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Abstract

The mathematical modelling and representation of Tanino’s multiplicative transitivity property to the

case of intuitionistic reciprocal preference relations (IRPRs) is derived via Zadeh’s extension principle

and the representation theorem of fuzzy sets. This result guarantees the correct generalisation of

the multiplicative transitivity property of reciprocal preference relations (RPRs), and it allows the

multiplicative consistency (MC) property of IRPRs to be defined. The MC property used in decision

making problems is threefold: (1) to develop a consistency based procedure to estimate missing

values in IRPRs using an indirect chain of alternatives; (2) to quantify the consistency index (CI) of

preferences provided by experts; and (3) to build a novel consistency based induced ordered weighted

averaging (MC-IOWA) operator that associates a higher contribution in the aggregated value to the

more consistent information. These three uses are implemented in developing a consensus model for

GDM problems with incomplete IRPRs in which the level of agreement between the experts’ individual

IRPRs and the collective IRPR, which is referred here as the proximity index (PI), is combined with

the CI to design a feedback mechanism to support experts to change some of their preference values

using simple advice rules that aim at increasing the level of agreement while, at the same time,

keeping a high degree of consistency. In the presence of missing information, the feedback mechanism

implements the consistency based procedure to produce appropriate estimate values of the missing

ones based on the given information provided by the experts. Under the assumption of constant CI

values, the feedback mechanism is proved to converge to unanimous consensus when all experts are

provided with recommendations and these are fully implemented. Additionally, visual representation of

experts’ consensus position within the group before and after implementing their feedback advice is also

provided, which help an expert to revisit his evaluations and make changes if considered appropriate

to achieve a higher consensus level. Finally, an IRPR fuzzy majority based quantifier-guided non-

dominance degree based prioritisation method using the associated score reciprocal preference relation

is proposed to obtain the final solution of consensus.
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1. Introduction

Group decision making (GDM) consists of multiple individuals interacting to reach a decision based

on the information they provide. Given two alternatives of a finite set of all potentially available, X,

an expert either prefers one to the other or is indifferent between them. Obviously, there is another

possibility, that of an expert being unable to compare them.

There exist two main mathematical frameworks based on the concept of preference relation. In

the first one a preference relation is defined for each one of the above three possible preference states,

which is usually referred to as a preference structure on the set of alternatives [33]. The second

one integrates the three possible preference states into a single preference relation [5]. Further to

this, in each case two different representations could be adopted: the use of binary (crisp) prefer-

ence relations or the use of [0,1]-valued (fuzzy) preference relations. Reciprocal [0,1]-valued relations

(P = (pij); ∀i, j : 0 ≤ pij ≤ 1, pij + pji = 1) are frequently used in fuzzy set theory for representing

intensities of preferences [5, 10, 36]. These types of relations will be referred to as simply reciprocal

preference relations, and are the ones used in this paper. In probabilistic choice theory, reciprocal

preference relations describe the binary preferences subsets of two-alternatives of X, and are known

with the name ‘probabilistic binary preference relations’ [30]. Reciprocal preference relations can be

seen as a particular case of (weakly) complete fuzzy preference relations [22], i.e. fuzzy preference

relations satisfying pij + pji ≥ 1 ∀i, j.

An exhaustive survey of the second type of preference relations mentioned above is given in [43],

with the main relations used in the literature to capture uncertainty of information being: the multi-

plicative preference relation (MPR), the reciprocal preference relation (RPR), the linguistic preference

relation (LPR), and the intuitionistic reciprocal preference relation (IRPR). The last one is based on

Atanassov’s intuitionistic fuzzy set (IFS) introduced in [3]. An IFS is based on the use of member-

ship degree, non-membership degree and hesitation index to model experts’ subjective preferences.

Indeed, there may be some real-life decision making cases where a decision maker (DM) may not

be able to accurately express his/her preferences for some or all of the alternatives because he/she

is not completely confident or presents some hesitation [17], making they use of intuitionistic fuzzy

values very suitable to model and represent the DM’s preference rather than other type of preference

representation formats [44]. Intuitionistic fuzzy values have been used for example in Iwate (Japan)

by Professor Fujita and his research laboratory to represent and model medical doctor responses in

medical diagnosis as part of the mental cloning “used to mirror a person cognitive behaviour into a

model that interacts with human users” [6] on building the virtual doctor system (VDS) for medi-

cal applications [7–9]. Recently, the use of IRPRs in decision making in uncertain environments has
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attracted the attention of many researchers [23, 24, 39].

An issue to address in GDM problems with IRPRs is the lack of information, a problem extensively

studied in the case of RPRs [14, 20]. In this context, consistency based methods to ‘estimate’ the

missing values from known ones have been proposed in [1, 2, 27], which later were extended to the

GDM framework [28, 29]. However, modelling and evaluating the consistency of IRPRs has not yet

been solved.

‘Some individual opinions can be considered more consistent than other individual opinions’, which

was used by Cutello and Montero in [16] to claim that rationality of individuals can be considered a

fuzzy concept, where they addressed the problem of modelling rationality of individuals based only

on their opinions over a finite and fixed set of alternatives expressed using complete fuzzy preference

relations. They characterised fuzzy rationality measures which are explicitly consistent by establishing

a collection of conditions to satisfy. Explicit consistency is defined in [16] as ‘absence of explicit

contradictions, i.e. statements of type (P ∧ ¬P ).’

Consistency of RPRs has been modelled using the notion of transitivity, in the sense that if

alternative xi is preferred to alternative xj (pij ≥ 0.5) and this one to xk (pjk ≥ 0.5) then alternative

xi should be preferred to xk (pik ≥ 0.5). This transitivity notion is normally referred to as weak

stochastic transitivity [30, 36]. However, the implementation of the intensity of preference in modelling

consistency of RPRs has been proposed in many different ways [27]. Tanino in [36] proposed the

additive transitivity property, which is although equivalent to Saaty’s consistency property for MPRs

[35], is in conflict with the [0,1] scale used for providing the preference values and therefore it is an

inappropriate property to model consistency of reciprocal preference relations [12]. In [36], Tanino also

proposed a multiplicative transitivity property for RPRs, which has been characterised to be the most

appropriate one for modelling cardinal consistency of RPRs [12]. Recall that RPRs are particular cases

of IRPRs, and therefore the same previous claim can be applied to them. Thus, the first objective in

this paper is to formalise the multiplicative transitivity property for IRPRs. Once this is achieved,

a methodology will be developed to (1) quantify the level of consistency or consistency index (CI)

of an IRPR, and (2) estimate missing values of incomplete IRPRs. Because consistent information

is considered more relevant or important than inconsistent information, an intuitionistic aggregation

operator that associates higher weights with more consistent information will be developed. In other

words, a new MC induced ordered weighted averaging (MC-IOWA) operator is defined and proposed

to compute the collective IRPR.

As aforementioned, consistency is linked to rationality of individuals, and therefore it has been

considered as a reasonable criteria to guide consensus reaching processes [11, 37]. On the other hand,

similarity interpreted as a measure of general or widespread agreement, based on the use of a metric

or distance function, is usually regarded as a criteria to use in measuring consensus [15, 18, 40, 50]. By

combining both consistency and similarity functions, Herrera-Viedma et al. [29] developed a feedback
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mechanism to provide advice to experts in order to increase the consensus level of the group. Chiclana

et al. [13] and Wu and Xu [42] designed a two stage model with a first stage aiming to reach acceptable

consistency level while the second one was used to achieve a predefined consensus level. Different from

the above consensus models, Dong et al. [19] investigated a minimum cost optimization model to

reach acceptable consensus in which the individual consistency and consensus level are used as two

limiting conditions simultaneously. Obviously, using these two criteria simultaneously in consensus

process seems to be more reliable than just one criteria.

Therefore, the second objective of this paper is to investigate a consensus reaching process for

IRPRs that combines these two criteria. Approaches to model consensus in GDM problems with

IRPRs are already available in literature [34, 44]. However, there exist two main limitations in these

consensus models: (i) they did not take into account of the consistency of individual preference;

and (ii) they are static in nature because, when there is not enough consensus, they do not include

any type of feedback process to advise the experts on how to change their preferences to increase

consensus. To overcome these limitations, and inspired by the work of Herrera-Viedma et al. [29],

both consistency and consensus levels will be implemented in the design of a feedback mechanism

to support experts to change some of their preference values using simple advice rules that aim at

increasing the level of agreement while, at the same time, keeping a high degree of consistency. In the

presence of missing information, the feedback mechanism implements the consistency based procedure

to produce appropriate estimate values of the missing ones based on the given information provided

by the experts. Under the assumption of constant CI values, the feedback mechanism is proved to

converge to unanimous consensus when all experts are provided with recommendations and these are

fully implemented. Additionally, visual representation of experts’ consensus position within the group

before and after implementing their feedback advice is also provided, which helps an expert to revisit

his evaluations and make changes if considered appropriate to achieve a higher consensus level. Finally,

an IRPR fuzzy majority based quantifier-guided non-dominance degree based prioritisation method

using the associated score reciprocal preference relation is proposed to obtain the final solution of

consensus.

