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Abstract  25 

The freeze-drying cycle comprises three stages: (1) Freezing, to form ice and to crystallise out any 26 

solutes with a propensity to crystallise, (2) Primary drying to remove the ice phase by sublimation, 27 

and (3) Secondary drying to remove the remaining unfrozen water which is bound to the remaining 28 

matrix of crystalline and amorphous solids. Given the impact of scale on the process outcomes, any 29 

freeze drying cycle developed based on mini-pilot studies, will inevitably require measurement 30 

technologies for characterising each stage of the cycle at each scale of the process. However, there 31 

are inherent challenges in the development of reliable mini-piloting studies, with the first being the 32 

fact that no single PAT technology for freeze-drying may be implemented across all levels of scale, 33 

and the second being the inherent changes in process characteristics (process parameters that result 34 

from scale up). Here we present a new approach for process understanding in freeze-drying cycle 35 

development, which uses a through vial impedance measurement to characterise a broad range of 36 

features of the process, including, ice onset times, the completion of ice solidification, the glass 37 

transition, and the structural relaxation of the amorphous solid, a surrogate for primary drying rate 38 

and the primary drying end point. The on-going development of this technology may see the 39 

application with micro-titre plate technologies for formulation screening (micro-scale down) and for 40 

scale up into production by using a non-contact probes for monitoring problematic regions within 41 

the dryer. 42 

 43 

Key Words: Freeze drying, in-line process control, PAT, QbD, critical process parameters 44 
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Introduction 46 

The scale up of a lyophilisation cycle is challenging due to multiple differences between 47 

small scale and large scale dryers. There is some guidance to facilitate the development of an 48 

efficient lyophilisation cycle in the laboratory (1), however, even an optimized cycle from a 49 

laboratory freeze-dryer may not transfer smoothly to the manufacturing scale. In addition to the 50 

scalability differences, there are several other differences between laboratory and manufacturing 51 

scale lyophilisers, which may pose a serious challenge for scale-up. These challenges include: (i) Ice-52 

nucleation differences during freezing, (ii) Heat and mass transfer differences, and (iii) Differences in 53 

primary drying time. These differences between laboratory and manufacturing scale lyophilisers can 54 

pose a serious challenge and therefore a systematic approach is needed to ensure a smooth scale-55 

up. 56 

There are a number of stages in a typical lyophilisation process: Freezing (sometimes 57 

including annealing) which transforms the liquid solution into a stable frozen matrix, primary drying 58 

to remove the ice, and secondary drying to remove residual water from the unfrozen super-cooled 59 

liquid domains of the material [1]. Whilst on the surface these stages appear to be somewhat 60 

discrete, they in fact constitute a sequential series of inter-dependent events. The process kinetics 61 

(ice formation, sublimation, and moisture desorption) are driven by a number of factors, including 62 

heat transfer through the vial base and walls (impacted by any thermal  heterogeneities in the shelf 63 

temperature and  radiant heating on the edge vials), the structure of frozen matrix which evolves 64 

from the stochastic ice formation process and the initial water content of the interstitial spaces [2]. 65 

Any attempt to investigate the freeze drying process is complicated by the fact that the process is 66 

undertaken in a closed-system, under extremes of temperature and pressure settings, within a batch 67 

of vials in close proximity to each other and many (> 10,000) in number, meaning that direct access 68 

by any PAT sensors is limited. 69 
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It is also widely recognised that any attempt to predict product scale process parameters from the 70 

laboratory scale is complicated by the fact that the scale of the operation has a significant impact on 71 

the process outcomes. There will be variations in the process parameters, and hence the dependent 72 

critical quality attributes, that are considered to be a function of the process scale and care should 73 

be exercised to avoid developing a cycle at the mini-pilot scale that cannot be translated to the large 74 

scale production [3].  75 

It is nevertheless the intention within a scale down/scale up approach to use intermediate or 76 

benchtop-scale studies to gain product and process knowledge that helps predict the behaviour 77 

(scale-up), assess risks (risk analysis), and diagnose production issues (troubleshooting) at 78 

production scales.  There will inevitably be limitations to what can be achieved but so long as various 79 

factors are considered in the design of a meaningful mini-pilot study then one may be able to 80 

maximise the relevance of mini-pilot data to the larger scale production process [4]. The factors to 81 

be considered have been discussed elsewhere [5] but include: 82 

1. Formulation composition - For instance, incomplete crystallization of excipients such as mannitol 83 

or glycine [6] with consequential heterogeneity in moisture, crystallinity and appearance. 84 

2. The freezing step as it defines the ice crystal size, which then defines the pore size for sublimation 85 

to occur[7]. Variations in freezing rates associated with differences in temperature at locations 86 

around the dryer, coupled to the stochastic nature of super-cooling and nucleation, inevitably 87 

introduce heterogeneity [8].  Controlled nucleation is showing promise in delivering shorter primary 88 

drying times and greater product homogeneity [9]. Mini-piloting studies might therefore aim to 89 

simulate the controlled nucleation that is sometimes practised at the larger scale in an attempt to 90 

understand the fast kinetics of the process. However, that may require the development and 91 

implementation of new forms of measurement system to track those bulk nucleation and growth 92 

phases which result in less efficient secondary drying due to lower surface area.  93 
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3. Cycle design & –System Capabilities – Where a cycle is designed at laboratory or pilot level, the 94 

process conditions applied cannot always be achieved in the same way within an industrial scale 95 

unit, owing to a number of factors: (i) The rate at which vacuum can be applied may be different 96 

between a laboratory system and a production model, especially where process routines require oil 97 

free (Rootes) pumps; (ii) The nature of the valve between the chamber and the condenser can also 98 

differ between small units (where indeed for some lab models the condenser is inside the chamber) 99 

and production units; (iii) The design of the valve and its speed of response, as well as length and 100 

diameter of vapour duct, must be taken into account as potential sources of variation on scale up 101 

and indeed may make pressure rise testing impractical; (iv) Cooling/heating rates of a mini-pilot 102 

dryer and a large process scale machine may differ significantly with the latter only being able to 103 

achieve low rates of temperature change owing to the thermal inertia of a large dryer; (v) There may 104 

be a significant difference between the temperature achieved on one shelf and another of a large 105 

stack of shelves or the time taken to achieve a given temperature across a large stack may differ 106 

from the one observed for a small single shelf mini-pilot unit; (vi) The smoothness or ‘roughness ‘of 107 

the finish on the shelves and the flatness of the shelves are factors which must be considered as the 108 

creation of a space between the shelf and the base of the vial will influence heat transfer from the 109 

shelf to the product. These factors would be difficult if not impossible to model at small scale. 110 

