
DE MONTFORT
UNIVERSITY

An Intelligent Controller
for Synchronous Generators

JEEN GHEE KHOR

NOVEMBER
1999

A thesis submitted in partialjuýfllment of the requirements of
De Monýfort University

for the degree ofDoctor ofPhilosophy

ABSTRACT

This thesis presents the research work carried out in the area of design, simulation and
implementation of a system for operating diesel-generators at variable speed. Recent

developments in control systems for synchronous generators and Electronic Design

Automation (EDA) techniques are reviewed and the requirements for a variable speed

generator system established. The basic system described is an as-dc-ac converter

configuration comprising a rectifier, d. c. link and a three phase IGBT inverter. To

validate the proposed system, a plant model of the diesel engine, synchronous generator

and rectifier is derived. The model is developed in the same EDA environment as the

control system to achieve a highly integrated design process. A complete analysis of
PWM inverter system, including simulations performed in TCAD (a power electronic

simulation software), as well as the design and hardware construction of PWM inverter

control circuitry are presented.

The variable speed system is controlled using a hardware-based Fuzzy Logic Controller

(FLC). The fuzzy system is designed and verified using a hardware description language

(VHDL) and the design is implemented in a Xilinx XC4010 Field Programmable Gate

Array (FPGA). Several original techniques, including the mini-Fuzzy Associative

Memory (FAM) table technique, are devised to optimise the design within the

constraints of the FPGA's area space. Finally, the complete variable speed control

system is tested on a 7.5kW permanent magnet synchronous generator set. Results are

presented which show that the control system is successful in governing the d. c. link

voltage when subject to varying load conditions. The use of VHDL and other EDA tools

in the design, simulation and implementation process are shown to offer substantial

benefits, for example, reduced concept-to-implementation timeframe, greater design

flexibility and higher rate of right-first-time designs. The intelligent controller devised

successfully allows variable speed operation of the generator while maintaining the

desired output frequency.

J. G. KHOR

ACKNOWLEDGEMENTS

I would like to extend my deep gratitude to my supervisor, Professor Malcolm

McCormick, for his invaluable guidance and support throughout the course of my

research. I am also greatly indebted to Dr. Marcian N. Cirstea for his excellent advice
both as a second supervisor and as a friend.

The work presented in this thesis would not have been possible without the much

appreciated support from Professor Lawrence Haydock and the staff of Newage

Intemational.

Special thanks are due to Mrs. Sheila Hayto, Electronic and Electrical Engineering

Departmental Secretary as her help and advice have proven to be invaluable assets in

many situations. I must also acknowledge the stimulating technical discussions I have

enjoyed with Dr. Wei Foong Low and the exceptional team work from all my

colleagues in the Electrical Machines, Drives, Control Systems and Numerical Field

Computation Research Group, especially Andrei Dinu and Yan-Ting Hu. To Dr.

Richard Wilson, Dilip Chauhan, Pritesh Karia, Tim O'Mara and Steve Regester many

thanks are due for their help in various aspects of the project.

I also wish to thank the people at Durham University who made it possible for me to

conduct the practical expenments, namely Professor Ed Spooner, Dr. Jim Bumby and

Mark Glendinning.

Last, but not in anyway least, I am particularly gateful to my parents, Ir. and Mrs. Khor

Bok Chim for their unfailing support and encouragement. It is to them that I owe the

most.

J. G. KHOR

CONTENTS

CONTENTS
Title Page i

Abstract 11

Acknowledgments iii

Contents iv

1. INTRODUCTION I
1.1 Overview of the Project 2
1.2 Overview of the Thesis 4
1.3 Original Contribution of the Thesis 5

2. CONTROL OF SYNCHRONOUS GENERATORS 6
2.1 Power Generators and Synchronous Machines 6
2.2 Power Electronics 8
2.3 Control Theory 10
2.4 Synchronous Generator Control 12

3. ELECTRONIC DESIGN AUTOMATION 18
3.1 VHDL 20
3.2 Xilinx Foundation Series 22
3.3 TCAD 25

4. SYSTEM REPRESENTATION 27
4.1 Rectifier Circuit 28

4.1.1 Voltage Analysis
4.1.2 Current Analysis

4.2 Synchronous Generator 30
4.2.1 Voltage Analysis
4.2.2 Equivalent Circuit Model

4.3 Generator-Rectifier Model 35
4.4 Diesel Engine 40
4.5 VHDL Modelling 44

5. PWM INVERTER DESIGN AND ANALYSIS 47
5.1 Pulse Width Modulation 48
5.2 Design and Simulation 51

5.2.1 Blanking Time
5.2.2 Protection Circuit
5.2.3 Output Filter

5.3 Simulation Results 56

J. G. KHOR iv

CONTENTS

5.3.1 Without blanking
5.3.2 With 2.7 ýLs of blanking time
5.3.3 Protection Circuit

5.4 Three Phase Inverter 60
5.5 Hardware Implementation 62

5.5.1 EPROM based PWM Controller
5.5.2 SA828 PWM Generator

6. FUZZY LOGIC CONTROLLER 74
6.1 Introduction to Fuzzy Logic 75

6.1.1 Historical Review
6.1.2 Fuzzy Sets and Fuzzy Logic
6.1.3 Types of Membership Functions
6.1.4 Linguistic Variables
6.1.5 Fuzzy Logic Operators

6.2 Fuzzy Control Systems 83
6.2.1 Fuzzifier
6.2.2 Knowledge Base
6.2.3 Rule Base
6.2.4 Defuzzifier
6.2.5 Fuzzy Logic in Control Applications

6.3 Fuzzy Control of Synchronous Generators 88
6.3.1 Control Block
6.3.2 Overall Strategy
6.3.3 Implementation Technology
6.3.4 Membership Functions
6.3.5 Fuzzy Rule Base
6.3.6 Inference Engine
6.3.7 Defuzzification Technique

6.4 Design of the Rule Base 95
6.4.1 PI-Control
6.4.2 PI-like Fuzzy Control
6.4.3 Interfacing Blocks

6.5 VHDL Description 99
6.6 Simulation 107

6.6.1 Simulation 1
6.6.2 Simulation 2
6.6.3 Simulation 3

7. FPGA IMPLEMENTATION 116
7.1 The Xilinx FPGA 116

7.1.1 Configurable Logic Blocks
7.1.2 input/output Blocks
7.1.3 Programmable Interconnects

7.2 Structural VHDL Design 119

J. G. KHOR

CONTENTS

7.3 Design Optimisation 126
7.3.1 Definition of Circuit Design Optimisation
7.3.2 Structural Multiplication
7.3.3 Optimising the Fuzzifier
7.3.4 "Mini" FAM Tables
7.3.5 Algorithm for Defuzzification

7.4 Downloading 139

8. SYSTEM ASSEMBLY AND PRACTICAL TESTS 144
8.1 Electromechanical System 145
8.2 Power Electronic System 148
8.3 Sensing & Interfacing Circuits 152

8.3.1 Voltage Sensor
8.3.2 Analogue to Digital Conversion
8.3.3 Digital to Analogue Conversion
8.3.4 Clocking Circuit
8.3.5 Actuator Interface Circuit
8.3.6 Power Supply

8.4 Hardware Tests 159
8.4.1 Selecting Clock Frequency
8.4.2 Step Change in Rectifier Load
8.4.3 Test Configuration with Inverter

9. CONCLUSIONS AND FURTHER WORK 166
9.1 The Control Strategy 166
9.2 The Design Process 169
9.3 Further Work 171

References vil

Bibliography x1v

Publications xvi

Appendix A VHDL Code: Simulation A-1

Appendix B VHDL Code: Implementation B-1

Appendix C PWM Controller C-1

Appendix D Hardware D-1

Appendix E Test Results E-1

J. G. KHOR VI

Chapter
1

Introduction

ynchronous generators are responsible for the bulk of the electrical power

generated in the world today. They are mainly used in power stations and are

predominantly driven either by steam or hydraulic turbines. These generators are usually

connected to an infinite bus where the terminal voltages are held at a constant value by

the 'momentum' of all the other generators also connected to it. Another common

application of synchronous generators is their use in stand alone or isolated power

generation systems. The prime mover in such applications is usually a diesel engine.

The aim of the research presented in this thesis is to develop an improved control

system for diesel engine driven stand alone synchronous generator sets. Its primary

objective is to design and build a working prototype that incorporates a new control

strategy and the latest engineering innovations. The subsidiary objectives include

ensuring that the prototype system:

o can be used effectively as a starting point for further studies into a new generation of

controllers for stand alone synchronous generator sets

incorporates a certain amount of artificial intelligence such that it is flexible and not

specific to a particular type of engine-generator set

is designed using a systematic process which enables rapid prototyping of future

improvements

9 takes advantage of modem digital electronic technology.

J. G. KHOR 1

CHAPTER 1- INTRODUCTION

1
.1 Overview of the Project

A block diagram of the proposed system is shown in Figure 1-1. It consists of a

permanent magnet synchronous generator, a rectifier, an inverter and two electronic

controllers. A diesel engine is used to provide the mechanical power to the generator

and acts as the prime mover.

Permanent Power

Magnet Output
Diesel Engine -0. Synchronous Rectifier Inverter

Generator

Fuzzy PWM
Logic Controller

Controller

Figurel-I Block diagram of the proposed generator control system.

In a conventional electromagnet generator system, the generator output voltage is

regulated via its field winding by an automatic voltage regulator while the speed of the

engine is maintained at a fixed operational speed by a speed governor. Assuming a

direct coupling or 1: 1 gear ratio, the engine's operational speed is deten-nined by the

equation:

nmech

where
n-ech is the mechanical operational speed in revolutions per second

f is the desired electrical frequency (usually 50Hz in U. K. and Europe)

p is the number of pole-pairs in the synchronous machine.

It may seem odd that the operational speed of the system should be determined by these

variables instead of factors which have a more direct influence on the system's

performance such as the engine's efficiency. Historically, and even in a lot of present

J. G. KHOR

CHAPTER 1- INTRODUCTION

situations, this approach is viewed to be more economically and technically sound, since

changing power frequencies can be difficult and expensive. However, in the past two

decades or so, there has been a progressive development in the field of power electronic

technology. With the introduction of power devices such as power Metal Oxide

Semiconductor Field Effect Transistors (MOSFETs), Insulated Gate Bipolar Transistors

(IGBTs), inverter and rectifier modules, the control of electrical power, especially at low

voltages (415V a. c. and less) is becoming increasingly easy. With this in mind, the

thesis proposes an engine-generator control system that is designed in a fashion that

allows variable speed operation. In order to implement this strategy, an a. c. -d. c. -a. c.

conversion system is necessary to isolate the output electrical frequency from the effects

of variable speed operation. This conversion system is represented by the rectifier and

inverter blocks in Figure 1-1 and is referred to as the d. c. link converter in the thesis.

Because the output frequency is maintained at a specified value, the complete system is

referred to as a Variable-Speed Constant-Frequency (VSCF) System. A Pulse Width

Modulation (PWM) inverter controller is used to maintain control over the output power

waveform, therefore the power frequency can be totally independent of the mechanical

speed. This allows the engine to be operated at a speed that is most suitable for the

overall system efficiency.

A Fuzzy Logic Controller (FLC) is developed to control the speed of the engine. The

control surface of the FLC is determined by a set of rule base. By changing the control

inputs and the rule base the FLC can effectively be used to implement a wide range of

different control laws, allowing the system to be studied under different criteria. In order

to further enhance the efficiency of the design process, the FLC is developed on a fully

computerised Electronic Design Automation (EDA) platform. Using this approach, the

FLC is made up of individual 'components' designed using a hardware description

language known as 'Very high speed integrated circuit Hardware Descri tion

Language' (VHDL). The components are then integrated together and imprinted onto a

Field Programmable Gate Array (FPGA) to form a control chip (integrated circuit). The

architecture of the FLC can be restructured quite easily to suit different needs, simply by

changing the 'components' in its system. This approach gives the FLC an almost

generic feature.

J. G. KHOR

CHAPTER 1- INTRODUCTION

1.2 Overview of the Thesis
In presenting the work of the research, the following two main arguments are advanced.

e Due to recent developments in power electronic technology, it has become feasible to

consider exploiting the potential of operating stand alone power generators at

variable speed, or at least, at speeds which are not detennined exclusively by the

desired frequency and number of poles in the machine.

* The use of VHDL and FPGA/ASIC technology in the design of control systems for

electrical machines and power electronic systems increases the efficiency of the

design process, even to the extent of enabling rapid manufacturing of integrated

control circuits.

The content of the thesis is divided into nine chapters, including this introductory

chapter. Chapter 2 briefly traces the development of synchronous generators and their

control systems since their invention while Chapter 3 introduces the EDA software,

design tools and programming languages used in the research. In Chapters 4 and 5,

mathematical studies of the synchronous generator and various other elements of the

control system are presented.

Chapters 6 and 7 enter into a detailed discussion on the theoretical as well as practical

aspects of the fuzzy logic controller. Practical experiments, tests and results of the

complete system are presented in Chapter 8. In the final chapter of the thesis, Chapter

9, there is a general discussion on the research project and some conclusions are drawn.

Also included in that chapter is an evaluation of the limitations of the work and further

considerations to address these issues.

J. G. KHOR

CHAPTER 1- INTRODUCTION

1.3 Original Contributions of the Thesis
The original work and achievements of the project presented in this thesis can be

surnmarised by the following points:

i. The design and implementation of a power electronic system including the

simulation and analysis of the PWM inverter using a simulation tool called TCAD.

Two control circuits were built to generate the PWM switching patterns: one

incorporating the use of C programs and memory circuits while the other uses an

integrated circuit.

ii. The development of mathematical models for the engine, generator and rectifier.
Simulations of the models were achieved using VHDL. This allows the functionality

of the FLC design to be verified before progressing to the implementation stage.

iii. The design and simulation of an original FLC using VHDL for the purpose of

controlling the engine-generator set. The FLC was implemented in a Xilinx FPGA.

iv. The development of original ideas and algorithms such as the model of Mamdami's

fuzzy inference engine using switches and the 'window' (using 'Mini-Fuzzy

Associative Memory tables) method of fuzzy inference to reduce the area size of the

FLC design.

v. The design of numerous digital and analogue circuits as interfaces for control

purposes.

J. G. KHOR

Chapter
2

Control of
Synchronous Generators

T his chapter begins by looking at the development of power generators from the

time of their invention to the present. The following sections discuss the control

systems of synchronous generators, including topics such as power electronics and

modem control theory in an attempt to tie these developments to the present research

work.

2.1 Power Generators and Synchronous Machines

The discovery of electromagnetism by Michael Faraday in 1831 led to the rapid

development of electromagnet machines for converting mechanical energy into

electricity. Within a few months of Faraday's announcement, an Italian scientist, Signor

Salvator dal Negro, invented an electric generator in which a permanent magnet was

pushed and pulled to provide the necessary motion. The first of the rotating

electromagnet generators as we know today was invented by Hypolite Pixii in Paris. It

was made public at a meeting of Academie des Science in 1832. Later that year, Pixii

added a commutator to his machine to obtain direct current (d. c.) from the alternating

current (a. c.) produced. Early electric generators, or dynamos as they are known,

produced d. c. electric current on a small scale. They were used mainly for supplying

electro-plating baths and later for providing power to arc lamps in lighthouses. The

invention of light bulbs and steam-engine-driven generators in America by Thomas A.

J. G. KHOR

CHAPTER 2- CONTROL OF GENERATORS

Edison led to the commercial expansion of electric generation for lighting purposes
towards the end of the 19'h century. In the early days direct current was the preference,
but when long distance transmission become necessary alternating current was found to
be more suitable. Power transmission at high voltages is more economical and the

voltage level of alternating current can be easily changed using transformers. By the

second half of the 20" century, alternating current became almost universal, leading to

the widespread use of a. c. generators. Among the various types of a. c. generators, the

polyphase synchronous generator is the largest single-unit electrical machine in

production today, with power ratings of up to several hundred MVA's being common.
They are widely used in large power stations as well as in industrial, marine,
telecommunication and other standby or continuous power applications. Recent work in

synchronous generators is mainly aimed at improving the efficiency of the machine,

quality of the output power and the stability of the system.

Although a massive proportion of synchronous generators are electromagnetic, the use

of pennanent magnet synchronous machines as stand alone generators has been studied

for more than half a century. Permanent magnet synchronous generators (PMSGs) are

more difficult to regulate and it is only with the recent developments in power

electronics that they are seriously being considered for various applications [1,2,3].

One of the main advantages of the control system proposed in this thesis is its ability to

regulate stand alone PMSGs as well as electromagnet generators. This functionality is

duly demonstrated by the experiments presented in Chapter 8 of this thesis, in which a

PMSG is used.

It has to be mentioned that synchronous machines are by no means the only type of

electrical machine used for stand alone power generation. Studies have been conducted

into the use of induction generators [4,5], reluctance generators [6] and other types of

machines that might prove to be more suitable in certain applications.

J. G. KHOR

CHAPTER 2- CONTROL OF GENERATORS

2.2 Power Electronics

Since the invention of electrical machines in the 19'h century, there has been a need to

convert electrical power for various applications such as electrical machine drives,

voltage regulation, welding, heating, etc. Initially, rotating machines were

predominantly used to control and convert electrical power. It was the introduction of
the glass bulb mercury arc rectifier (1900) which led to the beginning of the power

electronics era. Power Electronics is the branch of engineering concerned with the

application of electronics in the control and conversion of electrical power.

Early power electronic devices such as thyratrons and ignitrons were crude and

unreliable. The introduction of selenium rectifiers during the World War H was

particularly welcomed due to their reliability. In 1948, the invention of the p-n junction

transistor by Bardeen, Brattian and Shockley from Bell Laboratories was seen as a

revolutionary advancement in the field of electronics. This laid the foundation for the

development of the p-n-p-n transistor switch by J. L. Moll, et. al. (1956), a device which

later became known as the thyristor, or silicon controlled rectifier (SCR). By 1957, the

first commercial thyristor was made available by General Electric Company. This

marked the beginning of modem power electronics era. This three terminal device had a

continuous current rating of 25A and a blocking voltage of up to 30OV. Since then, the

thyristor has become one of the most popular devices in power electronics. Circuit

design engineers have constantly worked on improving the operating performance of the

thyristor, resulting in the creation of a range of different types of thyristors optimised for

different applications. They can generally be grouped into six categories, namely [7]:

1. Phase Control Thyristor

2. Inverter Thyristor

3. Asymmethcal Thyristor

4. Reverse Conducting Thyristor (RCT)

5. Gate-Assisted Tum-Off Thyristor (GATT)

6. Light-Triggered Thyristor.

J. G. KHOR

CHAPTER 2- CONTROL OF GENERATORS

Another class of power electronic devices subsequently developed were the controllable

power switches. Thyristors, while being able to be latched on by a control signal, can

only be turned off by the power circuit, which is a great drawback. However,

controllable switches can be turned on as well as turned off by the control signals.
Although controllable switches like the transistor have been around since 1948,

designing them to possess high power handling capabilities was not achieved until much
later. Compared to thyristors, controllable power switches offer greater flexibility in

power applications, including the possibility of controlling d. c. circuits without

complicated commutation circuitry. Thus, they are particularly attractive in inverter

applications. Examples of devices in this category are Gate Turn-off Thyristors (GTO),

power transistors, power MOSFETs , Integrated Gate-Commutated Thyristors (IGCT)

and IGBTs.

The GTO is a thyristor-like latching device but can be turned off by a negative gate

current. Power transistors and power MOSFETS were developed from small signal

designs to later versions which are capable of handling higher voltage applications in

the order of hundreds of volts. In the early 1980s, the insulated gate bipolar transistor

(IGBT), which combines the low on-state conduction losses of the bipolar junction

transistor (BJT) and the high switching frequency of the MOSFET, was developed [8] .
The IGBT has since gained widespread popularity in power electronic applications.

Commercial IGBTs are currently available up to 3.3kV. These components can be

utilised in a range of power applications. The development of such power devices is

expected to grow as the use of new materials such as monocrystaline silicon carbide

(SiC) increases their voltage ratings and reduces thermal resistance [9,10].

Generally, a power electronic system comprises two separate sets of circuits:

* the logic level control circuitry

* the high power circuits.

Recent developments in electronics made it possible to combine these two components

into a single integrated circuit, the power integrated circuit (PIC). A PIC is defined by

Thomas [11] as an integrated circuit which combines the logic level control and/or

protection circuitry with power handling capability of supplying 1A and withstanding at

J. G. KHOR

CHAPTER 2- CONTROL OF GENERATORS

least IOOV. With the current trend towards integrated solutions, this technology is

receiving a substantial amount of attention. Integrated power electronic devices are seen

as the solution for smaller and lower cost power electronic systems in the future.

2.3 Control Theory

The function of a control mechanism is to maintain certain essential properties of a

system at a constant value under perturbations. Historical control systems which are

simple but effective have been employed in water regulation and control of liquid level

in wine vessels for centuries. Some of these concepts are still used today, for example

the float system in the water tank of the toilet flush. However, modem control systems

used in today's industry, including the control of industrial generators, are much more

complex and owe their beginnings to the development of the Control Theory. The

earliest significant work in modem automatic control can be traced to James Watt's

design of thefly-ball governor (1788) for the speed control of a steam engine. In 1868,

Maxwell [12] presented the first mathematical analysis of feedback control. It was

during this time that systematic studies into control systems and feedback dynamics

began. One significant development was the well known Routh's Stability Criterion

(1877) which won E. J. Routh the Adam's Prize for that year.

Early 20'h century saw the beginning of what is now known as Classical Control

Theory. Minorsky's work (1922) on the determination of stability from differential

equation describing the system (characteristic equation) and Nyquist's development

(1932) of a graphical procedure for determining stability (frequency response) have

largely contributed to the study of control theory. In 1934, Hazen [13] introduced the

terni 'servomechanism' to describe position control systems in his attempt to develop a

generalised theory of servomechanism. Two years later, the development of the

Proportional-Integral-Derivative (PID) controller was described by Callender et al.

(1936). The Control Theory, like many branches of engineering underwent significant

developments during World War II. Based on Nyquist's work, H. W. Bode introduced a

method of feedback amplifier design, now known as the Bode plot (1945). By 1948,

J. G. KHOR 10

CHAPTER 2- CONTROL OF GENERATORS

root locus method of design and stability analysis was developed by W. R. Evans [14].

With the introduction of digital computers in the 1960s, the use of frequency response

and characteristic equations began to give way to Ordinary Differential Equation

(ODE), which worked well with computers. This led to the birth of Modern Control

Theory. While the term Classical Control Theory is used to describe design methods of
Bode, Nyquist, Minorsky and similar workers, Modem Control Theory relies on ODE

design methods, like the State Space Approach, which are more suitable for computer

aided engineering. Both these branches of control theory rely on mathematical

representation of the control plant from which to derive its performance. To address the

issues of non-linearities and time-variant parameters in plant models, control strategies

that continuously adapt to the variations of plant characteristics have been introduced.

Generally known as Adaptive Control Systems, they include techniques such as self-

tuning control, H-infinity control, model referencing adaptive control and sliding mode

control. Studies also include the use of non-linear state observers to continuously

estimate the parameters of the control plant [15]. They can be employed to tackle the

issue of non-observability, that is the condition whereby not all of the required states are

available for feedback. This may be the cheaper solution because it does not require as

many sensors, such as in variable speed drives [16], or because it is physically difficult

or even impossible to obtain the feedback states such as in a nuclear reactor.

In many instances, the mathematical model of the plant is simply unknown or III-

defined, leading to greater complexities in the design of the control system. It has been

proposed that Intelligent Control Systems give a better performance in such cases.

Unlike conventional control techniques, intelligent controllers are based on Artificial

Intelligence (AI) rather than plant model. They imitate the human decision-making

process and can often be implemented in complex systems with more success than

conventional control techniques. Al can be classified into expert systems, fuzzy logic,

artificial neural networks and genetic algorithms. With the exception of expert systems,

these techniques are based on soft-computing methods. This means that they are capable

of making approximations and 'intelligent guesses' where necessary, in order to come

out with a 'good enough' result under a given set of constraints. Intelligent control

systems may employ one or more Al techniques in its design.

J. G. KHOR 11

CHAPTER 2- CONTROL OF GENERATORS

2.4 Synchronous Generator Control

The study of synchronous generator control systems can roughly be divided into two

parts: voltage regulation and speed governing. Both control elements contribute to the

stability of the machine in the presence of perturbations. A reliable control system set is

essential for the safe operation of generators. There are various methods of controlling a

synchronous generator and suitability will depend on the type of machine, its

application and the operating conditions. For instance, the voltage regulation of an

electromagnet synchronous generator is usually achieved by controlling the field

excitation current whereas permanent magnet generators do not have excitation systems

and require a totally different strategy.

The voltage regulation system in a electromagnet synchronous generator is called an

Automatic Voltage Regulator (AVR). It is a device which automatically adjusts the

output voltage of the generator in order to maintain it at a relatively constant value. This

is achieved by comparing the output voltage with a reference voltage and, from the

difference (or error), it makes the necessary adjustments in the field current to bring the

output voltage closer to the required value. Older AVRs used in the early days belong

to a class of electromechanical devices. They are generally slow acting and possess

zones of insensitivity known as dead bands. There is a wide variety of

electromechanical AVRs, ranging from vibrating contact regulators to carbon pile

regulators [t7,18]. However, they are now replaced with continuously-acting electronic

regulators. These electronic AVRs are much faster and do not possess dead bands, hence

the term 'continuously-acting'. Figure 2-1 shows a block diagram of an example of an

electronic AVR system [19]. The generator set comprises two sections: the Main section

and an Exciter. Each section consists of an armature winding and a field winding.

Electrical power is derived from the terminals of the Main armature winding. The AVR

maintains a closed-loop control of the terminal voltage by taking in a ratio of the Main

armature voltage as the input, comparing it to a pre-set reference value and producing a

control signal to the Exciter field based on the error. This induces the correct amount of

current in the Exciter armature and the current is transferred into the Main field winding

via a set of rotating diodes. The complete system is an efficient and well established

method of regulating the terminal voltage in a stand alone electromagnet synchronous

J. G. KHOR 12

CHAPTER 2- CONTROL OF GENERATORS

generator set. Power system generators also employ AVRs in their control systems, but

they form only a part of a comprehensive control and regulation system.

Electrical Power Output

Power

Voltage
Sense

Set Reference
- Voltage

A. V. R.
Output

Main Armature
(Stator)

I

Main Field (Rotor) I ý*ý

VLZ Rotating
Mechanical Diodes
Rotational

Power Input

Exciter Field
(Stator)

Exciter Armature
(Rotor)

Figure 2-1 Block Diagram of a Synchronous Generator and A VR.

Most AVRs utilise analogue electronics to accomplish the control tasks. It is found to be

cheap, simple and effective for the job. However, like all electronic applications, there is

a growing interest in applying digital electronic technology to AVRs. The major

advantages of digital AVRs over their analogue counterparts are the capability of

realising sophisticated control functions and the ease of transmission and recording of

information. The nature of digital systems allows complex algorithms to be executed

either as a software based system [20] or a hardware based system [21]. Digital AVRs

are capable of performing all the tasks of their analogue counterparts as well as a range

of additional functions, including the following:

i. They can have direct interaction with higher levels of controls. This allows them to

be interfaced with the main computer of the building, power plant or supervisory

system, enabling inter-operability.

J. G. KHOR 13

CHAPTER 2- CONTROL OF GENERATORS

ii. The control parameters are more accessible to modifications with built-in logic

switches and software tuning programmes. Changes in the control parameters of

analogue AVRs can be difficult and expensive to implement. Therefore the parameter

values of analogue AVRs are usually fixed at the design and commission stage.

iii. Stabilisers can be configured to switch in and out the system without interrupting the

service, depending on the need.

iv. They can operate at optimal or sub-optimal conditions over a wider range of

operation. This is especially true with the introduction of adaptive and intelligent

controllers.

In as early as 1976, Malik, Hope and Huber worked on a software-based digital AVR

[20] for a power system generator, whereby the control functions of the AVR were

stored in an on-line station mini computer. The flexibility of a software based system

extended the mathematical capabilities of the controller and allowed for one basic

hardware design to be used with different control strategies, thus drastically reducing

the cost of redesigning the controller to different specifications.

The digital AVR used by Hirayama, et. aL (1993) [22] was capable of all the functions

of an analogue AVR as well as a range of additional features such as advanced fault

status indication, self diagnostic features, verification of generator dynamics and

recording of transients. A more comprehensive monitor of the power systems was also

possible by feeding the recorded transient data into a personal computer (PC) via a

RS232C link. Dedicated software in the PC will then calculate the Bode diagram and

indicate transient responses and rise times. Similarly, the Digital Excitation Control

Systems (DECS) used in Godhwani and Basler's (1996) [23] study into design

methodology of controllers offer all the advantages of digital controls. In their work, the

PID settings for a generator controller were programmed into an Electronically Erasable

Programmable Read Only Memory (EEPROM). Due to the fact that different systems

require different PID settings for optimal performance, manufacturers of analogue

controllers often have to provide multiple designs to accommodate variations in stability

networks. Godwhani and Basler proposed a design methodology - Direct Design

Method of Controller Design - that allows the closed loop poles to be placed at any

desired location. The PID settings were then custom designed for each individual

J. G. KHOR 14

CHAPTER 2- CONTROL OF GENERATORS

system using this method and stored into the EEPROM. This creates a single design

which is flexible for the operation of a wide range of generator sizes (the study tested on

generators ranging from 1 OkW to 5 OMW).

As a result of the highly non-linear nature of synchronous machines, it can be quite
difficult to design a control system with high performance over different operating

points. This is becoming an increasingly important issue especially in power systems.
To address the problem, Marino [24] proposed exactfeedback finearisation, a technique

which received some recent attention [25]. There is also interest in adaptive AVRs [26,

275 28] and power system controllers. There are currently several different approaches
to adaptive control of synchronous generators in power system control such as:

" linear optimal control theory [29]

" self-tuning control theory [30,31]

" fuzzy logic [32]

" adaptive neural-network [33,34,35]

Although these works are mainly targeted for power systems applications, some of the

ideas presented can be incorporated into other applications. Stand alone synchronous

generators, systems with conventional AVRs and speed governors have always been

operated at a fixed speed. The speed is determined by the desired power frequency and

the number of pole-pairs in the machine. Running the generator at any other speed is not

usually considered as a design option. One of the main problems in such a scheme is the

task of maintaining the desired power frequency, especially under heavy load. Since the

frequency is directly proportional to the speed, any change in speed would certainly

disrupt the shape of the power waveform in that the frequency would vary in relation to

the speed. It is only with recent developments in power devices and converter

technology that Variable-Speed Constant-Frequency (VSCF) systems have been given

serious attention. The matrix converter proposed in [36] initiated several studies into the

a. c. -a. c. converter [37,38,39], but disparate issues such as commutation problems and

the complexity of switching schemes generate reservations for its use in the present

work. A more common solution for a. c. -a. c. power frequency conversion is to buffer the

transition with a d. c. link, effectively producing an a. c. -d. c. -a. c. conversion scheme. In

J. G. KHOR 15

CHAPTER 2- CONTROL OF GENERATORS

this thesis, a power electronic system implementing this scheme is called a d. c. link

converter. The main components of a d. c. link converter include some form of a

rectifier, energy storage component(s) such as a smoothing capacitor and an inverter.
Some schemes also incorporate a boost converter in the d. c. link [40].

In the last decade, d. c. link converters received considerable attention in the area of
VSCF wind energy systems. VSCF schemes are widely used in stand alone wind energy

conversion systems to solve the problem of frequency fluctuations which result from

changes in wind velocity and load. Figure 2-2 shows a simplified block diagram of a
typical VSCF wind energy conversion system that incorporates a d. c. link converter.
Although most of these schemes are designed for induction generators [41,42,43,44],

there are also numerous projects which involve synchronous generators [45]. Research

in this area usually focus around control systems for capturing maximum energy from

varying wind velocity. Others include work such as the study of interface systems to

improve the quality of power from VSCF wind turbines connected to a utility grid
[46,47,48].

Wind
Turbine

Power
Output

Figure 2-2 Simplified block diagram qf a VSCF wind energy conversion system.

Unfortunately, the application of VSCF schemes in other systems such as stand alone

generators is somewhat limited. In an engine driven system for example, the choice of

speed can have great influence on the operational characteristics and efficiency of the

engine. With the correct setting, it is possible for the system to be optimised for specific

performances such as fuel consumption, exhaust emissions, vibrations and generator

ratings. For example, in a domestic or recreational application, where the generator

system has to be placed close to the living space, reducing noise pollution may be an

important consideration when selecting the operational speed.

J. G. KHOR 16

CHAPTER 2- CONTROL OF GENERATORS

This chapter has shown how control theory and generator systems have evolved over the

years. It is important to note that in building a control system, the design process can

sometimes be just as important as the final product itself The next chapter describes

some of the electronic design tools used in the development process of the control

system.

J. G. KHOR 17

Chapter
3

Electronic Design Automation

W ith the increasingly competitive nature of the electronics industry, the

development time for new products is rapidly decreasing. Engineers are

constantly expected to develop new products for the market within a short time. The

introduction of Electronic Design Automation in the late 1970s and early 1980s has

allowed the development time of electronic designs to be shortened considerably. EDA

is a design methodology in which dedicated tools, primarily software products, are used

to assist in the development of integrated circuits, Printed Circuit Boards (PCBs) and

electronic systems. In the early days, EDA tools were nothing more than a set of

incoherent design tools that aid in a specific stage of the development, providing what

are called 'islands of automation'. Where the different tools need to share data, user-

written data translators were sometimes used. EDA tools have since evolved into an

integration of design toolsets that conform to standard data management protocol, thus

eliminating the need for data translators.

Some of the advantages of EDA include[49] :

9 enabling more thorough verification of design using simulation tools. This allows the

design to be verified before being implemented into hardware, thus design faults can

be detected in the early stages of the design process.

9 exploring alternative designs using the synthesis and implementation tools. The

designer can create a few alternative designs before selecting the best design for the

implementation.

J. G. KHOR 18

CHAPTER 3- ELECTRONIC DESIGN AUTOMATION

9 automating some of the design steps, thus allowing the designer to concentrate on

more important activities.

o ease in design data management.

* enabling the designer to operate at higher levels of abstraction, i. e. 'top-down' design

method. This is possible with hardware description languages such as VHDL (see

Section 3.1) and Verilog HDL. The designs are first described at register transfer

level (RTL) where the design functions are addressed, with no reference to the

hardware required for implementation. RTL descriptions can then be automatically

translated into gate level using logic synthesis tools. This design methodology is

similar to software programming, where the programme is written in a high level

language before being converted into machine language.

The popularity of EDA tools increased rapidly with the widespread use of Application

Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays (FPGAs) in

the 1980s. In ASIC technology, the cost of correcting a design flaw late in the design

process can be very high. The need for 'right-first-time' designs led to demands for

reliable EDA tools. With increasing use of ASICs and FPGAs in power electronic

control systems, EDA techniques are increasingly being employed [50,51,52]. This has

led to the development of a new design approach that relies more on verification by

simulation, allowing new products to be developed and produced for the market in a

shorter time.

J. G. KHOR 19

CHAPTER 3- ELECTRONIC DESIGN AUTOMATION

3.1 VHDL

Hardware Description Languages (HDLs) in general were conceived as a result of the

growing need to model and specify electronic circuits in a semantic form. HDLs share

many common features with software programming languages but there are also distinct

differences. For example, HDLs supports concurrent language construction while most

software programs are based entirely on sequential operations. In addition, HDLs need

to contain some structural information, which is not present in software programs.
Detailed timing specifications are important in HDL description of circuits whereas

software programs are usually less concerned with time-frames, with some exceptions.

These differences result from the fundamental features of hardware circuits and software

programs.

There are many types of HDLs in the market today and VHDL is arguably the most

established one. VHDL is the acronym for VHSIC (Very High Speed Integrated Circuit)

Hardware Description Language. It originated from the programming language ADA in

the early 1980s as an offshoot of the VHSIC project by the United States Department of

Defence. The aim of introducing this new language was to overcome two major

drawbacks in the development of highly complex integrated circuit at the time: the lack

of a language that could effectively describe the complex circuits which were being

developed and the lack of a standard format among participating parties in the VHSIC

programme. VHDL was adopted as an IEEE standard (VHDL-87) in 1987 and its

development has been extensive ever since. Today, apart from circuit modelling, VHDL

is also used in the design of electronic systems and forms an integral part of most EDA

tools. In this project, VHDL is used to design a fuzzy logic controller. This section

presents a brief description of the language for the benefit of the reader who is not

familiar with VHDL. The materials presented here relates to the important features used

in this thesis only. It is not a proper description of the language. The definition of the

language is detailed in [53] and in-depth discussions can be found in all major VHDL

text books [54,55].

J. G. KHOR 20

CHAPTER 3- ELECTRONIC DESIGN AUTOMATION

VHDL is a component-based language. Each VHDL component is made up of two main

parts, an entity and an architecture as shown in Figure 3-1. The entity can be described

as the outer shell of the component. It defines the input and output ports of the

component and also describes how a component relates to the environment and other

components. The actual functionality of the component is described in the architecture.
It may contain a behavioural-level description, in which the design is modelled using

mathematical functions or a structural-level description
, in which the design is modelled

using logical operations and possibly other components.

entity

All statements within the VHDL architecture are executed concurrently. However, it is

possible to define sequential operations but these operations can only exist within a

process. It follows that, while the statements inside a process are executed sequentially,

all processes inside an architecture are executed concurrently. Because VHDL supports

both concurrent as well as sequential descriptions, it has become necessary to define two

types of assignment operators. The symbol '<=' is the assignment operator for a

concurrent object while ': =' assigns values to sequential objects. These operators are

used throughout the designs presented in this thesis. Both can exist inside a process but

like all sequential statements, the sequential assignment operator is illegal outside a

process. It is worth noting that when concurrent statements are used inside a process, the

effects of the statements are realised concurrently regardless of their positions within the

process structure.

VHDL is a strongly typed language. The main data types used in this thesis are real,

integer and std_logic-vector. The type real was used to declare objects for the

mathematical simulations of the generator system described in Chapter 4. In the

J. G. KHOR 21

CHAPTER 3- ELECTRONIC DESIGN AUTOMATION

Standard Library, it is specified as having the range from -1. OE+38 to +I. OE+38 [531,

making it versatile for simulations. However, real objects do not have well-defined

structural meaning and are not supported by current synthesis and implementation tools.

Therefore, they are not used in the design of the systems which are implemented in
hardware. The types integer, std_logic and std_logic-vector, on the other hand, are well

supported for implementation.

Stdjogic and stdjogic-vector are data types that are declared in the IEEE package

stdjogic-l 164. They are used extensively in the designs presented in Chapter 7 because

they represent actual hardware signals. Each stdjogic object represents one bit and the

stdjogic-vector is an array with a specified number of bits. This thesis does not enter

into detailed discussion on the properties of the data types and the reader is referred to

[54,55] for further information.

3.2 Xilinx Foundation Series

The Foundation Series is an EDA software by Xilinx Inc. for designing and

implementing programmable hardware such as Field Programmable Gate Arrays

(FPGAs) and Programmable Logic Devices (PLDs). It is made up of several EDA tools

for specific design tasks which are discussed in greater detail later in the thesis. The

main component of the software is the Foundation Project Manager, an application that

manages all the different EDA tools in the software and maintains a unified

environment for the user. Figure 3-2 shows the window of the Project Manager. It

comprises three frames. The upper right hand frame depicts the flow diagram of the

project where the EDA tools are divided into five groups: Design Entry, Simulation,

Implementation, Verification and Programming.

