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Cyber attacks on industrial control systems (ICS) that underpin critical national infrastructure can be
characterised as high-impact, low-frequency events. To date, the volume of attacks versus the overall global
footprint of ICS is low, and as a result there is an insufficient dataset to adequately assess the risk to an
ICS operator, yet the impacts are potentially catastrophic. This paper identifies key elements of existing
decision science that can be used to inform and improve the cyber security of ICS against antagonistic
threats and highlights the areas where further development is required to derive realistic risk assessments,
as well as detailing how data from established safety processes may inform the decision-making process.
The paper concludes by making recommendations as to how a validated dataset could be constructed to
support investment in ICS cyber security.
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1. INTRODUCTION

A US executive order signed in 2013 stated that
the “cyber threat to critical infrastructure continues
to grow and represents one of the most serious
national security challenges we must confront” (The
White House (2013)). This infrastructure is typically
underpinned by industrial control systems (ICS) that
automate and manage electromechanical devices to
provide essential services to a nation’s wellbeing
and prosperity, and as such any attacks represent a
significant threat to the continued security of these
countries (Stouffer et al. (2011)). ICS often use
operating systems, applications and procedures that
may be considered unconventional by contemporary
IT professionals, and have operational requirements
that include the management of processes that if
not executed in a predictable manner, may result in
injury, loss of life, damage to the environment, as
well as serious financial issues such as production
losses that may have a negative impact on a nation’s
economy (Stouffer et al. (2011); Lopez et al. (2013);
Gao and Morris (2014); Mitchell and Chen (2014);
Dübendorfer et al. (2004)).

While the total number of ICS installations is
unknown, a 2012 research paper by Credit Suisse

(Mitchell et al. (2012)) estimated the global industrial
automation market to be worth USD 152bn,
suggesting a significant number of ICS facilities
exist. In the same calendar year, the US ICS-CERT
reported 138 incidents (ICS-CERT (2012)) to which
it responded. The total number of incidents involving
critical infrastructure requiring ICS-CERT to respond
in the United States between October 2014 and
September 2015 had increased to 295 (ICS-CERT
(2016)). With the costs involved in deploying ICS
security, especially within critical systems, being high
(Naedele (2007)) the business case for investment
must be clearly articulated.

An analysis by an insurance company in 2015
exercised a simulated scenario of malware causing
an electricity blackout across 15 US states, leaving
93 million people without power, with a total impact
to the US economy is estimated at USD 243bn,
rising to more than USD 1trn in one version of the
scenario (Lloyds and The University of Cambridge
Centre for Risk Studies (2015)). However, this study,
and another by the North American Electric Reliability
Corporation (NERC) (NERC (2010)), defined the
possible frequency of these incidents as low. The
NERC report also cited cyber attack as only one of
nine areas of concern facing the electricity sector in
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the period 2010-2018, and as such one must assume
that there will be competing demands for resources
to address these issues.

Given the potential for these high-impact low-
frequency (HILF) events, and the small sample of
data, how do we assess the risk of cyber attack on
ICS facilities? And even if data becomes available
that describes the overall attack landscape of ICS,
how do we translate this into attacks in a particular
sector, and more parochially, attacks on an individual
facility? This contrasts the requirements of industry
as a whole, and the needs of security designers -
an understanding of potential attacks against an ICS
versus an understanding of potential attacks against
this ICS.

2. DEFINING RISK

The term risk is often used when discussing the
potential impact of a cyber attack on an ICS, yet
risk may have many alternative meanings when
taken in different contexts, such as business, national
economics, or plant safety. In order to support rational
decision-making to protect ICS from cyber attack it
is necessary to develop a common vocabulary and
definition of risk.

Risk is not uncertainty, nor is it a hazard. Rather,
risk is a function of uncertainty and consequences,
Risk = f(Uncertainty, Consequences), and a hazard
is a source of danger and exists as a source of risk.
Risk to an ICS therefore includes the likelihood of
converting a source of risk into damage, loss or injury.
In order to mitigate the occurrence of a source of
risk in an ICS, the hazard, one applies safeguards.
Consequently, Risk = Hazards/Safeguards, but
highlights that whilst we might reduce the risk through
safeguards, we can never bring it to zero (Kaplan and
Garrick (1981)).

