~ © Candidate soultion in population @ Optimal solution

Update memory

@ Memory solutions
L3
L]
L]
L]

@ Memory solutions

Search space (Memory stores best solutions)

Shengxiang Yang (De Montfort University)

Search space (Optimum moves o next state)

Tutorial: EC for DOPs

@ Memory solutions
.

1. Extract allele N\
distribution vector

Search space (Population moves to new optimum)

GECCO'15, 11/7/2015

(Yang & Yao, 2008)

Main Population

Update memory

1. Select besf
pop member

2. Replace one
memory solution

Memory

Direct Memory

Shengxiang Yang (De Montfort University)

Associative Memory Based Genetic Algorithm

Idea: Use allele distribution (AD) Dto represent environmental info.

Main Population

i

3. Replace
2, Associate
2, Create
3. Replace
_ 1. Associate

Retrieve memory

Memory

A\ Alele distribution vector O Solution

Shengxiang Yang (De Montfort University)

Explicit Memory: Direct vs Associative

@ Direct memory: store good solutions (Branke, 1999)
@ Associative memory: store environmental information + good solutions

Main Population

2. Select ~ Update memory

1. Extract Ny 3. Replace
env info

2. Associate
2. Create

1. Merge 3. Replace

1. Associate

Retrieve memory
Retrieve memory

Memory

A Environment information O Solution

Associative Memory

Tutorial: EC for DOPs GECCO'15, 11/7/2015 35/84

@ Use memory to store <f), S> pairs

@ Update memory by similarity policy

@ Re-evaluate memory every generation. If
change detected

@ Extract best memory AD: Dy _
@ Create solutions by sampling Dy
@ Replace them into the pop randomly

@ Details:
@ S. Yang (2006). EvoWorkshops'06, pp. 788799

Tutorial: EC for DOPs GECCO'15, 11/7/2015 36/84




Diversity Approaches: Random Immigrants Experimental Results: Immigrants Based GAs

Cyclic Dynamic OneMax Function, T = 25, p = 0.1 Random Dynamic OneMax Function, r = 25, p = 0.1
@ Convergence is the key problem in metaheuristics for DOPs " ‘ ‘ ‘ " ‘ ‘ ‘
@ Random immigrants: i MREEE -
@ Each generation, insert some random individuals (called random W MG

immigrants) into the population to maintain diversity
@ When optimum moves, random immigrants nearby take action to draw the
pop to the new optimum

© Candidate soultion in population @ Optimal solution > Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution

Best-Of-Generation Fitness
Best-Of-Generation Fitness

c%g).o 6 I I I I 6 I I I I
e} %& 4500 4600 4700 4800 4900 5000 4500 4600 4700 4300 4900 5000

Previous random immigrant Generation Generation

Random immigrants Random immigrants

@ Memory-based immigrants GA (MIGA) significantly beats other GAs

@ More details:
@ S. Yang (2008). Evol. Comput., 16(3): 385416

Search Space (Population converging at time 1) Search Space (Optimum moved at time t+1) Search Space (Population moves o new optimum)

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 37/84 Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 39/84

Memory-Based Immigrants Hybrid Immigrants Approach
@ Random immigrants maintain the diversity while memory adapts an @ Combines elitism, dualism and random immigrants ideas
:Illgorlthmslrec:y. to n.ew er;wronments o o Dualism: Given ¥ = (x1,- - . x)) € {0, 1}, its dual is defined as
@ Memory-based immigrants: uses memory to guide immigrants oy o g d /
towards current environment X% = dual(x) = (xi',---,x’) € {0,1}
@ Re-evaluate the memory every generation where x4 =1 — x;
1

Retrieve the best memory point By(t) as the base

o . . P . .
o Generate immigrants by mutating By(t) with a prob. @ Each generation t, select the best individual from previous generation,
o

Replace worst members in the population by these immigrants E(t — 1), to generate immigrants
@ Elitism-based immigrants: Generate a set of individuals by mutating
current best memory point random immigrants E(t —1 ) to address s“ght Changes
Z‘;gi:m ® @ Dualism-based immigrants: Generate a set of individuals by mutating the
\: e - dual of E(t — 1) to address significant changes
o