The rest of paper is set out as follows: Section 2 presents the formal approach to extend the math-

ematical expression of multiplicative transitivity property from RPR to IRPR, as well as the definition

of multiplicative consistent IRPR and consistency indexes of IRPRs. In Section 3, a multiplicative

consistency based method to estimate missing values of IRPRs is proposed. The consensus model

for GDM with incomplete IRPRs is covered in Section 4, with special attention paid to the design of

the consistency-consensus based feedback mechanism. To illustrate the complete application of the

multiplicative consistency based consensus model for GDM with incomplete IRPRs, an example is

given in Section 5. Finally, Section 6 gives an analysis of the proposed consensus model highlighting

the main differences with respect to existing consensus models in the literature, and then draws the
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conclusions.

2. Consistency of Intuitionistic Reciprocal Preference Relations

The concept of an Intuitionistic Fuzzy Set (IFS) was introduced by Atanassov in [3]:

Definition 1 (Intuitionistic fuzzy set (IFS)). An intuitionistic fuzzy set (IFS) A over a universe

of discourse X is represented as A = 〈µA, νA〉 where µA : X → [0, 1], νA : X → [0, 1] and 0 ≤ µA(x) +

νA(x) ≤ 1 ∀x ∈ X. For each x ∈ X, the numbers µA(x) and νA(x) are known as the degree of

membership and degree of non-membership of x to A, respectively.

An IFS becomes a FS when µA(x) = 1 − νA(x) ∀x ∈ X. However, when there exists at least a

value x ∈ X such that µA(x) < 1 − νA(x), an extra parameter has to be taken into account when

working with IFSs: the hesitancy degree, τA(x) = 1 − µA(x) − νA(x), which represents the amount

of lacking information in determining the membership of x to A. If the hesitation degree is zero, the

reciprocal relationship between membership and non-membership makes the latter one unnecessary

in the formulation as it can be derived from the former.

2.1. Intuitionistic Reciprocal Preference Relation

It is well known that when we have three alternatives xi, xj , xk such that xi is preferred to xj and

xj to xk, the question whether the ‘degree or strength of preference’ of xi over xj exceeds, equals,

or is less than the ‘degree or strength of preference’ of xj over xk cannot be answered using binary

(crisp) preference relations [12]. A solution to this issue requires an appropriate representation of

intensity of preference between alternatives. This can be achieved by implementing the concept of

fuzzy set in preference modelling, which when applied to a binary relation leads to the concept of

a fuzzy relation. In [5], we can find for the first time the concept of a reciprocal (fuzzy) preference

relation that integrates the three possible preference states into a single preference relation. The

adapted definition of a RPR is the following:

Definition 2 (Reciprocal Preference Relation (RPR)). A RPR P on a finite set of alternatives

X = {x1, . . . , xn} is characterised by a membership function µP : X ×X −→ [0, 1], µP (xi, xj) = pij ,

verifying pij + pji = 1 ∀i, j ∈ {1, . . . , n}.

A RPR may be conveniently denoted by the matrix P = (pij), with the following interpretation:

pij = 0.5 indicates indifference between xi and xj ; pij ∈ (0.5, 1] indicates a definite preference for xi

over xj , and pij = 1 indicates the maximum degree of preference for xi over xj . In [44], Xu defined

the intuitionistic RPR (IRPR) as a generalisation of the concept of RPR as follows:
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Definition 3 (Intuitionistic RPR (IRPR)). An IRPR R on a finite set of alternatives X is char-

acterised by a membership function µR : X×X → [0, 1] and a non-membership function νR : X×X →

[0, 1] such that 0 ≤ µR(xi, xj) + νR(xi, xj) ≤ 1 ∀(xi, xj) ∈ X ×X. The value µR(xi, xj) = µij is in-

terpreted as the certainty degree up to which xi is preferred to xj , while the value νR(xi, xj) = νij

represents the certainty degree up to which xi is non-preferred to xj . Additionally, the following

conditions are imposed:

µii = νii = 0.5 ∀i ∈ {1, . . . , n}; µji = νij ∀i, j ∈ {1, . . . , n}.

Using matrix notation, an IRPR is represented as R = (rij) = (〈µij , νij〉). When the hesitancy

degree function is the null function then µij + νij = 1 ∀i, j, and therefore the IRPR R = (rij) =

(〈µij , νij〉) is mathematically equivalent to the RPR P = (pij) = (µij). Some examples of the use of

IRPRs in the context of public relation and mass communication are discussed in [4].

2.2. Multiplicative Transitivity Property of an IRPR

Rationality is related with consistency [16], which is associated with the transitivity property [27].

For RPRs many properties have been suggested to model transitivity, some of which have been proved

to be inappropriate in [12]. The assumption of experts being able to quantify their preferences in

the domain [0,1], instead of {0, 1}, underlies unlimited computational abilities and resources from the

experts, which was used by Chiclana et al. in [12] to propose the modelling of the cardinal consistency

of RPRs via a functional equation, and they proved that when such a function is almost continuous

and monotonic (increasing) then it must be a representable uninorm. Cardinal consistency with the

conjunctive representable Cross Ratio uninorm is equivalent to Tanino’s multiplicative transitivity

property (more details given later in Section 3). Because any two representable uninorms are order

isomorphic, then multiplicative transitivity is indeed characterised as the most appropriate to model

consistency of RPRs. Obviously, multiplicative transitivity property extends weak stochastic tran-

sitivity, and therefore extends the classical transitivity property of crisp preference relations. The

following definition summarises this result:

Definition 4 (Multiplicative Transitivity Property of RPR). A RPR P = (pij) on a finite set

of alternatives X is multiplicative transitive if and only if

pij · pjk · pki = pik · pkj · pji ∀i, k, j ∈ {1, 2, . . . n} (1)

Multiplicative transitivity property was proposed by Tanino when pij > 0 ∀i, j [36]. For IRPR,

Xu proposed the following definition of the multiplicative transitivity property [44]

rij = rik · rkj ∀i, j, k = 1, 2, . . . n. (2)

where rik ·rkj = 〈µik · µkj , νik + νkj − νik · νkj〉 is the product operation of IFSs as defined by Atanassov

in [3].
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However, it is quite straight forward to conclude that property (2) is in contradiction with the

multiplicative transitivity of RPRs and, consequently, with classical transitivity of crisp preferences.

Indeed, when the hesitation degree is zero the IRPR is a RPR and therefore for property (2) to be

appropriate to model transitivity should also extend weak stochastic transitivity. However, this is

clearly not the case: the following values pik = 0.6 (xi � xk) and pkj = 0.7 (xk � xj) would result,

using property (2), in a value of pij = 0.42 < 0.5 (xj � xi).

In what follows, we will formally generalise the multiplicative transitivity property for RPRs to

IRPRs. We will do this by applying Zadeh’s Extension Principle [52] to the case when the preference

values are fuzzy sets rather than crisp values in [0, 1]. The Representation Theorem [51] will be applied

to the corresponding fuzzy sets that are obtained after applying the extension principle, so that we

can obtain the corresponding multiplicative transitivity property of fuzzy preference values. Next,

we apply this result to the case when the fuzzy sets are interval-valued fuzzy sets, i.e. fuzzy sets

whose membership function is always 1 for all values in a closed interval and zero otherwise. This

process will allow us to extend in a correct way the multiplicative transitivity property from RPRs

to interval-valued RPRs (IVRPRs). Finally, we will use the mathematical isomorphism between IFSs

and IVFSs [17] to obtain the correct formulation of the multiplicative transitivity property for IRPRs.

The extension principle allows the domain of a functional mapping to be extended from crisp

elements to fuzzy sets as given below [25]:

Definition 5 (Extension Principle). Let X1 ×X2 × . . .×Xn be a universal product set and F a

functional mapping of the form

F : X1 ×X2 × . . .×Xn −→ Y

that maps the element (x1, x2, . . . , xn) ∈ X1 × X2 × . . . × Xn to the element y = F (x1, x2, . . . , xn)

of the universal set Y . Let Ai be a fuzzy set over the universal set Xi with membership function

µAi (i = 1, 2, . . . , n). The membership function µB of the fuzzy set B = F (A1, . . . , An) over the

universal set Y is

µB(y) =


sup

y=F (x1,x2,...,xn)
[µA1(x1) ∗ µA2(x2) ∗ . . . ∗ µAn(xn)] if ∃ x1, . . . , xn : y = F (x1, . . . , xn)

0 otherwise

(3)

where ∗ is a t-norm.

For the work presented in this paper, the minimum t-norm (∧) is used. Expression (1) involves

the comparison of two products of three crisp numbers (preference values) in the unit interval [0, 1].

In what follows we will extend the function f : [0, 1]× [0, 1]× [0, 1] −→ [0, 1],

f(x1, x2, x3) = x1 · x2 · x3,
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to f(A1, A2, A3) where A1, A2, A3 are fuzzy sets over the set [0, 1] and associated membership functions

µA1 , µA2 , µA3 , respectively. The extension principle states that B = f(A1, A2, A3) is a fuzzy set over

the set [0, 1] with membership function µB : [0, 1]→ [0, 1];

µB(y) = sup
x1·x2·x3=y
x1,x2,x3∈[0,1]

[µA1(x1) ∧ µA2(x2) ∧ µA3(x3)] .

The representation theorem of fuzzy sets provides an alternative and convenient way to define a

fuzzy set via its corresponding family of crisp α-level sets. The α-level set of a fuzzy set A over the

universe Z is defined as Aα = {z ∈ Z|µA(z) ≥ α}. The set of crisp sets {Aα|0 < α ≤ 1} is said to be

a representation of the fuzzy set A. Indeed, the fuzzy set A can be represented as

A = ∪
0<α≤1

αAα

with membership function

µA(z) = sup
α: z∈Aα

α.