Expected Utility theory (Bernoulli (1954)) also
quantifies risk in terms of likelihood and loss:
R=Pr(c)C, where C is the consequence in terms of
negative impact to an ICS, and Pr(c) is the probability
of a loss equal to C. When n independent events are
possible, the risk is the sum of all expected values:
Pr(c1)C1+Pr(c2)C2+...Pr(cn)Cn. The consequences
to an ICS can be measured in terms of lost revenue,
productivity downtime, injuries and fatalities etc., but
always in the same value as the risk itself (Lewis
(2014)), which requires a risk analysis to consider
what the key measures are out the outset. However,
when considering the probability and impact of
loss as a quantitative measure, one should avoid
describing risk as “probability times consequence”.
This definition is misleading, as in the case of a

single scenario this equation would equate a high-
impact low-frequency (HILF) scenario to a low-impact
high-frequency (LIHF) scenario, which in the case
of an ICS are clearly dissimilar and require differing
mitigation strategies (Kaplan and Garrick (1981)).

Another term often used in the context of ICS risk is
‘vulnerability’. Conceptually, a vulnerability is a risk
conditional on an event. Expressing an event as A,
then Vulnerability |A = Consequences + Uncertainty
|occurrence of A (Zio et al. (2013)).

As we have seen, the two main factors of risk
are the consequences C and the probability of C,
Pr(c). The probability of C can also be expressed
as the measure of uncertainty Q. If we define a
set of consequences of interest C’, we can express
a general description of risk as Risk description
= (C’, Q, K) or alternatively (A’, C’, Q, K) where
K is the background knowledge upon which Q
and C are based, including expert opinion, models,
assumptions, datasets etc., and A’ is the set of
possible events. Consequently, a vulnerability to a
given event can be expressed as: Vulnerability =
(C’, Q, K |A). These definitions, however, are based
upon the accuracy and coherence of the background
knowledge K, on which the risk description is based
(Zio et al. (2013)).

Fenton and Neil (2012) highlight the impact of K on
risk assessment by describing the probability of an
event as P(A|K), demonstrating that at least some
degree of subjective judgement is incorporated into
an assessment, and that it is an expression of a
degree of belief rather than an absolute value.

Cyber attacks on ICS are, to date, HILF events that
lack validated datasets for analysis. This situation
is similar to that faced by those responsible for
quantifying the likelihood and impact of terrorist
attacks, and as such it is worthwhile considering
how such events are considered in terms of national
security. Lewis (2014) articulates threats in the
context of risk as Threat=Intent x Capability, where
intent is the propensity of an adversary to attack,
and capability is a measure of an adversary’s
ability to launch a successful attack. The National
Research Council (2010) (NRC), using models
based on the US Department of Homeland Security
(DHS) risk practices, also incorporates threat, but
uses a wider definition not limited to antagonistic
actions, and cannot be considered equivalent to
Lewis’ description. The NRC model incorporates T,
vulnerabilities V, and capabilities C, as Risk=TVC.
However, in a critical analysis of this approach in light
of terrorist attacks, the NRC highlight that defining the
values of T, V, and C poses a significant challenge
as there is little validated data available and poor
reliable knowledge of adversary behaviours. This
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data fits Zio et al’s description of K. In this context the
situation is similar to that of ICS. The NRC analysis
highlights that an intelligent adversary who may
seek to actively defeat defensive measures, causes
T, V, and C to become interdependent, and as a
consequence, risk becomes a factor of T, V, and C,
therefore Risk=f(T,V,C) (National Research Council
(2010)), but does not include any specific measure of
antagonistic intent.

The level of uncertainty regarding both terrorist
and cyber attacks requires us to consider what US
Secretary of Defense, Donald Rumsfeld described
as “unknown unknowns” (Rumsfeld (2002)), and how
we might reduce this uncertainty. Kaplan and Garrick
(1981) proposed that a risk could be described by
answering three questions:

1. What can happen? (i.e., what can go wrong?)

2. How likely is it that it will happen?

3. If it does happen, what are the consequences?

In order to answer these questions it is necessary
to consider a set of outcomes or scenarios, which
can be expressed as a triplet {si, pi, xi} where si

is the scenario description, pi is the probability of
the scenario occurring, and xi is the measure of the
consequences. A table of such risk triplets would
describe the overall risk: R={si, pi, xi} i=1, 2...N.
However, this approach is limited by the finite set of
scenarios described in the triplet. The actual list of
scenarios is infinite, and as a result, any assessment
made in this manner is based on incomplete data,
as the model does not account for the scenarios not
included in the analysis. A method for addressing this
is to account for all of the scenarios not considered
in the category sn+1. The resulting risk analysis is
now the set of triplets: R={si, pi, xi} i=1, 2...N+1,
which includes all of the scenarios defined, and
provides an allowance for those not included. Whilst
this might at first appear to be a contrived logical
construct, it allows us to consider what probability
we should assign to the residual category sn+1. This
allows us to contemplate the problem within a rational
framework, and in particular, what elements of K are
relevant, and what evidence exists for the scenarios
of type sn+1 that, by definition, have not occurred
yet but exist within the definition of A’. Ostrom and
Wilhelmsen (2012) list nine criteria for consequences
to be considered in context of what could be viewed
as sn+1 scenarios, in order to assess their credibility.
They conclude that one should “never dismiss a
consequence until it is proven not to be credible.”