'® o ‘ @ Random immigrants: Generate a set of random individuals to address

®0 P medium changes
O ..Q @ Replace these immigrants into the population
@ More detalils:
@ S. Yang & R. Tinos (2007). Int. J. of Autom. & Comp., 4(3): 243-254

memory—based immigrants memory points

Search Space
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Experimental Results: Hybrid Immigrants GA

Multi-Populations: Self-Organizing Scouts

OneMax, T=10 Royal Road, =10 Deceptive, T= 10 Knapsack, T=10
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@ Hybrid immigrants improve GA’s performance for DOPs efficiently
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@ Self-organizing scouts (SOS) GA (Branke et al., 2000)
@ The parent population explores the search space
@ A child population is split under certain conditions
@ Child populations search limited promising areas

Parent
Population

evolve

Parent
Population

evolve

split
Parent bl
Population
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split child

population 1

evolve

child
population 1
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Multi-Population

Shifting Balance

@ Multi-population scheme uses co-operating sub-populations

@ Shifting Balance GA (Oppacher & Wineberg, 1999):

@ A core population exploits the promising area
@ Several colonies explore the search space

I migration

Core
Population

migration

migratV(
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Adaptive Approaches

@ Aim: Adapt operators/parameters, usually after a change
@ Hypermutation (Cobb & Grefenstette, 1993): raise the mutation rate
temporarily
@ Hyper-selection (Yang & Tinos, 2008): raise the selection pressure
temporarily
@ Hyper-learning (Yang & Richter, 2009): raise the learning rate for
Population-Based Incremental Learning (PBIL) temporarily

@ Combined: Hyper-selection and hyper-learning with re-start or
hypermutation
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Prediction Approaches Case Study: GA for Dynamic TSP

@ Dynamic TSP:
@ 144 Chinese cities, 1 geo-stationary saterllite, and 3 mobile satellites
@ Find the path that cycles each city and satellite once with the minimum

length over time

o . @ Solver: A GA with memory and other schemes

@ For sqme DOPs, cha.nges exhibit Predlctable patterns ' @ More details:

@ Techniques (forecasting, Kalman filter, etc.) can be used to predict @ C.Li, M. Yang, & L. Kang (2006). SEAL06, LNCS 4247, pp. 236—243
@ The location of the next optimum after a change
@ When the next change will occur and which environment may appear

@ Some relevant work: see Simbes & Costa (2009)
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Remarks on Enhancing Approaches Case Study: GAs for Dynamic Routing in MANETS — 1

@ Shortest path routing problem (SPRP) in a fixed network:
@ Find the shortest path between source and destination in a fixed topology

©

No clear winner among the approaches

° Men?ory Is ef.f|0|e.nt for cyclic env!ronments . @ More and more mobile ad hoc networks (MANETS) appear where the
@ Multi-population is good for tracking competing peaks topology keeps changing
@ The search ability will decrease if too many sub-populations 9 Dynamic SPRP (DSPRP)in MANETS:
@ Diversity schemes are usually useful @ Find a series of shortest paths in a series of highly-related network
@ Guided immigrants may be more efficient topologies
@ Different interaction exists among the approaches @ We model the network dynamics as follows:
@ Golden rule: balancing exploration & exploitation over time @ For each change, a number of nodes are randomly selected to sleep or

wake up based on their current status
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Case Study: GAs for Dynamic Routing in MANETSs — 2

@ A specialized GA for the DSPRP:

@ Path-oriented encoding
@ Tournament selection
@ Path-oriented crossover and mutation with repair

@ Enhancements: Immigrants and memory approaches

@ Experimental results:
@ Both immigrants and memory enhance GA’s performance for the DSPRP
in MANETSs.
@ Immigrants schemes show their power in acyclic environments
@ Memory related schemes work well in cyclic environments
@ More details:

@ S. Yang, H. Cheng, & F. Wang (2010). IEEE Trans SMC Part C: Appl. &
Rev., 40(1): 52—63
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@ PSO was inspired by models of swarming and flocking
@ First introduced by Kennedy and Eberhart in 1995
@ Standard PSO: particle position and velocity update rules

,d

VIi=wvf+ci-r - (pbest? — xI)+cz- 1o - (gbest? — x)

d d
X7 =x9+ v

) x’,‘j and x?: the d-th dimension of the current and previous position of
particle i

@ V/;and v;: current and previous velocity of particle i

@ pbest; and gbest: best so far position found by particle / and by the whole
swarm