Let Aα1 , Aα2 and Aα3 be the α-level sets of fuzzy sets A1, A2 and A3 described above. We have

f (Aα1 , A
α
2 , A

α
3 ) = {x1 · x2 · x3|x1 ∈ Aα1 , x2 ∈ Aα2 , x3 ∈ Aα3 } .

Both Bα and f (Aα1 , A
α
2 , A

α
3 ) are crisp sets. Furthermore, as we prove next, we have the following

equality:

Bα = f (Aα1 , A
α
2 , A

α
3 ) . (4)

I. Let y ∈ Bα. By definition, we have µB(y) ≥ α and there exists at least three values x1, x2, x3 ∈

[0, 1] such that x1 ·x2 ·x3 = y and [µA1(x1) ∧ µA2(x2) ∧ µA3(x3)] ≥ α. Therefore, t µA1(x1) ≥ α,

µA2(x2) ≥ α and µA3(x3) ≥ α, which means that x1 ∈ Aα1 , x2 ∈ Aα2 and x3 ∈ Aα3 . Consequently,

y ∈ f (Aα1 , A
α
2 , A

α
3 ), i.e. Bα ⊆ f (Aα1 , A

α
2 , A

α
3 ) .

II. Let y ∈ f (Aα1 , A
α
2 , A

α
3 ). There exist x1 ∈ Aα1 , x2 ∈ Aα2 and x3 ∈ Aα3 such that x1 · x2 · x3 = y.

We have that µA1(x1) ≥ α, µA2(x2) ≥ α and µA3(x3) ≥ α and therefore:

sup
x1·x2·x3=y

x1∈Aα1 ,x2∈Aα2 ,x3∈Aα3

[µA1(x1) ∧ µA2(x2) ∧ µA3(x3)] ≥ α.

Because Aα1 , A
α
2 , A

α
3 ⊆ [0, 1], then we have:

sup
x1·x2·x3=y
x1,x2,x3∈[0,1]

[µA1(x1) ∧ µA2(x2) ∧ µA3(x3)] ≥ sup
x1·x2·x3=y

x1∈Aα1 ,x2∈Aα2 ,x3∈Aα3

[µA1(x1) ∧ µA2(x2) ∧ µA3(x3)] .

We conclude that y ∈ Bα, i.e. f (Aα1 , A
α
2 , A

α
3 ) ⊆ Bα.

An example of the multiplication of fuzzy numbers using the extension principle and the represen-

tation theorem is shown below. Figure 1 shows three fuzzy numbers A1, A2 and A3 with trapezoidal
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membership functions, which could be used to represent concepts such as ‘equally preferred’, ‘slightly

preferred to’ and ‘highly preferred to’ [26, 32]. The fuzzy set A1 · A2 · A3 is constructed by applying

Eq. (4) to compute the lower and upper bounds of its α–level sets, followed by the application of

the representation theorem of fuzzy sets. The computation of the lower bound of the 0.2–level set of

A1 ·A2 ·A3 is also shown in Fig. 1.

0 0.154 0.386 0.553 0.720 1
0

0.2

1
A1 ·A2 ·A3 A1 A2 A3

α–level

0

1

Figure 1: α–level multiplication of three fuzzy numbers with trapezoidal membership functions

When A1, A2 and A3 are closed intervals their membership function are

µA1(x1) =

 1 x1 ∈ [a−, a+]

0 Otherwise
; µA2(x2) =

 1 x2 ∈ [b−, b+]

0 Otherwise
; µA3(x3) =

 1 x3 ∈ [c−, c+]

0 Otherwise
;

and they have associated only one non-empty α-level set, the 1-level set. On the one hand, applying

(4), f (A1, A2, A3) = f
(
A1

1, A
1
2, A

1
3

)
. On the other hand, interval arithmetic yields:

f
(
A1

1, A
1
2, A

1
3

)
= [a− · b− · c−, a+ · b+ · c+] (5)

This result justifies the following definitions of multiplicative transitivity property of IVRPR and

IRPR, respectively. Let P̃ ([0, 1]) be the set of closed intervals in [0, 1]. An IVRPR is defined as

follows:

Definition 6 (Interval-valued RPR(IVRPR)). An IVRPR B on a finite set of alternatives X =

{x1, . . . , xn} is characterised by a membership function µB : X × X −→ P̃ ([0, 1]) with µB(xi, xj) =

[b−ij , b
+
ij ] verifying b−ij + b+ji = b+ij + b−ji = 1, b+ii = b−ii = 0.5 ∀i, j = 1, 2, . . . n.

In the following, we state the multiplicative transitivity property for IVRPRs:

Definition 7 (Multiplicative Transitivity Property of IVRPR). An IVRPRB = (bij) = ([b−ij , b
+
ij ])

is multiplicative transitive if and only if

∀i, j, k :

 b−ij · b
−
jk · b

−
ki = b−ik · b

−
kj · b

−
ji

b+ij · b
+
jk · b

+
ki = b+ik · b

+
kj · b

+
ji

(6)
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Because the IRPR R = (rij) = (〈µij , νij〉) is isomorphic to the IVRPR B = (bij) = ([µij , 1− νij ]),

the multiplicative transitivity property of IRPRs can be defined as follows:

Definition 8 (Multiplicative Transitivity Property of IRPR). An IRPRR = (rij) = (〈µij , νij〉)

is multiplicative transitive if and only if

∀i, j, k :

 µij · µjk · µki = µik · µkj · µji

(1− νij) · (1− νjk) · (1− νki) = (1− νik) · (1− νkj) · (1− νji)
(7)

2.3. Construction of Multiplicative Transitivity Based IRPRs

Expression (7) can be used to estimate the intuitionistic preference value between a pair of alter-

natives (xi, xj) with (i < j) using another different intermediate alternative xk (k 6= i, j) as follows:

mrk−ij =
µik · µkj · µji
µjk · µki

; mrk+ij = 1−
(1− νik) · (1− νkj) · (1− νji)

(1− νjk) · (1− νki)
, (8)

as long as the denominators are not zero.

We call mrkij =
〈
mrk−ij ,mr

k+
ij

〉
the partially multiplicative transitivity based estimated intuition-

istic preference value of the pair of alternatives (xi, xj) obtained using the intermediate alternative

xk.

Notice that both Equations in (7) are always true when two of the three subindexes are equal.

Let k = i, if µji 6= 0 then mri−ij = µij , while if νji 6= 1 then mri+ij = νij . Because µji = νij , then

we have that: µji 6= 0 if and only if νij 6= 0, and νji 6= 1 if and only if µij 6= 1. Thus, if k = i

and (rij , rji) 6= (〈1, 0〉 , 〈0, 1〉) we have rij = mriij . Similarly, if k = j and (rij , rji) 6= (〈0, 1〉 , 〈1, 0〉)

we have rij = mrjij . Summarising, although it is possible to obtain the multiplicative transitivity

based estimated intuitionistic preference value of the pair of alternatives (xi, xj) when k ∈ {i, j} and

(rij , rji) 6= {(〈1, 0〉 , 〈0, 1〉), (〈0, 1〉 , 〈1, 0〉)}, it is also true that there is no indirect estimation process

as described above. Furthermore, as we will see later in the paper, when the intuitionistic preference

value rij is unknown its estimation will automatically require that k /∈ {i, j}. Finally, when i = j we

have by definition that rii = 〈0.5, 0.5〉 and we would have mrkii = rii whenever rik /∈ (〈0, 1〉 , 〈1, 0〉).

Thus, this case will not be relevant in the case of having incomplete information, and it is also not

assumed from now on.

The average of all possible partially multiplicative transitivity based estimated values of the pair

of alternatives (xi, xj) can be interpreted as their global multiplicative transitivity based estimated

value

mr−ij =

∑
k∈R01

ij

mrk−ij

#R01
ij

; mr+ij =

∑
k∈R01

ij

mrk+ij

#R01
ij

,

where R01
ij = {k 6= i, j|(rik, rkj) /∈ R01}, R01 = {(〈1, 0〉 , 〈0, 1〉), (〈0, 1〉 , 〈1, 0〉)}, and #R01

ij is the

cardinality of R01
ij .
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Therefore, given an IRPR, R = (rij) = (〈µij , νij〉), the following multiplicative transitivity based

IRPR, MR =
(〈
mr−ij ,mr

+
ij

〉)
n×n

, can be constructed:

mr−ij =



∑
k∈R01

ij

mrk−ij

#R01
ij

, i < j

0.5, i = j∑
k∈R01

ji

mrk+ji

#R01
ji

, i > j

; mr+ij =



∑
k∈R01

ij

mrk+ij

#R01
ij

, i < j

0.5, i = j∑
k∈R01

ji

mrk−ji

#R01
ji

, i > j

2.4. Consistency Indexes

If an IRPR R = (rij) = (〈µij , νij〉) is multiplicative transitive then R = MR. Indeed, if R is

multiplicative transitive the two Equations in (7) are true ∀i, j, k. In particular, we have

µij =
µik · µkj · µji
µjk · µki

; νij = 1−
(1− νik) · (1− νkj) · (1− νji)

(1− νjk) · (1− νki)
,

whenever k ∈ R01
ij . Consequently, mrk−ij = µij and mrk+ij = νij for all i, j and k ∈ R01

ij , which proves

that rij = mrij for all i, j. An IRPR R will be referred to as multiplicative consistent from now on

when R = MR.