These methods of describing risk are dependent
upon qualified data or expert opinion K, a known set
of events A’, an accurate quantification of probability

(Q, Pi), and an ability to reduce the number of
scenarios of type sn+1.

We shall now explore the viability of quantifying these
variables in the context of cyber attacks on ICS as a
valid means of articulating risk.

3. RISK TECHNIQUES

The techniques discussed in this paper result from a
systematic review of decision science, ICS safety and
counter-terrorism research, resulting in a subjective,
non-exhaustive set of risk approaches based on the
literature identified.

3.1. Probabilistic Risk Assessment (PRA)

Probabilistic Risk Assessment (PRA), also referred
to as probabilistic safety assessment (PSA) and
quantitative risk assessment (QRA) (Apostolakis
(2010)) is a scenario-based analysis methodology
that systemises the knowledge and uncertainties
about a system by answering the Kaplan and
Garrick (1981) three risk questions relating to
what can wrong, how likely is it, and what are
the consequences? (Apostolakis (2010); Zio et al.
(2013)). The process identifies a set of undesirable
end states, then for each state it defines a set of
initiating events that describe disturbances to normal
operation that can lead to the condition. Scenarios
are then generated based upon sequences of events
that start with an initiating event and conclude in
an undesirable end state, allowing the evaluation
of the probabilities of these scenarios using all
available evidence, past experience, and expert
judgement. The scenarios are then ranked according
to their contribution to the frequencies of the end
states, as well as the systems, structures and
components that also contribute (Apostolakis (2010);
Ostrom and Wilhelmsen (2012)). PRA is typically
employed for accident analyses in systems that are
highly reliable and for which significant reliability
data is available (Apostolakis (2004)), whereas we
are considering wilful, malicious cyber attacks. The
techniques do not preclude such an assessment,
and the steps involved would accommodate the
consideration of an attack against cyber-physical
systems such as ICS. The methodology allows for
differing probabilistic methods to be employed during
the analysis, including Bayesian networks, Monte
Carlo simulations etc. (Apostolakis (2010); Zio et al.
(2013)), in order to generate the probabilities of the
scenarios. By itself, therefore, PRA does not provide
a means to mitigate the lack of available and verified
ICS threat data, previously described as K. As a
scenario-based approach neither does it address
those threats defined by the type sn+1.
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3.2. Bayesian Networks (BN)

Bayesian networks (BN) are based on the theory
that belief is conditional and depends on mounting
evidence that either contribute to a belief or refute it.
BN describes a belief system in terms of conditional
probabilities, containing propositions that are either
true, partially true, or false (Lewis (2014)). The
subjectivity that BN supports allows us to consider the
probability of an attack without a frequentist approach
to representative data. Using BNs we start with a
hypothesis H and describe a prior belief about H
expressed as P(H). Using observed evidence E we
can revise our belief about H in light of E and
calculate a posterior belief about H by calculating
P(H|E) in terms of P(E|H) (Fenton and Neil (2012)).

BN are flexible risk analysis tools as they allow
the degree of belief in a hypothesis, or a series of
hypotheses, to evolve as new evidence emerges and
allow greater detail to be derived over time. As such,
BN offer the potential to reduce K, and allows for
additional attack scenarios to be added to the model,
thereby reducing sn+1. However, given the lack of
immediately available data regarding cyber attacks
on ICS, consideration should be given to how data
for BN analysis will be obtained.

3.3. Fault Tree Analysis (FTA)

Fault tree analysis (FTA) is a method primarily
aimed at system safety and reliability, although
as a technique used within ICS communities it
may offer a valuable insight into the likelihood and
impact of maliciously-caused equipment failure. It is a
deductive analysis technique focusing on one error at
a time, intended to ensure that all aspects of a system
are identified and controlled in order to determine
design aspects that could lead to potential failures
(Kapur and Pecht (2014)). The events are generally
considered as Boolean representations, insomuch
as they either will or will not occur (Dillon-Merrill
et al. (2008)). FTA is often used as an element of
PRA, but can be used independently. Fault trees
are a graphical representation of the interaction of
failures and other events in a system. The process
begins by supposing that a particular failure occurs,
then uses deductive logic to step through a system,
considering the possible direct causes that could
contribute to the condition, forming a graphical tree-
like structure as the analysis progresses (Ostrom
and Wilhelmsen (2012)). Once a fault tree has
been developed, data regarding the failure rate for
individual system components can be analysed either
in series or parallel, through the application of logic
gates, to estimate the likelihood of the failure event
(referred to as the top event ). The process drives the
production of cut sets - the smallest number of system
components that, if they all fail, will lead to an overall

system failure, then assesses the probability of such
failure (Dillon-Merrill et al. (2008)).

