
Evaluation and Improvement of
Semantically-Enhanced Tagging System

PhD Thesis
Majdah Hussain Alsharif

Software Technology Research Laboratory
Faculty of Technology

De Montfort University
England

December 2013

Dedication

I dedicate this work to Almighty God, who has made this work possible.

I also dedicate this thesis to a number of people without whom this thesis might not

have been written, and to whom I am greatly indebted:

To my parents, for their unconditional support in every way possible since the start of

this journey.

To my husband, you are the best companion I could ever wish for. Thank you for the

encouragement and support.

To my children Ghada, Abdulrahman, Shaker, and Ghazi thank you for becoming adults

just to help me and I love you all.

To all my friends who I missed, thanks for your prayers and kind wishes.

Abstract

The Social Web or ‘Web 2.0’ is focused on the interaction and collaboration between

web sites users. It is credited for the existence of tagging systems, amongst other

things such as blogs and Wikis. Tagging systems like YouTube and Flickr offer their

users the simplicity and freedom in creating and sharing their own contents and thus

folksonomy is a very active research area where many improvements are presented to

overcome existing disadvantages such as the lack of semantic meaning, ambiguity, and

inconsistency.

TE is a tagging system proposing solutions to the problems of multilingualism, lack of

semantic meaning and shorthand writing (which is very common in the social web)

through the aid of semantic and social resources.

The current research is presenting an addition to the TE system in the form of an

embedded stemming component to provide a solution to the different lexical form

problems. Prior to this, the TE system had to be explored thoroughly and then its

efficiency had to be determined in order to decide on the practicality of embedding

any additional components as enhancements to the performance. Deciding on this

involved analysing the algorithm efficiency using an analytical approach to determine

its time and space complexity.

The TE had a time growth rate of O (N²) which is polynomial, thus the algorithm is

considered efficient. Nonetheless, recommended modifications like patch SQL

execution can improve this. Regarding space complexity, the number of tags per photo

represents the problem size which, if it grows, will increase linearly the required

memory space.

I

Based on the findings above, the TE system is re-implemented on Flickr instead of

YouTube, because of a recent YouTube restriction, which is of greater benefit in multi

languages tagging system since the language barrier is meaningless in this case. The re-

implementation is achieved using ‘flickrj’ (Java Interface for Flickr APIs). Next, the

stemming component is added to perform tags normalisation prior to the ontologies

querying. The component is embedded using the Java encoding of the porter 2

stemmer which support many languages including Italian.

The impact of the stemming component on the performance of the TE system in terms

of the size of the index table and the number of retrieved results is investigated using

an experiment that showed a reduction of 48% in the size of the index table. This also

means that search queries have less system tags to compare them against the search

keywords and this can speed up the search. Furthermore, the experiment runs similar

search trails on two versions of the TE systems one without the stemming component

and the other with the stemming component and found out that the latter produced

more results on the conditions of working with valid words and valid stems.

The embedding of the stemming component in the new TE system has lessened the

effect of the storage overhead needed for the generated system tags by their

reduction for the size of the index table which make the system suited for many

applications such as text classification, summarization, email filtering, machine

translation…etc.

II

Declaration

I declare that the work described within this thesis was originally taken by me between

January 2008 and December 2013 except where otherwise acknowledged. It is

submitted in partial fulfilment of the requirements of the degree of Doctor of

Philosophy at De Montfort University and has not been previously submitted for any

other award.

III

Acknowledgement

First and foremost, I thank my academic advisors, Dr Bella and Professor Zedan for

their patience, guidance, and support.

My gratitude goes to Dr. M Magableh for sharing his knowledge.

Also, I would like to acknowledge the STRL, and the Graduate School. My graduate

experience benefitted greatly from the courses I took, and the opportunities I had

there.

Finally, I would like to thank all the people who contributed in any way to the work

described in this thesis.

IV

List of Figures

Figure 1.1: Collaborative Tagging Approaches [69] .. 3
Figure 1.2: Index Compression Percentages from Stemming [35] ... 5
Figure 2.1: Broad and Narrow Folksonomies [116] .. 13
Figure 2.2: The Stemming Process [106] .. 26
Figure 2.3: Types of Stemming Algorithms [55] .. 30
Figure 3.1: The Proposed Generic Architecture for Tag-Based Systems [72] 41
Figure 3.2: The Scope of TE [72] ... 42
Figure 3.3: The ER Model of the TE Database ... 44
Figure 4.1: Empirical Test Example’s Graph [5] .. 51
Figure 4.2: Example (1) of Space Complexity [7] .. 56
Figure 4.3: Example (2) of Space Complexity [7] .. 57
Figure 4.4: Time Growth Classes Plot (based on table4.3) ... 60
Figure 4.5: Asymptotic Notation Functions [56] ... 62
Figure 5.1: Typical n in Common Algorithms [23] ... 80
Figure 5.2: Java Virtual Machine's Families of Data Types [114] .. 88
Figure 6.1: The Porter Stemming Algorithm Flowchart [3]... 95
Figure 7.1: TE Database Diagram .. 99

V

List of Tables

Table 2.1: Princeton WordNet (PWN) v3.0 Database Statistics 2006 [120] 19
Table 2.2: Semantic Relations in Princeton WordNet (PWN) [78] .. 20
Table 2.3: Comparative Summary of some Stemming algorithms [55] 38
Table 3.1: Breakdown of the Database Tables ... 45
Table 4.1: Algorithm Performance Methods [52] ... 49
Table 4.2: Empirical Test Example(Adapted) [5] ... 50
Table 4.3: Time Growth Classes .. 60
Table 4.4: Execution Times of Different Time Complexity [5] .. 60
Table 5.1: InnoDB Storage Engine Features [80] .. 68
Table 5.2: Storage Engines Features Summary [80] ... 69
Table 5.3: Storage Requirements for String Types [80] .. 71
Table 5.4: Database Columns Sizes ... 77
Table 5.5: The TE Database Tags Statistics ... 79
Table 5.6: Operations Estimated Relative Time Cost .. 82
Table 5.7: Functions with Constant Growth Rate ... 83
Table 5.8: TE Analysis Notations ... 83
Table 5.9: The Growth Rate of the TE Functions .. 84
Table 5.10: Execution Times of Different Time Complexity Functions 85
Table 5.11:Totals of System Tags .. 87
Table 5.12: Ranges of the Java Virtual Machine's Data Types [114] .. 89
Table 6.1: Some used Components from Java and flickrj ... 94
Table 7.1: List of the new tables in the Database ... 98
Table 7.2: User Tags & Stems User Tags Statistics .. 100
Table 7.3: System Tags Statistics... 100
Table 7.4: Search Results Statistics from both TE Systems ... 101
Table 7.5: Percentage of Search Results ... 102
Table 7.6: Examples of Stemming Errors .. 103

VI

List of Abbreviations

API Application Programming Interface

DBMS Database Management System

HTML Hyper Text Markup Language

IR Information Retrieval

JAWS Java API for WordNet Searching

flickrj Java Interface to Flickr API

MWN MultiWordNet

POS Part Of Speech

PWN Princeton WordNet

URL Uniform Resource Locator

JVM Java Virtual Machine

TE Tag Enhancer

SNS Social Network Site

VII

Table of Contents

Abstract .. I

Declaration ... III

Acknowledgement ... IV

List of Figures .. V

List of Tables .. VI

List of Abbreviations ... VII

Table of Contents ... VIII

1 Introduction ... 1

1.1 Background ... 1

1.2 Problem Statement ... 3

1.3 Research Objectives and Questions .. 5

1.4 Success Criteria ... 6

1.5 Thesis Structure .. 7

2 The Literature Review .. 8

2.1 Introduction .. 8

2.2 Methodology of the Literature Review ... 8

2.3 Tagging Systems and the Semantic Web .. 11

2.3.1 Tagging Systems (folksonomies) .. 11

2.3.2 Princeton WordNet (PWN) Ontology ... 17

2.3.3 MultiWordNet (MWN) Ontology ... 21

2.4 Stemming .. 25

2.4.1 Background .. 25

2.4.2 Definitions .. 27

2.4.3 Techniques ... 27

2.4.4 Types .. 29

VIII

2.4.5 Non-English Stemmers ... 34

2.4.6 Applications .. 36

2.4.7 Discussion ... 37

2.5 Summary ... 39

3 The TE (Tag Enhancer) System ... 40

3.1 Introduction .. 40

3.2 Overview ... 40

3.3 The Scope of TE ... 40

3.3.1 The Semantic Component .. 42

3.3.2 The Clustering Component .. 43

3.3.3 The Database Component ... 44

3.4 The TE System ... 45

3.4.1 The Data ... 45

3.4.2 The TE Implementation .. 46

3.5 Summary ... 47

4 The Methodology ... 48

4.1 The Efficiency of Algorithms (The Performance) .. 48

4.1.1 Empirical (Performance Measurement) .. 49

4.1.2 Analytical (Performance Analysis) ... 51

4.2 Time Complexity ... 53

4.3 Space Complexity .. 55

4.4 Cases of Complexity .. 57

4.5 Asymptotic Notation Functions .. 58

4.5.1 Big-O Notation (Upper Bound of the Growth Rate)... 58

4.5.2 Omega Notation (Lower Bound of the Growth Rate) .. 61

4.5.3 Theta Notation (Between Lower and Upper Bound) ... 61

4.6 The Research Adopted Methodology ... 62

IX

4.6.1 Research Background ... 62

4.6.2 The Algorithm Efficiency Analysis .. 62

4.6.3 The Stemming Component .. 63

5 Database Design Optimisation and Algorithm Complexity Analysis .. 66

5.1 Database Design Optimisation .. 66

5.1.1 Introduction ... 66

5.1.2 The Storage Engine .. 66

5.1.3 The Character Set ... 70

5.1.4 The Schema .. 71

5.1.5 Optimisation Procedures ... 73

5.1.6 Discussion ... 75

5.2 Time Complexity ... 78

5.2.1 Time Efficiency Analysis of Nonrecursive Algorithms .. 79

5.2.2 Discussion ... 82

5.3 Space Complexity .. 88

5.3.1 Java Virtual Machine (JVM) and Data Types .. 88

5.3.2 General Formula of Memory Usage ... 89

5.3.3 ‘Housekeeping’ Information .. 90

5.3.4 Memory Usage of Arrays ... 90

5.3.5 Memory usage of Strings ... 91

5.3.6 Calculating the Space Complexity .. 91

5.3.7 Discussion ... 92

6 The Stemming Component Embedding ... 93

6.1 Summery ... 97

7 The Evaluation .. 98

7.1 Introduction .. 98

7.2 The experiment ... 99

X

7.2.1 Index table ... 99

7.2.2 The search results .. 101

8 Conclusion and Future Work ... 105

8.1 Research Overview ... 105

8.2 Findings ... 106

8.3 Success criteria revisited ... 109

8.4 Contributions .. 109

8.5 Limitations and Future work ... 111

References .. 112

XI

Chapter 1: Introduction

1 Introduction

1.1 Background

The commercialization of internet access in the late 1980’s attracted to it people from

outside the academic circles and, since then, the internet has carried on gaining

momentum. With more advances in technology, cheaper prices, and fast speed, the

number of internet users is growing at a very rapid rate. According to [53], the years

2000-2012 had a global growth rate of 566.4 % and on June 2012, the number of users

worldwide is over 2.4 billions. The statistical facts above show that people are getting

more dependent on the internet in many aspects of their daily life.

The internet gives access to vast amount of information. For many organizations, their

information is as valuable as their assets, and reputation. They use information as

weapon for gaining and sustaining competitive advantage when used in decision

making and supporting critical processes [40] whilst it is found accurate and within the

shortest time. Thus, information needs to be managed: preserved, sorted, maintained

up-to-date, and delivered to the right people at the right time to avoid many problems

such as financial loss, lost opportunities, damaged reputation…etc. Therefore having a

good information management and retrieval systems is essential for the success of

many services and businesses nowadays. For example, search engines need to offer

up-to-date information, locate individuals and organizations, and summarize news.

Local search services need to guide consumers to retailers. Large companies need to

have access controlled repositories of e-mail, memos, reports, and other documents

for proper decision making [22].

With the popularity of the social web (web 2.0) and since their introduction, social

network sites (SNSs) like facebook, twitter, and Flicker have attracted millions of users,

many of whom have integrated these sites into their daily practices [17]. In these sites,

a user creates a profile, and builds a list of friends to share and exchange contents with

them. Users have the freedom to categorise their contents as they see fit using tags.

1

Chapter 1: Introduction

Moreover, SNS is considered an important marketing tool [123] since it allow users to

participate in the business production and promotion through sharing their personal

experiences like recommendations, reviews, and ranking.

In 2013, the results of a survey about the social commerce on Facebook, Twitter and

Pinterest were published as follows [11]:

• Social media drives roughly equal amounts of online and in-store sales

• Nearly 4 in 10 Facebook users report that they have at some point gone from

liking, sharing or commenting on an item to actually buying it

• 43% of social media users have purchased a product after sharing or favoriting

it on Pinterest, Facebook or twitter.

Tagging is one of the main applications of the semantic web (web 2.0). It is a simple

way for indexing information but it lacks standards and because it’s a subjective

process, it can generate inconsistent and ambiguous classification [72]. Another

drawback in tagging systems is the lack of semantics among tags but with the birth of

semantic web, its tools, and technologies, many studies are investigating how to invest

this to enhance the tagging experience. Different tagging approaches can address few

key tagging problems as listed below [69]:

• Formal taxonomy or ontology approaches: formal taxonomy derives tags

through data mining whereas, the ontology approach uses seeding and this

requires undesired additional user contributions. However, both approaches

give the tags a frame of reference which reduces inconsistency and ambiguity.

• Statistical and pattern analysis approaches: they are very popular because they

work well with web applications such as Google’s PageRank. Common factors

used in these approaches are tag use frequency, popularity, and ranking.

• Social networking and visualization approaches: in the social approach,

researchers use the social network to validate tags whilst, another visual

approach uses information and tags to improve user behaviour.

2

Chapter 1: Introduction

Figure 1.1: Collaborative Tagging Approaches [69]

The World Wide Web extension called “Semantic Web” or “Web 3.0 enables people to

share content beyond the boundaries of applications and websites. It has been

described as a web of data [103]. The concept is to form a Web that links documents

to each other and recognizes the meaning of the information in them, in other words,

to transform the current Web from a series of interconnected, but ultimately

semantically isolated data islands into one gigantic, personal information storage,

manipulation and retrieval database [13, 61].

1.2 Problem Statement

‘Web 2.0’ or the ‘Social Web’ is about discarding static web pages and changing the

way web pages are designed and used, allowing more interaction and collaboration

between users [83]. With its user-friendly services, Web 2.0 is behind the popularity of

social sites such as blogs, Wikis, and tagging systems. The problem is that these sites

generate huge amount of metadata. For example, in tagging systems, users freely tag

their contents and the result is that some of these tags are inconsistent and ambiguous

making the retrieval process inaccurate.

‘Web 3.0’ or ‘Semantic Web’ is a web of linked data [77, 115]. It will allow internet

users to control data in many ways such as: creating data stores, building vocabularies

and establishing rules for managing data [115]. It is about providing users with higher

levels of social sharing and participation [77].

3

Chapter 1: Introduction

Utilizing the benefits of the Semantic and Social Web can provide solutions to improve

the accuracy rate in tagging systems and many studies are investigating in this

direction.

TE ‘Tags Enhancer’ is a prototype that uses web tools: Princeton WordNet (PWN),

MultiWordNet (MWN), and clustering to generate new tags to improve the quality of

the original tags which can decline for reasons such as a lack of semantic, language

constraint, and the use of shorthand writing vocabulary. Within TE, a user tag is

subjected to some of the mentioned tools or all of them as needed. PWN provides

synonyms and/or hypernyms of the user tag thus increasing the semantic value of

results which is retrieved after performing the search using both the user and system

tags. MWN provides the English translation of the user tag in case it is an Italian word.

The last tool is Flickr clustering which can sometimes produce a meaningful word

from the shorthanded written user tag.

TE has previously been tested and shown to deliver relative search results for a wider

coverage of semantically related results than existing solutions [72].

In most IR system, the user asks for information using a query which contains one or

more search terms. These terms are compared against the index terms (important

words or phrases) of the IR contents for a match. Both the query terms and the index

terms often have many morphological variants.

In the case of TE, although the tag sample data is not large compared to other IR

systems, the statistics showed that the semantic component can sometimes generate

more than 80 system tags from a single user tag due to the fact that its semantically

rich and the use of more than one language. The number of system tags can grow

significantly in a larger IR system especially with the addition of more languages, in

other words; the sizes of the database and the index tables will increase. Furthermore,

the number of search terms inside the query will increase and this can slow the search

process.

4

Chapter 1: Introduction

stemming is used by search engines in IR systems to increase their effectiveness [82].

Experiments in [60, 94, 96, 101] show stemming is beneficial for highly inflected

languages. It makes the search broader, in other words; it ensures that the greatest

number of relevant matches is included in search results [82]. Some studies claim that

stemming can increase the average recall [39] [41]. Moreover, since stemming is about

mapping morphological variants to a single stem, this will reduce the number of

system tags and lead to the size reduction of search terms, index tables and the

database. The work of Lennon et al. (1981) [35, 66] on various stemmers and

databases reported the following compression percentages in the size of files,

sometimes as much as 50 percent.

Figure 1.2: Index Compression Percentages from Stemming [35]

1.3 Research Objectives and Questions

The proposal of this research is to evaluate and improve the TE system. In particular,

the research studies the effects of adding new tags to the system on the time needed

to generate them and on their allocated space. Furthermore, the research proposes

modifying TE by using stemming on the user tags prior to querying the semantic

resources as a normalisation step for better quality system tags.

5

Chapter 1: Introduction

The research will investigate the questions below:

1.4 Success Criteria

Indicating or rejecting the claim that embedding the stemming component has effects

on the performance of the TE system, in terms of index size and the number of search

results, needs an experiment to record both the size of the index and the number of

search results retrieved from the TE system without stemming and the TE system with

stemming and compare the statistics to reach a decision.

Regarding the index size, both versions of the TE system will work with the same

dataset of user tags. In the old TE, user tags are directly subjected to the semantic and

clustering components in the original TE to generate system tags whereas in the new

TE, user tags are submitted to the stemming component to generate stems and then

stems use the other components to generate system tags. System tags are used by the

search process to be compared against a search term. Thus, they represent the index

table in this case. If the number of system tags in the new TE is less than the one in the

old TE then stemming is responsible for this reduction.

A sample dataset of 30 words is used to perform search trials on the old and new TE

systems and record the number of retrieved results from both systems. Comparing

these numbers will show if the new TE system is able to retrieve more results than the

Q1: What are the effects on performance of embedding the

stemming component to the TE system?

Q3: What is the space complexity of the TE algorithm?

Q4: Is the database design optimised for the TE ER Model?

Q2: What is the time complexity of the TE algorithm?

6

Chapter 1: Introduction

old TE or not because of the stemming component. If the new TE retrieved more

results then we can support the claim that stemming is behind this results increase.

1.5 Thesis Structure

The thesis is divided into seven chapters. Below is a short description of the contents

of each chapter as follows:

• Chapter 1 (Introduction): this chapter gives the reader a general idea about the

research and what it is about. It presents the research problem statement,

objectives, and the questions.

• Chapter 2 (The Literature Review): this chapter includes a thorough literature

review on the research areas involved in the current research. It covers topics

such as tagging systems, stemming algorithms and algorithm complexity

theory.

• Chapter 3 (The TE System): this chapter contains a comprehensive summary of

the TE (Tag Enhancer) system. It covers related topics necessary for the current

research work such as its scope, components, implementation etc.

• Chapter 4 (The Methodology): this chapter includes a detailed account of the

tools and methods utilised by the research to achieve the planned research

objectives.

• Chapter 5 (Database Optimisation and Algorithm Complexity Analysis): this

chapter examines the TE system with respect to database optimisation, time

complexity and space complexity. A discussion of the findings is also included.