Definition 9 (Multiplicative Consistent IRPR). An IRPR R = (rij) = (〈µij , νij〉) is multiplica-

tive consistent if and only if R = MR.

In the following, we will propose a process to measure the degree of consistency of an IRPR, R, that

is based on its similarity with the corresponding multiplicative transitivity based IRPR, MR. The

similarity between the values rij and mrij is proposed to be used in measuring the level of consistency

of an IRPR at its three different levels: pair of alternatives, alternatives and relation. A similarity

function between IFSs is defined based on the use of a metric (d) describing the distance between

IFSs.

Level 1. Consistency Index of pair of alternatives.

CIij = 1− d(rij ,mrij) ∀i, j.

The higher the value of CIij the more consistent is rij with respect to the rest of the preference

values involving alternatives xi (row i of the IRPR) and xj (column j of the IRPR).

Level 2. Consistency Index of alternatives.

CIi =

n∑
j=1; i 6=j

CIij

n− 1
.

11



Level 3. Consistency Index of an IRPR.

CI =

n∑
i=1

CIi

n
.

Note that because d is a distance function, we always have that CIij = CIji and therefore, the

above expression can be simplified to:

CI =

2 ·
n∑

i,j=1; i<j

CIij

n(n− 1)
.

Proposition 1. An IRPR R is multiplicative consistent if and only if CI = 1.

Proof.

1. R is multiplicative consistent =⇒ CI = 1. Definition 9 implies that R = MR, and therefore

d(rij ,mrij) = 0 ∀i, j. Consequently, CI = 1.

2. CI = 1 =⇒ R is multiplicative consistent. If CI = 1 then
∑n

i,j=1,i 6=j CIij=n× (n−1). Because

CIij ∈ [0, 1] then CIij = 1∀i 6= j. Therefore we have that CI = 1 if and only if rij = mrij ∀i 6= j.

Finally, when i = j we have mrkii = rii = 〈0.5, 0.5〉 whenever rik /∈ (〈0, 1〉 , 〈1, 0〉), and therefore

rii = mrii = 〈0.5, 0.5〉. Thus, we have that rij = mrij ∀i, j. Therefore, R = MR, i.e. R is

multiplicative consistent.

Example 1. Given the IRPR

R =


〈0.5, 0.5〉 〈0.4, 0.3〉 〈0.5, 0.4〉 〈0.4, 0.5〉

〈0.3, 0.4〉 〈0.5, 0.5〉 〈0.5, 0.4〉 〈0.3, 0.4〉

〈0.4, 0.5〉 〈0.4, 0.5〉 〈0.5, 0.5〉 〈0.3, 0.4〉

〈0.5, 0.4〉 〈0.4, 0.3〉 〈0.4, 0.3〉 〈0.5, 0.5〉


The following multiplicative transitivity based IRPR is obtained:

MR =


〈0.50, 0.50〉 〈0.31, 0.41〉 〈0.55, 0.41〉 〈0.48, 0.39〉

〈0.41, 0.31〉 〈0.50, 0.50〉 〈0.39, 0.49〉 〈0.31, 0.39〉

〈0.41, 0.55〉 〈0.49, 0.39〉 〈0.50, 0.50〉 〈0.25, 0.51〉

〈0.39, 0.48〉 〈0.39, 0.31〉 〈0.51, 0.25〉 〈0.50, 0.50〉


We provide the computation of entry mr12 = 〈0.31, 0.41〉. The multiplicative transitivity based

estimation of the intuitionistic preference value between alternatives x1 and x2 is obtained using the

12



intermediate alternatives x3 and x4. Using (8), we have (rounding to 2 decimal places):

mr3−12 =
µ13 · µ32 · µ21
µ23 · µ31

=
0.5 · 0.4 · 0.3

0.5 · 0.4
= 0.3;

mr4−12 =
µ14 · µ42 · µ21
µ24 · µ41

=
0.4 · 0.4 · 0.3

0.3 · 0.5
= 0.32;

mr3+12 = 1− (1− ν13) · (1− ν32) · (1− ν21)
(1− ν23) · (1− ν31)

= 1− (1− 0.4) · (1− 0.5) · (1− 0.4)

(1− 0.4) · (1− 0.5)
= 0.4;

mr4+12 = 1− (1− ν14) · (1− ν42) · (1− ν21)
(1− ν24) · (1− ν41)

= 1− (1− 0.5) · (1− 0.3) · (1− 0.4)

(1− 0.4) · (1− 0.4)
= 0.42.

Thus:

mr−12 =
0.3 + 0.32

2
= 0.31; mr+12 =

0.4 + 0.42

2
= 0.41.

Using the Hamming distance [48]:

d(rij ,mrij) = ‖rij −mrij‖ =
1

2
(|r−ij −mr

−
ij |+ |r

+
ij −mr

+
ij |),

the following consistency index of the IRPR R is obtained: CI = 0.93.

3. Incomplete IRPRs: Estimation of Unknown Values

In real decision making problems, there might be cases where an expert would not be able to

efficiently express any kind of preference degree between two or more of the available options. Formally,

the concept of an incomplete IRPR can be expressed via the concept of a partial function [1]:

Definition 10. A function f : X −→ Y is partial when not every element in the set X necessarily

maps to an element in the set Y . When every element from the set X maps to one element of the set

Y then we have a total function.

Definition 11 (Incomplete IRPR). An incomplete IRPR R on a set of alternatives X is charac-

terized by partial membership and non-membership functions.

The definition of an IRPR given in Section 2 includes both definitions of complete and incomplete

IRPRs. However, as there is no risk of confusion between a complete and an incomplete IRPR, in

this paper we refer to the first type as simply IRPR. It is assumed that for incomplete IRPRs, given

a pair of alternatives (xi, xj) for which rij is not known, both membership and non-memberships will

be unknown. In general the letter x will be used when a particular entry of an incomplete IRPR is

unknown/missing.

Given an IRPR R = (rij) = (〈µij , νij〉), two RPRs, BL = (bLij)n×n and BR = (bRij)n×n, can be

constructed

∀i, j = 1, 2, . . . n : bLij =


µij i < j

0.5 i = j

1− νij i > j

; bRij =


1− νij i < j

0.5 i = j

µij i > j

13



Proof of reciprocity of BL is provided. Because µji = νij ∀i, j ∈ {1, . . . , n} we have:

• i < j : bLij + bLji = µij + (1− νji) = νji + (1− νji) = 1.

• i > j ⇔ j < i⇒ bLji + bLij = 1.

Reciprocity of BR is equally proved. Both BL and BR are known as the decomposed RPRs of the

IRPR R.

Recall that Tanino’s multiplicative transitivity property is equivalent to the cardinal consistency

property [12] with the andlike representable Cross Ratio uninorm [47]

U(x, y) =


0, (x, y) ∈ {(0, 1), (1, 0)}

x · y
x · y + (1− x) · (1− y)

, Otherwise.
(9)

If R is an incomplete IRPR, then a missing preference value rij(i 6= j) can be partially estimated,

using an intermediate alternative xk, with the value
〈

(bLij)
k, 1− (bRij)

k
〉

:

(bLij)
k = U(bLik, b

L
kj); (bRij)

k = U(bRik, b
R
kj).

The following notation is introduced:

A = {(i, j) | i, j ∈ {1, . . . , n} ∩ i 6= j} ;

MV = {(i, j) | rij is unknown, (i, j) ∈ A} ;

EV = A \MV.

MV is the set of pairs of different alternatives for which the intuitionistic preference degree is unknown

or missing; EV is the set of pairs of different alternatives with known intuitionistic preference values.

The global multiplicative transitivity based estimated value,
〈
bLij , 1− bRij

〉
, is defined as follows:

ubLij =

∑
k∈H01

ij

(bLij)
k

#H01
ij

; ubRij =

∑
k∈H01

ij

(bRij)
k

#H01
ij

,

where H01
ij = {k ∈ R01

ij |(i, j) ∈MV & (i, k), (k, j) ∈ EV }.

The iterative procedure to complete RPRs developed in [28] can be adapted to IRPRs using the

multiplicative transitivity developed here, and the following example illustrates its application.

Example 2. Let X = {x1, x2, x3, x4} be a set of alternatives evaluated by a decision maker against

a particular criterion using an incomplete IRPR, R = (rij):

R =


〈0.50, 0.50〉 〈0.40, 0.30〉 x x

〈0.30, 0.40〉 〈0.50, 0.50〉 〈0.50, 0.40〉 x

x 〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.30, 0.40〉

x x 〈0.40, 0.30〉 〈0.50, 0.50〉


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The associated decomposed RPRs are:

BL =


0.50 0.40 x x

0.60 0.50 0.50 x

x 0.50 0.50 0.30

x x 0.70 0.50

 ; BR =


0.50 0.70 x x

0.30 0.50 0.60 x

x 0.40 0.50 0.60

x x 0.40 0.50


Step 1: The set of elements that can be estimated at this stage are:

EMV1 = {(1, 3), (2, 4), (3, 1), (4, 2)} .

Notice that (1, 4) cannot be estimated at this step. Indeed, the estimation of element (1, 4) requires

that at least one of the following pairs of preference values are known: {(1, 2), (2, 4)}, {(1, 3), (3, 4)}.