There are three EDA tools in the Design Entry group: HDL Editor, FSM (Finite State

Machine) Editor and Schematic Editor. This allows the project design to be described

either as a HDL program, a state machine description or as a schematic design. The

design presented in this thesis is described using both the HDL Editor and the

Schematic Editor. From the Design Entry stage, the design can be synthesised, a process

that converts the design, whether it is a HDL program or a schematic, into a netlist

J. G. KHOR 22

CHAPTER 3- ELECTRONIC DESIGN AUTOMATION

format. The netlists contains the structural description of the design and are used for

various design operations including functional simulation. At this stage, it is not yet

specific to any technology.

File Document View Project ImplemeNation lools L! elp

mv
Files

.
Versions Flo%,, / Contents Reports Syrdhesis

El r-I fl c
C flc. ucf flc (401 OXLPC84-3)

IB P flcl. sch

e flc
simprims
xc4000x

r, ' T Cý N F, N ýr 0Y

IMP' EMENTPTION VE-, 41FICPT 10ý,,

PP Or4QAMt-I

PCM StartKilinx Foundation F1.5 - 11.1lessages - Thu Aug 12 1 5ý04ý52 1999
Pcrn - ----------

Opening project. tIc ------- ---
PCM Design Type Schematic
PCM Minx server initialization
PCM
PcM Opening Xifinx project
Pcm Reading Xilinx project

Cons ole

Ready

Figure 3-2 Foundation Project Manager

In order to download the design into hardware, the target technology has to be specified.

The netlist is complied into a format that is compatible to the targeted device in a

process that is called implementation. It is important to note that the targeted device has

to be confinned at the start of the implementation procedure. Figure 3-3 shows the

implementation of a design targeted at the Xilinx XC4010XL-PC84 device. The

segments of the implementation process are shown by the diagram in Figure 3-4.

Further information on each implementation segments as well as on the Foundation

Series in general can be found in [56,57]. For the present discussion, it is sufficient to

point out that the final product of this procedure is a bitstream file which can be directly

downloaded into the targeted device.

J. G. KHOR 23

CHAPTER 3- ELECTRONIC DESIGN AUTOMATION

D evice
14CIl OXLPC84

-:
J

Spe

New version narne. -

Ne-,., ý revision name:

Ophons...

............................ 7-

Rijn
.......................... . ..

Cancel H elp
I

Figure 3-3 Speeifiying target device during implementati . on.

Mon a M

Translate Map PlacdRoute Timing Configure

Figure 3-4 Segments of implementation process.

J. G. KHOR 24

CHAPTER 3- ELECTRONIC DESIGN AUTOMATION

3.3 TCAD

Analysis of the PWM inverter is performed using a power electronic simulation

software called TCAD. Although one of the propositions of this thesis is the use of a

common EDA platform for development, from design through to implementation, it is

found that TCAD is more suitable for the analysis of the PWM inverter for various

reasons. The justifications for using this software are as follows:

e TCAD is specifically designed for the analysis of power electronic systems. It

contains numerous predefined models of power electronic devices and electrical

machines such as thyristors, power switches and synchronous generators. There are

also logical function blocks to model control algorithms for the power electronic

systems. Using a dedicated software such as TCAD eliminates the need to model

certain objects from scratch and reduces the analysis time.

e The analysis and development of the PWM inverter are relatively independent of the

FLC at this stage. Furthermore, unlike the FLC, the details of the inverter simulation

designs are not required for circuit implementation. As a result of these factors, the

benefits of an integrated design approach are not applicable and the advantages of

using a separate software such as TCAD begin to outweigh the advantages of using a

common EDA software, i. e. VHDL and Foundation Series.

Power electronic systems can usually be divided into two main sections, the power

circuit and the control circuitry. The power circuit is made up of a set of devices with

high power capabilities, for example IGBTs and thyristors, while the control circuitry is

essentially the 'intelligent' part of the system and usually comprises low current devices

and logic gates. TCAD is equipped to model and analyse both sections quite

conveniently. The power circuit is analysed using circuit analysis which is based on

Kirchhoff s laws. This method of computation is time consuming, therefore a different

approach is used in the control section. The control circuitry can be adequately modelled

by signal flow modelling which is based on dynamic input/output relations like transfer

functions and Boolean algebra. Signals from the control circuitry can be directly applied

to the power circuit. However, the variables of the power circuit have to be passed into

the control circuitry via Sensor units. There are a list of predefined sensor units in the

J. G. KHOR 25

CHAPTER 3- ELECTRONIC DESIGN AUTOMATION

library which can sense the voltage, current, torque, machine speed and even flux

linkages from the power circuit.

Simulation of the power system can be performed either in MS DOS or in MS

Windows. Wavefonns are monitored during the simulation and recorded for further

analysis using TCadGraph. A harmonic analysis of the recorded waveforms can also be

obtained with TCadHar. It is possible to calculate harmonic analysis up to the 50 1h order.

These features make the software suitable for the analysis of the PWM inverter and

control system presented in Chapter 5.

J. G. KHOR 26

Chapter
4

System Representation

B efore commencing an in-depth discussion about the control system, it is

appropriate to first discuss the control plant, i. e. the elements to be controlled. In

this chapter mathematical models of some of the control plant elements are described.

As already mentioned in Chapter 1, the plant comprises a power electronic system, a

permanent magnet synchronous generator and a diesel engine. Two control units are

presented in this thesis, a Fuzzy Logic Controller (FLC) for the engine and a PWM

controller for the output inverter. The analysis of the system is also divided into two

parts as shown in Figure 4-1. Ensuing sections in this chapter discuss the control plant

elements relating to the fuzzy logic controller, namely the rectifier, the generator and the

diesel engine. The analysis of the inverter and the PWIV controller is presented as a

separate study in Chapter 5.

Figure 4-1 Block diagram of complete system.

J. G. KHOR 27

CHAPTER 4- SYSTEM REPRESENTATION

4.1 Rectifier Circuit
A circuit diagram of a three phase uncontrolled (diode) rectifier attached to a Y-

connected sinusoidal voltage source is shown in Figure 4-2. This circuit is used to

convert the a. c. output of the generator terminals into d. c. power. The phases are marked

a, b and c. The branches of the rectifier bridge are connected to the generator tenninals,

therefore the line to line voltage v1_1 of the rectifier is equal to the generator terminal

voltage vt.

n

Figure 4-2 Three phase uncontrolled

4.1.1 Voltage Analysis

Figure 4-3 shows the waveforms of various voltages taken from the circuit in Figure 4-

2. Waveforms va-n , vb-n and vc-n are the line-neutral voltages of each phase. vd, is the

instantaneous rectifier output voltage while Vt is r. m. s. value of the line-line voltage, vt.

The mean output voltageVdc can be obtained by integrating vd, over a period of Y3

radians as follows,

1 ý/6 3V2
Eq. 4-1 =_f Nr2Vt cosot - dwt Vt Vdc

7/6 IT (73)

J. G. KHOR 28

CHAPTER 4- SYSTEM REPRESENTATION

V

I

Vdc -'

7E IT 571 77c 3n II 7E 27c
636626

Figure 4-3 Voltage waveforms of recti ler circuit.

4.1.2 Current Analysis

9

42 Vt

co

The current waveforms of the rectifier circuit are shown in Figure 4-4. Because the line

current wavefonn it, a is not sinusoidal, the r. m. s value cannot be obtained simply with a

division by 42.

From the definition of root mean square, the r. m. s. of it, a is given by

i12 +i
22+

'3 2n2

r. m. s.
n

Taking samples at every
Y6 interval,

it
1[4 x

(ldc)2] +[4x (_I
dc

)2] +[4x 02

12

Eq. 4-2 ld,

J. G. KHOR 29

CHAPTER 4- SYSTEM REPRESENTATION

ic

it

de

ýdc

Figure 4-4 Current waveform of rectifier circuit.

4.2 Synchronous Generator

4.2.1 Voltage Analysis

The operation of the synchronous generator is based on Faraday's law of

electromagnetic induction which states that:

The total electromagnetic force (e. m. f.) generated in a closed circuit is equal to the

negative time rate of change of theflux linkages linking the circuit.

This law was derived from Faraday's observation that an e. m. f. is induced in a

conductor or circuit placed in a magnetic field when there is a change of flux linkages

linking the circuit. The flux changes can be the result of a relative motion between the

circuit and the flux or the effect of a varying magnetic flux. Faraday's Law can be

represented by the following mathematical equation,

d
Eq. 4-3 e(t) = --k dt

where e(t) is the generated e. m. f and k is the flux linkage.

J. G. KHOR 30

71 7c 57c 77c 3n 117C 21c
636626

CHAPTER 4- SYSTEM REPRESENTATION

In a synchronous machine, the magnetic flux is provided either by a permanent magnet

or an electromagnet which is placed inside a set of windings as shown Figure 4-5. The

flux linkages linking the winding is made to vary by physically rotating the magnet. In

the electrical machine theory, the rotating component is called the rotor and the

stationary component is called the stator. The rotor can be a permanent magnet, or an

electromagnet with a field winding. Electromagnet generators are easier to control and
therefore more common. The stator houses the armature windings. The armature

windings are the windings in which the e. m. f. is induced. Figure 4-5 shows a three

phase synchronous machine, with armature windings marked aa', W, and cc'.

If the angular velocity of the rotating field in radians per second is o), then

Eq. 4-4 (p =

Considering only phase a, if the rotor moves by an angle ýD, the flux linking aa'is given

by5

Eq. 4-5 k=Ný cos (p

where N is the number of turns in adand ý is the air gap flux.

Figure 4-5 Three phase synchronous machine.

J. G. KHOR 31

CHAPTER 4- SYSTEM REPRESENTATION

Therefore, from Eq. 4-3, the e. m. f induced per phase is given by

=AA
dT T Eq. 4-6 ea (N - sin T) -±- dt dT dt dt

Substituting (p for co t and d(p Idt for 2)7f yields

Eq. 4-7 ea = 27cfN ý sin wt

In practice, the constructions of the machine, such as the pitch and distribution of the

coils, assert influence on the waveshape of the induced e. m. f. A reduction factor known

as the windingfactor Kw has to be applied to account for this.

Therefore, the induced e. m. f per phase becomes

Eq. 4-8 ea = 27cfN ýKw sin (ot

Eq. 4-8 can also be written as

Eq. 4-9 ea = Ej sin 27cf

where Ej is the peak value of the induced e. m. f. and f is its frequency.

Using phase a as reference and because phases a, b and c are displaced by 1201, the

voltages for each field are therefore given by

Eq. 4-10 ea::::::: Ej sin 27if

Eq. 4-11 eb = Ej sin (21rf t- 120')

Eq. 4-12 ec = Ej sin (27rf t+ 120')

In machines with more than a pair of poles, the generated electrical frequency, f is

given by,

Eq. 4-13 f=P- llmech

where n .. ech is the mechanical synchronous speed in revolutions per second and p is the

number of pole-pairs in the machine.

J. G. KHOR 32

CHAPTER 4- SYSTEM REPRESENTATION

4.2.2 Equivalent Circuit Model

An equivalent circuit model of a synchronous generator can be derived to study the

voltage and current characteristics of the machine. The flow of current in the field

winding If induces a flux ýj in the air gap which links with the annature winding.

Similarly, the flow of current in the armature winding also produces a flux, k. The

armature flux ý,, comprises of two components, the armature reaction flUX ýa, and the

leakage flux k. The larger component, ýa,
, is established in the air gap and links with

the field winding, while ý,,, does not exist in the air gap and links only with the armature

winding. Therefore, the resultant flux in the air gap ý, g is made up of ýj and Cr

Eq. 4-14 kg ýi +C

kg induces a voltage in the stator winding, Eagwhich lags kgby 90'. According to the

Superposition Theorem, E,
g comprises two components, induced by the corresponding

flux component.

Hence,

Eq. 4-15 E,,
g

Ei + Ear

Ej is the induced e. m. f. also known as the internal generated voltage of the machine. A

diagram of the vectors concerned is shown in Figure 4-6(a). It shows the armature

reaction voltage Ear, lagging ýa, and laby 90'. In other words, -Ear leads 'a by 90'. A

voltage leading a current by 90' can be represented as the voltage drop across a

reactance. Hence -Earcan be represented as the voltage drop across a reactance, sayXav

where Xar5 is known as the magnetising reactance. Therefore, by substituting (-Ear)

with (IjXa,), Eq. 4-15 can be rewritten as

Eq. 4-16 Ej =lajXar+ Eag

Figure 4-6(b) shows an equivalent circuit of the model described by Eq. 4-16. To

include the terminal voltage per phase Vý (instead of just the air gap voltage, Eag)ý the

leakage reactanceXal and the effective armature winding resistance Rahave to be taken

into account. The effective resistance of Ra is approximately 1.6 times its d. c. resistance

as a result of skin effect and operating temperature effects. Figure 4-6(c) shows the

complete equivalent circuit of a synchronous machine.

J. G. KHOR 33

CHAPTER 4- SYSTEM REPRESENTATION

'a

Cr

-Ear Ear

... No

(a)
xs

r__,
A_ý

Xar 'a Xar Ia Xal Ra

Ei % Eag Ei % Eag VO T1
41

Figure 4-6 Equivalent circuit model of a synchronous generator.

XarandXal can be lumped together as a single reactance denoted by X, which is known

as the synchronous reactance.

Eq. 4-17Xs = Xar + Xal

The synchronous impedance is given by

Eq. 4-18 Z, = RI, +j Xs

The steady state mathematical model of the synchronous machine can therefore be

described by the equation,

Eq. 4-19 Ei = 1,, (R,, +j X,) + Vý

The equivalent circuit model is a steady state model and does not provide any

information about the dynamics of the machine. Transient response to load changes,

faults and other disturbances cannot be properly analysed using this model. Dynamic

models of the synchronous machine can be derived from The Generalised Theory of

Electrical Machines and are widely used in the design of classical control systems. The

design of controllers are derived from the plant model. However, because the control

system presented in this thesis is not developed from a model of the plant, the accuracy

of the model does not directly influence to the performance of the design. Instead, the

J. G. KHOR 34

CHAPTER 4- SYSTEM REPRESENTATION

From Eq. 4-21 and the OCC plot, it can be assumed that flux ý is directly proportional
to the field current If in the linear region. Therefore,

ý oc If
Eq. 4-22 ý=G- If where G is the proportionality constant

From Eq. 4-19, Eq. 4-21 and Eq. 4-22, the synchronous generator can be described by

the steady state model,

Eq. 4-23 Ei = K-G-If

Eq. 4-24 Vý = Ei - lý (j X, + Rj

where K= V27i NKw p.

Eq. 4-23 gives the phase voltage of the generator output. The generator's terminal

voltage may or may not be the same as its phase voltage, depending on the

configuration of its windings. The three phases of a synchronous generator can either be

connected in a star (Y) configuration or delta (A) configuration as shown by Figure 4-8.

Vt

la >
it

Ra Ei,

/

vý
iy-s ixs Vt

E Ra

JXý

i3

Rý, iX, Ej2

(a) (b)

Figure 4-8 Configuration of synchronous generator windings (a) star-connection
(b) delta connection.

J. G. KHOR 36

V\ I

CHAPTER 4- SYSTEM REPRESENTATION

model is used to study the response of the design and to verify its functionality through
simulations. Although a dynamic model would provide a more comprehensive analysis,
the steady state model is sufficient for the task.

4.3 Generator-Rectifier Model

From Eq. 4-8 and Eq. 4-13, the peak value of the internal generated voltage is found

to be

Eq. 4-20 Ei = 27WýKw pl"mech

Because the generated voltage is sinusoidal, its r. m. s. value is given by,

Eq. 4-21 Ei = V2 7c NýKw p nmech

For an electromagnet generator the flux in the machine is controlled by its field current.

The relationship between the flux and the field current can be observed by performing

an open circuit test on the machine and plotting the results on a 'Ej vs. If' graph which is

sometimes called the Open Circuit Characteristic (OCC) plot. Details of the test can be

found in any text book on Electrical Machines. Figure 4-7 shows a typical OCC plot of

a synchronous generator [58]. The curve is observed to be linear until some saturation

starts to occur at high field current. This is due to iron saturation in the synchronous

generator.

Ei
I P'linregion

if

t ical open circuit plot. for a synchronous generator.

J. G. KHOR 35

CHAPTER 4- SYSTEM REPRESENTATION

From Eq. 4-21 and the OCC plot, it can be assumed that flux ý is directly proportional
to the field current If in the linear region. Therefore,

ý OC If

Eq. 4-22 ý=G- If where G is the proportionality constant

From Eq. 4-19, Eq. 4-21 and Eq. 4-22, the synchronous generator can be described by

the steady state model,

Eq. 4-23 Ei = K-G-If n,,,, ch

Eq. 4-24 Vý = Ei - 1,, (j X,, + R.)

where K= V-27c NKw p.

Eq. 4-23 gives the phase voltage of the generator output. The generator's tenninal

voltage may or may not be the same as its phase voltage, depending on the

configuration of its windings. The three phases of a synchronous generator can either be

connected in a star (Y) configuration or delta (A) configuration as shown by Figure 4-8.

Vt

la
it

Ra Eil
v

A jy"s Vt

XE

Ra B

Rý, jX, Ej2

(a) (b)

figuration of synchronous generator windings (a) star-connection
(b) delta connection.

J. G. KHOR 36

CHAPTER 4- SYSTEM REPRESENTATION

For a Y-connected generator,

Eq. 4-25 V, = V3 Vý and', = 'a

For a A-connected generator,

Eq. 4-26 V, = Vý and 1, = -ýJla

where

Vt is the generator's tenninal voltage
it is the generator's terminal current

Vý is the generator's phase voltage

'a is the annature current or the generator's phase current.

nmech 10
Ei Vý vt Y: V3 F+

or A: I
If

Ity: 1-
ixs IN.

or +
A: 1 ý3- +

Figure 4-9 Block diagram based on equivalent circuit model.

Figure 4-9 shows a block diagram of the synchronous generator model based on the

equivalent circuit model. V, is the complex r. m. s. voltage of the generator terminal. For

the present application, this model has to be further developed to include a three phase

rectifier and also to consider the torque characteristics as well as the power factor. A

phasor diagram of the generator voltages and currents is shown in Figure 4-10. The

angle between the phase voltage Vý and the internal generated voltage Ej is known as

the power angle 8. For generator operation (as opposed to motor operation), the power

angle is always positive, as shown in Figure 4-10. The diagram also shows a lagging

J. G. KHOR 37

CHAPTER 4- SYSTEM REPRESENTATION

power factor condition whereby the current 'a lags Vý by an angle 0. The power factor is

given by cos 0.

Figure 4-10 Phasor diagram of a nchronous generator.

Using Vý as reference, the equivalent circuit model can be expressed as

Vo ZOO = Ea Z8
-

'aZo(Ra +jXs)

Vý =I Eicos 8-1,, Rcos 0+I, X, sin 01+jI Eisin 8- IaX, cos 0- IaRlsin 01

Because Vý is the reference, its imaginary component is zero, therefore,

Eq. 4-27 Vý = Eicos 8- IaR,, cos 0+ IaX, sin 0

and

Eisin 6-1,, X, cos 0-1,, R,, sin 0=0

Eq. 4-28 8= sin-'
ja

(Xs cosO + Ra sinO)
[Ei I

For a three phase synchronous generator, power is given by

Preal ::::::::: 3 Vý 'a COS

J. G. KHOR
38

-a --a

CHAPTER 4- SYSTEM REPRESENTATION

Power is the product of torque and speed, hence the induced torque is

T ind -

Wýla
cos 0

(0
mech

or

Eq. 4-29 Tind -
Wja

_ coso
27inmech

where O)mech is the mechanical speed in radians per second and nnech is the mechanical

speed in revolutions per second.

"mech

>_1
L-*

KG
Ej

if >-- F-01

Rectifier
I la

Ej
10

ldc >- 10
t
--*

Y: 1,608=
sin-1

La (Xs cosO + Ra sinO)

_E3
A: 1 N3

[Ei I

+Ia

10

6
Ej

Vý = Ej cos 8+ la N sin 0-R,, cos 0)

nmech I ýla ýo
*S

'Cind -
3Výla

_ Coso
IF

Vý

'Cind
27mmech

Y: 43

A: 1

Rectifier
vt

<-
Vdc =

3ý-2
Vt

4
Vdc

71

, 1, qf Generator-Rectifier system.

J. G. KHOR 39

CHAPTER 4- SYSTEM REPRESENTATION

FigUre 4-11 shows the model which is developed to represent the synchronous generator <D
and rectifier. The inputs of this model are the rotational speed n .. ech 9 field current If

power factor angle 0 and the current at the d. c. link I&
I used as a measure of the

electrical load. The outputs are the d. c. link voltageVd, and the induced torque 'ri, d

which loads the engine.

To account for the generator winding configuration (Y or A), conversions between the

phase values and terminal values of voltage and current are based on Eq. 4-25 and Eq.

4-26. The generator phase voltage is obtained from Eq. 4-27 and Eq. 4-28 while the

induced torque from Eq. 4-29.

4.4 Diesel Engine
The second model to be developed is one for the diesel engine. The operation of diesel

engines involves a large number of complex processes, with many delays, lags and non-

linearities. It is therefore difficult to develop a comprehensive mathematical model to

study and analyse the diesel engine. Even manufacturers of control systems and speed

governors for diesel engines are known to focus on empirical methods rather than

theoretical modelling for analysis. In this thesis, a model of a diesel engine is required to

provide a complete representation of the control plant. The aim of this exercise is to

develop a 'good enough' model for the functional verification of the control system.

Since detailed studies are not necessary at this stage, an approach which favours reduced

complexity and incorporates a certain degree of approximation is preferred.

For the purpose of speed control studies, the diesel engine can be represented as a

combustion system and inertia as shown by the block diagram in Figure 4-12. The

combustion system produces an engine torque 'CEas a function of the fuel rack position

y. The engine torque is used to oppose the load torque 'rL and the difference A'r is

converted into acceleration/deceleration Aninech in the lumped inertia (engine inertia +

load interia).

J. G. KHOR 40

CHAPTER 4- SYSTEM REPRESENTATION

Engine
Engine Torque, TE AT Engine & Anmech

Combustion Load
Y System Inertia, J

fuel rack position
(governor control)

Load
Torque, TL

Figure 4-12 Diesel engine & load representation.

When the speed of the engine changes, it moves along the engine's torque curve as

shown in Figure 4-13. Each engine's torque curve is specific to a fuelling rate q. For a

given speed, the developed engine torque 'rE can be increased by increasing q. An

equilibrium point is reached when the engine's torque curve intersects the load's torque

curve.

Increase Torque load
LL

ý2

T2 -

Tj q2
Increase
fuelling rate

q,

Engine Torque Curve 'UE

Load Torque Curve TL

NI Speed, nmech

Figure 4-13 Torque-speed characteristics.

If the engine torque is written as

Eq. 4-30 'UE=f (nmech, q)

and the equilibrium Point for a given operating condition is when

nrnech =nmech

J. G. KHOR
41

CHAPTER 4- SYSTEM REPRESENTATION

then, expanding Eq. 4-30 into a Taylor series about the equilibrium point yields

f ("niech
q) + (n

"f
(q TE

anmech mech -
"mech +

aq

Ir a2f

2
(nmech iy)2 + (nmech + 2!

Lc9nmech
mech c9nmechaq mech)(q

2
c"'f (q
aq 2

If the operating condition is within the vicinity of the equilibrium point, it can be

assumed that the higher order terms are negligible, therefore,

c9f f ("mech
)D

(nmech
-

Wmech

j Eq. 4-31 (n -wý- (q - EE= mech mech
+

aýfq

)

Using W to denote small changes about the equilibrium point, Eq. 4-31 can be written

as

Eq. 4-32 8TE --": 8n
ýE

6q mech
+

q
aq

At this juncture, a bold step is taken to further simplify the situation by extending the

use of Eq. 4-32 over the entire range of analysis. It is acknowledged that Eq. 4-32 is a

linearised approximation which is only valid within proximity of the operational point

from which the equation is derived. However, this linear model is assumed to be capable

of providing, at least a qualitative 'feel' of the engine's torque-speed characteristics,

even if the quantitative results are only rough approximations. It has to be pointed out

that these models are not developed to be used as a starting point for the design of the

control system. The controllers presented in this thesis are model-free designs, therefore

J. G. KHOR 42

CHAPTER 4- SYSTEM REPRESENTATION

there is no danger of the limitations of the models being translated into the control
system.

Writing

and
E-) 6q = My

q
6q)

where 8y is the change in fuel rack position y, Eq. 4-32 can be written as

6'UE= A-6nmech+ B-8y

By extending the linear properties over the entire range of analysis, it can be assumed

that A and B are constants. Therefore, from the Superposition Principle, the engine's

torque curve can be represented by the linear equation:

Eq. 4-33 TE= A. ninech+ By

The net accelerating torque is given by the difference between the engine's torque and

the load torque:

AT :- TE - TL

Since

A, r =J
d(o
dt

where

j is the combined moment of inertia of the engine and generator

COM is the mechanical speed in radians per second,

J. G. KHOR 43

CHAPTER 4- SYSTEM REPRESENTATION

it can be shown that the discrete equivalent can be written as,

C(n mech-nmech * Z-1 Ar
T

Eq. 4-34 Anmech
-,,,:

AT
D

i

where

is a constant
T is the sampling period

(T/Q

nmech is the mechanical speed in revolutions per second.

A block diagram of a discrete engine model based on Eq. 4-33 and Eq. 4-34 is shown in

Figure 4-14.

Figure 4-14 Linearised discrete model of the diesel engine.

J. G. KHOR 44

CHAPTER 4- SYSTEM REPRESENTATION

4.5 VHDL Modelling

Although VHDL is a hardware description language and as such, is used primarily for

circuit design, it has the basic properties of any software programming language. It is
therefore capable of implementing mathematical models. Two VHDL components are
designed to represent the models of the generator-rectifier and the diesel engine
developed in this chapter. The complete source codes of the models can be found in
Appendix A. Since the models are designed for the purpose of computer simulations
(refer to Section 6.6) and not for hardware implementation, it is possible to declare the

signals and variables as the type REAL. This gives the design a greater freedom in

numerical analysis. It is also possible to incorporate complex mathematical functions

such as trigonometry in the design.

The VHDL design of the generator and rectifier model is configured with the entity

name Genrect. It is designed as a synchronous circuit with five input signals (including

CLK). Three output signals provide simulated information on the generator's phase

voltage Vph and induced torque TG as well as the d. c. voltage at the rectifier's output

Vdc. As already touched upon earlier in this chapter, the voltages at the generator's

terminals are largely determined by the nature of its winding configuration. Two

constants, YD_CURR and YD_VOLT, which have values defined in the declaration section

of the design architecture sets the configuration of the model. In this, they are defined

with values that set the model as a Y-connected generator.

The VHDL model for the diesel engine is configured with the entity name Engine. The

input signals of the model are load torque TL, control signal to the fuel actuator Y, the

clock signal CLK and the sampling period PRD while the engine's torque TE and speed

NE make up the output signals. It implements the mathematical equations of the engine

and, like Genrect, the section of the code that does this is self-explanatory. There is,

however, a slight addition to the model. To prevent the calculated output values from

'running away' in the event of simulation errors, the output signals are designed to

operate within a fixed boundary of values. The maximum and minimum limits of these

values are set within the code.

J. G. KHOR 45

CHAPTER 4- SYSTEM REPRESENTATION

VHDL design
IN CLK Vdc OUT

(a) IN Ifield TG OUT

IN ldc Vph OUT

IN theta

GENRECT

VHDL design

IN CLK TE OUT

IN Eýýý TL NE ... m = OUT

IN Y

IN PRID

ENGINE

Figure 4-15 Block diagram qf VHDL models (a) Genrect (b) Engi . ne.

Figure 4-15(a) and (b) shows the block diagram of Genrect and Engine respectively.

The two components have their respective input and output ports and can be connected

directly to the VHDL designs of the control system for simulation purposes. Further

discussion on the use of the plant models in conjunction with the control system in a

functional simulation is presented in Chapter 6, following a description of the control

system designs. Prior to this, the analysis of the second part of the plant, the PWM

inverter, is presented in the following chapter. It includes some functional and

performance simulations as well as a description of the inverter control system designs.

J. G. KHOR
46

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

The diagrams in Figure 5-2 show the configurations of a single phase and a three phase

switch-mode inverters. They are made up of a number of power switches (four for

single phase and six for three phase) arranged in a bridge configuration. At present,
IGBTs are the most widely used type of power switches for inverter applications due to

their controllability and relatively high voltage ratings. Various control strategies can be

used to control the power switches such that a sinusoidal waveform can be obtained at
the output. However, the raw output voltage usually contains other high frequency

harmonic components which have to be eliminated before the desired voltage waveform

can be recovered. This is normally achieved using a low pass filter. The amount of

harmonic distortion at the output depends largely on the type of switching pattern.

Examples of commonly used switching patterns are square wave, quasi square wave and

Pulse Width Modulation (PWM). The switching strategy used in this project is Pulse

Width Modulation, a technique which produces waveforms which tend to contain less of

the low order harmonics than other switching arrangements.

TI T3
Vdc

T2 T4

A
Tl T3 T5

Vdc

T2 T4 T6

(a) (b)

Figure 5-2 Switch-mode inverter (a) single phase, (b) three phase.

5.1 Pulse Width Modulation

Pulse Width Modulation (PWM) is currently the most widely used technique of inverter

control and has received considerable attention in the last two decades. The PWM

switching scheme essentially involves the strategic variation of the ON and OFF timing

periods of each pair of switches in the inverter. This produces a PWM waveform that

contains a series of pulses which have the same voltage level but different widths, as

shown by the wavefonn in Figure 5-3.

J. G. KHOR
48

Chapter
5

PWM Inverter
Design and Analysis

W hile the previous chapter discussed the mathematical representation of the

diesel engine, synchronous generator and rectifier, this chapter presents an

analysis on the second part of the control plant, namely the power inverter system

shown as the shaded blocks in Figure 5-1. It is well known that a common application

of power inverters is in a. c. -d. c. -a. c. systems such as in the variable speed control of a. c.

motors, uninterruptible power supply systems and variable speed wind energy

conversion systems. In this project, an inverter is used to convert the d. c. voltage at the

d. c. link into a constant 50 Hz sinusoidal output voltage.

..................

Power
Permanent Output

Magnet Diesel Engine Rectifier Inverter 10 Synchronous
Generator

Fuzzy PWM
Logic Controller

Controller

.

Figure 5-1 Block diagram of the complete system.

J. G. KHOR 47

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

The diagrams in Figure 5-2 show the configurations of a single phase and a three phase

switch-mode inverters. They are made up of a number of power switches (four for

single phase and six for three phase) arranged in a bridge configuration. At present,
IGBTs are the most widely used type of power switches for inverter applications due to

their controllability and relatively high voltage ratings. Various control strategies can be

used to control the power switches such that a sinusoidal waveform can be obtained at
the output. However, the raw output voltage usually contains other high frequency

harmonic components which have to be eliminated before the desired voltage waveform

can be recovered. This is normally achieved using a low pass filter. The amount of
harmonic distortion at the output depends largely on the type of switching pattern.

Examples of commonly used switching patterns are square wave, quasi square wave and

Pulse Width Modulation (PWM). The switching strategy used in this project is Pulse

Width Modulation, a technique which produces waveforms which tend to contain less of

the low order harmonics than other switching arrangements.

TI T3
Vdc

T2 T4

A
Tl T3 T5

Vdc

T2 T4 T6

(a) (b)

Figure 5-2 Switch-mode inverter (a) single phase, (b) three phase.

5.1 Pulse Width Modulation

Pulse Width Modulation (PWM) is currently the most widely used technique of inverter

control and has received considerable attention in the last two decades. The PWM

switching scheme essentially involves the strategic variation of the ON and OFF timing

periods of each pair of switches in the inverter. This produces a PWM waveform that

contains a series of pulses which have the same voltage level but different widths, as

shown by the wavefonn in Figure 5-3.

J. G. KHOR 48

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

The fundamental component of the PWM switching pattern Vpwm in Figure 5-3 is a

sinewave, which is the required output voltage. To obtain the switching pattern, a

sinusoidal signal Vcontrol is compared with a high frequency triangular carrier wave V,,,.

This fonn of PWM control is sometimes called sinusoidal-PWM in order to explicitly
differentiate it from other forms of PWM control schemes. Table 5-1 illustrates how

Vcontro, and Vj can be used to determine the switching pattem in a single phase inverter.

The two devices on the same branch (TI&T2 ; T3&T4) must not be ON at the same

time, otherwise a short circuit will occur.

Vcontrol

v
tri

Vil.

time

Figure 5-3 Pulse Width Modulation.

Table 5-1 PWM control.

J. G. KHOR 49

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

In sinusoidal-PWM control schemes, there are two characteristic ratios which are
important factors in the design of the controllers.

The amplitude modulation ratio Ma is defined as the ratio of the peak amplitude of the

control signal (ý'control) to the peak amplitude of the triangular carrier signal ():

Eq. 5-1 Vcontrol
Ma : -- ^ vtri

The frequency modulation ratio mf is defined as the ratio of the triangular carrier
frequency (fj) to the ratio of the control signal frequency

Eq. 5-2 mf tri f fcontrol

The standard sinusoidal-PWM technique suffers from the major drawback that the a. c.

term gain (G,,,,,), which is the ratio of the amplitude of the output voltage to the

amplitude of the PWM waveform, is limited to a maximum value of 0.866 (Gz,, <

0.866). Several improved PWM techniques have been introduced to tackle this problem

but they each have their own disadvantages. In general, improved techniques have

higher a. c. gains but suffer from more harmonic distortions and require more

complicated hardware for implementation. Further information of the improved

techniques can be found in [59]. They include techniques such as sine + 3' harmonic

PWM, harmonic injection and programmed harmonic elimination. Other PWM

techniques include Random PWM Schemes and Sliding Mode Control. Random PWM

schemes [60,6 1], are based on the use of random number generation. They offer a more

evenly spread harmonic spectrum and are found to have reduced radio interference,

noise and vibration effects. Sliding Mode Control, on the other hand, is described by

Jung & Tzou [62] to be especially suitable for closed loop control of power converting

systems under load variations. However, improved PWM techniques require a more

complex hardware implementation. For the present work, the standard PWM technique

is found to be suitable for the application while being easier to implement in hardware

compared to the other techniques.

J. G. KHOR 50

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

5.2 Design and Simulation

A PWM inverter based on the standard sinewave technique was designed and simulated

using TCAD. The switching waveform is obtained by comparing a control sinewave

with a triangular wave. Figure 5-4 shows the schematic diagram of a single phase
inverter in TCADSchem. From the diagram, it is obvious that if T1 and T2 are both ON

at the same time, a short circuit fault, sometimes called a 'shoot through' will occur. In

the previous section, it was assumed that the switches are ideal, and that TI switches
ON at the exact moment when T2 switches OFF and vice versa. However, in practice,

switching devices such as IGBTs and Mosfets cannot be switched ON or OFF

instantaneously. Therefore, precautions have to be taken such that 'shoot through' does

not occur as a result of the switching delays and finite turn on/off times. This can be

achieved by introducing a blanking time TA into the PWM waveforms.

Figure 5-4 PWMInverter.

5.2.1 Blanking Time

To Load

Figure 5-5 shows the effects of blanking time on the PWM switching pattems. In the

ideal case, T1 and T2 change states at the exact moment. However in practice, a short

blanking time TA is introduced , during which both devices are supposed to be in the

OFF state. The duration of TA will depend on the maximum switching delay and turn

ON/OFF times of the device.

J. G. KHOR
51

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

ideal

with
blanking
time

Figure 5-5 P WM waveforms with and without blanking time TA.

The effects of blanking time on the output voltage is illustrated in Figure 5-6. Instead of

a pure sine wave, the blanking time introduces low order harmonic distortion (such as

the P. 5"5 7') at the zero crossing point of the current. Here, the load current is shown

as a lagging sine wave.

actual
Vo

iý

Figure 5-6 Thee ts of blanking time, Td, on the output voltage.

J. G. KHOR 52

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

In the TCAD simulation, blanking is achieved using the circuit shown in Figure 5-7. A
delay unit and an AND gate are used to introduce blanking time into the PWM

waveform. The parameter in the delay unit sets the length of the blanking time.

reset

Figure 5-7 Simulation of blanking time in TCAD.

5.2.2 Protection Circuit

It is recognised that a short circuit can sometimes occur at the output terminals of the

inverter with rather serious consequences. In the simulation, a simple protection circuit

model, shown in Figure 5-8, is designed to analyse the condition. If a short circuit

occurs at the terminals as modelled by the wire AA' in Figure 5-9, the voltage across

the terminals becomes negligible. Therefore, the d. c. voltage Vs will fall across the two

switching devices, resulting in a very high on-stateVCE(collector-emitter voltage) value.

Voltage sensors were used to monitor theVCE of devices during on-states. These

voltages were compared against a threshold value in the comparator units and if they

exceed the threshold value, the thyristor in the latching circuit (Figure 5-8) is latched

on. This causes the output of the latching circuit, ERROR (active LOW), to be LOW,

therefore disabling the signals to the switching devices. The inverter then ceases to

operate. Vc,, monitoring is a simple and cheap way of circuit protection because it does

not require the use of current sensors. However, it does not protect the circuit against all

fault conditions.

ERROR

INPUT

Low Pass Filter

ng circuit. for short-circuit protection.,

J. G. KHOR 53

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

Rload

Figure 5-9 Short circuit at AA'.

5.2.3 Output Filter

In its original state, the PWM waveform contains a lot of high order harmonic

distortions. To obtain a sinusoidal voltage from the distorted waveform, a low pass L-C

filter is required to eliminate the high order harmonics. The transfer function of the filter

is given by

Eq. 5-3 vo
=I vi

I+ iTuL
I+

joc
ZL

Eq. 5-4 vo
vi

_ 02LC +j
ZL

where ZL is the load impedance.

By assuming that ZL -"o 9

Eq. 5-5

J. G. KHOR

v0-I

1_02 LC

54

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

The cut-off frequency of the filter is given by

Eq. 5-6 (o'LC == I

(f 27r 0)2
LC

Eq. 5-7 fo -I- 27r, IL-C

Harmonic components with frequencies above the cut-off frequency are attenuated by a
second order fall-off in gain. However, a closer examination of the transfer function

reveals that the LC filter is not truly a low pass filter with a cut-off frequency at fo
-

From Eq. 5-5, it can be seen that the magnitude of the filter gain atfo is infinity. Figure

5-10 shows the gain of the filter. Frequency components at and around the cut-off
frequency (which is also the resonant frequency) are grossly amplified. In practice, the

circuit impedance will prevent an infinite gain, but frequencies around fo will still be

amplified to a considerable degree.

Gain

1.0

fo

Figure 540 Gain of the LCfilter.

The values chosen for L and C are L=2 mH and C= 33 ýtF.

From Eq. 5-7 these values can be shown to give a cut-off frequency at fo = 619Hz,

which is roughly the 12' harmonic (assuming the fundamental frequency is 50Hz).

Harmonic distortions of a pure PWM waveform appear around the nth harmonic where

n= mf ,
(mf + 1), (mf +2), etc. For mf = 400 (i. e. f, =50 Hz, ft'i = 20kHz), distortions will

start around the 400'h hannonic. Therefore, this LC combination will eliminate all the

high order harmonics. The complete model of the inverter and PWM controller is shown

J. G. KHOR 55

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

in Figure 5-11. It incorporates the blanking time modules, the protection circuit and the
output filter.

Figure 5-11 TCAD model of a PWM inverter.

5.3 Simulation results

Two sets of PWM waveforms are required for the operation of the single phase inverter:

one set to control TI & T3 and the other set to control T2 & T4. The inverter is

designed with bipolar voltage switching [63] therefore the second PWM waveform is

just the inverse of the first waveform (neglecting blanking time).