• Chapter 6 (Stemming Component embedding): this chapter is a translation of

the methodology layout in chapter 4. It gives details on the embedding process

with its challenges and approaches.

• Chapter 7 (Conclusion and Future Work): this chapter summarizes the research

and draws conclusions based upon the findings of the research to give answers

to the research questions mentioned in chapter 1.

7

Chapter 2: The Literature Review

2 The Literature Review

2.1 Introduction

This chapter is looking into tagging systems taxonomy, their principles, the benefits

and problems facing them. Next, the literature will look into two semantic tools used

in the TE system which are the Princeton WordNet (PWN) ontology and the

MultiWordNet (MWN) ontology, giving a background on both ontologies and their

mechanism.

Moving forward, stemming algorithms will be examined from different aspects such as

their definition, background history, wide range of techniques and main types of

stemming algorithms, with a comparison summary of the benefits and drawbacks of

each algorithm mentioned.

Since the research is analysing the cost in time/space of the TE system, the last

segment in the literature review is about algorithm analysis and complexity,

highlighting the important approaches with their advantages and disadvantages and

detailing the sequence followed in each approach. The asymptotic notations used in

expressing growth rates are explained with a detailed section on best and worst cases

of complexity.

2.2 Methodology of the Literature Review

Define the research topic

The intended focus area of the research must be decided. The researcher should be

guided by what interest him the most and should be familiar enough with the chosen

area to judge whether it is 'researchable' topic or not [29].

The researcher is interested in databases and data retrieval systems and while reading

for specific focus area, he came across the thesis “A Generic Architecture for Semantic

Enhanced Tagging Systems” that presented a retrieval prototype (it’ll be called TE in

8

Chapter 2: The Literature Review

the literature) and decided to enhance the TE prototype by adding stemming

capability.

Define the main concepts and keywords in the topic

Main concepts are defined while building a list of alternatives and synonyms to the

keywords. The list is used when searching for materials. In addition, looking at previous

work will identify the underlying theories and the ground materials of the research

topic which mostly are the frequently cited [29].

By performing this step, the researcher gathered essential information about

folksonomies like the broad and narrow types, the uncontrolled vocabulary, Princeton

WordNet, MultiWordNet, semantic relations, folksonomies advantages and

disadvantages. Furthermore, regarding stemming, there are suffix and affix stripping

algorithms, statistical stripping algorithms (n-grams, HMM), the snowball

framework…etc.

From the literature material, the researcher highlighted some notable researchers and

professors with ground knowledge on their fields such as Gruber, Levitiin, Pianta,

Sinclair, Miller, Frakes, D. Harman. In addition, many stemming algorithms have the

name of distinguished researchers in the field like Porter, Lovins, Krovetz, Paise, and

Husk.

The keywords list included these terms: tagging systems, metadata, social

classification, ontologies, web 2.0, collaborative tagging, semantic web, clustering,

cluster analysis, stemming, stemmer, stemming algorithm, root extraction, root word,

keyword stripping, suffix removal, inflectional language, and conflation.

Select research tools

Aided with tools afforded usually by the university, the search is performed on the

university library catalogue and its subscribed databases which cover a wide range of

research areas.

9

Chapter 2: The Literature Review

Databases offer the most recent academically authoritative text like journals, research

papers, theses, conference papers ...etc. ACM Digital Library, CiteseerX, OPAC, DBLP

Computer Science Bibliography, IEEE Xplore, Elsevier, ScienceDirect, INSPEC, JISC,

ETHOS, Springer , Google Scholar are frequent databases and websites visited by the

researcher during the search stage.

Do the search

Initially the search is based on the information gathered in step 2. Each yielded result is

processed for additional materials as follows ([29, 68, 84, 109]):

• The references are reviewed giving the researcher more insight into the study.

Also, reviewing additional materials that have cited the resulted article gave

the researcher information about any developments in the area of the study.

• The early work of authors which relates to the study is reviewed for useful

information. In addition, following up on later publication by the same author

gave information about what is new or changed since his prior work.

• From the resulted materials, their keywords were used to search for further

materials.

Manage references

A reference management tool such as EndNote should be used in this stage to record,

utilise, and prevent duplication of references. In this thesis, the researcher used

EndNote.

Analyse the materials

The researcher scanned the collected materials by reading the summary or the

abstract to be able to decide whether an article is worthy of further reading or

inclusion. During the first read, the researcher started note-taking, and grouping of

similar materials.

Writing the literature review

10

Chapter 2: The Literature Review

Once the initial overview has been completed it is necessary to return to the articles to

undertake a more systematic and critical review of the content.

The researcher needs to demonstrate his knowledge in the writing by comparing,

contrasting, critically evaluating, and interpreting the literature review contents.

2.3 Tagging Systems and the Semantic Web

2.3.1 Tagging Systems (folksonomies)

Background and Definitions

In 2004, the term folksonomy appeared in Wal’s information architecture blog and he

later on defined it as “the result of personal free tagging of information and objects

(anything with a URL) for one's own retrieval by the person consuming the

information”. The tagging process occurs within a social environment that is usually

shared and open [117].

Another definition of folksonomies is that “they consist of freely selectable keywords,

or tags, which can be liberally attached to any information resource” [91].

In [81], folksonomy is defined as classification system generated by users to tag (using

their selected words or sentences) retrieve and categorize web contents such as

online photographs, web resources and web links. It is also defined as the act of adding

keywords (metadata) to shared content by many users [91].

The term ‘folksonomy’ is a combination of two words 'folk' meaning people and

'taxonomy' which comes from two Greek words: taxis, meaning arrangement or order,

and nomos, meaning law or science, thus it simply means 'a taxonomy created by the

people' [91] although there is no taxonomy involved [91].

In information management, taxonomy is a hierarchical classification in the narrow

sense and in the broad sense, it is any means of organizing concepts of knowledge

[50].

11

Chapter 2: The Literature Review

In folksonomy, the authors of the labelling systems are regarded as the key users (or

occasionally the creators) of the contents linked to the labels applied. This is an

important difference from taxonomy [81].

The folksonomy term has other synonyms such as collaborative tagging, democratic

indexing, social classification system, user-generated metadata, tagging, social tagging

etc [91]. Some of these terms are debatable such as collaborative tagging which Wal

disagrees with, instead referring to collective tagging [117]. Others disapprove of

describing folksonomy as classification arguing that it is a post-hoc categorisation and

not pre-optimised classification since it has no notations nor relations [91]. A vital

aspect of folksonomy is that it is a flat-based namespace in that it has no hierarchy and

no direct relationship between the terms used in it [74].

Metadata role on the web is important; it contains description of the contents of a

web page along with keywords usually in metatags. Search engines use metatags to

index a page for matching it to similar search keywords [33].

An important part of folksonomy is the tag [117]. The role of the tags is that they help

improve the effectiveness of search engines since in most cases the content is

identified using a shared vocabulary that is easily accessible and popular [81]. Some of

the popular folksonomy-based systems nowadays are:

• CiteULike: www.citeulike.org

• Flickr: www.flickr.com

• YouTube: www.youtube.com

Wal indicated two types of folksonomy as follows [116]:

• Broad folksonomy: many people tag the same object and every person can tag

the object with their own tags in their own vocabulary such as in ‘del.icio.us’.

With this type of folksonomy tagging trends can be spotted using graphic tools

such as the power law curve.

12

Chapter 2: The Literature Review

• Narrow folksonomy: one or a few people provide tags that are used by a

person to search for information. Here, tags are directly associated with the

object. In contrast to broad folksonomy, finding emerging vocabulary or

descriptions is harder. The practise of grouping tags is visible whereas it’s not

so in broad folksonomies. Flickr is an example of narrow folksonomy.

Figure 2.1: Broad and Narrow folksonomies [116]

Delicious are usually tagged by a larger group of users (e.g. by everybody who has

bookmarked the web page cnn.com), photos on Flickr are usually tagged just by a

single user (e.g. just by the user who has uploaded the photo).

13

Chapter 2: The Literature Review

A folksonomy-based system uses at least two basic vocabularies; the searchers’

vocabulary and the users’ vocabulary. This might lead to the system mismatching

entries in both vocabularies. The concept of ‘preferred terms’ was introduced to allow

the folksonomy-based system to control the use of synonyms and homonyms. The

system should be able to relate synonyms and suggest the popular synonym as a

preferred option [81].

Advantages of folksonomy

• Although finding relevant documents of a direct search may be limited by

controlled vocabulary challenges, browsing the whole system including the

related interlinked tags will reveal unexpected material from all areas in

general [74].

• Usually, in an information retrieval system, we find two or more vocabularies

corresponding to the user, the designer, the author of the content, the creators

of the classification scheme etc. In this case it might be highly difficult to

translate between these vocabularies and this represents an issue in

information systems. folksonomy reflects in a direct manner the vocabulary of

users, it shifts the focus from the professionals to the users deriving from their

preferences in diction, terminology, and precision [57]. According to [76],

folksonomy can discover the digital equivalent of ‘desire lines’ which are foot-

worn paths that sometimes appear in a landscape over time and can be later

paved to become walkways. Similarly, a system can build a controlled

vocabulary using the users’ most common tags. The problem with that is the

users’ vocabulary may be inadequate to do the job because it is very different

from the others. The reason is that language is not precise; a word can have

different meanings and many synonyms and since users freely adds to their

vocabularies, then it is expected to have different ones. Another problem is the

short life span of tags in fast developing fields of knowledge meaning what is

considered the buzz word today may not be in the near future.

14

Chapter 2: The Literature Review

• folksonomy reduces the barriers of entry to the system which was limited to

professionals to include users. The reason behind that is that there has been a

shift from categorization and classification schemes, that are professionally

designed and clearly defined, to ad-hoc set of keywords allowing users without

any training or previous knowledge to participate in the system with less cost in

terms of time, effort and cognitive costs [74].

• In [113], Udell argues that feedback is the fundamental difference between

folksonomy and taxonomy. Within folksonomy, feedback is received in an

instant in that once a tag has been assigned to an item; a person is immediately

able to see a cluster of items with the same tag. If that view is not as expected,

changing or adding tags is allowed. Expanding the scope to include all items

with matching tags from all users is very powerful and similarly the view might

be different from the expectation. Solutions may include adapting to the group

norm, keeping the tag in a bid to influence the group norm, or both. Users can

communicate asymmetrically through metadata as result of the tight feedback

loop. The individual choices of tags describing contents in a folksonomy are a

representation of the negotiation about the meaning of these tags between

users [113].

• Individuals can use a folksonomy such as Flickr to organize contents using their

own vocabulary. The individual’s organizational behaviour reflects his needs

within that context. An example is the use of the tag ‘toread’ on Delicious [74].

On the other hand, Flickr is a public space to share contents between users and

the organizational behaviour of an individual is affected by his relationship to

other users, and user groups who they share tag use with him [74, 92]. Similar

to what has been discussed previously on participation, a folksonomy lowers

the barriers to cooperation. Members of a group do not have to agree on a

hierarchy of tags or detailed taxonomy; they only need to generally agree on

the meaning of a tag enough to label similar material with terms for there to be

cooperation and shared values. In this case some users may optionally alter

their vocabulary.

15

Chapter 2: The Literature Review

• While folksonomies are regarded as subject categorization systems, some of

their tags can be used in unexpected and interesting ways such as acting as a

communicative tool in a photographic conversation where participants try to

define a term using their own photographs and metadata [74].

Disadvantages of folksonomy

• Ambiguity: with the existence of an uncontrolled and shared vocabulary within

folksonomy, tags tend to be ambiguous since their assignment process to

contents does not follow explicit systematic guidelines and scope notes.

Another source of ambiguity arises from the use of acronyms which cause no

problems in environments with controlled vocabularies but in folksonomy, the

same acronym can tag contents from completely separate domains and ideas

[74, 92].

• Spaces and Multiple Words: some Folksonomies like Flickr seems designed

primarily to deal with the single form of words. Delicious prohibits the use of

spaces in tag names, whereas Flickr allows them. Users in some cases create a

single tag from multiple words without spaces, i.e., ‘flickrtravelaward’

on Flickr. Both systems ignore letter case, which minimise the significance of

tagging using acronyms [74, 92].

• Synonyms: these are different words with similar or identical meanings [81].

Like its vocabulary, folksonomy does not enforce rules to control the use of

synonyms in the system. For example, contents related to Apple Macintosh

computers can be tagged using tags such as ‘mac’, ‘macintosh’, and

‘apple’ [74].

• Different word forms, plural and singular, exist too [74] and this is a problem

because a question aimed at one cannot retrieve the other unless the system is

built to perform such replacements [81].

• Polysemy: it is a word with multiple meanings. ‘poly’ means many and

‘semy’ refers to meanings [81]. For example, the ‘apple’ term can be used

in tagging the fruit, an Apple retail store, or an Apple computer [64]. Because

16

Chapter 2: The Literature Review

tags cannot be semantically distinct and there are no rules for selecting them,

inappropriate connections between items can exist resulting in using a tag to

describe different concepts [64] and this leads to a decrease in the quality of

the retrieval results.

In general, the use of controlled vocabularies can resolve some of these disadvantages

but due to the nature of some of the tagging systems, including a controlled

vocabulary in them would be impossible [74].

Clustering

Data clustering is used for statistical data analysis that partitions a dataset into subsets

of similar objects or data clusters [12].

The clustering technique is applied to a wide range of topics and areas such as pattern

recognition, compression, and classification [37]. It is used in folksonomies to improve

search and navigation by addressing problems like annotating tags using shorthand

writing, having tags with high diversity, redundant tags, and tag ambiguity since the

uncertainty of a single tag in a cluster can be overwhelmed by the additive effects of

the rest of the tags [43].

In Flickr, clustering discriminates between different meanings of a user query. For

example, searching with the tag “apple” will retrieve several groups of pictures. The

groups represent the apple fruit, apple products such as iPods, iMacs, and New York

city. The user may interactively disambiguate his query by selecting the appropriate

group [43].

2.3.2 Princeton WordNet (PWN) Ontology

Overview

This is an online lexical reference system. In this case, English verbs, nouns, adverbs,

and adjectives are organised into synonym sets which individually represent one

underlying lexical concept [79].

17

Chapter 2: The Literature Review

Organizing lexical information, based on the standard alphabetical procedures, entails

the gathering of words with similar spellings and the scattering of similar or related

words throughout the list in a haphazard manner [79]. Regrettably, the main pitfall of

this is that there is no obvious or simple alternative allowing lexicographers to keep

track of the activities that have been carried out and helping readers with finding their

target words [79].

Whilst users can easily find these words in the dictionary list, this process can be

tedious and time consuming. That is why many people prefer to ignore the use of the

dictionary. This is because finding the information they require would result in

interrupting their work and breaking their line of thought [79].

With all the technological advancement in modern society, there is a solution that has

been put forward to resolve the complaint. The first obvious remedy is the use of on-

line dictionaries [79]. These are forms of lexical databases that are readable by the

computer. Here, computers are used to search for words throughout the alphabetical

list since the machinery is much faster than any human [79]. As soon as the user keys

in or selects the specified word, a dictionary entry is made available for him to use

[79]. Furthermore, since dictionaries are printed from tapes readable to computers, it

is relatively simple to convert such prints into the appropriate form of lexical database

[79]. Since it is relatively inefficient to limit the utilization of powerful machinery to

rapid page turners, Princeton WordNet (PWN) is a proposal for a more effective

combination of modern high speed computation and traditional lexicographic

information [79].

In 1985, at Princeton University, a gathering of psychologists and linguists worked on

developing a lexical database with the initial idea of offering the feature of dictionary

searching in a conceptual manner rather than the alphabetical one [79]. This feature

was supposed to work in close conjunction with an on-line dictionary. The progress of

the work, forced the original plan to evolve into a more ambitious one with

18

Chapter 2: The Literature Review

reformulated principles and goals and the final product was Princeton WordNet (PWN)

[79].

Table 2.1: Princeton WordNet (PWN) v3.0 Database Statistics 2006 [120]

As shown in the table above, current Princeton WordNet (PWN) (version 3.0) contains

155,287 lexical entries that are organized into 117,659 synsets which are sets

containing grouped synonyms and linked to each other by conceptual relations.

Different from a standard dictionary, Princeton WordNet (PWN) divides the lexicon

into the categories: nouns, verbs, adjectives, and adverbs [79].

The most ambitious feature of Princeton is that it has attempted to organize lexical

information in terms of word meanings rather than word forms [79].

19

Chapter 2: The Literature Review

The Semantic Relations in Princeton WordNet (PWN)

Table 2.2: Semantic Relations in Princeton WordNet (PWN) [78]

The table above lists few semantic relations in Princeton WordNet (PWN). These

relations were selected from a wide range of semantic relations which can be

established between words and word senses. The reasons for selecting these semantic

relations to be included in Princeton WordNet (PWN) are [78]:

• They are familiar in concept thus users do not need any advanced training in

linguistics.

• They can be applied broadly throughout English.

20

Chapter 2: The Literature Review

The semantic relation is formed using pointers connecting word forms or synsets [78].

The semantic relations in Princeton WordNet (PWN) are:

1. Synonymy: (syn = same , onyma = name) similarity is the most important

relation in Princeton WordNet (PWN) [79] because PWN represents word

senses using sets of synonyms (synsets) [78]. A definition of synonymy

considers two expressions as synonymous in a linguistic context if substituting

one with the other in the same context will not alter the meaning [79].

Synonymy is a symmetric relation between word forms [78].

2. Antonymy (opposing-name): it is a symmetric relation too between word forms

that is especially important when organizing the meanings of adjectives and

adverbs [78].

3. Hyponymy (sub-name) and Hypernymy (super-name): hypernymy is the inverse

of hyponymy. Hyponymy/hypernymy is a semantic relation between word

meanings. Both relations are transitive between synsets. Hypernymy is

responsible for hierarchically organizing the meanings of nouns because

normally only one hypernym exist [78]. Inside the hierarchy, hyponym is placed

below hypernym. This hierarchical representation is used in the construction of

information retrieval systems [79].

4. Meronymy (part-name) and Holonymy (whole-name): Holonymy is the inverse

of Meronymy and both are complex semantic relations [78].

5. Troponymy (manner-name): for verbs, this relation represents what hyponymy

represents for nouns but it has shallower hierarchies [78].

6. Entailment: it is a relation between verbs in Princeton WordNet (PWN), for

example the verb to divorce is entailed by to marry [78].

2.3.3 MultiWordNet (MWN) Ontology

Overview

MultiWordNet refers to a project which has the aim of developing an Italian WordNet

that is in strict alignment with Princeton WordNet (PWN). According to [93], the first

21

Chapter 2: The Literature Review

version of the MultiWordNet has an estimate of around 37000 Italian words which are

organized into 28000 synsets with information that is related to the correspondence

between English and Italian Princeton WordNet synsets.

Moreover, MultiWordNet (MWN) is perceived to adopt a methodological framework

that is highly different from Euro WordNet which is a multilingual database with

independent WordNets for several European languages and correspondences between

them.

The model adopted by MultiWordNet (MWN) builds WordNets in many languages

while trying to retain the semantic relations in the Princeton WordNet (PWN)

whenever possible. This is achieved by creating the new synsets in correspondence

with the Princeton WordNet (PWN) synsets whenever that can be possible. Looking

into these English synsets, any semantic relation that exists between them can be

imported. This simply means that any relation between two synsets in Princeton

WordNet (PWN) must also exist between the corresponding synsets in the new

language.

The MultiWordNet model is perceived to be less complex and it ensures the highest

level of compatibility among different WordNets. It follows in a strict manner the

building criteria and subjective choices of Princeton WordNet (PWN), however the

MultiWordNet (MWN) model is believed to have some shortcomings. The most

notable one is that MultiWordNet (MWN) is extremely dependent on the lexical and

conceptual structure of one of the languages involved, yet this can be lessened by

letting the new WordNet branch from the Princeton WordNet (PWN) in situations

where that might be considered necessary.

In MultiWordNet (MWN), automatic procedures can be derived in an aim to speed up

both the divergence detection, between the WordNet being developed and the

Princeton WordNet (PWN), and the building of corresponding synsets. Princeton

WordNet (PWN) can be a good resource to use by these procedures [93].