@ PSO has been applied for many static optimization problems
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Case Study: PSO for Continuous DOPs
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PSO for Continuous DOPs

@ Recently, PSO has been applied for continuous DOPs

@ Two aspects to consider:

@ Outdated memory. Two solutions:
@ Simply set pbest to the current position
@ Reevaluate pbest and reset it to current position if it is worse than the current
position
@ Diversity loss. Three solutions:
@ Introduce diversity after a change
@ Maintain diversity during the run
@ Use multi-swarms

Tutorial: EC for DOPs
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Multi-swarm PSO for DOPs

@ Aim: To enhance the diversity by maintaining multiple swarms on
different peaks

@ Key questions:
@ How to guide particles to different promising sub-regions
@ How to determine the proper number of sub-swarms
@ How to calculate the search area of each sub-swarm
@ How to create sub-swarms

@ Algorithms:
@ Kennedy’s k-means clustering algorithm
@ Brits’s nbest PSO algorithm and niching PSO (NichePSO)
@ Parrott and Li’s speciation based PSO (SPSO)
@ Blackwell and Branke’s charged PSO (mCPSO) and quantum swarm
optimization (mQSO)

@ Potential problems:

@ There may be improper number of sub-swarms
@ One sub-swarm might cover more than one peaks
@ One peak might be surrounded by more than one sub-swarms

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015
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Multi-swarm: Clustering PSO (CPSO) Experiments on GDBG System

TABLE XVIII
OVERALL PERFORMANCE OF CPSO, SGA, AND SPSO ON ALL THE TEST CASES
. THp = 107 Filp = 20 TS % TS TS T
*] Recently, we developed a Clusterlng PSO (CPSO) for DOPs CFso | I, DU66001 0966917 0794534 0.500024 076771 0731467 0649896
T: 0922947 0907395 0635615  0.0440386  0.560021 0.715637 0.508471
o ining: i i isi i Ty 0.875388 0,856738 0661482 0.0982846  0.575383 0.718818 0531786
Tramlng Move partlicles toward d|ﬁgrent pl:om|smg reglons L7 0.987497 0987119 0913543 0367912 0.838087 0.878806 0663524
@ Clustering: Use a Single Linkage Hierarchical Clustering to create Ts 0.922095 DS40B5H 0648544 00741003 0.549243 0.690628 0550686
8 0.930797 0.940859 0726883  0.174772  0.683067 0.69816 0.521062
sub-swarms T 0.886248 0.86016 0.752913 0.200772 0.673421 0.711989 0.596812
. . . Mark | 00929334 00925999 0117181 00356395 0.107361 0.117796 00917592
@ Local search: Each sub-swarm will search among one peak quickly SGA | 1o TOT0613 To02603 U243572 0250839 0.3835% EEEEE] 0.359963
i Ta 0.84281 0,843315 0257916 00255796 (.14769 0.340976 0240533
o Overlap_pmg and convergence check T, 0.796255 0771041 0310793 0.060691 0.215296 0.369612 0.314915
[ Strateg|es to response to changes Ty 0.859011 {1.865804 0.352983 0.116428 0.301695 0.310434 0.256899
T 0.863522 0.90018 0306424 00683818 0.193047 0.260397 0.374333
g Ty 0.804106 0795939 0.3369 0.0800156 0286556 0.30469 0255455
@ More details: T 0.808B16 0.802818 0.394271 0.116652  0.299491 0.37637 0255455
K Mark | 0.0842329 00842114 00544904 00163033 0.0414625 0.0582129 00473257
@ Li & Yang, CEC 2009: 439-446 SPsO [ T, T 8EE062 0.899623 0291121 0OD2S8IE  0.579559 T.562548 0320598
! T: 0.837838 0842265 0.345149 00142884  0.279373 0651761 0.374696
@ Yang & Li, IEEE Trans Evol Comput, 14(6): 959-974, 2010 Ty 0.826183 0.797807 0430344 00172752 0.319256 0.655 0.392653
L7 0.826493 0.887341 0.402016 00170278 0.379976 0.476617 0254912
Ts 0.89435 0924999 0404052 0.0338731  0.329061 0.770762 0.490316
Ts 0.748523 0.769592 0391393 00136195 0.35754 0.45786 0260332
T 0.753283 0.760335 0.465614 00762798 0.468118 0.574794 0.38434
Mark | 0.0828681 00844278 00465876 000421938 0.0589642 0.0949839 00563887
Performance (sum (hc_marks [or_all (csl cascs and_multiply by 001 CPSO 65.527, SGA 38,0504, SPSO 43,8442
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Experiments on MPB Functions Summary of CPSO for DOPs