5.3.1 Without Blanking

Figure 5-12 shows the filtered output voltage of the PWM Inverter before blanking was

introduced. The waveform contains some transient distortions particularly in the first

cycle. A TCADHar spectrum analysis of the wavefon-n (see Figure 5-13) shows that the

distortions are caused by elements of the 12' harmonic and its sidebands. This is

J. G. KHOR 56

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

because the LC filter has a resonant frequency near the 12"' harmonic of the output
voltage. However, in steady state the voltage settles into a smooth 50Hz sinusoidal
wave, with negligible harmonics.

I

.1

00
.

0-

00
.

.
Jo

Vout time [ms]

Figure 5-12 PWMInverter output voltage afterfiltering (without blanking time).

Magnitude

140

...........
120

.

100
................................ **

80ý
...........

60
... I ... I

40
.........

20
..

0
U

Total RMS: 109.438298808
Summed-Harmonics RMS: 109.436600132

iffure 5-13 Spectrum analysis of thefiltered output voltage (without blanking time).

J. G. KHOR 57

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

5.3.2 With 2.7gs of Blanking Time

A PWM Inverter with 2.7ýts of blanking time was simulated in WAD and the results.
Figure 5-14 shows the filtered output voltage of the inverter. The value for the blanking
time was chosen based on the practical limitations and features of the devices used in
the design. Blanking introduces 3 rd harmonics into the waveform. However, transient

effects of the LC filter are reduced as the spectrum analysis shows negligible 12t"
harmonics but about 4.6% of 3dhannonic distortion (see Figure 5-15). This harmonic

component can be automatically eliminated in line-to-line voltage of three phase
inverters.

1

.1

Vout time [ms]

Figure 5-14 PWMInverter ouýput voltaiZe after flItering (with 2.7lis blankinz time).

58 J. G. KHOR

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

401

Figure 5-15 Spectrum analysis of thefiltered ouýput voltage (2.7y, 5 blankink time.).

5.3.3 Protection Circuit

A protection circuit for the inverter was designed and simulated as described earlier. If

a short circuit occurs at the inverter terminals as shown in Figure 5-9, the total d. c.

voltage Vs will be across the two devices, henceVCE= Vs/2. This will trigger the Vc,

monitonng circuit, therefore cutting off all switching pulses to the devices and unless

the voltage across the capacitor in the LC filter at that instant is zero, oscillation will

occur in the LC configuration. A resistor R=I. OQ was added into the circuit to provide a

small resistive load to prevent the simulation from producing an undamped oscillation.

in practice, the wiring and filter will have a finite resistance value.

J. G. KHOR 59

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

1

-1

Figure 5-16 Short circuit. fault at 5ms.

5.4 Three Phase Inverter

The circuit of a three phase PWM inverter, as illustrated by Figure 5-17, was designed

and simulated in TCad. The three phase PWM waveform was generated by three

separate units, each comparing a triangular wavefonn with a sine wave. The sine waves

of the three units are phase shifted by 120'.

Simulation results for the three phase inverter show that the circuit suffers from a longer

transient distortion than the single phase inverter, as shown in Figure 5-18. It takes

about 350ms for the line-to-line voltage to settle into a sine wave. This simulation was

performed using the same filter values as that used for the single phase inverter. All the

simulations described are based on the original sine wave PWM method. This method

can be implemented using relatively simple and cheap hardware design. After checking

the performance, it was decided to implement the design in hardware.

60 J. G. KHOR

- Vout time [ms]

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

Figure 5-17 TCad schematic of a three phase inverter and control circuitry.

o-line voltage qf a three phase inverter.

61
J. G. KHOR

- Vry time [ms]

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

5.5 Hardware Implementation

This section describes the circuit implementation for two designs of PWM inverter

control. In the first design, a C-program is used to generate the switching pattern which
is subsequently stored in an EPROM. The second design uses a dedicated integrated

circuit (IC) to generate the pattern.

5.5.1 EPROM based PWM controller

There are various design solutions to implement a PWM controller. A fairly straight

forward method is to use an Erasable Programmable Read Only Memory (EPROM) to

store the PWM switching patterns. During the operation, this information is sequentially

retrieved and fed into a driver circuit board which will switch the IGBTs accordingly.

Figure 5-19 shows a schematic of the circuit design. It comprises a voltage controlled

oscillator NE566 (ICI), a counter (IC2), an EPROM (IC3) and some AND gates (IC4)

to act as output buffers.

EMAIRA

V+

v-

tit diagram qf the EPROM based PWM generator.

RROR

J. G. KHOR 62

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

The switching pattern in the EPROM is generated using a C++ program. The
infon-nation for producing one cycle of the power waveform, i. e. one period of the
sinusoidal reference signal, is broken down into 4096 slices and stored in the EPROM

memory locations. Each memory location corresponds to an address ranging from 0 to
4095 and each bit of information in a memory location controls one power switch in the
inverter. For a single phase inverter which has 4 power switches, 4096x4 bits (16kb) of
memory are required while a three phase inverter with 6 switches requires 4096x6 bits
(24kb) of memory.

IC2 is a CMOS4040 12-bit counter, designed to count from 0 to 4095 in a repetitive

cycle. This is used as the address input to retrieve information from the EPROM. To

obtain an output frequency of 50Hz, the counter (IC2) has to complete 50 cycles in one

second. Therefore, the sampling frequency has to be:

Eq. 5-8 f, = 50 x 4096 = 204.8 kHz

The advantage of using a voltage controlled oscillator instead of a fixed frequency

oscillator is that a voltage signal can be used to control the oscillator frequency and

hence the sampling frequency of the inverter. This makes it possible to control the

inverter frequency with a closed loop control circuit. Due to immediate availability

during the implementation stage, a 64kb-EPROM is used in the circuit although 16kb

(2 12 x 4) of information is sufficient for single phase operation (24kb for three phase).

The period of the triangular carrier wave is chosen to contain 10 sampling units. Each

sampling unit corresponds to one clock cycle hence the actual sampling time will be the

inverse of the clock frequency.

In the C program, a comparison between the reference power waveform and the carrier

waveform is made at every sampling point. The output is 1 if the reference power value

is larger than the carrier value and 0 if vice versa. The necessary switching signal is

generated from this comparison as shown in Figure 5-20. However, as a result of

introducing discrete sampling points, a certain amount of error is inevitable. The errors

are labelled as ± c, in the diagram. The maximum value for each error is just under the

length of one sampling unit which, in this case, is 10% of the period of the switching

J. G. KHOR 63

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

signal (because one cycle of the switching signal consists of 10 sampling units). The

effects of these errors can be reduced by increasing the number of sampling points in

each cycle of the switching signal.

This can be done either by

maintaining the frequency modulation ratio mf and increasing the total number of

sampling points in the power cycle

or
2. maintaining the number of sampling points in one power cycle and reducing mf..

3form

Figure 5-20 Generation qfPWMwaveform.

itching
form

The frequency of the triangular carrier waveform, also known as the switching

frequency is given by:

Eq. 5-9 f,, i =1 I(NT,) Hz

where
TS is the sampling period which is determined by the desired power ftequency

and N is the number of sampling points in one cycle of the carrier signal.

From Eq. 5-8, for a 50Hz power frequency, the sampling frequency T, is:

TS
50 4096

Ts == 4.88p

64
J. G. KHOR

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

Therefore, from Eq. 5-9, the switching frequency is

I
fl3i

= 10 x 4.88
Hz

f,, i = 20.48 kHz

The frequency modulation factor is given by,

ftli Mf - f, -
4096T,)

(XoT)
= 409.6

where
f,, i is the frequency of the triangular carrier waveform (switching frequency)

f, is the frequency of the fundamental harmonic (sinusoidal power frequency)

A three phase PWM waveform generator was also constructed by simply changing the

contents of the EPROM with a new C program which is written to generate the three

phase switching data. In the program, the triangular carrier wavefonn is compared with

three different sinusoidal power waveform, each phase shifted from one another by

120'. The result of each comparison determines the switching signal of the IGBTs in

each branch of the inverter. Instead of four outputs, the three phase PWM controller has

6 outputs, as there are 6 IGBTs in a three phase inverter. Therefore, two additional data

outputs from the EPROM are used.

65
J. G. KHOR

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

5.5.2 SA828 PWM Generator

The SA828 is a three phase PWM waveform generator from GEC Plessey. It is designed
for applications such as uninterruptible power supplies, variable speed control of a. c.
machines and a range of other inverter operations. The SA828 has six TTL level PWM

outputs which control the six switches in a three phase inverter via a driver circuit.

Functional Description

Figure 5-21 shows a simplified internal block diagram of the SA828 [64]. The PWM

fundamental waveform (reference waveform) is stored in an on-chip ROM. It can be a

standard sinusoidal wavefonn, a sine + third harmonic waveform or any symmetrical

wave shape made to order. This project uses the device with a standard sinusoidal

reference waveform which is sometimes referred to as the power waveform in the data

sheet [64].

CS

Motorola / Intel
Interface

Bus
ADO - AN

RST

CLOCK

J. G. KHOR

C
C Bus
c
C

Control

Bus
D ult. jplý emultiplexer

Pulse Deletion &
RED Pulse Delay Circuit

Initiallsation
RO RO Register
R R1 R1 1 Phasing I
R2 and YELLOW

Pulse Deletion & - D

R3 Control Pulse Delay Circuit D
R4 Logic

Control
Register

BLUE Pulse Deletion &
Pulse Delay Circuit

C o Clock
Divider

Address aveform
Generator ROM

ýifled internal block diagram qf SA828.

R-1

R-2

Y-1

Y-2

B-1

B-2

66

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

Unlike the EPROM solution previously described where the content of the memory is a
set of switching patterns generated by a computer program, this device stores only the

shape of the power waveforin and not the actual switching pattern. Calculation of the

switching pattern is performed on-chip in the Phasing and Control Logic block. The

advantage of this approach is the ability to change PWM parameters such as the

modulation ratios during the generation of the switching pattern. In the EPROM

solution, this would require going back to the programming stage, which eliminates any
chance of real-time manipulation.

Using the maximum clock frequency of 12.5MHz, the triangular carrier frequency can
be selected up to 24kHz. The SA828 is designed to operate in conjunction with an

external microprocessor. Values of two groups of registers have to be programmed into

the device in order to set the parameters for the desired output waveform. The

communication protocol between the SA828 and the microprocessor can either be Intel

or Motorola bus timing.

Controlling the SA828

The SA828 is controlled by loading data into two 24-bit registers, the Initialisation

register and the Control register, via a microprocessor interface. The initialisation

register contains all the information on the parameters which are constant. The

parameters set in the initialisation register are:

1. Carrier frequency

2. Power frequency range

3. Pulse delay time

4. Pulse deletion time

5. Counter reset

The data in the initialisation register is loaded only once, during power up, and does not

change in the course of the operation. Data in the control register, however, can be

modified during the operation of the chip, allowing real-time control of the PWM

wavefonn.

67
J. G. KHOR

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

The parameters set in the control register are
1. Power frequency

2. Overmodulation

3. Forward/ Reverse

4. Output inhibit

5. Power waveform amplitude

The data loaded into the chip's System Bus is first stored in the temporary registers RO

to R2. Then, if the register R4 is loaded, the data is transferred to the Initialisation

Register. Otherwise, if register R3 is loaded, the data is transferred to the Control

Register. Figure 5-22 shows a flow chart of the routine.

Calculations

The choices for the PWM parameters are based on the desired output wavefoirm as well

as the overall system requirements. The following calculations are used to determine the

necessary data for the initialisation and control registers. They are based on the

information provided in the data sheet [64]. The clock frequency used in this application

is 12NMz.

Initialisation Register

The iMtialisation register controls five PWM parameters. They are:

1. The Carrier Frequency f,,,, is set at 11.7kHz.

This is the frequency of the triangular waveform which is compared to the reference

waveform to obtain the PWM switching pattern.

fcarr
-

fclk

_
512 xn

fclk 12 X 106

2
512 x f,,,, 512 x 11.7 x 10'

where f., r = carrier frequency andfclk =: clock frequency

The carrier frequency is determined by a 3-bit word, denoted by CFS, during

initialisation. From the data sheet, when n--2, CFS = 001.

J. G. KHOR
68

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

(
Power ON

Reset Circuit

Write
Write RO, R1, R2

Initialisation
Data

L Write R4

Write
Write RO, R1, R2

Control
Data

Write R3::
]

I

Output Enable

Write
Write RO, R1, R2

Control
Data

Write R3

Change Yes y
Control

+

Data?

No

Figure 5-22 Flowchart of the SA828 data loading routine.

------ 69
J. G. KHOR

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

2. The Reference Frequency Range fa,,
g,,

is set for 61 Hz
.

This parameter sets the maximum reference frequency of the waveform. In variable
speed motor applications, this feature prevents the machine from being operated outside
its design parameters.

frange
-

fcarr x

384
frange

x 384 61 x 384
2 fcarr 11.7 X 103

The reference Erequency range is determined by the 3-bit word denoted by FRS. From

the data sheet, when m=2, FRS = 001.

3. The Pulse Delay Time tdelay is set at 5.83[ts.

The pulse delay time is the blanking time between two complementary switching

waveforms. Setting a large delay time increases low harmonic distortion to the output

waveform. At the same time, the delay has to be large enough to prevent a 'shoot

through' between two complementary power switches.

The pulse delay time is determined by a 6-bit word, PDY.

delay -
pdy

fcarr x 512

=:: ý PdY=: t delay X fcarr x 512 = 5.83 x 10-6 x 11.7 x 103 x 512 = 35

where pdy is the value of the PDY word.

4. The Pulse Deletion Time tpd is set at 10ýts.

Theoretically, the pulses in a PWM waveform can be infinitesimally narrow. However,

in practice, a narrow pulse may cause problems to the power switches due to storage

effects. The pulse deletion time sets a minimum pulse width time. Pulses with widths

narrower than the minimum time are eliminated altogether.

70
J. G. KHOR

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

From the data sheet [641:

tpd
-

pdt
fcarr

x 512

pdt= t
pdt x f., x 512 = 10 X 10-6 x 11.7 x 10' x 512 = 60

PDT is the 7-bit word which determines the pulse deletion time and pdt is the value of
PDT. From the data sheet, when pdt = 60, PDT =I 00 1110.

5. Counter reset (active low).

This facility allows the internal reference frequency counter to be set to zero. When the

Counter Reset is active LOW, the internal reference frequency phase counter is set to 0'

for the red phase. The Counter Reset is released when HIGH. For this application the

counter is set HIGH all the time.

Control Register

The control register provides on-line control over four parameters. They are:

1. Reference Frequency (Power Frequency)

The reference frequency is the frequency of the inverter's output voltage. The present

application does not require variable frequency output. The reference frequency is set at

a constant value of 50Hz by the 8-bit word PFS in the Control Register. The decimal

value of the word is denoted by pfs.

frange x pfs
fpower

4096-
fpower x 4096 50 x 4096

p
fs

frange 61
3357

From the data sheet, when pfs = 3357, PFS = 00011011.

2. Overmodulation

Overynodulation is not required, therefore the ovennodulation switch OM is set to 0.

71
J. G. KHOR

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

3. Reference Waveform. Amplitude (Power Waveform Amplitude)
The reference waveform amplitude is set in percentage of the maximum value. For this
application, the reference wavefonn amplitude is required to be maintained constant
even if disturbances cause the d. c. line voltage to change. This means that on-line
control of the reference waveform amplitude setting is required to maintain a constant
output. However, for initial testing purposes, the amplitude setting of this open loop

control circuitry is set at 80%. Hence the amplitude in percentage is,

A Apower -'::: -X 100%

255
Apower

x 255 80 x 255
= 204 100 100

where A is the decimal value of the 7-bit word AMP which determines the Reference

Waveform Amplitude. From the data sheet, when A= 204, AMP =I 00 1100

4. hihibit

Output inhibit is set to '0' during the first control sequence and set to 'I' during

subsequent control sequence.

From the preceding set of calculations, a table containing the register data can be

obtained as shown in Table 5-2. The first column shows the register while the third

column in the far left shows the hexadecimal value of the register.

It was mentioned that the SA828 is designed to be used in conjunction with a

microprocessor. There is also a possibility of designing an FPGA-based digital circuit

using VHDL to operate together with the SA828. This option is further discussed in

Chapter 9. The present design employ the use of a PICl6xOO Series microcontroller to

control the SA828. The microcontroller is programmed to feed the necessary signals

into the PWM IC in the correct forinat. A listing of the program code is included in

Appendix C.

J. G. KHOR 72

CHAPTER 5- PWM INVERTER DESIGN AND ANALYSIS

Table5-2 Values for Initialisation and Control Registers.

Initialisation
CR PDT6 PDT5 PDT4 PDT3 PDT2 PDT1 PDTo

RO 1 1 0 0 1 1 1 0 CE
FRS2 FRS1

-
FRSo x x CFS2 CFS1 CFSo ý

Rl 0 o 1 1 1 0 0 1 39 ,
x x PDY5 PDY4 PDY3 PDY2 PDYi PDYo
1 1 1 0 0 0 0 1 El

Control 1
PFS7 PFS6 PFS5 PFS4 I PFS3 PFS2 PFS1 PFSo

RO 0 0 0 1 1 0 1 1 1B
F/R om INH x PFS11 PFSlo PFS9 PFS8

Rl 0 0 0 1 1 1 0 1 1D
AMP7 AMP6 AMP5 AMP4 AMP3 AMP2 AMP1 AMPo

R2 1 1 0 0 11 1 0 0 1 cc

Control 2
PFS7 PFS6 PFS5 PFS4 1 PFS3 PFS2 PFS1 PFSo

RO 0 0 0 1 1 0 1 1 1B
F/R om INH x PFS11 PFSlo PFS9 PFS8

Rl 0 0 1 1 1 1 0 1 3D
AMP7 AMP6 AMP5 AMP4 AMP3 AMP2 AMP1 AMPo

R2 1 1 0 0 1 1 0 0 cc

In this chapter, various issues regarding PWM inverters and their control systems were

discussed. In addition, the design of two electronic control circuits for PWM control

were presented. These control circuits were successfully implemented and used in the

experiments in Chapter 8. The measured waveforms can be found in Appendix E. The

next chapter looks at the development of another substantial component of the project's

control system, thefuzzy logic controller.

73
J. G. KHOR

Chapter
6

Fuzzy Logic Controller

0 ver the past few years, the use of fuzzy set theory, or fuzzy logic, in control

systems has been gaining widespread popularity, especially in Japan. From as

early as the mid-1970s, Japanese scientists have been instrumental in transforming the

theory of fuzzy logic into a technological realisation. Today, fuzzy logic based control

systems, or simply, Fuzzy Logic Controllers (FLCs) can be found in a growing number

of products, from washing machines to speedboats, from air condition units to hand-

held autofocus cameras. In the present work, fuzzy logic is employed in the speed

governing system of the synchronous generator set.

Sections 61 and 62 of this chapter present an introduction to the theory of fuzzy logic

control systems. All the terms and definitions introduced here are used extensively in

the remaining sections of the chapter to describe the work on the FLC designed for the

generator system in study.

6.1 Introduction to Fuzzy Logic

The success of fuzzy logic controllers is mainly due to their ability to cope with

knowledge represented in a linguistic form instead of representation in the conventional

mathematical framework. Control engineers have traditionally relied on mathematical

models for their designs. However, the more complex a system, the less effective the

mathematical model. This is the fundamental concept that provided the motivation for

- ----- 74
J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

fuzzy logic and is stated by Lofti Zadeh, the founder of fuzzy set theory, as the Principle
ofIn compatibility.

Zadeh stated that [65]:

"As the complexity of a system increases, our ability to make precise and yet significant
statements about its behaviour diminishes until a threshold is reached beyond which
precision and significance (or relevance) become almost mutually exclusive
characteristics... "

Real-world problems can be extremely complex and complex systems are inherently
fuzzy. Precision increases fuzziness. The main advantage of fuzzy logic controllers is

their ability to incorporate experience, intuition and heuristics into the system instead of

relying on mathematical models. This makes them more effective in applications where

existing models are ill-defined and not reliable enough.

6.1.1 Historical Review

The term 'fuzzy' in fuzzy logic was first coined in 1965 by Professor Lofti Zadeh, then

Chair of UC Berkeley's Electrical Engineering Department. He used the term to

describe multivalued sets in the seminal paper, 'Fuzzy Sets' [66]. The work in his paper

is derived from multivalued logic, a concept which emerged in the 1920s to deal with

Heisenberg's Uncertainty Principle in quantum mechanics. Multivalued logic was

further developed by distinguished logicians such as Jan Lukasiewicz, Bertrand Russell

and Max Black. At the time, multivalence was usually described by the term

'vagueness'. When Zadeh developed his theory, he introduced the term 'fuzzy'.

Zadeh applied Lukasiewicz's multivalued logic to set theory and created what he called

fuzzy sets - sets whose elements belong to it in different degrees. According to thefuzzy

principle, 'everything is a matter of degree'. While conventional logic is bivalence

(TRUE or FALSE, I or 0), fuzzy logic is multivalence (from 0 to 1). It is a shift from

conventional mathematics and number crunching to philosophy and language. At the

beginning, fuzzy logic remained very much a theoretical concept with little practical

applications. The work Zadeh was involved in consisted mostly of computer simulations

of mathematical ideas. In the 1970s, Professor Ebrahim Mamdani of Queen's Mary

J. G. KHOR 75

CHAPTER 6- FUZZY LOGIC CONTROL

College, London, built the first fuzzy system, a steam engine controller, and later the
first fuzzy traffic lights. This led to the extensive development in fuzzy control
applications and products which is evident today.

6.1.2 Fuzzy Sets & Fuzzy Logic

Classical Sets & Fuzzy Sets

Classical set theory was founded by the German mathematician, Georg Cantor (1845-

1918). In the theory, a universe of discourse U, is defined as a collection of objects all

having the same characteristics. A classical set is then a collection of a number of those

elements. The member elements of a classical set belong to the set one hundred percent.

Other elements in the universe of discourse, which are non-member elements of the set,

are not related to the set at all. A definitive boundary can be drawn for the set, as

depicted in Figure 6-1 (a).

U

hIIIb
(a)

u

(b)

Figure 6-1 (a) ClassicallCrisp set boundary (b) Fuzzy set boundary.

A classical set can be denoted by

A=fxE=-U I P(X) I

where the elements of A has the property P, and U is the universe of discourse.

Deflnition: Characteristic function.

PAW U- 3ý lo'l I

J. G. KHOR
76

CHAPTER 6- FUZZY LOGIC CONTROL

The characteristic function pA(x) is defined as '0' if x is not an element of A and '1' if x
is an element of A. Here, U contains only two elements, '1' and '0'. Therefore, an
element x, in the universe of discourse is either a member of set A or not a member of

set A. There is no ambiguity about membership. For example, consider the set ADULT,

which contains elements classified by the variable AGE. It can be said that an element

with AGE='5' would not be a member of the set whereas an element with AGE='45'

would be. The question which arises is, where can a sharp and discrete line be drawn in

order to separate members from non-members? At AGE='18'9 By doing so, it means

that elements with AGE='I 7.9' are not members of the set ADULT but those with
AGE='I 8. l' are. This system is obviously not realistic to model the definition of an

adult human. Simple problems such as this one embody the notion behind Zadeh's

Principle of Incompatibility.

In fuzzy set theory, the concept of characteristic function is extended into a more

generalised forrn, known as membership function.

Definition: Membership Function.

JUA(X):
U -3ý WIll

While a characteristic function exists in a two-element set of 10,11, a membership

function can take up any value between the unit interval [0,1] (note that curly brackets

are used to represent discrete membership while square brackets are used to represent

continuous membership). The set which is defined by this extended membership

function is called afuzzy set. In contrast, a classical set which is defined by the two-

element characteristic function, as described earlier, is called a crisp set. Fuzzy set

theory essentially extends the concept of sets to encompass vagueness. Membership to a

set is no longer a matter of 'true' or 'false', '1' or V, but a matter of degree. The degree

of membership becomes important. The boundary of a fuzzy set is shown in Figure

6-1(b). While point a is a member of the fuzzy set and point c is not a member, the

membership of point b is ambiguous as it falls on the boundary. The concept of

membership function is used to define the extent to which a point on the boundary

belongs to the set.

77
J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

Definition: Fuzzy Set.

A fuzzy set F can be defined by the set of tuples

(, uF(x), x)1 xE2 U1

Zadeh proposed a notation for describing fuzzy sets whereby '+' denotes enumeration
and T denotes a tuple.

Therefore, the fuzzy set F in Zadeh's notation becomes

F ýt, (x) /x for a continuous universe U

or

F= Yj ýtF W/
Xfor a discrete universe U.

X(=-U

Returning to the earlier example, an element with AGE='18.1' may now be assigned

with the membership degree to the set ADULT of, say, 1.0. An element of AGE='17.9'

may then have a membership degree of 0.8 instead of 0. Such gradual change in the

degree of membership provides a better representation of the real world. However, the

exact shape of the membership function is very subjective and depends on the designer

and the context of the application.

While set operations such as complement, union and intersection are straight forward

definitions in classical set theory, their interpretation is more complicated in fuzzy set

theory due to the graded attribute of membership functions. Zadeh [66] proposed the

following definitions as an extension to the classical operations :

Definition: Fuzzy Set Operations

Complement VX E X: PA'(X): - l-PA(X)

Union VX Eý X: PAUBW ý MaXIPAW, PB(Y)l

Intersection VX C X: PAnB(X)= min[pA(x), A, (y)]

These definitions fonn the foundations of the basics of fuzzy logic theory and will

contribute towards a better understanding of the application of ftizzy logic in the thesis.

j. G. KHOR 78

CHAPTER 6- FUZZY LOGIC CONTROL

Earlier in this chapter, the concept of membership function was introduced. The relation
between an element in the universe of discourse and a fuzzy set is defined by its

membership function. The exact nature of the relation will depend on the shape or the
type of membership function used.

6.1.3 Types of Membership Functions

Figure 6-2 shows various types of membership functions which are commonly used in

fuzzy set theory. The choice of shape depends on the individual application. In fuzzy

control applications, Gaussian or bell-shaped functions and S-functions are not normally

used. Functions such as F-fanction, L-fanction and A-function are far more common.

W

(a)

(c)

(e)

_L ---pjr -L) Figure 6-2 Types o rEjemLbesLhi
-unctiLons. - a F-

1 ussian function
_69H-func

ion. ,a

J. G. KHOR

I
(d)

(f)

On (b)S-function (c)L-

79

V

(b)

CHAPTER 6- FUZZY LOGIC CONTROL

The definitions of the membership functions relevant to this thesis are as follows:

F-function, F: U --> [0,1]

0x< oc

(X; cc, (x - COO - 00 cc :5X: 5 11

x>P

L-function, L: U --> [0,1]

x<a
L(x; cc, (x - P)/(cc - P) cc :! ý x 10

x>P

A-function, A: U -->

0x< oc

(x - oc) oc) a:! ý x<

(x - 7) / (P - 7) P:! ý x 10

x>7

6.1.4 Linguistic Variables

The concept of a linguistic variable, a term which is later used to describe the inputs and

outputs of the FLC , is the foundation of fuzzy logic control systems. A conventional

variable is numerical and precise. It is not capable of supporting the vagueness in fuzzy

set theory. By definition, a linguistic variable is made up of words, sentences or

artificial language which are less precise than numbers. It provides the means of

approximate characterisation of complex or ill-defined phenomena. For example, 'AGE'

is a linguistic variable whose values may be the fuzzy sets 'YOUNG' and 'OLD'. A

more common example in fuzzy control would be the linguistic variable 'ERROR',

which may have linguistic values such as 'POSITIVE', 'ZERO' and 'NEGATIVE'.

J. G. KHOR
80

CHAPTER 6- FUZZY LOGIC CONTROL

In this thesis, the following conventions are used to define linguistic variables:

If Xi is a linguistic variable defined over the universe of discourse U where x(=-U then
iLxik (fork= 1,... n) are the linguistic values Xi can take

n is the number of linguistic values Xi have

PLXi, k(x) is the LXjk membership function for the value x
1, LX 2,

... Lxin is the set containing LXjk, where jV Ly-i i LXi

In the recent example above,
X, is'ERROR'

n=3 is the number of linguistic values in X,

1LXj1 is 'POSITIVE'
i-x2 is'ZERO'

Ix" is'NEGATIVE'

and, for x= 1- 1,0,11:

PLXI, 1(-1) = 0; PLXI, 1(0) = 0; ULXI, 1(1) =,
JULXI, 2(-

1) =0; JULX1,2(O) =1; JULX1,2(1) = ()

PLXI, 3(-1)=1; PLXI, 3(0)=(); iULX1,3(1)
=0

However, in some parts of the thesis, the symbol 'p ' is omitted when describing the

membership function. Further explanation regarding this omission is included in Section

6.3.4.

6.1.5 Fuzzy Logic Operators

Logical connectives are also defined for fuzzy logic operations. They are closely related

to Zadeh's definitions of fuzzy set operations. The following are four fuzzy operations

which are significant to the thesis. R denotes the relation between the fuzzy sets A and

B.

Negation

ýtA (X) -: - 1- ýtA

Disjunction

R: A ORB

J. G. KHOR

PRW = max[PAW, A(T)l

81

CHAPTER 6- FUZZY LOGIC CONTROL

Conjunction

R: A AND B PRW ý min[PA(X), PB(X)l

Implication

R: (x=A)-->(y=B) lFxisATHENyisB

Fuzzy implication is an important connective in fuzzy control systems because the

control strategies are embodied by sets of IF-THEN rules. There are various different

techniques in which fuzzy implication may be defined. These relations are mostly
derived from multivalued logic theory. The following are some of the common

techniques of fuzzy implication found in literature:

Zadeh's classical implication :

max I min[p, (x),, u,, (y)], l-, u,, (x) I

Mamdani's implication :

, u�(x, y) =

Note that Mamdani's implication is equivalent to Zadeh's classical implication

when:

, u�(x), ýý 0.5 anduB(v) ýý 0.5.

Godel's implication :

(X, Y)
ýt

Lukasiewicz' implication :

ý, ' : ýg ýt .
otherwise

min 11, [I -p, (x)+p,, (y)] I

The differences in using the various implication techniques are described in [67]. It is

fairly obvious by looking at the mathematical functions of the different implication

techniques that Mamdam's technique is the most suitable for hardware implementalon.

It is also the most popular technique in control applications and is the technique that is

used in the present design.

J. G. KHOR
82

CHAPTER 6- FUZZY LOGIC CONTROL

6.2 Fuzzy Control Systems

Figure 6-3 shows the block diagram of a typical Fuzzy Logic Controller (FLC) and the

system plant as described in [68]. There are five principal elements to a fuzzy logic

controller:
Fuzzification module (Fuzzifier).

Knowledge base.

Rule base.

Inference Engine.

Defuzzification module (Defuzzifier).

Automatic changes in the design parameters of any of the five elements creates an

adaptive fuzzy controller. Fuzzy control system with fixed parameters are non-adaptive.
Other non-fuzzy elements which are also part of the control system include the sensors,

the analogue-digital converters, the digital-analogue converters and the normalisation

circuits. There are usually two types of normalisation circuits: one maps the physical

values of the control inputs onto a normalised universe of discourse and the other maps

the normalised value of the control output variables back onto its physical domain.

Knowledge Rule-base base

Input
Scaling factors, Defuzzification, Output

__00. normalisation
Fuzzification Inference denonnalisation

Plant

Output-scaling
Sensors factors,

normalisation

yýjg! jre 66-3 Block diagram of a typical. fuzzy logic controller.

J. G. KHOR 83

CHAPTER 6- FUZZY LOGIC CONTROL

6.2.1 Fuzzifier

The fuzzification module converts the crisp values of the control inputs into fuzzy
values, so that they are compatible with the fuzzy set representation in the rule base. The
choice of fuzzification strategy is dependent on the inference engine, i. e. whether it is

composition-based or individual-rule-firing based [69].

6.2.2 Knowledge base

The knowledge base consists of a data base of the plant. It provides all the necessary
definitions for the fuzzification process such as membership functions, fuzzy set
representation of the input-output variables and the mapping functions between the

physical and fuzzy domain.

6.2.3 Rule base

The rule base is essentially the control strategy of the system. It is usually obtained from

expert knowledge or heuristics and expressed as a set of IF-THEN rules. The rules are
based on fuzzy inference concept and the antecedents and consequents are associated

with linguistic variables. For example,

IF error (e) is Positive Big (PB) THEN output (u) is Negative Big (NIB)
IIIIII

rule antecedent rule consequent

Error (e) and output (u) are linguistic variables whilst Positive Big (PB) and Negative

Big (NB) are the linguistic values. The rules are interpreted using a fuzzy implication

technique. In fuzzy control theory, this is normally Mamdani's implication technique.

6.2.4 Defuzzifier

The diagram in Figure 6-4 shows the membership functions related to a typical fuzzy

controller's output variable defined over its universe of discourse. The FLC will process

the input data and map the output to one or more of these linguistic values (LU' to LU').

Depending on the conditions, the membership functions of the linguistic values may be

clipped. Figure 6-5 shows an output condition with two significant (clipped above zero)

output linguistic values. The union of the membership functions forms the fuzzy output

value of the controller.

J. G. KHOR
84

CHAPTER 6- FUZZY LOGIC CONTROL

This is represented by the shaded area in Figure 6-5 and can be expressed by the fuzzy

set equation:

k
US

i=l

ýts(y)=max[ýtsjy)]
i

where
S is the union of all the output linguistic values,

Si is an output linguistic value with clipped membership function,

k is the total number of output linguistic values defined in the universe of discourse.

In most cases, the fuzzy output value S, has very little practical use as most applications

require non-fuzzy (crisp) control actions. Therefore, it is necessary to produce a crisp

value to represent the possibility distribution of the output. The mathematical procedure

of converting fuzzy values into crisp values is known as 'defuzzification'.

membershi
function

Figure 6-4 Membership. function of the output linguistic values.

membership
function

D

D

omam,

an output condition.

J. G. KHOR
85

Possibility distribution

CHAPTER 6- FUZZY LOGIC CONTROL

A number of defuzzification methods have been suggested. The different methods
produces similar but not always the same results for a given input condition. The choice
of defuzzification methods usually depends on the application and the available
processing power.

The defuzzification method used in this thesis is the weighted average method. This

method requires relatively little processing power and is ideal for FPGA implementation

where 'area space' is a major consideration. However, it is only valid for symmetrical
membership functions. Each membership function is assigned with a weighting, which
is the output point where the membership value is maximum. Based on the diagram in

Figure 6-5, the defuzzification process can be expressed by:

Eq. 6-1 f (Y) ýt(y) y
I [t (Y)

and using the weighted average method on Eq. 6-1 becomes:

Eq. 6-2

where

In
E' - D'

M=l
YnD In

lm=l

J(y) is the crisps output value,

Em is the crisp weighting for the linguistic value LU m and

Dm is the membership value ofy with relation to the linguistic value LUm.

The crisp output of the defuzzifier is used, either as it is, or via an interfacing block, to

control the plant.

6.2.5 Fuzzy Logic in Power & Control Applications

Over the past two decades, there has been a tremendous growth in the use of fuzzy logic

controller in power systems as well as power electronic applications. A recent series of

tutorials in the IEE Power Engineering Journal [70,71,72] which focused entirely on the

applications of fuzzy logic in power systems is evidence of its growing significance in

the field. Current applications in power systems include power system stability control,

J. G. KHOR
86

CHAPTER 6- FUZZY LOGIC CONTROL

power system stability assessment, line fault detection and process optimisation for

generation, transmission and distribution. In power electronics and control of electrical

machines, fuzzy logic is used in motion control [73,74], control of wind turbines [75],

motor efficiency optimisation control [76] and waveform estimation [77].

The advantages of using fuzzy logic in such applications include the following:

9 Fuzzy logic controllers are not dependent on accurate mathematical models. This is

particularly useful in power system applications where large systems are difficult to

model. It is also relevant to smaller applications with significant non-linearities in the

system.

Fuzzy logic controllers are based on heuristics and therefore able to incorporate

human intuition and experience.

There are numerous ways to build and implement a fuzzy logic system. It can either be

based on afuzzy logic development shell or built using software programming languages

such as C++ or even Java. In this thesis, a different approach is made. The fuzzy system

is developed using a hardware description language, VHDL.

87
J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

6.3 Fuzzy Synchronous Generator Control

There are a number of reasons for using fuzzy logic in this application. The primary
advantage is the wide range of flexibility fuzzy logic offers. As mentioned in Section
6.2, the backbone of any FLC is embodied in a set of fuzzy rules. The implication of
this feature is two fold. The first point lies in the fact that the control strategy is

represented by a set of rules and not an elaborated set of equations. This allows the

designer to change the basic characteristics of the controller with minimal fuss, simply
by redefining the rules. The structure of other components in the FLC remains intact and
hence, the effort to redesign the hardware configuration is significantly reduced. This is

a great advantage in research applications where some further studies into alternative

control strategies are expected. Secondly, because the rules arefuzzy, vagueness in the

design of the control system can be tolerated to a certain degree. This eliminates the

need for a well-defined mathematical model of the plant. The control plant in this

project is not a trivial system to model with significant accuracy, since it comprises a

number of different non-linear components such as the diesel engine and synchronous

generator. With reference to the equations developed in Chapter 4, models with

reduced complexity can be employed for the purpose of analysing the functional

characteristics of the FLC.

The following sections describe the work involved in developing the desired controller

for the generator set based on the concepts introduced at the beginning of this chapter.

6.3.1 Control Block

Figure 6-6 shows a block diagram of the FLC and a stand-alone generator set.

Components of the FLC are represented by the shaded blocks. There are two inputs to

the FLC. Its final functionality is determined by the choice of inputs and the definition

of the fuzzy rule base. This allows the system to be studied under different control

strategies and specifications using the same hardware. Only three sections have to be

modified: the two interfacing blocks and the rule base. In this experiment, the d. c.

voltage at the output of the rectifier is used as an input to the FLC. The plan is to test the

J. G. KHOR
88

CHAPTER 6- FUZZY LOGIC CONTROL

system with a basic control strategy: maintaining the d. c. voltage within a small range,
over varying load currents. The control output, u is used to control the rate of flow of
the fuel to the diesel engine.

Figure 6-6 Block diagram ofFuzzy Logic Controller and control plant.

The tasks involved in designing a typical FLC can be loosely summarised as follows:

I Decide on an overall strategy based on the design criteria.

11. Identify an implementation technology.

Ill. Identify the I10 variables (knowledge base).

iv. Define the membership functions for the variables (knowledge base).

v. Formulate a Fuzzy Rule Base.

vi. Choose a method of inference.

vil. Choose a defuzzification technique.

This design procedure forms a general guide and may well vary from one design to

another,, depending on the individual aims and requirements.

6.3.2 Overall Strategy

The design has to be able to accommodate different control strategies and yet not be too

inherently complex for hardware implementation. Two input variables (x, and x,) are

used. This is enough to give the system a certain amount of possible capabilities. Too

many inputs add complications to the design as the number of fuzzy rules expands

J. G. KHOR
89

CHAPTER 6- FUZZY LOGIC CONTROL

exponentially with the number of input variables. There are methods to handle large

amount of input variables but these are not discussed in this thesis. A generic structure

of the FLC is first designed and the specific functionality which is determined by the

knowledge base and the formulation of the rule base is designed at a later stage.

6.3.3 Implementation Technology

The most common method of implementing fuzzy controllers at the moment is with

microprocessors. In this project a different implementation technology has been chosen.

One of the objectives of this thesis is to investigate the implementation of FLC into

FPGAs. This is a major consideration as the design would ultimately have to be able to

fit into the chosen FPGA(s). The required 'area space' or gate count (further explained

in Chapter 7) becomes a significant design criteria.