22

Chapter 2: The Literature Review

The first instantiation of the MultiWordNet (MWN) model was the Italian WordNet

which is based on two basic automatic procedures [93]:

• Assign procedure: when assigning an Italian word sense, the procedure puts

together a weighted list of the most likely Princeton WordNet (PWN) synsets

correspondences.

• (Lexical Gaps) LG procedure: it allows lexical gaps to be detected. These gaps

often exist when a lexical concept of a given language is represented using a

free combination of words in a different language [93].

Both of these procedures apply the Collins bilingual dictionary, the electronic version,

as a vital linguistic resource. The Collins bilingual dictionary is of medium size. Its

English section contains 40,959 headwords and 60,901 translation groups whereas the

Italian section includes 32,602 headwords and 46,565 translation groups [93].

Translation group (TGR) refers to a set of translation equivalents. The job of this group

is to translate one of the senses of a source language word [93].

The Assign-procedure

Adopting the MultiWordNet (MWN) model is all about generating Italian synsets which

are considered to be synonymous (semantically correspondent) of the Princeton

WordNet (PWN) synsets whenever possible. If this can’t be achieved then it is a case of

English-to-Italian or an Italian-to-English lexical idiosyncrasy [93].

Italian synonymous synsets can be constructed using two strategies as follows [93]:

• English-to-Italian translation equivalents are used in the first strategy. If there

exist ‘S’ (a PWN synset), then the strategy is looking for all Italian translation

equivalents which are cross-linguistic synonyms of the English words of ‘S’. The

retrieved translation equivalents represent the Italian synonymous synset of

‘S’. English-to-Italian lexical idiosyncrasy occurs if no translation equivalents are

retrieved.

23

Chapter 2: The Literature Review

• Italian to English translation equivalents are used in the second strategy. If

there exist ‘I’ (an Italian word sense), the strategy is looking for ‘S’ (a PWN

synset) including at least one English translation equivalent of ‘I’. The strategy

then creates a link between ‘I’ and ‘S’. Italian-to-English lexical idiosyncrasy

occurs when a set of Italian synonyms have no PWN synonymous synset.

The Lexical Gaps-procedure

Based on contrastive analysis literature, a lexical level can have different types of

idiosyncrasies whenever a source and a target language exist. However, just a few of

these idiosyncrasies are relevant to the coded information inside MultiWordNet

(MWN) which is strictly aligned with the Princeton WordNet (PWN) building criteria

[93]. In other words, within MultiWordNet (MWN), let’s assume there is ‘L1’ (a

synset of language#1) containing lexical units ‘w1, ..., wn’. ‘L1’ will only have a

correspondent in language#2 ‘L2’ if there is at least one or more lexical units in ‘L2’

which are cross-language synonyms of ‘w1, ..., wn’. This result in having only two

types of idiosyncrasies implying the lack of cross-language correspondence in MWN

[93].

• Lexical gaps: occur whenever a language expresses a concept through a lexical

unit while the other language expresses it with a free combination of words.

Following the MultiWordNet (MWN) building criteria only idioms and restricted

collocations are considered lexical units and thus can be synonymous with

simple or compound words. On the contrary, a free combination of words is

not a lexical unit and the elements are not bound specifically to each other and

so they occur with other lexical items freely thus implies a missing synset for

that language [93].

• Denotation differences: the translation Equivalent of a source language exists

but it is more general or more specific. In the former case the translation

equivalent is a sort of cross-linguistic hypernym of the source language word

and in the latter case it is a cross-linguistic hyponym [93].

24

Chapter 2: The Literature Review

Information related to lexical gaps can be used in two ways. Deciding this is dependent

on the type of gaps at hand. Are they Italian-to-English gaps? or vice versa [93].

• The Italian-to-English gaps: they point to a set of Italian synsets that will be

entered to the Italian WordNet manually. Building these synsets in

correspondence with any English synset is not possible and hence they cannot

be constructed based on the results of the Assign-procedure [93].

• The English-to-Italian gaps: they point to Princeton WordNet (PWN) synsets

which lack any Italian correspondents and they can be excluded from those

selected by the Assign-procedure [93].

2.4 Stemming

2.4.1 Background

In linguistics, Morphology studies the internal structure of words. It has two subtypes:

derivational and inflectional. The latter subclass is important in stemming [1].

An inflection produces one or more grammatical categories by adding a prefix, suffix or

infix, or another internal modification such as a vowel change [20]. Conflation is about

reversing the inflection process and within the English Language, it has problems when

working with [1]:

• Verbs that do not have a strict inflection pattern and change their stem when

changing tenses (e.g. throw, threw, thrown).

• Verbs that are completely irregular (e.g. be, was, been)

These problems cause stemming errors where unrelated words are conflated together

and unrelated terms are matched. To overcome these errors and have an efficient and

effective conflation, affix removal conflation techniques were established and they are

25

Chapter 2: The Literature Review

referred to as ‘stemming algorithms or stemmers’. While ignoring the occurrence of

occasional errors, they attribute to performance improvements [1].

Figure 2.2: The Stemming Process [106]

Stemming is a popular tool for word standardisation that matches morphologically

related terms. Its construction is a language specific process [25] which is harder in

languages that are considered morphologically complex or known to have many

irregularities [63].

Most studies have been focused on the development of stemming algorithms in

English, and similar languages such as Slovene and French [105]. in English, a word

consists of a stem, which refers to some meaning, and affixes to modify that meaning

and/or to fit the word for its syntactic role [88]. It is used in the fields of data mining

and information retrieval systems (IR) to enhance the quality of the results and cut

down on the storage requirements for the processed information [25, 118].

According to [106], stemming provides two basic advantages:

• Increased recall rate of the information retrieval. The recall rate represents the

number of relevant documents retrieved divided by the total number of

documents retrieved.

• Memory saving via reducing the entries in the index table, thus reducing its

size. Replacing full terms with their corresponding stem can achieve a 50%

compression [106].

26

Chapter 2: The Literature Review

2.4.2 Definitions

• Stemming is an automated process to extract the base form of a given word of

a language [99].

• Stemming is the process where affixes (prefixes, infixes, or/and suffixes) are

removed from words to reduce them to their stems or roots [16, 46].

• Stemming is the process of reducing inflected words to their stem by removing

any attached affixes from a word [25].

2.4.3 Techniques

As mentioned in the definition, stemming is about removing affixes from words and

stemming algorithms can be categorized based upon this to:

• Affix Stemming Algorithms: in addition to removing suffixes, common prefixes

are removed using several approaches [25].

• Suffix-Stripping Algorithms: these depend on a list of stored rules to guide the

stemming process [25]. This is commonly accepted as a good idea.

• Prefix Stripping Algorithm: This is not widely practised and not generally felt to

be helpful except in some subject domains such as chemistry [87].

When developing a stemming algorithm, certain issues must be considered such as

iteration and context awareness. Suffices are attached to a word in a certain order that

can be put in a set of order-classes and starting from the end of the word, the

stemming algorithm will iteratively remove suffices one at a time [2]. Regarding

context, a stemming algorithm can be one of the following [2]:

27

Chapter 2: The Literature Review

• Context-sensitive Algorithm: it involves a number of qualitative contextual

restrictions preventing the removal of endings that may produce wrong stems.

• Context free Algorithm: it removes endings without any restrictions.

In addition, stemming algorithms can be labelled as:

• Morphological Stemming algorithms (such as Porter Stemming algorithm): this

is based on morphological issues that are completely independent from the

syntactic and semantic structure of the sentence. Both inflections and

derivational affixes are removed [86].

• Syntactic Stemming algorithm (such as Stanford Stemming algorithm): this is

performed during the syntactic analysis of the sentence where only inflections

are removed. Thus the word ‘arrivals’ in Stanford stemming algorithm is

stemmed as ‘arrival’ whereas it is stemmed as ‘arrive’ in a Porter stemming

algorithm [86].

Moreover, stemming algorithms can be categorized according to their strength as

follows [16]:

• Light stemming algorithm: it adopts understemming, meaning it does not

conflate words of the same concept resulting in a reduced recall where fewer

relevant results are returned by a Text Retrieval system. It strips suffixes based

on regular expressions such as ‘ing’, ‘s’, ‘e’ [16, 88].

• Heavy stemming algorithm: It adopts overstemming, meaning the conflation of

words from different concepts resulting in reduced precision caused by the

return of irrelevant results [16, 88].

28

Chapter 2: The Literature Review

Below are other existing types of stemming algorithms which vary in their performance

and accuracy and methods [25]:

• Brute-Force Algorithm: it queries a lookup table, containing relations between

root forms and inflected forms. It looks for a matching inflection and then the

associated root of the match is returned if found [25].

• Lemmatisation Algorithm: initially it identifies each part of speech (POS) of a

word and then normalises them using specific rules for each part of speech.

Determining the correct POS is essential in this type [25].

• Stochastic Algorithm: it uses probability to find the root of a word. By training

the algorithm on a table of root to inflected form relations, a probabilistic

model is developed [25].

2.4.4 Types

Stemming algorithms can be classified into three groups depending on the method

used to produce stems as shown in the figure below:

29

Chapter 2: The Literature Review

Figure 2.3: Types of Stemming Algorithms [55]

Truncating Method (Affix Removal)

It involves removing the affixes of a word and below are some adopting stemming

algorithms [55]:

• Lovins Stemming Algorithm [58]: proposed by Lovins in 1968, it uses two

tables. The 1st table stores 294 endings, 29 conditions, and 35 transformation

rules arranged on a 'longest match' principle [55] and the 2nd table stores

some rules dealing with double consonants and handling other adjustments.

Based on the first table, the algorithm removes only the longest suffix from a

word and then recodes it using the second table which performs some

adjustments on the stem converting it into a valid word [55, 87]. The

advantages of this stemming algorithm are its fast speed since it is a single pass

algorithm and it has the ability to cope with special cases such as double

constants and irregular plurals [55]. The drawbacks include its consumption of

30

Chapter 2: The Literature Review

time and data, the unavailability of many suffixes in the first table can

sometimes be unreliable as it fails to construct words from the stems or to

match stems to like-meaning words [55].

• The Porter Stemming Algorithm [16, 25, 58, 86, 88, 99]: proposed by Porter in

1980. This has since undergone many modifications [55]. It is considered as a

light suffix-stripping stemming algorithm. It works by removing common

suffixes iteratively using a 5-step sequence with a different lookup table being

used in each step [87]. Porter designed a framework called ‘snowball’ to help

others adopt the algorithm to the language of their choice [55]. The porter

algorithm is fast, efficient, and simple thus it is commonly used in TR systems

[99]. Its simplicity is regarded as a disadvantage too since it causes the

stemming algorithm to produce incorrect stems in many cases (e.g. it does not

conflate the words ‘add’ and ‘adding’) [16]. The focus on developing stemming

algorithms was made mainly on the English language with scattered but great

efforts made in other more complex natural languages like Arabic or Turkish.

The implementation of a stemming algorithm involves encoding it to a

programming language such as C or Java for example [97]. The lack of

unambiguous stemming algorithms makes the implementation process difficult

and leads to a shortage of readily available stemming algorithms in non-English

language. This was the driving force for Porter to develop Snowball [97].

Snowball is a language to develop stemming algorithms. It is quite small and for

experienced programmers, it can be understood in hours [97]. It has its own

31

Chapter 2: The Literature Review

complier and script. The complier translates the Snowball script (.sbl file) into

an equivalent program of one of two formats below but In the end, each

stemming algorithm will have its standard vocabulary of words and their

stemmed equivalents [97].

• An ANSI C program: the result is a program file and corresponding

header file.

• A Java program

• Paice/Husk Stemming Algorithm [58]: this was developed in the late 1980s in

Lancaster University by Chris Paice and Gareth Husk [2]. Initial implementation

was in Pascal but was followed with other versions in Java, C , and Perl [2].

 It is a simple heavy iterative stemming algorithm [87, 88] which uses 120 rules

stored in one table and indexed by the last letter of a suffix for quick access [55,

87]. Each iteration involves looking up a rule based on the last character in the

word. If a match is found, the rule decides whether to delete or replace the

ending and then the process repeats itself, otherwise the algorithm terminates.

The algorithm is designed to terminate in other situations too, such as if a word

starts with a vowel and there are only two letters left or if a word starts with a

consonant and there are only three characters left [55, 87]. In this stemming

algorithm, the rules lead to heavy stemming that is considered extremely

advantageous for index compression but tends to produce many overstemming

errors [55, 87]

• Dawson Algorithm: Considered as an extension of the Lovins algorithm, it is

similarly fast but it uses a list that is much larger and comprehensive with about

1200 suffixes stored in reverse order, indexed by their length and last letter,

and organized as a set of branched character trees for rapid access. This

32

Chapter 2: The Literature Review

stemming algorithm is very complex and lacks a standard reusable

implementation [55].

Paice concluded that the Porter stemming algorithm has a smaller stemming-error rate

than the Lovins stemming algorithm which was noted to have better data reduction

[55]. The large suffix set in the Lovins algorithm made it much bigger than the Porter

algorithm but gave it the advantage of fast speed because it is implemented using two

major steps [55].

Statistical Method

Implementing this method means that the stemming algorithm must perform a

statistical procedure before removing the affixes [55].

• N-Gram Stemming Algorithm [58]: it is language independent stemming

algorithm which represents a set of ‘n’ consecutive characters extracted from a

word. The concept here is that similar words will have a high proportion of n-

grams in common. If ‘n’ equals to 2 or 3, the extracted words are called digrams

or trigrams, respectively [55].

Mixed Methods: Inflectional and Derivational Methods

• Krovetz stemming Algorithm: it was developed in 1993 by Robert Krovetz [55]

and it utilizes the internal structure of a word (morphology), a dictionary, and a

list of exceptions [16]. The process starts by removing the suffix and then

looking up the dictionary for recoding the stem to a spell-checked meaningful

word [55]. Depending on a dictionary has its own problems. First the

dictionary must be created manually in advance which is labour intensive and

this leads to the next problem when the stemming algorithm is unable to deal

with a word because it is not listed in the dictionary [55]. Using the inflectional

and the derivational morphology analysis [55] made this algorithm complex but

33

Chapter 2: The Literature Review

also accurate as it generates morphologically correct stems, handles

exceptions, and process prefixes too [55]. Compared to the Porter stemming

algorithm, it is slower with large size input documents [16, 55] and becomes

weaker and less effective [55]. In general, it is considered as an effective, light

(lighter than Porter and Paice/Husk) and accurate algorithm [55] which is why

Krovetz recommended its use as a pre-processing step when working with a

heavy stemming algorithm to increase speed, effectiveness [55] and to reduce

common errors [16].

2.4.5 Non-English Stemmers

The internet has made a large volume of information, in multiple languages, available

online. The need to access specific information increased the felt demand for a multi-

lingual text retrieval system [89]. For example, search engines are getting more

sophisticated using advanced search parameters, and classification tools [82].

The early research was mainly on English language, and then major European

languages followed. These languages have few Standard stemmers available. Other

languages such as languages from the Indian sub-continent are making progress but

the scarce availability of tools and other lexical resources are slowing the process [89].

According to [42], spoken languages have a rough classification as follows:

• Inflective languages: words consist of a stem and a fixed number of suffixes

and/or prefixes, thus the number of combinations is fixed. Most European

languages fall into this class.

• Agglutinative languages: words consist of a stem and a potentially infinite

number of suffixes. Hungarian, Turkish, and Korean are examples of such

languages.

• Isolating languages: words are fixed thus each word is also the stem. Examples

of such languages are Chinese or Vietnamese.

34

Chapter 2: The Literature Review

• Intraflective languages: here, the word expresses its root meaning with

consonants, and its grammatical variations with vowels intermixed with the

consonants. Examples of such languages are Arabic and Hebrew.

• Incorporating languages: words consist of many stems glued together by

complicated rules. Examples of such languages are some North American native

languages.

In the following, the research in stemming done on Arabic and Indian languages is

summarised to highlight the progress done in languages other than English and

European.

Arabic

The work of Khoja attempts to find roots for Arabic words by stripping the prefixes and

suffixes and comparing that against a dictionary of root words.

In 2002, Larkey found that stemming has a large effect on Arabic information retrieval,

at least in part due to the highly inflected nature of the language [62]. At the same

time, Darwish presented a rapid method of developing a shallow Arabic morphological

analyzer based on automatically derived rules and statistic [32]. Recent work done by

Sembok developed an Arabic stemmer with the rule-based approach plus a dictionary

of root words to verify the validity of the root candidates [104].

Indian

For Indian language, early and noted research includes the work of Larkey and others

in 2003 which presented a light stemmer in conjunction with list of common suffixes.

Another stemmer with a similar approach was developed in 2003 by Ramanathan and

Rao which used a hand crafted suffix list and performed longest match stripping [45].

For their stemmer, Chen and Gey opted for a statistical method. In 2007, a Bangali

stemmer was presented by Dasgupta and Ng [89] while Islam et al. proposed a light

weight stemmer for Bengali which strips the suffixes using a predetermined suffix list.

35

Chapter 2: The Literature Review

YASS stemmer was developed by Majumder et al. (2007) based on statistical approach

using string distance measure[73]. For Gujarati , Suba et al. (2011) developed two

stemmers. The first one is a lightweight stemmer based on a hybrid approach and the

other one is a heavyweight stemmer based on a rule-based approach [110]. Gupta and

Lehal (2011) had their stemmer for Punjabi which obtains the stem and then checks it

against Punjabi noun morph and proper names list [44].

2.4.6 Applications

Stemming has some applications in machine translation. For example, the work done

by Lee presented a morphological analysis technique to improve statistical machine

translation qualities. The technique improves Arabic-to-English translation qualities

significantly [65]. The experiments by Popovic and Ney regarding statistical machine

translation from inflected languages into English showed that the use of word

morphemes improves the translation quality [95]. The model proposed by Yang

translated unseen word forms in German-English and Finnish-English text by

hierarchical morphological abstractions at the word and the phrase level and showed

improvements over state-of-the-art phrase-based models [121].

Stemming is used also in the area of document summarization [31, 85]. The XDoX

summarizer designed by Hardy and others used stemming for data processing. The

XDoX produced readable, coherent and well organized summarizes. In most cases the

system successfully presented main points, skipped over minor details, and avoided

redundancy [48]. Mixed models are used by Arora and Ravindran to capture topics and

pick up sentences and then evaluate the generated summary using the Porter

Stemmer through the ROUGE evaluator [9].

Text classification is about the automatic pre-defined label placement on previously

unseen documents. It is used in document indexing, e-mail filtering, web browsing, and

personal information agents. Stemming is used in many text classification experiments

[102]. The role of stemming in text classification [41, 82] is getting different point of

36

Chapter 2: The Literature Review

views . The research done by Riloff in 1995 concludes that stemming algorithms are

appropriate for some terms and that having all morphological variants is more

beneficiary [41]. In 2000, Busemann had shown that morphological analysis increases

performance for a series of classification algorithms in German [21]. It is also used in

text mining and information extraction [38].

2.4.7 Discussion

The next table summarizes the key features of all mentioned algorithms [55].

Advantages Limitations

Truncating (Affix Removal) Methods

Lovins Stemming algorithm

• Fast, single pass algorithm.

• Handles removal of double letters.

• Handles many irregular plurals.

• Time consuming.

• Missing some suffixes.

• Not very reliable and frequently fails to

form words from the stems.

• Dependent on the author’s technical

vocabulary.

Porters Stemming algorithm

• Compared to Lovins it’s a light stemming

algorithm.

• Has the best output compared to other

stemming algorithms with lower error

rate.

• Snowball is language independent.

• Some produced stems are not real

words.

• Time consuming because of its 5 steps

and 60 rules.

Paice / Husk Stemming algorithm

• Simple form with each iteration doing • Heavy algorithm and over stemming can

37

Chapter 2: The Literature Review

deletion and replacement. happen.

Dawson Stemming algorithm

• Covers more suffixes than Lovins.

• Fast execution.

• Very complex.

• Lacks a standard Implementation.