Instead, the freeze drying cycle for a production scale dryer may require adjustment in the shelf 111 

temperature and chamber pressure in order to achieve the target product temperature. 112 

 4. Impact of scale on sublimation rate The design of a freeze drying cycle for process scale, if based 113 

strictly on a mini-pilot data may be too ambitious for the reasons above. Calculation of the heat 114 

transfer properties of the freeze drying system, thermal co-efficient of the vial, resistance to vapour 115 

flow posed by dry cake, and the gradient in pressure between sublimation front and  condenser 116 

allow greater predictability to the scale up (1,2,7,8). In primary drying, it is essential that the product 117 

temperature is maintained as high as possible in order to maximise sublimative cooling and reduce 118 
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the primary drying time, while maintaining the product temperature below certain critical 119 

temperatures (the eutectic temperature (crystalline) or glass transition (partially or fully amorphous) 120 

in order to avoid melt-back or collapse. Engineering factors to consider in process optimization and 121 

scale up include: (i) Minimum achievable pressure as a function of sublimation conditions; (ii) 122 

Maximum sublimation rates before losing control of pressure or choke flow; (iii) Condenser 123 

temperature; as the driving force for sublimation is the pressure gradient due to the pressure at 124 

sublimation surface of the product and the pressure at the surface of the ice on the condenser coil; 125 

(iv) The vial heat transfer co-efficient- conduction (heat vial contact between the vial base and the 126 

shelf); (v) Convection (heat transfer through gas phase); (iii) Radiation (heat transfer from walls, 127 

underside of the upper shelves, etc.); (vi) The amount of radiant heat entering through the 128 

transparent Perspex door of the freeze dryer, the scale of the shelves and the heat radiated from the 129 

walls are all likely to be very different between a mini-pilot dryer and a process dryer while 130 

formulation, vial and stopper format remain constant. The impact of shelf, the effect of nearest 131 

neighbour interactions and the impact of radiant heat from the shelves above (and hence the inter-132 

shelf distance) are all factors to bear in mind on scale up [10]. The mapping of sublimation 133 

heterogeneity across a shelf has been well demonstrated, with the centre of a tray of vials and 134 

indeed the centre tray of a series of vials on a shelf, drying more slowly than those at the extremities 135 

where external heating effects are greater. Radiation is the dominant mode of heat transfer during 136 

lyophilisation [11] and the edge vial experience most radiation, hence the increased product 137 

temperature and therefore rate of sublimation for the edge vs centre vials. 138 

Process monitoring and Process Analytical Technology (PAT) It is clear that the prudent use of 139 

process analytical technology (PAT) is a key factor in being able to achieve an effective scalable 140 

freeze drying cycle. There are many different technologies for monitoring and even controlling the 141 

freeze-drying process, and these have been reviewed elsewhere in a number of comprehensive texts 142 

[12-17, 3]. However, these technologies have not been reviewed within the concept of mini-piloting 143 
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which includes the use of emerging physical characterization techniques that could significantly 144 

improve the measurement of process parameters and product quality attributes during drug 145 

development and manufacturing that would potentially replace or supplement traditional 146 

approaches in the near future. 147 

The inevitable question therefore is “which technologies could be used for mini-piloting 148 

studies?” Before addressing that question it is worth stating that mini-piloting studies in freeze-149 

drying may take on a number of forms, in terms of the scale length being investigated. Here we 150 

define a number of sample and batch scales which could be considered for the concept of a mini-151 

piloting study: 1. Mini-vials and microtitre plates (< 1 ml)1 in which the size of the sample and 152 

container is reduced from that expected of the final product; 2. Single vials (2- 50 ml)2 to be used for 153 

a fill volume to be used for the final product; or 3. Clusters of these vials (modelling the impact of 154 

radiant heat from the walls of the dryer) where the total volume for each study is defined by the 155 

number of vials in the cluster multiplied by the fill volume.  156 

Mini-vials and microtitre plates have been used to effect for high throughput formulation 157 

screening [18-22]. However, due to the fact that the change in sample size in relation to container 158 

geometry (wall and base thickness and materials of construction) has a significant impact on the 159 

freezing and drying processes, which is currently difficult to model, then such systems may not be 160 

considered presently for a mini-pilot application. Moreover, the commercial sample scale is 161 

determined by the product requirements and is not therefore considered as a variable in the 162 

development process: Once the formulation has been selected (with or without the use of a high 163 

throughout methodology), the process is developed based on a predefined container size and fill 164 

volume (and hence fill height). Mini-pilot studies can therefore be considered from a starting point 165 

of a single vial.  166 

                                                           
1
 these are not used in production of any commercial product 

2
 these are the vials that are currently available for most commercial products  



 

8  

Here we make a definition of cluster size in terms of micro cluster and meso cluster in order 167 

in order to recognise the fact that edge effects extend over the outer 3-4 rows of vials in a large 168 

cluster, which means that all vials in a micro-cluster will dry as edge vials, whereas a meso-cluster 169 

will have some edge vials and some core vials. It is invariably the case that, for the early stage 170 

process development, where there is a requirement to minimise the solution volume (and hence 171 

drug consumed) the impact of edge effects is removed by placing the product containing vials at the 172 

centre of an array of empty vials.  173 

Having clarified the definitions and the impact of scale length in terms of numbers of vials, one 174 

then can delineate which PAT might be useable for each scale. Table 1 list a number of commercial 175 

