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Abstract—Aiming at the difficulty in evaluating preference-
based evolutionary multiobjective optimization, this paper pro-
poses a new performance indicator. The main idea is to project
the preferred solutions onto a constructed hyperplane which is
perpendicular to the vector from the reference (aspiration) point
to the origin. And then the distance from preferred solutions
to the origin and the standard deviation of distance from each
mapping point to the nearest point will be calculated. The former
is used to measure the convergence of the obtained solutions.
The latter is utilized to assess the diversity of preferred solutions
in the region of interest. The indicator is conducted to assess
different algorithms on a series of benchmark problems with
various features. The results show that the proposed indicator is
able to properly evaluate the performance of preference-based
multiobjective evolutionary algorithms.

Index Terms—reference point, preference, indicator

I. INTRODUCTION

As most real-life decisions and problems involve multiple
conflicting criteria that must be considered simultaneously,
multiobjective evolutionary algorithms (MOEAs) have been
widely adopted to deal with multiobjective optimization prob-
lems [1], [2], [3], [4], [5]. However, it is difficult for the
decision maker (DM) to select the final preferred solutions
among the whole Pareto-optimal front (POF).

Thus, preference-based MOEAs [6], [7], [8] have been
developed to facilitate the DM by providing solutions in
the regions of interest (ROIs) according to DM’s preference
information. Notably, there are two advantages embedding the
preference information from the DM into the MOEAs. First, in

terms of the preference information, MOEAs could save more
evaluations or computational resources during environmental
selection so as to focus on searching solutions in the ROIs [9]
rather than on the solutions approximating to the whole POF.
Second, a number of preferred solutions could aid the DM to
make a better decision.

Although a series of preference-based MOEAs [10], [11],
[12] have been proposed, the performance metrics are still few
and should be improved. To facilitate the DM, preference-
based metrics should reflect different performances of the
algorithms that have been compared by evaluating the provided
solution sets but also need to meet the DM’s preferences.
Traditional performance metrics such as [13] , [14] are based
on the POF of benchmark problems. However, in most cases,
we have no idea about the POF [15] in engineering appli-
cations. It is of great practical significance to develop the
preference-based indicators that do not require the information
of true POF. Recently, Mohammeadi et al. [16] proposed
a performance metric (IGD-CF) by combining a composite
POF and classical MOEA assessment for comparing different
preference-based MOEAs. This metric is effective when the
composite front is fairly close to the POF and at the lower
dimensional space. Moreover, Li et al. [17] put forward a
new performance metric (R-metric), whose basic idea is to pre-
process the approximation sets found by different algorithms
before using the inverted generational distance (IGD) [14].
However, in this metric, the POF is also supposed to be known
and it can not assess all preferred solutions obtained by a
preference-based MOEA.



In this paper, we design a indicator to assess the preference-
based MOEAs using a reference point. The main idea is
to project preferred solutions onto a hyperplane which is
perpendicular to the vector connecting preference point and
origin, and then calculating some specific distances to assess
the convergence and diversity of preferred solutions. This
indicator does not need any information about the POF and
it can help the DM make a better decision via the evaluation
mechanism.

The rest of this paper is organized as follows. Section
II briefly introduces various existing performance metrics.
Section III explains the details of the proposed performance
indicator. Section IV verifies the effectiveness of the proposed
method and analyses the experimental results. Finally conclu-
sions are drawn.

II. BACKGROUND

In this section, several quality metrics are introduced to
evaluate the performance of preference-based multiobjective
evolutionary algorithms.

A. Generational Distance

Generational distance (GD) [13] is widely applied to mea-
sure the convergence of the approximated set P towards the
POF. The GD is defined as:

GD =

∑
d(i, POF )

|P |
, i ∈ P (1)

where |P | is the number of solutions in P, and d(i,POF)
is the nearest Euclidean distance between each solution i
and the POF. The GD still has some shortcomings although
it can assess the convergence of preference-based MOEAs
effectively. On the one hand, it requires the knowledge of
the whole POF. In addition, it has to sample a large set of
uniformly distributed points on the POF, which is hard to be
precisely achieved in many-objective problems. On the other
hand, GD will be misleading when dealing with preference-
based problems. Since the obtained solutions, far from the
ROI, might get a better GD value.