According to Sutton (2014), the quality of the
failure rate data on which the method is based
are often unreliable, and subjective measures often
substituted. These measures are still considered of
value as the method allows experts to contribute
based on their experiences in a structured manner,
and enables subsequent deeper analysis if areas
where the data is deemed inconclusive. The
approach has a reputation for being resource-
intensive, requiring significant expertise in the system
under analysis. Its resource requirements aside,
FTA’s major advantage is that fault trees can
accommodate complex logical relationships and
interdependencies between system components. It
is less dependent on human thought extrapolation
to recognise the effects of changes in system
behaviours (Dillon-Merrill et al. (2008)).

For the purposes of assessing the risk of cyber attack
on ICS, the approach has some merit. By starting at
a system failure, in our case a maliciously-caused
failure, we can trace back through the components
of an ICS, both Operational Technology (OT) and
Information Technology (IT), to determine scenarios
under which the events could occur. By focussing on
system components and the chaining of events and
connectivity to adversely affect them, as long as every
system component is considered, it is likely that the
set sn+1 will be reduced, although the method has no
formal mechanism for measuring this. However, the
approach is still reliant on expert opinion and qualified
data, as expressed in set K. Fundamentally, the
method is focused on predicting equipment failures
rather than the behaviours of malicious actors. It
offers no means of determining threat actor capability
or target preferences, although it can contribute to a
wider threat analysis process.

3.4. Event Tree Analysis (ETA)

Event tree analysis (ETA) uses the same mathemat-
ical and logical techniques as FTA, but considers
the impact of a failure of a particular component
through inductive reasoning. Like FTA, ETA can also
be used within other risk analysis techniques such
as PRA. Event trees model a sequence of outcomes
which may arise after a particular initiating event,
focusing on paths or scenarios that lead to failure. As
such, ETA considers the three questions posed by
Kaplan and Garrick (1981) that form their risk triplet.
Following each event, ETA considers the occurrence
or non-occurrence of all other possible events, with
probabilities calculated conditionally on all previous
outcomes in the tree. The approach assumes that
each event only has two outcomes; success or failure,
although separate event trees can be developed
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for each initiating event (Dillon-Merrill et al. (2008);
Ostrom and Wilhelmsen (2012); Sutton (2014)).

ETA allows analysts to consider one path or scenario
at a time, and offers some use when assessing
the potential causes of an undesirable effect as
it propagates through an ICS. This may facilitate
the identification of unexpected system conditions.
Like FTA, however, the approach is still reliant
on expert opinion and qualified data K, and the
subjective set of initiating events does not reliably
reduce sn+1.

3.5. Bow-Tie Analysis

The Bow-Tie analysis method combines FTA
with ETA by considering an undesirable event,
then analysing deductively to the left using FTA,
considering what could lead to the event, then
analysing inductively to the right using ETA to
consider the consequences of the event (Sutton
(2014)). Whilst the approach does not address
the shortcomings in respect of K, it may generate
scenarios previously not considered, and as a result
may possibly reduce the set sn+1.

3.6. Attack Trees

Attack trees (Schneier (1999)) consider the paths
by which an antagonist would attempt to reach
a particular target in a network, described as a
root, with leaf nodes articulating the chain of attack
surfaces by which the attacker could reach that
target. As such, attack trees provide a similar analytic
construct to FTA, ETA and Bow-tie analysis, and
suffers from the same limitations in respect of K
(Dillon-Merrill et al. (2008)). However, whilst FTA,
ETA and Bow-tie approaches are primarily focused
on failure scenarios, attack trees concentrate on
malicious attempts to manipulate a system, so the
combination of these methods may broaden the
attack scenarios under consideration and potentially
reduce the set sn+1.