6.3.4 Membership Functions

The present design utilises three types of functions : F-function, L-function and A-

function, all of which have already been introduced. These functions have been proven

to produce good results for control applications and can be easily implemented into

hardware. The universe of discourse of the input variables is partitioned into 5 fuzzy

sets or linguistic values (B' to B'), whilst the output variable can take any of the 7

linguistic values (DI to DA Figure 6-7 and Figure 6-8 show graphical representations

of the membership functions.

membershir
function

Fure 6-7 Membership function qf input variables.

90
J. G. KHOR

di Lji %'i -1 -1 A, i
5

ai bibi4bi5 bi
ai

CHAPTER 6- FUZZY LOGIC CONTROL

membership
function

Figure 6-8 Membership. function of output variable.

The following equations define the membership functions for the linguistic values

associated with the input variables.

xi <ai

(xi -bij) J. <X Eq. 6-3 B
(a il

.- bil .a1. -i:! ý bil

ýo
xi > bij

0 xi <ai

Eq. 6-4 B li .-
(x i -ai

.)a il
. :g xi. :: 9 bi' .

(bil -ail)

1 xi >bij

0x< ail i
(x

.
-ai) a! <x- <b!

.-i)I-I-I (b/ a
Eq. 6-5 B jJ =J (x ci.) <x <c bi ii

i (b/ - cj)

0x> ci ii

where i =1,2 and

J. G. KHOR

forj =I

forj =

forj = 2,3,4

91

JLJ JLý JLI JLa JLd JLd JLa

y

CHAPTER 6- FUZZY LOGIC CONTROL

The crisp values of the input variables are mapped onto the fuzzy plane using Eq. 6-3 to
Eq. 6-5. It gives each input variable a membership function relating to the fuzzy sets, Bj'

to Bj'. It has to be pointed out that in these equations, Bj' is used to denote the

membership function. The reader should be aware that in this thesis, the symbol Bil is

used for both, the linguistic value as well as the membership function. Strictly speaking

(see Section 6.1.4), the linguistic value should be denoted using Bli , while the

membership function usingVtBij (X).

In this thesis, 'ýC and '(xi)' are dropped from the denotation of membership function,

thus,

ýtffij (xi) = Bi' = 0.5

is used to indicate that xi belongs to the linguistic value Bi by a membership function

of the value 0.5.

The universe of discourse of the output variable is divided into seven linguistic values

as shown in Figure 6-8. The membership functions of the output values are intentionally

made to be symmetrical as this will simplify the defuzzification computation. El to E7

are the mean of each function and act as the weightings to the weighted average method

of defuzzification.

6.3.5 Fuzzy Rule Base

Because each input variable can take any of the 5 linguistic values, 25 (=5x5) rules are

fon-nulated. The rules have the typical fuzzy rule structure, using linguistic variables in

both the antecedent and consequent, and are expressed in IF-THEN manner. They map

the input states onto 25 output conditions (C, toC25)'

J. G. KHOR
92

CHAPTER 6- FUZZY LOGIC CONTROL

The fuzzy rules have the general form,

Eq. 6-6 Rk IF x, is Ak AND x is Ak, THEN Y
is Ck.

22

where
Rk (k = 1,2, ..., 25) is the V rule of the fuzzy system,
X19 X2 are the input linguistic variables,

is the output linguistic variable,

Ak1,2 ;k=1,2, ..., 25) is the kh fuzzy set defined in the i' input space i

and Ak can take any linguistic value associated with xi i
ck

is the output condition inferred by the k' rule.

If the denotation is such that the linguistic variables:

xi for i= 1ý2

have the following linguistic values:

for i=1 ý2 ;j=I to 5,

then the rule base can be represented by a Fuzzy Associative Memory (FAM) table as

shown in Table 6-1.

Table 6-1 Fuzzy Associative Memory Table.

xc

\ix
2

B2' B2 2 B2 3 B2 4 B2 5

Bl' CI c2 c3 C4 c5

B, 2 c6 C C8 C9 CIO

B, 3 C11 cl2 cl3 04 C15

B, 4

Bi '

c16

c2l

C7

I

c22

C18

ý

c23

C19

c24

c20

c25

J. G. KHOR
93

CHAPTER 6- FUZZY LOGIC CONTROL

6.3.6 Inference Engine

The FLC design in this project incorporates Mamdani's implication method of
inference, which is one of the most popular method in fuzzy control applications. In

essence, Mamdani's implication for the fuzzy rule of Eq. 6-6 is given by

Eq. 6-7 ýt c (y) = max min[kk
(X2 Ak2,... 25 kI

ýtAl (XI)ý ýl
A2

I

The implication has a simple min-max structure which makes it easy to incorporate into
hardware. The block diagram in Figure 6-9 provides an overview of the controller's
internal structure. Two input variables are fuzzified, producing the corresponding
linguistic values and membership functions (Bij). The first phase of Mamdani's

implication involves min-operation since the antecedent pairs in the rule structure are

connected by a logical 'AND'. All the rules are then aggregated using a max-operation.

-fuzzy
logic controller. ure 6-9 Block diagram of the operations in a

J. G. KHOR
94

FuzzIFICATION INFFRENCE DEFUZZIFICATION

CHAPTER 6- FUZZY LOGIC CONTROL

6.3.7 Defuzzification Technique

Different defuzzification techniques have different levels of complexities. There have
been several studies into the methodology to guide the selection of defuzzification

techniques based on the criteria of the design[78,79,80]. The dominant criteria in this
design lies in the implementation stage. In order to implement the system into an FPGA,

it would be advantageous for the defuzzification technique to be fairly straight forward

and to not involve a large number of complex calculations. The weighted average

method is viewed to be an appropriate technique for systems involving hardware

implementation. Due to the fact that the output membership functions are symmetrical
in nature, the mean of the fuzzy sets can be used as weightings for the defuzzification

process. This technique requires several multiply-by-a-constant operations and only one
division process. The fact that the multipliers have constant values further reduces the

complexity of the hardware structure. The weighted average method is defined by Eq.

6-2.

6.4 Design of the Rule Base

It has been mentioned that the rule base moulds the functionality of a FLC. The irules

are most likely to be formulated based on some level of human understanding of the

plant, and although fuzzy logic control system supports heuristics, the actual process of

constructing the rules is still the sub ect of considerable studies. The most basic way of

constructing the rule base is by trial and error, but this usually involves heavy

computation and has a low efficiency. Numerous other techniques have been suggested,

some of which involve automatic generation of the rule base using computational

methods such as genetic algorithms [81,82] and evolutionary programming [83]. The

design of FLCs can also be based on conventional control structures such as PID and

sliding mode control. Description and examples of such structures in fuzzy control can

be found in [69,84,85]. The design of the FLC in the present work is based on Pl-

controllers because it is highly suitable for the governing (of the d. c. voltage) system

required. The rule base is constructed from the control law of a PI-system.

J. G. KHOR
95

CHAPTER 6- FUZZY LOGIC CONTROL

6.4.1 PI-Control

The Proportional-Integral (PI) controller is a well known system in control engineering.
it is

, in essence, a lag compensator characterised by the transfer function

Eq. 6-8 G(s) = K(l +I T --S)

where

G(s) is the gain,
K is the control parameter and
T is the time constant.

The control law is given by the equation

1t

Eq. 6-9 up, =Kp, e+K, -Tfe- dt
0

where

U is the control signal and

e is the error, given by e= (input value) - (reference value).

Differentiating Eq. 6-9 gives

Eq. 6-10
du

=Kp *
de

+KI *e dt dt

In discrete-time system, Eq. 6-10 can be written as

u(kT) - u(kT - T) = Kp - fe(kT) - e(kT - T)l + K, - e(kT)

Eq. 6-11 Au=Kp *Ae+Kl

where

Au is the change in u over one sampling period and

Ae is the change in e over one sampling period.

J. G. KHOR
96

CHAPTER 6- FUZZY LOGIC CONTROL

The characteristic of a PI-controller can be represented by the phase plane diagram

shown in Figure 6-10. A diagonal line where Au =0 divides the control area where Au

is positive and Au is negative.

Figure 640 Characteristic ofPI-controller.

6.4.2 Pl-like Fuzzy Control

At this stage, the control law in Eq. 6-11 is not in fuzzy terms. In order to design a fuzzy

controller based on the PI-control structure, the following definitions are made:

Let

E be the linguistic variable for the error e,

AE be the linguistic variable for the change of error Ae and

U be the lingulstic variable for the control output u.

Based on the conventions in Section 6.1.4, the following sets are defined:

LE = Negative Big, Negative, Zero, Positive, Positive Big

LAE = Negative Big, Negative, Zero, Positive, Positive Big

LU =I Negative Big, Negative, Negative Small, Zero, Positive Small, Positive,

Positive Big I

The corresponding PI-control law in IF-THEN rules has the form:

Eq. 6-12 Rý : IF E is A, k
and AE is A 2k , THEN U is Ck

where

Al k can take any linguistic value in the set LE,

J. G. KHOR
97

CHAPTER 6- FUZZY LOGIC CONTROL

A., ' can take any linguistic value in the set LAE and
Ck can take any linguistic value in the set LU.

To implement this design into the FLC, let:

e

9 AE9

JB', B2, B3, B4 B'j =f Negative Big, Negative, Zero, Positive, Positive Bigj iiiii
for 1 =112

o JD', D2, D3, D4, D5, D6, D7, D', D'I =I Negative Very Big, Negative Big,

Negative, Negative Small, Zero, Positive Small, Positive, Positive Big, Positive

Very Big I

Table 6-2 shows the FAM table of the design.

Table 6-2 FAM Tablefor FLC design.

XI
NB N Z p PB

A-] X,

R' R' R3 R' 5 R

IN-B it=NVB u=NB u=N u=NS u=Z

R6 R7 R' R' R'
N it = NB it=N u= NS u=Z u= PS

R'' R 12 R 13 R 14 R 15

Z

u=N u= NS u=Z u= PS u=P

R 16 R 17 R" R'9 R 20

p
u=NS u=Z u= PS u=P u= PB

R 21 R 22 R 23 R 24 R 25

PB u=Z u= PS u=P u= PB u =PVB

6.4.3 Interfacing Blocks

NVB Negative Very Big
NB Negative Big
N Negative
NS Negative Small
z Zero
PS Positive Small
p Positive
PB Positive Big
PVB Positive Very Big

Figure 6-11 shows a block diagram demonstrating the implementation of the FLC in a

stand alone generator system. The control plant in the diagram represents the engine,

generator and rectifier system. The notation 'z is used to mark a delay in the signal by

one sampling period (the subject of Z-transform can be found in [86]).

J. G. KHOR
98

CHAPTER 6- FUZZY LOGIC CONTROL

1T

Figure 6-11 Block diagram of the control system.

In this application, the input interface converts the d. c. voltage at the output of the plant
into error and change of error which are used as the two inputs to the FLC. Another

interface converts the output into the required value for the plant.

The characteristics of the interfacing blocks can be described by the following

equations:

Input interface:

VREF
-

VDC

x1 =e

X2 ýXl -XI*Z-l

Output interface:

Au =

Au+ u. Z-'

Once the design issues of the FLC have been resolved, the next step is to consider the

implementation scheme. In this project, the design is achieved using VHDL.

6.5 VHDL Description

The FLC is designed and modelled in an EDA environment using VHDL. The

controller is broken-down into (components', with each component performing a

specific function such as fazzification, inference, etc. This means that the design of each

J. G. KHOR 99

CHAPTER 6- FUZZY LOGIC CONTROL

component can be modified or simply combined with one another to form a complete
system. Two levels of design descriptions are presented in this thesis. A behavioural
level description is used to test the functional validity of the design. At this level, the
design is relatively generic and not restricted by any particular technological constraints.
Once the functionality of the design is verified, it is subsequently modified for
implementation into the chosen technology. This involves two main tasks: converting
the code into structural level and optimising the design. The amount of optimisation

required will depend on the target technology. In a general sense, the smaller the
targeted device the greater the amount of effort required. In this thesis, the target device

is Xilinx. XC4010XL FPGA which has a maximum equivalent logic gates of 10,000.

This is comparatively small as FPGAs with more than 250,000 gates are available on

the market [87].

The FLC is divided into 5 VHDL components. Figure 6-12 shows a diagram of the FLC

architecture. Each component is depicted with its VHDL code file '<filename>. vhd'.

The functionality of components Interfacel, Interface2 and part of the component Infer

will deten-nine the characteristics of the FLC. Input and output variables are designed

with a resolution of 8 bits.

input(s)

clock

onents in the Fuzzy Logic Controller.

output

J. G. KHOR
100

CHAPTER 6- FUZZY LOGIC CONTROL

The ports and signals can be declared either as type integer or stdjogic-vector. An
example of the two ways of declaration mentioned here are:

port(

xl Jn integer ;

x2 An integer ;

y : out integer);

and

port(

xl : in std_Iogic_vector(7 downto 0);

x2 : in std_Iogic_vector(7 downto 0);

y : out std_Iogic_vector(7 downto 0»;

The choice of type will depend on whether it is easier to write the VHDL code using
integer or stdjogic-vector. At synthesis level there is little difference between the two

types. However, when developing the design for hardware implementation, the range of
the integer must be specified during declaration, a point that is further explained in the

next chapter. In this thesis both types are used, depending on the conditions. Conversion

functions exist in VHDL to convert between the types [88]. They are:

conv-integer();

conv-std_logic-Vector();

Interfacing components

The interfacing circuits are vital parts of the FLC. They form the link between the core

of the FLC with the control plant and, together with the rule base, shape the

characteristics of the complete control system. In this thesis, the FLC is used as a PI-like

controller in the stand-alone generator system, using the d. c. voltage as an input. The

transformation required has already been discussed in Section 6 4.3.

J. G. KHOR
101

CHAPTER 6- FUZZY LOGIC CONTROL

Components Interfacel and Interface2 are used to implement the input and output
interfacing functions. This is achieved with the following code:

Part of the code in the VHDL file Interfacel. vhd is shown below (the complete
contents of the VHDL files can be found in Appendix A):

process(CLK)

begin

PAST_VAR: = NOW-VAR;

NOW-VAR: = error;

DIFF: = NOW_VAR - PAST_VAR;

-- Normalised input values:

x1 <= NOW-VAR;

x2 <= DIFF * GAIN;

end process;

In the final version of the design, interface2 is embedded within the code for Defuzz.

The following is a section implements the output interface function:

--Output interface

U-var: = Uz + Y;

Uz: = U-var;

U <= U-var;

J. G. KHOR
102

CHAPTER 6- FUZZY LOGIC CONTROL

Fuzzify

The function of the component Fuzzify is to convert the crisp input variables into fuzzy

values. The membership functions of the input variables are defined in the 'constant-
declaration' part of Fuzzify as shown below:

architecture Fuzzify_arc of Fuzzify is

constant al Anteger 60;

constant bl Anteger 30;

constant a2 : integer: = - 10;

constant b2 : integer - 30;

constant c2 : integer 0;

Bil Bj2 Bj3 Bj4 Bj5

al bl c2 c3 c4
a2 b2 W b4 b5

a3 a4 a5

Figure 6-13 Membership function of input variables.

The membership values of the input variables to the linguistic values are then assigned

based on these constant values. Thus, the membership functions can be slightly

modified by redefining the constants. However, the shape of the membership functions

would remain more or less the same, i. e. L-, 17- and A-functions as shown in Figure

6-13

Fuzzy Inference

The component Infer performs Mamdani's min-max inference to obtain the resulting

fuzzy output as a consequence of the rule base. A model, as shown in Figure 6-14, is

developed to represent the inference engine in such a way that it can be easily adopted

into the hardware description. The left hand side of the diagram shows the implication

of 25 output conditions by the fuzzy rule antecedent using min-operators. Each output

condition models the consequence of a single rule.

J. G. KHOR
103

CHAPTER 6- FUZZY LOGIC CONTROL

Therefore, the rule

R' : IF x, is B I' andX2 is B2% THEN U is C'

becomes

C'= min[Bl', B, '].

The max-operator is used to take into account the combined effect of all the rules. The

25 output conditions are aggregated into 7 linguistic values (D' to D7) based on the

conditions set by the rules. This operation is depicted by the right hand side blocks in

Figure 6-14.

B, C cl

max D'
h, F---j ---0. c2 c2

x C3

ET c4 c25

C' max 2 D
c2

x 2

C25

C25

cl
max

D7
C2

c25

I of the inference engine.

104
J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

For the purpose of illustration, switches are used to model the association of the output
conditions to the linguistic values. A switch is set 'ON' if an output condition is
associated with the linguistic value for the block of max-operation in question. This
means that the collective effect of the rule base can be modelled by defining the status
of the switches. For example, in the design of the FVG (refer to FAM table in Table 6-
2), the membership function of the linguistic value D' is the aggregate of conditions C'O,
C24

and
C21

. This is modelled by 'connecting' the three output conditions to the max-
operation of D' and 'disconnecting' the other conditions, as illustrated by the block in

Figure 6-15. The operation is described by the function:

D' = Max[C20, C24, C25].

C20

c24 max D'
c25

ers) C(Otli ýLE ;ý

O/c

Figure 6-15 Model of the process of aggregating thefuzzy rules.

Using the same principle, the entire set of fuzzy rules of the FVG is implemented into

the VHDL component infer simply by defining the association between the output

conditions and the linguistic values (D' to D'). The following functions are used to

incorporate the rule base of the FVG into the FLC.

D'= C'

2= max[C2, Cl]

D'= max[C',
C7, CII]

4= Max[C4, C8, C12, C16]

D'= max[C',
C9, C13, C17, C21]

D6= MaX[CIO, C14, C18, C22]

D'= max[C",
C19, C231

D'= max[C21, C24]

D9 = C25

105
J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

Defuzziffier

The function of the component Defuzz is to convert the fuzzy output value of the control

system into the corresponding crisp value. This is achieved using the weighted average
defuzzification method. From Eq. 6-2 it is evident that this defuzzification operation

requires several multipliers and a divider. Behavioural modelling in VHDL supports

multiplication and division but these operations are complicated to realise in the

synthesis and implementation stages. However, in this chapter only the functional

simulation is discussed. Therefore, the multiplication operator '*' and the division

operator 'P are used. At subsequent stages, modifications are required as most synthesis

tools do not support the division operator 'P. In addition, using a lower level of design

description has the advantage of requiring less gates than the '*' operator. Using the

multiplication and division operators results in the defuzzification code being fairly

straightforward as shown below (the complete code is included in Appendix A-6):

DEFUZZ-PROCESS:

process(CLK)

variable Dividend, Divisor: integer;

begin

if CLK'event and CLK='l'then

Dividend : =(El*Dl)+(E2*D2)+(E3*D3)+(E4*D4)+(E5*D5)+(E6*D6)+(E7*D7)+

(E8*D8)+ (E9*D9);

Divisor := (Dl+D2+D3+D4+D5+D6+D7+D8+D9);

if Divisor =0 then

-- *** Avoid division by zero

Y: = 0;

else
Y: = (Dividend/Divisor);

end if;

end if;

end process;

106
J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

The dividend is obtained from the sum of the product of the linguistic values and their

respective weightings while the divisor is simply the sum of all the linguistic values. A

section of the design, marked "***Avoid division by zero***", is dedicated to checking if

the value of the divisor is zero and taking the appropriate measures to avoid a 'division

by zero' error.

Once all the components of the FLC are successfully designed, a top hierarchy VHDL

component, Control, is created to bind them together in the manner shown in Figure

6-12 such as to form the complete controller. The code for this component is included in

Appendix A-7. Within Control, the interfacing components, Fuzzify, infer and Defuzz are

instantiated and connected to one another. Control also features two clocking signals for

synchronising its internal components. By combining the completed design of Control

with the plant models presented in Chapter 4, the performance of the controller can be

analysed using computer simulations.

6.6 Simulations
A series of computer simulations are conducted on the FLC to analyse its performance

before proceeding to hardware implementation. For this task, a VHDL test component,

Sim, is created to simulate the control environment. By using the models developed in

Chapter 4, Engine and Genrect, it is possible to simulate the relationship between the

FLC and the control plant within the VHDL platform in order to study the controller.

Figure 6-16 shows a simplified block diagram of the structural composition of Sim. The

shaded blocks represent components which have been previously described and are

instantiated inside the structure of Sim. The white blocks are sections of code which

perform the data type conversions between the signals of the plant models and those of

the controller. A listing of the VHDL code for Sim is found in Appendix A-9.

107
J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

theta
Ifield

ldc

period
CLK2

Vref

CLK1

Figure 6-16 Block diagram of Sim.

Vph

Vdc

TE

The method adopted for running the simulation is by using a VHDL testbench. A

testbench is a VHDL design written specifically to provide a test environment for the

design under study. A model of the testbench is shown in Figure 6-17. It is made up of

two main parts, the stimulus and the observer. The former generates the necessary input

signals to the design while the observer reads and records the output signals resulting

from the stimulus signals.

Testbench

I of a VHDL testbench.

J. G. KHOR
108

CHAPTER 6- FUZZY LOGIC CONTROL

A testbench TB_Sim is subsequently created for Sim. The code for TB
-

Sim can be found
in Appendix A-] 0. The following VHDL codes are two important sections in TB-Sim:

VHDL code (TB_Sim):

-- Stimulus

CLK1 <= not CLK1 after ions;
CLK2 <= not CLK2 after 1 ns;
Period <= 3.0;

theta <= 0.0;

Ifield <= 2.5;

Vref <= 1000;

ldc <= 2.0,

6.0 after 40OOns;

-- Observer

-- Write results into file

process (CLK1)

file outfile : text is out
"CAMy Designs\Simulation\src\Results\Resultla. txt";

variable out-line : line;

begin

write(out-line, Vdc);

writeline(outfile, out-line);
end process;

The first section, marked Stimulus, is responsible for assigning the appropriate values to

the components in the test environment. In the given example, the load current

(measured at the d. c. link) ldc is changed from 2. OA to 6. OA when t= 40OOns. The other

section of code (with the marking Observer) records the response of the system and

writes the information into a text file. This is achieved using the write and writeline

statements which are found in the std-textio library package. In this chapter, graphical

representations of the system responses, designed using MS Excel, are shown instead of

the raw numerical data. The voltage values shown in the graphs are normalised to the

reference voltage.

J. G. KHOR
109

CHAPTER 6- FUZZY LOGIC CONTROL

6.6.1 Simulation 1

In this simulation, the effects of the weightings E 1-7 for the defuzzification process in the
component Defuzz are investigated. The values of the weightings in Simulation No. 1a

are as follows:

2 13 4567 E' =-6; E =-4; E =-2; E =O; E =2; E =4; E'-6; E9=8

Using the stimulus signals described by the VHDL code below, the d. c. voltage

response of the system is simulated.

VHDL code (TB_Sim):

-- Stimulus

CLK1 <= not CLK1 after lOns;

CLK2 <= not CLK2 after 1 ns;

Period <= 3.0;

theta <= 0.0;

Ifield <= 2.5;

Vref <= 1000;

ldc <= 10.0;

The reference voltage is set to 1000 as this is a convenient value with which to analyse

the perfonnance of the controller. In the graphs shown, Figure 6-18 to Figure 6-25, the

values of the d. c. voltage in the graphs are nonnalised to the reference voltage (i. e. d. c.

voltage = VdcNref).

1.20

1.00

0.80

0.60

0.40

0.20

0.00
CD C) C:) C:) CD

C, 4 n le U')

time [sec]

ge response in Simulation No.]a.

110

J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

It is clearly visible ftom Figure 6-18 that the system is unstable. The d. c. voltage
oscillates continuously with a magnitude of up to 9% of the reference value. This is
partly caused by overcompensation which results from the large weighting values in the
defuzzification process. In Simulation No. 1b, the weighting values are reduced to:

E'= -4; E2= -3; E3= -2; E4= _l ; E5= 0; E6=1; E'= 2; E'= 3; E= 4

The voltage response, plotted in the graph in Figure 6-19, shows that the system has
been stabilised by reducing the weightings in the defuzzification process. However,

there is a steady state error of almost 7.5%. In order to improve the performance in this

respect, it is necessary examine the shapes of the input membership functions in the

component Fuzzify and its effect on the control performance.

1.20

1.00

0.80
(0

0.60

9 0.40

0.20

0.00
C) 0 C) 0
CN ce) It LO

time [sec]

Figure6-19 Voltage response in Simulation No. lb.

6.6.2 Simulation 2

Although not previously mentioned, the conditions set in the fuzzification process in

Simulations No. 1a and No. 1b are as follows (refer to Section 65 for the relation

between the constants and the membership functions):

VHDL Code (Fuzzify):

Simulation No. la&b

constant al ANTEGER -80;

constant bl ANTEGER -40;

constant a2 ANTEGER -80;

constant b2 ANTEGER -40;

J. G. KHOR
ill

CHAPTER 6- FUZZY LOGIC CONTROL

constant c2 ANTEGER 0;

constant a3 ANTEGER -40;
constant b3 ANTEGER 0;

constant c3 ANTEGER 40;

constant a4 JNTEGER 0;

constant b4 ANTEGER 40;

constant c4 JNTEGER := 80;

constant a5 ANTEGER := 40;

constant b5 ANTEGER := 80;

Plotted on a graph, these conditions present a membership function diagram similar to

the one shown in Figure 6-20. The shapes of the membership functions of the three
linguistic values in the middle are identical, with each of them spanning 80 units over
the x-axis. By making the linguistic value at the centre (Zero) more focused around the

value zero, it is possible to reduce the magnitude of the steady state error. The FLC

design is constructed such that this task can be achieved simply by changing some

values of the 13 constants (al-4, bl-5, c2-5) inside Fuzzify.

120 CD
x 100

80

60

40

-0 20 E
0 r= 0

x

(D C:) C) C:) C> C> C) 0 CD 00 CD CD 0 C:) C:) 00 c> (Z) C)
C:) M 00 11- (0 LO gt n CY ý-N (Y) le U) (0 r- 00 M CD

Figure 6-20 Input variables membership. functions in Simulations No.]a and No. lb.

However, if the membership function is made too narrow, the system loses its stability.

This is demonstrated by Simulation No. 2a, in which the membership function of the

input variables is changed to that of Figure 6-21 whereby the linguistic value Zero

ranges between (-5) and (+5). The voltage response is plotted in the graph in Figure

6-22. The system response is oscillatory albeit with a smaller magnitude (2.5%) than

that of Simulation No. 1a.

J. G. KHOR
112

CHAPTER 6- FUZZY LOGIC CONTROL

120

x 100

80

60

12 40
4)
-0 20 E
W
E0

C) C) 000 C) C) 0000 C) 0 C) C) 0 C) 0000 C) (3) co r- co C14 Cl) 14' U) (D 1- 00 a) 0 IIIL 10 'T C? Cý -1

x

__j

Figure 6-21 Input variables membership. functions in Simulations No. 2a.

1.20

1.00
0 0.80

0.60

4 0.40
ýa

0.20

----------- -- F.. - -ý-- 'V. -- -AGO, -

-------- ---- --------------- ---

-------------------------- --- ---

--- -------- --------------- --------------- -------------- ---------------

---------------- ------------------------------- ---------------

0.00
00 C) 0
C14 CII) Iq Lr)

time [sec]

Figure 6-22 Voltage response in Simulation No. 2a.

In Simulation No. 2b, the membership function of the input variables is modified to

resemble the diagram in Figure 6-23. The result, shown by the graph in Figure 6-24

clearly proves that, when the correct balance is achieved in the choice of membership

function, the FLC performance is considerably improved. The steady state error in this

case is less than 1.6%.

CD 120

X 100 -
80--

60 -- 22-
.C 40 --
-0 20 E
0E0

CD C:) 0 C:) C:) CD CD C:) C:) C:) CD 0 C) C:) (D 0 CD 00C:) C:)
CD m Co r, - (0 u-) 4, (y) C, 4 -- cq Me LO (0 r, - CO a) C:)

x

e 6-23 nut variables membershýpfiunctions in Simulation No. 2b.

J. G. KHOR
113

CHAPTER 6- FUZZY LOGIC CONTROL

1.20

-- --------------

------ ---
---- --------------- ------------- ------------------------------

-------- ------ ------- ------- -------------- -----------------

--------------- ---------- ---- --------------- -------------- ---------------

-------- ------ ------ -------- -------------- ---------------

1.00

0.80

0.60

(e 0.40

0.20

0.00
CD C) C)
CV) 14, LO

time [sec]

Figure 6-24 Voltage response in Simulation No. 2b.

6.6.3 Simulation 3

Once the parameters in Fuzzify and Defuzz are properly tuned, the system can be

simulated under varying load conditions. In Simulation No. 3a, the d. c. load current is

changed from 2A to 6A. Figure 6-25 shows the voltage response whereby the change

occurs when t= 20 seconds. There is a transient dip in the voltage of less than 14%

when the load current increases suddenly but the FLC is shown to be capable of

restoring the voltage to its original value in less than 5 seconds (50 cycles).

1.20

1.00 ----------- ---- -------------------------

--------------- ---------------- L ------------------------------

-- ---------------

--------------- -----------------------------
------------- ---------------

----------------------------- --------------- -------------------------------

0 0.80

0 U. 00

q 0.40
M

0.20

C:) C:) CD 0
rli n LO

time [sec]

0.00

ýe response in Simulation No. 3a..

114
J. G. KHOR

CHAPTER 6- FUZZY LOGIC CONTROL

This chapter has presented an extensive review of the VHDL design of a Fuzzy Logic

Controller, including a brief introduction to the concept of Fuzzy Logic. A series of

simulations are presented and the results provided the system validation necessary to

proceed to hardware implementation with confidence. In the next chapter, the issues

surrounding the implementation of the FLC are studied and a detailed description of the

design process involving the use of Field Programmable Gate Arrays (FPGAs) for

hardware realisation is given.

115
J. G. KHOR

Chapter
7

FPGA Implementation

n order to transform a behavioural level VHDL design such as the one presented in

the previous chapter into a hardware design, a number of considerations have to be

made. To fully appreciate the issues involved, it is necessary to have some
understanding of the hardware device's internal architecture. This chapter begins with

an introduction to the internal architecture of the Xilinx FPGA used in the project. It

also explains the need to optimise the design before implementation and presents the

work involved in modifying the design for this purpose.

The synthesis and implementation processes are discussed in considerable detail.

Synthesis is the act of converting the VHDL code in to a netlist. A netlist is a standard

method of describing the design at a level of abstraction that is suitable for hardware

implementation, either at an architectural level which consists of logic blocks or at a

logic level which is made up of logic primitives. Implementation is the process of

converting the netlist into a format that can be downloaded into the target technology.

This procedure is very technology-specific since different devices require different

formats.

7.1 The Minx FPGA

The target technology for this design is the XC4010XL-PC84, a member of the Xilinx

XC4000XL Senes of FPGAs. These devices are fully re-configurable and can be

reprogrammed an unlimited number of times. The XC4000XL Series is a family of high

116
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

performance 3.3v devices based on SRAM technology. Some features of the devices in
the Series include synchronous system clock rates of up to 8OMHz, internal speed
performance exceeding 150MHz and 12mA sink current per output. Table 7-1 shows

other features of some of the devices in the family [89]. The Xilinx XC4010 has a
maximum logic gate count of 10,000. Some of the other devices in the Series are much
larger, with equivalent logic gate count of up to 85,000. The relevance of this point will
become clear later in the chapter when it is demonstrated that although the original FLC

design in this thesis is too large to fit into a Xilinx XC4010, it can be readily
implemented into other larger devices.

Table 7-1 Features ofXC4000, U Family.

Device
Max. Logic

Gates
CLB

Matrix
Total
CLBs

No. of
Flip Flops

Max. User
1/0

XC4005XL 5000 14 x 14 196 616 112

XC4010XL 10000 20 x 20 400 1 120 160

XC4013XL 13000 24 x 24 576 1 536 192

XC4020XL 20000 28 x 28 784 2016 224

XC4044XL 44000 40 x 40 1 600 3840 320

XC4085XL 85000 56 x 56 3136 7168 448

IM
Programmable
interconnect

Configurable
LogicBlocks

olfflied view qf the FP(, 7A architecture.

J. G. KHOR

Input / Output
Blocks

117

CHAPTER 7- FPGA IMPLEMENTATION

A simplified view of the internal architecture of the Xilinx XC4000XL Series FPGA is

shown in Figure 7-1. The device is mainly made up of a matrix of Configurable Logic
Blocks (CLBs), some peripheral Input/Output Blocks (IOBs) and a net of metal
interconnects. The logic functions and interconnections are determined by internal static
memory cells which can be programmed to customise the functionality of the array.

7.1.1 Configurable Logic Blocks

The CLBs provide the functional elements for implementing most of the desired logic.

It contains two 4-input function generators, one 3-input function generator, two flip

flops, a few multiplexors and other logic components. The function generators are

capable of implementing any arbitrarily defined Boolean operation and can also be used

as memory lookup tables. Output(s) can either be passed onto the interconnect network

directly or through storage elements such as flip flops. The CLBs are able to implement

a variety of logical operations, from any function up to 5 variables to some functions up

to 9 variables. The maximum gate count is based on the equivalent logic gates in the

CLBs. It will be demonstrated later in the chapter that it is possible to use up all the

CLBs in a device without actually utilising the majority of the logic gates. Efficient use

of CLBs improves the overall cell usage as well as the speed performance.

7.1.2 Input I Output Blocks

The user-configurable 1OBs link the internal structure of the FPGA to the external

package pins. Each 10B can be configured for input, output or bi-directional signal. As

inputs, the 1OBs can either be programmed as an edge-triggered flip flop or a level-

sensitive latch. Despite being 3.3V devices, the F0 terminals on the XC4000XL can

tolerate 5V signals making them TTL compatible as well as 5V/3.3V CMOS

compatible. As outputs, they are pulled to the 3.3V positive supply and have a

guaranteed sink current of 12mA. The high sink current feature means that external

buffers are not normally required. By default, the output pull-up structure is configured

as a TTL-like totem-pole but they can also be globally configured as CMOS drivers.

118
J. .

HOR

CHAPTER 7- FPGA IMPLEMENTATION

7.1.3 Programmable Interconnects

The interconnects can be programmed and reprogrammed such that the blocks are
connected to produce the desired effect. The Xilinx XC4000XL FPGAs can be
reconfigured an unlimited number of times. The connections are composed of metal
segments with programmable switching points and switching matrices.

There are three types of interconnects in these FPGAs

" CLB routing

" IOB routing which are called VersaRing

" Global routing

Each CLB in the array is surrounded by a net of CLB routing and they are connected to

the CLB inputs and outputs. Further information about Xilinx FPGAs can be found in

[89].

7.2 Structural VHDL design

The design of the FLC presented in Chapter 6 did not take into account the synthesis

and implementation considerations and the limitations of the target technology. These

considerations have to be addressed when preparing a design for downloading into

hardware, usually a PLD, FPGA or ASIC. In the present project, the design is prepared

for implementation into a Xilinx XC4010XL FPGA. This device has a total of 400

CLB s and an equivalent gate count of up to 10 000.

Using the EDA tool, Xilinx Foundation Series F1.5, a VHDL design can be synthesised

then implemented for a particular device. Figure 7-2 shows a simplified block diagram

of the process. In the synthesis stage, the VHDL code is converted into a netlist, which

is a forinat that contains the structural hardware description of the design. A function is

considered to be NOT 'synthesisable' if the synthesis tool cannot readily convert it into

hardware description. Functions such as mathematical division and trigonometric

operations are not synthesisable using currently available synthesis tools.

Implementation in this context is the process of converting the netlist into a bitstrearn

J. G. KHOR
119

CHAPTER 7- FPGA IMPLEMENTATION

file. The information in the bitstream is used to configure the ftinctionality of the target
FPGA. During the implementation stage, the target technology and other hardware
design specifications such as pin allocation has to be confinned. For trouble- shooting
and analysis purposes, Xilinx Foundation also generates a status report at each stage of
the process.

hardware
specifications

P. Synthesis - Implementation Downloading
VHDL Tools neflist bitstream Software
code

I

Figure 7-2 Simplified block diagram of the hardware design process.

Before a VHDL design can be synthesised, all the VHDL functions which are not

'synthesisable' have to be eliminated and replaced with functions that can be translated

into hardware.

The Divider

The FLC's defuzzification process requires a division operation. In the behavioural

design, the division is achieved with the following VHDL statements (refer to Appendix

A-6):

process(CLK)
variable Dividend, Divisor: integer;

begin

Y <= (Dividend/Divisor);

end process;

120
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

This process is not suitable for synthesis for two reasons:
The variables Dividend and Divisor are declared as open-ended integers which have

no meaning in hardware design. 1nteger variables and signals should be given a well
defined range such as

process(CLK)
variable Dividend Jnteger range 0 to 512;

begin

This way of declaration informs the synthesis tool about the maximum number of bits

required by the variables. By not explicitly defining a range, the synthesis tool will

assign a default number of bits to model the variable. This usually results in a waste of

resourcess. Alternatively, they can be declared as std logic-vector type which has a

more relevant form in hardware terms. The declaration is written as:

process(CLK)
variable Dividend

begin

std_Iogic-vector(8 downto 0);

9 It has already been mentioned that the division operator T is not supported by

present synthesis tools, including Xilinx Foundation. To implement this calculation

in hardware, it is necessary to design a digital divider at structural level.

Analysis of Binary Integer Division

Before entering a discussion on binary division, it is appropriate to define some of the

terms which are used. The Dividend (divA) is defined as the number to be divided while

the divisor (divB) is the number by which the dividend is divided. The division process

can then be expressed by the following equation:

R
=Y+- dlvB divB

where Y is the quotient and R is the remainder whereby R<dlvB.

121
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

In binary notation, the numbers can be written as
(n-1)

.
(n-2) divA =2 a(n-l)+2 a(n-2)

divB - 2(-') - b(m-,) +2 (m-2)

-
b(m-2)

... + 2'. b, + 2'. b,)
2 (n-1)

. y(n-,) +2 (n-2)
- Y(n-2)

...
+ 2' - y, + 2' - yo

Using the pencil-and-paper method, a binary division process is performed in a number
of steps. In each step, a partial dividend f PD I is divided by the divisor such that ifj is
the index for the steps, then,

Yj =

and

fPDI j- Rj

dlvB

fPDI(j-,) = 2Pý + a(j-,)

where

J= (n- 1), (n-2)
... ,0

1ý. is the partial remainder and P,, <divB.

For example, dividing the binary number " 110 1" by 66111)) :

0100

11) fillol

using the pencil-and-paper method,

when j=3, fPDI=f 11 =: > Y3 = 0, R3 = 1,

when j =2, IPDI =flll =ýY2 =1, R2 = 0,

when j = 1, fPDI =fOl =>y, =O, R, =O,

when j= O, fPDI= fOll zz>yo= O, Ro=l.

R,, is also the true remainder R.

Therefore, the result of the division can be written as:

11012

-01002
+1

112 112

J. G. KHOR
122

CHAPTER 7- FPGA IMPLEMENTATION

or, in decimal notation,

13 1
= 3

Binary Integer Division Algorithm

There are several different algorithms which can perform binary integer division. Some

algorithms have parallel operations [90] and require only one clock cycle to carry out

the calculation while others operate in a sequential manner and may require more clock

cycles, such as the one presented later in this chapter. As a general rule, the algorithms

with parallel operations are larger in area size than the sequential ones when they are

implemented into hardware. The division algorithm used in this thesis is derived from

the pencil-and-paper method of binary division [91].