PATs and research tools that have been defined as being suitable for each of these scale lengths, 176 

whereas others have been excluded. As stated above, it could be argued that microplates and mini 177 

vials are best suited for initial formulation screening [18] and their use in predicting scale up is quite 178 

limited. These systems are therefore excluded from the scope of a mini-pilot study. Given that mini-179 

piloting must start form a single vial, then one might expect that the model single vial systems that 180 

have been described and the 7 vial model lyophilizer might be useful in this regard [23]. However, 181 

the use of such systems for a mini-pilot study should be used with caution owing to the fact that a 182 

single vial (or a micro-cluster of 7 vials) will behave very differently to a vial in the centre of a meso-183 

cluster or a macro-cluster. The impact of radiant heating on the drying characteristics (shape of the 184 

drying front and product temperature) are significantly different for a lone vial to a vial within a large 185 

cluster. 186 
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Table 1 Comparison of analytical technologies for assessment of critical quality attributes and process 187 
parameters. The table includes both commercially available systems and those which are currently available 188 
only in specific research laboratories. 189 

Sample presentation Stage Potential PAT Excluded PATs 

Micro-titre plate Formulation screening Uv-vis, Raman, fluorescence, TC Pressure rise, TDLAS 

Single vial Mini-Pilot Scale to Pilot 
Scale 

OCT, TVIS, NIR, Raman, RTD, TC, 
Microbalance 

Pressure rise, TDLAS  

Micro-cluster (7, 
19,37 vials) 

Mini-Pilot Scale to Pilot 
Scale 

 TC, RTD, TVIS, smart sensor,  

 NIR & Microbalance (“Edge” 
vial only) 

Pressure rise, TDLAS  

Meso-cluster 
(61,91,127,169+ vials) 

Pilot Scale  TC, RTD, TVIS 

 TDLAS & pressure rise 
(demand a minimum number 
of vials) 

 NIR & Microbalance (“Edge” 
vial only) 

 

Macro-cluster 
(10,000+ vials) 

Production TC, Pressure rise, TDLAS Microbalance 

 190 
NIR: Near infrared, TC: thermocouple, ideally wireless; TVIS: Through vial impedance spectroscopy, OCT: 191 
Optical computer tomography. RTD: resistance temperature detector. 192 
 193 

It is clear that each PAT technology is somewhat limited in its application across all scales 194 

within the development cycle and it remains the case that there is no single PAT technology that can 195 

be applied to assess all quality attributes of the product and process parameters of the cycle, at all 196 

levels of scale. There are a number of reasons for that, with each pertaining to the PAT in question 197 

and the target process parameter for that particular technology. Two process parameters (critical 198 

temperatures and drying rates) and one material attribute (glass formation) are used to illustrate 199 

this point. 200 

Critical temperatures Single vial systems have been developed for the purpose of evaluating other 201 

more novel process analytics, e.g. OCT (optical coherence tomography) measurements of collapse 202 

[19]. These are beneficial as they demonstrate a minimum requirement that the analysis of some 203 

process parameter or material attribute should be conducted, at least within a container and sample 204 

volume that is consistent with that being freeze-dried at the larger scale. This implies that 205 

techniques such as conventional freeze-drying microscopy (FDM) may not accurately define the 206 

critical parameters (temperatures required to control the process), however they are used extremely 207 

frequently and widely in the formulation characterisation process [24]. 208 
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In attempting to drive process efficiencies one tries to maintain the product temperature as 209 

high as possible in order to supply the latent heat of sublimation. However this is complicated by the 210 

following issues: The product temperature is always lower than the shelf temperature owing to the 211 

heat absorbed from the sublimation of ice and the fact that is difficult to measure the temperature 212 

at the sublimation interface. TCs placed in the base of the vial can be used to assess the end point of 213 

primary drying (for example) but their position at that point precludes the assessment of the 214 

temperature at the sublimation interface, which inevitable moves down the vial contents as the 215 

drying process progresses. A technique that can measure the product temperature at the ice 216 

sublimation front will inevitably provide greater assurance that the temperature at the sublimation 217 

interface does not fall below the critical temperature at which the dry layer (in immediate contact 218 

with the sublimation interface) does in fact collapse. The implementation of such a PAT tool within 219 

the process control loop will inevitably reduce the risk of product failure through over-aggressive 220 

drying profiles. In addition, single vial TCs only provide information on thermal events (and the end 221 

point of drying) but not the drying rate.  222 

Primary Drying Rates  223 

Pressure rise and TDLAS techniques are used for the measurement of mass flux and drying rates 224 

within dryers that are either partially or fully loaded. However, the determination of drying rates as 225 

a function of the location of the vial within a cluster is not accessible with these technologies. A 226 

commercially available alternative, i.e. the microbalance, can work at the scale of a single vial but 227 

only works on an isolated vial or one which is on the edge of a cluster (which inevitably experiences 228 

greater radiant wall effects and does not simply rely on heat transfer through the base). Drying rates 229 

and dry layer product resistance calculated by this technique therefore should be used with caution 230 

when applied to the behaviour of the same materials when freeze-dried within clusters, owing to the 231 

significant impact from radiant heating of the side of the glass vial. It is also the case that single vial 232 

spectroscopies cannot be used on clusters of vials; any information on product quality (e.g. protein 233 
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folding by Raman) and water content during drying cannot be easily translated to populations of 234 

vials (because the probes are large and will inevitably cause significant disruption to the thermal 235 

heat treatment experiences by vials embedded with a manufacturing scale cluster). It is also 236 

apparent that existing PATs are limited in their ability to “look inside” the vial with most optical 237 

spectroscopy being limited to a surface measurement of 1-2 mm at best. That said, the application 238 

of optical spectroscopy for single vial measurements is the subject of renewed interest, given the 239 

potential application in the freeze-drying of vials in a continuous process, where such technologies 240 

are expected to excel [25-27]. 241 

 242 

The amorphous state (Mesoscopic properties and Glass Formation) 243 

PATs which enable the measurement of mesoscopic properties (i.e. the material properties at the 244 

scale length of molecular clusters) such as the glass transition and the fragility/strength of the glass 245 

are desired as these properties have significant impact on the product and process efficiency.  The 246 

formation of the amorphous phase depends to a large degree on the amount of ice that in turn 247 

defines the water content of the unfrozen fraction. In addition, the rate at which the amorphous 248 

state forms and the temperatures at which the amorphous phase forms will inevitably influence the 249 

enthalpy entrapped within the interstitial phases. The power of molecular vibrational spectroscopies 250 