Statistical Methods

N-Gram Stemming algorithm

• Language independent. • Not time efficient.

• Needs significant space for creating and

indexing the n-grams.

• Not a practical method.

Mixed Methods (Inflectional & Derivational Methods)

Krovetz Stemming algorithm

• A light stemming algorithm.

• Can be used as a pre-stemmer for other

stemming algorithms.

• For large documents, it is not efficient.

• Can’t cope with words outside the

lexicon.

• Not consistent in producing good recall

and precision.

• Lexicon needs to be created in advance.

Table 2.3: Comparative Summary of some Stemming algorithms [55]

In [36], the strengths of four stemming algorithms were evaluated using six metrics

and they were ranked from strongest to weakest as follow: Paice, Lovins, Porter, and

SRemoval.

Correctness, retrieval effectiveness, and compression performance are several criteria

for judging stemming algorithms [106].

The effects of stemming on retrieval performance have been targets of several

investigations which found that stemming improves retrieval’s performance and that

there were no consistent differences in performance between different stemming

38

Chapter 2: The Literature Review

algorithms [88]. This method does not provide any insights on stemming algorithm

optimisation [63, 88].

All previously discussed stemming algorithms do not function 100% meaning they

outperform in some areas but can be a let-down in others. Still, they are good enough

to be applied to the text mining, NLP or IR applications [55]. Stemming algorithms have

many similarities but the main difference is their approach. The rule-based approach

stemming algorithm does not guarantee a correct output every time and the produced

stems are not always correct words, whereas the linguistic approach does not properly

stem words outside the lexicon which must be exhaustive. Moreover, the statistical

approach is language independent but does not always give reliable and correct stems.

In many existing stemming algorithms there is a trade-off between overstemming and

understemming [88]. A perfect stemming algorithm should not overstem or understem

and this can be achieved if it takes into considerations words syntax, semantics, and

their POS. Also, including a lookup dictionary will be beneficial in reducing errors and

converting stems to words [55].

2.5 Summary

The chapter discussed many topics related to the thesis. It began by giving definitions

and a background literature to Folksonomies. Some advantages and shortcomings of

Folksonomies were outlined. Next, an overview of the Princeton WordNet and

MultiWordNet ontologies was included because they are used in the TE system with

tags to enhance their quality. Adding a stemming component to the TE system

required reading into their background, definitions, techniques, and types to decide on

the best algorithm to use. The chapter concluded by discussing algorithm analysis and

complexity to evaluate the algorithm of the TE system which is discussed in the next

chapter to highlight its scope, components and implementation methods.

39

Chapter 3: The TE (Tag Enhancer) System

3 The TE (Tag Enhancer) System

3.1 Introduction

This chapter will address the area of study that has been chosen by this research for

the critical algorithm efficiency analysis and modification. The TE system has three

main sections: the proposed system architecture, the prototype, and the experiment.

This chapter will discuss only the prototype section, highlighting the decisions that

were made throughout the process with respect to scope, space and time. Taking note

of these decisions is very important when doing the algorithm analysis because they

will be the focus of the critical discussion later on.

3.2 Overview

In the TE system, whenever the user provides a tag ‘user tags’, a new set of tags

‘system tags’ are added by the system database for the sake of overcoming the lack of

semantics in the user tags. System tags are extracted from different resources

depending on the user tag as follow [72]:

• User tag is IN the vocabulary: its related system tags will be added from

Princeton WordNet (PWN) and MultiWordNet ontologies (semantic resource).

• User tag is NOT in the vocabulary: its related system tags will be extracted using

social tag-based system clustering (social resource).

The study claims that the new added system tags along with the raw user tag will

improve the search process by providing more accurate results [72].

3.3 The Scope of TE

In [72], a generic architecture for a Tag-Based System is presented with the

components: tagging component, search component, semantic component, clustering

component and database component.

40

Chapter 3: The TE (Tag Enhancer) System

Figure 3.1: The Proposed Generic Architecture for Tag-Based Systems [72]

Before implementing the TE algorithm, the scope of the proposed generic architecture

was limited to only some of the components listed previously and they are the

semantic component and the clustering component. The TE is only dealing with the

following tagging problems: semantic relations, multilingualism and shorthand tags. TE

mainly proposes to improve the following aspects [72]:

• The semantic aspect via the semantic component (semantic resource)

• The multilingualism aspect via the semantic component (semantic resource)

• The clustering aspect via the clustering component (social resource)

41

Chapter 3: The TE (Tag Enhancer) System

Figure 3.2: The Scope of TE [72]

3.3.1 The Semantic Component

This component deals with the following problems [72]:

• Word Synonyms & Semantic Relations: the interaction here is between the

tagging system database and Princeton WordNet (PWN). It raises a query to

retrieve a set of words that are relevant to the user tag as they are either

synonyms or hypernyms of it. In order to address this task, the Princeton

WordNet (PWN) ontology is used. In Princeton WordNet (PWN) and other

ontologies which are based on the Princeton WordNet (PWN) structure, words

have relations between them and each word has many senses which are

different meanings for the same word. Senses in Princeton WordNet (PWN)

and similar ontologies are generally ordered from most to least frequently

used, with the most common sense listed first and so forth. In the study,

relations deals only with the first sense.

• Multilingualism: Most tag-based systems do not force users to use specific

languages during the processes of tagging or searching. This implies that unless

the search keyword and the user tag use the same language, no results will be

42

Chapter 3: The TE (Tag Enhancer) System

found. Multilingual lexical ontologies can be used as translators since they store

a few languages, (usually in a database) with a cross language link among the

word translations in different languages. EuroWordNet ontology contains seven

European languages (Dutch, Italian, Spanish, German, French, Czech and

Estonian) whereas MultiWordNet (MWN) covers only English and Italian.

MultiWordNet (MWN) is free for researchers thus it is used in this study by the

semantic component which queries it using the user tag to retrieve relevant

words in English or Italian.

When a new tag is submitted, the TE system queries three resources in worst case

scenario. For example, submitting the tag “btw”, which is shorthand writing for “by the

way”, to the TE system will require querying the Princeton WordNet (PWN), the

MultiordNet (MWN), and finally the clustering component. Moreover, a tag can be

semantically rich and yield over 80 system tags (see table 5.5 and table 5.11) after

querying the semantic component.

[72] considered the critical factors of time and space and decided on saving time

during the search process and generating the system tags when submitting new tags.

[72] claims that time is more important than space especially during the search

process because a response time is involved, whereas it is not noticeable at the tagging

process. Furthermore, the study points out that since all the data used are textual, the

space factor is less significant since they consume small space due to their nature. The

thesis discusses this point thoroughly in chapter 5.

3.3.2 The Clustering Component

This component handles the problem of shorthand writing. It interacts only with its

tagging system database and also with at least one external tagging system database.

It is an additional source along with Princeton WordNet (PWN) to add semantic to tags

when Princeton WordNet (PWN) fails to do so, particularly in the case where tags are

shorthands, colloquial words, or specialised technical terms. To save time on

clustering, the architecture can use the Flickr tagging system to retrieve tag clusters

43

Chapter 3: The TE (Tag Enhancer) System

using APIs provided by Flickr. The number of clusters varies from one tag to another

and the same can be said about the tags inside each cluster. When a tag is submitted

to the Flickr tagging system database, a variable number of clusters will be retrieved

with a different number of tags in each cluster. According to [72], most tags retrieve

one cluster only. Furthermore, it was found that the Top-N tags in the 1st cluster are

the most related tags [72]. Therefore, the TE system decided to add the Top-3 tags

from the 1st cluster as system tags. The actual clustering algorithm used in Flickr has

not been officially released. Revealing the clustering algorithm will help in automating

the process of judging the clusters relatedness. This is important since the Top-N tags

in the most related cluster can be used as system tags to provide a better context. The

TE system is limited to retrieving only the Top-10 tags in each cluster and suggests

running these procedures periodically to keep up-to-date with the social vocabulary.

3.3.3 The Database Component

The database of the TE system stores information about tagged objects, clusters, etc. It

interacts with the components below as follows:

• Semantic Component: to store system tags in the database

• Clustering Component: to store system tags in the database

The design of the database component is illustrated below. It is built using MySQL

Database Management System.

Figure 3.3: The ER Model of the TE Database

44

Chapter 3: The TE (Tag Enhancer) System

Table Key Attribute Description

Videos primary Video_ID Unique ID for identifying each video

- Title Video title as it appears in YouTube (imported

from YT). In the experiment it will be a hyperlink

to the video on YouTube

- Link video URL on YouTube (imported from YT)

- Thumb Video thumbnail as it appears in YouTube

(imported from YT)

Tags_Master primary Video_ID Unique ID for identifying each video

primary User_Tag Raw tag used to annotate the video

Tags_Detail primary User_Tag Raw tag used to annotate the video

primary System_Tag Added tag from the semantic component or the

clustering component

primary Tag_Type The resource of the System Tag (semantic or

social)

Table 3.1: Breakdown of the Database Tables

3.4 The TE System

3.4.1 The Data

The database is populated with data from different resources as follows [72]:

• Initially, a set of English and Italian keywords stored in a String Array is used to

query YouTube looking for matching videos. All videos retrieved from the

YouTube site are saved in one list called ‘video list’ and then certain

information about every video in this list is saved inside the TE database. For

the TE system, the most important piece of information is the tags attached to

each retrieved video.

• The TE system needs sample data (i.e. tags sample) because it is not operating

a real tagging system. The tags sample is imported using YouTube’s own Java

Data API and stored in the TE database where the algorithm is applied on them

later on.

45

Chapter 3: The TE (Tag Enhancer) System

• System tags from semantic ontologies (Princeton WordNet (PWN) and

MultiWordNet (MWN)) via the semantic component.

• System tags from Flickr using its clusters via the clustering component.

3.4.2 The TE Implementation

The Programming Languages

The algorithm is implemented using Java. This is because it has a vast amount of APIs

available to interact with all the resources needed for the TE system’s implementation

as shown below:

• YouTube APIs: which are called ‘YouTube Data API’. See available

documentation at: https://developers.google.com/youtube/getting_started

• Princeton WordNet (PWN) APIs: which are called ‘Java API for WordNet

Searching (JAW)’. See available documentation

at: http://lyle.smu.edu/~tspell/jaws/index.html

• Flickr APIs: which are called ‘Flickr Java API’ (flickrj)’. See available

documentation at: http://flickrj.sourceforge.net/

Querying the Semantic Resources

Princeton WordNet (PWN) contains only English language whilst the MultiWordNet

(MWN) contains English language and Italian language. This means that the TE system

can obtain English system tags from two resources whereas it only has one resource to

obtain Italian system tags [72].

The TE system queries only Princeton WordNet (PWN) to get the English system tags

since its WordNet version is more recent than MultiWordNet (MWN). This leaves

MultiWordNet (MWN) responsible for retrieving the Italian system tags, and finding

the corresponding translation for the user tags [72].

46

https://developers.google.com/youtube/getting_started
http://lyle.smu.edu/%7Etspell/jaws/index.html
http://flickrj.sourceforge.net/

Chapter 3: The TE (Tag Enhancer) System

3.5 Summary

The chapter discussed the TE system starting with an overview and then it investigated

its scope by detailing the components included. The role of each one of these

components was explained in addition to looking at the methods used by them to

perform their designated objectives. The last part of this chapter outlined the general

implementation plan and its programming environment which involved the services of

many APIs for manipulating the different semantic and social sources. In the next

chapter, the thesis explains the methodology used to evaluate the TE system and

embed the stemming component.

47

Chapter 4: The Methodology

4 The Methodology

4.1 The Efficiency of Algorithms (The Performance)

Computational complexity theory is concerned with looking at what computational

resources are required to solve a given task [10]. The questions it studies include the

following:

• Many computational tasks involve searching for a solution across a vast space

of possibilities. Is there an efficient search algorithm for all such tasks, or do

some tasks inherently require an exhaustive search?

• Can algorithms use randomness to speed up computation?

• Can hard problems be solved more quickly if we allow the algorithms to err on

a small number of inputs, or to only compute an approximate solution?

• Is there any use for computationally hard problems?

• Can we use the counterintuitive quantum mechanical properties of our

universe to solve hard problems faster?

• Can we generate mathematical proofs automatically? Can we check a

mathematical proof by only reading three probabilistically chosen letters from

it?

The efficiency of an algorithm is considered more important than the execution

technology. It measures the amount of memory and time needed by an algorithm to

run [51]. Choosing the best algorithm to solve a problem is essential and there are a

few approaches that guide programmers in this process as listed below [19, 52]:

1. Empirical (Performance Measurement): this method is machine dependent

because the algorithm is implemented, executed and time is recorded.

2. Analytical (Performance Analysis): this method considers high-level descriptions

of the algorithm. For each proposed algorithm, several factors must be

determined mathematically. The factors include execution time, memory,

space etc. This approach has several benefits:

48

Chapter 4: The Methodology

• It is independent of the computer used, the programming language or

the programmer’s skills.

• It saves programming and testing time for inefficient algorithms.

• It tests instances of any size.

3. The hybrid approach: this uses the previous approaches referred to above. It

does this by determining theoretically the form of the function describing the

algorithm's efficiency and then empirically determines any required numerical

parameters.

Analytical Empirical
Inputs of all possible sizes are accounted
for.

Limited set of inputs.

Comparing run times of 2 algorithms is
machine independent.

Comparing run times of 2 algorithms is
machine dependent. Identical
environment (software and hardware)
must be used.

Algorithm implementation is not
required.

Algorithm must be implemented.

Table 4.1: Algorithm Performance Methods [52]

4.1.1 Empirical (Performance Measurement)

This method involves more work than the performance analysis, thus there are several

steps to follow to insure better results when implementing the testing experiment. The

steps are as follows [67]:

1. Setting the purpose of the experiment.

2. Deciding on the efficiency metric and measurement unit.

3. Specifying the input sample in terms of range, size etc.

4. Implementing the algorithm.

5. Generating an input sample.

6. Running the algorithm implementation using the sample.

7. Recording the observed data.

8. Analysing the results.

49

Chapter 4: The Methodology

The implementation should be designed to provide means to record data. The first

method is to use counter(s) to calculate the number of times the algorithm’s basic

operation is executed. An alternative method is to time certain parts of the

implementation [67]. In Java, the method ‘currentTimeMillis()’ in the System

class can be used. Consider the following when using the latter method [67]:

• The system’s time is typically not very accurate and you can get different times

while running the same code and input. Taking the average of several trials is a

much better option.

• High-speed computers can report the run time as zero. The solution is to add

an extra loop and go through it ‘n’ times, measure the total time, and then

divide it by ’n’ to get the time for one loop.

• Computers with a time-sharing system can return time results that include time

spent on other programs. Thus, they request only user time from the system.

Test conducted by running
Selection Sort program on
IBM compatible PC with:
Intel 80386 processor with
80387 numeric coprocessor
+
turbo accelerator
+
Borland’s Turbo C compiler

n Time
(seconds)

30...100 .00
200 .11
300 .22
400 .38
500 .60
600 .82
700 1.15
800 1.48
900 1.86
1000 2.31
1100 2.80
1200 3.35
1300 3.90
1400 4.54
1500 5.22
1600 5.93

Table 4.2: Empirical Test Example(Adapted) [5]

50

Chapter 4: The Methodology

Figure 4.1: Empirical Test Example’s Graph [5]

4.1.2 Analytical (Performance Analysis)

Performance analysis of algorithms is useful in [51]:

• Determining if the algorithm is practical.

• Predicting run time for large inputs.

• Comparing two algorithms with different asymptotic complexity functions.

Two criteria are used to judge the performance of an algorithm [6, 51]:

• Space complexity (storage requirement): this is the amount of memory it needs to

run to completion.

• Time complexity (computing time): this is the amount of CPU time it needs to run

to completion.

The memory’s hierarchy is divided into levels, each with its own unique response time.

The performance analysis discards the differences in those response times [51]. The

actual space and time requirements of a program are dependent on [18, 67]:

• The compiler generating the machine code.

• The quality of the implementation program.

• The speed of the computer.

51

Chapter 4: The Methodology

In algorithm design, time and space can co-exist without competing with each other to

find an algorithm with minimum time and space costs [67].

Nevertheless, there are some trade-offs between the above two factors. Trading space

for time is the most common. In some cases, the problem’s input is pre-processed

wholly or partially and then the resulting data is stored. This is called ‘input

enhancement’ and it makes solving the problem later on much faster. Here the time is

more important [67]. Another case where time takes precedence over space is ‘pre-

structuring’ where extra space is used to provide faster and/or more flexible data

access such as in hashing and B-Trees indexing [67].

Another case that deserves a mention is ‘dynamic programming’ where solutions to

overlapping sub problems of a problem are stored in a table from which a solution to

the original problem is then obtained [67].

To proceed analysing the performance of non-recursive algorithms, the next steps

must be followed:

1. Decide the input’s size.

2. Identify the algorithm’s basic operation and whether its repetition is solely

dependent on the input’s size or other extra factors.

3. Identify the worst-case and average-case efficiencies. Measure best-case

efficiency whenever needed.

4. Sum up the execution times of the algorithm’s basic operation.

5. Calculate the sum’s order of growth.

The following factors can measure the efficiency of an algorithm:

• Memory space (Space Complexity): this is measured by several factors such as

the number of variables and the number and sizes of the data structures used

in the algorithm [49].

52

Chapter 4: The Methodology

• Execution time (Time Complexity): this is measured by the number of

elementary actions performed by the processor in such an execution. In other

words it calculates the amount of time required to execute an algorithm [49].

The performance of the above factors and the algorithm in general varies from input

to input.

4.2 Time Complexity

Time Complexity describes the relationship between the size of the input and the

execution time of the algorithm and it is mostly expressed as a proportionality [18]

As an example, sorting large lists takes more time than short lists and performing

multiplication on huge matrices is slower than on small ones [47].

Time Complexity indicates the run speed of an algorithm [67]. The equation: T(P)=

C+TP(I) defines the time required ‘T(P)’ to run a program ‘P’ where [5, 6]:

• ‘C’ (fixed time requirements): compile time independent of instance

characteristics.

• ‘TP(I)’ (variable time requirements): execution time.

Measuring ‘T(P)’ is done using one of these methods [6]:

• Conducting an experiment using a ‘stop watch’ (usually time is in seconds or

microseconds).

• Counting program steps.

Measuring the theoretical efficiency of an algorithm can be explained by the principle

of invariance, according to which two different implementations of the same algorithm

will not differ in efficiency by more than some multiplicative constant [19]. To explain

more, if two implementations take ‘T1(n)’ and ‘T2(n)’ seconds respectively to

solve an instance of size ‘n’, then there always exists a positive constant ‘c’ such

that T1(n) <= cT2(n) whenever ‘n’ is sufficiently large [19].

53

Chapter 4: The Methodology

This principle is valid regardless of the programming language, the programmer’s skills

(unless it modifies the algorithm), and the computer used (of conventional design).

Although changing the machine may speed up solving a problem by 10 or 100 times,

still the change of algorithm will give improvements that gets more and more marked

as the size of the instances being solved increases [19].

Expressing the theoretical efficiency of an algorithm is only done within a multiplicative

constant. Thus, if an algorithm takes a time in the order of ‘T(n)’ for a given function

‘T’, there exists a positive constant ‘c’ and an implementation of the algorithm capable

of solving every instance of the problem in a time bounded above by cT(n) seconds,

where ’n’ is the size of the instance considered.

Other units can replace seconds in the above definition by changing the constant to

bound the time by aT(n) years or bT(n) microseconds [19].

Time complexity T(n) is measured in the order of a function O(f(n)). For any ‘n’

that is sufficiently large, this determines the upper and lower bounds on the amount of

work done [18].

A computation that runs in linear or quadratic time is efficient [10]. In the analysis of

algorithms, the logarithms to the base 2 are so frequently used and have their own

notation ‘lg n’ (short for Iog2n).

The objectives of the analysis of time complexity are [18]:

• To determine the feasibility of an algorithm by estimating the upper bounds of

the performed work.

• To compare different algorithms and then decide on the best ones for the

implementation.