B. IGD-CF

Inverted Generational Distance Based Composite Front
(IGD-CF) [16] is a comprehensive performance metric which
can measure both the convergence and diversity of the obtained
solution set. IGD-CF substitutes a composite front for the POF
and then defines the ROI by means of a user-supplied reference
point. Finally it calculates the IGD value of solutions within
the region of interests. Fig.1 shows an example of how to
define a preferred region by a composite front.

The metric does not require any prior knowledge of
the POF and takes the DM’s preference information into
consideration. Nonetheless, there are some flaws in IGD-CF.
It will give wrong information when the composite front
is not fairly close and similar to the POF. Moreover, as
described in [17], the objectives need to be normalized, which
may be a drawback. Besides, the parameter r shown in Fig.1
will not be meaningful because real-world problems do not
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Fig. 1. Illustration of a composite front. The composite front is composed of
the red circles and squares.

have the same units.

C. R-metric

R-metric [17] is a metric which measures both the diversity
and convergence of preferred solutions. It provides a unified
framework for performance assessment of a partial POF. The
method is used first to remove the dominated solutions, then
to translate the filtered solutions to a virtual position along the
iso-ASF line shown in Fig.2. Last, the baseline metric IGD or
other metrics are chosen to evaluate the quality of a preferred
efficient set. The basic outline of the algorithm is given as:
• Prescreen procedure

Assume that there are L preferred efficient sets which are
obtained by L different preference-based MOEAs. Before
the assessment of the preferred efficient sets, the metric
needs to prescreen them and only the non-dominated
solutions can be used for R-metric computation.

• Center identification
Use the solution closest to the centroid of the underlying
solution set as the representative point.

• Filtering procedure
Keep the solutions, which are close to the representative
point and within a relative extent of the ROI, for the R-
metric calculation.

• Solution transfer
Translate the filtered solutions towards the reference line
constructed by the reference point and a given worst
point. Then, the regular metrics IGD can be applied for
performance assessment.

R-metric does not assess all preferred solutions given by
the preference-based MOEA using a reference point. In other
words, the value of the metric cannot reflect back the true
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Fig. 2. Illustration of the R-metric computation procedure

performance of preference-based MOEA, which may mislead
the DM. Furthermore, it will burden DM to provide an
additional worst point in the R-IGD computation. In addition,
the metric, similar to the original IGD, needs to know the POF.

III. A PROPOSED PERFORMANCE INDICATOR

In this section, a novel reference-point-based performance
indicator is proposed to evaluate the convergence and diversity
of preference-based MOEAs, and the indicator is termed
PMOD for convenience. Different from other metrics, the
proposed indicator maps the obtained solutions to a construct-
ed hyperplane integrating with preference information, then
different distances are calculated to evaluate different aspects
of the solutions. The details are as follows.

Step 1: Construct the hyperplane and define a preferred
region.
Given a reference point from the DM, it define a normal vector
which is constituted from reference point to the origin of
coordinate or a direction vector w implying relative importance
of each objective, then the preference-based hyperplane S can
be formulated according to the reference point and normal
vector. For example, assuming a reference point R(a, b, c), the
hyperplane can be defined as a(f1−a)+b(f2−b)+c(f3−c) =
0. The reference point R is selected to be center point of the
ROI, and the size of preferred region can be adjusted by the
decision maker with a Euclidean distance r from center point.