has been well-demonstrated [27] These parameters impact the secondary drying phase [28] and 251 

even the stability of the glass matrix that forms [29].  252 

Application of PAT across the scales 253 

 One key requirement might be that the prospective analytical technology in question has itself 254 

a potential for scale up [30].  The principle drawback of mass-flow based PAT techniques is that 255 

these display only one temperature value for the entire batch and do not take into account the 256 

inter-vial heterogeneities in different locations of the shelf, which are evidenced through individual 257 

temperature sensing devices. Generally, the product temperature values obtained from the MTM 258 
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technique (used for small scale) are believed to be related with the colder region of the shelf that is 259 

non-edge or centre of the array and that temperature as low as −45oC during primary drying may be 260 

determined with this technique [31]. End point of primary drying is characterized by a sharp drop in 261 

vapour pressure of ice. MTM lead product temperature measurement has been fairly representative 262 

with first 2/3rd of the primary drying time however after this time heterogeneities in the rates of ice 263 

sublimation amongst vials located at different position in the shelf are predominant [32]. Therefore 264 

the PAT measured product temperature after this point of time may be non-representative of the 265 

actual product temperature [32, 12]. Furthermore the heat transfer rates were misleading when 266 

lyophilisation cycles were performed at very low temperatures and low pressure [33] using low solid 267 

contents [31] while a minimum sublimation area of 150 cm2 is required for an accurate MTM 268 

product temperature measurement. Lyophilisation of the formulations with high amorphous solid 269 

contents were measured inaccurately with MTM, especially in the early phase of primary drying  270 

resulting in a high drying temperatures due to re-adsorption of vapours in the dried layer due to 271 

pressure rise [12, 34]. Lastly, the closure of MTM valve hinders the sublimation process owing to 272 

slowed self-cooling which may sequence to collapse if the freeze drying cycle is operated at 273 

temperatures close enough to collapse temperature [12] or if extended isolator valve closure 274 

periods are used.  275 

TDLAS, another PAT measures the rate of sublimation from the whole batch by recording the 276 

light absorption during the passage of vapour through the duct connecting drying chamber and the 277 

condenser [35, 36] provided the freeze drier requires has a conducting duct of an appropriate 278 

length. This can be used in-process to feedback and control of the freeze drying cycle as in the 279 

LyoStar (Virtis) range of dryers.  280 

Both MTM and TDLAS have been used to develop a series of models for the freeze drying 281 

process and also to build those algorithms into the first smart freeze drying processes that allow 282 

control on-line to be achieved either by intervention or automatically [37]. However, he application 283 
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of these tools in mini-piloting of freeze drying process is somewhat limited given the requirement for 284 

a minimum batch size. 285 

As stated above, mini-pilot data may not translate appropriately through scale up unless the 286 

PAT technology used to assess the process is also transferrable between scales, and thereby provide 287 

an opportunity to unify the PAT signatures at each scale length. For example, in the case of protein 288 

formulations (which are sensitive to freeze-concentration stresses) then mini-pilot data from a single 289 

vial or micro-cluster of vials may not translate to larger clusters within bigger dryers because the way 290 

the sample freezes could impact factors such as aggregation of the active. 291 

Techniques which might bridge the gap between the small-scale (e.g. single vial freeze-dryer 292 

to the production scale) are limited. One of the few examples are wireless temperature sensors [38] 293 

which are an improvement over classical thermocouple or resistance thermometers owing to the 294 

lack of wiring, and compatibility with automated loading systems but they are still very much tools 295 

used in development, invasive in nature and perturb the ice formation as well as sublimation kinetics 296 

. There is an unmet need for a non-invasive technique that can measure both critical events, such as 297 

ice formation, glass transition and solidification and collapse, while being able to measure drying 298 

rates and end points, and to able to do that across a range of scales from the single vial to multiple 299 

vials within clusters, so that the impact of both vial base and radiant wall heating can understood in 300 

terms of its impact on process parameters and critical quality attributes. In essence, it is essential 301 

that both core and edge vials are assessed for conformity with specification so that the mini-pilot 302 

data can be assessed in terms of its direct relevance to production scale and that risks to product 303 

quality are understood and mitigated. A more recent PAT technology based on through-vial 304 

impedance spectroscopy (TVIS) has been introduced to partly fulfil this need. This technology is non-305 

contacting to the product (unlike an invasive impedance probe in a vial ( such as CHRIST’s LyoControl 306 

technology [39]) and provides some opportunity to characterize material properties across the 307 

scales. Albeit in its current form it is a single vial measurement, the opportunity exists to use 308 
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multiple sensors to track different regions of the dryer and at different scale lengths; and in future 309 

the potential development of a non-contact format may allow for such measurements in both scale 310 

down application (within mini-vials or micro-wells) and for scale up for multi-vial clusters. The latter 311 

is currently the subject of a UK government funded, Innovate UK project called “Biostart”. 312 

Theoretical feasibility has been established and a demonstrator unit is currently under development. 313 

Through-Vial Impedance Spectroscopy (TVIS) 314 

Impedance monitoring has a long history as a lyophilisation analysis tool [40, 41]. TVIS 315 

measures the electrical impedance of the product, contained within a standard freeze-drying vial 316 

that has been modified with electrodes placed on the outside of the glass wall [42]. The impedance 317 

measurement vial is connected to a low input-impedance, current to voltage convertor (IVC), via a 318 

junction box within the freeze-dryer chamber (mounted close to the shelf on which the vials are 319 

located). The signals from the stimulating voltage and that from the resultant current (from the I-to-320 

V convertor) [43] are compared in order to determine the impedance of the measurement vial (and 321 

its contents) (Figure 1). The calibration of through vial impedance measurement system is 322 

performed by taking in account the impedance contribution at open loop as well as close loop 323 

conditions using a reference standard of known capacitance. Details are described in the literature 324 

[42]. 325 
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 326 

Figure 1 Block diagram of the impedance measurement system. Sides A and B are part of the same vial. 327 