Sometimes in the analysis, if work takes a constant amount of time independent of the

input size, it is ignored. This helps to simplify things and the time complexity is

considered constant and is denoted as O(1) [18].

54

Chapter 4: The Methodology

Furthermore, usually the focus is on the differences in performance between

algorithms performing the same task [18].

Simplified analysis can be based on the number of [18]:

• Performed arithmetic operations.

• Performed comparisons.

• Times through a critical loop.

• Array elements accessed etc.

Algorithm analysis has different scenario cases as follows [18]:

• Average Case: determines the average performance.

• Worst Case: produces an upper bound on the algorithm performance for large

problems (large ‘n’) and it is simpler to work out. It is expressed as T(n) = n

where T(n) is the maximum number of steps in any execution of the algorithm

with ‘n’ inputs [47].

Within this context, the terms above are defined as follow [47]:

• Input size: defining the size as the input’s required storage in bits is too low-

level and not useful. Instead, it is problem-dependent. For example, if the

algorithm is about sorting elements then the number of elements is the input

size.

• Step: anything a computer does in a fixed amount of time.

4.3 Space Complexity

The space complexity for a given input is the number of elementary objects that the

algorithm needs to store whilst executing [108]. It is the amount of memory space

needed by an algorithm plus the space needed for its input and output [67].

Space complexity S(P) is calculated by the rule: S(P)=C+SP(I), where [5, 6]:

55

Chapter 4: The Methodology

• ‘C’ (fixed space requirements): independent of the characteristics of the

inputs and outputs. Examples are spaces for instruction, simple variables, fixed-

size structured variable and constants

• SP(I)(variable space requirements): depend on the instance characteristic

‘I’

• number, size, values of inputs and outputs associated with ‘I’

• recursive stack space, formal parameters, local variables, return address

In computational complexity theory, some computational models use resources to

solve computational problems. DSPACE is one of these computational resources

specialising in memory space. It represents the total amount of memory space that a

computer needs in order to solve a given computational problem with a given

algorithm [100].

For an algorithm T and an input x, DSPACE(T, x) denotes the number of cells used

during the (deterministic) computation T(x).

We will note DSPACE(T) = O(f (n)) if DSPACE(T, x) = O(f (n)) with n =

|x | (length of x).

Note: if T(x) does not stop then, DSPACE(T) is undefined.

Figure 4.2: Example (1) of Space Complexity [7]

56

Chapter 4: The Methodology

Figure 4.3: Example (2) of Space Complexity [7]

Memory space can be estimated theoretically in a similar way to computing time.

Sometimes, both factors can effect each other where using more space results in

reduced computing time and conversely.

4.4 Cases of Complexity

• The worst-case efficiency: is the efficiency for the worst-case input of size ’n’

for which the algorithm runs the longest among all possible inputs of that size.

It can be determined by analysing the algorithm to see what kind of inputs yield

the largest value of the basic operation’s count C(n) among all possible inputs

of size ‘n’ and then computing this worst-case value Cworst(n) [67].

• The best-case efficiency: is the efficiency for the best-case input of size ’n’ for

which the algorithm runs the fastest among all possible inputs of that size. This

case can be determined by determining the kind of inputs for which the count

C(n) will be the smallest among all possible inputs of size ‘n’. (Note that the

best case does not mean the smallest input; it means the input of size ‘n’ for

which the algorithm runs the fastest) [67]. The analysis of the best-case

efficiency is not nearly as important as that of the worst-case efficiency [67].

57

Chapter 4: The Methodology

• The average-case efficiency can provide insight on how the algorithm behaves

with a typical or random input, which cannot be yielded from either the worst-

case or the best-case analysis. Deciding on this case requires making

assumptions about possible inputs of size ‘n’ [67]. It is not equal to the

average of the worst-case and the best-case efficiencies although they

occasionally match [67]. This case can draw attention to an important

algorithm with an average case efficiency better than its overly pessimistic

worst-case efficiency [67].

4.5 Asymptotic Notation Functions

For comparing, ‘rate of growth’ for time and space, functions are used to map the

input size to run time or space cost. Asymptotic notation can describe functions with

similar asymptotic behaviour ignoring small input sizes, constants, etc. [34].

4.5.1 Big-O Notation (Upper Bound of the Growth Rate)

Big O of a function gives a ‘rate of growth’ of the step count function f(n), in terms of a

simple function g(n), which is easy to compare [6].

Given two functions f(n) and g(n), f(n) = O(g(n)) if there exists positive constants c and

n0 such that |f(n)| <= c|g(n)| for all n, n>=n0. f(n)=O(g(n)) if f(n) grows no faster than

g(n) [4, 5].

Example (1): for an algorithm, time complexity is calculated: T(n) = 5n2 +17 log n

The constant 5 can be ignored. The ‘low-order’ term (in this example it is 17 log n)

should also be dropped [47].

To mathematically explain the rules about constants and low-order terms, the Big O

notation was developed. The notation characterizes functions according to their

growth rates. Different functions with the same growth rate may be represented using

the same O notation [71].

58

Chapter 4: The Methodology

If a function f(n) can be written as a finite sum of other functions, then the fastest

growing one determines the order of f(n). Furthermore, if a function is a polynomial in

‘n’, then as ‘n’ tends to infinity, the lower-order terms of the polynomial can be

discarded. In other words:

• If f(x) is a sum of several terms, the one with the largest growth rate is kept,

and all others omitted.

• If f(x) is a product of several factors, any constants are omitted.

Growth Rate Functions

In respect to time efficiency, below are a few growth rate functions [8]:

• O(l) - constant time: This means that the algorithm requires the same fixed

number of steps irrespective of the size of the task. Example: ‘n’ Stack Push and

Pop operations.

• O(n) - linear time: This means that the algorithm requires a number of steps

proportional to the size of the task. Example: search in an unsorted ‘n’ list.

• O(n2) - quadratic time: The number of operations is proportional to the size of

the task squared. Example: selection sort of ‘n’ elements.

• O(log n) - logarithmic time: Example: binary search in a sorted list of ‘n’

elements.

• O(n log n) – ‘n log n ‘ time: Example: quick sort

• O(an) (where a > 1) - exponential time: Example: recursive Fibonacci.

Polynomial growth (linear, quadratic, cubic, etc.) is considered manageable as

compared to exponential growth [8] and the smaller, the better [90]. If an algorithm

has its ‘order of growth’ function made of a sum of several terms, then the order of

growth is determined by the fastest growing term [8]. Taking O(nc) and O(cn), If c > 1

then O(cn) grows much faster. A superpolynomial function grows faster than nc for any

c whereas subexponential function grows more slowly than any exponential function

of the form cn.

59

Chapter 4: The Methodology

Instance Characteristic n
Time Name 1 2 4 8 16 32 Growth

1 Constant 1 1 1 1 1 1 Slowest
log n Logarithmic 0 1 2 3 4 5 (Best)
n Linear 1 2 4 8 16 32
n log n Long Linear 0 2 8 24 64 160
n2 Quadratic 1 4 16 64 256 1024
n3 Cubic 1 8 64 512 4096 32768
2n Exponential 2 4 16 256 65536 4294967296 Fastest
n! Factorial 1 2 24 40326 20922789888000 26313x1033 (Worst)

Table 4.3: Time Growth Classes

Figure 4.4: Time Growth Classes Plot (based on table4.3)

Table 4.4: Execution Times of Different Time Complexity [5]

The Big-O has its limitations. It is most useful on large problems with very large input

size. Furthermore, in some algorithms, the omitted constant can have a serious effect

on the growth rate. For example, algorithm A’s growth rate is Ta(n) = 1000n = O(n) and

60

Chapter 4: The Methodology

algorithm B’s growth rate is Tb(n)= n2 = O(n2). According to Big-O, algorithm A is faster

than B but when n<1000, the omitted constant (1000) slows down A considerably [51].

4.5.2 Omega Notation (Lower Bound of the Growth Rate)

Big Omega notation is used to describe the best case (lower bound) running time for a

given algorithm.

Given two functions f(n) and g(n), f(n) = Ω(g(n)) if there exists positive constants c and

n0 such that |f(n)| >= c|g(n)| for all n, n>=n0. f(n)= Ω (g(n)) if f(n) grows no slower

than g(n) [4, 5].

4.5.3 Theta Notation (Between Lower and Upper Bound)

Theta notation defines the upper and lower bounds of a function in an exact

asymptotic behaviour. It is typically used for comparing running times or growth rates

between two growth functions.

Given two functions f(n) and g(n), f(n)= Θ(g(n)) if there exists positive constants c1, c2

and n0 such that c1|g(n)| <= |f(n)| <= c2|g(n)| for all n, n>=n0. f(n)=Θ(g(n)) if f(n) and

g(n) grow at the same rate [4, 5].

61

Chapter 4: The Methodology

Figure 4.5: Asymptotic Notation Functions [56]

4.6 The Research Adopted Methodology

4.6.1 Research Background

After deciding on the research objectives, a thorough research and literature review

was conducted on the related areas such as Folksonomies (Tagging Systems), theory of

computation, Princeton WordNet (PWN), MultiWordNet (MWN), Stemming

Algorithms, and finally the TE System.

4.6.2 The Algorithm Efficiency Analysis

The researcher opted for an analytical approach rather than an empirical one for

reasons previously mentioned such as:

• Execution time and memory space can be determined mathematically in an

independent manner regardless of some factors related to the developments

environment such as computer specifications, programming language or skills.

• The algorithm can be tested with any input size.

62

Chapter 4: The Methodology

• The algorithm implementation is not necessary.

For time and space complexity, the rate of growth is measured using asymptotic

notation functions that can map the input size to run time or space cost. This method

is used when comparing two algorithms with different asymptotic complexity functions

to determine the more efficient of the two. To determine the feasibility of the

algorithm, the Big-O notation is used for characterising functions according to their

upper bound growth rates.

4.6.3 The Stemming Component

Data

As previously mentioned in chapter 3, the TE system imported its tags sample from

YouTube to avoid building a tagging system from scratch. The tags sample is stored in

the database of the TE system ready for the semantic enhancements.

At the start of developing the stemming component, running the original TE algorithm

ended in unexpected results. The database was populated with details of each video

such as title, link, owner, etc but it was missing the most important piece of

information and that is the video’s tags. After some research into YouTube developers’

website, the problem became clear and it is explained in this YouTube

announcement: http://apiblog.youtube.com/2012/08/video-tags-just-for-

uploaders.html. Basically, prior to 28th of August 2012, YouTube APIs methods used to

allow developers to retrieve video’s tags via the <media:keywords/> element which

contain the video's keywords (tags). After this announcement, any API method

retrieving a video entry will have an empty <media:keywords/> element unless the

developer is authenticated as the owner of the video. Faced with this drawback,

YouTube had to be replaced with another source that is able to act as the supplier of

the tags sample. In general, Flickr was an obvious replacement but it had to be

checked whether it enables tags to be accessed from the outside. Researching Flickr

APIs for similar functionalities as the ones used earlier with YouTube was productive

63

http://apiblog.youtube.com/2012/08/video-tags-just-for-uploaders.html
http://apiblog.youtube.com/2012/08/video-tags-just-for-uploaders.html
https://developers.google.com/youtube/2.0/reference%23youtube_data_api_tag_media:keywords
https://developers.google.com/youtube/2.0/reference%23youtube_data_api_tag_media:keywords

Chapter 4: The Methodology

and when these APIs were put to the test, they generated the expected result and the

TE system had its tags sample ready again. Since the contents in Flickr are exclusively

photos and not videos like in YouTube, the text from here forward will use the word

photo(s) in any context the previously involved videos although the programme code

and the database kept the mention of video to avoid any complications or

unnoticeable errors that can occur during the renaming process thus in the code, the

word video means actually photo.

The Selection of the Stemming Algorithm

To overcome the problem of different lexical forms in Folksonomies (tagging systems),

a stemming algorithm can be applied thus reducing the lexical forms to only one form

called ‘root’ or ‘stem’.

A stemming component is added to the TE system for the same purpose indicated

above. It will operate in a totally hidden manner (behind the scene) from the user.

Inside it, the user tag is normalised (i.e. stemmed) meaning it is reversed back to the

original lexical form (stem) then the TE system will store the stem as a user tag in the

database of the TE system, so if a photo returns the following tags: ‘abstract’,

‘abstracted’, ‘abstractedly’, ‘abstraction’, ‘abstracts’ then the stemming component

will normalise them and produce one word ‘abstract’ and that is a reduction in the

number of user tags that will be saved in the database of the TE system and used to

query the semantic and social sources. This step will save on database space and

effects the algorithm time as discussed later on chapter 6.

Many stemming algorithms exist and can be used in the tagging system (e.g. Krovetz

algorithm, Dawson algorithm, Porter algorithm, etc).

Based on the Literature review conducted on stemming algorithms, the research opted

for using the English (porter2) stemming algorithm for reasons such as:

• The availability of the source code: Porter had developed a language called

Snowball that enables algorithm developers to express their stemming rules in

64

Chapter 4: The Methodology

a natural way regardless of the language. The Porter2 stemmer is implemented

using Snowball in many languages such as English, Italian, French etc.

• The common language of implementation: a basic demo is available in C or Java

and this goes in harmony with our development environment which involves

the usage of Java, Java API for WordNet Searching (JAWS), and Flickr Java API

(flickrj).

The timing of the stemming process is very important and can have different

consequences depending on when it is performed. Stemming can be carried out on

any term (tag) before one of two main processes [106]:

• Before term indexing: the advantages here are that term indexing will be

efficient, the index file will be compressed, and the whole operation will be

seamless. Furthermore, when it is time to search for a term, it will not cost the

system resources since the stemming is already done. This approach of

performing stemming before the indexing has some drawbacks as follows:

• The original tag will be lost forever because it is not being saved in the

system’s database.

• Some tags will not return any system tags but this will happen for the

wrong reason. As discussed previously in chapter 2, the Porter

stemming algorithm is a fast but light stemmer which can occasionally

generate unreal words as stems. The consequence of this inaccuracy is

that querying the semantic ontologies PWN, MWN, and the social

source will yield nothing in most cases. To fix this, the TE system will

keep hold of the original tag even after the normalisation process. If the

sources returned system tags then it will be discarded otherwise the

stem is going to be the one discarded and the sources are searched

again using the original tag.

• Before term search: the obvious disadvantage is that it is going to be costly in

respect to time and resources and the user may experience some wait time.

65

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

5 Database Design Optimisation and Algorithm

Complexity Analysis

5.1 Database Design Optimisation

5.1.1 Introduction

The storage requirements for table data are dependent on a few factors. Storage

engines have different ways for representing data types and storing raw data.

Compressing table data either for a column or an entire row can complicate the

calculation of storage requirements for a table or column. Moreover, storage engines

have various methods for data allocation and storage, according to the method they

use for handling the corresponding types [122]

Despite differences in storage layout on disk, the internal MySQL APIs that

communicate and exchange information about table rows use a consistent data

structure that applies across all storage engines [107].

Other factors such as Character Set and Collation, Data Types, and Indexes selection

play a significant part in the efficiency of the database.

5.1.2 The Storage Engine

In MySQL, storage engines are the components that handle the SQL operations for

different table types. MySQL offers various storage engines for different use cases.

There is no restriction on using more than one storage engine throughout the server or

schema [24].

For general use cases, InnoDB is the most suited storage engine recommended by

Oracle. It has been designed to provide maximum performance when processing

large data volumes [107].

66

http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

The InnoDB storage engine maintains its own buffer pool for caching data and indexes

in main memory. By default, with the innodb_file_per_table setting enabled,

each new InnoDB table and its associated indexes are stored in a separate file.

InnoDB tables can handle large quantities of data, even on operating systems where

file size is limited to 2GB [24].

As the default engine of MySQL v5.5.5, the InnoDB engine has many features as listed

below [24, 30, 107, 122]:

• Transaction-safe (ACID compliant) because of data protection capabilities such

as commit, rollback, and crash-recovery.

• Increased multi-user concurrency and performance attributed to row-level

locking and Oracle-style consistent non-locking reads.

• Tables arrange data on disk to optimize queries based on primary keys.

• Data compression: reduce storage and I/O through the significant table

compression.

• Minimized expensive disk I/O by using the memory and the processor resources

efficiently.

• More efficient storage for large column values: fully off-page storage of long

BLOB, TEXT, and VARCHAR columns.

• Support for FOREIGN KEY referential-integrity constraints which maintain data

integrity.

• Fast index creation/deletion without copying the data.

• Barracuda file format maintains upward and downward compatibility.

• Performance and scalability enhancements: includes features such as multiple

background I/O threads, multiple buffer pools, and group commit.

• Automatic data recover

One of the important features above is the foreign key referential integrity which is

about ensuring that the foreign key in a referencing table must always refer to a valid

row in the referenced table. It keeps the relationship between the two tables

67

http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-performance.html

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

synchronized during updates and deletes. The next table lists some specific features of

the InnoDB engine.

Table 5.1: InnoDB Storage Engine Features [80]

Other engines includes: MyISAM, Memory, CSV, Archive, Blackhole,

Merge, Federated, and Example. The following table compares the main

features of some of these engines [80]:

68

http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

Table 5.2: Storage Engines Features Summary [80]

Individual storage engines might impose additional restrictions that limit table column

count. Examples [122]:

• InnoDB permits up to 1000 columns.

• InnoDB restricts row size to something less than half a database page

(approximately 8000 bytes), not including VARBINARY, VARCHAR, BLOB, or

TEXT columns.

69

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

• Different InnoDB storage formats (COMPRESSED, REDUNDANT) use different

amounts of page header and trailer data, which affects the amount of storage

available for rows.

5.1.3 The Character Set

A character set is a set of symbols and encodings. A collation is a set of rules for

comparing characters in a character set. Each character set can have one or more

collations. Encoding is the coded value that is paired with each character inside a

character set [24].

MySQL can store data using a variety of character sets and perform comparisons

according to a variety of collations for the MyISAM, MEMORY, and InnoDB storage

engines. The character sets can be specified at any level (server, database, table, and

column level). Furthermore, a mix of different character sets or collations can exist in

the same server, database or table [24].

MySQL supports 70+ collations for 30+ character sets within groups such as:

Unicode, West European, Central European, Asian, etc [24].

Regardless of the platform, program, or language, a Unicode character set assigns

each character a unique number [112]. It can be implemented by different character

encodings. UTF-8 encoding is one of the most commonly used. Using this encoding

means that any ASCII characters will need one byte whereas other characters will

require up to four bytes [59].

The idea of UTF-8 is that various Unicode characters are encoded using byte

sequences of different lengths [59, 107, 122]:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a 2-byte sequence:

extended Latin letters (with tilde, macron, acute, grave and other accents),

Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others.

70

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.

5.1.4 The Schema

5.1.4.1 The Data Types

The TE system uses the database described previously. The schema is simple with

three tables: videos, tags_detail, and tags_master. There are few foreign keys

for referential constraint between tables. The tables’ fields are of the data

type VARCHAR.

Table 5.3: Storage Requirements for String Types [80]

VARCHAR, VARBINARY, BLOB and TEXT types are data types of variable length. These

data types determine their storage requirements based on the following factors:

• The actual length of the column value.

• The maximum length of the column.

• The character set of the column since some of these sets contain multi-byte

characters.

71

http://dev.mysql.com/doc/refman/5.6/en/char.html
http://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.6/en/blob.html
http://dev.mysql.com/doc/refman/5.6/en/blob.html

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

A row has a maximum size of 65,535 bytes. This restriction affects the maximum

amount of bytes that can be saved in a VARCHAR or VARBINARY column (regardless of

storage engine), which is shared among all columns [122]. For example, in UTF-8

encoding, characters need a maximum of three bytes per character, so for a CHAR

(255) CHARACTER SET utf8 column, the server must allocate 255 × 3 = 765 bytes per

value. Consequently, a table cannot contain more than 65,535 / 765 = 85 such

columns.

Storage for variable-length columns includes length bytes, which are assessed against

the row size. For example, a VARCHAR(255) CHARACTER SET utf8 column takes two

bytes for storing the length of the value, so each value can take up to 767 bytes.