However, the preference values for (2, 4) and (1, 3) are unknown. The same applies to (4, 1), which

cannot be estimated at this step because the preference values for (4, 2) and (3, 1) are unknown.

The computation of the estimated values bL13 and bR13 is given below. These values are estimated by

using intermediate and different alternatives k so that the chain of preference values (1, k) and (k, 3)

are known. The only intermediate alternative to use at this step is k = 2, for which we have (rounding

to 2 decimal places):

bL13 = bL213 =
bL12 · bL23

bL12 · bL23 + (1− bL12) · (1− bL23)
=

0.4 · 0.5
0.4 · 0.5 + 0.6 · 0.5

= 0.4,

and

bR13 = bR2
13 =

bR12 · bR23
bR12 · bR23 + (1− bR12) · (1− bR23)

=
0.7 · 0.6

0.7 · 0.6 + 0.3 · 0.4
= 0.78.

After the estimation process is applied, we have:

BL =


0.50 0.40 0.40 x

0.60 0.50 0.50 0.30

0.60 0.50 0.50 0.30

x 0.70 0.70 0.50

 ; BR =


0.50 0.70 0.78 x

0.30 0.50 0.60 0.69

0.22 0.40 0.50 0.60

x 0.31 0.40 0.50


Step 2: The remaining unknown elements can be estimated at this stage, EMV2 = {(1, 4), (4, 1)}.

We elaborate the computation process of the estimated value for bL14 (rounding to 2 decimal places):

bL214 =
bL12 · bL24

bL12 · bL24 + (1− bL12) · (1− bL24)
=

0.4 · 0.3
0.4 · 0.3 + 0.6 · 0.7

= 0.22;

bL314 =
bL13 · bL34

bL13 · bL34 − (1− bL13) · (1− bL34)
=

0.4 · 0.3
0.4 · 0.3 + 0.6 · 0.7

= 0.22;

bL14 =
bL214 + bL314

2
= 0.22.
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The rest of values bR14, b
L
41 and bR41 can be estimated following a similar computation process to that

of bL14. Thus, we obtain the following completed RPRs:

UBL =


0.50 0.40 0.40 0.22

0.60 0.50 0.50 0.30

0.60 0.50 0.50 0.30

0.78 0.70 0.70 0.50

 ; UBR =


0.50 0.70 0.78 0.81

0.30 0.50 0.60 0.69

0.22 0.40 0.50 0.60

0.19 0.31 0.40 0.50


The complete multiplicative transitivity based IRPR is:

UR =


〈0.50, 0.50〉 〈0.40, 0.30〉 〈0.40, 0.22〉 〈0.22, 0.19〉

〈0.30, 0.40〉 〈0.50, 0.50〉 〈0.50, 0.40〉 〈0.30, 0.31〉

〈0.22, 0.40〉 〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.30, 0.40〉

〈0.19, 0.22〉 〈0.31, 0.30〉 〈0.40, 0.30〉 〈0.50, 0.50〉



It is important to establish conditions that guarantee that all the missing values of an incomplete

preference relation can be estimated. Herrera-Viedma et al. in [28] provided sufficient conditions that

guarantee the success of the above iterative estimation procedure. The general sufficient condition for

an incomplete preference relation to be completed with this iterative estimation procedure is that a

set of (n− 1) non-leading diagonal preference values, where each one of the alternatives is compared

at least once, is known.

4. Consensus Model with Incomplete IRPRs

In the resolution process of a GDM, it is expected to associate a higher importance degree with the

experts providing the most consistent information, with the aim of achieving a collective solution with

maximum group consensus and a high level of consistency. To achieve these ‘rational’ criteria, a new

multiplicative consistency induced ordered weighted averaging (MC-IOWA) operator to aggregate the

individual IRPRs is proposed and introduced. The MC-IOWA operator associated weighting vector

is derived using the individual experts’ multiplicative consistency index (CI) as defined in Subsection

2.4, providing a monotonic increasing mapping between the experts’ consistency levels and their

contribution weight in the collective IRPR, and ultimately in the solution of the GDM problem. Once

the collective IRPR is obtained, a proximity index (PI) measuring the level of agreement between the

individual and collective preferences is computed. The consensus degree is defined taking into account

both CI and PI. When the consensus level reaches a threshold value, agreed by the group of experts,

the resolution process of the GDM is carried out; otherwise a feedback mechanism is activated, and

personalised recommendations generated to support the individual experts, until the threshold level of

consensus is achieved. The feedback recommendations will help the experts to identify the preference
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Figure 2: Consensus Model with Incomplete IRPRs

values that should be considered for changing. The recommendations will also include the values the

experts should use to increase the level of agreement in a consistent way.

The consensus model with incomplete IRPRs is illustrated in Figure 2. It consists of the following

six steps: (1) Estimating missing values; (2) Computing consistency indexes; (3) Computing proximity

indexes; (4) Computing consensus levels; (5) Feedback mechanism; and (6) Selection process. The

first two steps have already been covered in Sections 2 and 3, respectively. The remaining steps will

be presented in detail in following subsections.

4.1. Computing Proximity Indexes

The proximity degrees will measure how close the individual preferences are from the group or

collective preferences. The collective preferences are obtained by fusing all the individuals’ preferences

using the multiplicative consistency induced ordered weighted averaging (MC-IOWA) operator [11, 38],

which extends the induced ordered weighted averaging (IOWA) operator proposed by Yager [46]:

Definition 12. An IOWA operator of dimension m is a function ΦW : (R×R)m −→ R, to which a set

of weights or weighting vector is associated, W = (w1, . . . , wm), such that wi ∈ [0, 1] and Σiwi = 1,

is expressed as follows:

ΦW (〈u1, p1〉, . . . , 〈um, pm〉) =
m∑
i=1

wi · pσ(i),
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being σ : {1, . . . ,m} −→ {1, . . . ,m} a permutation such that uσ(i) ≥ uσ(i+1), ∀i = 1, . . . ,m− 1.

In our decision-making context, each expert can always be associated his/her IRPR consistency

index value. The more consistent the preferences provided by an expert are, the more importance

should be placed on that expert. In other words, we propose to use the consistency indexes to establish

the ordering of the preference values to be aggregated, in which case we would be implementing the

concept of consistency in the aggregation process of our decision-making model [11]:

Definition 13 (MC-IOWA operator). Let a set of experts, E = {e1, . . . , em}, provide preferences

about a set of alternatives, X = {x1, . . . , xn}, using the IRPRs, {R1, . . . , Rm}. A MC-IOWA operator

of dimension m, ΦC
W , is an IOWA operator whose set of order inducing values is the set of consistency

index values, {CI1, . . . , CIm}, associated with the set of experts.

Therefore, the collective IRPR Rc = (rcij) = (〈µcij , νcij〉) is computed as follows:

µcij = ΦC
W

(〈
CI1, µ1ij

〉
, · · · ,

〈
CIm, µmij

〉)
=

m∑
h=1

γσ(h) · µ
σ(h)
ij (10)

νcij = ΦC
W

(〈
CI1, ν1ij

〉
, · · · ,

〈
CIm, νmij

〉)
=

m∑
h=1

γσ(h) · ν
σ(h)
ij (11)

with CIσ(h−1) ≥ CIσ(h), γσ(h−1) ≥ γσ(h) ≥ 0 (∀h ∈ {2, · · · ,m}) and
m∑
h=1

γσ(h) = 1.

The general procedure for the inclusion of importance weight values in the aggregation process

involves the transformation of the values to aggregate, rhij , under the importance degree uh to generate

a new value, r̄hij , and then aggregate these new values using an aggregation operator. In the area of

quantifier guided aggregations, Yager provided a procedure to evaluate the overall satisfaction of m

important criteria (experts) by an alternative x by computing the weighting vector associated to an

OWA operator as follows [45]:

wh = Q

(
S(h)

S(m)

)
−Q

(
S(h− 1)

S(m)

)
(12)

being Q the membership function of the linguistic quantifier, S(h) =
∑h

k=1 uσ(k), and σ the permu-

tation used to produce the ordering of the values to be aggregated. This approach for the inclusion

of importance degrees associates a zero weight to those experts with zero importance degree. The

linguistic quantifier is a Basic Unit-interval Monotone (BUM) function Q : [0, 1] → [0, 1] such that

Q(0) = 0, Q(1) = 1 and if x > y then Q(x) ≥ Q(y).

Yager extended this procedure to the case of IOWA operator. In this case, each component in

the aggregation consists of a triple (rhij , uh, vh) where rhij is the argument value to aggregate, uh is

the importance weight value associated to rhij , and vh is the order inducing value [46]. The same

expression as above is used, and σ is the permutation such that vσ(h) is the h−th largest value in the

set {v1, . . . , vm}.
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In our case, we propose to use the consistency values associated with each of the expert both as

an importance weight associated to the argument and as the order inducing values uh = vh = CIh.

Thus, the ordering of the preference values is first induced by the ordering of the experts from the

most to the least consistent, and the weights of the MC-IOWA operator is obtained by applying the

above expression (12), which reduces to

γσ(h) = Q

(
S(σ(h))

S(σ(m))

)
−Q

(
S(σ(h− 1))

S(σ(m))

)
(13)

with S(σ(h)) =
∑h

k=1CI
σ(k)), and CIσ(h) is the h−th largest value of set {CI1, . . . , CIm}.