The technology combines the function of different single vial PATs (viz. thermocouple and 328 

microbalances) but with a number of advantages: the measurement electrodes are non-intrusive to 329 

the product volume or head space (un-like a thermocouple) which means that the system will not 330 

interfere with the processes of ice nucleation and growth. The measurement hardware has minimal 331 

thermal mass and volume (unlike the microbalance). This minimises the impact on heat transfer 332 

while facilitating measurements on vials which are arranged in the usual hexagonal array (a 333 

requirement for maximising the number of vials loaded into the freeze-dryer). Although the present 334 

design of impedance measurement vials does not support automatic loading, the use of thin foil 335 

electrode makes the tests vials suitable for their placement at any position within the hexagonal 336 

array. This feature, in turn, suggests the potential application of TVIS in spatial mapping of the shelf. 337 

A multichannel (TVIS) instrument design enables the placement of impedance measurement vials at 338 
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different positions across the shelf which can map the shelf for temperature distributions and 339 

variations in the drying rates and to guard against the potential for product collapse. 340 

Electrical Impedance 341 

The electrical impedance of a material determines how easily the material will conduct a current 342 

when an alternating voltage is applied to it. Electrical impedance is a function of both the dielectric 343 

and conductive properties of the material which are in turn defined by the temperature, 344 

composition and physical state of the material contained within the vial (an example TVIS vial is 345 

shown in Figure 2i). Changes in these electrical parameters therefore directly mirror the condition of 346 

the sample and the progression of the freeze-drying cycle. In order to explain the observed 347 

impedance spectrum of the object under test and relate it to the physical properties or changes that 348 

may happen during the freeze-drying process, it is necessary to create an appropriate equivalent 349 

circuit model. The circuit model (Figure 2 ii) was found to provide an approximate fit to the 350 

measured impedance spectrum, where CG signifies the electrical capacitance of the glass walls of a 351 

vial, which is charged through the resistance (RS) representing the conductivity of the sample, and CS 352 

represents the electrical capacitance of the material within the internal volume of a vial. This imparts 353 

a frequency-dependence to the measured dielectric properties, such that the capacitance of the 354 

glass wall (CG) will have sufficient time to charge completely at low frequency, but at high frequency, 355 

will not have time to begin to accumulate any of the electrical charge that could otherwise be 356 

accommodated.   357 
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 358 

Figure 2 Description of measurement principles; from left to right (i) TVIS measurement vial with external 359 
electrodes attached (in this particular variant there are guard electrodes around each of the measurement 360 
electrodes), (ii) equivalent electrical circuit, with CG modelling the capacitance of the glass wall of the vial, and 361 
CS and RS modelling the capacitance and resistance of the contents of the vial, (iii) individual spectrum (C' vs 362 
log frequency is the real part spectrum, C" vs log f is the imaginary part spectrum) where the frequency of the 363 
peak in the imaginary capacitance is  given by f = 1/2πRS(CG + CS) (Note that this particular spectrum is taken 364 
after freezing the sample), and (iv) response surface plot of imaginary capacitance, resulting from measurements 365 
at a range of temperatures. The peak at position A in the early stages of the cycle shows the condition of the 366 
sample in the liquid state. The peak shifts to position B (lower frequencies) when the sample freezes and the 367 
product resistance increases by a factor of 100-1000. The decrease in the peak height over time is a consequence 368 
of the loss of ice on sublimation during the primary drying phase. The wing at low frequency (shaded area D 369 
delineated by the dotted line) is more than likely to be due to the additional distributed element characteristics of 370 
the glass wall. 371 

The overall result is that the capacitance spectrum of the material under test (i.e. glass vial, its 372 

contents, and the electrical connections to the vial) will display a step-like decrease in capacitance as 373 

the frequency is increased through that critical frequency which corresponds to the time constant 374 

for the sample (f = 1/2πτ , where τ = RS(CG + CS)) (Figure 2 iii top). There is a corresponding peak in 375 

the associated imaginary capacitance spectrum as the material under test starts to conduct 376 

electricity through the phase lag between the response of the sample and the applied electric field 377 

(Figure 2 iii bottom). The step in the real part capacitance and the peak in the imaginary capacitance 378 

are the manifestation of what is known as an interfacial-relaxation process. It is a consequence of 379 

the time dependence of the accumulation of charge at the glass surface as ions migrate through the 380 

liquid (or solid) contained within the glass vial, following the application of an external field [44]. 381 

It is the characteristics of this process that are used to ‘follow’ the progression of the freeze-drying 382 

cycle. More specifically, it is the peak frequency and peak value for the imaginary capacitance (which 383 
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can be considered as the magnitude of the interfacial-relaxation process) that is used to monitor the 384 

freeze-drying cycle. Figure 2iv shows a typical surface plot of the imaginary capacitance as a function 385 

of frequency and time, during the entire freeze-drying cycle. There are characteristic shifts in the 386 

relaxation frequency and change in the peak height as the temperature of the sample changes and 387 

when the material undergoes a phase change (e.g. liquid to ice) [45]. There is then a dramatic 388 

decrease in the magnitude of the interfacial-relaxation peak as ice is removed from the sample. 389 

Factors such as salt content, buffers and tissue culture medium will increase the conductivity and 390 

shift the relaxation peak to the higher frequency end of the experimental frequency window. 391 

The impedance of the object under test (namely the glass vial and its contents) can be calculated 392 

from the following equation  393 

    
 

    
 

 

    
 

 
 

  
     

  (1) 394 

From the complex impedance formula, the expressions for real and imaginary capacitance can be 395 

calculated to explain the origin of interfacial polarization peak 396 
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 (3) 398 

By multiplying nominator and denominator by the complex conjugate of denominator  399 

    
 

     
                            

                              
 (4) 400 

  
       

                   
 

                
 (5) 401 

and grouping the real and imaginary members decomposes C* into its real C’ and imaginary parts  402 

    
       

            

                
 (6) 403 

and 404 
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 (7) 405 

For an example spectrum (Fig. 2) at ω → 0,    = 0.  406 

As the frequency is increased,    increases to a maximum of 407 

        
  

 

        
  (8) 408 

at a frequency of 409 

       
 

        
.  (9) 410 

and then decreases to 0 as the frequency ω → ∞ 411 

The value of the real part of capacitance at ω→0 is         412 

and the value at ω→∞ is 413 

     
    

       
.  (10) 414 

It follows that the step change in capacitance is 415 

         
    

       
, or     

  
 