Let

divA be an n-bit register which holds the unsigned dividend,

divB be an m-bit register which holds the unsigned divisor,

BP be a signed (m+l)-bit register which holds the positive value of B,

Bn be a signed (m+l)-bit register which holds the negative value of B,

A be an n-bit register which holds the partial dividend JPDJ,

As be a flip-flop appended to the left end of A to store the sign bit and

zsz be the temporary register used to store

Using the symbol '<-' to denote 'is assigned as', the division algorithm used in this

thesis can be written as follows:

* Block 1:

Initialisation:

clear A;

BP <- positive value of divB;

Bn <- negative value of divB (2s complement);

123
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

e Block 2:

Forj = (n-1):

shift left (A)(divA);

ZjZ +- (A, A + B11);

qj ý<- not(Zj);
9 Block 3

Forj = (n-2), (n-3)
..., 1,0

shift left AP;

if qo-j) = '0' then:

ZsZ <-- (A, A + B,);

else if qo-,) = '1' then:

ZsZ ý- (AA + B.);

end if,

qj <-- not(Z,);

AsA +- ZsZ;

A VHDL code is written to implement this algorithm for a 14-bit dividend and a 9-bit

divisor. The complete listing of the code is included in Appendix B-5. The code defines

the dividend as divA , the divisor as divB and the quotient is defined as Y. It is assumed

that the effects of the Remainder on the control performance is small, therefore the

Remainder can be truncated altogether. Since the algorithm is sequential, the entire

operation is carried out in a VHDL process. A circuit is also included to avoid a

division-by-zero error by clearing Y (assign all bits to zero) when divB equals to zero.

Using 2s-complement conversion to obtain the negative value of divB, the

'Initialisation' procedure in Block I is performed by the following section of the code:

-- initialisation

-- Clear A

A(l 3 downto 0) : ="0000000000000000";

-- Assign divB(+ve) and divB(-ve)

Bp: ="00000"&divB;

Bn : =not(Bp)+"000000000000001,,;

124
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

It can be observed that the variables are treated as binary-valued bits and bytes instead

of whole numbers. This is a realistic view of digital circuits and highlights an important

difference between hardware description and software programming. The next sequence

of commands converts the dividend divA into an unsigned value. This is essential
because the algorithm is not designed to cope with negative values of the dividend.

From the defuzzification process, it is known that the divisor divB is always a positive

number. Therefore, it follows that the sign status (whether positive or negative) of the

quotient Y is always the same as the sign status of divA. The functions in Blocks 2 and 3

are implemented by introducing the status bits Load and Ready. 'Load=l' relates to the

condition whereby a new set of dividend and divisor values are loaded into the divider

circuit, i. e. when j=(n-1), while 'Ready=l' is the condition whereby the division

calculation for the recent set of values has been completed, that is whenj=O. The VHDL

code also includes the description of the output interface circuit of the controller which

implements the following function:

u-z-' +y

where

y is the crisp output from the defuzzifier and

u is the actual control signal.

The section of code that describes this circuit is written as follows:

if SIGN=Tthen

Negative
U-var := U-Past - Y;

else
-- Positive
U-var: = U-Past + Y;

end if;

125
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

In any hardware code which involves continuous increment or decrement of numerical
values, there is a danger of overflow. Therefore the upper and lower limit of the output
is set at 'I IIIIIIF and '00000000' respectively. This prevents the 8-bit output register
from overflowing into a 9-bit value (e. g. 11111111 +I=[I] 00000000).

The VHDL code is subsequently configured as a component and a netlist is created.
Figure 7-3 shows the symbol of the component Divider as viewed in the Xilinx
Foundation Schematic Editor.

Ul

XNF netlist
PAD CLK READY OPAD
PAD RST U[7: 0] OPAD8
PAD LOAD

divA [13: 0]
IPAD8 divB [8: 0]
IPAD4

PAD DIVIDER
PAD

IPAD8
PAD

Figure 7-3 Symbol of the component 'Divider'with I10 bqf
.
Ters andpads.

7.3 Design Optimisation

Even after the behavioural design of the FLC is converted into a forinat which is fully

supported for synthesis, there are still other issues to consider, particularly regarding

implementation. This section looks at the question of area optimisation. Figure 7-4

shows an extract Erom the implementation status report of the FLC design targeted at the

Xilinx XC401 0 FPGA-

J. G. KHOR
126

CHAPTER 7- FPGA IMPLEMENTATION

>> Control_b. vhd (Behavioural)

ýDesign Summary

Number of errors: 2
Number of warnings: 3
Number of CLBs: 600 out of 400

CLB Flip Flops:
CLB Latches:
4 input LUTs:
3 input LUTs:

Number of bonded IOBs: 60 out of 63
IOB Flops: 0
IOB Latches: 0

Number of BUFGLSs: I out of 8
\T,, -], -, --rDDlk4 A

Not enough CI-8s
to support

150% design

95%

12%
im uiiiu%, i vi jo-i ivi ma%, i ub. OV

Total equivalent gate count for design: 6341
Additional JTAG gate count for IOBs: 2880

Maximum gate
count is 10,000

Figure 7-4 Synthesis Report. for top hierarchy entity: Control. vhd

The following points can be noted from the report:

* The FLC design requires more CLBs than is readily available in aXilinx XC4010.

e The total equivalent gate count for the design is below the maximum count stated in

the Data Book.

,* The number of bonded IOBs in the device is sufficient for the design.

From these observations, it can be seen that although the design is too large for the

Xilinx XC4010 in terms of CLBs, it has a total equivalent gate count that is within its

limits. This suggests that the design is not fully utilising the logic gates in each CLB.

The design can be easily implemented into one of the bigger devices in the Xilinx 4000

family, but in order to implement it into the XC4010XL, a certain number of

modifications have to be made. These modifications optimise the design such that it is

functionally identical to the original design but requires a smaller area. However, in

reducing the area space, there is a trade off between other properties. In this case, one of

the concerns is that by optimising the design, the fuzzy rule base also becomes more

deeply integrated into its structure, thereby losing some of the features which make the

controller generic and flexible.

127
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

7.3.1 Definition of Circuit Design Optimisation

The quality of a design can be measured by two main variables, area and Performance
[92]. The area of a design simply refers to the sum of the area space of the circuit
components. The measure of performance is more complex as it involves analysis of
the structure and behaviour of the circuit. There are a number of variables which relate
to circuit performance such as propagation delay, cycle-time, latency and throughput but

they are not discussed in great detail here. Briefly, propagation delay is the delay

through the critical path of a circuit (for combinational logic circuit), cycle-time is the

fastest clock period that can be applied to the circuit (for synchronous sequential

circuit), latency is the number of clock cycles required to execute the operation and

throughput refers to the rate at which data is consumed and produced by the circuit.

Optimisation is the act of minimising the area and maximising the performance.

Usually, there has to be a trade-off between the two. In most cases, design optimisation

is subject to constraints such as:

* minimise the area under performance constraints

do maximise the performance under area constrains.

The task in this design falls under the first category, which is to minimise the area.

7.3.2 Structural Multiplication

The previous chapter shows how multiplication in VHDL programs can be carried out

using the operator '*'. A simple multiplication by an arbitrary number, say five, can be

performed with the following statement:

A<= B*5;

Another method of implementing this operation is to explicitly describe the step-by-step

procedure of the binary multiplication.

128
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

Returning to the recent example, the pencil-and-paper method of the binary
multiplication when B-9 is written as follows:

1001

x 101

1001

0000

+ 1001

101101
B, shift left by 2 bits

This can be described in VHDL as:

A<= B+ shl(B, "1 U');

where shl(B, "10") is the command statement to shift the contents of B to the left by 2
bits.

The multiplication process effectively becomes a combination of an addition and a shift-
left operation. Using this method to describe all the multiply-by-a-constant procedures,
the area size of the design can be reduced significantly.

7.3.3 Optimising The Fuzzifier

In the fuzzification process of the FLC design that was presented in the previous

chapter, the two inputs, x, and x2, are processed using two separate fazzification blocks.

Since both of the inputs are fazzified in exactly the same manner, it is possible to create
just one fuzzification block to be shared between the two input variables. This reduces

the area but it is at the expense of the performance, particularly latency. While

previously, the entire process can be completed in just one clock cycle, this approach

requires at least two clock cycles. To achieve this, there is also the need for memory

elements to store the result of the first computation while the second set of data is being

computed. At the end of the second computation, both sets of results are released

simultaneously. In order to reduce the area size further, another method of optimisation

is devised. The fuzzification block has 5 outputs, one for each fuzzy value defined in the

inputs' universe of discourse. However, the fuzzification process entails that, for any

single crisp value of the input xi , only two adjacent fuzzy values are significant (with

non-zero membership values). By ignoring the insignificant fuzzy values, the number of

129
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

output signals can also be reduced from five to two. The possible combinations of
significant fuzzy values for an arbitrary input are:

Bi' and Bi; 44 Bi' and Bi; Bi' and Bi; Bi and B'j.

It is found that using just three variables, ADRi, Bi A and Bi
-
B, all the combinations

can be sufficiently represented for any value of xi as shown by the following
statements:

ADRi="00" Bi_A=Bi' Bi_B=Bi'

ADRi = "Ol" Bi A =B 2 Bi B =W

ADRi="10" : Bi_A=Bi'
ý Bi_B=B4i

ADRi="11" Bi A=B 4 Bi B =W

Figure 7-5 illustrates how these conditions correspond with the universe of discourse.

membershil
function

Figure 7-5 Definition of Input Fuzzy Values.

The complete VHDL code of the Fuzzifier can be found in Appendix B-2. An outline of

the code's functional structure is described by the flow chart shown in Figure 7-6.

Management of the input and output signals is mainly controlled by a status bit, R_sig.

When R_sig is '1', the input xi is fazzified but the output values remain unchanged.

When R_sig is V, the input x2 is fuzzified and the new values of all the outputs are

assigned. The variables temp, temp_A and temp_B represent the temporary registers

used to store the fuzzy values of xi while the fuzzy values of x2 are being computed.

The operation takes two clock cycles to complete and all the fuzzy values are released

simultaneously.

J. G. KHOR 130

CHAPTER 7- FPGA IMPLEMENTATION

START
Process(CLK, RST)

YES
RST=1

IF
NO

Clear all output signals;
CLK'event R_sig <=11 I
&CLK=1

YES

YES NO
R-sig =1

x := X1
I

x: = x2
I

Fuzzification Block
input :x
outputs: ADR, B_A, B-B

YES NO
R sig =-11 I

<>

r temp <=ADR; ADR1 <=temp;
temp__. A <=B_A; 131

-A
<=temp_. A;

temp_B <=13_13; 131
-B

<=temp_B;
READY <='o'; ADR2 <=ADR;
R-Sig <=lot B2

-A
<=B

-
A;

13_13 <=13_13;
READY <='V;
R_sig <='V;

T
C END Process

Figure 7-6 Flow chart of the Fuzzifier.

J. G. KHOR
131

CHAPTER 7- FPGA IMPLEMENTATION

7.3.4 "Mini" FAM Tables

The FAM table of the FLC design discussed in Chapter 6 is shown again here, in Table
7-2. It was mentioned that the inference of the ftizzy rules is achieved using Mamdani's
inference technique and the VHDL code presented in that chapter uses an inference
engine which triggers all 25 rules during every calculation. This section describes an
algorithm which is developed to reduce the amount of computation required by focusing

only on the relevant rules and ignoring those which are irrelevant to the conditions in

question. From the previous section, it is known that for every set of inputs, only four

fuzzy values (two for each input) are significant. This means that only four fuzzy rules

are relevant at any one time.

Table 7-2 FAM Table of the FLC Design.
\ x2

NB N Z p PB \

R' R2 R3 R4 R5
NB ii=NVB u=NB u=N u=NS u=Z

R6 R7 R' R' R'
N li = NB ti =N u=NS u=Z u=PS

R" R 12 R 13 R 14 R 15

Z

u=N u=NS u=Z u=PS u=P

R' R 17 R' R' R 20

p

u =NS u=Z u =PS u=p u= PB

R 21 R 22 R 23 R 24 R25

PB u=Z u= PS u=P u= PB u =PVB

NVIR Negative Very Big
NB Negative Big
N Negative
NS Negative Small
z Zero
PS Positive Small
p Positive
PB Positive Big
PVB Positive Very Big

An easier way of explaining the technique is to imagine the entire FAM table to be

covered from view. Access to the content of the FAM table is only allowed through a

small window and only four adjoining rules can be viewed through this window at a

time. Therefore, instead of having to access 25 rules, the inference engine only has to

access four rules during every computation. The window can move around the FAM

table and its position is identified by an indexj which is defined as follows:

ADR1=9`00" & ADR2="00 "4j=0

ADR 1 =: "00" & ADR2=: "O I"4j=I

J. G. KHOR
132

CHAPTER 7- FPGA IMPLEMENTATION

ADRI ="00" & ADR2= "10" j =2
ADR 1 ="00" & ADR2 =" 11 " i =3
ADR 1 ="0 1" & ADR2 ="00" j =4
ADR 1 ="0 1" & ADR2 ="0 1" j =5

ADRI =" II"& ADR2=" II"4j= 15

There are 16 'window positions' altogether and the first six are shown in Figure 7-7.

The shaded blocks are the rules which are considered relevant for the input conditions

corresponding to the index j. To distinguish the 'windowed' view of the FAM table

from the original table, the thesis shall refer to the smaller version as the "Mini" Fuzzy

Associative Memory (FAM) Table.

j =0

j =3

Cl C2

C3 C4

j =4 j =5

FAM Tables.

133
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

When the window technique is applied to the FAM table in Table 7-2, it is observed that

a number of the mini-FAM tables are identical (e. g. j=1 andj = 4). Out of the 16 mini-
FAM tables, there are only 7 unique tables as shown in Figure 7-8.

NVB NE NB N N NS NS Z

NB
1

N N
1

NS NS
1

ZZ PS

WIN " 0000" WIN " 0001" WIN " 0010" WIN "00 11

Z PS PS p P PB

PS

1

p P

1

PB PB

1

PVB

WIN " 0100" WIN "
--

0 10 1" WIN "
1

0 110"

Figure 7-8 Mini-FAM Tablesfor the FLC Design.

If WIN is the index for the new set of tables, then the tables can be arranged using the

following logical statements:

IF j=O

I[Fj=l ORj=4

I[Fj=2 ORj=5 ORj=8

lFj=ll ORj=14

lFj=15

THEN Vv'IN=66000099

THEN WIN=190001'))

THEN Vv'IN= 91,001099

THEN Vv'IN=g go 10 1

THEN WIN= 1)1)011091)

This algorithm requires a considerable amount of IF-THEN operations and is not

necessarily an efficient way to implement the design into hardware. By observing the

pattern in the original FAM table, it can be shown that the mini-FAM tables are

identical when the sum of ADR1 and ADR2 is the same.

134
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

Therefore, instead of using numerous IF-THEN operations, the arrangement of the mini-
FAM tables is achieved using a single addition operation as shown by the following

statement in the VHDL code (see Appendix B-3):

WIN <= ("00"&ADR1) + ADR2;

where ADR1 and ADR2 are signals from the component Fuzzify. The function of the

statement ("00"&ADR1) is to expand the value of ADRI from 2 bits to 4 bits such that it

is compatible with the 4-bit signal WIN.

The variables inside the mini-FAM table is subsequently processed in the section of the

code that is marked 'Mini-Fuzzy Inference Engine'. In the original code, the inference

engine contains twenty five MIN-operations. The modified code consists of only four

MIN-operations, which is a notable reduction.

7.3.5 Algorithm for Defuzzification

The original algorithm for the MAX-operation and defuzzification process contains two

important computations:

the aggregation of twenty five rule-consequents into 9 output (fuzzy) values

the multiplication of each output value by a constant weighting.

By incorporating the modifications discussed in the previous sections, only four

significant rule-consequents are considered. Therefore, the number of rule-consequents

to be aggregated is reduced but the allocation of correct weightings for the significant

output values becomes slightly more complicated.

From the tables in Figure 7-8 it is obvious that regardless of the WIN value, the

consequents C2 and C3 always point to the same fuzzy value (e. g. when WIN="0000":

Cl->NVB, C2-->NB, C3-->NB, C44N).

135
J. XHOR

CHAPTER 7- FPGA IMPLEMENTATION

This implies that only C2 and C3 have to be aggregated, hence:
DA= Cl

DB=: max[C2, C3]

DC= C4

where DA, DB and DC represent the membership function of the output fuzzy values.

The actual fuzzy values referred to by DA, DB and DC are detennined by the value of
WIN. If Vis the weighting while VA, VB and VC are the weighted values, then

WIN="0000":

WIN="0001":

WIN="0010":

WIN="001 I":

Vv'IN="0100":

WIN="0101":

Vv'IN="O I 10" :

VA=DA* E NVB
, VB=DB* E',

VA=DA* ENB, VB=DB* EN

VA=DA* Cg VB=DB* E NS
9

VA=DA* E", VB=DB* Ez.

VA=DA* Ez, VB=DB* Eps,

VA=DA* Eps,

VA=DA* Ep,

VB=DB* Ep,

VC=DC* E' ;

VC=DC* E";

VC=DC* E'

VC=DC* Eps

VC=DC* Ep
PB VC=DC* E

VB=DB* E PB
, VC=DC* EpvB -,

Although the functions above can be implemented with seven IF-THEN statements it is

preferable to adopt a less space consuming method. Figure 7-9 shows a flow chart of the

modified Defuzz design. The complete VHDL code can be found in Appendix B. In this

design, instead of seven IF-THEN operations, only three are required to accomplish the

main task (not counting the reset and clocking circuits).

The command statements in Block 0 implement the reset conditions whereby all the

outputs (except READY) and internal variables are cleared. The condition LOAD='l' and

READY='l' indicates that the component is ready to initialise the defuzzification process

and proceeds to execute the commands in Block 1 and Block 2. Block I performs the

aggregation of C2 and C3 using a NLAX-operator:

Block 1:

DA= CI

DB== max[C2, C3]

DC= C4

J. G. KHOR
136

CHAPTER 7- FPGA IMPLEMENTATION

Figure Z-9 FlýoýwchLart (oLf ýheýcode or Pe y ýzi itcation.

137 J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

In Block 2, it is assumed that WIN="0000", and the fuzzy values are then multiplied by

the appropriate weightings for PVB, PB and P. If the weightings are defined as:

E NVB
= -40; E NB

= -30; EN= -20; E NS
= -10; Ez = 0;

Eps = 10; Ep = 20; E PB
= 30; EPVB

= 40;

then Block 2 can be wntten as:

Block 2:

VA = DA * -40
VB = DB * -30
VC = DC * -20

The subsequent commands check to see if WIN is in fact "0000". If the case is true (i. e.

COUNT=WIN), then the computation is complete and the output signals divA, div13 and

READY are assigned with the appropriate values. Otherwise, the computation is

incomplete (READY='O') and Block 3 is executed in the next clock cycle.

The strategy of this algorithm relies on the fact that the values of VA, VB and VC

increases steadily as WIN increases. In other words,

IF

WIN= "0000": VAO=DA*(-40), VBO=DB*(-30), VCO=DC*(-20)

THENý

WIN="0001": VA1=VAO +(DA*10), VBI=VBO +(DB*10), VC1=VCO +(DC*10)

WIN="0010": VA2 =VAI +(DA*10), VB2 =VBI +(DB*10), VC2 =VCI +(DC*10)

WIN="0011": VA3 =VA2+(DA*10), VB3 =VB2+(DB*10), VC3 =VC2+(DC*10)

J. G. KHOR
138

CHAPTER 7- FPGA IMPLEMENTATION

By taking advantage of the recurring pattern, Block 3 can be described with just four
logical statements:

Block 3:

COUNT=COUNT+l

VA=VA+(DA*10)

VB=VB+(DB*10)

VC=VC+(DC*10)

Once the optimised structural-level design is successfully completed, it is implemented

using Xilinx Foundation HDL Editor.

7.4 Implementation

Each element of the FLC is designed and carefully optimised for synthesis. Five VHDL

components DERIV, FUZZIFY, INFER, DEFUZZ and DIVIDER make up the core of the

fuzzy controller. The nature of the components' connection and the functionality of the

processes are described by an upper hierarchy VHDL code Control. vhd. The diagram in

Figure 7-10 illustrates how these components are wired to each other to form the

complete control system. In addition to the components, two synchronous processes

represented by the blocks Processl and Process2 are used to synchronise various

signals. The code is subsequently synthesised to generate a netlist of the upper hierarchy

component Control.

In creating a single top hierarchy component, it is easier to proceed into the

implementation stage using the Xilinx Foundation Schematic Editor whereby the design

can be developed in a graphical form. The 'Create Macro symbol from netlist' function

allows the component Control to be converted into a Macro symbol that can exist in the

Schematic Editor. Then, using Xilinx Foundation Implementation tools, the design can

be compiled into a bitstream file.

J. G. KHOR
139

CHAPTER 7- FPGA IMPLEMENTATION

0

r

01,

Q
_0

m:

0

ri
LU131.

fi)

140
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

Xilinx XC4010 FPGA is available in several packages and the one used for this design

is the PC-84 package which has 84 1/0 pins in total. During the generation of the
bitstream, the inputs and outputs of the design are mapped to the physical 1/0 pins of the
FPGA. The allocation of pin numbers can either be performed automatically by the

implementation tools or explicitly specified by the user. In this design, all the pins are

specified by manually assigning the appropriate pin numbers to the IPADs and OPADs

in the Schematic Editor. This enables the designer to have full control over the function

of the physical pins in the FPGA. The allocation of pin numbers to the 1/0 pads is

shown by the schematic diagram (as seen in the Xilinx Foundation Schematic Editor) of

the design in Figure 7-11. The numbers (preceded by the letter 'p') in the 1/0 pads are

the allocated pin numbers. It can be seen from the diagram that the clock input of the

design is allocated to pin 35, and as it is the main clock signal, a global buffer IBUFG

is used instead of the normal input buffer.

EdR Mode View

U2

FLC1

3,3 im

J. G. KHOR

Foundation Schematic Editor design.

J

Select and Drag

141

CHAPTER 7- FPGA IMPLEMENTATION

once the hardware specifications have been confin-ned, the netlist is compiled into a
bitstrearn file using the Implementation procedure in Xilinx Foundation Project
Manager. Figure 7-12 shows the status report of the implementation process. By

comparing the results with the report in Figure 7-4, it is obvious that the modifications
were effective in utilising the logic blocks in the FPGA in a more efficient manner. The

report shown in Figure 7-13 confirms that the bitstream file is successfully generated
without errors and is ready for downloading.

>> Control. vhd (Structural)

Design Summary

Number of CLBs: 3 86 out of 400 96%
CLB Flip Flops: 317
CLB Latches: 0
4 m, put LUTs: 677
3 input LUTs: 94

Number of bonded IOBs: 28 out of 63 43%
IOB Flops: 0
IOB Latches: 0

Number of BUFGLSs: I out of 8 12%
Total equivalent gate count for design: 7470
Additional JTAG gate count for IOBs: 1344

Figure 7-12 Implementation design summary.

Control. vhd (Structural)

BITGEN: Xilinx Bitstream Generator M1.5.25 lCopyright
(c) 1995-1998 Xilinx, Inc. All rights reserved.

May 17 23: 55: 04 1999

Running DRC
DRC detected 0 errors and 0 warnings.
Saving 11 file in "flc-ll".
Creating bit map...
Saving bit stream in "flc. bit".

eam generation report.

142
J. G. KHOR

CHAPTER 7- FPGA IMPLEMENTATION

The circuit board used to house the target FPGA during downloading is the XS40

Board, a Xilinx FPGA evaluation board from X Engineering Software Systems (XESS)

Corps. Figure 7-14 shows a picture of the XS40. Further infori-nation can be found in
[93]. The XS40 Board connects to the parallel port of a Personal Computer (PC) via a

cable with DB-25 connectors. Having set up the board (including the configuration

jumpers) appropriately in accordance to [93], the bitstream file can then be downloaded

into the FPGA using the XSTOOLS software.

The downloading of the FLC design in the Xilinx FPGA represents a major milestone in

the hardware realisation of the control system. Subsequent work, described In the next

chapter, focuses on the assembly of the various hardware components of the system as

well as the practical tests conducted on the complete system using the FPGA controller.

"*»-.
-- .-

.� -g *»*a»"a

-� ". : -g ** -* **aa

Figure 7-14 Picture ofXS4OBoard.

143
J. G. KHOR

Chapter
8

System Assembly and
Practical Tests

n introduction to the complete generator-control system and its principle of

operation have been included in Chapter 4. This chapter looks at the hardware

implementation of the system, focusing on circuit designs and the results of some tests

performed on the controller. A block diagram of the system is shown in Figure 8-1.

Permanent
Magnet

Synchronous Bridge IGBT
Generator Rectifier Inverter

*
Diesel
Engine

-ý C LOAD

Fuel Control
Actuator

VV
IGBT Driver Voltage Circuit Sensor Actuator InFerfal

Circu it
Vdc

t
PWM

D/A FPGA /4- A/D
Controller

Converter Controller Converter
t

-1 Clock

Fii! ure 8-1 Block diagram of engine- nerator set and controller.

J. G. KHOR
144

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

The system can be subdivided into 3 main sections:

9 an electromechanical system which comprises the generator, the diesel engine and
the electromagnetic actuator

a power electronic system consisting of the diode bridge rectifier, d. c. link and IGBT
inverter

* an electronic control system.

The electronic controls tem can be further divided into two components, namely the YS I
PWM controller and a control loop consisting of the sensing and interfacing circuits as
well as the FPGA (fuzzy) controller.

The engine-generator set used to test the controller is supplied by Newage International

and some of the tests presented were carried out at the Department of Engineering,

University ofDurham.

8.1 The Electromechanical System
The generator used for the experiments is a permanent magnet synchronous machine

with three phase star connected windings. The phase resistance and inductance of the

machine are 0.60 and l. 0mH respectively. The generator is coupled to a 3-cylinder

diesel engine which provides the driving power. The rate of flow of diesel fuel into the

engine is controlled by an electromagnetic actuator which positions the fuel rack. The

position of the fuel rack, and hence the rate of fuel flow, is a function of the amount of

current flowing into the actuator coil. Since it is easier to control voltage than current,

the most obvious solution is to supply a controllable d. c. voltage to the coil. This is

feasible because the d. c. impedance of the coil is constant since only the resistive effect

is significant. Therefore, from Ohm's Law, the actuator current 'ACT is directly

proportional to the voltage across the actuator coilVACT.

This approach is employed in a simple experiment to test the characteristics of the

engine-generator set and also to determine the magnitude of the actuator current

required for the operation of the system. Initial tests reveal that the maximum position

of the fuel rack is achieved with an actuator current of 5A. Figure 8-2 shows a block

diagram of the layout for this experiment.

J. G. KHOR 145

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

Mechanical -11110.
Diesel Engine Coupling Permanent 34

Magnet 0 Star Connected
Synchronous Resistive Load

Generator

Actuator
Coil

Variable D. C.
Scope

IACT
Voltage Supply

VG) fG

Figure 8ý2 Block diagram of the electromechanical system test.

Using different load values, the actuator current 1ACTis manually controlled such that the

output voltage and frequency remain within a reasonable range. The result is shown in

Table 8-1. It can be observed that the actuator current required for the operating

conditions tested is in the order of 2. OA. Figure 8-3 shows the waveform of the

generator's terminal voltageVG'

146
J. G. KHOR

e wavelorm at generator terminat.

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

In this experiment, it is possible to use a variable d. c. voltage supply and manually

adjust the actuator current. However, in a feedback control system, a slightly different

strategy is adopted. The reason for this is the difficulty in supplying a continuously

variable voltage output capable of sourcing currents of the order of a few amperes.
Variable voltage outputs in electronic circuits usually have limited current capabilities
(of the order of hundreds of milli-amperes) while larger current sources often have fixed

voltages. Therefore, in feedback control system of this nature, a Pulse Width

Modulation (PWM) technique is adopted. It is based on the same principle as the

sinusoidal-PWM scheme used for inverter control. This is discussed in greater detail in

Section 8.3.5.

Table 8-1 Result of electromechanical system test.

I nnrl- Al S0 npr nhq. -; p

Ic [A] 1.8 1.9 2.0 2.1

IG (PEAK) [A] 2.2 2.5 2.6 2.7

VG (PEAK) [\ý 260 290 305 310

frequency, fG [Hz] 270.0 312.5 333.3 357.1

i ; r, nn mor nhnqin

Ic [A] 1.9 2.0 2.1 2.2

IG (PEAK) [A] 2.5 3.0 3.2 3.5

VG (PEAK) M 240 280 300 320

frequency, fG [Hz] 263.2
1

312.5 333.3
1

384.6

I --A. A7 1) Cl r%, rsr mknoin
"WL4M . -I --ý-

Ic [A] 1.9 2.0 2.1 2.2

IG (PEAK) [A] x 3.4 3.6 4.0

VG (PEAK) [VI x 260 280 320

frequency, fG [Hzj x 303.0 312.5 357.1

Load: 40.2 92 er ha se I
Ic [A] 1.9 2.0 2.1 2.2

IL (PEAK) [A] x 3.6 4.2 4.4

VG (PEAK) [VI

frequency, fG [Hzl

x

x

260

294.1

280

312.5

300

333.3

147
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

I n:; d- . 1.9 20 npr nhase
Ic [A] 1.9 2.0 2.1 2.2
IG (PEAK) [A] x x 4.6 4.8
VG (PEAK) x x 270 280

frequency, fG [Hzl x x 312.5 322.6

x- the given control current cannot sustain operation of the engine-genset under the loading condition causing the
engine to stall.

8.2 Power Electronic System

Power converters play an important role in electric drive systems and power supply

networks. They are used mainly to convert electrical energy from one form to another.

In this project, two types of power conversion are used in the power electronic system:

e a. c. to d. c. conversion

9 d. c. to a. c. conversion.

Various options of power components are available for this application, ranging from a

total discrete solution to a total integrated solution. The fonner involves building the

converters almost from scratch, using discrete components such as thyristors, power

diodes, Mosfets and transistors. The advantages of this option are the design flexibility

and the ability to change a single damaged component without the need to replace the

entire converter. The disadvantages include an increased amount of time and effort in

design as well as a relatively large footprint. An alternative, the total integrated solution

approach, takes advantage of the latest power electronic innovations whereby system

designs are integrated into application specific power electronic modules. An example

relevant to the project is Semikron's MiniSkiip. This device is an entire d. c. link

converter system (rectifier and inverter) moulded into a single module. It is an elegant

design approach which reduces the overall footprint as well as the effort and time

involved in design. However, the repair cost can be extremely high as the entire module

would have to be replaced if just one 'component' in the module is damaged. The

148
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

design in the present project is a prototype which may be subjected to stressful tests or
future modifications, therefore the total integrated solution is not an appropriate choice.
Instead, a 'middle' approach is employed, that is, the power electronic system comprises
two integrated modules.

A rectifier module is used to perform the a. c. to d. c. power conversion. The device

selected for this task is the 36MT80, a 35A three phase uncontrolled rectifier from

International Rectifier.

D. c. to a. c. conversion is achieved using a three phase bridge power inverter. Power

inverters are utilised in a wide variety of power electronic applications, especially in the

control of a. c. motor drives and uninterruptible power supply systems. In this project, an

inverter is used at the output end of a d. c. link to maintain the desired a. c. voltage and

frequency. The Semikron 'SKM40GD123D' three phase inverter module is selected for

this purpose. It is made up of six IGBT switches with built-in free wheeling diodes and

they are arranged in a three phase bridge configuration as shown in Figure 8-4. Each

IGBT has a maximum collector-emitter voltage rating of 1200 volts and a continuous

collector current rating of 40 Amperes (at case temperature of 25'C). IGBTs are

selected for this project because they offer a combination of the characteristics of

bipolar transistors and Mosfets, having low conduction losses and high switching

frequency ratings.

P

Vdc

N

J. G. KHOR
149

on IGBTInverter module.

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

IGBT Driver Circuit

A driver circuit is required as the interfacing stage between the control signals and the
inverter. It serves two main purposes:

i. Isolation.

The six signals from the control board share one common ground but because the
driving signal to each IGBT gate has to be isolated from one another, the control
signals cannot be directly connected to the IGBTs. The driver board isolates the
individual signals. However, the three lower IGBTs in the bridge are shorted at their
emitter (pins 8,10 and 12 in Figure 8-4), therefore the signals to these transistors can
share a common ground.

ii. Amplification.

The outputs of the control board are of TTL level type (at 5V). This is not enough to
drive the IGBTs. Therefore, the second function of the driver board is to step up the
driving voltage. The maximum threshold voltage of the SKM40GD123D is 6.5 volts.
In this design, the driver circuit produces switching signals at 15V, which is

appropriately above the threshold voltage.

Figure 8-5 shows a circuit diagram of the driver board. The circuit can be divided into
four main branches. Transformers T1 and T2 provide isolated power to the four circuit
branches so that the reference level (ground) for the outputs can be independent of one

another. The REG ICs are voltage regulators which maintain steady l5v d. c. supplies to

the circuit. The optolsolators - marked OP in the diagram - provide complete isolation of

the input signals from driver circuit. Finally, Motorola IGBT drivers MC33153 (D in the

circuit diagram) are used to supply the driving voltage and current.

In Figure 8-5, the output pins are marked with a number that corresponds to its

connection in the inverter shown in Figure 8-4. The last three pairs of outputs (pins 7 to

12) can share the same power supply (and hence the same reference level) because the

emitter of the IGBTs which they are connected to are tied together. Driving three IGBTs

with the same supply may seem to be placing more stress on the rectifier and voltage

regulator than those of the other branches. However, it is still within the capability of

the devices and is not shown to affect the circuit perforinance.

J. G. KHOR 150

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

REG 15v

TI c
D OP

5v VOUT

REG VIN1

--L-

Op

rfii

t VOUT

VIN2

REG

T2
OP D 5

VOUT

VIN3
6

REG

OP D 7
VOUT

VIN4

OP D 9
V. UT

VIN5

0 10

e

OP D 11
VOUT

V V., IN6
12

Figure 8-5 IGBT driver circuit.

J. G. KHOR 151

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

8.3 Sensing and Interfacing Circuits
This section discusses the circuits which are used to complement the control systems
which were presented earlier in the thesis.

8.3.1 Voltage Sensor

While it is necessary for the control circuit to sense the voltage at the d. c. link, care has

to be taken such that the circuit is properly protected from the relatively high voltage of
the power section. For this purpose, a Hall effect voltage transducer is used. The device

is essentially a voltage transducer which utilises the Hall effect principle, whereby

current is measured by taking advantage of the magnetic field generated by a current

carrying conductor.

The voltage sensor used in this project is the LV25-P, a PCB-mounting Hall-effect

voltage transducer. A diagram of the transducer is shown in Figure 8-6. The LV25-P

provides the necessary galvanic isolation between the power circuit of the d. c. link and

the corresponding low voltage signal to the control system. It has a nominal input

current, 'Nof 1 OmA and a turns ratio of 25 00: 1000.

+HT

secondary
+15 V

Rl
circuit ++ primary

................

R2
.4
12

LV25-P circuit

VSENSE

F
R3

-15 V
-HT

0v

fect voltage transducer, L V25-P.

The primary resistor, RI is calculated such that the nominal voltage to be measured

corresponds to a primary current of 1 OmA. From the turns ratio, this produces a nominal

output current of 25mA. The nominal power voltage is assumed to be 250 volts d. c.

152
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

Therefore,

250
Rl =-= 25kQ

loxio-I

Allowing for a 20% increase in voltage,

1.2 x lOrnA = 12niA
IIMAX'x RI = 3.6 W

Therefore the chosen resistor R1 should have a power rating above 3.6W.

The values for R2 and R3m,,,. x are chosen to be l50kQ and lOOkQ respectively. By

tuning the value of R3, a suitable power voltage to output signal ratio can be calibrated.
The sensor circuit is built and calibrated for a voltage ratio of 100: 1.

8.3.2 Analogue to Digital Conversion

The conversion of the analogue signal from the transducer into digital signal is achieved

using National Semiconductor's ADC0804 IC. The device is an 8-bit CMOS A/D

converter based on the successive approximation conversion technique. The logic inputs

meet TTL specifications as well as CMOS. It also has an on-chip clock generator which

eliminates the necessity for an external clock and the conversion time is 100ý1s. Figure

8-7 shows a simplified schematic diagram of the conversion circuit utilising the

ADC0804.

The signal from the transducer is connected to the Vin(+) pin of the A/D converter

while the digital output is fed into the FPGA via a buffer. The signals connected to the

RD and VVR pins come from a clock and pulse generation circuit (refer to Section

8.3.4).

J. G. KHOR
153

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

+5V

ADC0804

Vcc 10k 150 pF D137 CLK R
DB6 CLK IN

Octal D135
CS READ signal from

T To Buffer Digital D134 o Digital RD Clocking circuit
Outpui FIPGA Data Output D133 FIPGA 74HC541 Data

WR JLJ
DB2
D131

Vin (+)
DBO

Vin (-) Analogue input

A GND from transducer
TM'R

Vref /2
ID GND

Figure 8-7 Analogue to digital conversion circuit.

8.3.3 Digital to Analogue Conversion

The ZN425E is used to convert the digital output of the FPGA controller into an

analogue signal. It is essentially an 8 bit digital to analogue converter i. c. based on a R-

2R ladder network. A schematic of the converter circuit is shown in Figure 8-8. A 741

operational amplifier is used to amplify the output signal of the ZN425.

+ 5V
ZN425E

8
Vcc

Analogue Output
14

Digital Data\ 15
741 Output

from FPGA Vref Input 6.8k

Vref Output

0.22[tF -5V

j5k

Logic ee2
Gnd

1 8k

igaital to analogue converter circuit.

154
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

8.3.4 Clocking Circuit

Like all synchronous circuits, the FPGA design described in Chapter 7 requires a
clocking signal. This is provided by an oscillating crystal (X) as shown by the circuit in
Figure 8-9. This circuit can be divided into two sections, an oscillator circuit and a
pulse generation circuit. The former is a standard CMOS clock signal generation circuit
which uses a crystal to provide the oscillation while the latter generates the appropriate
clock and pulse sequence for the FPGA and A/D converter. It is entirely possible for
the pulse generation circuit to be incorporated into the FPGA design, but in this project,
it is designed as a separate circuit. The signal from the oscillator circuit is used to drive

a CMOS4040 counter via the point A in the circuit. A waveform diagram of the pulse

generation circuit outputs (CLK, READ and SMP) is shown in Figure 8-10. The signal
CLK is used as the primary clocking signal for the FPGA. Taken from the QO output of
the counter, CLK is a reflection of the oscillator circuit frequency.

Figure 8-9 Clocking circuit_

In the meanwhile, the READ pulse initiates the A/D conversion process in the

ADC0804 while the SMP pulse enables the FPGA to sample the converted digital signal

from the A/D converter. The sequence of these two pulses is such that the FPGA takes a

sample of the digital value at the output of the converter just after conversion. Based on

the conversion time of the ADC0804, it is necessary for the time lapse between the

155
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

READ pulse and the SMP pulse to be more than 100ýts for conversion to be complete.
This corresponds to a maximum clock frequency of I OkHz.

8.3.5 Actuator Interface Circuit

In the experiment described in Section 8.2, the actuator is controlled manually, using a
variable d. c. voltage source. This approach is not practical in feedback control systems
for reasons already explained. The Pulse Width Modulation (PWM) technique is used
instead to control the actuator. It is similar to the sinusoidal-PWM inverter control
technique described in Chapter 5, except that, instead of a sinusoidal power waveform,

the (analogue) control signal is used as the reference.

Figure 8-11 shows how the PWM signal can be obtained by comparing a saw-tooth

carrier waveform with a d. c. reference voltage. The ON time of the PWM signal tON is

proportional to the d. c. reference voltage (within a range), while the switching frequency

is fixed by the carrier frequency. The circuit shown in Figure 8-12 implements this

technique and is used to interface the controller output with the fuel control actuator. A

waveform generator i. c., the ICL8083, provides a triangular carrier waveform which is

adjustable in terms of frequency and slope. The analogue output from the D/A converter

is amplified in two stages then used as the reference signal of the PWM circuit. The gain

can be controlled from the variable resistor R2 while R6 allows the offset voltage to be

adjusted.