3.7. Monte Carlo Simulations

When assessing the potential for an attack on ICS,
so far we have only considered those scenarios
that we consider realistic. However, this bias does
not address the set sn+1. One option to attempt
to reduce the set of unconsidered attack targets,
and thereby reduce sn+1, is to adopt a stochastic
model that includes every element within the system.
Monte Carlo analyses reflect the randomness of life,
even in deterministic systems, by assigning each
system element an initial operating condition and a
probability of failure. A time sequence starts based on
a given interval and a random number is generated
for each element within the system. If the random
number falls within a defined failure range, the system

element transitions to a failed state. At the end of each
iteration, the cut sets are analysed to determine the
system’s operability and availability and the results
aggregated to produce an overall model of the system
(Sutton (2014)).

Monte Carlo simulations are resource-intensive and
require long run times in order to achieve stable
results. By itself it cannot determine the impact of
a targeted cyber attack, but the technique offers a
useful model as it considers all elements within a
system in a random manner, possibly introducing
failure conditions not previously considered, thereby
reducing sn+1. However, the assigned probability of
failure requires expert knowledge, and as such forms
part of set K. Monte Carlo simulations alone will
not immediately address the qualitative improvement
of K, but there is potential for using Monte Carlo
simulations to feed BN analyses.

3.8. Markov Models

Another method to perform stochastic analysis is
based on Markov models. These represent all of the
possible states of elements within an ICS, against
which it performs a series of transitions based on
a defined time interval, or step in a batch process
Sutton (2014). Each transition results in a system
element either remaining in its current state, or
moving to a new one. As such, the probability of
transition from one state into another is dependent
only on the current state, and not on the history
of states that preceded it. This property is usually
referred to as the Markov property. Where the future
state of the system element is dependent upon both
the current state and the immediate past state, it is
referred to as a second-order Markov process, and
so-on for further higher-order Markov processes (Ibe
(2013)).

The immediate transition between states may not
accurately represent real-world considerations for
ICS, where states are not binary and can introduce an
indeterminate condition as large electromechanical
devices execute instructions. That aside, Markov
models offer similar benefits to Monte Carlo
simulations, as assuming they model the complete
system, may introduce failure scenarios to reduce the
set sn+1, and perhaps could be used in conjunction
with BN analyses.

3.9. Failure Modes, Effects and Criticality
Analysis

Failure Modes and Effects Analysis (FMEA) is an
experience-based hazards analysis approach based
on expert opinion and engineering standards. The
accumulated knowledge allows hazards to be consid-
ered in light of experiential data and evaluated against
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Recognised and Generally Accepted Good Engineer-
ing Practice (RAGAEP). The method examines the
ways in which equipment can fail and considers
the consequences of such failures. Device criticality
can also be analysed, in which case the method is
described as Failure Modes, Effects and Criticality
Analysis (FMECA). Importantly, FMEA/FMECA does
not consider the causes of the failure, just the impact
of its occurrence. Neither is it concerned with the
sequence of events that led to the failure, or the actors
or circumstances involved (Sutton (2014)).

By focussing solely on failure modes and the resulting
effects, without considering the path that led to
the event, FMEA and FMECA allows scenarios to
be considered based purely on impact. By itself
the process will not address the quantification of
risk of cyber attacks within an ICS, but as it is a
commonly produced engineering artefact that many
ICS facilities will already possess, it offers a means
to qualitatively check the background data and expert
opinion, K, used to inform the assessment process.
By not limiting the impact of failure to potential
cyber access routes, we may limit the set sn+1.
FMEA/FMECA should be considered in conjunction
with FTA.

3.10. Hazard and Operability (HAZOP) Method

The Hazard and Operability (HAZOP) method is
probably the most widely used hazards analysis
method in industry. Its widespread use and
acceptance has led to a large number of practitioners
and supporting service providers. The method
divides the system under analysis into nodes, each
of which represent a section of the process that
undergoes a significant change or transformation.
Examples of nodes include pumps, reactors,
heat exchangers etc. The information is generally
extracted from plant piping and instrumentation
diagrams (P&ID). The size of the node is a subjective
decision based on the nature of the industrial process
and may group devices or system elements together
in order to consider an overall process change
holistically (Sutton (2014)).

A HAZOP analysis follows a consistent process
whereby a system node is selected and its purpose
and safe limits defined. Next, one of a set of
process guidewords are selected, such as high
flow, low/no flow, reverse flow, misdirected flow, high
pressure, high temperature, polymerisation, wrong
composition etc., that describe the effect that should
be considered, and hazards and their causes are
identified as a result. For each hazard, the process
considers it will be recognised should it occur and
an estimation of the consequences is reached. A set
of safeguard requirements are then defined, as is
the estimated frequency of the hazard’s occurrence.

Finally, the hazards are ranked and a set of findings
and recommendations is produced.