Step 2: Obtain the mapping points.
Make a vector

−→
pR from reference point R to the solution p,−→

PR =
−−→
OR−

−→
Op. Then take the dot product of that vector with

the unit normal vector, −→n =
−−→
OR

|
−−→
OR|

, dist =
−→
pR · −→n . Finally,

multiply the unit normal vector by the distance, and add that
vector from preferred point,

−−→
Op′ =

−→
Op+

−→
pp′ =

−→
Op+dist∗−→n ,

mapping point p’ ∈ S shown in Fig.3.

Reference Point R

Pareto-optimal 

Front

Preferred 

Region

Fr

are

Solution 

p

Hperplane

Mapping   

Point p

O

1
f

2
f

Fig. 3. Illustration of the PMOD on two-dimensional space

Step 3: Specific distances computation.
Calculate distance D1 between the mapping point and refer-
ence point and the standard deviation of distance D2 from
each mapping point to the nearest point. For the preferred set
P ′ of mapping points, D2 can be calculated as follows:√√√√ 1

|P ′| − 1

|P ′|∑
i=1

(d− di)2 (2)

where di = min
qj∈P ′∧qj 6=qi

∑M
m=1|fm(qi) − fm(qj)|; d is the

mean of all di, and M is the number of objectives. Then, we
compute the Euclidean distance D3 between preferred solution
and origin. If the mapping point of the preferred solution is
not in the ROI, multiply the distance by a penalty coefficient
k. For the solution p shown in Fig.3, D1 = |

−→
p′R|, D3 = |

−→
Op|.

Step 4: Calculate the performance metric value.
The metric can be defined:

PMOD =

∑n
1 (D1 + kD3)

n
+D2 (3)

where {
k = 1 r ≤ D1
k > 1 otherwise

n is the number of the preferred solutions.
As can be seen from equation (3), the smaller the value
of PMOD, the better performance of the algorithm. The
advantage of PMOD is that it does not require knowledge of
the POF and can measure both the convergence and diversity
by simple distances calculation. Moreover, the proposed
indicator does not need to normalize the objective space when
determining the size of the interest of region. As described in
IGD-CF and R-metric, the setting of ROI’s size assumes the
objective space is normalized to [0,1], but this assumption
might not always hold in real problems [2].
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Fig. 4. Reference point (0.15,0.5) in infeasible region and reference point
(0.5,0.45) in feasible region on ZDT1 problem
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Fig. 5. Reference point (0.65,0.35) in infeasible region and reference point
(0.65,0.85) in feasible region on ZDT2 problem

IV. EXPERIMENTAL ANALYSIS

In this section, to verify the effectiveness of the proposed
indicator objectively, we employ the method suggested in R-
metric [17]. A good indicator can deal with different shapes
including the convex and non-convex POF as well as different
locations of the reference point; thus two-objective benchmark
problems ZDT1 and ZDT2 [19] are applied. We sampled
ten sets of points, S1 to S10, from different regions of the
POF. Each set has 25 points distributing relatively evenly; the
penalty coefficient k and the parameter r are set as 1.5 and 0.1
respectively. The settings of reference point in the infeasible
and feasible region are shown in Table I.

TABLE I
REFERENCE POINT SETTING FOR ZDT1 AND ZDT2

Benchmark problem Infeasible region Feasible region
ZDT1 (0.15,0.5) (0.5,0.45)
ZDT2 (0.65,0.35) (0.65,0.85)

From the results shown in Fig.4 and Fig.5, the indicator
value makes a reasonable assessment on the quality of a point
set in accordance with the DM’s preference information. For
example, the PMOD value of S4 is indeed the best in Fig.5(b)
since it is closest to the ROI with respect to reference point
(0.65,0.35). For the other point sets, the farther away from the
ROI, the worse the indicator values.