The BUM function guarantees that all individuals contribute to the final aggregated value because

it is a strictly increasing function. To guarantee that the higher the consistency index, the higher the

weighting value associated with it, i.e. for the following to be verified

CIσ(1) ≥ CIσ(2) ≥ . . . ≥ CIσ(m) ≥ 0⇒ γσ(1) ≥ γσ(2) . . . ≥ γσ(m) ≥ 0

additional constraints are to be imposed to the BUM function. In [11], it was proven that it is sufficient

for the BUM function to be concave for the above to be true.

The metric used to compute consistency indexes is used here to compute the proximity (similarity)

between an individual IRPR, Rh = (rhij), and the collective IRPR, Rc = (rcij), at the three different

levels of the relation:

Level 1. Proximity index on pairs of alternatives. The proximity of an expert, eh, preference value

on the pair of alternatives (xi, xk) to the group one, denoted PP hik, is defined as:

PP hij = 1− d(rhij , r
c
ij)

Level 2. Proximity index on alternatives. The proximity of an expert, eh, preferences involving the

alternative xi to the group ones, denoted PAhi , is defined as:

PAhi =

n∑
j=1;j 6=i

(PP hij + PP hji)

2(n− 1)

Level 3. Proximity index on the relation. The proximity of an expert, eh, preference relation to the

group one, denoted PIh, is defined as:

PIh =

n∑
i=1

PAhi

n

4.2. Computing Consensus Levels

Given an IRPR, R, its consensus level (CL) is defined as follows:

CL = δ · CI + (1− δ) · PI (14)
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where δ ∈ [0, 1] is a parameter to control the weight of both consistency and proximity criteria.

Similar expressions apply to CLi and CLij , respectively. A value of δ > 0.5 is used to provide more

importance to the consistency index in the computation of the consensus degrees. The particular value

to use will obviously depend on the group of experts and the importance they would like to give to

the consistency criteria in the decision-making process.

The consensus is defined as the full and unanimous agreement of all the experts regarding all the

feasible alternatives. However, it is inconvenient because it only allows differentiating between two

states, namely, the existence and absence of consensus. Also, the chances for reaching such a full

agreement are rather low. Therefore, the following restriction can be imposed: γ < 1. Additionally,

in most cases when more than half of people agree the decision-making output may be acceptable.

Thus, the following restriction could also be imposed: γ ≥ 0.5. Consequently, we can assume that the

threshold value γ ∈ [0.5, 1).

The consensus levels can be used to decide when the feedback mechanism should be applied to

give advice to the experts, or when the consensus reaching process has to come to an end. When

CLh (h = 1, . . . ,m) satisfies a minimum satisfaction threshold value γ ∈ [0.5, 1), then the consensus

reaching process ends, and the selection process is applied to achieve the solution of consensus.

4.3. Feedback Mechanism

When at least one of the experts’ consensus levels is below the fixed threshold value, a feedback

mechanism is activated to generate personalised advice to those experts. This activity includes two

steps: Identification of the preference values that should be changed and Generation of advice.

4.3.1. Identification of the Preference Values

The preference values that are contributing less to the consensus are identified. To do that, the

following three step identification procedure that uses the proximity and consistency indexes is carried

out:

Step 1. The experts with a consensus level lower than the threshold value γ are identified:

EXPCH = {h | CLh < γ}.

Step 2. For the identified experts, their alternatives with a consensus level lower than the satisfaction

threshold γ are identified:

ALT = {(h, i) | eh ∈ EXPCH & CLhi < γ}.

Step 3. Finally, the preference values to be changed are:

APS = {(h, i, k) | (h, i) ∈ ALT & CLhik < γ}.
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4.3.2. Generation of Advice

The feedback mechanism generates personalised recommendation rules, which will tell the experts

the preference values they should change and the new preference values to use in order to increase

their consensus level. For all (h, i, j) ∈ APS, the personalised recommendation rules are identified as

follow:

1. If (i, j) ∈ EV h the recommendation generated for expert eh is: “You should change your pref-

erence value for the pair of alternatives (i, j), rhij =
〈
µhij , ν

h
ij

〉
, to a value closer to rrhij =〈

rµhij , rν
h
ij

〉
.”

2. If (i, j) ∈ MV h the recommendation generated for expert eh is:“Your missing preference value

for the pair of alternatives (i, j) should be as close as possible to rrhij =
〈
rµhij , rν

h
ij

〉
.”〈

rµhij , rν
h
ij

〉
=
〈
δ · µhij + (1− δ) · µcij , δ · νhij + (1− δ) · νcij

〉
It is worth noting that if the recommended values are implemented then the new preference values

will be closer to the collective ones. Therefore, the production of recommendations to all experts, and

their implementation, will guarantee that all expert consensus index values increase, subject to the

following additional condition: the consistency index values to use in all of the consensus rounds are

the same. This is proved in the following:

Lemma 1. Let {Rh = (rhij) = (
〈
µhij , ν

h
ij

〉
)|h = 1, · · · ,m} be a set of IRPRs and Rc = (rcij) =

(
〈
µcij , ν

c
ij

〉
) be the collective IRPR obtained using the MC-IOWA operator whose order is induced using

the associated set of consistency index values {CLh|h = 1, · · · ,m}. Let {rRh = (rrhij)|h = 1, · · · ,m}

be the set of new IRPRs with〈
rµhij , rν

h
ij

〉
=
〈
δ · µhij + (1− δ) · µcij , δ · νhij + (1− δ) · νcij

〉
and rRc = (rrcij) = (

〈
rµcij , rν

c
ij

〉
) the collective IRPR obtained using the same MC-IOWA used for

Rc. We have: Rc = rRc.

Proof. Notice that the MC-IOWA operator is a weighted average operator with the same weights

associated to all the elements of the same IRPR, and therefore we have:

µcij =
m∑
h=1

γσ(h) · µ
σ(h)
ij ; νcij =

m∑
h=1

γσ(h) · ν
σ(h)
ij

with γσ(h) = Q
(
S(σ(h))
S(σ(m))

)
− Q

(
S(σ(h−1))
S(σ(m))

)
; S(σ(h)) =

∑h
k=1CI

σ(k)), Q is a BUM function and

CIσ(h) is the h−th largest value of set {CI1, . . . , CIm}. We have that rµij = δ · µij + (1− δ) · µcij and

rνij = δ · νij + (1− δ) · νcij . Therefore:

rµcij =

m∑
h=1

γσ(h) · rµ
σ(h)
ij =

m∑
h=1

γσ(h) ·
[
δ · µσ(h)ij + (1− δ) · µcij

]
= δ ·

m∑
h=1

γσ(h) · µ
σ(h)
ij + (1− δ) · µcij = δ · µcij + (1− δ) · µcij = µcij
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Similarly, we can prove that rνcij = νcij , which means that Rc = rRc.

Proposition 2. Under the condition of Lemma 1 we have: d(rrhij , rr
c
ij) ≤ d(rhij , r

c
ij).

Proof. Because d(rhij , r
c
ij) = 1

2(|µhij − µcij |+ |νhij − νcij |), to prove that d(rrhij , rr
c
ij) ≤ d(rhij , r

c
ij) we only

need to prove that d(rrh−ij , rr
c−
ij ) ≤ d(rh−ij , r

c−
ij ) and d(rrh+ij , rr

c+
ij ) ≤ d(rh+ij , r

c+
ij ) with d(rrh−ij , rr

c−
ij ) =

‖rµhij − rµcij‖ and d(rrh+ij , rr
c+
ij ) = ‖rνhij − rνcij‖. Applying Lemma 1, we have:

d(rrh−ij , rr
c−
ij ) =

∥∥∥δ · µhij + (1− δ) · µcij − µcij
∥∥∥ = δ · ‖µhij − µcij‖ ≤ d(rh−ij , r

c−
ij ).

Similarly, we can prove that d(rrh+ij , rr
c+
ij ) ≤ d(rh+ij , r

c+
ij ).

Because d(rrh−ij , rr
c−
ij ) = δ · d(rh−ij , r

c−
ij ), we have that the feedback mechanism would make the

consensus process to converge to a unanimous consensus for all δ < 1. The above results are valid

when all experts change all their preference values to the feedback recommendation values. Therefore,

the production of recommendations to all experts, and their implementation, will guarantee that all

expert consensus index values increase, subject to the following additional condition: the consistency

index values to use in all of the consensus rounds are the same. This is graphically illustrated in

Figure 3(a). However, in real applications all experts will not receive feedback recommendations,

otherwise the computational complexity of the decision making process would increase. Therefore, in

the consensus process proposed here only those experts with a consensus level lower than the threshold

value will receive recommendations. In the final illustrative example, new consistency index values

were computed once expert e3 changed his/her preference values, which means that the previous results

are not applicable. Indeed, the collective preference relation is not the same as that in the previous

consensus round, which reflects that not all the experts changed their preference values. Thus, in this

case the experts that change their preference values will become closer to the new collective preference

relation than before, and in turn it would lead to an increase of their consensus level. Obviously,

the same conclusion cannot be drawn for the experts that do not change their preference values.

The application and implementation of the feedback mechanism in the final illustrative example is

graphically illustrated in Figure 3(b).