5.1.4.2 Indexes

The job of an index is to find rows with specific column values in a speedy manner. If

no index exists, MySQL has to search for the target values starting from the first row

reading through the entire table to find them. The cost of the search will grow as the

table gets larger. Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and

FULLTEXT) are stored in B-trees [24].

Regarding queries on small or large tables, if report queries are processing most or all

of the rows, then Indexes become less important.

When a query needs to access most of the rows, reading sequentially is faster than

working through an index.

Primary Keys

The primary key represents column(s) that are essential in vital queries. To speed up

the execution of queries, MySQL associates an index with the primary key. A primary

key cannot be NULL. In InnoDB storage engine, the physical organization of data

inside tables allows ultra-fast lookups and sorts based on the primary key column(s)

[107].

72

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

Foreign Keys

When a table and query has many columns, it is beneficial to move its less used data to

tables with fewer columns. These can then be cross-referenced back to the main table

using its primary key. Tables with fewer columns are able to fit more rows into each

data block.

For fast lookups, each split table can assign a primary key and any column

combinations can be performed using join queries.

Indexes

Mostly, an index is a single column and it copies that column’s values in a B-tree data

structure for fast lookups. Depending on the storage engine, the maximum number of

table indexes and their length can vary. In general, all engines support at least 16 table

indexes with length of at least 256 bytes [24].

MySQL offers other keywords to define various indexes such as KEY, which is a

synonym for INDEX. Also there is UNIQUE which forces all values in the index to be

distinct.

5.1.5 Optimisation Procedures

Many Database management systems have their own recommendation for optimal

database design and below are some of these general recommendations [24, 107,

122]:

• Use the smallest data types possible.

• If a column can be either strings or numbers, always choose numbers because

large numeric values occupy less bytes than strings and the tasks of transferring

or comparing them will also take less memory.

• Use VARCHAR in place of CHAR when storing variable-length strings or when

having many NULL values inside columns. Smaller tables have less I/O and can

fit more effectively in the buffer pool.

73

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

• When a column is not allowed to have NULL values, state it as NOT NULL at the

table creation stage. This helps in: selecting the most effective index for a

query, and reducing the overhead cost of checking if every value is NULL.

• Avoid using long PRIMARY KEY (either a single or composite) because it

wastes a lot of disk space since it’s duplicated in each secondary index.

• Use OPTIMIZE TABLE statement to compact any wasted space when a table

grows significantly or data reaches a stable size.

• Use COMPRESSED row format for large or repetitive data tables. Tasks like

putting data in buffer pool or scanning full table will require less disk I/O.

• Creating indexes should be very strict for those who will improve query

performance because indexes slow down the insert and update operations.

• When searching a table using different columns, it is better to replace them

with a single composite index where the 1st part of it is the most used column.

However, if this is the norm, then the 1st part of the index must be the column

that has the most duplicates to gain better compression of the index.

• Any query will use one index only, that is why there is no need to have a second

index in each column.

• Throughout tables, columns with identical information should be of the same

data types to speed up joins based on them.

• Choose simple column names to use across different tables for simplified join

queries.

• If a column is included in the WHERE clause, setting up indexes on it can make

queries faster and for queries referencing different tables and using joins and

foreign keys this is very important.

• Reduce the number of full table scans especially if tables are big.

• Keep the optimizer up to date with table statistics using the ANALYZE TABLE

statement so that it has the information required for developing an efficient

execution plan.

74

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

5.1.6 Discussion

The Engine

The TE system requires a simple straight forward database use case, thus the schema

consists of three tables connected through two one-to-many relations that use foreign

keys. The InnoDB storage engine was used throughout the schema as it had no special

requirements, thus it was the obvious choice as a storage engine for the reasons

mentioned earlier in this chapter such as performance and efficiency with large data

volumes. Its support for foreign keys and fast index creation and deletion were the

deciding factors, mainly because other storage engines do not natively support them.

The Character Set and Collation

The TE system involves the use of the English and Italian languages. Both languages fall

into the West European Character Sets. As said previously [119], UTF-8 encoding has a

variable length. It uses between one to four bytes for the character encoding whereas

UTF-16 encoding always uses two or more bytes. When characters with low encoding

space (one byte) dominate, the use of UTF-8 becomes more economical than UTF-

16 which is more suitable if the application is using many foreign interchange

processes. UTF-8 encoding is the most portable in many applications. Regarding data

corruption errors, which can occur during transfers between systems, UTF-8 encoding

is resilient to them and it is better than UTF-16 and UTF-32 in that regard.

The use of UTF-7 encoding within retrieval systems is not recommended and

although UTF-7 encoding is very useful as an interchange format, working with it can

be a slow process and that is why it should not be stored as it is. Instead, it has to be

converted to UTF-8 on arrival. In conclusion, we found that for all the reasons listed

above, UTF-8 encoding has become the preferred encoding and the dominant

standard and hence the character set utf8 (UTF-8 encoding) is chosen for all

tables. Any characters outside the UTF-8 encoding will be encoded and escaped [14].

75

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

The collation was not apparent in the sql script of the TE database but

utf8_general_ci is faster than utf8_unicode_ci and less accurate.

Caution is always advised when mixing different character sets and collations at

column level to avoid problems when performing joins or other cross-column

operations.

Data Types

In TE, the database is initially populated with a sample of records holding information

on YouTube videos. In this thesis, the source of the sample data had to be changed

from YouTube to Flickr as explained in section 4.6.3

The database includes one data type only and that is VARCHAR. Since most of the

values saved are strings, it is a logical choice especially when the values are of variable

lengths.

The video_id column represents the video number in YouTube which in the YT

documentation is defined as String but does not disclose its size limit. All the saved

values of video_id inside the TE database (TE database has +7000 records in the

videos table) are 10 characters in length. If video_id is defined as UNSIGNED INT,

it can represent a maximum of 4,294,967,295 (4 bytes) or UNSIGNED BIGINT and

reach up to 18,446,744,073,709,551,615 (8 bytes). Doing this will entail the parsing of

video_id from String to int within the Java code or a type mismatch error will

occur.

The link and thumb columns save URLs and it is recommended that they be TEXT for

long URLs otherwise VARCHAR is the most suitable data type. The URLs in the TE

database are relatively short; hence both the link and thumb columns are VARCHAR.

76

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

Table Column VARCHAR
Length

Size
(Bytes)

Max
Length

Min
Length

Avg
Length

VARCHAR
Suggested

Length

Size
(Bytes)

Size
Saving%

videos video_id 50 151 10 6 9.8 15 46 69.54%

title 400 1202 255 0 23.3 300 902 24.96%

link 200 602 87 40 51.5 100 302 49.83%

thumb 200 602 63 56 62.5 100 302 49.83%

tags_master video_id 50 151 10 6 9.8 15 46 69.54%

user_tag 250 752 237 1 9.3 250 752 0.00%

tags_detail user_tag 250 752 237 1 9.3 250 752 0.00%

system_tag 250 752 237 1 9 250 752 0.00%

tag_type 50 151 23 13 16.6 23 70 53.64%

Table 5.4: Database Columns Sizes

According to the table above, the TE sql script for generating the database tables is

generous when assigning lengths to the VARCHAR columns. After investigating the

maximum and minimum values, it became clear that a size reduction is possible to a

great degree and very beneficial given that the character set used is utf8 which

requires up to 3bytes/character (the maximum in MySQL) plus one or two length

bytes. The actual and suggested new sizes are shown in the table above, along with the

saving percentage. Furthermore, if the column video_id is changed to UNSIGNED

INT or UNSIGNED BIGINT, the saving here will be 97.4%, 94.7% respectively with the

added benefit of faster operations such as comparison and transferring.

Additionally, the link column can be made shorter by 29 characters if the initial fixed

part (http://www.flickr.com/photos/) gets truncated before being inserted in the

table. In general, it is a good practice to divide the URL into portions such as hostname

and protocol and save them in a separate table.

The tag_type value is chosen from a set of flags to distinguish the source of the

system tags. Its length is between 13 and 23 characters and therefore there is no need

to go as far as VARCHAR(50).

77

http://www.flickr.com/photos/

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

The Indexes

The primary keys for the three tables are justified, although it could be argued that

using the single auto-generated primary key is less complicated than composite

primary keys in tables: tags_master and tags_detail. The answer is, unless the single

key is capable of enforcing uniqueness without adding any special constraints on the

other columns, the composite primary key must be used [54].

The simple use case of the TE system highlights clearly the columns that are most

suited to act as foreign keys between the tables, thereby enforcing referential integrity

and normalisation.

In addition to the primary and foreign keys assigned, there is a UNIQUE index on the

link column. Indexes on URLs are not recommended because the value tends to be

long and cannot be indexed in full. Instead, an extra column with a hash value should

be created and indexed. In the schema, the link column is

(200) which is within the limits of the index length inside InnoDB engine (255

characters) and also the URLs are considered short. Thus indexing the link column will

force values to be distinct although it does not improve any query performance.

5.2 Time Complexity

The main target of the performance analysis for the TE system is to estimate the cost

of enhancing the tags before performing the search on them. It will also check out

whether the process is efficient, especially when the experiment showed no significant

difference between the results retrieved with or without the tag enhancements due to

several factors [72]. The analysis will measure the time as the number of tags grow.

Thus, the next paragraph will shed some light on the tags size inside some tagging

systems.

In September 2010, Flickr reached 5 billion images with an upload rate of 3,000+

images/min. A year later this number increased to 6 billion whereas in YouTube, videos

are uploaded with a rate of 72 hours of video per minute with more than 200 million

78

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

content ID videos alone. Flickr allows 75 tags per photo as a maximum limit but on

average each photo will be annotated using 8.94 tags [70]. On the other hand, every

YouTube video has a keywords list of 500 bytes in length (including commas) thus tags

are estimated to reach 167 tags maximum.

In the population process of the TE system, a set of 169 English and Italian keywords

are used to retrieve seven videos maximum per each keyword. The search resulted in

filling the database with 7810 videos. The table below gives essential statistics about

tags inside the database of the TE system.

 Min Max Average

User Tags/Video 1 75 10

System Tags/ User Tag 1 89 3

Table 5.5: The TE Database Tags Statistics

5.2.1 Time Efficiency Analysis of Nonrecursive Algorithms

The Steps of Time Efficiency Analysis of Nonrecursive Algorithms are as follows [67]:

1. Decide on the parameter(s) of which their input size is the focus.

2. Identify the basic operation.

3. If the basic operation’s execution count depends on the input size plus some

additional property, investigate the worst-case, average-case, and best-case (if

needed) efficiencies separately.

4. Assign a sum to represent the basic operation’s execution count.

5. Apply summation formulas and manipulation rules on the count to conclude a

closed-form formula or its order of growth.

79

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

Input Size

Typically, algorithms with large inputs (e.g. more numbers, lengthy strings, bigger

graphs) have longer runtime. Thus, the algorithm’s efficiency is formulated by using a

function of ‘n’ (the input size).

The parameter selected is the one of which the size’s growth rate is the most

important to the analysis objectives.

Figure 5.1: Typical n in Common Algorithms [23]

In general, spotting the parameter is a straight forward matter except in certain cases

such as when the dependency of the candidate parameter is compromised because of

another parameter.

The Basic Operation

It is the most important operation of the algorithm since it is contributing the most to

the total running time [67]. Usually it is the most time-consuming operation inside the

innermost loop. Thus, the algorithm’s time efficiency can be measured by counting the

number of times the algorithm’s basic operation is executed on inputs of size ’n’ [67].

The Count and Rules

The algorithm analysis is independent of the hardware used to implement or run the

code. It uses a model machine which specifies a set of rules to determine how and

what operations are to be counted during the analysis, since there are no standard

rules.

80

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

The counting process can follow one of the methods below:

• Count every program step and calculate their frequency. This is usually done

using a tabular form.

• Counting only the actual number of basic operations.

• Counting iterations only.

Although the last two methods are the most common, in some cases they can be

insufficient and having an exact count of operations is more beneficial. The following

table outlines an estimated time cost of some operations. It is not accurate but it gives

an idea on the speed of some of the common operations in relation to each other.

81

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

 Operation Time Unit

Assignment 1

Arithmetic / Logical 1

Constructor/ Destructor 1

Procedure Entry / Exit 1

Select Condition Worst Branch Timing

Loop [75] (over the number of times the loop is executed)

the body time +

time for the loop check and update operations +

time for the loop setup

Function Calls [75] 1 for setup +

the time for any parameter calculations +

the execution time of the function body

Database

Connecting to Server 3

Sending Query to server 2

Parsing Query 2

Inserting row 1 × size of row

Inserting indexes 1 × number of indexes

Closing Server Connection 1

Table 5.6: Operations Estimated Relative Time Cost

5.2.2 Discussion

The analysis determined the complexity of the functions used in the main body and a

few of these functions have a constant growth rate as shown below:

82

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

Function Complexity

getSynonyms (String tag) O(1)

getRelatedWords (String tag) O(1)

getSimilarWords (String tag) O(1)

getParentNoun(String tag) O(1)

tag_clustering (String tag) O(1)

Table 5.7: Functions with Constant Growth Rate

All functions above except tag_clustering have simple statements without

iterations and conditions, etc. Regarding tag_clustering, there is an

implementation limitation in the case of retrieving tag’s clusters. The TE system will

add the Top-3 tags only from the 1st cluster, if any, as system tags. The outer loop will

execute to a maximum once while the inner loop will iterate three times maximum and

then quit. Thus, in the worst case, this function will have a constant time O(1).

The time complexity of the remaining functions relies on the number of the system

tags produced from within them. These system tags include synonyms, related, similar,

hypernyms and translated tags. The notation used in the analysis is as follow:

Tag

Type

User

Tags

System

Tags

Synonyms Similar Related Translated Hypernyms

Notation N M Sy S R T H

Table 5.8: TE Analysis Notations

Initially, the complexity equations of the functions have distinguished between the

sources of the system tags inside them. For simplicity purposes and for more

generalized equations, constants are eliminated and all tag sources are considered

system tags as shown in the table below:

83

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

Function Complexity Equation

Initial Final

english_synonyms_related_similar (String tag) 3+11Sy+12R+12S M

english_hypernyms (String tag) 1+11H M

english_2_italian_translation_related_similar (String tag) 15+11T+11R+11S M

italian_synonyms_related_similar (String tag) 15+11Sy+11R+11S M

italian_hypernyms (String tag) 5+11H M

italian_2_english_translation_related_similar (String tag) 4+4T+11T.Sy+12T.R+12T.S M

Table 5.9: The Growth Rate of the TE Functions

The last equation in the above table was generalised to be M2, but because the count

of the tags: translated (T), synonyms (Sy), and related (R) is a small number compared

to the similar tags (S), the complexity equation discarded the values of T, Sy, R to

finally settle only on M.

Moving to the main body of the algorithm which includes the semantic and social

components, we can see three main loops. The first loop iterates through the

keywords to query YouTube and retrieve matching videos. Populating the database of

the TE system is done through the second loop that iterates through all the retrieved

videos recording the essential information about each one. The third and innermost

loop iterates through the user tags of each video within the block headed by:

For (int j = 0 ; j < keywordStringList.size() ; j++)

The body of this loop is responsible for the main tasks of the TE system which are

querying the sources: Princeton WordNet (PWN), MultiWordNet (MWN), and Flickr

clustering. The code uses the number of user tags associated with each video as a

counter. This counter is chosen as the input size parameter and will be referred to as N.

Initially, the complexity equation calculated is O(N + N.M), but looking at the

statistics in Table 5.5 specifically the Max column, we can assume that in the worst

84

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

case scenario, the value of N and M are very close. Thus the complexity equation is

modified to O(N2) which is a polynomial (quadratic) time where the number of

operations is proportional to the size of the task squared. Visiting Table 4.4 again, we

relist it focusing only on quadratic time.

Time for f(N) instructions on a 109 instr/sec computer

[microsecond(μs) = 10−6 sec, Millisecond(ms) = 10−3 sec]

N N2 f(N) = N2

10 100 0.1 μs

50 2500 2.5 μs

75 (Flickr) 5,625 5.625 μs

100 10,000 10 μs

167 (YouTube) 27,889 27.889 μs

1000 1,000,000 1 ms

10,000 100,000,000 100 ms

100,000 10,000,000,000 10 sec

1,000,000 1,000,000,000,000 16.67 min

Table 5.10: Execution Times of Different Time Complexity Functions

As mentioned in chapter two, an algorithm with a computation that runs in linear or

quadratic time is ‘efficient’ [10] and polynomial growth is considered manageable.

Nonetheless, the code can benefit from more adjustments that can decrease its

execution time. The code, including the main and the functions, has many SQL select

and insert statements and some of them are located inside conditions and iterations.

The code executes each statement one by one which is costly since select and insert

statements have slow and slower times (respectively) than a normal statement. This

situation can be optimized by applying a batch execution instead, which can be guided

85

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

using certain flag variables indicating whether a specific select/insert statement is to

be executed or not under a certain condition/iteration.

Another concern is the retrieval maximum limit from the different semantic resources

(PWN and MWN) which does not exist, whereas it is forced on the retrieval from the

social resource (Flickr clustering). The following table shows the minimum and

maximum count for all system tag types. Based on the table information, a user tag

can yield 157 system tags in worst case scenario. This number is more accurate than 89

(see Table 5.5) because it accounts for the maximum count in each type, regardless of

the user tag. However, the information in Table 5.5 represents the maximum count of

system tags for each user tag. Retrieving a considerable number of tags related to one

tag type, such as in the case of SIMILAR tags, is unnecessary and can be limited to a

reasonable number.

86

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

Tag Type Max Min

SIMILAR EN_EN_SIMILAR 79 17

IT_IT_SIMILAR

EN_IT_SIMILAR

IT_EN_SIMILAR

SYNONYMS EN_EN_SYNONYMS 28 14

IT_IT_SYNONYMS

TRANSLATION EN_IT_TRANSLATION 27 4

IT_EN_TRANSLATION

HYPERNYM EN_EN_HYPERNYM 12 7

IT_IT_HYPERNYM

RELATED EN_EN_RELATED 8 4

IT_EN_RELATED

CLUSTERING CLUSTERING_TAGS 3 3

TOTAL 157 49

Table 5.11:Totals of System Tags

Finally, the coder opted for the tagging process to take place when entering a new tag

instead of doing that ‘on the fly’ when searching for a certain tag. As stated before,

this made the execution time less critical, but it still needs to be manageable, because

it is invisible to the user who is not waiting for any response from the program at this

stage.

87

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

5.3 Space Complexity

5.3.1 Java Virtual Machine (JVM) and Data Types

The Java virtual machine has their data types divided into:

• Primitive type: variables of the primitive types hold primitive values which are

the actual data.

• Reference type: variables of the reference type hold reference values referring

to dynamically created objects.

Figure 5.2: Java Virtual Machine's Families of Data Types [114]

The compiler uses int or byte to represent a Boolean where false is represented by

integer zero and true by any non-zero integer whereas arrays of Boolean are accessed

as arrays of byte.

The Reference type can be one of the following:

• Class type: values are references to class instances.

• Interface type: values are references to class instances that implement an

interface.

• Array type: values are references to arrays.

• Null: variable does not refer to any object.

88

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

In Java virtual machine, each data type has a specific range of values (see the table

below).

Table 5.12: Ranges of the Java Virtual Machine's Data Types [114]

The JVM specification does not define sizes for their data types. This decision is left to

the coder for each individual implementation.

Word is the basic unit of size for data values in JVM. It is large enough to store values

of byte, short, int, char, float, returnAddress, or reference. Two words

must be large enough to store values of long or double.

Based on the above restriction, the coder must choose a word size with at least 32 bits

but it can be of any other size as long as it delivers an efficient implementation.

5.3.2 General Formula of Memory Usage

In JVM (specifically HotSpot), the heap is the memory area used by a Java object for

dynamic memory allocation. Generally, it consists of [27]:

1. Object Header: includes a few bytes of ‘housekeeping’ information.

2. Memory for Primitive Types according to their size.

3. Memory for Reference Types: 4 bytes each.

4. Padding: this consists of a few wasted bytes after the object data to make every

object start at an address that is a convenient multiple of bytes. This decreases

the amount of bits needed to represent a pointer to an object.