@ Comparison with mQSO and mCPSO on MPB with different shift

severities @ The nearest neighbour training strategy can efficiently guide randomly
s [CPSO mCPSO mQSO initialized particles to different promising sub-regions
0.0 | 0.89 1.18 1.18 @ CPSO scales well regarding the number of peaks in the fitness
1.0 | 1.49 2.05 1.75 landscape over other PSO algorithms
2.0 1 163 2.80 2.40 @ The clustering method in CPSO is effective to generate sub-swarms

3.0 1.96 3.57 3.00
4.0 | 2.05 4.18 3.59
50| 224 4.89 4.24
6.0 | 229 5.53 4.79

@ It is still difficult to create accurate sub-swarms. More work should be
done to solve this problem
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Adaptive Multi-Swarm Optimizer (AMSO) Demo: CPSO & AMSO for DOPs

W EAUB =
|Algorithm[aMSO  ~ |

. . . . . . . Probiem: [GompositionDBG_DO ~ |
@ Single linkage hierarchical clustering is used to create populations 8

Drawsleep(ms)200_| Ok |
@ All populations use the same search operator for local search
@ An overcrowding scheme is used to remove unnecessary populations
@ To find out proper moments to increase diversity without change

detection, a special rule is designed according to the drop rate of the
number of populations over a certain period of time

@ To create a proper number of populations needed in each environment,
an adaptive method is developed according to the information collected
from the whole populations since the last diversity-increasing point

@ More details:

@ Li, Yang & Yang, Evol Comput, 22(4): 559-594, 2014

[Frequency I

Resume| | Go |
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Experimental Results Case Study: ACO for DOPs

@ ACO mimics the behaviour of ants searching for food
The first ACO algorithm was proposed for TSPs (Dorigo et al’96)

@ Generally, ACO was developed to be suitable for graph optimization
problems, such as TSP and VRP

©

Table : The offline error (E,mine) and best-before-change error (Eggc) on the
MPB with changing number of peaks

Error A“2"§° C:i‘j“ Ciﬁo 'SE’WSO S,J_Pg;f) m?:fo "LQSS;VO 33“219 DggEE DV”SP;’FW’DE Effw" ”4’"53;9 ??f @ The idea was to let ants “walk” on the arcs of the graph while “reading”
vart Eoffine 1005 10,17 +0.28 £0.55 £0.58 4062 +0.27 £0.24 +038 4026 +13 +0.19 +32 and “writing” pheromones until they converge into a path

Egsc 15 167 197 527 5i%¥ 7% 377 287 3" 317 12" 357 977 .

c 29 337 57 467 497 737 447 47 357 427 137 547 94V @ Standard ACO consists of two phases:
Var2 —offine 10.74 +0.63 +1 +0.65 +0.67 +0.89 +0.92 +0.68 +0.81 +0.75 +1.2 +0.69 +4.3 . .

Ewpo — 7 197 287 377 397 637 347 317 297 367 13 47 547 @ Forward mode: Construct solutions

E 27 297 457 497 487 747 417 377 347 487 137 537 967 @ Backward mode: Pheromone update
Var3 “ofine 4045 +0.29 +0.36 +0.68 +0.66 +0.98 +0.55 +0.32 +0.5 +0.59 +2 +0.4 +35 . .

Emsc 1.7 1.67 227 307 377 647 337 287 277 417  12W 41" 8&¥ @ Conventional ACO cannot adapt well to DOPs due to stagnation

behaviour
@ Once converged, it is hard to escape from the old optimum
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Pheromone Evaporation Pheromone Modification After a Change

@ Pheromone strategies are applied to DTSP where cities are exchanged
Global pheromone strategies = Initialize all pheromone trails equally

@ Local pheromone strategies = Initialize pheromone trails where the
change occurs

@ The offended pheromone trails from the cities replaced are re-initialized
according to a metric either based on different heuristic information

@ Requires the detection of change. Even more challenging to detect the
change locally!