4.4. Selection Process

Given an IRPR R = (rij) = (〈µij , νij〉), Wu and Chiclana developed a score function, SWC(rij) =

(µij − νij + 1)/2, that can be interpreted as the membership function of a RPR known as the Score-

RPR (SRPR) associated to the IRPR [39]. Also, based on the OWA operator and the BUM function

Q, Chiclana et al. presented the quantifier guided non-dominance degree for a RPR [10]. Therefore, it

is possible to implement the concept of non-dominance to the case of an IRPR by using the associated

SRPR.
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rRC=RC
e1 e4

e3

e2

 

--------After  Feedback

--------Before  Feedback

(a) All experts change preference values

RC
e1 e4

e3

e2

 

--------After  Feedback

--------Before  Feedback

rRC

(b) Some experts change preference values

Figure 3: Consensus process before and after feedback mechanism. Left: All experts change preferences provided by

feedback mechanism; Right: Only experts with consensus level below threshold value change preferences provided by

feedback mechanism.

Definition 14 (Intuitionistic Quantifier Guided Non-Dominance Degree (IQGNDD)). Let

X = {x1, . . . , xn} be a set of alternatives evaluated by a decision makeragainst a particular criterion

using an IRPR R = (rij), and Q a BUM function. The intuitionistic quantifier guided non-dominance

degree associated to the alternative xi, IQGNDDi, is defined as follows:

IQGNDDi = ψQ(1− psij ; j 6= i). (15)

with psij = max{pji − pij , 0} representing the degree up to which to which xi is strictly dominated by

xj , pij = SWC(rij) and ψQ is an OWA operator guided by the linguistic quantifier represented by the

BUM function Q.

5. Numerical example

In selecting the most appropriate supplier for one of the key elements in its manufacturing process, a

company employs the following four criteria: (1) Product quality; (2) Price; (3) Delivery performance;

(4) Environment management.To determine the importance of these criteria, four different experts

{e1, e2, e3, e4} provide the following incomplete IRPRs over a set of four criteria {x1, x2, x3, x4}:

R1 =


〈0.50, 0.50〉 〈0.30, 0.40〉 x x

〈0.40, 0.30〉 〈0.50, 0.50〉 〈0.40, 0.50〉 x

x 〈0.50, 0.40〉 〈0.50, 0.50〉 〈0.40, 0.30〉

x x 〈0.30, 0.40〉 〈0.50, 0.50〉


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R2 =


〈0.50, 0.50〉 〈0.40, 0.45〉 x 〈0.30, 0.40〉

〈0.45, 0.40〉 〈0.50, 0.50〉 〈0.45, 0.40〉 x

x 〈0.40, 0.45〉 〈0.50, 0.50〉 〈0.40, 0.55〉

〈0.40, 0.30〉 x 〈0.55, 0.40〉 〈0.50, 0.50〉



R3 =


〈0.50, 0.50〉 〈0.50, 0.40〉 x 〈0.40, 0.30〉

〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.60, 0.30〉 〈0.50, 0.40〉

x 〈0.30, 0.60〉 〈0.50, 0.50〉 〈0.35, 0.40〉

〈0.30, 0.40〉 〈0.40, 0.50〉 〈0.40, 0.35〉 〈0.50, 0.50〉



R4 =


〈0.50, 0.50〉 〈0.40, 0.50〉 〈0.45, 0.40〉 x

〈0.50, 0.40〉 〈0.50, 0.50〉 〈0.50, 0.40〉 〈0.50, 0.30〉

〈0.40, 0.45〉 〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.50, 0.40〉

x 〈0.30, 0.50〉 〈0.40, 0.50〉 〈0.50, 0.50〉


Step 1. Estimating Missing Values: The incomplete IRPRs are completed using the procedure

presented in Section 3. Therefore, for each incomplete IRPR, Rh, a complete IRPR, URh, is obtained.

The completed IRPR, UR1, was already computed in Example 2. Similarly, the other completed

IRPRs are derived, which results in the following:

UR1 =


〈0.50, 0.50〉 〈0.30, 0.40〉 〈0.22, 0.40〉 〈0.19, 0.22〉

〈0.40, 0.30〉 〈0.50, 0.50〉 〈0.40, 0.50〉 〈0.31, 0.30〉

〈0.40, 0.22〉 〈0.50, 0.40〉 〈0.50, 0.50〉 〈0.40, 0.30〉

〈0.22, 0.19〉 〈0.30, 0.31〉 〈0.30, 0.40〉 〈0.50, 0.50〉



UR2 =


〈0.50, 0.50〉 〈0.40, 0.45〉 〈0.44, 0.35〉 〈0.30, 0.40〉

〈0.45, 0.40〉 〈0.50, 0.50〉 〈0.45, 0.40〉 〈0.44, 0.45〉

〈0.35, 0.44〉 〈0.40, 0.45〉 〈0.50, 0.50〉 〈0.40, 0.55〉

〈0.40, 0.30〉 〈0.45, 0.44〉 〈0.55, 0.40〉 〈0.50, 0.50〉



UR3 =


〈0.50, 0.50〉 〈0.50, 0.40〉 〈0.60, 0.22〉 〈0.40, 0.30〉

〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.60, 0.30〉 〈0.50, 0.40〉

〈0.22, 0.60〉 〈0.30, 0.60〉 〈0.50, 0.50〉 〈0.35, 0.60〉

〈0.30, 0.40〉 〈0.40, 0.50〉 〈0.60, 0.35〉 〈0.50, 0.50〉



UR4 =


〈0.50, 0.50〉 〈0.40, 0.50〉 〈0.45, 0.40〉 〈0.42, 0.31〉

〈0.50, 0.40〉 〈0.50, 0.50〉 〈0.50, 0.40〉 〈0.50, 0.30〉

〈0.40, 0.45〉 〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.50, 0.40〉

〈0.31, 0.42〉 〈0.30, 0.50〉 〈0.40, 0.50〉 〈0.50, 0.50〉


Step 2. Computing Consistency Indexes: For each completed IRPR, URh, we obtain its

associated multiplicative transitivity based IRPR, MRh, as per the process given in Section 2.3, and
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compute the corresponding consistency indexes at the three different levels of a relation using the

expressions given in Subsection 2.4: pair of alternatives, CIhij ; alternatives, CIhi ; and relation, CIh.

Level 1. The pair of alternatives level consistency indexes are:

(CI1ij) =


1.000 0.980 0.975 0.980

0.980 1.000 0.965 0.965

0.975 0.965 1.000 0.980

0.980 0.965 0.980 1.000

 (CI2ij) =


1.000 0.975 0.940 0.965

0.975 1.000 0.915 0.960

0.940 0.915 1.000 0.965

0.965 0.960 0.965 1.000



(CI3ij) =


1.000 0.945 0.970 0.925

0.945 1.000 0.960 0.925

0.970 0.960 1.000 0.990

0.925 0.925 0.990 1.000

 (CI4ij) =


1.000 0.920 0.975 0.980

0.920 1.000 0.985 0.955

0.975 0.985 1.000 0.995

0.980 0.955 0.995 1.000


Level 2. The alternatives level consistency indexes are:

(CI1i ) = (0.978, 0.970, 0.973, 0.975); (CI2i ) = (0.960, 0.950, 0.940, 0.963)

(CI3i ) = (0.947, 0.943, 0.973, 0.947); (CI4i ) = (0.958, 0.950, 0.985, 0.977).

Level 3. The individual consistency indexes are: CI1 = 0.974, CI2 = 0.953, CI3 = 0.956, CI4 =

0.968.

Using the consistency levels we have: σ(1) = 1, σ(2) = 4, σ(3) = 3 and σ(4) = 2. Using the

concave BUM function Q = r1/2, which can be used to represent the linguistic majority ‘most of ’,

we obtain the following weights λσ(1) = 0.50, λσ(2) = 0.21, λσ(3) = 0.16, λσ(4) = 0.13. The collective

IRPR is:

URc =


〈0.50, 0.50〉 〈0.37, 0.43〉 〈0.36, 0.37〉 〈0.29, 0.28〉

〈0.43, 0.37〉 〈0.50, 0.50〉 〈0.46, 0.43〉 〈0.40, 0.34〉

〈0.37, 0.36〉 〈0.43, 0.46〉 〈0.50, 0.50〉 〈0.41, 0.40〉

〈0.28, 0.29〉 〈0.34, 0.40〉 〈0.40, 0.41〉 〈0.50, 0.50〉


Step 3. Computing proximate indexes: Using the Hamming distance, we have:

Level 1. The proximity indexes on the pair of alternatives for each expert are:

(PP 1
ij) =


1.00 0.91 0.83 0.85

0.91 1.00 0.87 0.88

0.83 0.87 1.00 0.89

0.85 0.88 0.89 1.00

 (PP 2
ij) =


1.00 0.94 0.90 0.86

0.94 1.00 0.96 0.84

0.90 0.96 1.00 0.84

0.86 0.84 0.84 1.00



(PP 3
ij) =


1.00 0.84 0.61 0.86

0.84 1.00 0.73 0.83

0.61 0.73 1.00 0.74

0.86 0.83 0.74 1.00

 (PP 4
ij) =


1.00 0.89 0.87 0.83

0.89 1.00 0.93 0.86

0.87 0.93 1.00 0.91

0.83 0.86 0.91 1.00


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Level 2. The proximity indexes on the alternatives for each expert are:

(PA1
i ) = (0.863, 0.887, 0.863, 0.873); (PA2

i ) = (0.900, 0.913, 0.913, 0.847)

(PA3
i ) = (0.770, 0.800, 0.693, 0.810); (PA4

i ) = (0.863, 0.893, 0.903, 0.867).