89

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

5.3.3 ‘Housekeeping’ Information

On the heap, instances of an object take up more memory than their actual fields to

save some ‘housekeeping’ information such as their classes, IDs and status flags

(reachable, synchronization-locked etc.) In Hotspot, a normal object needs 8 bytes for

housekeeping info whereas an array requires 12 bytes [27].

5.3.4 Memory Usage of Arrays

Single-Dimension Array

This type of array is considered as a single object with the usual header of 8 bytes plus

4 more bytes to accommodate its length. Thus, in total, the array header is 12 bytes

[26]. Regarding the actual data inside the array, it is calculated by:

The number of elements X the number of bytes required for one element (based on its

type).

For an object reference, one element needs 4 bytes. If the array memory usage

summation is not a multiple of 8 bytes, then it is rounded up to the next multiple.

A Boolean array requires one byte per element [26].

Memory usage of a two-dimensional array

In Java, a multidimensional array is a set of nested arrays. Every row of a two-

dimensional array has the overhead of an object [26].

Multidimensional arrays

As previously mentioned, each row of the outside array creates an array of references

to another array holding the actual primitive data or references (if it is an object array)

[26].

90

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

5.3.5 Memory usage of Strings

A Java String is made up of more than a singular object and it contains some extra

variables as follows [28]:

• A char array holding the actual characters.

• An integer offset indicating the string start point.

• An integer representing the length of the string.

• An integer for the cached calculation of the hash code.

According to ‘Hotspot Java 6 VM’, the minimum memory usage of a String is calculated

using the formula: 8 * (int) ((((no chars) * 2) + 45) / 8) in the condition that it is ‘newly

created’ string and not created from a substring [28].

Example (1): An empty string

It will need the following: 4 bytes (char array) + 4 bytes*3 (integer fields) + 8 bytes

(header) = 24 bytes (multiple of 8).

In addition, the empty ‘char’ array will need a 12 bytes (header) rounded up to 16

bytes making the total memory allocated for an empty string 40 bytes [28].

Example (2): 17 characters string

Initially we have 4 bytes (char array) + 4 bytes*3 (integer fields) + 8 bytes (header) = 24

bytes (multiple of 8).

Then the char array will need: 12 bytes (header) + 17*2 bytes = 46 bytes rounded up to

48 bytes.

The total memory usage is 24+48 = 72 bytes [28].

5.3.6 Calculating the Space Complexity

1. Identify the parameter(s) that determine the problem size.

2. Calculate the space (memory) needed for a particular size.

91

Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis

3. Calculate the space (memory) needed for double the earlier size.

4. Repeat step 3 many times until you reach a relationship between the size of the

problem and its space and that will give the space complexity [15]

5.3.7 Discussion

The parameter that will determine the problem size is the number of user tags per

video. For each video, the user tags are stored in the parameter

keywordStringList of type List<String> and thus the main loop in the

algorithm which performs the necessary steps to produce the different system tags is

using the parameter keywordStringList.size as its counter N. Most of the

parameters are declared as public and they are allocated constant space SPACE(1)

which is not affected by the growth rate of N. The only parameter that is varying in size

depending on the growth rate of N is keywordStringList with SPACE(N) which is a

linear space.

92

Chapter 6: The Stemming Component Embedding

6 The Stemming Component Embedding

Prior to embedding the stemming algorithm inside the TE code, we had to address the

aforesaid YouTube issue in Chapter 4. The database population code segment with its

YouTube APIs had to be replaced with a new segment providing the same

functionality. The shift to Flickr involved using flickrj which is a java interface to Flickr

APIs. The new code segment involved using many Packages, Interfaces, Classes, and

methods such as:

Type Name Variable

Package com.aetrion.flickr -

Class Flickr flickr

Method getPhotosInterface -

Package com.aetrion.flickr.tags -

Class Tag tag

Method getValue -

Package com.aetrion.flickr.photos -

Class com.aetrion.flickr.photos.Photo photo

Method getId -

Method getTitle -

Method getUrl -

Method getThumbnailUrl -

Method getTags -

Class com.aetrion.flickr.photos.PhotoList photoList

Method size -

Method get -

Class com.aetrion.flickr.photos.PhotosInterface photosInterface

Method search -

Method getInfo -

93

http://flickrj.sourceforge.net/api/com/aetrion/flickr/package-summary.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/Flickr.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/Flickr.html%23getPhotosInterface%28%29
http://flickrj.sourceforge.net/api/com/aetrion/flickr/tags/package-summary.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/tags/Tag.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/package-summary.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/Photo.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/Photo.html%23getId%28%29
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/Photo.html%23getTitle%28%29
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/Photo.html%23getUrl%28%29
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/Photo.html%23getThumbnailUrl%28%29
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/Photo.html%23getTags%28%29
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/PhotoList.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/PhotoList.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/PhotoList.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/PhotosInterface.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/PhotosInterface.html%23search%28com.aetrion.flickr.photos.SearchParameters,%20int,%20int%29
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/PhotosInterface.html%23getInfo%28java.lang.String,%20java.lang.String%29

Chapter 6: The Stemming Component Embedding

Class com.aetrion.flickr.photos.SearchParameters searchParams

Method setSort -

Method setText -

Package java.util -

Interface Collection<E> tagsList

Method size -

Method iterator -

Interface List<E> keywordStringList

Method add -

Class ArrayList<E> -

Interface Iterator<E> Itea

Method hasNext -

Method next -

Table 6.1: Some used Components from Java and flickrj

The Porter2 stemming algorithm is encoded in many programming languages by Porter

himself or by other trusted programmers [98]. In his web site, Porter lists some of

these encodings that he trusts their credibility.

The selected Java encoding for the Porter stemming algorithm was developed by

Martin Porter and the last version was released in 2000. The diagram below displays

the key steps of the Porter stemming algorithm [3].

94

http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/SearchParameters.html
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/SearchParameters.html%23setSort%28int%29
http://flickrj.sourceforge.net/api/com/aetrion/flickr/photos/SearchParameters.html%23setText%28java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html%23size%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html%23iterator%28%29
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html%23add%28E%29
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html%23hasNext%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html%23next%28%29

Chapter 6: The Stemming Component Embedding

Figure 6.1: The Porter Stemming Algorithm Flowchart [3]

95

Chapter 6: The Stemming Component Embedding

Listed below, are some terms and notations regarding the stemming algorithm [3]:

• consonant: in the English alphabet they are B, C, D, F, G, H, J, K, L, M, N, P, Q, R,

S, T, V, X, Z, and usually W and Y.

• Vowel: in the English alphabet they are A, E, I, O, U.

• C: is a consonants list with length greater than or equal to 1.

• V: is a vowels list with length greater than or equal to 1.

• m: is the number of repetitions.

• []: represents the optional presence of the contents inside.

Based on the previously mentioned notations, the formula [C](VC)m[V] is a

representation of any word. ‘m’ is called the measure of a word and its value

ranges from zero upwards. It decides on the suffix removal [3].

The formula ‘(condition) S1 -> S2’ is applied for all the rules and it is read as follows: if

the remaining letters of suffix S1 will satisfy the condition, replace suffix S1 with suffix

S2.

The most important step in the algorithm is step one which handles past participles

and plurals and because of the complexity of this task, the step has three parts (1a, 1b

and 1c) in the original definition as follows [3]:

1. 1a: this part removes ‘s’ from plurals, for example sses -> ss and recodes.

2. 1b: this part removes ‘ed’ and ‘ing’ if found and then transforms the remaining

stem.

3. 1c: this part simply transforms a terminal ‘y ‘to an’ i' (in the flowchart above it

is shown as step 2)

The steps after these become relatively straightforward and have their rules that cope

with different order classes of suffices.

A method was added to the TE code to handle the stemming procedure through

interacting with a package containing classes and methods for implementing the

96

Chapter 6: The Stemming Component Embedding

Porter’s stemming algorithm. For every photo entry, each tag is stemmed using the

new method and the resulting stem will replace the original tag as the user tag that

will be used to query PWN, MWN, and Flickr clusters. If querying all the external

sources produces no results then, we must consider the possibility that the new user

tag is not a real word, due to overstemming errors.

6.1 Summery

The chapter discussed how the stemming component is embedded in the TE system by

including a table of Java and flickrj components which are essential in providing the

necessary functionality to generate the sample data from Fickr and perform the

stemming algorithm on the tags. Furthermore, the steps of the porter stemmer are

explained and illustrated using flowchart. The chapter concluded by describing the

behaviour of the stemming component inside the TE system.

97

Chapter 7: The Evaluation

7 The Evaluation

7.1 Introduction

In the problem statement, the researcher presented his argument about the need for a

stemming component in the TE system to lessen the effect of problems such as the

large size of the index table, and database.

The effect of adding this component needs to be investigated. Therefore, an

experiment is designed to study the original TE system (without the stemming

component) and the new TE system (with the stemming component) in terms of the

size of the index table and the number of results retrieved from both systems testing

the claims that stemming reduces the size of the index table and broaden the search to

include more results.

The experiment is performed on a data sample imported from flickr containing 7810

photos using 33760 unique tags but only 8728 tags are generated from the PWN and

MWN ontologies and these are the tags that will be used in the new TE system and

stemmed with the stemming component. With that said, the experiment will exclude

any system tags generated from the clustering component for fairness reason.

New tables are added to the database design to accommodate the addition of the

stemming component as follows:

Table name Role
tags_stems_master Stores the values of the original user tags and their

stems
tags_stems_detail Stores the values of the stems and their generated

system tags and the type of tag
search_runs This table is added as a log to the search trails.

It stores the search keyword and the number of
results from the original and new TE systems (not
shown in the DB diagram)

Table 7.1: List of the new tables in the Database

98

Chapter 7: The Evaluation

The database design is explained by the next relationship diagram

Figure 7.1: TE Database Diagram

7.2 The experiment

7.2.1 Index table

In the original TE system, any search trail is conducted by comparing the search term

against the stored system tags as ‘system_tag’ in table ‘tags_detail’. Next, all

associated user tags ‘user_tag’ which generated the user tags from the semantic and

clustering components are retrieved from table ‘tags_master’. Finally all distinct videos

tagged using the collected user tags are retrieved.

In the new TE system, a similar method is applied except that all user tags are

subjected to the stemming component to reduce the number of word variants. Thus,

system tags here are generated from stemmed user tags instead of the original user

tags.

The number of system tags in both TE systems determines the size of the index table.

Furthermore, since system tags are generated from the user tags in the original TE

system and from stems in the new TE system, then the size of both sources is reflected

in the size of the index table of both systems.

99

Chapter 7: The Evaluation

In the original TE system, calculating the number of user tags is straightforward.

Querying the ‘tags_detail’ table for distinct ‘user_tag’ values resulted in 9633 hits but

after excluding orphan user tags that didn’t yield any system tags the number was

reduced to 8728 and this is considered in the experiment as the base.

In the new TE system, the same approach is used to calculate the number of distinct

stemmed English/Italian user tags from ‘tags_stems_detail’ table and the result is 4813

hits reduced to 4478 after eliminating orphan stems.

 user tags
in

Original TE

stemmed user
tags

in
New TE

difference ratio

total 9633 4813 4820
Total -

orphans
8728

(baseline)
4478 4250 48.69%

Table 7.2: User Tags & Stems User Tags Statistics

From the previous table we can see that the stemming component reduced the

number of user tags by more than 48%.

Furthermore, the percentage of orphan entries from the user tags is 9.4% and 7% from

stems thus both percentages are less than 10%. The following table shows the

statistics regarding the number of system tags in both systems which is reduced

significantly after stemming by more than 48% which is near the reduction percentage

of the user tags confirming the effect of this reduction on the number of generated

system tags.

system tags
in

Original TE

system tags
in

New TE

difference ratio

34537 17761 16776 48.57%
Table 7.3: System Tags Statistics

The experiment has proved that the stemming component has reduced the size of the

index table by more than 48%.

100

Chapter 7: The Evaluation

7.2.2 The search results

For the search process, the experiment runs the same sample data of 30 search terms

on both TE systems and the results from both are counted as listed below:

no. search term results from original TE
(A)

results from new TE
(B)

difference
(B) - (A)

1 abandon 19 19 0
2 abstraction 47 47 0
3 absurd 3 3 0
4 cake 35 10 -25
5 capo 39 44 5
6 care 26 14 -12
7 case 77 76 -1
8 cast 7 10 3
9 cleaned 6 7 1

10 clothing 32 23 -9
11 gentle 5 4 -1
12 instance 38 36 -2
13 instructor 21 20 -1
14 integrated 32 3 -29
15 interview 7 7 0
16 involvement 17 14 -3
17 marriage 4 3 -1
18 measure 28 27 -1
19 meat 15 13 -2
20 personnel 37 21 -16
21 program 25 27 2
22 publicity 54 57 3
23 seeker 4 4 0
24 selection 20 7 -13
25 table 40 22 -18
26 tail 8 10 2
27 workplace 80 83 3
28 world 94 105 11

29 yellowness 64 64 0
30 yield 19 22 3

Table 7.4: Search Results Statistics from both TE Systems

101

Chapter 7: The Evaluation

 new TE results

>

original TE results

new TE results

=

original TE results

new TE results

<

original TE results

count 9 6 15

percentage 30% 20% 50%

Table 7.5: Percentage of Search Results

From the above table, it is clear that in half of the search trails the original TE retrieved

more photos and therefore, the stemming did not broaden the search results. This fact

is different from the claim and we had to take a closer examination at the search

process to invistigate. The search query had been broken down to sub queries to

identify the tags used in them as parameters. A few points were noted and can explain

the confusion in table 7.5:

1. Stemming errors: stemming some user tags produced overstemmed or

understemmed words and sometimes these words cannot produce system tags

from PWN and MWN ontologies because they are distorted to even be real

English words. Searching for a term means looking up the search term in the

‘system_tag’ field in the ‘tags_detail’ table in the old TE system and this will

select its associated user tags whereas; it means looking up the same search

term in the ‘system_tag’ field in the ‘tags_stems_detail’ table in the new TE

system and this will select its associated stems and sometimes not all retrieved

user tags from ‘tags_detail’ has their corresponding stems in the retrieved

stems from ‘tags_stems_detail’ table. For example, the search term ‘cake’ has

associated user tags ‘cookie’ , ‘cookies’, ‘cupcake’, ‘cupcakes’, and ‘pancake’

that do not have their stems in the retrieved stems from ‘tags_stems_detail’.

Stemming ‘cookie’ will result in ‘cooki’ which is not a real English word thus it

will generate no system tags to be saved in the ‘tags_stems_detail’.

102

Chapter 7: The Evaluation

Search
term

Associated
User tags

Associated
Stems

results from
original TE

(A)

results from
new TE

(B)

(B) – (A)

table Booth Booth 40 22 -18

Counters Counter

Desk Desk

Mesa Mesa

Table -

cake Baba Baba 35 10 -25

Cake Cake

Cookie -

Cookies -

Cupcake -

Cupcakes -

Gingerbread Gingerbread

Pancake -

Table 7.6: Examples of Stemming Errors

2. The quality of user tags: the photos in the data sample were tagged by users

and these user tags are saved in the ‘user_tag’ field in both the ‘tags_master’,

‘tags_stems_master’ tables. Some of these tags are not real English words even

before stemming them. For example a photo is tagged using the word ‘mens’

which is not an English word.

3. The language of the sample data: except for one tag, all user tags are English

and as mentioned in the literature review, IR researchers had this reasonable

assumption that for languages that are more highly than English, stemming will

have greater improvements [38].

From the above table, every search that compared the search term against correctly

stemmed user tags (avoiding points 1 and 2) yielded more results than what is

retrieved by comparing the search term against the original user tags. Thus, using

103

Chapter 7: The Evaluation

additional tools to check the correctness of the stems will overcome point1. For

example, we can embed a Lemmatization analyzer to validate the generated stem.

Regarding point2, a dictionary of the language used will decide if a user tag is a valid

word or not.

Finally, the last point takes the discussion back to the multilingual aspect of the TE

system which is implemented to certain degree by supporting the use of Italian words

which use MWN ontology and the Italian porter stemmer. The addition of more

complex languages to the TE system can make the stemming more beneficial.

104

Chapter 8: Conclusion and Future Work

8 Conclusion and Future Work

8.1 Research Overview

The topic of tagging systems is a very active research area and many studies had

presented various improvements to the existing architecture of the tagging system.

Despite the disadvantages of folksonomies, users are willing to overlook lack of

semantic meaning, ambiguity, inconsistency…etc (see chapter 2) in order to take

advantage of the simplicity and freedom of folksonomies. The advances in the fields of

semantic web and social web had a huge impact on the research of folksonomies. The

thesis conducted a comprehensive literature review on tagging systems including the

history, the reasons behind their popularity, and the drawbacks. Furthermore, the

literature review covered the subjects of Princeton WordNet (PWN) and Multi

WordNet (MWN) ontologies.

The TE system is the result of research targeting certain problems in tagging systems. It

includes two components, a semantic component and a clustering component to

address the drawbacks of multilingualism and a lack of semantic and shorthand writing

(which is very common in the social web). The TE system is a partial implementation of

the proposed architecture presented in [72].

The current research is proposing the embedding of a new component to the TE

system, suggested in the original architecture illustrated in Figure 3.1, to the TE

system. In order to achieve the proposed objective, the current research had to

perform the following tasks:

• The TE system had to be explored thoroughly and then summarised in

chapter3.

• The efficiency of the TE algorithm had to be determined in order to decide on

the practicality and feasibility of the system before investing time and effort in

adding new features to a system that cannot be applied in the real world.

105

Chapter 8: Conclusion and Future Work

Moreover, the research also involves the database of the TE system. Many design

factors in the database architecture have been critically examined to determine if they

are set for optimal performance. The examination performed has been mostly guided

by the manual provided by MySQL and all findings were presented in chapter 5, along

with the algorithm complexity analysis.

Based on these findings, the research went ahead and proposed embedding a

stemming component to the TE system for normalisation purpose and for reducing the

index table and broadening the search results. The stemming component used the

Java encoding of the Porter stemming algorithm. This selection was made after looking

into the background of stemming algorithms, their techniques, their types, and the

pros and cons of some of the popular stemming algorithms.

In the sample tagging system, user tags are subjected to normalisation using the

stemming component, which is embedded inside the original TE code using a method

and a package. The generated stem is saved as the new user tag replacing the original

user tag and then it is used to query the semantic and social sources instead of the

original user tag.

An experiment is designed to measure the effect of stemming on the size of the index

table and the scope of the search results by running two versions of the TE systems

one without the stemming component and the other one with it using the same search

dataset and the findings section below explain the outcomes of the experiment.

8.2 Findings

Q1: What are the effects on performance of embedding the stemming component to

the TE system?

Stemming can offer a solution for the problem of word’s different lexical forms which

is common in tagging systems in addition to reducing the size of the index table and

broadening the search results.

106

Chapter 8: Conclusion and Future Work

In the TE system, the time complexity is dependent on the number of user tags ‘N’

which is used as a counter for the inner most iteration with the main body of the code

thus the smaller this number, the better. Therefore, exposing the user tags to the

stemmer before querying any of the semantic or social sources will get rid of some of

them and that will reduce the value of ‘N’ and thus improving the time.

After the normalisation of user tags, there was a drop in the number of retrieved

system tags and by looking at the run listing we found that in some instances, the

targeted sources were queried using unreal words thus no results could be retrieved.

This situation is caused by overstemming which is common when using light stemming

algorithms such as the Porter2 stemmer. To fix this, the TE system can use a heavier

stemming algorithm or pre-stemmer but as explained before, the Porter2 stemmer

was selected because it is fast and language independent and this is excellent for what

the TE system needs. Another suggesting is the addition of lemmatization analyzer

and/or vocabulary of the language used which will indicate the valid words prior to

stemming and then the analyzer will validate the correctness of the stem prior to

querying the semantic and clustering components.