@ More details: Guntsch and Middendorf’01 for DTSP

©

@ Pheromone evaporation is the adaptation mechanism in ACO

@ It helps to eliminate the high intensity of pheromone trails that may
misguide ants to search in non-promising areas

@ However, the pheromone evaporation rate depends on the magnitude of
change and the problem size (Mavrovouniotis and Yang'13).

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 61/84 Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'15, 11/7/2015 63/84

ACO for DOPs: General Comments ACO with Memory Schemes

@ ACO’s knowledge transfer makes sense on slight changes; otherwise, it
may misguide the search
@ A global restart is a better choice on more severe changes
@ A global restart of ACO = pheromone re-initialization

@ Moreover, ACO has to maintain adaptability, instead of stagnation
behaviour, to accept knowledge transferred

@ Recently, many approaches developed with ACO for DOPs

@ Population-based ACO (P-ACO) maintains an actual population of ants
Applied to the DTSP where cities are exchanged

@ Pheromone trails are removed or added directly when an ant exists or
enters the population-list

@ Solutions stored are repaired heuristically when a change occurs

©

@ Pheromone modification after a change (Guntsch and Middendorf'01, @ Requires prior knowledge to repair solutions stored in memory
Eyckelhof and Snoek’02) @ More details: Guntsch and Middendorf (2002) for DTSP and
Memory-based schemes (Guntsch and Middendorf’02) Mavrovouniotis and Yang (2012) for DVRP

Hybrid and memetic algorithms (Mavrovouniotis and Yang’11)
Pheromone modification during execution (Mavrovouniotis and Yang’'12,13)
Multi-colony schemes (Mavrovouniotis, Yang and Yao’14)

¢ ¢ ¢ ¢
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Hybrid/Memetic ACO Algorithms ACO with Pheromone Strategies: Adapting Evaporation

@ Different evaporation rate perform better under different DOPs

@ The memetic ACO (M-ACO) uses the P-ACO framework @ Solution = Adaptive pheromone evaporation rate
@ Before the best ant enters the population-list it is improved by a local @ Starts with an initial p and modifies it as follows:
search operator (inversion). o When stagnation behaviour is detected, the value is increased to help ants

@ Local search operator provides strong exploitation. forget the current solution; otherwise, it is decreased to avoid

. . . . . — randomization
@ A diversity scheme is applied (triggered immigrants) as follows: ® \b hing i dtod ion behai
@ [f the population-list contains identical solutions, a random immigrant -branching is used to detect stagnation behaviour
replaces one existing ant @ Measures the distribution of pheromone trails
@ Inherits the disadvantages of P-ACO. @ Example: if only a single path contains extreme pheromone whereas the

ining h | h it ti
@ More details: Mavrovouniotis and Yang (2010) for DTSP and remaining nave Ow,ler P eromone.:> stagnation
Mavrovouniotis and Yang (2012) for DVRP @ Performs better than fixed evaporation rate. However, a restart strategy

performs better in severely changing environments
@ More details: Mavrovouniotis and Yang (2013) for both DTSP and DVRP
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Experiments: M-ACO vs P-ACO and ACS Experiments: Adaptive vs Fixed (Optimized)

o P-ACO perf better than th fional ACO @ Adaptive often performs than fixed in some cases
- erforms better than the conventiona ) : ) .
p @ Sometimes is outperformed by the fixed evaporation
@ M-ACO achieves better performance than P-ACO @ Considering the tedious work to optimize evaporation; the adaptive
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ACO with Pheromone Strategies: Immigrants

@ Integrate immigrants schemes to ACO
@ A short-term memory is used to store the best k ants and generated
immigrant ants
@ The memory is updated every iteration
@ No ant can survive in more than one iteration
@ Pheromone trails are synchronized with short-term memory
@ Any changes to the memory applied also to pheromone trails
@ Pheromone evaporation is not used because pheromone trails are
removed directly
@ More details: Mavrovouniotis and Yang (2010, 2013) for DTSP and
Mavrovouniotis and Yang (2012a, 2012b) for DVRP
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Experiments: Immigrants Schemes — 1

@ RIACO, EIACO and MIACO outperform conventional ACO algorithms
@ EIACO performs better than, followed by MIACO
@ M-ACO performs better than RIACO