Level 3. The proximity indexes on the relation for each expert are:

PI1 = 0.870, P I2 = 0.890, P I3 = 0.768, P I4 = 0.883.

Step 4. Computing consensus levels: For illustration purposes, we are assuming a value of

δ = 0.68, which in practice means that a greater weight is assigned to the consistency criterion than to

the proximity criterion in the computation of consensus levels. This could well happen when experts

would like to obtain a solution of consensus while maintaining a high level of consistency.

Level 1. The consensus levels of pair of alternatives are:

(CL1
ij) =


1.000 0.958 0.929 0.938

0.958 1.000 0.935 0.938

0.929 0.935 1.000 0.951

0.938 0.938 0.951 1.000

 (CL2
ij) =


1.000 0.964 0.927 0.931

0.964 1.000 0.929 0.922

0.927 0.929 1.000 0.925

0.931 0.922 0.925 1.000



(CL3
ij) =


1.000 0.911 0.855 0.904

0.911 1.000 0.886 0.895

0.855 0.886 1.000 0.910

0.904 0.895 0.910 1.000

 (CL4
ij) =


1.000 0.910 0.941 0.932

0.910 1.000 0.967 0.925

0.941 0.967 1.000 0.968

0.932 0.925 0.968 1.000


Level 2. The consensus levels of alternatives are:

(CL1
i ) = (0.942, 0.943, 0.938, 0.943); (CL2

i ) = (0.941, 0.938, 0.927, 0.926)

(CL3
i ) = (0.890, 0.898, 0.884, 0.903); (CL4

i ) = (0.928, 0.934, 0.959, 0.942).

Level 3. The individual consensus levels are: CL1 = 0.941, CL2 = 0.933, CL3 = 0.896, CL4 = 0.941.

Setting the minimum consensus threshold value γ at 0.9, the feedback mechanism must be activated

to assist expert e3 because CL3 = 0.896 < γ.

Step 5. Feedback mechanism: The following APS set is obtained:

APS = {(3, 1, 3), (3, 3, 1), (3, 2, 3), (3, 3, 2), (3, 2, 4), (3, 4, 2)}.

The recommendations for expert e3 are:

• Your missing preference value for the pair of alternatives (1, 3) should be as close as possible to

〈0.52, 0, 27〉.
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• Your missing preference value for the pair of alternatives (3, 1) should be as close as possible to

〈0.27, 0.52〉.

• You should change your preference value for the pair of alternatives (2, 3), 〈0.60, 0.30〉 to a value

closer to 〈0.56, 0.34〉.

• You should change your preference value for the pair of alternatives (3, 2), 〈0.30, 0.60〉 to a value

closer to 〈0.34, 0.56〉.

• You should change your preference value for the pair of alternatives (3, 4), 〈0.40, 0.55〉 to a value

closer to 〈0.37, 0.54〉.

• You should change your preference value for the pair of alternatives (4, 3), 〈0.55, 0.30〉 to a value

closer to 〈0.54, 0.37〉.

Once experts implement the changes in their IRPRs, a new consensus process round takes place.

Second Consensus Round. Assuming the experts implement the values recommended above, the

new collective IRPR would be

URc =


〈0.500, 0.500〉 〈0.363, 0.429〉 〈0.343, 0.375〉 〈0.283, 0.278〉

〈0.429, 0.363〉 〈0.500, 0.500〉 〈0.450, 0.442〉 〈0.395, 0.337〉

〈0.375, 0.343〉 〈0.442, 0.450〉 〈0.500, 0.500〉 〈0.417, 0.392〉

〈0.278, 0.283〉 〈0.337, 0.395〉 〈0.392, 0.417〉 〈0.500, 0.500〉


and the new consensus levels would become: CL1 = 0.943, CL2 = 0.931, CL3 = 0.905, CL4 = 0.939,

which are all above the threshold value γ = 0.9, and therefore the selection process would be activated.

Step 6. Selection process: The SRPR associated of the above IRPR URc is

P =


0.500 0.467 0.484 0.503

0.533 0.500 0.504 0.529

0.516 0.496 0.500 0.513

0.497 0.471 0.487 0.500

 .

Thus, we have:

1−Ps =


− 0.934 0.968 1

1 − 1 1

1 0.992 − 1

0.994 0.942 0.974 −

 .

Using the BUM function Q = r1/2 to implement the linguistic majority ‘most of ’, we obtain the

OWA operator weighting vector ω = (0.58, 0.24, 0.18)T , and then compute the following intuitionistic

quantifier guided non-dominance degree associated to each one of the alternatives:

IQGNDD1 = 0.98044, IQGNDD2 = 1, IQGNDD3 = 0.99856, IQGNDD4 = 0.97984.
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The alternatives can be ranked from best to worst according to the degree up to which an alternative

is not dominated by ‘most of ’ the rest of alternatives as follows:

x2 � x3 � x1 � x4,

Therefore, x2 is the most important criteria.

6. Conclusion

‘Democratic theory is based on the premise that the resolution of a matter of social policy,

group choice or collective action should be based on the desires or preferences of the individuals

in the society, group or collective.’ This quotation from Fishburn [21, page 3] fully justifies the

use of preferences in group decision making. However, democracy is recognised when decisions are

made applying majority voting rules, which are easy to understand when each vote counts the same.

However, there are many practical situations when this is not the case specially when experts are

allowed to indicate their degree of preference, which might be the case for example when selecting

candidates for a job at a company. In these cases, it is necessary to apply a new type of majority

rules which allow to calibrate the amount of support required for the winner alternative by means of

a difference of intensity of preference, which in this paper has been modelled with the non-dominance

degree, as well as in consensus and consistency criteria. Furthermore, there may be some real-life

decision making cases where a decision maker (DM) may not be able to accurately express his/her

preferences for some or all of the alternatives because he/she is not completely confident or presents

some hesitation, making they use of intuitionistic fuzzy values very suitable to model and represent

the DM’s preference rather than other type of preference representation formats. Indeed, the use of

intuitionistic fuzzy sets has been widely applied in multiple attribute decision making [49], industry

meteorological service selection [24] and group decision making [44], to cite a few fields.

In this paper, a novel consensus model for GDM problems with incomplete IRPRs has been

presented, which has the following main advantages with respect to other consensus models proposed

in the literature:

1. It allows the presence of incomplete IRPRs, an issue that has not been successfully addressed

by any previous consensus model. It is suitable to deal with decision making cases in which an

expert may not be able to express his/her preferences for alternatives due to a lack of in-depth

knowledge or time pressure.

2. It is based on a correct mathematical formulation and modelling of the multiplicative transitivity

property of IRPR as it is derived using the correct generalisation methodology from a crisp

context to a fuzzy context via Zadeh’s Extension Principle, as opposed to the incorrect modelling

of this property previously proposed by Xu in [44]. As a consequence, the correct derivation of

the multiplicative consistency property of IRPR is achieved.
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3. It investigates a MC-IOWA operator to aggregate individual preference relations, which assures

a monotonic increasing mapping between the experts’ consistency levels and their contribution

weight in the collective IRPR, and ultimately in the solution of the GDM problem.

4. It builds consensus by incorporating both the consistency index (CI) and the proximity index

(PI), and therefore consensus is assured to be achieved with a high level of consistency. The CI

is computed using the derived based on the multiplicative transitivity property of preferences,

which has been proved to be more appropriate to model consistency of preferences than the

additive transitivity property [27–29, 34].

5. It proposes a novel feedback process that implements visual representation (Fig. 3(b)) to help

experts to easily ‘see’ their relative consensus position within the group and to identify the

experts contributing less to consensus. Additionally, visual simulation of future consensus status

if the recommended values were to be implemented are also implemented within the feedback

process. In the light of this visual extra information, experts can revisit their evaluations and

make changes if considered appropriate to achieve a higher consensus level. Therefore, our

proposed feedback mechanism differs with respect to other feedback mechanisms that force

experts to change their opinions in the literature [29, 40]. Also, it need less computation burden

than the feedback mechanisms in [29] because it takes the reciprocity property into account in

its design, and it does not need to re-estimate values already estimated in previous steps of the

consensus model.

6. Finally, the feedback mechanism is designed following a top to bottom methodology, and there-

fore it focuses exclusively on identifying those experts that are furthest from the group and

consequently contributing less to consensus. Once these experts are identified, the model pro-

ceeds to identify their alternatives and the corresponding preference values, at the level of pair

of alternatives, that are more in conflict in terms of consensus with the corresponding group

values. Having reached this lowest level, the feedback mechanism also provides specific values

to the experts to guide them in the direction that would make them increase their contribution

to consensus, while preserving their internal consistency, and ultimately to contribute positively

in obtaining a group solution of consensus.

The proposed consensus process still exhibits some limitations to be addressed in future research.

1. The MC-IOWA operator aggregates experts’s IRPRs taking into account only the experts’s

consistency levels. Other factors influencing experts’ weights, such as knowledge, experience and

reputation of experts [53], are not considered because they are difficult to determine directly. A

potential avenue to explore in future to address this issue is the implementation of trust network
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analysis to capture and measure trust among the sets of experts and derive trust-consistency

based experts’ weights.

2. In previously developed GDM models [27–29, 34], the threshold value of consensus γ is provided

beforehand. Since this threshold value affects the numbers of feedback rounds, it is interesting

to investigate how the threshold value of consensus is determined by the group of experts in real

scenarios and in particular to analyse the factors affecting its choosing.
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