In the following, we apply the proposed indicator to evaluate
the performance of two state-of-art preference-based MOEAs
g-NSGA-II [6] and r-NSGA-II [7]. The population size is

set to 100 for both 2-objective and 3-objective problems and
200 for many-objective problems. ZDT1-ZDT4 and ZDT6
[19] are chosen to be the 2-objective test problems. DTLZ1-
DTLZ4 and DTLZ6 [20] are chosen to the 3-objective test
problems, and DTLZ2 is used as the many-objective problem
with 5-,8- and 10-objectives. The maximum number of the
generation is 500 on ZDT test problems and 1000 on DTLZ
test problems. The preference-based algorithms have been run
30 times independently on each problem. Table II and Table III
give the reference point setting for test problems. Two different
penalty coefficients 1.5 and 2.0 are applied in order to test the
strength of the penalty.

TABLE II
THE SETTINGS OF REFERENCE POINTS

Benchmark problem Infeasible region Feasible region
ZDT1 (0.3,0.4) (0.4,0.6)
ZDT2 (0.2,0.8) (0.6,0.8)
ZDT3 (0.1,0.2) ()0.4,0.6)
ZDT4 (0.1,0.2) (0.5,0.5)
ZDT6 (0.1,0.2) (0.7,0.8)

DTLZ1 (0.1,0.2,0.1) (0.4,0.8,0.8)
DTLZ2 (0.1,0.2,0.1) (0.4,0.8,0.8)
DTLZ3 (0.1,0.2,0.1) (0.4,0.8,0.8)
DTLZ4 (0.1,0.2,0.1) (0.4,0.8,0.8)
DTLZ6 (0.1,0.2,0.1) (0.7,0.6,0.6)

To have a visual comparison and evaluate the effectiveness
of the proposed indicator, we plotted the final solutions of sev-
eral test problems obtained by the algorithms and combine it
with the specific data to analyse the performance of preferred-
based algorithms.

TABLE III
REFERENCE POINT SETTING FOR MANY-OBJECTIVE PROBLEM DTLZ2

Objective 5 8 10
Reference (0.1,0.3,0.2 (0.3,0.3,0.3,0.1 (0.3,0.3,0.3,0.1,0.3,0.5

point 0.4,0.2) 0.3,0.35,0.35) 0.35,0.35,0.35,0.25,0.45)

From results of the ZDT test problems, the two preference-
based algorithms do not have too much difficulty in finding
convergent solutions around the DM supplied reference point.
But shown in Fig.7(a), there are lots of solutions obtained
by g-NSGA-II which deviates from the ROI. Accordingly, the
value of metric is worse than the value obtained by r-NSGA-II.

According to the figures of the DTLZ test problems, solu-
tions obtained by r-NSGA-II are overall more in line with
DM’s aspiration. DTLZ2 and DTLZ4 have the same POF
shape. From Fig.8 and Fig.10, it can clearly see that solutions
obtained by r-NSGA-II are better than the other algorithms.
Although the solutions obtained by g-NSGA-II are convergent,
majorities of the solutions are out of ROI. Thus the value
of PMOD calculated by g-NSGA-II is worse than r-NSGA-
II. DTLZ3 has the same POF shape as DTLZ4, but is with
310 − 1 local efficient fronts. From Fig.9, we can see that
the g-NSGA-II and r-NSGA-II have difficulty in obtaining
satisfactory solutions, g-NSGA-II does not converge at all and
the PMOD gives a reasonable value shown in Table IV.



TABLE IV
THE EXPERIMENTAL RESULTS ON THE SET OF ZDT AND DTLZ WITH TWO LOCATIONS OF REFERENCE POINT.