F-n45-k4 (Random), f= 100, m=0.25 F-n72-k4 (Random), f= 100, m =025 F-n135K7 (Random), £= 100, m =025
s 30 _ . ,

1500

Offline Performance
Offline Performance
Offline Performance

R o0 o CEED
Iteration Tteration Iteration
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Experiments: Immigrants Schemes — 2

F-nd5-k4, =100, m=0.25 F-n72-k4, =100, m=0.25
T T T T

@ RIACO does not perform well on DOPs that change slightly
@ Generate higher diversity than EIACO and MIACO
@ Higher diversity does not always achieve better performance

F-nl35K7, £=100, m=0.25

Total Diversity
Total Diversity

Total Diversity

Iteration Iteration
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Part IlI: Issues, future work, and summary

@ Relevant issues
@ Future work
@ Summary and references
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Theoretical Development

@ So far, mainly empirical studies
@ Theoretical analysis has just appeared

@ Runtime analysis:
@ Stanhope & Daida (1999) first analyzed a (1+1) EA on the dynamic bit
matching problem (DBMP)
@ Droste (2002) analyzed the first hitting time of a (1+1) ES on the DBMP
@ Rohlfshagen et al. (2010) analyzed how the magnitude and speed of
change may affect the performance of the (1+1) EA on two functions
constructed from the XOR DOP generator

@ Analysis of dynamic fitness landscape:
@ Branke et al. (2005) analyzed the changes of fitness landscape due to
changes of the underlying problem instance
@ Richter (2010) analyzed the properties of spatio-temporal fitness
landscapes constructed from Coupled Map Lattices (CML)
@ Tinos and Yang (2010) analyzed the properties of the XOR DOP generator
based on the dynamical system approach of the GA

Challenging Issues

@ Detecting changes:
@ Most studies assume that changes are easy to detect or visible to an
algorithm whenever occurred
@ In fact, changes are difficult to detect for many DOPs
@ Understanding the characteristics of DOPs:
@ What characteristics make DOPs easy or difficult?
@ The work has started, but needs much more effort
@ Analysing the behaviour of EAs for DOPs:
@ Requiring more theoretical analysis tools
@ Addressing more challenging DOPs and EC methods
@ Big question: Which EC methods for what DOPs?
@ Real world applications:
@ How to model real-world DOPs?
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Future Work

EC for Dynamic Multi-objective Optimization

@ So far, mainly dynamic single-objective optimization
@ Dynamic multi-objective optimization problems (DMOPs): even more
challenging

@ A few studies have addressed EC for DMOPs

@ Farina et al. (2004) classified DMOPs based on the changes on the Pareto
optimal solutions

@ Goh & Tan (2009) proposed a competitive-cooperative coevolutionary
algorithm for DMOPs

@ Zeng et al. (2006) proposed a dynamic orthogonal multi-objective EA
(DOMOEA) to solve a DMOP with continuous decision variables

@ Zhang & Qian (2011) proposed an artificial immune system to solve
constrained DMOPs

@ Jiang & Yang (2014) proposed a new benchmark MDOP generator
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@ The domain has attracted a growing interest recently
@ But, far from well-studied

@ New approaches needed: esp. hybrid approaches
@ Theoretical analysis: greatly needed
@ EC for DMOPs: deserves much more effort

@ Real world applications: also greatly needed
@ Fields: logistics, transport, MANETS, data streams, social networks, ...
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@ EC for DOPs: challenging but important

@ The domain is still young and active:

@ More challenges to be taken regarding approaches, theory, and
applications

@ More young researchers are greatly welcome!
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Relevant Information

@ IEEE CIS Task Force on EC in Dynamic and Uncertain Environments
o http://www.tech.dmu.ac.uk/~syang/IEEE_ECIDUE.html
@ Maintained by Shengxiang Yang

@ Source codes:
o http://www.tech.dmu.ac.uk/~syang/publications.html

@ IEEE Competitions:

@ 2009 Competition on EC in Dynamic & Uncertain Environments:
http://www.cs.le.ac.uk/people/syang/ECIDUE/ECiDUE-Competition09

@ 2012 Competition on EC for DOPs:
http://people.brunel.ac.uk/~csstssy/ECDOP-Competition12.html

@ 2014 Competition on EC for DOPs:
http://cs.cug.edu.cn/teacherweb/lichanghe/pages/organization/
competition/ECDOP-Competition14.html
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