       
. (11) 416 

 417 

Measurement of sublimation rate and end of primary drying  418 

The basic assumption is that the capacitance is a function of the amount of ice in the measurement 419 

vial and provides the rationale for the application of TVIS as a determinant of ice sublimation rate 420 

during primary drying. It has been demonstrated that TVIS can be used to measure the onset of 421 

primary drying, rate of ice sublimation and end of primary drying [42]. 422 

Equation 12 (and the explanation that follows) demonstrates how the magnitude of the peak  in the 423 

imaginary part capacitance, during primary drying, provides an assessment of the remaining ice and 424 
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thereby an opportunity to assess relative drying rates in vials as the process is scaled-up from the 425 

mini-piloting study (e.g. on an individual vial or a  small cluster of vials).  426 

   
    

  
 

        
  (12) 427 

The magnitude of each lumped circuit element (     ) is proportional to the cell constant for that 428 

element, i.e.  429 

        
 

 
 (13) 430 

and 431 

        
 

 
 (14) 432 

where A is the area of interface between the frozen mass and the glass adjacent to the electrode. 433 

Provided the sublimation interface is flat then as the ice is removed from the sample and the 434 

sublimation front recedes down the vial, then the interfacial area between the frozen layer and the 435 

juxtaposed glass wall (A) will decrease in proportion to the remaining ice volume. An electrical 436 

model of the drying process is given in Figure 3, in which a dry-layer impedance is incorporated into 437 

the overall impedance of the system. In reality, the impedance of this layer can be ignored given that 438 

the time constant for charging the segment of glass in proximity to the dry layer is very large, owing 439 

to the high resistance of the dried solid, and the only contribution made will be a small contribution 440 

to the real part capacitance. 441 

 442 
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 443 

Figure 3 Equivalent circuit model of a two layer system, with a dry layer above an ice-rich layer. Here the 444 
model shows an external electrode system that is of a height such that the fill volume extends both above the top 445 
and below the base of the electrode. 446 

The schematic in Figure 3 illustrates how the measured capacitance of the glass and the frozen 447 

solution will change on drying. For a linear drying rate (in time) and for a flat sublimation interface, 448 

both CS and CG would be expected to decrease in a linear response. However, given the fact that the 449 

electrodes do not span the full height of the liquid one then needs to consider the impact of the 450 

height of the frozen layer in relation to the electrode height on the measured response.  It follows 451 

that one can expect a greater sensitivity to the frozen layer in the middle/centre region of the 452 

electrode than in the regions above and below the electrode. This feature of the measurement 453 

system in its current form (with electrodes on the outside of the vial) partly explains why one 454 

observes the sigmoidal decrease in the magnitude of the peak as the ice sublimes from the sample 455 

(Figure 4). 456 

To explore this observation further one needs to consider the fill volume/height in relation to the 457 

vial size and electrode geometry being used (Although we might add that, in the classical scale up 458 

approach in lyophilisation, one would keep the fill height the same but increase surface area in order 459 

to increase drying rates). The theoretical impact of this change in vial geometry in relation to the 460 

electrode geometry was explored in a previous publication, in which it was predicted that the 461 
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relaxation frequency might increase by up to a factor of two if 2 mL vials are used instead of the 10 462 

mL vials we have used in our work [45].  463 

In our case, the electrode height in the current presentation of the TVIS measurement system is 5 464 

mm, which means that for a fill volume of 3 ml the liquid height is ~9.5 mm. The electrode is placed 465 

in such a way that it is 1-2 mm above the vial base (measured externally) and is 2-3mm below the fill 466 

height [45]. If there is a 1-2 mm gap (i.e. ice layer) below the electrode then there will be 2.5 to 3.5 467 

mm of ice layer above the electrode. It follows that the response of the TVIS spectrum to a reduction 468 

in the height of the ice layer won’t be registered until (2.5-3.5)/9.5 (i.e. 25 to 35%) of the ice is 469 

removed. The data generated by the TVIS system supports this observation (Figure 5) which shows 470 

that the TVIS system only begins to register the loss of ice when the ice has reduced to 471 

approximately 20%. Thereafter, the TVIS system senses a linear decrease in the magnitude of the 472 

peak after approximately 40% of the ice has been removed.  473 

Extrapolation of the linear portion of the C"peak vs time plot, to the start of the primary drying phase, 474 

suggests that a surrogate drying rate may be determined from the imaginary capacitance alone, 475 

thereby facilitating comparison between vials placed in different position in the dryer. 476 
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 477 

Figure 4 Capacitance profile of 3% w/v lactose during primary drying; the solid line is C"peak vs primary drying 478 
as measured by the TVIS system. The symbols and the long dashed line is the loss of ice as determined from a 479 
visual assessment of the ice layer from the outside of the vial. The short dotted lines on the linear region of the 480 
C"peak plot is the surrogate drying rate determined by the TVIS system. 481 

It remains to be seen whether any general rules may be developed which enables the drying rate of 482 

a range of formulations to be extracted from TVIS measurements. For example, what is unknown at 483 

present is the amount of ice that has formed. This uncertainty may be removed by calculating the 484 

water content of the unfrozen layer from a measurement of the glass transition temperature (see 485 

following section) and the application of the Gordon-Taylor equation. A more straightforward 486 

application of this methodology would be to use it to evaluate the heat transfer coefficient (Kv) at 487 

the base of the vial from a sublimation experiment using water (rather than the product solution). 488 

Other parameters to be recorded, in order to achieve a clear evidence of the sublimation rate, 489 

include the measurement of temperature at the vial bottom and cake resistance to vapour flow. In 490 

that case the amount of ice is known as it is the same as the amount of water that is added to the 491 

vial [46].  492 

Examples of the use of TVIS in mini-piloting (from single to multiple vials) to measure temperature 493 

and to characterise critical temperatures and transitions 494 

In the sections that follow a number of applications for TVIS have been described in order to 495 

demonstrate the versatility of the technique in the characterization of first and second order phase 496 
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transitions (ice formation, eutectic formation and suppression, glass transitions and phase 497 

separation), product temperature, and product collapse. 498 

In the majority of the following applications, the sensitivity of the TVIS response surface to changes 499 

in the resistance of the fill solution have been exploited to determine changes in state (e.g. liquid to 500 

solid) and the temperature of the solution (whether liquid or frozen). From equation 9 (re-stated 501 

here) 502 

     
 