HAZOP analyses drive a rigorous assessment of
the impact of undesirable events on a process,
decomposing to a detailed level. Conformance
to established processes and guidewords should
provide a comprehensive set of potential areas of
risk. Whilst it may not be commonplace to consider
these impacts from the perspective of cyber attacks,
a HAZOP should identify areas where change to the
process will result in adverse outcomes. The breadth
of the process should reduce the size of the set sn+1

and by adhering to RAGAEP, confidence in set K is
arguably increased.

3.11. CARVER and MSHARPP

When considering the threat to an ICS, methods
exist within the military community to describe an
intelligent adversary’s intent and capability. The US
Department of Defense (DoD) use the CARVER
assessment method to determine criticality and vul-
nerability in infrastructures. CARVER is an acronym
for Criticality, Accessibility, Recuperability (a system’s
ability to recover from an attack), Vulnerability, Effect
and Recognisability. The method focuses on an
adversary’s perspective of the infrastructure to enable
an analysis of the weaknesses of a target, or the
means by which its operations can be manipulated
by an attacker (Schnaubelt et al. (2014)). In this man-
ner, the capabilities of several threat actors can be
considered. The output of the CARVER assessment
is a critical-asset list that defines a prioritised set
of assets that are of value to an attacker based on
their importance, whereby the asset’s incapacitation
or destruction would have a serious impact on the
military operation or facility. The use of CARVER
matrices to consider threats to critical national in-
frastructure by civilian agencies when preparing for
terrorist attacks is emerging, as it allows organisa-
tions to consider the relative desirability of targets,
although its use has been limited to the assess-
ment of physical assets (Doro-on (2014)). Another
approach, encompassed in the acronym MSHARPP,
describes the attractiveness of a target due to its
importance to an operation (the Mission), the per-
ception that a successful attack with generate (the
Symbolism), the History of similar attacks, system
Accessibility, Recognisability of target, impact on the
local Population, and Proximity to other key assets.
Like the CARVER approach, a matrix is derived using
a numeric range that represents the perceived vul-
nerability or likelihood of attack, from the perspective
of the defender. The respective numerical values are
totalled to provide a relative value as a target or the
overall assessment of attractiveness to an attacker,
and thereby a prioritised list of assets to defend
(Schnaubelt et al. (2014)).
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3.12. Game Theory

Studies of antagonistic attacks can be conducted
using game situations rather than decision models
(Holmgren et al. (2007)). Game theory techniques
involving sequential multi-player scenarios such as
Stackelberg Competitions allow players to decide
upon actions that result in the best possible rewards
to themselves whilst anticipating the rational actions
of the other participants. The outcome of the game
defines the optimal allocation of resources and
investment to minimise risk on the part of the
defender and maximise risk for the attacker (Lewis
(2014), Roy et al. (2010)). In an evaluation of
physical attacks against electric power networks
using game theory, Holmgren et al. (2007) illustrated
the effectiveness of the technique, but highlighted the
need for a greater understanding of the attacker’s
intent. It is possible that the use of CARVER or
MSHARPP may address this issue in some way,
as the attractiveness of a target may be used as
a surrogate for intent. Holmgren et al. (2007) also
acknowledged a wider issue; that the results of game
theoretic approaches depend upon how the scenario
is framed, suggesting that it is dependent upon the
set K and that sn+1 is not necessarily reduced by its
use.

4. DEEP UNCERTAINTY

If the techniques discussed thus far do not provide
sufficient means to address K and sn+1, we are
faced with the area of decision science referred to as
deep uncertainty. Cox Jr (2015) describes methods
of combining models and datasets in order to reduce
the levels of uncertainty.

4.1. Using Multiple Models and Relevant Data to
Improve Decisions

When no validated data set is available, a good
decision is one that assesses clearly higher and
lower probabilities of undesired outcomes based on
a combination of existing models that are consistent
with available, albeit not directly relevant data. This
combination of alternative models is described as the
uncertainty set.

4.2. Robust Decisions with Model Ensembles

Cox Jr (2015) proposes that when faced with
decision-making decisions with deep uncertainty, a
technique that can be employed is to generate and
analyse a large number of scenarios. Of these, a
set that performs well by some criterion for most
scenarios is more likely to also do well in reality,
if reality is well-described by at least some of the
scenarios in the uncertainty set.

4.3. Averaging Forecasts

Simple arithmetic averaging of results from different
methods is reported to usually outperform an average
of any single method, and by averaging across
models one can reduce the error between forecast
and subsequently measured true values.