J. G. KHOR 156

F orms ofPulse Generation Circuit.

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

Figure 8-11 Generation ofP WM switching patterns.

Inverting Summing
Amplifier Amplifier

D/A Converter
R2 R3 R4

analogue output R1
-10,0- R5 +

+4M
IC2 +5V

R6 Comparator

ici offset adjust +

AN

>1r,

4----o
Fn

ICL8083 IC4 PWM control
Waveform Generator signal

Figure 8-12 PWMwaveform generation circuit.

The PWM output of this circuit is then used to control the actuator via the circuit shown

in Figure 8-13. Here, the power to the actuator is provided by a d. c. power supply. By

switching the MOSFET on and off appropriately, the actuator current can be governed.

However, due to the inductive property of the actuator coil, any attempt to switch the

MOSFET off and sever the flow of current would be resisted by the coil, and may cause

disruption to the operation if the circuit is not properly designed. Placing a diode D,

parallel to the coil opens a channel for the current to flow when the power supply is cut

J. G. KHOR 157

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

off. The result is two different current waveforms in the circuit: 1, is a square wave
similar to the PWM signal whileIACTis a continuous current waveform as a result of the

smoothing effect of the coil.

D. C. + Actuator coil Power
Source

D 'ACTý

PWM control MOSFET
signal'

0--]

Figure 8-13 Circuitfor actuator controL

8.3.6 Power Supply

To complete the system, a commercial power supply unit is used to provide the

necessary power to all the circuits in the system. The unit selected for this purpose is the

LPT45 module from ASTEC/RS Components. It has three output voltages of +5V,

+15V and -15V with maximum loads of 4A, 2A and 0.5A respectively. The unit is

found to suit the requirements of all the circuit boards in the system.

158
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

8.4 Hardware Tests

8.4.1 Selecting clock frequency

The control law of the fuzzy controller can be loosely represented by Eq. 8-1, an
expression derived from PI-control. Although the explanation in the following

paragraphs will move along this line of argument, it is important to be aware that this

equation is only a model of the fuzzy controller and does not represent the actual
internal mechanism of the controller itself. The control actions in the fuzzy controller
are derived, not from this equation, but from a set of fuzzy rules.

Eq. 8-1 Au=KP*Ae+K,, e

From Eq. 8-1, the control signal is given by the sum of its previous value and the output

of the fuzzy controller as shown by Eq. 8-2.

Eq. 8-2 u= uz -' + Au

The resulting effect is a control signal which increases or decreases in gradual steps
between samples until the desired output is achieved. Since the sampling period (nT)

du
is a function of clock frequency, the rate of change of the control signal dt not to be

confused with Au which is the change in u in one sampling period (nT) - is also a

function of the clock frequency. In other words, while Au remains independent of the

clock ftequency, the value of
du

is at least partially dependent on it. This concept can dt

be pictorially described by the diagram in Figure 8-14, where the two output signals

have the same Au but different rate of change due to different clock frequencies (I/T).

This characteristic allows the response of the controller to be modified simply by

adjusting the clock/sampling frequency. In some ways, parallels can be drawn between

the effect of selecting a clock/sampling frequency and the effect of tuning the gains in a

PI-controller, although they are essentially two different operations. A high clock

frequency, equivalent to using a large proportional gain, is expected to increase the

159
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

response time but induce oscillation into the system. Naturally, a low clock frequency
would have the opposite effect. The aim is to obtain a balance between the two
extremes.

Figure 8-14 Two output signals with different clockfrequeney: (a) has a higher
frequency than (b

A set of tests were carried out to study the response of the controller to different clock
frequencies and ultimately select a suitable clock frequency for subsequent experiments.

Figure 8-15 shows a block diagram of the hardware configuration used for this test.

The engine-generator set is connected to a bridge rectifier which is loaded with resistive

bank sets at 1190. Instead of using a crystal oscillator circuit, a function generator is

employed to provide a variable frequency clock signal for the electronic control system.

In all the tests, the resistive load is fixed at 1190 and the desired d. c. voltage is set at

250V. Quantitative discussions are based on numerical data of the test results which are

included in Appendix E for reference.

Figure 8-16 shows a graphical representation of the results of a test in which the clock

frequency is set to 2. OkHz. When the controller is connected at t= 10s, it attempts to

bring the d. c. voltage to the desired level but the response is clearly oscillatory with an

overshoot of up to 50%. When the clock frequency is set to 0.8kHz, the controller is too

slow in its response and results in the engine stalling.

J. G. KHOR
160

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

Permanent
Magnet

Synchronous Bridge
Generator Rectifier

Diesel
Engine

w

C LOAD
-T-

Fuel Control Voltage
Actuator Sensor

- 10 Function t Vdc Generator
ctuator Inte D/A /t- FPGA A/D

Circuit Converter \f- Controller r \T-- Conve: rter] JbU

CLK
A

SMP
A RD

Pulse Generation
Circuit

Figure 8-15 Block diagram qf configuration. for selecting clockfirequency.

It is found that the best response is obtained with a clock frequency of 1.2kHz. The

result is depicted in Figure 8-17. Here, the controller is connected at the moment of t=

1 Os, resulting in an overshoot of not more than 11 % but the voltage quickly recovers (in

less than 7 seconds compared to 35 seconds in the earlier example) to the desired level

demonstrating that the correct actuator position has been set. Although there is a steady

state error of about 6.7% to 7.2%, this is allowed for by the design because voltage

discrepancies can be compensated for by a feedback inverter control.

161
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

400
350

---------- --- --------------- ----- -- ------
0 300

-------- -- --- --- -------- ----- - 250

M 200
----- - ---- ----- - ------- -- - 0 > 150

- ------ ---- ----- -- loo ------ -6 ------- -------------- -------------- -------- 50 ---------------- ---------- -- - ----- --------- 0

C) CD 04 Clf) LO
time [sec]

Figure 8-16 Voltage response with a high clock frequency.

400
350
300

2ý 250
4) tm
b 200
0 > 150
d loo
_6

50

0

---------------- ------------------------------ ----------------------------

- -- --------------------------- -------------------------------- I ----------------

----------- ---

- -- ----------------- --------------------------- --------------------------------

---------------- -------------- --------------- --------------- ------------- -

- -- --------- -------------- --------------- --------------------------------

-------------- -------------- --------------- ---------------- I ---------------

0000C:) 0 CIY n 1-t LC)

time [sec]

Figure 8-17 Voltage response with an optimum clockfirequency

8.4.2 Step change in rectifier load

With a clock frequency of 1.2kHz and the same configuration as before, the rectifier

load is now changed from 119.00 to 37.50 to observe the corresponding change in the

system. The load alteration is carried out when t= 20s. For the purpose of comparison,

the experiment is first carried out without the control system, whereby the actuator

position is fixed. The result, depicted in Figure 8-18 shows the d. c. voltage gradually

dropping to OV when the load is changed. At the saine time, the operational speed is

observed to slow down until the engine finally stalls. This experiment confirms that the

system is not intrinsically stable under the given change in load.

Figure 8-19 shows the result of the same experiment but with the control system

connected. This time the d. c. voltage is maintained close to the desired level although

J. G. KHOR 162

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

there is an overshoot of 14% and a small steady state error of about 1.6%. Since it has
been demonstrated that the plant cannot cope with the load change on its own, it can be

concluded that the control system is successful at maintaining the stability of the plant

and the d. c. voltage at the desired level.

It is seen in Figure 8-18 that the plant cannot cope with the changing load condition.
However, when the controller is connected, the output d. c. voltage of the generator is

successfully controlled (Figure 8-19) and stability is maintained.

350

= 300
0 250

200 Co
150

0 > loo
cs
-6 50

0

time [sec]

Figure 8-18 Voltage respon e without the control system.

350
300
250
200
150
100
50

0

----------------- r ------------------------------- r --------------

- -- ------------- --------------- I-------------------

L --------------

L
-------------- I --------------

-------------- -------------- --------------

---------------- -------------- -------------- --------------

---------------- ---------------
:
--------------- ------ -------

0
rli

time [sec]

ponse. ýwLiýthýhe ccontro s stem. Figure 8-19 Voltage rýs e

163
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

8.4.3 Test configuration with inverter

A block diagram of the complete test configuration including an inverter load is shown
at the beginning of the chapter but is included here as Figure 8-20 for reference. A star-
connected variable resistive load is connected to the inverter output. The load resistance
is adjusted to obtain a controlled load current of up to 5A (measured at the d. c. link).
The measurement of the load current is obtained using a Hall-effect current probe placed
on the d. c. link. As before, the desired d. c. voltage is 250V and the clock frequency is

set to 1.2kHz.

Permanent
Magnet

Synchronous Bridge IGBT
Generator Rectifier Inverter

Star
Diesel Connected
Engine C Resistive

Load

Fuel Control
Actuator

IGBT Driver Voltage Circuit
Actuator Interface Sensor

Circuit iý

+- Vdc Vdc

r-

D/A FPGA A/D PWM
rr Controller Converter Controller

4Con

I Clock

Figure 8-20 Block diagram of engine generator set and controller.

Figure 8-21 shows the response when the load current is changed ftom OA to 5A at the

instant t=I Os. The result is similar to that of Figure 8-19 in that the d. c. voltage is

maintained at the desired level. Following the load change, there is a voltage dip at the

d. c. link which settles after 10 seconds. As the controller reacts to compensate for the

sudden demand, the d. c. voltage recovers and stabilises at about 250V.

164
J. G. KHOR

CHAPTER 8- HARDWARE DESIGN, TESTS AND RESULTS

400
350 ----- ----- ------------------
300 -- --------- T--------------------------

250 ----------
200 -------- -- ---- ---------------- - --- -------- --------------- 0 150 --------- > --------------- --------------- -------- ----- d 100 ---------------- :

i-

:

----------------- --------------- --------------- 50 ----------------
0

C) C14

time [sec]

Figure 8-21 Voltage response with inverter load.

The materials presented in this chapter show that the design concept is validated and is

successfully implemented in hardware. The power electronic system that was developed

performed the necessary power conversion while the electronic system achieved the

required control effect. The test results shows that the FLC is capable of maintaining the
d. c. link voltage within a specified range over a range of changing load conditions.
Since it is possible for a PWM inverter to supply a high quality a. c supply (with good
frequency control) when the d. c. link voltage is reasonably constant (the exact range of

tolerance will depend on the design of the PWM inverter and its control system), the

system presented in this thesis is a positive contribution towards the development of a

highly efficient and reliable generation of stand alone generator sets that are suitable for

sensitive load. The next chapter presents some conclusions on the work as well as

further developments to the system which are being investigated.

J. G. KHOR
165

Chapter
9

Conclusions and
Further Work

he conclusions, including some discussion on the present work is presented under
two main headings: the control strategy and the design process. The former

summarises the discussion relating to variable speed operation and the FLC while the
latter section presents some conclusions on the use of VHDL and EDA in designing the

hardware.

9.1 The Control Strategy

The control strategy adopted for this research project aimed to enable the operation of

the generator at variable speed without disrupting the output frequency. The arguments

presented in Chapter I and Chapter 2 suggested that there are potential rewards if

variable speed systems can be controlled to supply constant frequency and stable

voltage output. In order to achieve this objective, various power electronic

configurations have been considered. A d. c. link converter was considered a suitable

solution for two main reasons: the system has been tried and tested in various other

applications, particularly in variable speed drives and wind energy conversion, and

therefore adopting this approach reduces the risk of unnecessary complications;

secondly, the d. c. link converter offers wide flexibility. In addition, various control

techniques can be applied to the system, depending on the design criteria.

J. G. KHOR 166

CHAPTER 9- CONCLUSIONS AND FURTHER WORK

In the first phase of the project, a d. c. link converter was designed, built and tested. The
SA828 IC which is used to control the PWM inverter eliminates the need to design a
comprehensive PWM control system from scratch. It also allows the PNVM parameters
such as the frequency and amplitude modulation ratios to be changed during operation.
This is a useful feature for closed-loop control of the output power waveform. The
results of the practical tests show that the complete d. c. link converter system is capable
of isolating the generator terminal frequency from the final output frequency and that
the desired electrical frequency under variable speed operation in a stand alone
generator set can be maintained. Consequently, further developments can be approached
with confidence.

A Fuzzy Logic Controller (FLC) is designed and built to control the system. Fuzzy logic
is found to be suitable for this application because it is able to cope with the non-
linearity of the engine-generator system. Furthermore, FLCs are based on linguistic

rules and not on mathematical models of the plant, which in this case, can be relatively

complex. The FLC is designed in two stages. The first stage is the design of a generic
double-input, single-output FLC. In the second stage, the FLC is incorporated with the

appropriate interfacing blocks, knowledge base and rule base to give it a very specific
functionality. This approach allows the functionality of the FLC to be changed simply
by redefining the parameters in the second stage without the need to redesign its basic

structure. In the experiments presented in the thesis, the FLC is designed to regulate the

d. c. link voltage within specified values using a set of 25 fuzzy rules. The rules are

derived from the characteristics of a PI controller and executed using Mamdani's

inference technique. The technique relies on straight forward min and max operations

which can easily be implemented. This thesis also proposed an original method of

modelling the inference engine, whereby the relation between the rule-consequence and

output values is represented by a set of switches. By using this model, the designer is

supplied with a clear and well-defined structure of a variable rule base. The collective

effect of the rules are determined by the ON/OFF status of the switches. Currently, the

output voltage of synchronous generators is usually controlled using Automatic Voltage

Regulators (AVRs). AVRs operate by using the generator's field current to regulate the

output voltage. This is widely recognised as an effective technique for the control of

J. G. KHOR
167

CHAPTER 9- CONCLUSIONS AND FURTHER WORK

electromagnet synchronous generators. However, conventional AVRs cannot be used to
regulate the output voltage due to the absence of field windings. In this thesis a
controller capable of controlling both electromagnetic and permanent magnet generators
has been presented. The practical tests of the system were conducted on a 7.5kW
permanent magnet synchronous generator. The control strategy is effective in
controlling the permanent magnet generator reliably. This is a progressive contribution
towards the development of high performance permanent magnet generator sets.

From the discussion, the following conclusions about the control strategy adopted can
be drawn:

* Variable speed operation of a stand alone synchronous generator is feasible control
strategy from the point of view of design and implementation. This is possible due to

the advance in power electronic technology which offers a relatively cheap and

effective solution to maintaining a constant output frequency under variable speed

operation.

The use of fuzzy logic in the present control application improves the performance

while offering greater flexibility. The performance of the controller is good because

it is not limited by the accuracy of the plant model and can incorporate human

experience of the plant in the form of a linguistic rule base. Flexibility is increased

by the generic nature of the basic FLC structure. The way in which the FLC is

designed allows for easy implementation into hardware as well as easy manipulation

of its functionality.

9 The method of generator control presented in this thesis is not only suitable for

electromagnet generators but can also be used to control permanent magnet

generators. This is because the system is not dependent on the field current for

voltage regulation.

The complete system shows encouraging results in controlling a diesel engine driven

synchronous generator operating under variable load and speed. It is particularly

suitable for studying the specific benefits of variable speed generators such as

reduced noise, vibration and fuel consumption.

168
J. G. KHOR

CHAPTER 9- CONCLUSIONS AND FURTHER WORK

9.2 The Design Process

Although VHDL is essentially a hardware design language, the work in this thesis has
explored the use of VHDL in mathematical modelling and simulation of control
strategies. From this experiment, it can be concluded that the approach offers substantial
advantages in the design and development process of a control system, specifically if the
control system is to be implemented into FPGAs or ASICs.

The fact that VHDL is a component-oriented language makes it easy to create reusable
models of the control plant. In the project, the generator and rectifier are modelled in
VHDL and configured as a single component Genrect. A model of the diesel engine is

also described in VHDL and configured as the component Engine. The two components
are then combined together to create a complete model of a stand-alone generator set

which is connected to a rectifier and because these components can be used individually

or connected together to form larger systems, they are very effective for computer

verification and simulation of control strategies. It is possible to build libraries with

models of generators, engines and motors for such purposes.

The entire design process of the FLC is achieved using VHDL. It is found that by

writing design, simulation and implementation codes in the same language, there is a

significant reduction in the concept-to-implementation time frame. In a conventional

design process, separate programming codes have to be written for simulation and

implementation purposes. For example, if a design is to be verified using MATLAB and

implemented using a microprocessor, the MATLAB codes used for the simulations have

to be translated into assembly language for implementation. The translation process can

give rise to errors which may not be easily detected. This complication has been

successfully avoided in the work presented here. Another advantage of using VHDL is

that the design can be kept relatively independent of the implementation technology for

most parts of the design process. It is only in the final stages that the FLC design in this

thesis is targeted for the Xilinx XC4010 FPGA. Unlike microprocessor and DSP codes,

the VHDL design can be recycled and used for implementation into different types of

FPGAs and ASICs.

J. G. KHOR
169

CHAPTER 9- CONCLUSIONS AND FURTHER WORK

In summarising the conclusions on the design process:

VHDL can be effectively used as a modelling and simulation tool in the design
control systems.

Using the same language for simulation and implementation eliminates the need for
translation and therefore reduces the possible errors in the design. This approach also
reduces the concept-to-implementation time frame which is a very important
advantage under the present market demands.

VHDL designs have the advantage of being relatively technology-independent.
Therefore, the designs can be updated and recycled in line with the advances in
hardware tech-nology.

* Optimisation is an essential part of FPGA design. Various methods can be used to

reduce significantly the area space of a design but they usually come at the expense

of performance.

This thesis has presented the design from concept through to the implementation of a
fully functional prototype intelligent controller for a stand-alone synchronous generator

set. The control system has been successfully tested on a permanent magnet generator

coupled to a diesel engine. In the course of the work, several original ideas were

developed. The use of VHDL to model and simulate the control strategy made it

considerably easier to verify the design before implementation. By introducing a

method of modelling and designing the fuzzy inference engine using Mini-FAM tables,

it was possible to reduce the area size of the FLC's design. Numerous analogue, digital

as well as power electronic circuits have been designed and constructed to implement

the proposed control strategy.

The VSCF stand alone generator system is an approach that can improve the efficiency

and reliability of the system. Using fuzzy logic in the implementation of the control

strategy ensures that the system is sufficiently flexible and effective while the use of

VHDL and a common platform for simulation and implementation means that the

design can be upgraded easily and rapidly. From the outcome of the research, it can be

concluded that all the original objectives have been met.

J. G. KHOR
170

CHAPTER 9- CONCLUSIONS AND FURTHER WORK

9.3 Further Work

is sect on discusses some possible improvements to the system and areas which
warrant further investigation. Two developments to the system have been considered.

The first area involves the D. C. -A. C. conversion, i. e. the PWM inverter. A closed loop

control system as well as a suitable filtering system would ensure a high quality
electricity supply to the load. Although the function of the FLC is to maintain the d. c.
link voltage at a specified value, the large delays in the engine and generator means that

the response is relatively slow. To compensate for this, a closed loop control system for

the PWM inverter which takes into account the variation in the d. c. link voltage would
be able to provide a faster and more accurate regulation of the output voltage. The basic

aspects of this type of control system were analysed and discussed in Chapter 5.

However, a more comprehensive study has already been initiated to investigate the

PWM control strategies [94] and to ultimately design a high performance control system

based on the present work.

2

1.5

0.5

-------------- --------------- I ----------------- I ---------------

0

---------------- --------------- --------------- -------------------------------

0000 C)
CN c1r) It LO

time [sec]

Figure 9-1 hen there is a lage and sudden load variation.

Another important issue which needs to be addressed is the effect of large and sudden

changes in the load. This may result in voltage transients of large magnitudes, creating

serious problems in the system such as stress on the power electronic devices. Figure 9-

1 shows the result of a simulation whereby the load current is reduced from 25A to IA.

It can be observed that the magnitude of the voltage surge caused by the shedding of

load is almost twice its reference value. The reason for this is that the overall response

J. G. KHOR
171

CHAPTER 9- CONCLUSIONS AND FURTHER WORK

of the present system is too slow to cope with the transient conditions. A possible
solution to this problem is to introduce a D. C. -D. C. conversion stage to the system like

the one shown in Figure 9-2.

V1,11

Generator

Engine

V21 12

D. ý. --D. C. inverter Output Load Syste Filter em Fý
Rectifier

FPGA Control System

Figure 9-2 Possible improvements to the present system.

The requirements of the D. C. -D. C. system are:

9 able to absorb transient voltage surge

* able to compensate for transient voltage dips

9 cost effective.

This can be achieved using a battery coupled to an appropriate power electronic and

control system. The aim is to make up for the difference in the energy supply and

demand. Once all the practical issues have been properly addressed, the system is

anticipated to be a robust and highly efficient power generator that is suitable for

sensitive loads.

There are also substantial advantages to be gained from the use of VHDL as a modelling

and simulation tool in the design of power electronic control systems. The full potential

of this approach can only be realised with the development of VHDL libraries that

contains comprehensive models of electrical machines, power converters, engines and

other common equipment.

172
J. G. KHOR

PAGE

NUMBERING

AS ORIGINAL

REFERENCES

REFERENCES

Binns, K. J., Kurdali, A. 'Permanent Magnet A. C Generator. ' Proc. IEE
vol. 126, No. 7, Jul 1979. pp 690-696.

2 Rahman, M. A., Osheiba, A. m., Radwan, T. S. 'Modelling and Controller
Design of An Isolated Diesel Engine Permanent Magnet Synchronous
Generator. ' IEEE Trans. on Energy Conversion, Vol. 11, No. 2, June 1996.
pp 324-329.

3 Akmese, R., Chalmers, B. J. 'Permanent Magnet Alternators with Constant
Output Voltage. ' Proc. 37" Universities Power Eng. Conf UPEC'97, vol. 1,
10-12'hSept. 1997. pp34-36.

4 De Mello, F. P., Hannet, L. N. 'Large Scale Induction Generators For Power
Systems. ' IEEE Trans. on Powser Apparatus & Systems, PAS 100,198 1. pp
2610-2618.

5 Chan, T. F. 'Seýf-Excited Induction Generators Driven By Regulated And
Unregulated Turbines. ' IEEE Trans. on Energy Conversion, Vol. 11, No. 3,
Sept 1996. pp 338-343.

6 Alolah, A. I. 'Steady State Operating Limits Of Three Phase Seý(-Excited
Reluctance Generator. ' IEE Proc. C, Vol. 139, No. 3, May 1992. pp 261-
268.

7 Adler, M. S., et. al. 'The Evolution of Power Device Technology. ' IEEE
Trans. Electron Devices, vol. 3 1, no. 11, Nov. 1984. pp 1570-159 1.

8 Baliga, B. J., et. al. 'The Insulated Gate Transistor (IGT) -A New Power
Switching Device' IEEE/1AS Ann. Meet. Conf Rec., 1983. pp 794-803.

[9] Scharf, A. 'Twenty Years of Innovation. ' PCIM Magazine, issue 6,1999.

pp 10- 12.

[10] Sankara, Narayanan, E. M., De Souza, M. M., Qin, Z. 'Devices and
technologies for High Voltage Integrated Circuits', Proc. Int. Conf on
Semiconductor Materials and Technologies, New Delhi, India, 16-21
Dec. 1996.

Thomas, MJ. 'Designing Intelligent Muscle into Industrial Motion Control.

IEEE Trans. Ind. Electron., vol. 37, no. 5,1990. pp 329-341.

12 Maxwell, J. C. 'On Governors. ' Proc. Roy. Soc. (London), 1868.

13 Hazen, H. L. 'Theory of Servomechanism. ' J. Franklin Inst., 1934.

14 Evans, W. R. 'Graphical Analysis of Control Systems. ' Trans. AlEE, 1948.

Vil
J. G. KHOR

REFERENCES

15 Misawa, E. A., Hedrick, J. K. 'Non-linear Observers -A State of the Art
Survey. ' ASME J. Dyn. Syst. Meas. Contr., vol. IIIý 1989. pp344-352.

16 Cilia, J., Asher, G. M., Bradley, K. J., 'Sensorless Position Detection for
Vector Controlled Induction Motor Drives Using and Asymmetric Outer-
Section Cage. ' IEEE Trans. on IAS, vol. 33, no. 5, Sept/Oct 1997. pp 1162-
1169.

17 Ames, Robert L. 'A. C Generators : Design & Application. ' Research
Studies Press, UK, 1990. Chapter 9.

18 Weedy, B. M. 'Electric Power Systems. ' John Wiley & Sons, Third Edition,
1995. Chapter 3.

19 Newage International Ltd. Technical Reference Manual, Section 413 1, Jan
1990. p I.

20 Malik, O. P., Hope, G. S., Huber, D. W. 'Design And Test Results Of A
Software Based Digital A. VR .' IEEE Trans. on Power Appliances and
Systems, Vol. PAS-92, no. 2, Mar/Apr 1976. pp 634-642.

21 Huber, D. W., Runtz, K. J., Malik, O. P., Hope, G. S. 'Analytical And
Experimental Studies OfA Digital A. VR. ' IEEE8hPICA Conf Proc. 1973.

pp 195-203.

22 Hirayama, K., et. al. 'Digital A. VR. Application to Power Plants. ' IEEE
Trans. on Energy Conversion, Vol. 8, No. 4, Dec. 1993.

23 Godhwani, A., Basler, M. J. 'A Digital Excitation Control System For Use
On Brushless Excited Synchronous Generators. ' IEEE Trans. on Energy
Conversion, Vol. I I, No. 3, Sept 1996. pp 616-619.

24 Marino, R. 'An example of Non-linear Regulator. ' IEEE Trans. Automatic
Contr., vol. 29, no. 3,1984. pp276-279.

25 Savaresi, S. M. 'Exact Feedback Linearisation of a Fifth Order Model of
Synchronous Generators. ' IEE Proc. Contr. Theory Appl., vol. 146, no. 1,

Jan. 1999. pp53-57.

26 Ibrahim, A. S., Hogg, B. W., Sharaf, M. M. 'Seýfltuning Automatic Voltage

Regulatorsfor a Synchronous Generator. ' IEE Proc. Pt. D, vol. 136, no. 5,

Sept. 1989. pp252-260.

27 Farsi, M., Zachariah, K. J., Finch, J. W. 'Implementation of a Setf-tuning

A VR. ' 1EE Proc. - Control Theory Appl., vol. 144, no. 1, Jan. 1997. pp32-39.

28 Wu, Q. H., H0995, B. H. 'Robust Self-tuning Regulator for a Synchronous

Generator. ' IEE Proc. Pt. D, vol. 135, no. 6, Nov. 1988. pp463-473.

viii J. G. KHOR

REFERENCES

29 Morioka, Y., et. al. 'Application OfMultivariable Optimal Controller to Real Power Systems. ' IEEE Trans. on Power System, vol. 9, no. 4., 1994. pp 1949-1955.

30 Ghosh, A., Ledwich, G., Malik, O. P., Hope, G. S. 'Power Systems Stabilisers
Based On Adaptive Control Techniques. ' IEE Trans. on Power Apparatus
and Systems, vol. PAS-103, no. 8,1984. pp 1983-1989.

31 Pahalawaththa, N. C., Hope, G. S., Malik, OR 'Multivariable Seýf Tuning
Power System Stabiliser Simulation and Implementation Studies. ' IEEE
Trans. on Energy Conversion, vol. 6, no. 2,1991. pp 310-319.

32 Hirayarna, T. 'Robustness of Fuzzy Logic Power System Stabilisers Applied
to Multimachine Power System. ' IEEE Trans. on Energy Conversion, vol. 9,
no. 3,1994. pp 451-459.

33 Kennedy, D. C., Quintana, V. H. 'Neural Network Regulators For
Synchronous Machines. ' Proc. of ESAP 1993. pp 531-535.

34 Zhang, Y., Malik, OR, Chen G. P. 'Artificial Neural Network Power System
Stabilisers in Multimachine Power System Environment. ' IEEE Tran. on
Energy Conversion, vol. 10, no. 1,1995. pp 147-153.

35 Kobayashi, T., Yokoyania, A. 'An Adaptive Neuro-Control System Of
Synchronous Generatorfor Power System Stabilisation. ' IEEE Trans. on
Energy Conversion, vol. 11, no. 3, Sept 1996. pp 621-630.

36 Venturini, M. G. B., Alesina, A. 'A New Sine Wave In, Sine Wave Out,
Conversion Technique Eliminates Reactive Elements. ' Proc. Powercon 7,
1980. ppE3.1-E3.15.

37 Zhang, L., Watthanasarn, C., Shepherd, W. 'Analysis and Comparison of
Control Techniques for A. C. -A. C. Matrix Converters. ' IEE Proc. Electr.
Power Appl., vol. 145, no. 4, July 1998. pp284-294.

38 Wheeler, P. W., Grant, D. A. 'A Low Loss Matrix Converter for A. C
Variable Speed Drives. ' Proc. EPE'93, U. K., vol. 5,1993. pp27-32.

39 Tenti, P., Malesani, L., Rossetto, L. 'Optimum Control of N-input K-output
Matrix Converters. ' IEEE Trans. Power Electron., vol. 7, no. 4,1992.

pp707-713.

40 Bleijs, J. A. M., Wong, K. J. 'Control of a Variable Speed Wind Turbine with

a Synchronous Generator and Boost Rectifier. ' Proc. 37thUniversities Power

Eng. Conf UPEC'97,10-12t" Sept. 1997. pp722-725.

J. G. KHOR
ix

REFERENCES

41 Pena, R. S., Asher, G. M., Clare, J. C. 'A Doubly-fed Induction Generator
Using Back-to-back PWM Converters Supplying an Isolated Loadftom a Varibale Speed Wind Turbine. ' 1EE Proc. Pt. B, vol. 143, no. 5, Sept. 1996.
pp380-387.

42 Hilloowala, R. M., Sharaf, A. M. 'A Rule-Based Fuzzy Logic Controllerfor a PWM Inverter in a Stand Alone Wind Energy Conversion Scheme' IEEE
Trans. on Industry Appl., vol. 32, no. 1,1996. pp57-65.

43 Simoes, M. G., Bose, B. K., Spiegel R. J. 'Design and Performance
Evaluation of a Fuzzy Logic Based Variable Speed Wind Generation
System. ' IEEE Trans. on Industry Appl., vol. 33, no. 4,1997. pp956-965.

44 Miller, A., Mu1jadi, E., Zinger, D. S. 'A Variable Speed Wind Turbine Power
Control. " IEEE Trans. on Energy Conversion, vol. 12, no. 2.1997. pp181-
186.

45 Bleijs, J. A. M. 'Improvement in Performance of a Passive Pitch Wind
Turbine with Variable Speed Operation. ' Proc. of 5h Eur. Wind Energy
Assoc. Conf. EWEC, Thessaloniki, Greece, vol. 1, Oct. 1994. pp588-592.

46 Jones, R., Smith, G. A. 'High Quality Mains Power Form Variable Speed
Wind Turbines. ' Int. Conf on Renewable Energy - Clean Power 2001, IEE
Conf Publ. No. 385,17-19 Nov. 1993. pp 202-206.

47 Smith, G. A., Stephens, R. G., Marshall, P., Kansara, M. 'A Sinewave
Interface For Variable Speed Wind Turbines. ' 5h European Conf on Power
Electronics & Applications, JEE Conf Publ. No. 377,13-16 Sept. 1993. pp
97-102.

48 Chen, Z., Spooner, E., 'Grid Interface Options for Variable Speed
Permanent Magnet Generators. ' 1EE Proc. Electr. Power Appl., vol. t45,

no. 4, July 1998. pp273-282.

491 Blayliss, John. 'Electronic Design Automation Report. ' Cambridge Market
Intelligence, 1994.

50 Patterson, E. B. 'Electronic Design Automation For Power Electronic

Drives. ' PhD Thesis, Nottingham Trent University, 1993.

51 Patterson, E. B. ; Holmes, P. G. ; Morley, D. 'Electronic Design Automation

(EDA) Techniques For The Design Of Power Electronic Control Systems. '

IEE Proc. - G, Vol. 139, No. 2, April 1992. pp 191-198.

52 Cirstea, M. N., Patterson, E. B., Morley, D. 'The Development And Design Of

An Universal Digital Control System For Cycloconverter Drives Using

Electronic Design Automation (EDA) Techniques. ' Proc. UPEC'95,

Greenwich, UK, 5-7 Sept. 1995. pp725-728.

J. G. KHOR

REFERENCES

[53] IEEE VHDL 1076-1987 Language Reference Manual, Dec. 1987.

[54] Perry, D. L. 'VHDL' McGraw Hill, Second Edition, 1993.

[55] Sjoholm, S., Lindh, L. 'VHDL for Designers, Prentice Hall, 1997.

[56] 'Foundation Series Quick Start Guide 1.4' Xilinx Inc. 1991-1997.

[57] den Bout, D. V. 'The Practical Xilinx Designer Lab Book' Prentice Hall,
1998.

58 Sen, P. C. 'Principles of Electric Machines and Power Electronics. ' John
Wiley & Sons, Second Edition, 1997.

59 Boost, M. A. ; Ziogas, P. D. 'State-of-the-Art Carrier PWM Techniques :A
Critical Evaluation. ' IEEE Trans. Ind. Applicat., Vol. 24, No. 24, Mar/Apr
1988. pp 271-280.

60 Hui, S. Y. R. ; Oppennann, 1. ; Sathiakurnar, S. 'Microprocessor-Based
Random PWM Schemes For D. C. -A. C. Power Conversion. ' IEEE Trans. on
Power Electronics, Vol. 12, No. 2, Mar 1997. pp 253-260.

61 Habetler, T. G. ; Divan, D. M. 'Acoustic Noise Reduction In Sinusoidal PWM
Drives Using A Randomly Modulated Carrier. ' IEEE Trans. on Power
Electronics, Vol. 6, July 1991. pp 356-363.

62 Jung, S. L. ; Tzou. Y. Y. 'Discrete Sliding Mode Control OfA PWM Inverter
For Sinusoidal Output Waveform Synthesis With Optimal Sliding Curve. '
IEEE Trans. on Power Electronics, Vol. I I, No. 4, July 1996. pp 567-577.

63 Mohan, N., Underland, T. M., Robbins, W. P., 'Power Electronics:
Converters Applications and ' John Wiley & Sons, 1989.

[641 GEC Plessey SA828 Data Sheet.

65 Zadeh, L. A. 'Outline of a new approach to the analysis of complex systems
and decision processes. ' IEEE Trans. Syst., Man & Cybern., vol. 3,1973.

pp28-44.

[66] Zadeh, L. A. 'Fuzzy Sets' Information and Control, vol. 8,1965. pp338-353.

67 Smith, F. S., Shen, Q. 'Selecting Inference and Defuzziflication Techniques
for Fuzzy Logic Control. ' Proc. of UKACC International Conference on
Control, 1-4 Sept. 1998. pp54-59.

68 Ross, R. J. 'Fuzzy Logic with Engineering Applications. ' McGraw-Hill,

1995.

X1
J. G. KHOR

REFERENCES

69 Driankov, D, et. al. 'An Introduction to Fuzzy Control., Spnnger-Verlag
1993.

70 Song, Y, Johns, A. T. 'Applications offuzzy logic in power systems, Part I. '
IEE Power Engineering Journal, Oct. 1997.

71 Song, Y, Johns, A. T. 'Applications offuzzy logic in power systems, Part 2. '
IEE Power Engineering Journal, Aug. 199 8. pp 18 5 -190.

72 Song, Y, Johns, A. T. 'Applications offuzzy logic in power systems, Part 3. '
IEE Power Engineering Journal, Apr. 1999. pp97-103.

73 Bose, B. K. 'Expert System, Fuzzy Logic and Neural Network Applications
in Power Electronics and Motion Control. ' Proc. IEEE, vol. 82, Aug. 1994.
pp1303-1323.

74 Sousa, G. C. D., Bose, B. K. 'A fuzzy set theory based control of a phase-
controlled converter dc machine drive. ' IEEE Trans. Ind. Appl., vol. 30,
1994. pp34-44.

75 Simoes, M. G., et. al. 'Fuzzy logic based intelligent control of a variable
speed cage machine wind generation system. ' IEEE Trans. Power
Electronics, vol. 12, no. 1, Jan 1997. pp. 87-94.

761 Sousa, G. C. D., et. al. 'Fuzzy logic based on-line efficiency optimisation
control of an indirect vector controlled induction motor drive. ' Proc.
IEEE/IECON Conf.,, 1993. ppl 168-1174.

77 Simoes, M. G., Bose, B. K. 'Application of fuzzy logic in the estimation of
power electronic waveforms. ' IEEE/IAS Annual Meet. Conf Rec., 1993. pp
853-861.

78 Smith F. S., Shen Q. 'Selecting Inference and Defuzzification Techniques for
Fuzzy Logic Control. ' Proceedings of UKACC Int. Conf, on CONTROL'98,
Sept. 1998. pp54-59.

79 Smith F. S., Shen Q. 'Choosing the Right Fuzzy Logic Controller. '
Proceedings of 7h Int. Fuzzy Systems Association World Congress, 1997.

pp342-347.

80 Runkler T. A. 'Selection of Appropriate Defuzzification Methods Using
Application Specific Properties. ' IEEE Trans. Fuzzy Systems, Feb. 1997.

pp72-79.

81 Karr, C. L., Gentry, E. J. 'Fuzzy Control of pH Using Genetie Algorithms. '

IEEE Trans. Fuzzy Syst., vol. 1, no. 1, Jan. 1993. pp46-53.

xii
J. G. KHOR

REFERENCES

821 Hmaifar, A., McConnick, E. 'Simultaneous Design of Membership
Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms.
IEEE Trans. Fuzzy Syst., vol. 3, no. 2, May 1995. ppl29-139.

83 Hwang, H. S. 'Automatic Design of Fuzzy Rule Base for Modelling and
Control Using Evolutionary Programming. ' IEE Proc. Contr. Theory Appl.,
vol. 146, no. 1, Jan 1999. pp9-16.

84 Mudi, R. K., Pal, N. R. 'A Robust Seýf-Tuning Scheme for PI- and PD-Type
Fuzzy Controllers. ' IEEE Trans. Fuzzy Systems, vol. 7, no. 1, Feb 1999.
pp2-16.

85 Lee, J. 'On Methods for Improving Performance of PI-Type Fuzzy Logic
Controllers. ' IEEE Trans. Fuzzy Systems, vol. 1, no. 4, Nov 1993. pp298-
302.

[86] Ogata K. 'Discrete-time Control System. ' Prentice-Hall 1995.

87 Rose, C. 'Masters of their domain. ' New Electronics On Campus, Autumn
1998. p43.

[88] VHDL Standard Library, ieee. std logic]164.

89 'The Programmable Logic Data Book. ' Xilinx 1998.

90 Kropf, T. 'Benchmark Circuits for Hardware Verification. ' Universitdt
Karlsruhe, Kaiserstr, Gennany. Website http: //goethe. ira. uka. de/hvg,

accessed Feb 1999.

91 McCalla, T. R. 'Digital Logic and Computer Design. ' Macmillan, 1992.

92 De Micheli, G. 'Synthesis and Optimisation of Digital Circuits. ' McGraw
Hill 1994.

93 'XS40 and XS95 Board Manual', XES S Corp. Website http: //www. xess. com/
FPGA/ho02001. htm, accessed Oct 1998.

94 Cirstea, M. N., Khor, J. G., Hu, Y., McCormick, M., Haydock, L.
th
'Intelligent

Fuzzy Logic Controller for Power Generation Systems. ' Proc. 9 Int. Conf.

on Electrical Machines and Drives, UK, Sep. 1999. pp321-324.

xiii
j. G. KHOR

BIBLIOGRAPHY

BIBLIOGRAPHY

Bose, K. B. 'Recent Advances in Power Electronics. ' IEEE Trans. Power
Electronics, Vol. 7, No. 1, Jan. 1992. pp2-15.