Metric Problem Infeasible Region Feasible Region
g-NSGA-II r-NSGA-II g-NSGA-II r-NSAGA-II

ZDT1 1.069E+00(5.78E-02) 1.036E+00(1.53E-02) 2.254E+00(9.97E-03) 1.713E+00(7.27E-02)
ZDT2 2.559E+00(1.51E-01) 1.966E+00(6.32E-03) 1.855E+00(7.14E-03) 1.728E+00(3.78E-02)
ZDT3 2.966E+00(3.92E-02) 2.969E+00(1.93E-01) 2.729E+00(2.96E-02) 3.111E+00(1.08E-01)
ZDT4 3.789E+00(7.49E-02) 4.521E+00(4.51E-02) 2.177E+00(1.30E-02) 2.601E+00(1.36E-01)

PMOD ZDT6 6.059E+00(2.04E-02) 5.969E+00(4.35E-02) 2.634E+00(1.09E-02) 3.365E+00(4.11E-02)
(k=1.5) DTLZ1 1.560E+03(3.92E+02) 2.822E+00(6.65E-02) 1.417E+03(2.21E+02) 7.557E+00(7.35E-01)

DTLZ2 7.782E+00(5.96E-01) 6.692E+00(4.26E-02) 3.545E+00(3.07E-02) 2.167E+00(1.07E-01)
DTLZ3 2.746E+03(8.96E+02) 7.357E+00(4.40E-01) 2.958E+03(6.19E+02) 6.348E+00(9.96E-02)
DTLZ4 7.459E+00(3.02E-01) 6.723E+00(3.79E-02) 3.524E+00(4.03E-02) 3.249E+00(7.12E-02)
DTLZ6 3.952E+01(5.95E+00) 7.505E+00(2.38E-01) 3.756E+01(8.55E+00) 2.971E+00(8.30E-02)
ZDT1 1.122E+00(1.65E-01) 1.030E+00(1.48E-02) 2.413E+00(1.56E-02) 1.713E+00(7.27E-02)
ZDT2 2.796E+00(1.50E-01) 1.966E+00(6.18E-03) 1.908E+00(9.47E-03) 1.729E+00(3.75E-02)
ZDT3 3.086E+00(4.16E-02) 2.970E+00(1.94E-01) 2.830E+00(3.28E-02) 3.122E+00(1.30E-01)
ZDT4 4.065E+00(7.69E-02) 4.937E+00(4.58E-02) 2.320E+00(2.01E-02) 2.984E+00(1.37E-01)

PMOD ZDT6 6.425E+00(2.46E-02) 6.108E+00(5.57E-02) 2.860E+00(1.75E-02) 3.709E+00(4.75E-02)
(k=2.0) DTLZ1 1.566E+03(3.93E+02) 3.081E+00(4.96E-02) 1.423E+03(2.22E+02) 7.853E+00(7.33E-01)

DTLZ2 8.296E+00(6.00E-01) 7.187E+00(5.53E-02) 3.993E+00(4.30E-02) 2.239E+00(1.56E-01)
DTLZ3 2.754E+03(8.98E+02) 7.853E+00(4.43E-01) 2.965E+03(6.20E+02) 6.805E+00(9.88E-02)
DTLZ4 7.954E+00(3.09E-01) 7.204E+00(5.11E-02) 3.956E+00(4.71E-02) 3.667E+00(8.37E-02)
DTLZ6 3.974E+01(7.55E+00) 7.960E+00(1.85E-01) 3.864E+01(8.70E+00) 3.375E+00(9.42E-02)

TABLE V
THE EXPERIMENTAL RESULTS ON DTLZ2 WITH 5-,8-,10-OBJECTIVES.

Metric 5-objective 8-objective 10-objective
g-NSGA-II r-NSGA-II g-NSGA-II r-NSAGA-II g-NSGA-II r-NSGA-II

PMOD(k=1.5) 2.516E+01(1.09E+00) 5.735E+00(4.43E-02) 2.793E+01(1.91E-01) 1.778E+00(3.60E-02) 2.786E+01(2.35E-01) 1.650E+00(1.12E-01)
PMOD(k=2.0) 2.598E+01(1.11E+00) 6.235E+00(4.53E-02) 2.884E+01(1.93E-01) 1.783E+00(3.63E-02) 2.878E+01(2.33E-01) 1.656E+00(1.19E-01)

(a)g-NSGA-II (b) r-NSGA-II (b) g-NSGA-II (b) r-NSGA-II

Fig. 6. Results on the sets of ZDT4 with reference points (0.1,0.2) in infeasible region and (0.5,0.5) in feasible.