5. ELICITING EXPERT OPINION

If no valid data is available to inform set K then
Ezell et al. (2010) recommend that the probabilities
of different attacker options should be elicited from
experts. However, expert opinion is not necessarily a
viable replacement, and care should be taken with the
validity of such judgement. In particular, Wallsten and
Budescu (1983) ask whether the probabilities elicited
provide a valid measurement related to the frequency
of the events? Merrick et al. (2015) propose that
calibration is one measure of validity. When an expert
assesses the probability P, on what basis is the
judgement that proposes that the event occurs P%
of the time? Those who will act on the expert advice
would assume that P should be close to the observed
frequency of the event, P̂. However, P is simply
a measure of the expert’s degree of belief (Keren
(1997)), and in the case of cyber attacks on ICS, no
data is available to adequately describe P̂.

Merrick et al. (2015) observe that a calibration curve
formed by probability judgements is usually more
extreme than the relative frequency of events, and
as such, expert opinion may have a bias toward a
negative perspective. Wallsten and Budescu (1983)
point out that when faced with judgements based
on complex events, it is natural for humans to
simplify the task by using heuristics, which also
introduce biases into analyses. According to Hora
(2007) the quality of judgements is based on the
background information used for the assessment,
usually derived from their experience, and is reliant
on the expert’s ability to fuse this with other data
sources. Merrick et al. (2015) discusses three
heuristic techniques; representativeness in which the
probability is based on the similarity to other observed
events, availability where humans overestimate the
frequency of an event due to excessive media
reporting, and anchoring where humans adopt a
starting position then adjust away from that in order to
produce a probability. None of these methods serve
to improve the accuracy of the expert opinion in order
to inform the set K. However, Ravinder et al. (1988)
and Howard (1989) demonstrate that decomposing
complex scenarios into discrete events improves
the overall calibration and reliability of probability
judgements when eliciting expert opinion, and in
this manner we may minimise the biases and errors
introduced.
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6. CURRENT OPTIONS FOR ASSESSING ICS
CYBER RISK

PRA remains the de facto standard for risk
assessment in large-scale critical facilities and
provides an analysis framework that incorporates
safety data and probabilistic methods such as BN
and Monte Carlo simulations (Lewis (2014)). For
the immediate future there does not appear to
be a proven, viable alternative. Its strength lies
in its scenario-based approach, which from the
perspective of ICS cyber threats allows malicious
activity across the electromagnetic spectrum to be
included in the overall risk analysis. However, as
ICS cyber attacks remain low-frequency events,
details of what an ICS attack scenarios may look
like are in short supply and as a consequence
our ability to reduce the set sn+1 remains limited.
PRA also requires expert opinion, which given the
lack of quantifiable data on ICS cyber attacks
leaves the background information K open to the
biases previously described. As such, any PRA
analyses undertaken using expert opinion should
require that any attack scenarios comprise a set of
discrete events that aggregate to form a potentially
complex attack, rather than attempting to consider
the incident as a whole. Sommestad et al. (2009)
have demonstrated some success in combining
attack trees with Bayesian methods and expert
assessment, but their analysis did not include the
industrial processes under control or their safety
characteristics, and as such does address the holistic
impact of a cyber attack on an ICS.

Red teaming and game theoretic approaches offer
possible improvements on the use of expert opinions,
but their efficacy is currently limited by the cross-
discipline team of IT and OT staff, and a lack of
common vocabulary and understanding, especially
when industrial engineering is also introduced. In
order to address this issue it will be necessary to
describe the industrial processes and technologies in
an architectural model understood by all disciplines.
Without such an analysis framework it is unlikely that
a robust risk assessment could be produced.

Ultimately, however, the current options for assessing
ICS cyber risk are limited by the available data, and
accordingly we should consider how such a dataset
can be produced.

7. OPTIONS FOR DEVELOPING A QUALIFIED
CYBER ATTACK DATASET

Risk analysis is an established discipline, but for
quantitative methods to work satisfactorily they
require a validated dataset. The limited qualified
reports of cyber attacks on ICS do not satisfy this

requirement, and as a consequence, risk analyses
on ICS are currently dependent on subjective
judgements and cannot adequately consider the
breadth of attack vectors. The US DoD advisory
group, JASON (McMorrow (2009)), argues that
predictive models for rare events are unreliable,
and like Ravinder et al. (1988) and Howard
(1989), recommend decomposing the rare events
into smaller, well-bounded problems that can be
tested. The Idaho National Laboratory (Macaulay and
Singer (2011)) suspended research into quantitative
analysis into this field, in favour of more subjective
approaches more in line with the criteria found in
the CARVER and MSHARPP models. Whilst data
exists to define the risks of equipment failure in an
ICS, the predicted rates of these events is based on
deterioration rather than intentional direction. It would
also need to be proven that safety cases have a direct
relationship with security cases before using this data
as the sole basis for cyber attack risk analysis.