2 Cirstea, M. N. 'An Investigation into ASIC Control of 6-Pulse Cycloconverter
for A quad Winding Induction Motor. ' PhD Thesis, The Nottingham Trent
University, 1996.

3 Cirstea, M. N., Patterson, E. B., Morley, D. 'A Complete ASIC Controlled
Electric Drive System. ' Proc. Int. Symposium for Circuits and Systems
ISCAS'96, Atlanta, USA, 12-15 May 1996. pp561-564.

4 Cirstea, M. N., Patterson, E. B., Morley, D., Holmes, P. G., 'A Universal
Digital Control System for Cycloconverter Drives. ' Proc. 5h Int. Conf
Optimisation of Electric and Electronic Equipments OPTIM'94, Brasov,
Romania, Vol. 5,15-17 May 1996. pp 1361-1368.

5 Costa, A., De Gloria, A., Olivieri, M. 'Hardware Design of Asynchronous
Fuzzy Controllers. ' IEEE Trans. Fuzzy Systems, Vol. 4, No. 3, Aug. 1996.

pp328-338.

6] Franklin, G. F., Powell, J. D., Emami-Naeini, A. 'Feedback Control of
Dynamic Systems. ' Addison-Wesley, Third Edition, 1994.

7] Hayes, J. P. 'Introduction to Digital Logic Design. ' Addison-Wesley, 1993.

8 Hollstein, T., Halgamuge, S. K., Glesner, M. 'Computer-Aided Design of
Fuzzy Systems based on Generic VRDL Specifications. ' IEEE Trans. on
Fuzzy Systems, Vol. 4, No. 4, Nov. 1996. pp403-416.

9 Holtz, J. Pulse Width Modulation for Electronic Power Conversion. ' IEEE

Proc., Vol. 82, No. 8, Aug. 1994. pp 1194-1214.

10] Horrowits, P., Hillý W. 'The Art of Electronics. ' Cambridge University

Press, 1995.

Jong, C. C., Ng, L. S., Ho, V. M., Chain, L. P. 'Exploration of Design

Architectures in Rapid Prototyping with FPGA. ' Proc. 7h Int. Symposium IC

Technology, Systems & Applications ISIC'97,10-12 Sept. 1997, Singapore.

pp426-429.

12 Kolar, J. W., Thomas, M. W., Schrodl, 'Analytical Calculation of the RMS

Current Stress on the D. C. Link Capacitor of Voltage D. C. Link PWM

Converter Systems. ' Proc. 9h Int. Conf on Electrical Machines and Drives,

UK, Sep. 1999. pp8l-89.

[13] Lander, C. W., 'Power Electronics' McGraw Hill, 1993.

x1v
J. G. KHOR

BIBLIOGRAPHY

14 Morley, D., Patterson, E. B. 'Electronic Design Automation (EDA) Approach
to Power Electronic Control and Signal Processing. ' Proc. 4 th European
Conf Power Electronics and Applications, Florence, Vol. 4,199 1. pp408-412.

[15 1 Ogata, K. 'Modem Control Engineering. ' Prentice Hall, 1990.

[161 Onan RV Genset Installation Manual.

[171 Onan RV Genset Operator's Manual.

18 Patterson, E. B. Electronic Design Automation for Power Electronic Drives. '
PhD Thesis, Nottingham Trent University, 1993.

[191 Semikron Data Book

20 Tzou, Y., Hsu, H. 'FPGA Realisation of Space-Vector PWM Control ICfor
Three-Phase PWM Inverter. ' IEEE Trans. Power Electronics, Vol. 12, No. 6.
Nov. 1997. pp953-963.

[21] Xilinx Inc., 'The Programmable Logic Data Book. ' ý 1998.

xv

J. G. KHOR

PUBLICATIONS

P WM Con trolfor Variable Speed Stand Alone Generators. 'Proc. of 6' Int. Conf.
on Optimisation of E&E Equipments (OPTIM), Vol. 11, Brasov, Romania, 14-15 May
1998. pp379-382.

'Control of Stand Alone Synchronous Generators at Optimum Speed. ' Proc. of 33'
Intersociety Energy Conversion Engineering Conference (IECEC), Colorado Springs,
USA5 2-6 Aug 1998.1-046.

THDL Design of an Intelligent Fuzzy Logic Controllerfor Synchronous Generator
Sets Implemented in FPGA. ' Proc. of Int. HDL Conference, California, USA, 6-9
April 1999. pp43-47.

th 'An Intelligent Fuzzy Logic Controller for Power Generation Systems. ' Proc. 9
Int. Conf on Electrical Machines and Drives, Cantebury, UK, Sep. 1999. pp321-
324.

xvi
J. G. KHOR

APPENDIX A

Appendix A
VHDL CODE: Simulation

Plant models

App. A-] : Model of Generator and Rectifier

File: Genrect. vhd
1998
J. G. Khor
Remarks:

Model of Synchronous Generator-Rectifier system.
Steady state model of generator-rectifier system
is derived from the equivalent circuit model
of synchronous generators.

library ieee;
use ieee. std

-
logic-I 164. all;

use ieee. math,.
_real. all;

entity Genrect is
port (

-- inputs
n in REAL;
Ifield in REAL;
ldc in REAL;
theta in REAL;
CLK in STD_LOGIC;

-- outputs
Vph out REAL;
Vdc out REAL;
torque out REAL);

end Genrect;

architecture Genrect arc of Genrect is
constant PI : REAL: =3.1416;
constant KG

-
CONST : REAL: =4.7997;

constant R- CONST : REAL: =0.0015;
constant X- CONST : REAL: =1.0000;
constant RECT I CONST : REAL: =0.8165;
constant RECT2 CONST : REAL: =1.3500;
-- Star Configuration
constant YD CURR : REAL: =1.0000;
constant YD_VOLT : REAL: =1.7320;

begin

-- REM: Architecture is Synchronous and Sequential

GENREC-PROCESS:
process(CLK)

variable Ei
-

VAR REAL;

variable Iph_VAR, Vph_VAR: REAL;

J. G. KHOR A-1

APPENDIX A

variable torque
-

VAR REAL;
variable delta_VAR REAL;

begin
if (CLK'event and CLK='I') then

-- Avoid division by zero when n=0.0
if (n=0.0) then

Assign output signals
No speed -> No voltage

Vph <= 0.0;
Vdc <= 0.0;
torque<=50.0;

else
Ei

-
VAR := KG CONST *n* lfield;

lph_VAR := RECTI-CONST * YD
-

CURR * Idc;
delta_VAR: = arcsin((Iph

-
VAR/Ei-VAR) * (X_CONST* cos(theta) + R_CONST* sin(theta»

Vph_VAR: = Ei_VAR*cos(delta_VAR) + lph,
_VAR*(X-CONST*sin(theta) - R_CONST*cos(theta));

-- Assign output signals
Vph <= Vph

-
VAR;

Vdc <= YD_VOLT * RECT2
-

CONST * Vph_VAR;
torque<=(6.0*PI*Vph. VAR*Iph_VAR*cos(theta))/n;

end if,
end if;

end process;
end Genrect-arc;

-- Configuration
configuration Genrect

-
conf I of Genrect is

for Genrect arc
end for;

end Genrect-confl;

App. A-2: Model ofDiesel Engine

File: Engine. vhd
1998
J. G. Khor
Remarks:

Model of Diesel Engine.
Based on linearised engine torque-speed characteristics.

library ieee;
use ieee. MATH_REAL. all;
use ieee. std_logic_l 164-all;

entity Engine is
port (

-- inputs
TL in REAL;
Q in REAL;
Period in REAL;
CLK in STD_LOGIC;

-- output
Te out REAL;
Nout out REAL);

end Engine;

J. G. KHOR
A-2

APPENDIX A

architecture Engine_arc of Engine is
signal Nz-SIG : REAL: =O. O;
constant A- CONST : REAL: = 0.9;
constant B- CONST : REAL: = 50.53;

-- Total inertia
constant J-CONST : REAL: = 10.0;

begin

-- REM Architecture is Synchronous and Sequential

ENGINE PROCESS:
process(CLK)

variable Te_VAR : REAL: =O. O;
variable N_VAR : REAL: =O. O;
variable TL_VAR : REAL: =O. O;

begin
if (CLK'event and CLK='I') then

TL VAR: = TL;
Te_VAR: = (B_CONST*Q)-(A_CONST*Nz-SIG);
N_VAR := (((Te_VAR-TL_VAR)/J-CONST)*Period)+Nz-SIG;

-- Assign output/signal with MAX/MIN limit
if (N_VAR > -5000.0 or N- VAR < 5000.0) then

Nz SIG <= N VAR;
Nout <= N VAR;

elsif (NYAR < -5000.0) then
Nz SIG <= -5000.0;
Nout <= -5000.0;

elsif (N_VAR > 5000.0) then
Nz SIG <= 5000.0;
Nout <= 5000.0;

end if,

if (Te
-

VAR > -5000.0 or Te_VAR < 5000.0) then
Te < = Te_VAR;

elsif (Te
-

VAR < -5000.0) then
Te < = -5000.0;

elsif (Te
-

VAR > 5000-0) then
Te <= 5000.0;

end if;

end if,
end process;

end Engine_arc;

-- Configuration
configuration Engine_conf I of Engine is

for Engine
-

arc
end for;

end Engine_confl;

A-3
J. G. KHOR

APPENDIX A

Fuzzy Logic Controller

App. A-3 : Input Interface

File: Interfacel. vhd
1998
J. G. Khor
Remarks:

Part of Fuzzy Logic Controller
Simulation Version

library ieee;
use ieee. std_logic_l 164. all;

entity Interface I is
port (

CLK : inSTD
-

LOGIC;
Vdc : in INTEGER;
Vref An INTEGER;

x I: out INTEGER;
x2: out INTEGER);

end Interface I;

architecture Interface I
-arc

of Interface I is
begin

LATCH_PROCESS:
process(CLK)

variable NOW-VAR : INTEGER: =O;
variable PAST VAR : INTEGER: =O;
variable error JNTEGER : =O;
variable DIFF JNTEGER : =O;

begin
if CLK'event and CLK='I'then

-- error
error: = (Vdc-Vref)/3;

-- xI -> (x 1, x2)
PAST_VAR: =NOW-VAR;
NOW-VAR: =error;

-- Output Assignment
if (NOW

-
VAR<=(- 127)) then

xI <=(- 127);
elsif (NOW

-
VAR>= 128) then

xl<=128;
else

xl<=NOW-VAR;
end if,

DIFF: = NOW-VAR-PAST_VAR;
if (DIFF>=30) then

x2<=100;
elsif (DIFF<=-30) then

-- ---- A-4 J. G. KHOR

APPENDIX A

x2<=- 100;
else

x2<=DIFF*3;
end if,
x2<=O;

end if,
end process;
end Interface I

_arc;

-- Configuration
configuration Interface I- confl of Interface] is

for Interface I
-arc end for;

end Interface I_confl;

App. A-4 : Fuzzifter

File: Fuzzify. vhd
1998
J. G. Khor
Remarks:

Fuzzifier
Part of Fuzzy Logic Controller
Simulation Version

library ieee;
use ieee. std_logic_l 164. all;
use ieee. numeric_std. all;

entity Fuzzify is
port (

-- inputs
x 1: in INTEGER range - 127 to 12 8;
x2: in INTEGER range - 127 to 12 8;

-- fuzzy sets for xI
B11: out INTEGER range 0 to 12 8;
BI 2: out INTEGER range 0 to 128;
B 1-3: out INTEGER range 0 to 128;
B14: out INTEGER range 0 to 128;
B15: out INTEGER range 0 to 128;

-- fuzzy sets for x2
B2_1: out INTEGER range 0 to 128;
B2

-
2: out INTEGER range 0 to 128;

B2_3: out INTEGER range 0 to 128;
B2_4: out INTEGER range 0 to 128;
B2_5: out INTEGER range 0 to 128);

end Fuzzify;

architecture Fuzzify_arc of Fuzzify is

constant a 1: INTEGER: =-60;
constant b 1: INTEGER: =- 10;

constant a2: INTEGER: =-60;
constant b2: INTEGER: =- 10;

constant c2: INTEGER: =O;
constant a3: fNTEGER: = -10;
constant b3: fNTEGER: =O;
constant c3: INTEGER: = 10;

J. G. KHOR A-5

APPENDIX A

constant a4: INTEGER: =O;
constant b4: INTEGER: = 10;
constant c4: INTEGER: =60;
constant a5: INTEGER: = 10;
constant b5: fNTEGER: =60;

begin

-- Concurrent Architechture

--I Fuzzify input xI

-- 1. Very Small
B 11 <= 100 when xI <=al else

(100*(xl-bl))/(al-bl) when (xl>al and xl<=bl) else
0;

-- 2. Small
B 12 <= (I 00*(x I -a2))/(b2-a2) when (x I >=a2 and xI <=b2) else (100*(xl-c2))/(b2-c2) when (xl>b2 and xl<=c2) else

0;

-- 3. Optimum
BI-3 <= (100*(xl-a3))/(b3-a3) when (xl>=a3 and xl<=b3) else

(100*(xl-c3))/(b3-c3) when (xl>b3 and xl<=c3) else
0;

-- 4. Big
BI-4 <= (100*(xl-a4))/(b4-a4) when (xl>=a4 and xl<=b4) else

(100 * (x I -c4))/(b4-c4) when (x I >b4 and xI <=c4) else
0;

-- 5. Very Big
B 15 <= 0 when xI <=a5 else

(100*(xl-b5))/(a5-b5) when (xl>a5 and xl<b5) else
100;

--I Fuzzify input x2 I--

-- 1. Very Small
B2_ I <= 100 when x2<=a I else

(l00*(x2-bI))/(aI-bI) when (x2>al and x2<=bl) else
0;

-- 2. Small
B2_2 <= (100 * (x2-a2))/(b2-a2) when (x2>=a2 and x2<=b2) else

(100*(x2-c2))/(b2-c2) when (x2>b2 and x2<=c2) else
0;

-- 3. Optimum
B2_3 <= (100 *(x2-a3))/(b3 -a3) when (x2>=a3 and x2<=b3) else

(100*(x2-c3))/(b3-c3) when (x2>b3 and x2<=c3) else
0;

-- 4. Big
B2_4 <= (I 00*(x2-a4))/(b4-a4) when (x2>=a4 and x2<=b4) else

(I 00*(x2-c4))/(b4-c4) when (x2>b4 and x2<=c4) else
0;

-- 5. Very Big
B2_5 <= 0 when x2<=a5 else

(I 00*(x2-b5))/(a5-b5) when (x2>a5 and x2<b5) else
100;

end Fuzzify-arc;

-- Configuration
configuration Fuzzify_confl of Fuzzify is

for Fuzzify_arc
end for;

end Fuzzify_confl;

J. G. KHOR A-6

APPENDIX A

App. A-5: Rule Base and Inference Engine

File: Infer. vhd
1998
J. G. Khor
Remarks:

Rule base and Inference Engine
Part of Fuzzy Logic Controller
Simulation Version

library ieee;
use ieee. std_logic_l 164. all;

entity Infer is
port (

CLK: in STD_LOGIC;

-- Inputs
BI

-
1: in INTEGER range 0 to 128;

BI-2: in INTEGER range 0 to 128;
BI-3: in INTEGER range 0 to 128;
BI-4: in INTEGER range 0 to 128;
B 1-5: in INTEGER range 0 to 128;

B2
-

1: in INTEGER range 0 to 128;
B2

-
2: in INTEGER range 0 to 128;

B2
-

3: in INTEGER range 0 to 128;
B2

-
4: in INTEGER range 0 to 128;

B2_5: in INTEGER range 0 to 128;

-- Outputs
D 1: out INTEGER range 0 to 12 8;
D2: out INTEGER range 0 to 128;
D3: out INTEGER range 0 to 128;
D4: out INTEGER range 0 to 128;
D5: out INTEGER range 0 to 128;
D6: out INTEGER range 0 to 128;
DT out INTEGER range 0 to 128;
D8: out INTEGER range 0 to 128;
D9: out INTEGER range 0 to 128

end Infer;

architecture Infer_arc of Infer is
begin

Sequential:
process(CLK)

variable cl, c2, c3, c4, c5: INTEGER range 0 to 128;
variable c6, c7, c8, c9, c 10: INTEGER range 0 to 128;
variable cIl, c I 2, c I 3, c I 4, c 15: INTEGER range 0 to 128;

variable cI6, c I 7, c I 8, c I 9, c2O: INTEGER range 0 to 128;

variable c2l, c22, c23, c24, c25: INTEGER range 0 to 128;
begin

-- Fuzzy Inference Engine -- Ci = min(Ul-x, U2_y)
if BI I <132 I then cl: =Bl_l;
else cl: =B2-1;
end if-,

if B I- I< B2_2 then c2: =B 1_ 1;

A-7 J. G. KHOR

APPENDIX A

else c2: =B2_2;
end if,

if BI
-I<

B2
-3

then c3: =Bl_l;
else c3: =B2_3;
end if,

if BI
-I<

B2_4 then c4: =Bl_l;
else c4: =B2_4;
end if,

if BI
-I<

132_5 then c5: =Bl_l;
else c5: =B2_5;
end if,

if BI
-2<

B2
-I

then c6: =BI_2;
else c6: =B2_1;
end if,

if BI 2< B2 2 then c7: =B 1-2;
else c7: =B2_2;
end if,

if BI
-

2<B2
-3

then c8: =BI_2;
else c8: =B2_3;
end if,

if BI
-2<

132_4 then c9: =BI_2-,
else c9: =B2_4;
end if,

if BI
-2<

B2_5 then cIO: =BI_2;
else clO: =B2_5;
end if,

if 131_3 < 132_1 then cl. 1: =BI-3;
else cl 1: =B2_1;
end if,

if BI
-3<

B2_2 then cl2: =BI_3;
else cl2: =B2_2;
end if,

if BI
-3<

132_3 then cI3: =BI-3;
else cI3: =B2_3;
end if,

if BI
-3<

B2_4 then cl4: =BI_3;
else cI4: =B2_4;
end if;

if BI
-3<

B2_5 then cI5: =BI_3;
else cI5: =B2_5;
end if;

if BI
-4<

B2_ I then cI6: =B 1-4;

else cl6: =B2_1;
end if-,

if BI
-4<

B2_2 then cI7: =B 1-4;

else cI7: =B2_2;
end if,

if B 14 < B2_3 then cI8: =B 1-4;

------ A-8 J. G. KHOR

APPENDIX A

else cI8: =B2_3;
end if,

if BI
-4<

B2
-4

then cI9: =BI-4;
else c 19: =B2_4;
end if,

if BI
-4<

132_5 then c20: =B 1-4;
else c20: =B2_5;
end if,

if BI
-5<

B2_ I then c2 1: =B 1
5; else c2 1: =B2 1;

end if,

if BI
-5<

B2_2 then c22: =BI_5;
else c22: =B2_2;
end if,

if BI
-5<

132_3 then c23: =B 1
_5; else c23: =B2_3;

end if,

if BI 5< B2 4 then c24: =B 1
_5; else c24: =B2_4;

end if;

if BI
-5<

B2_5 then c25: =BI_5;
else c25: =B2_5;
end if,

--
-- 25 Fuzzy Rules -> 9 Fuzzy Sets (Get MAX) --
--

-- Negative Very Big
DI <= c25;

Negative Big
if (c20=O and c24=0) then D2<= 0;
elsif (c20>=c24) then D2<=c2O;
else D2<=c24;
end if,

-- Negative
if (c 1 5=0 and c1 9=0 and c23=0) then D3<=O;
elsif (cl5>=cl9 and cl5>=c23) then D3<=cl5;
elsif (cl9>=cl5 and cl9>=c23) then D3<=cl9;
else D3<=c23;
end if;

-- Negative Small
if (c I 0=0 and c 14=0 and
elsif (c I 0>=c 14 and cI O>:
elsif (c I 4>=c 10 and c 14>:
elsif (c I 8>=c 10 and c1 8>:
else
end if,

18=0 and c22=0) then D4<=O;
=c 18 and cI 0>=c22)then D4<=c 10;
=c 18 and c 14>=c22)then D4<=c 14;

=c 14 and cI 8>=c22) then D4<=c 18;
D4<=c22;

-- Zero
if (c5 =0 and c9 =0 and c1 3=0 and

c1 7=0 and c2 I =0) then D5<=O;

elsif (c5>=c9 and c5>=c 13 and
c5>=c 17 and c5>=c2 1) then D5<=c5;

J. G. KHOR A-9

APPENDIX A

elsif (c9>=c5 and c9>=cl3 and
c9>=cl7 andc9>=c2l)then D5<=c9;

elsif(cl3>=c5 andcl>=c9and
cI 3>=c 17 and cI 3>=c2 I)then D5<=cl3;

elsif (c I 7>=c5 and cI 7>=c9 and
cI 7>=c 13 and cI 7>=c2 I)then D5<=c 17;

else D5<=c2l;
end if,

-- Positive Small
if (c4 =0 and c8 =0 and c1 2=0 and c1 6=0) then
elsif (c4 >=c8 and c4 >=cl2 and c4 >=cl6) then
elsif(c8>=c4 and c8 >=cl2 and c8 >=cl2) then
elsif(cl2>=c4 andcl2>=c8 and cl2>=cl6) then
else
end if,

-- Positive
if(c3=Oandc7=Oandcll=O)then D7<=O;
elsif (c3 >=c7 and 0 >=c 11) then D7<=c3;
elsif (c7 >=c3 and 0 >=cl 1) then D7<=c7;
else D7<=c 11;
end if,

-- Positive Big
if (c2=0 and c6=0) then D8<=O;
elsif (c2>=c6) then D8<=c2;
else D8<=c6;
end if,

-- Positive Very Big
D9 <= cl;

end process;
end Infer_arc;

-- Configuration
configuration Infer

-
confl of Infer is

for Infer arc
end for;

end Infer_confl;

D6<=O;
D6<=c4;
D6<=c8;
D6<=c 12;

D6<=c 16;

App. A-6 : Defuzzifier and Output Interface

File: Defuzz. vhd
1998
J. G. Khor
Remarks:

Defuzzifier and Output Interface
Part of Fuzzy Logic Controller
Simulation Version

library ieee;
use ieee. std-logic-I 164. all;

entity Defuzz is

J. G. KHOR
A-10

APPENDIX A

port (

-- Clock
CLK: in STD_LOGIC;

D I: in INTEGER range 0 to 128;
D2: in INTEGER range 0 to 128;
D3: in INTEGER range 0 to 128;
D4: in INTEGER range 0 to 128;
D5: in INTEGER range 0 to 128;
D6: in INTEGER range 0 to 128;
D7: in INTEGER range 0 to 128;
D8: in INTEGER range 0 to 128;
D9: in INTEGER range 0 to 128;

-- Crisp control signal
U: out INTEGER);

end Defuzz;

architecture Defuzz-arc of Defuzz is

constant El: INTEGER: =-4;
constant E2: INTEGER: =-3;
constant E3: INTEGER: =-2;
constant E4: INTEGER: =-1;
constant E5: INTEGER: =O;
constant E6: INTEGER: = 1;
constant E7: INTEGER: =2;
constant E8: INTEGER: = 3;
constant E9: INTEGER: = 4;

begin

-- Defuzz Engine --

-- Weighted average method:

DEFUZZ PROCESS:
process(CLK)

variable Dividend
variable Divisor
variable Y
variable Uz
variable U-var

INTEGER: =O;
: INTEGER: =I;
JNTEGER;

INTEGER: =20;
INTEGER;

begin
if CLK'event and CLK='I'then

Dividend: =(El *Dl)+(E2*D2)+(E3*D3)+(E4*D4)+(E5*D5)+(E6*D6)+(E7*D7)+(E8*D8)+(E9*D9);
Divisor: =(DI+D2+D3+D4+D5+D6+D7+D8+D9);

-- To avoid division by zero
if Divisor--O then

Y: =O;
else
-- Definition of crisp output

Y: = (Dividend/Divisor);
end if,

Ys<=Y;
__Output interface
U-var : =Uz+Y;
UZ : =U var;
if (U-VAR<=(-254)) then

U<=(-254);

A-11
J. G. KHOR

APPENDIX A

elsif (U_VAR>=255) then
U<=255;

else
U<=U var;
end if,

end if,
end process;

end Defuzz-arc;

-- Configuration
configuration Defuzz

-
confl of Defuzz is

for Defuzz arc
end for;

end Defuzz-Confl;

App. A-7: Top Hierarchy of FL C

File: Controller. vhd
1998
J. G. Khor
Remarks:

Top hierarchy of FLC
Binds all the components together
Simulation Version

library ieee;
use ieee. std_logic_l 164. all;

entity Controller is
port (

CLK : in STD LOGIC;
Vdc : in INTEGER;
Vref : In INTEGER;

U : out INTEGER);
end Controller;

architecture Controller_arc of Controller is

-- Component Declaration --

component Interface I
port (

CLK An STD LOGIC;
Vdc : In INTEGER;
Vref : in INTEGER;
X1 : out INTEGER;
x2 : out INTEGER);

end component Interfacel;

component Fuzzify
port (

-- inputs
x 1: in INTEGER range - 127 to 128;

x2: in INTEGER range - 127 to 128;

-- fuzzy sets for xI

-------- A-12 J. G. KHOR

APPENDIX A

BI
-

1: out INTEGER range 0 to 128;
BI- 2: out INTEGER range 0 to 128;
BI

-
3: out INTEGER range 0 to 128;

BI
-

4: out INTEGER range 0 to 128;
BI- 5: out INTEGER range 0 to 128;
-- fuzzy sets for x2
B2

-
1: out INTEGER range 0 to 128;

B2
-

2: out INTEGER range 0 to 128;
B2 3: out INTEGER range 0 to 128;
B2 4: out INTEGER range 0 to 128;
B2

-
5: out INTEGER range 0 to 128);

end component Fuzzify;

component Infer
port (

CLK: in STD_LOGIC;

-- Inputs
BI-1: in INTEGER range 0 to 12 8;
B 1-2: in INTEGER range 0 to 128;
BI

-
3: in INTEGER range 0 to 128;

B 1-4: in INTEGER range 0 to 128;
B 1-5: in INTEGER range 0 to 128;

B2
-

1: in INTEGER range 0 to 128;
B2

-
2: in INTEGER range 0 to 128;

B2
-

3: in INTEGER range 0 to 128;
B2_4: in INTEGER range 0 to 128;
B2_5: in INTEGER range 0 to 128;

-- Outputs
D 1: out INTEGER range - 127 to 12 8;
D2: out INTEGER range - 127 to 12 8;
D3: out INTEGER range - 127 to 12 8;
D4: out INTEGER range - 127 to 12 8;
D5: out INTEGER range - 127 to 12 8;
D6: out INTEGER range - 127 to 128;
D7: out INTEGER range - 127 to 128;
D8: out INTEGER range - 127 to 128;
D9: out INTEGER range - 127 to 12 8

end component Infer;

component Defuzz
port (

-- Clock
CLK: in STD

-
LOGIC;

D 1: in INTEGER range - 127 to 128;
D2: in INTEGER range - 127 to 128;
D3: in INTEGER range - 127 to 128;
D4: in INTEGER range - 127 to 128;
D5: in INTEGER range - 127 to 128;
D6: in INTEGER range - 127 to 12 8;
DT in INTEGER range - 127 to 128;
D8: in INTEGER range -127 to 128;
D9: in INTEGER range - 127 to 128;

-- Crisp control signal
U : out INTEGER);

end component Defuzz;

-- Signal Declaration --

signal xl_SIG, x2_SIG: INTEGER;

A-13 J. G. KHOR

APPENDIX A

signal SBl
_l,

SB I_ 2, SBI_3, SBl-4, SBI_5 ANTEGER range 0 to 128;
signal SB2

_1,
SB2_ 2, SB2_3, SB2-4, SB2-5 : INTEGER range 0 to 128;

signal DI_ SIG, D2
_SIG,

D3_SIG : INTEGER range - 127 to 128;
signal D4_ SIG, D5

_SIG,
D6

-
SIG: INTEGER range - 127 to 128;

signal D7_ SIG, D8
_SIG,

D9-SIG : INTEGER range - 127 to 128;

begin

--
-- Component Instantiation (Port Map) --

interface I
-U:

Interface I
port map(

-- Inputs
CLK=>CLK,
Vdc=>Vdc,
Vref=>Vref,

-- Outputs
xl=>Xl SIG,
x2=>x2_SIG

Fuzzlfy_ýU: Fuzzify
port map(

-- Inputs
xl=>xl-SIG, x2=>x2_SIG,

-- Outputs
BI

-
1=>SBI_I,

BI
-

2=>SBI-2,
BI

-
3=>SBI_3,

BI 4=>SBI 4,
B 1-5=>SB 1-5,

B2
-

1=>SB2- 1,
B2

-
2=>SB2_ 2,

B2
-

3=>SB2
_3, B2 4=>SB2 4,

B2_ 5=>SB2
_5

Infer_U: Infer
port map(

CLK=>CLK,

-- Inputs
BI 1=>SBI_ I,
BI 2=>SBI_ 2,
BI 3=>SBI_ 3,
BI 4=>SBI 4,
BI- 5=>SBI J,

B2 1=>SB2 1,
B2

-
2=>SB2_2,

B2
-

3=>SB2-3,
B2

-
4=>SB2_4,

B2_5=>SB2_5,

-- Outputs
Dl=>Dl SIG, D2=>D2 SIG, D3=>D3-SIG,

D4=>D4 SIG, D5=>D5_SIG, D6=>D6_SIG,
D7=>D7_SIG, D8=>D8_SIG, D9=>D9-SIG

Defuzz-U: Defuzz

A-14
J. G. KHOR

APPENDIX A

port map(
-- Inputs
CLK=>C
Dl=>Dl
D4=>D4
D7=>D7

-- Output
U=>u

end Controller_arc;

LK,
SIG, D2=>D2 SIG, D3=>D3_SIG,

_SIG,
D5=>D5 SIG, D6=>D6_SIG,

_SIG,
D8=>D8_SIG, D9=>D9_SIG,

-- Configuration
configuration Controller

-
confl of Controller is

for Controller arc
for Interfacel_U: Interfacel use configuration work. Interface I

_confl; end for;

for Fuzzify_U: Fuzzify use configuration work. Fuzzify-confl;
end for;

for Infer_U: Infer use configuration work. Infer-confl;
end for;

for Defuzz
-

U: Defuzz use configuration work. Defuzz-Confl;
end for;

end for;
end Controller_confl;

Testbenches and Simulations

App. A-8: Delay

File: Delay. vhd
1998
J. G. Khor
Remarks:

Part of Simulation component

library ieee;
use ieee. std_logic_l 164. all;

entity delay is
port (

Tin: in REAL;
Uin: in REAL;
MUM in STD LOGIC;
Uout: out REAL: =2.0;
Tout: out REAL: =10.0);

end delay;

architecture delay_arc of delay is
begin

Tout <= Tin when MUX='I';

J. G. KHOR
A-15

APPENDIX A

Uout <= Uin when MUX='I';
end delay-arc;

-- Configuration
configuration delay_conf I of delay is

for delay_arc
end for;

end delay-conf 1;

App. A-9: Simulator

File: Sim. vhd
1998
J. G. Khor
Remarks:

Simulation component
This test unit comprises:
FLC, Engine, Genrect and a delay component

library ieee;
use ieee. math_real. all;
use ieee. std_logic_l 164. all;

entity Sim is
port

-- inputs
CLKI in STD LOGIC;
CLK2 in STD_LOGIC;
Period in REAL;
ldc in REAL;
theta in REAL;
Ifield in REAL;

Vref in INTEGER;

-- outputs
TE out REAL;
Vph out REAL;
Vdc out REAL);

end Sim;

architecture Sim-arc of Sim is

-- Component Declaration --

component Controller
port(

CLK : in std -
logic;

Vdc : in INTEGER;
Vref : in INTEGER;
U : out INTEGER);

end component;

component Engine
port(
TL in REAL;
u in REAL;
CLK in STD LOGIC;
Period: in REAL;

------- A-16
J. G. KHOR

APPENDIX A

TE out REAL;
N out REAL);

end component;

component Genrect
port(
N in REAL;
Ifield in REAL;
ldc in REAL;
theta in REAL;
CLK in STD_LOGIC;
Vph out REAL;
Vdc out REAL;
TG out REAL);

end component;

component delay
port(

Tin in REAL;
Uin in REAL;
MUX in STD

-
LOGIC;

Uout out REAL;
Tout out REAL);

end component;

-- Signal Declaration --

-- Controller input flow
signal Vdc-SIG REAL;
signal Vdc

-
rSIG REAL;

signal Vdc-iSIG INTEGER;

Controller output flow
signal U-iSIG JNTEGER;
signal U-i-SIG, Uo-SIG REAL;

Torque & Speed signals
signal TL

-
SIG : REAL: =50.0;

signal TG_SIG: REAL;
signal N_SIG REAL;

Delay element
signal MUX : STD

-
LOGIC : ='O';

signal UE_SIG REAL : =2.0;
begin

-- Component Instantiation (Port Map) --

Controller U: Controller
port map(

-- Inputs
CLK =>CLKI,
Vdc =>Vdc-iSIG,
Vref =>Vref,
-- Outputs
U =>U-iSIG);

Engine_U: Engine
port map(

-- Inputs
TL =>TL_SIG,
U =>UE SIG,
CLK =>CLK2,

J. G. KHOR A-17

APPENDIX A

Period

-- Outputs
TE
N

=>Period,

=>TE,
=>N_SIG);

Genrect U: Genrect
port map(

-- Inputs

delay_U: delay
port map(

Tin
Uin
Mux
Uout
Tout

N =>N_SIG,
Ifield =>Ifield,
ldc =>Idc,
theta =>theta,
CLK =>CLK2,
-- Outputs
Vph =>Vph,
Vdc =>Vdc

-
SIG,

TG =>TG_SIG);

=>TG_SIG,
=>Uo-SIG,

=>MUX,
=>UE

-
SIG,

=>TL_SIG);

-- end of component instantiation

Torque in/out delay to overcome problem
caused by propagation of unknown values
during the starting transient.

MUX <='I'after 30ns;

-- error: Non-nalise
Vdc_rSIG <= Vdc_SIG * 1.0;

-- error: Real-Integer Conversion
Vdc-iSIG <= 2000 when (Vdc-rSIG>2000.0) else

0 when (Vdc
-

rSIG<0.0) else
rNTEGER(Vdc_rSIG);

-- U: Integer-Real Conversion
UJSIG <= REAL(UýISIG);

-- UnNormalise U (from - 127/128 to 12.7/12.8)
Outputu:
process(CLKI)

variable COUNT_VAR: STD_LOGIC: ='O';
variable UYAR : REAL;

begin
if (CLKI'event and CLK I =T) then

if (COUNT_VAR='I') then
U-VAR: = (U-rSIG/10-0);

if (U-VAR>25.5) then
Uo SIG <= 25.5;

elsif (U
-

VAR<-25.4) then
Uo SIG <= -25.4;

else
uo

-
SIG <= UYAR;

end if,
else

-- Initial condition
COUNT_VAR: ='I';

J. G. KHOR
A-18

APPENDIX A

Uo-SIG <= 2.0;
end if,

end if,
end process;

--- Assign output Vdc
Vdc <= Vdc-SIG;

end Sim-arc;

configuration Sim-conf I of Sim is
for Sim_arc

for Controller-U: Controller use configuration work. Controller-confl;
end for;

for Engine
-

U: Engine use configuration work. Engine-Confl;
end for;

for Genrect
-

U: Genrect use configuration work. Genrect_confl;
end for;

for delay_U: delay use configuration work. delay_confl;
end for;

end for;
end Sim-confl;

App. A-10 : Testbench for 'Sim I

File: TB_Sim. vhd
1998
J. G. Khor
Remarks:

Testbench for Sim
Provides the appropriate stimuli and observes the simulated signals
Writes the observed values into a text file

library ieee;
use ieee. math real. all;
use ieee. std_logic

-I
164. all;

use std. textio. all;

entity TB_Sim is
end TB-Sim;

architecture TB Sim arc of TB Sim is

-- Component declaration of the tested unit
component Sim
port(

--Inputs
CLKI An std -

logic;
CLK2 :M std -

logic;
Period in REAL;
Idc : in REAL;
theta : in REAL;
Ifield : in REAL;
Vref : in INTEGER;

--Outputs
TE : out REAL;

--- - ---- A-19
J. G. KHOR

APPENDIX A

Vph : out REAL;
Vdc : out REAL);

end component;

-- Stimulus signals - signals mapped to the input and inout ports of tested entity
signal CLK I std logic: =' V;
signal CLK2 - std logic: ='I';
signal Period _ REAL;
signal ldc REAL;
signal theta REAL;
signal Ifield REAL;
signal Vref fNTEGER;

-- Observed signals - signals mapped to the output ports of tested entity
signal TE : REAL;
signal Vph REAL;
signal Vdc REAL;

-- Signals for simulation purposes

begin

-- Unit Under Test port map
UUT: Sim

port map(
--Inputs
CLK I => CLK I,
CLK2 => CLK2,
Period => Period,
ldc => ldc,
theta => theta,
Ifield => Ifield,
Vref => Vref,

--Outputs
TE => TE,
Vph => Vph,
Vdc => Vdc

-- ***Stimulus***--

CLKI <= not CLKI after I Ons;
CLK2 <= not CLK2 after Ins;

-- Period:
Period <= 3.0;
theta <= 0.0;
Ifield <= 2.5;
Vref <= 1000;
ldc <= 25.0,

1.0 after 41 OOns;

--Write results into file
process (CLK I)

file outfile : text is out
"C: \My Design s\Simulation\src\Results\Further25. txt";

variable out_line : line;
begin

write(out -
line, Vdc);

-- write(out -
line, " "); write(out_line, Idc);

writeline(outfile, out-line);
end process;

end TB-Sim-aTc;

J. G. KHOR
A-20

APPENDIX A

configuration TB
-

Sim
-

conf I of TB-Sim is
for TB_Sim_arc

for UUT: Sim
use entity work. Sim(Sim_ARC);

end for;
end for;

end TB_Sim_confl;

A-21
J. G. KHOR

APPENDIX B

Appendix B
VHDL CODE: Synthesis & Implementation

Fuzzy Logic Controller

App. B-1 : Input Interface

File: Deriv. vhd
1998
J. G. Khor
Remarks:

Part of Fuzzy Logic Controller
Implementation Version

library iece;
use ieee. std_logic_l 164. all;
use ieee. std

-
logic

-
signed. all;

use ieee. std_logic_arith. all;

entity Deriv is
port (

CLK
RST
Vdc
Vref

in STD
-

LOGIC;
in STDý_LOGIC;
in std

-
logic

- vector(7 downto 0);
: in std_logic_vector(7 downto 0);

x 1: out std
-

logic-vector(8 downto 0);
x2: out std,

_logic_vector(8
downto 0»;

end Deriv;

architecture Deriv-arc of Deriv is
begin
LATCH_PROCESS:
process(CLK, RST)

variable x: std -
logic

-
vector(8 downto 0);

variable NOW
-

VAR: std
-

logic_vector(8 downto 0);
variable PAST

-
VAR: std

-
logic

- vector(8 downto 0);
variable DIFF: Std

-
logic

-
vector(8 downto 0);

variable Vdc
-

var: std_logic-Vector(8 downto 0);
variable Vref var: std_logic_vector(8 downto 0);
variable x_temp: std.