        
 (9) 503 

one can see the impact of a phase change, which increases the resistance of the sample by a factor 504 

of 100-1000 whereas the capacitance will only change by a factor of 25% at best (e.g. 80 to 100). The 505 

peak frequency is therefore strongly dependent on the sample resistance.  506 

Measurement of Eutectic crystallization 507 

Classically, eutectic crystallization of an excipient in a formulation is detected using off-line DSC 508 

studies, however, until recently there were no techniques capable of recording the manifestation of 509 

this crystallization process in-line and therefore it is unclear whether there is a need to include an 510 

annealing stage in the drying cycle. The impedance measurements recorded from a surrogate 511 

formulation containing mannitol demonstrates a secondary peak in the derivative of the resistance 512 

profile at ~-22 °C which was in close agreement with the eutectic crystallization of mannitol as 513 

determined by DSC (Figure 5).  514 
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 515 

Figure 5 The electrical resistance (dR/dt) profile during freezing of mannitol solution (M), sucrose (S) and a 516 
50:50 mixture of mannitol and sucrose (S/M) 517 

During this study, the impact of a non-crystallizing solid (sucrose) was also shown to suppress the 518 

crystallizing behaviour of mannitol [47]. 519 

Measurement of product collapse  520 

It is well known fact that the viscosity of a formulation decreases as the temperature increases 521 

above glass transition Tg'. At some temperature exceeding Tg', the viscosity of the frozen formulation 522 

is insufficient to hold its own weight and the product collapses; the corresponding temperature is 523 

called collapse temperature (TC) [48]. The measurement of structural collapse in a product during 524 

primary drying remains a challenge for the formulation scientist. In essence, it may provide a realistic 525 

value of temperature that defines the boundary of a design space.  526 

Conventionally, TC is measured by freeze drying microscopy which measures the drying front of small 527 

sample positioned at the temperature controlled freeze drying stage under vacuum [24]. This 528 

temperature is then considered as the upper temperature limit for the primary drying stage. 529 

Recently, Mujat and co-workers used an optical coherence tomography based freeze drying 530 

microscopy (OCT FDM) to record collapse temperature of a surrogate formulation [25, 49]. The 531 

technology is advantageous as it records in-vial measurements of product collapse within a bespoke 532 

design of a single vial freeze dryer. The results from this study indicate that Tc measured by OCT FDM 533 
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was ~3°C higher than the one measured by conventional FD microscopy suggesting a higher primary 534 

drying temperature is permissible that could reduce the primary drying time by up to 30%. Although 535 

the OCT FDM system measures the response of the frozen solution within the glass vial, there are 536 

certain limitations such as: (i) only part of the formulation in direct contact with the probe is 537 

measured, (ii) the presence of the probe may perturb the ice structure and (iii) it is not possible to 538 

use the measurement system on vials placed within the usual configuration of a hexagonal array.  539 

In a previous study [44], impedance spectroscopy has been used to record a sudden change in the 540 

capacitance (Fig. 6) which is associated with the macroscopic structural collapse of product (as 541 

measured by photographic images). This observation suggests a useful application of the TVIS in 542 

recording a failure mode. 543 

 544 

Figure 6 Demonstration of collapse in 3% solution of sucrose as the shelf temperature is increased during the 545 
primary drying phase. 546 

Measurement of the glass transition 547 

TVIS has been reported as a direct measurement approach which effectively measures in-vial glass 548 

transition temperatures during re-heating post freezing (Figure 7)[47]. 549 
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 550 

Figure 7 Electrical impedance profile of 10% w/v maltodextrin DE16-19 during re-heating. A) Temperature 551 
profile of equivalent circuit parameter R showing an inflection at the glass transition temperature of −16 C;  B) 552 
Arrhenius plot of ln R vs 1000/T showing Arrhenius behaviour below TG and non-Arrhenius behaviour above 553 
TG (the solid line is the VTF model). 554 

The additional benefit of this approach is that the impedance data can be modelled with a modified 555 

VTF (Vogel-Tammann-Fulcher) equation which can be employed to calculate the fragility of the 556 

frozen glass. This observation refers to an additional application of TVIS for formulation screening 557 

(especially for micro-plate/min-vial scale) and the potential for validation of formulation behaviour 558 

when transferred to into the process development stage (mini-piloting to scale-up). This parameter 559 

is likely to find application in determining the changes in the strength of the frozen glass following 560 

annealing which might impact the stability of the product. Such information may also provide 561 

additional information on the rationale for the inclusion of annealing step in the freeze drying cycle 562 

[50]. 563 

Temperature measurements 564 

Figure 8 shows that there are correlations between log Fpeak and product temperature during 565 

product cooling in the liquid state (A to B) and the solid state (C to D) and on annealing (D to E). The 566 

temperature coefficient for log Fpeak in the frozen state (D to E) is ~0.04 which is approx. x3 of the 567 

temperature coefficient in the solution state.  568 
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By fitting the equivalent circuit in Figure 2ii to the calibration model data in the region D to E, it is 569 

then possible to estimate the impact that a temperature gradient, within the vial (from the base to 570 

the top of the ice layer) will have on the spectra acquired during primary drying.  571 

 572 

Figure 8 Temperature calibration of the TVIS instrument, the relationship between log Fpeak and temperature is 573 
linear, both in the liquid state (A to B) and the frozen state (C to D to E). Fitting the equivalent circulate model 574 
to the data in the region C to D to E provides an opportunity to create a model for the scenario when there may 575 
be differences in temperature between the top and bottom of the ice layer during primary drying.  576 

To this end an equivalent circuit model was built comprising a number of horizontal segments 577 

(Figure 10) with each segment comprising a parallel combination of a capacitor and a resistor. 578 

Estimates for each element were taken from the calibration data represented in Figure 9, having 579 

taken into account the fact that the cell constants for each segment were now a fraction of the cell 580 

constant for the entire volume of the sample (in the case of the capacitive element) and a multiple 581 

of the cell constant for the entire volume of the sample (in the case of the resistive element). 582 
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 583 