7.1. Background Information

Central to the issue of providing qualified risk
analyses of cyber attacks on ICS is the lack of
available data, which we have referred to as the set
K. Without validated background, those responsible
for identifying vulnerable elements cannot elevate the
investment priority in this area against other, more
clearly perceived risks to the business, such as failure
to meet regulatory targets, service outages through
ageing equipment, and exposure to financial markets.
As such, an essential first stage of improving the
quality of K is to provide a means to portray the
impact of HILF events in a manner recognisable
to senior stakeholders. At a more detailed level,
however, malicious behaviour data needs to be
shared in order to allow ICS operators to gain a
greater understanding of events that are indicative of
potential or actual attacks. Threat intelligence sharing
offers a key benefit to the whole ICS community as
it allows a richer view of areas for protective analysis
within an industrial operation. Bayesian networks are
potentially of value in this analysis, as models for K
could be constructed, tested and revised over time
using threat intelligence data, thereby improving the
quality of background information on which decisions
are based.

7.2. Attack Vectors

The lack of available data also limits our understand-
ing of attacker options and targets,resulting in the
possibility that the set on unconsidered scenarios
that we have referred to as sn+1 is unfavourable. De-
composing the scenarios into smaller, manageable
analyses offers clear benefits, but we are still largely
reliant on expert opinion to define the scenarios
to begin with. Introducing Monte Carlo and Markov
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simulations to test all possible failure modes may add
a degree of objective data to the analysis to challenge
any cognitive biases introduced during the scenario
construction. The wealth of safety information avail-
able, from HAZOP, FEMA, FTA and ETA, is potentially
a sound basis from which to start these analyses,
and would allow the consideration of the relationship
between safety and security cases.

7.3. Intelligent Adversaries

We should also realise that any models we develop
for risk analyses cannot be static. Cyber attacks
are conducted by intelligent adversaries who will
change their approaches dependent on the security
mechanisms we deploy. Threat intelligence, Bayesian
networks and game theoretic approaches will allow
general attack behaviour to be modelled, not the
specifics of an attack against a particular facility.
In considering intelligent adversaries in the context
of terrorist events, the National Research Council
(2010) recommend the introduction of red teams
to probe the defences of an organisation. This
may prove problematic in an ICS, as they may
not be resilient to potentially destructive testing
(Stouffer et al. (2011)), and so some form of
non-destructive testing is required. This does not,
however, preclude red teaming as a viable concept
should a safe, representative environment be made
available for such activities. Sommestad and Hallberg
(2012) demonstrated how cyber security exercises,
conducted on dedicated infrastructure, can generate
valuable data for security research.

7.4. Non-destructive Testing Through
Simulation

Many industrial facilities utilise simulation tools to
model and predict the operations of the processes
under control within an ICS. This forms an essential
part of the operations of the facility, based on the
steady-state behaviour of the process. These models
could be revised to allow boundary conditions to
be introduced to predict where potential negative
outcomes can be generated (Krotofil and Larsen
(2015)). The ICS elements responsible for controlling
the boundary conditions could then be considered
as a discrete, testable scenario. This could be
used to develop synthetic environments, testbeds, or
cyber ranges on which representative architectures
could be deployed using a mix of virtualised
environments and non-production physical devices.
Attack scenarios by intelligent adversaries could then
be exercised and the results fed into background
information models. In order to support this, it
would be necessary to produce an architectural
model of the ICS that supports the description
of attack hypotheses and vulnerabilities, including
security events, state transitions, dependencies,

and means to describe differing consequences
in various measures (financial, production loss
etc.).

8. CONCLUSIONS

No proven, unified risk model exists for ICS that
incorporates all of the elements of consequences
C, events A, background information K, measure
of uncertainty Q, threat T, vulnerability V, or the
unconsidered scenarios of sn+1 across all measures.
Quantitative risk analysis does not provide the sole
means of addressing the problem, and pragmatically,
one may be forced to adopt a method best suited
to the available data, or by the combination of
partially-suited models, until a suitable critical mass
of information can be derived.

Further work in this area is recommended to
include:

1. Developing a means by which senior stake-
holder awareness of HILF events can be artic-
ulated in business terms.

2. Architectural models be defined that support
the testing of attack hypotheses that can feed
Bayesian models, Monte Carlo and Markov
simulations.

3. Guidelines be produced for the use of existing
ICS process simulations to drive understanding
of boundary conditions.

4. Development of synthetic environments to
allow a red team or game theoretic intelligent
adversary to test an ICS’s defences in a non-
destructive manner.
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