-
logic

-
vector(8 downto 0);

variable error: std_logic_vector(8 downto 0);
begin --process
if RST='I'then

NOW VAR: ="000000000";
PAST_VAR: ="000000000";
DIFF= "000000000";
xl<= 11000000000" ;
x2<= "000000000";

elsif CLK'event and CLK='I'then

J. G. KHOR B-1

APPENDIX B

--Convert from unsigned to signed
Vdc

-
var(8): ='O';

Vdc
-

var(7 downto 0): =Vdc;
Vref var(8): ='O';
Vref var(7 downto 0): =Vref,

--Get Error
error: =Vdc

-
var-Vref Var;

--x is error*(Gain=3)
x: =error+shl(error, " I ");

--Overflow check
if (error(8) XOR x(8))='I'then

if error(8)='I' then
x: ="l 10011100'1 ;

else
x: ="00 I 100 1 OO'l

end if,
end if-,

--Block: x -> xl, x2--

-- Effect immediately
PAST_VAR: =NOW-VAR;
NOW-VAR: =x;
DIFF: = NOW-VAR-PAST_VAR;

--x I is NOW VAR
xl<=NOW_VAR;

x2<="000000000";
-- Amplifier: Gain 3, Output Saturate 90

if (conv
-

integer(DIFF)>=30) then
--x2=90
x2<="00 10 110 10";

elsif (conv
-

integer(DIFF)<=-30) then
--x2=(-90)
x2<=" I 10 100 110";

else
--Multiply by 3
x2<=DIFF+shl(DIFF, " I

end if, -- Amplifier

end if, -- Clock, Reset

end process;
end Deriv-arc;

-- Configuration
configuration Deriv_confl of Deriv is

for Deriv-arc
end for;

end Deriv-confl;
library ieee;
use ieee. std_logic_l 164. all;

J. G. KHOR
B-2

APPENDIX B

App. B-2 : Fuzzifier

File: Fuzzify2. vhd
1998
J. G. Khor
Remarks:

Part of Fuzzy Logic Controller
Implementation Version

library ieee;
use ieee. std

-
logic

-II
64. all;

use ieee. std_logic
-

signed. all;
use ieee. std_logic_arith. all;

entity Fuzzify2 is
port (

-- inputs
CLK in STD_LOGIC;
RST in STD_LOGIC;
X1 in std_logic

-
vector(8 downto 0);

x2 in stdJogic_vector(8 downto 0);

-- address
ADRI: out std.

-
logic-Vector(I downto 0);

ADR2: out std_logic_vector(I downto 0);

--fuzzy sets for xI (data)
BI-A: out std

-
logic

-
vector(8 downto 0);

BI
-B : out std_logic_vector(8 downto 0);

-- fuzzy sets for x2 (data)
B2_A out std_logic_vector(8 downto 0);
B2_B out std_logic_vector(8 downto 0);

READY : out std-logic);
end Fuzzify2;

architecture Fuzzify2
-

arc of Fuzzify2 is
signal temp std

-
logic-Vector(I downto 0);

signal temp_..., A std
-

logic
- vector(8 downto 0);

signal temp_B std_logic-vector(8 downto 0);
signal R_sig std-logic;

begin

-- Sequential Architecture (Synchronous)
process(CLK, RST)

constant AA
-

const: std_logic_vector(8 downto 0): =conv_std_logic_vector(-60,9);
constant BB

-
const: std_logic_vector(8 downto 0): =conv_std_logic_vector(-10,9);

constant CC
-

const: std_logic_vector(8 downto 0): ="000000000";
constant DID

-
const: std

-
logic

-
vector(8 downto 0): =conv_std_logic_vector(10,9);

constant EE_const: std_logic_vector(8 downto 0): =conv_std_logic_vector(60,9);

constant hundred: std_logic_vector(8 downto 0): ="00 I 100 100";

constant zero: std_logic_vector(8 downto 0): ="000000000";

variable dumbs: std-logic_vector(8 downto 0);

variable x: std logie
-

vector(8 downto 0);

variable ADR: std_Iogic -
vector(1 downto 0);

variable B-A: std -
logiý_vector(8 downto 0);

variable B_B: std_Iogic_vector(8 downto 0);

B-3 J. G. KHOR

APPENDIX B

begin
if RST='I'then

ADRI<="00";
ADR2<="00";

-- fuzzy sets for xI (data)
BI

_A<= zero;
BI B<= zero;
-- fuzzy sets for x2 (data)
B2_A<= zero;
B2_B<= zero;

R,
_sig<='l

';
READY<=101;

elsif CLK'event and CLK='I' then

--mux
if R_sig--'I'then

x: =xl;
else

x: =x2;
end if; --select bit

--
--I Fuzzifý input x (Sequential)

--

if x<=AA constthen
--Zone Oa
ADR: ="00";
--Very Small(B_I)
B_A: =hundred;
--Small(B__, 2)
B_B: =zero;

elsif (x>AA
-

const and x<=BB_const) then
--Zone Ob
ADR: ="00";
--Very Small(B_I)=2(-x-10)
dumbs: --not(x-"O 1 ")-110 10 10";
B-A: =shl(dumbs, "I");

--Small(B -
2)= 1 00-2(-x- 10)

B_B: =hundred-B_A;

elsif (x>BB
-

const and x<=CC-const) then
--Zonel
ADR: ="01
--Small(B_2)=x*(- I 0)=pos-x* 10
dumbs: =not(x-"O I ");
B_A: =sh](dumbs, "I ")+shl(dumbs, "II

--Optimum(B_3)
B_B: =hundred-B_A;

elsif (x>CC
-

const and x<=DD_const) then

--Zone2
ADR: =" 10";

--Optimum(B_3)
dumbs: =shl(x, " I ")+shi(x, " II
B A: =hundred-dumbs;
--Big(B_4)
B_B: =dumbs;

elsif (x>DD_const and x<=EE-const) then

B-4 J. G. KHOR

APPENDIX B

--Zone3a
ADR: =" II";

--Big(B_4)=l 00-2(x- 10)
dumbs: =x-"01010";
--Very Big(B_5)
B-B: =sh](dumbs, " I
B_A: =hundred-B_B;

else --(x>EE - const)
--Zone3b
ADR: =" II
--Big(B_4)
B_A: =zero;
--Very Big(B_5)
B_B: =hundred;

end if; -- fuzzy sets for x

--Storing of process results
if R_sig--'I' then

temp<=ADR;
temp. A<=B_A;
temp. B<=B

-
B;

READY<='O';
ksig<='O';

elsif R_sig--'O' then
ADRI<=temp;
BI

-
A<=temp-A;

BI
-B<--temp_B;

ADR2<=ADR;
B2 A<=B A;
B2_B<=B_B;

READY<='I';
R- Sig<=t If

end if, --R -
Sig

end if, --CLK, RESET
end process; -- main

end Fuzzify2_arc;

-- Configuration
configuration Fuzzify2

-
confl of Fuzzify2 is

for Fuzzify2_arc
end for;

end Fuzzify2_confl;

App. B-3 : Inference Engine

File: Infer. vhd
1998
J. G. Khor
Remarks:

Part of Fuzzy Logic Controller
implementation Version

library icee;
use ieee. std_logic_l 164. all;

B-5
J. G. KHOR

APPENDIX B

use ieee. std_logic_signed. all;
use iece. std_logic_arith. all;

entity Infer is
port (

-- Standard Input
CLK : in std-logic;
LOAD: in std_logic;
RST : in std_logic;

-- Inputs
ADRI: in std_Iogic_vector(1 downto 0);
BI-Ad: in std_Iogic_vector(8 downto 0);
B1

-Bd:
in std-logic-vector(8 downto 0);

ADR2: in std_Iogic_vector(1 downto 0);
B2_Ad: in std

-
logic

- vector(8 downto 0);
B2_Bd: in std_Iogic_vector(8 downto 0);

-- Outputs

win: out std-logic_vector(3 downto 0);

cl: out std_Iogic_vector(8 downto 0);
c2: out std-logic-vector(8 downto 0);
c3: out std_Iogic

-
vector(8 downto 0);

c4: out std_Iogic_vector(8 downto 0»;
end Infer;

architecture Infer_arc of Infer is
begin

MAIN PROCESS:
process(CLK, RST)
begin --process

if RST='I'then
win<="0000";
cl<="00000000011
c2<="000000000";
c3<="000000000";
c4<="000000000";

elsif CLK'event and CLK='I'then
if LOAD='I'then

--I Fuzzy Inference Engine I Ci=min(B I_a, B2_b)l--

win<=C'00"&ADRI)+ADR2;

------------- ---------------------

--I Mini Fuzzy Inference Engine

--: B-->C (min operation)
-- c 1: =mm(B I-Ad, B2

-
Ad)

if (BI-Ad<B2_Ad) then
cl<=BI-Ad;

else
cI <=B2_Ad;

end if,

-- c2: --min(B I- Bd, B2 Ad)
if (B I- Bd<B2_Ad) then

c2<=BI-Bd;
else

--- - --- B-6
J. G. KHOR

APPENDIX B

c2<=B2_Ad;
end if,

c3: =min(B I
_Ad,

B2_Bd)
if (BI

-
Ad<B2

-
Bd) then

c3<=BI_Ad;
else

c3<=B2_Bd;
end if;

c4: =min(BI_Bd, B2_Bd)
if (BI

-
Bd<B2

-
Bd) then

c4<=B I
_Bd; else

c4<=B2_Bd;
end if,

end if, --LOAD
end if, --RST, CLK

end process;
end Infer_arc;

-- Configuration
configuration Infer

-
confl of Infer is

for Infer arc
end for;

end Infer_confl;

App. B-4 : Defuzzifter

File: Defuzz. vhd
1998
J. G. Khor
Remarks:

Part of Fuzzy Logic Controller
Implementation Version

library ieee;
use ieee. std -

logic-I 164. all;
use ieee. std_logic_signed. all;
use ieee. std_logic_arith. all;

entity Defuzz is
port (

-- Standard Input
CLK: in std -

logic;
RST: in std,. -Iogic; LOAD: in std_logic;

WIN: in std-logic_vect0r(3 downto 0);

cl: in std -
logic-vector(8 downto 0);

c2: in std-logic -
vector(8 downto 0);

c3: in std -
logic_vector(8 downto 0);

c4: in std,. _logic_vector(8
downto 0);

outputs
READY: out std_logic;

J. G. KHOR
B-7

APPENDIX B

divA: out std_Iogic_vector(13 downto 0);
divB: out std_Iogic_vector(8 downto 0»;

end Defuzz;

architecture Defuzz arc of Defuzz is
signal PEADY_sig: std_logic;

begin

MAIN PROCESS:
process(CLK, RST)

variable COUNT: std_logic_vector(3 downto 0);

variable DA: std
-

logW_vector(8 downto 0);
variable DB: std

-
logic-Vector(8 downto 0);

variable DC: std_Iogic_vector(8 downto 0);

variable VAI: std_Iogic
- vector(13 downto 0);

variable VB 1: std_Iogic_vector(1 3 downto 0);
variable VC 1: std_Iogic-vector(1 3 downto 0);

variable VA: std
-

logic
-

vector(13 downto 0);
variable VB: std

-
logic

-
vector(13 downto 0);

variable VC: std_logic_vector(13 downto 0);

variable SA: std
-

logic-vector(13 downto 0);
variable SB: std

-
logic-Vector(13 downto 0);

variable SC: std_Iogic_vector(13 downto 0);

begin --process

if RST='I'then
divA<="00000000000000";
divB<="000000001";
READY<='I';
READY-sig<='I';
COUNT: =" 0000";
DA: ="000000000";
DB: ="000000000";
DC: ="000000000";
VA: ="00000000000000";
VB: ="00000000000000";
VC: ="00000000000000";

elsif CLK'event and CLK='I'then

if LOAD=Tand (READY_sig--'I'or (COUNT>WIN)) then
COUNT: ="0000";
--Sample
--DA: =cl
DA: =cl;
-- DB: =max(c2, c3)
if c2>c3 then DB: =c2;
else DB: =c3;
end if,

--DC: =c3
DC: =c4;

--Defuzz: Multiplication

--VA: =DA*POS 40;
VAI: ="00000"&DA;

SA: =shl(VAl, "l")+shl(VAl, "I V); --VAI*10
SA: =VAI;
VA: =shl(SA, " 10"); --SAv*4

--VB: =DB*POS_30;

B-8
J. G. KHOR

APPENDIX B

VBI: ="00000"&DB;
SB: =shl(VB I, " I ")+shl(VIB I, " I1 11); --VB I* 10

SB: =VB 1;
VB: =shl(SB, " I ")+SB; --SAc*3

--VC: =DC*POS
-

20;
VCI: ="00000"&DC;

SC: =shi(VCI, "I")+shl(VCI, "I 111); --vcl*lo SC: =VCI;
VC: =shl(SC, " V); --SCv*2

elsif READY_slg='O' then
COUNT: =COUNT+I;
VA: =VA-SA;
V-B: =VB-SB;
VC: =VC-SC;

else
--LOAD=O, READY-sig-- I
--Do nothing

end if, --READY, LOAD

if COUNT=WIN then
--Inputs to the divider
divA<=VA+VB+VC;
divB<=DA+DB+DC;
READY-sig<=T;
READY<=T;

else
READY-sig<='O';
READY<='O';

end if; --WIN=COUNT

end if-, --RST, CLK
end process;
end Defuzz-arc;

-- Configuration
configuration Defuzz

-
confl of Defuzz is

for Defuzz arc
end for;

end Defuzz-confl;

App. B-5: Divider

File: Divide. vhd
1998
J. G. Khor
Remarks:

Part of Fuzzy Logic Controller
Implementation Version
Includes output interface
Output of divider is Y
Output of interface is U
Overflow limit included

library jeee;
use ieee-std

-
logic_l 164. all;

use ieee. std_logic_unsigned. all;
use ieee-std_logic_arith. all;

J. G. KHOR B-9

APPENDIX B

entity Divider is
port (

-- Standard Input
CLK: in std

-
logic;

RST: in std_logic;
LOAD: in std-logic;

-- Inputs
divA: In std

-
logic_vector(13 downto 0);

divB: in std_logic_vector(8 downto 0);

-- Outputs
UADY: out std_logic;
U: out std_logic-vector(7 downto 0));

end Divider;

architecture Divider arc of Divider is
signal READY-sig: std_logic;

begin

MAfN PROCESS:
process(CLK, RST)

--Variables for divider
variable SIGN: std

-
logic;

variable divBp: std
-

logic_vector(13 downto 0);
variable divBn: std

-
logic_vector(13 downto 0);

variable A: std
-

logic_vcctor(13 downto 0);
variable divA_var: std_logic_vector(12 downto 0);
variable Yl

- var: std_logic_vector(12 downto 0);
variable Y: std_logic_vector(7 downto 0);
variable U_past: std

-
logic

-
vector(7 downto 0);

variable U-var: std_logic_vector(7 downto 0);
variable COUNT: integer range -I to 11;

begin
if RST='I'then

U<="Ol IIIIII";
U_past: ="O IIIIII I";
READY-sig<='I';
READY<='O';
COUNT: = 11;

elsif CLKevent and CLK='I'then

--Loading new input values and perform first division sequence
--Condition: Load=I & Ready--I
if LOAD='I'and READY-sig='I'then

--Division by zero check
if divB="00000000" then

--Avoid division by zero: assign Y=O
Yl_var: ="0000000000000";
READY<='I';
READY-sig<='I';

else --divB
--Assign D(+ve) and D(-ve)
divBp: ="00000"&divB;
divBn: --not(divBp)+"0000000000000 I

--Convert SIGNED into UNSIGNED
SIGN: =divA(13);
if SIGN=Tthen

divA_var: =not(divA(I 2 downto 0))+"0 1

else

B-10 J. G. KHOR

APPENDIX B

divA
-

var: =divA(I 2 downto 0);
end if, --SIGN type conversion

--First division sequence after loading
A(13 downto 1): ="0000000000000";
A(O): =divA_var(I 2);
divA_var: =shi(divA_var, " I
A: =A+divBn;
YI- var(I 2): =not(A(I 3));
COUNT: =I 1; --END First division sequence

end if-, --divB

--Subsequent Division sequence.
--Condition: Load=[don't care] & Ready--O
elsif (READY

-
slg='O' and COUNT>O) then

--
DIVIDER
divA: in std

-
logic

- vector(13 downto 0); --
divB: in std

-
logic

- vector(7 downto 0); --
Y: out std_logic-vector(7 downto 0);
U: out std_logic-vector(7 downto 0);

COUNT: =COUNT-1;
A: =shl(A, " I ");
A(O): =divA_var(I 2);
divA_var: =shl(divA_var, " I

if YI
_var(COUNT+

1)='O' then
A: =A+divBp;

else
A: =A+divBn;

end if,
Yl_var(COLJNT): =not(A(13));

--LOAD=O, READY=l

--No operation

end if, --LOAD, READY

if COUNT=O then

--Ready to spit out the answer
--Converts back into SIGNED value (2's complement)

--Assume that Y2
-

var's value does not exceed 8bits(signed)
Y: =Yl-var(7 downto 0);
if SIGN='I'then

Y2
-

var: --not(('O'&Yl_var)-"Ol");
Y<=Y2_var(7 downto 0);

--Negative
U- var: =U-Past-Y;
--Set lower limit "00000000"
if U-Var>U_past then

U_past: ="00000000";
U<--"00000000";

else
U-ýPast: =U -

var;
U<=U var;

end if,
else

--Positive
U_var: =U_Past+Y;
--Set upper limit "IIIIIIII

J. G. KHOR
B-1 1

APPENDIX B

if U-var<U_past then
Ujast: =" IIIIIIII
U<="l 1111111";

else
U_past: =U

-
var;

U<=U
-

var;
end if,

end if, --SIGN

READY<='I';
READY-sig<='I';

else --COUNT

--Not ready: condition: COUNT! = 0
READY<='O';
READY-sig<='O';

end if-, --COUNT

end if, --CLK, RST
end process;
end Divider_arc;

-- Configuration
configuration Divider

-
confl of Divider is

for Divider arc
end for;

end Divider_confl;

App. B-6: Top Hierarchy component of FLC

File: Control. vhd
1998
J. G. Khor
Remarks:

Fuzzy Logic Controller (Top hierarchy component)
Implementation Version
Contains Deriv, Fuzzify2, Infer, Defuzz, Divider
Remarks: modified to fit 9bits

library ieee;
use ieee. std

-
logic-I 164. all;

use ieee. std,. _Iogic -
signed. all;

use ieee. std_logic_arith. all;

entity Control is
port (

-- inputs
CLK I: in std

-
logic;

CLK2: in std_logic;
RST: in std-logic;

Vdc: in std_Iogic_vector(7 downto 0);
Vref in std_Iogic_vector(7 downto 0);

--Test Probes

--x i: out std -
logic-Vector(8 downto 0);

--x2: out std_Iogic_vector(8 downto 0);

J. G. KHOR B-12

APPENDIX B

-- Outputs
U: out std_logic

-
vector(7 downto 0);

READY: out std_logic);
end Control;

architecture Control_arc of Control is

component Deriv
port(
CLK: in STD

-
LOGIC;

RST: in STD_LOGIC;
Vdc: in std

-
logic

-
vector(7 downto 0);

Vref. in std_logic_vector(7 downto 0);

x 1: out std_logic_vector(8 downto 0);
x2: out std

-
logic_vector(8 downto 0));

end component;

component Fuzzify2
port(
-- inputs
CLK: in STD

-
LOGIC;

RST: in STD_LOGIC;
x I: in std

-
logic

- vector(8 downto 0);
x2: in std_logic_vector(8 downto 0);

-- address
ADRI: out std

-
loglcý__vector(l downto 0);

ADR2: out std_logic_vector(I downto 0);

-- fuzzy sets for xI (data)
BI

-
A: out std

-
logic

- vector(8 downto 0);
BI-B: out std_logic_vector(8 downto 0);

-- fuzzy sets for x2 (data)
B2

-
A: out std_logic_vector(8 downto 0);

B2_B: out std
-

logic-vector(8 downto 0);
READY: out std_logic);

end component;

component Infer
port(
-- Standard Input

CLK: in std
-

logic;
LOAD: in std -

logic;
RST: in std_logic;

-- Inputs
ADRI: in std -

logic_vector(1 downto 0);
BI

-
Ad: in std_Iogic_vector(8 downto 0);

BI-Bd: in std_Iogic_vector(8 downto 0);

ADR2: in std -
logic-vector(1 downto 0);

B2 Ad: in std.
_logicý_vector(8

downto 0);
B2_Bd: in std_Iogic_vector(8 downto 0);

-- Outputs
win: out std_logic_vector(3 downto 0);

ci: out std_Iogic -
vector(8 downto 0);

c2: out std -
logic-vector(8 downto 0);

c3: out std_Iogic -
vector(8 downto 0);

c4: out std_Iogic_vector(8 downto 0»;

end component;

B-13 J. G. KHOR

APPENDIX B

component Defuzz
port (

-- Standard Input
CLK: in std_logic;
RST: in std_logic;

LOAD: in std_logic;

WIN: in std_logic_vector(3 downto 0);

cl: in std
-

logic
-vector(8

downto 0);
c2: in std_Iogic

-
vector(8 downto 0);

c3: in std_Iogic
_vector(8

downto 0);
c4: in std_Iogic

_vector(8
downto 0);

-- Outputs
READY: out std

-
logic;

divA: out std_logic
- vector(13 downto 0);

divB: out std_logic_vector(8 downto 0));
end component;

component Divider
port (

-- Standard Input
CLK: in std_logic;
RST: in std

-
logic;

LOAD: in std-logic;

-- Inputs
divA: in std_logic_vector(13 downto 0);
divB: in std_logic-Vector(8 downto 0);

-- Outputs
READY: out std

-
logic;

U: out std_logic_vector(7 downto 0));
end component;

--Signal Declaration
signal SIG2_4, SIG4_5: std-logic;
signal xl_sig, x2

-
sig: std_logic_vector(8 downto 0);

signal adrl_sig, adr2_sig: std_logic_vector(I downto 0);
signal BI a_sig, BI b_sig, B2a_sig, B2b_sjg: std_logic_vector(8 downto 0);
signal cl_sig, c2_sig, c3_sig, c4_sig: std_logic_vector(8 downto 0);
signal win: std

-
logic

-
vector(3 downto 0);

signal DA_sig: std_logic_vector(13 downto 0);
signal DB_sig: std

-
logic_vector(8 downto, 0);

signal READY2, READY4: std_logic;

begin

Deriv-U: Deriv
port map(
--in
CLK=>CLKI,
RST=>RST,
Vdc=>Vdc,
Vref=>Vref,

--out
xl=>Xl-sig,
x2=>x2-sig);

Fuzzify2_U: Fuzzify2

port map(

J. G. KHOR B- 14

APPENDIX B

--in
CLK=>CLK2,
RST=>RST,
xI =>x I

_Sig, x2=>x2_sig,
--out
ADR I =>adr I Sig,
ADR2=>adr2 Sig,
BI- A=>B I aj ig,
BI- B=>B Ib- Sig,
B2

-
A=>B2a_ sig,

B2_B=>B2b- sig,
READY=>READY2);

Infer_U: Infer
port map(
--in
CLK=>CLK2,
LOAD=>READY2,
RST=>RST,
ADRI=>adrl_sig,
BI

-
Ad=>B Ia

-
Sig,

BI- Bd=>B Ib
-

Sig,
ADR2=>adr2_ sig,
B2

-
Ad=>B2a

-
Sig,

B2
-

Bd=>B2b
-

Sig,
Outputs

wln=>win,
cl=>Cl-slg,

c2=>c2_sig,
c3=>c3_sig,
c4=>c4-sig);

Defuzz-U: Defuzz
port map(
-- Standard Input
CLK=>CLK2,
RST=>RST,

LOAD=>SIG2_4,
WIN=>win,
cl=>cl_sig,
c2=>c2_sig,
c3=>c3_slg,
c4=>c4 -

Sig,
READY=>READY4,
divA=>DA_sig,
dlvB=>DB_sig);

Divider_U: Divider
port map(
CLK=>CLK2,
RST=>RST,
LOAD=>SIG4_5,
divA=>DA_sig,
divB=>DB_sig,
READY=>READY,
U=>U);

--Infer-Defuzz
process(CLK2, RST)
begin
if RST='I'then

SIG2_4<='Ol;

J. G. KHOR
B-15

APPENDIX B

elsif CLK2'event and CLK2='I' then
if READY2='I'then

SIG2_4<='I';
else

SIG2 4<='O';
end if,

end if,
end process;

--Defuzz-Divider
process(CLK2, RST)
begin
if RST='I' then

SIG4
-

5<='Ol;
elsif CLK2event and CLK2='I'then

if READY4='I'then
SIG4 5<='I';

else
SIG4 5<=101;

end if,
end if,
end process;

--Probe
--xl<=Xl-slg;
--x2<=x2_sig;

end Control_arc;

--configuration Control-confl of Control is
--for Control arc

for Deriv
-

U: Deriv use configuration work. Deriv-confl;
end for;
for Fuzzify2_U: Fuzzify2 use configuration work. Fuzzify2_confl;
end for;
for Infer

-
U: Infer use configuration work. Infer_confl;

end for;
for Defuzz

-
U: Defuzz use configuration work. Defuzz-confl;

end for;
for Divider_U: Divider use configuration work. Divider_confl;

end for;

--end for;

--end Control-confl;

B-16 J. G. KHOR

APPENDIX C

Appendix C
PWM Controllers

App. C-1 : C++ Program to generate PWM waveform
H PWM Waveform Generator
H C++
H Revised Version: II Feb 1998
H
// This program generates the PWM waveforms
H based on the desired parameters.

#include <iostream. h>
#include <fstream. h>
#include <string. h>
#include <math. h>
#include <stdio. h>

H Function prototype
int Sign(float);

int main(vold)
I

fstream out-file; //define stream object

char filename[30]
char T;
int Choice;
float n, NT, M, N;

Hinitialise values
N=4096; HEPROM memory spaces, Sinewave period

int A[4096], B[4096], C[4096], NA[4096], Out[4096];
float Tri[4096];

cout <<"\n Pulse Width Modulation Pattern Generation Program";

cout <<"\n by
cout <<"\n Jeen G. Khor";

H Request for parameters
cout <<"\n";
cout <<"\n 1. Three Phase. ";

cout <<"\n2. Single Phase, bipolar voltage switching. " ý
cout <<"\n3. Single Phase, half controlled switching. ";

cout <<"WnEnter selection (1 -3):
cin >>Choice;
cout <<"\nEnter triwave period, NT (N=4096):

cin >>NT;
cout <<"Enter amplitude modulation factor:

cin >>M;

J. G. KHOR C-1

APPENDIX C

//Triangular wave generation
Tri[O]=O;
for(n=l; n<N; n++)

I
Tri[n]=Tri[n-l]+(Sign(sin(2*M-Pl*(n/NT)+M-pl)-sin(2*M_Pl*((n-l)/NT)+M-Pl))*(4. O/NT));

HComparator - Phase A only
for(n=O; n<N; n++)

I
// Phase A
if((M*sin(2*M_Pl*(n/N))) >= Tri[n])

A[n]=2;
NA[n]=I;

else

A[n]=I;
NA[n]=2;
I

H Defining Phases B&C- shift by 120deg (13 65)
for (n=O; n<N; n++)

H Phase B
if((M*sln((2*M-Pl*(n/N))+2.094395)) >= Tri[n])

I
B[n]=2;

else
I
B[n]=I;

H Phase C
if((M*sin((2*M-Pl*(n/N))-2.094395)) >= Tri[n])

f
C[n]=2;

else
I
C[nl=l;

H Assigning values for Out[n]

switch(Choice)
case 1:

for (n=O; n<N; n++)

Out[n]= A[n]+(B[n]*4)+(C[n]*16);

break;
case 2:

for (n=O; n<N; n++)
I
Out[n]= A[n]+(NA[n]*4);

break;

J. G. KHOR
c-2

APPENDIX C

case 3:
for (n=O; n<N; n++)

if (n<(N/2))

Out[n]=A[n]+(2*4);

else
I
Out[n]=A[n]+(l *4);
1

Filing Operation

cout <<"\nEnter name of input file
gets(filename);
cout <<"\nlnclude test parameters (y/n) ?
cin >>T;
out-file. open(filename, ios:: out);

H Filling Error
iff! out

-
file)

I
cout << "\nUnable to open file
return 1;
I

cout << "\nWriting data into file :" << filename;

H Writing into file
if(TýYll TýY)

out-file <<"<Testing Parameters>\n";

switch(Choice)
f
case 1:

out file <<"Three Phase\n";
break;

case 2:
out

-
file <<"Single Phase (full)\n";

break;
case 3:

out
-

file <<"Single Phase (half)\n";
break;

out file <<"N=" <<N <<" ; NT=11 <<NT <<" ; Ma--"<<M <<"\n\n";

for(n=O; n<N; n++)
I
out file << hex << Out[n] <<"
I

out-file. closeO;

cout <<"\n\nOk. ";

return 0;
I

/***** End of Maino *****/

J. G. KHOR
C-3

APPENDIX C

HFUNCTION: Sign
//PURPOSE : To return the sign of the float a. int Sign(float a)

if(a<O)

return -1;

else

return 1;
I

App. C-2 : PIC Assembly code to control SA 828

; This progams initialises the SA828 pulse width modulation chip

LIST C=80, P=16C84, F=INHX8M
include "c: \plc\pl6cxx. inc"
list

EQUATES

, ********************PIN/BIT DEFINITIONS***********************

_FUSES _CP-OFF&-PWRTE-OFF&-VY'DT-OFF&-XT-OSC
_CONFIG

IIH

#DEFINE ALE 0 ; PORT A
#DEFINE VvrRTE I ; PORT A
#DEFINE RST 2 ; PORT A
#DEFINE LIGHT 3 ; PORT A CONFIDENCE LIGHT
#DEFINE SWTCH 4 ; PORT A INPUT

; PORTB IS ALL ADDRESS LINES AND DATA LINES

ADDRSS
DAT
COUNTER
COUNTER2

EQU I IH
EQU 12H
EQU 13H
EQU 14H

ORG OOOH
RESET GOTO START

. ***********************MAIN PROGRAM***************************
I
START CLRF STATUS ; Initialise port b as outputs

MOVLW OXOO
MOVWF PORTB
MOVLW OXOO
TRIS PORTB

J. G. KHOR c-4

APPENDIX C

; port a arranged as all outputs
CLRF PORTA
MOVLW OXIO
TRIS PORTA

BCF EEADR, 7 ; Clear EE top addresses to minimise power
BCF EEADR, 6

; SORT OUT ALL THE INTERRUPTS
BCF INTCON, GIE ; GLOBAL INTERRUPT DISABLE
BCF INTCON, EEIE ; NO EEPROM INTERRUPT
BCF INTCONJOIE ; NO TIMER INTERRUPT
BSF INTCONJNTE ; PORT B PIN 6 INTERRUPT ENABLED
BCF INTCON, RBIE ; CHANGE ON PORT B INTERRUPT BISABLED
BSF STATUS, RPO
BCF OXI, INTEDG JNTERRUPT ON FALLING EDGE

; FOR PORT B PIN 6 INTERRUPT
BCF STATUS, RPO

; ****FIRST MAKE SURE DEVICE IS RESET**************
BCF PORTA, RST

MAIN
SENDS D2 TO ADRESS 0

MOVLW 0
MOVVYT ADDRSS
MOVLW OXD2
MOVWF DAT
CALL SENDIT

SENDS 0 TO ADRESS I
MOVLW I
MOVWF ADDRSS
MOVLW OXOO
MOVWF DAT
CALL S ENDIT

; *******SENDS 7F TO ADRESS 2
MOVLW 2
MOVWF ADDRSS
MOVLW OX7F
MOVWF DAT
CALL SENDIT

; *******SENDS FF TO ADRESS 4
MOVLW 4
MOVWF ADDRSS
MOVLW OXFF
MOVWF DAT
CALL S ENDIT

; *******SENDS CD TO ADRESS 0
MOVLW 0
MOVWF ADDRSS
MOVLW OXCD
MOVWF DAT
CALL SENDIT

; *******SENDS OC TO ADRESS I
MOVLW I
MOVAT ADDRSS
MOVLW OXOC
MOVWF DAT
CALL SENDIT

; *******SENDS CC TO ADRESS 2

-------- c-5
J. G. KHOR

APPENDIX C

MOVLW 2
MOVWF ADDRSS
MOVLW OXCC
MOVWF DAT
CALL SENDIT

; *******SENDS FF TO ADRESS 3
MOVLW 3
MOVWF ADDRSS
MOVLW OXFF
MOVWF DAT
CALL SENDIT

; Enable PWM Output
BSF PORTA, RST

; *******SENDS CD TO ADRESS 0
MOVLW 0
MOVWF ADDRSS
MOVLW OXCD
MOVWF DAT
CALL SENDIT

; *******SENDS 2C TO ADRESS I
MOVLW I
MOVWF ADDRSS
MOVLW OX2C
MOVWF DAT
CALL S ENDIT

; *******SENDS CC TO ADRESS 2
MOVLW 2
MOVWF ADDRSS
MOVLW OXCC
MOVWF DAT
CALL SENDIT

; *******SENDS FF TO ADRESS 3
MOVLW 3
MOVWF ADDRSS
MOVLW OXFF
MOVWF DAT
CALL SENDIT

WAITI MOVLW OXFF
MOVWF COUNTER
MOVWF COUNTER2

WAIT2 NOP
NOP
DECFSZ COUNTER, F
GOTO WAIT2
DECFSZ COUNTER2, F
GOTO WAIT2
BSF PORTA, LIGHT

MOVLW OXFF
MOVWF COUNTER
MOVWF COUNTER2

WAIT3 NOP
NOP
DECFSZ COUNTER, F
GOTO WAIT3

------- C-6 J. G. KHOR

APPENDIX C

DECFSZ COUNTER2, F
GOTO WAIT3

BCF PORTA, LIGHT

GOTO WAIT2

GOTO MAIN

JHIS SUBROUTINE IS USED TO DRIVE ALE AND WRTE HIGH AND LOW
; AS PER THE INTEL TIMING SPECIFICATIONS

SENDIT
BSF PORTA, ALE jake ale high
MOVF ADDRSS, W ; send the address
MOVWF PORTB
BCF PORTA, ALE jake ale low

BCF PORTA, VvRTE jake write low
MOVF DAT, W
MOVWF PORTB ; send the data
BSF PORTA, VVRTE jake wrte high
RETURN

END

C-7
J. G. KHOR

APPENDIX D

Appendix D
Hardware

Engine

Generator

D-1
J. G. KHOR

D-1 Diesel engine and permanent mggnet synchronous generator.

APPENDIX D

D-2 Driver board for IG T inverter

I
1i

(a)

: ýý 0) wý. w. 940. +--ý

(b)

y unit (ý) Three phase uncontrolled rectifier.)5v-12v Power syM1 D-3 (a

J. G. KHOR D-2

............... mumýýýý -I--. 00...................

--
li""r, 031low-

-----wT-.. I--.

...........

4+4

41,

0- #*00 46
_*

44000**. **404a960&..... *. *#0.04::

0. ::

D-4 P WM controller (EPROM circuiý.

J. G. KHOR

APPENDIX D

D-3

APPENDIX E

Appendix E
Test Results

Datafor Figure 8-16

Time [sec] Voltage
0 296
1 294.6667
2 293.3333
3 293.3333
4 293.3333
5 293.3333
6 293.3333
7 294.6667
8 293.3333
9 297.3333
10 301.3333
11 301.3333
12 301.3333
13 246.6667
14 197.3333
15 189.3333
16 269.3333
17 356
18 258.6667
19 173.3333
20 126.6667
21 136
22 240
23 349.3333
24 352
25 314.6667
26 260
27 213.3333

28 209.3333

29 253.3333

30 296

31 312

32 285.3333

33 253.3333

34 230.6667

35 220

36 233.3333

37 270.6667

38 294.6667

39 302.6667

40 285.3333

41 269.3333

42 261.3333
43 257.3333
44 254.6667
45 253.3333
46 253.3333
47 252
48 253.3333
49 253.3333
50 256
51 260

E-1
J. G. KHOR

APPENDIX E

Data for Figure 8-17

time [sec] voltage 17 244 35 272
0 282.6667 18 262.6667 36 269.3333
1 282.6667 19 270.6667 37 269.3333
2 282.6667 20 269.3333 38 266.6667
3 282.6667 21 269.3333 39 266.6667
4 280 22 266.6667 40 266.6667
5 281.3333 23 268 41 266.6667
6 286.6667 24 266.6667 42 266.6667
7 288 25 268 43 268
8 288 26 266.6667 44 268
9 286.6667 27 265.3333 45 268
10 288 28 266.6667 46 268
11 286.6667 29 266.6667 47 268
12 284 30 266.6667 48 266.6667
13 265.3333 31 268 49 268
14 250.6667 32 269.3333 50 270.6667
15 228 33 269.3333 51 269.3333
16 222.6667 34 269.3333

Data for Figure 8-18

Time [sec] voltage 15 242.6667 32 0
0 246.6667 16 241.3333 33 0

17 242.6667 34 0
1 245.3333 18 241.3333 35 0

2 245.3333 19 242.6667 36 0
20 238.6667 37 0

3 245.3333 21 238.6667 38 0
4 245.3333 22 228 39 0
5 244 23 189.3333 40 0
6 241.3333 24 152 41 0
7 237.3333 25 130.6667 42 0
8 238.6667 26 117.3333 43 0
9 237.3333 27 90.66667 44 0
10 237.3333 28 37.33333 45 0
11 238.6667 29 1.333333 46 0
12 241.3333 30 0
13 242.6667 31 0
14 242.6667

J. G. KHOR
E-2

APPENDIX E

Data for Figure 8-19

Time [sec] voltage 15 261.3333 31 256
0 266.6667 16 260 32 256
1 266.6667 17 260 33 253.3333
2 266.6667 18 260 34 254.6667
3 265.3333 19 262.6667 35 254.6667
4 264 20 262.6667 36 256
5 262.6667 21 262.6667 37 256
6 262.6667 22 257.3333 38 257.3333
7 262.6667 23 244 39 258.6667
8 261.3333 24 230.6667 40 258.6667
9 261.3333 25 222.6667 41 257.3333
10 260 26 230.6667 42 256
11 261.3333 27 249.3333 43 256
12 262.6667 28 257.3333 44 254.6667
13 264 29 260 45 256
14 264 30 257.3333 46 256

Data for Figure 8-21

time [sec] voltage 2 278.6667 29 258.6667

0 280 3 277.3333 30 254.6667

1 278.6667 4 276 31 252

2 278.6667 5 277.3333 32 252

3 278.6667 6 276 33 250.6667

4 277.3333 7 276 34 250.6667

5 278.6667 8 276 35 252

6 277.3333 9 274.6667 36 252

7 278.6667 10 274.6667 37 252

8 278.6667 11 276 38 253.3333

9 277.3333 12 274.6667 39 250.6667

10 277.3333 13 250.6667 40 252

11 273.3333 14 233.3333 41 253.3333

12 273.3333 15 228 42 253.3333

13 273.3333 16 233.3333 43 256

14 277.3333 17 240 44 256

15 277.3333 18 245.3333 45 256

16 277.3333 19 245.3333 46 253.3333

17 277.3333 20 252 47 250.6667

21 253.3333 48 250.6667
18 277.3333

6667 278 22 254.6667 49 250.6667
19 . 23 256 50 248
20 280

24 256 51 252
21 281.3333

25 258.6667 52 252
22 280

26 257.3333 53 250.6667
23 278.6667

0 278.6667 27 256

3333 277 28 258.6667
1 .

E-3
J. G. KHOR

APPENDIX E

un On On

E-1 P WM Inverter Output: Phase Vo

....

................
..........
Fo A

F-2 PWMInverter Output: Line

E-4 J. G. KHOR

70 gj [EI ý-ýA T01ý _A., q t

APPENDIX E

un ur FV -2-S-d a P-

E-3 PWMInverter Output: Line Currents

'-1

E-5
J. G. KHOR

oro CD1