 584 

 585 

Figure 9 Illustration of how to create a distributed circuit model to account for temperature differences between the top and bottom layers of the frozen solution. Here three 586 
horizontal segments have been used to model a difference in temperature. In each segment the values for the lumped circuit elements have been taken from the calibration 587 
model in the frozen state (Data from region C to E588 
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 590 

Figure 10 Predicted response from the equivalent circuit model shown in Figure 9 (here the solution is divided 591 
into 10 horizontal segments rather than the three shown in Figure 9). The left hand scale shows the predicted 592 
spectrum of each element, and the right hand scale shows the predicted spectrum when all elements are added 593 
together. The left scale has been magnified by a factor to 10 so that the magnitude of the individual spectra 594 
coincides with the magnitude of the summed spectra. 595 

Results from the model (Figure 10) suggests that the shape of the spectrum does not change when 596 

there is a distribution of temperatures across the frozen layer and that the peak frequency provides 597 

an indication of the mean temperature of the frozen mass (dashed line on Figure 10). The mean 598 

temperature may in itself be usefully employed as the driver to set the shelf temperature in a 599 

process control scenario. In the development cycle, one might instead want to include a 600 

thermocouple in the base of the vial to measure the base temperature and then use the TVIS 601 

derived mean temperature to predict the temperature at the sublimation interface. That would 602 

require the assumption that the profile across the frozen layer was linear. 603 

Characterization of Annealing 604 

The inclusion of annealing step increases mass transfer rates during primary drying [51] as it 605 

overcomes ice crystal heterogeneities which arise from uncontrolled freezing a stochastic process, 606 

by promoting the growth of large ice crystals which in turn reduces the dry later resistance. An 607 

annealing step is also included to promote crystallization of bulking agent such as mannitol.  TVIS has 608 
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been used to improve our understanding of how drying rate changes with the annealing hold time 609 

and temperature (Fig. 11) [52]. 610 

   611 

Figure 11 A) Resistance profile of maltodextrin 10% w/v during annealing hold time B) Impact of annealing 612 
hold time on the drying time 613 

By recording the changes in electrical impedance of the formulation during annealing as well as the 614 

primary drying stage of the freeze drying cycle, it was possible to demonstrate that Ostwald ripening 615 

was the primary mechanism responsible for faster drying rate. Devitrification, the other mechanism 616 

in question, was ruled out as there was no significant amount of additional ice formation recorded 617 

as glass transition temperature was not increased following annealing. 618 

The crystal growth occurs at exponential rates and this phenomenon is almost complete after 3h. 619 

Any extension to this hold time in excess of 3 h is largely unjustified as the sublimation rate does not 620 

increase accordingly and these observations are in agreement with the R profile during annealing 621 

which records asymptote after an annealing hold time of 3h.  622 

Phase separation 623 

In certain cases, the formulation components exhibit physical incompatibility in that different phases 624 

separate out from the solution during freezing and are subsequently dried as separate layers.  In 625 

order to demonstrate the potential use for through vial impedance measurement in the 626 

determination of phase separation, a binary solution of 14% w/w dextran (MW 9-11000) (Sigma) and 627 
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14% w/w polyvinylpyrrolidone PVP K10 (Sigma) was analysed over a frequency range 100Hz-1MHz at 628 

scan interval of 0.5 min-1 throughout the following freezing cycle: Temperature ramp to -35 °C in 60 629 

minutes, hold then at -35 °C for 120 minutes and temperature ramp up from -35 °C to 25 °C in 60 630 

minutes using a HETO FD 08 freeze dryer. The product temperature was also recorded in a 631 

neighbouring vial using a type K thermocouple. Thermal analysis of the formulation was also 632 

performed by differential scanning calorimetry, scanning over the same temperature range.  633 

After fitting the impedance model in equation 1 to each spectrum, the time derivative of values of 634 

the element RS was seen to undergo a non-linearity with temperature, which was a direct 635 

consequence of the sample passing through a glass transition. Time derivatives of the RS parameter 636 

provided estimates for Tg’ of -13 °C and -24 °C, whereas the Tg’ estimates from DSC are -13 °C and -637 

19.5 °C (Figure 12) the latter was in agreement with Tg’ of individual components reported the 638 

literature [53, 54]. 639 
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640 

641 

 642 

Figure 12 Time derivative and imaginary capacitance of 14% w/w dextran and 14% w/w PVP (b) DSC scan 643 
during re-heating from -35 to 25 °C  644 

The close agreement between the two values for the Tg’ of the dextran phase (at -13 °C) points to 645 

the reliability of the new method, whereas the disagreement between the two estimates for the 646 

second Tg’ may point to real differences in the composition of the PVP phase.  647 

Conclusions 648 

We have reviewed the advantage and limitation of the various available PAT technologies, such as 649 

thermocouples, TDLAS and MTM, commonly used to monitor the freeze drying process. The 650 

translation of process understanding from the mini-pilot to scale up and production demands a new 651 
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PAT method that can bridge these scales and provide the verification that the process parameters at 652 

one scale can be achieved at another. TVIS provides part of that solution on the basis of a two 653 

parameter measurement: The first parameter is the measurement of the magnitude of the 654 

interfacial relaxation process which has been shown to provide a convenient non-invasive (albeit 655 

single vial) measurement of drying rates. The second is the frequency position of the interfacial 656 

relaxation which is sensitive to both temperature and phase behaviour. The most important critical 657 

product parameter is the product temperature at the ice sublimation interface, Tp, as it defines the 658 

efficiency of the process in terms of the rate of drying.  Here we demonstrate a possible 659 

methodology for determining simultaneously the critical process parameter and the impact it has on 660 

drying rates. In future, with TVIS capability embedded in different scales or dryer, it should be 661 

possible to track the product temperature and drying rate vs. time profile so that the influence of 662 

process- and equipment-related differences may be first understood and then compensated for, and 663 

a dynamic cycle developed which adapts the shelf inlet temperature and chamber pressure to 664 

maintain this profile. Other capabilities of the TVIS method in the determination of the glass 665 

transition and the strength/fragility of the unfrozen phase have been highlighted and suggestions 666 

provided as to the relevance these parameters have in assessment of product stability. 667 
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