(a)g-NSGA-II (b) r-NSGA-II (b) g-NSGA-II (b) r-NSGA-II

Fig. 7. Results on the sets of ZDT6 with reference points (0.1,0.2) in infeasible region and (0.7,0.8) in feasible region.



(a)g-NSGA-II (b) r-NSGA-II (b) g-NSGA-II (b) r-NSGA-II

Fig. 8. Results on the sets of DTLZ2 with reference points (0.1,0.2,0.1) in infeasible region and (0.4,0.8,0.8) in feasible region.

(a)g-NSGA-II (b) r-NSGA-II (b) g-NSGA-II (b) r-NSGA-II

Fig. 9. Results on the sets of DTLZ3 with reference points (0.1,0.2,0.1) in infeasible region and (0.4,0.8,0.8) in feasible region.

(a)g-NSGA-II (b) r-NSGA-II (b) g-NSGA-II (b) r-NSGA-II

Fig. 10. Results on the sets of DTLZ4 with reference points (0.1,0.2,0.1) in infeasible region and (0.4,0.8,0.8) in feasible region.

(a)g-NSGA-II (b) r-NSGA-II (b) g-NSGA-II (b) r-NSGA-II

Fig. 11. Results on the sets of DTLZ6 with reference points (0.1,0.2,0.1) in infeasible region and (0.4,0.8,0.8) in feasible region.



(a)g-NSGA-II (b) g-NSGA-II (b) g-NSGA-II

Fig. 12. Results on DTLZ2 with 5-,8-,10-objective by g-NSGA-II

(a)r-NSGA-II (b)r-NSGA-II (b)r-NSGA-II

Fig. 13. Results on DTLZ2 with 5-,8-,10-objective by r-NSGA-II.

The DTLZ6 is a degenerate test problem which has a
strong bias away from efficient front [21]. From Fig.11,
we find that it creates a huge obstacle for g-NSGA-II to
converge into the POF, and the DM is more satisfied with the
solutions obtained by r-NSGA-II. To that point, the proposed
performance indicator can give DM a reasonable value from
table IV. Therefore, DM can choose a suitable algorithm to
solve degenerate problems according to the indicator value.

In real-word applications, there are lots of problems with
more than three objectives. According to Fig.12 and Fig.13,
r-NSGA-II has a better performance than g-NSGA-II when
dealing with many-objective problems. The effectiveness of
the proposed indicator is confirmed by the analysis of the
indicator value shown in Table V.

V. CONCLUSIONS

Over the past decade, preference-based MOEAs have at-
tracted increasing attention from both academia and industry
due to their significance in both theory and practice. Learning
how to assess the performance of preference-based MOEAs
is a key issue that needs to be solved. The IGD-CF heavily
depends on a composite front and requires the normalization
of the objective space. The R-metric needs the knowledge of
POF and demands DM to give additional information.

In this paper, we have presented a new performance indica-
tor for preference-based MOEAs from a real-life perspective.
It can measure the performance of preference-based algorithms
through simple distances calculation. It is significant that
the proposed indicator does not need to know the POF of

benchmark problems and does not need to normalize the
objective space.

However the indicator needs to provide an extra penalty
coefficient k and no detail proofs are provided that it actually
conforms to the mathematical requirements of a metric. In ad-
dition, the indicator uses the uniformity of preferred solutions
as a measure of diversity and does not take into account the
spread of solutions, since preference-based MOEAs determine
the size and shape of the ROI in different ways, and in several
methods is hard to get a specific size of ROI. Therefore, in
future work, we will investigate about what would be an ideal
ROI in terms of size and boost the development of evaluat-
ing methods for preference-based evolutionary multiobjective
optimization.
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