The experiment indicates that the stemming component reduced the number of user

tags by more than 48%. Furthermore, a similar reduction percentage is noted

regarding the number of system tags in both systems which represent the index table.

As part of the experiment, search trails were performed on the old TE and new TE

using 30 terms and the retrieved results are recorded for comparison. At first, it looked

like the new TE with the stemming component retrieved fewer results in almost half

the trails with 30% of the trials having the same number of results from both systems.

Examining the search queries showed that there is an explanation to this.

Overstemming or overstemming user tags cannot produce system tags from PWN and

MWN ontologies because they are distorted to even be real English words. Another

factor is the quality of user tags. If they are they invalid words in the language used

then they will not generate valid stems. Moreover, the language used might have

107

Chapter 8: Conclusion and Future Work

played a role in the statistics above since some researchers point that simple

morphological languages like English does not benefit from stemming as other

complex languages.

Incorporating other tools can be helpful in overcoming the points mentioned here such

as the use of vocabulary, analyzer, and other languages as discussed in the evaluation

chapter.

Q2: What is the time complexity of the TE algorithm?

The time complexity analysis conducted shows that the TE system has a time growth

rate of O(N2) which is a polynomial (quadratic) time. As mentioned previously, in the

literature review in chapter 2, an algorithm with a computation that runs in linear or

quadratic time is considered to be ‘efficient’ and polynomial growth is considered

manageable. The execution time can make use of some modifications to reduce it such

as:

• SQL patch execution: the code contains many SELECT and INSERT SQL

statements and most of them are located inside conditions and iterations and,

as mentioned in chapter 5, executing these statements one by one is time

costly especially in the case of SELECT and INSERT statements. Patch execution

can perform instead, guided by certain flag variables to indicate whether a

specific SELECT/INSERT statement is to be executed or not under a certain

condition/iteration.

• Limit the input from the semantic resources: after running the TE code and

looking at the database, we found a user tag that generated 157 system tags

mainly with similarity relation. This considerable number of system tags has its

cost on the database storage, the time needed to query the semantic

resources, and the time needed to perform the search. Enforcing a limit on the

semantic retrieval input will be beneficial.

Q3: What is the space complexity of the TE algorithm?

108

Chapter 8: Conclusion and Future Work

The problem size is determined by the number of user tags per photo. Every photo has

its user tags stored inside the parameter keywordStringList of type List<String> and

thus keywordStringList.size is used as a counter (N) in the main loop of the algorithm.

The only parameter that is varying in size according to the growth rate of N is

keywordStringList with SPACE(N) which is a linear space. The rest of the parameters

are mainly declared as public and are allocated a constant space SPACE(1).

Q4: Is the database design optimised for the TE ER Model?

The selection of InnoDB storage engine is fit for the requirements of the TE system

especially for its support for foreign keys and fast index creation/deletion.

Data types can be optimised to reduce the database size as mentioned in chapter 5.

Some database columns may need to change their data type while others may only

adjust their size. Some database columns can express their contents in a different

manner to reduce the database size too as in the columns link and thumb from the

videos table. The database schema is very basic, thus the columns needed to be

selected as indexes were obvious, so the appointed indexes are simply justified.

8.3 Success criteria revisited

In the evaluation chapter, we conducted an experiment to gather certain information

to answer our main research question. The outcomes of the experiment indicated that

stemming reduces the size of the index table and increased the number of results

retrieved on the condition of working with valid user tags and valid stems.

8.4 Contributions

• The TE system is re-implemented on Flickr instead of YouTube. This has the

advantage of overcoming the language barrier when using more than one

language to generate system tags since photos are expressed visually and the

user does not need to have prior knowledge of any of the supported languages.

109

Chapter 8: Conclusion and Future Work

• User tags are normalised before the querying of the semantic resources

Princeton WordNet (PWN) and MultiWordNet (MWN). This is accomplished by

embedding a stemming component which is based on the Java encoding of the

Porter’s 2 stemmer. This component provides a solution for the problem of

different lexical forms which can be found in many tagging systems.

Furthermore, it reduces the size of the index table and increases the retrieved

results (on the condition of using valid user tags and valid stems). The decrease

in the index table means that the search process will compare the search

keyword against less system tags and this speed up the search. In addition, the

TE system in particular will benefit from the stemming component because of

its method of generating extra tags to enhance the semantic of the original

user tag. Using the user tags from our sample database, we can see that a user

tag can generate up to 157 system tags and there is no limit on this number

getting larger with a semantically rich user tag. Thus, having variants of this

user tag is a serious problem that can be easily avoided by mapping all variants

to their stem and only generate system tags based on it.

• The old TE system is using the WordNet and MultiWordNet ontologies to

provide semantic to the user tags in English and Italian only. The embedded

stemmer follows on that and it handles English and Italian words.

The new TE system can be generalized across many languages by incorporating more

languages from MultiWordNet or adding other multilingual ontologies. A list of

ontologies is available from the Global WordNet Association web site [111]. The

stemming component can also use stemmers in other languages. The Snowball

framework for the porter stemmer offers the algorithm encoding for the stemmer in

many languages like French, Spanish, Portuguese, German, Dutch, Swedish …etc [97].

Other than the porter stemmer, there are many stemming algorithms in Non-English

languages that can be used but some might be difficult to encode. Enriching the TE

system with more languages makes the search boarder and this is useful in tagging

system based on photo content where language barrier does not matter.

110

http://snowball.tartarus.org/algorithms/portuguese/stemmer.html
http://snowball.tartarus.org/algorithms/dutch/stemmer.html
http://snowball.tartarus.org/algorithms/swedish/stemmer.html

Chapter 8: Conclusion and Future Work

The researcher claims that the proposed new TE with the stemming component has a

balance to a certain degree between the storage needed for the generated system

tags and the storage saved by mapping variants to one stem. This means that TE can

cover more semantically related results with less concern about the storage overhead.

This model can be used in many applications such as machine translation, document

summarization, text classification, e-mail filtering, web browsing, and information

extraction.

8.5 Limitations and Future work

The research can be further advanced by exploring the following areas:

• Investigating the effect of adding more tags from different sources and looking

at the time needed to perform the search process. This will establish the trade-

offs between either having a more versatile search result or performing a faster

search.

• Examining the quality of the retrieval results by measuring the precision, and

recall rate.

111

 References

References

1. (2005) The Lancaster Stemming Algorithm: Background to Stemmming [WWW]
Lancaster University. Available from:
http://www.comp.lancs.ac.uk/computing/research/stemming/Links/backgroun
d.htm [Accessed 20/10/2013].

2. (2005) The Lancaster Stemming Algorithm: Introduction [WWW] Lancaster
University. Available from:
http://www.comp.lancs.ac.uk/computing/research/stemming/Links/introducti
on.htm [Accessed 20/10/2013].

3. (2005) The Lancaster Stemming Algorithm: Porter [WWW] Lancaster University.
Available from:
http://www.comp.lancs.ac.uk/computing/research/stemming/Links/porter.ht
m [Accessed 20/10/2013].

4. (n.d.) Performance Analysis [WWW] Shanghai Jiao Tong University. Available
from: http://ee.sjtu.edu.cn/po/Class-web/data-stucture/csc120ch2.doc
[Accessed 15/12/2012].

5. (n.d.) What is Program [WWW]. Available from:
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=
0CEMQFjAC&url=http%3A%2F%2Fprogramming.im.ncnu.edu.tw%2FCH1.ppt&e
i=gVlOUbzHMeeR0QXy-
YG4Bw&usg=AFQjCNF1Rp8MESQwXj5TXX73ynLMyQAGdQ&sig2=tIZg99k3bKaf
aKR4y765OA&bvm=bv.44158598,d.d2k [Accessed 5/12/2012].

6. AL-SAYED, G. (n.d.) Data Structures Performance Analysis [WWW] King Saud
University. Available from:
faculty.ksu.edu.sa/Gamal/CSC212%20Lectures/Lect2.ppt [Accessed 5/2/2013].

7. AL-SHORBAGY, G. (n.d.) Lecture 2: Data Structures - Performance Analysis
[WWW] King Saud University. Available from:
http://faculty.ksu.edu.sa/Gamal/CSC212%20Lectures/Lect2.ppt [Accessed
24/8/2012].

8. AP COMPUTER SCIENCE (n.d.) Big-O Notation [WWW]. Available from:
http://www.apcomputerscience.com/apcs/misc/BIG-O.pdf [Accessed
25/2/2013].

9. ARORA, R. and RAVINDRAN, B. Latent Dirichlet Allocation based Multi-
Document Summarization. In: Proceedings of the 2nd workshop on Analytics for
Noisy Unstructured Text Data, Singapore, July 2004: ACM, pp. 91-97.

112

http://www.comp.lancs.ac.uk/computing/research/stemming/Links/background.htm
http://www.comp.lancs.ac.uk/computing/research/stemming/Links/background.htm
http://www.comp.lancs.ac.uk/computing/research/stemming/Links/introduction.htm
http://www.comp.lancs.ac.uk/computing/research/stemming/Links/introduction.htm
http://www.comp.lancs.ac.uk/computing/research/stemming/Links/porter.htm
http://www.comp.lancs.ac.uk/computing/research/stemming/Links/porter.htm
http://ee.sjtu.edu.cn/po/Class-web/data-stucture/csc120ch2.doc
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CEMQFjAC&url=http%3A%2F%2Fprogramming.im.ncnu.edu.tw%2FCH1.ppt&ei=gVlOUbzHMeeR0QXy-YG4Bw&usg=AFQjCNF1Rp8MESQwXj5TXX73ynLMyQAGdQ&sig2=tIZg99k3bKafaKR4y765OA&bvm=bv.44158598,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CEMQFjAC&url=http%3A%2F%2Fprogramming.im.ncnu.edu.tw%2FCH1.ppt&ei=gVlOUbzHMeeR0QXy-YG4Bw&usg=AFQjCNF1Rp8MESQwXj5TXX73ynLMyQAGdQ&sig2=tIZg99k3bKafaKR4y765OA&bvm=bv.44158598,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CEMQFjAC&url=http%3A%2F%2Fprogramming.im.ncnu.edu.tw%2FCH1.ppt&ei=gVlOUbzHMeeR0QXy-YG4Bw&usg=AFQjCNF1Rp8MESQwXj5TXX73ynLMyQAGdQ&sig2=tIZg99k3bKafaKR4y765OA&bvm=bv.44158598,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CEMQFjAC&url=http%3A%2F%2Fprogramming.im.ncnu.edu.tw%2FCH1.ppt&ei=gVlOUbzHMeeR0QXy-YG4Bw&usg=AFQjCNF1Rp8MESQwXj5TXX73ynLMyQAGdQ&sig2=tIZg99k3bKafaKR4y765OA&bvm=bv.44158598,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CEMQFjAC&url=http%3A%2F%2Fprogramming.im.ncnu.edu.tw%2FCH1.ppt&ei=gVlOUbzHMeeR0QXy-YG4Bw&usg=AFQjCNF1Rp8MESQwXj5TXX73ynLMyQAGdQ&sig2=tIZg99k3bKafaKR4y765OA&bvm=bv.44158598,d.d2k
http://faculty.ksu.edu.sa/Gamal/CSC212%20Lectures/Lect2.ppt
http://www.apcomputerscience.com/apcs/misc/BIG-O.pdf

 References

10. ARORA, S. and BARAK, B. (2009) Computational Complexity: A Modern
Approach. Cambridge, UK: Cambridge University Press.

11. BARNES, N.G. (2014) Social Commerce emerges as Big Brands position
themselves to Turn "Follows", "Likes", and "Pins" into Sales. American Journal
of Management, 14 (4), pp. 11-18.

12. BEGELMAN, G., KELLER, P., and SMADJA, F. Automated Tag Clustering:
Improving Search and Exploration in the Tag Space. In: Preceedings of the 15th
Int. World Wide Web Conference (WWW2006), Edinburgh, May 2006, pp. 15-
33.

13. BERNERS-LEE, T., HENDLER, J., and LASSILA, O. (2001) The Semantic Web.
Scientific American, 284 (5), pp. 28-37.

14. BERNERS-LEE, T., MASINTER, L., and MCCAHILL, M. (1994) Uniform Resource
Locators (URL) [WWW]. Available from:
http://www.w3.org/Addressing/rfc1738.txt [Accessed 12/1/2013].

15. BESTAVROS, A. (1995) CLA CS-101: Introduction to Computers [WWW] Boston
University. Available from:
http://www.cs.bu.edu/~best/courses/cs101/F97/lectures/AlgorithmComplexity
.html [Accessed 10/4/2013].

16. BIGGERS, L.R. and KRAFT, N.A. (2012) A Comparison of Stemming Algorithms for
Text Retrieval Based Feature Location [WWW] The University of Alabama.
Available from:
http://scholar.googleusercontent.com/scholar?q=cache:Eq32lcz7IOEJ:scholar.g
oogle.com/+A+Comparison+of+Stemming+Algorithms+for+Text+Retrieval+Base
d+Feature+Location&hl=en&as_sdt=0,5 [Accessed 6/4/2013].

17. BOYD, D.M. and ELLISON, N.B. (2007) Social Network Sites: Definition, History,
and Scholarship. Journal of Computer-Mediated Communication, 13 (1), pp.
210-230.

18. BOYKOV, Y. (2012) Analysis of Algorithms [WWW] The University of Western
Ontario. Available from:
http://www.csd.uwo.ca/courses/CS1037a/notes/topic13_AnalysisOfAlgs.pdf
[Accessed 20/2/2013].

19. BRASSARD, G. and BRATLEY, P. (1988) Algorithmics: Theory & Practice.
Englewood Cliffs, NJ: Prentice-Hall, Inc.

20. BRINTON, L.J. (2000) The Structure of Modern English: A Linguistic Introduction.
Amsterdam: John Benjamins.

113

http://www.w3.org/Addressing/rfc1738.txt
http://www.cs.bu.edu/%7Ebest/courses/cs101/F97/lectures/AlgorithmComplexity.html
http://www.cs.bu.edu/%7Ebest/courses/cs101/F97/lectures/AlgorithmComplexity.html
http://scholar.googleusercontent.com/scholar?q=cache:Eq32lcz7IOEJ:scholar.google.com/+A+Comparison+of+Stemming+Algorithms+for+Text+Retrieval+Based+Feature+Location&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:Eq32lcz7IOEJ:scholar.google.com/+A+Comparison+of+Stemming+Algorithms+for+Text+Retrieval+Based+Feature+Location&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:Eq32lcz7IOEJ:scholar.google.com/+A+Comparison+of+Stemming+Algorithms+for+Text+Retrieval+Based+Feature+Location&hl=en&as_sdt=0,5
http://www.csd.uwo.ca/courses/CS1037a/notes/topic13_AnalysisOfAlgs.pdf

 References

21. BUSEMANN, S., SCHMEIER, S., and ARENS, R.G. Message Classification in the
Call Center. In: Proceedings of the 6th Conference on Applied Natural Language
Processing, Seattle, May 2000: Association for Computational Linguistics, pp.
158-165.

22. BUTTCHER, S., CLARKE, C.L., and CORMACK, G.V. (2010) Information Retrieval:
Implementing and Evaluating Search Engines. Mit Press.

23. BYLANDER, T. (2006) Chapter 2: Fundamentals of the Analysis of Algorithm
Efficiency [WWW] The University of Texas at San Antonio. Available from:
http://www.cs.utsa.edu/~bylander/cs3343/chapter2handout.pdf [Accessed
20/3/2013].

24. CABRAL, S.K. and MURPHY, K. (2011) MySQL Administrator's Bible. Indianapolis:
Wiley.

25. CHAUPATTNAIK, S., NANDA, S.S., and MOHANTY, S. (2012) A Suffix Stripping
Algorithm for Odia Stemmer. International Journal of Computational Linguistics
and Natural Language Processing, 1 (1), pp. 1-5.

26. COFFEY, N. (2011) How to calculate the Memory Usage of a Java Array [WWW]
JAVAMEX. Available from:
http://www.javamex.com/tutorials/memory/array_memory_usage.shtml
[Accessed 7/5/2013].

27. COFFEY, N. (2011) Memory Usage of Java Objects: General Guide [WWW]
JAVAMEX. Available from:
www.javamex.com/tutorials/memory/object_memory_usage.shtml [Accessed
7/5/2013].

28. COFFEY, N. (2011) Memory Usage of Java Strings and String-Related Objects
[WWW]. Available from:
http://www.javamex.com/tutorials/memory/string_memory_usage.shtml
[Accessed 7/5/2013].

29. CRONIN, P., RYAN, F., and COUGHLAN, M. (2008) Undertaking a Literature
Review: a Step-by-Step Approach. British Journal of Nursing, 17 (1), pp. 38.

30. CURIOSO, A., BRADFORD, R., and GALBRAITH, P. (2010) Expert PHP and MySQL.
Indianapolis: Wiley.

31. DALIANIS, H. (2000) SweSum - A Text Summarizer for Swedish [WWW].
Available from:
http://www.dsv.su.se/~hercules/papers/Textsumsummary.html [Accessed
12/6/2014].

114

http://www.cs.utsa.edu/%7Ebylander/cs3343/chapter2handout.pdf
http://www.javamex.com/tutorials/memory/array_memory_usage.shtml
http://www.javamex.com/tutorials/memory/object_memory_usage.shtml
http://www.javamex.com/tutorials/memory/string_memory_usage.shtml
http://www.dsv.su.se/%7Ehercules/papers/Textsumsummary.html

 References

32. DARWISH, K. Building a Shallow Arabic Morphological Analyzer in One Day. In:
Proceedings of the ACL-02 Workshop on Computational Approaches to Semitic
Languages, Pennsylvania: Association for Computational Linguistics, pp. 1-8.

33. DRAKE, M. (2003) Encyclopedia of Library and Information Science. 2nd Edition.
Taylor & Francis.

34. DUNHAM, D. (2010) Growth of Functions: Asymptotic Notation [WWW].
Available from: http://www.d.umn.edu/~ddunham/cs3512s10/notes/l12.pdf
[Accessed 7/1/2013].

35. FRAKES, W.B. and BAEZA-YATES, R. (1992) Information Retrieval: Data
Structures & Algorithms. Englewood Cliffs: Prentice Hall.

36. FRAKES, W.B. and FOX, C.J. (2003) Strength and Similarity of Affix Removal
Stemming Algorithms. In: ACM SIGIR Forum, Toronto, July 2003: ACM, pp. 26-
30.

37. FUNG, G. (2001) A Comprehensive Overview of Basic Clustering Algorithms.

38. GALVEZ, C. and DE MOYA-ANEGON, F. (2006) An Evaluation of Conflation
Accuracy using Finite-state Transducers. Journal of Documentation, 62 (3), pp.
328-349.

39. GALVEZ, C., DE MOYA-ANEGON, F., and SOLANA, V. (2005) Term Conflation
Methods in Information Retrieval: Non-Linguistic and Linguistic Approaches.
Journal of Documentation, 61 (4), pp. 520-547.

40. GATLING, G. (2012) The Need for Information Management [WWW] SAP.
Available from: http://blogs.sap.com/innovation/analytics/information-
management-01494 [Accessed 24/6/2014].

41. GAUSTAD, T. and BOUMA, G. (2002) Accurate Stemming of Dutch for Text
Classification. Language and Computers, 45 (1), pp. 104-117.

42. GELBUKH, A., ALEXANDROV, M., and HAN, S.-Y. (2004). Detecting Inflection
Patterns in Natural Language by Minimization of Morphological Model.
Progress in Pattern Recognition, Image Analysis and Applications, Springer:
432-438.

43. GEMMELL, J., SHEPITSEN, A., MOBASHER, M., and BURKE, R. Personalization in
Folksonomies based on Tag Clustering. In: Proceedings of the 6th Workshop on
Intelligent Techniques for Web Personalization and Recommender Systems
(AAAI 2008), Chicago, July 2008, pp. 42.

115

http://www.d.umn.edu/%7Eddunham/cs3512s10/notes/l12.pdf
http://blogs.sap.com/innovation/analytics/information-management-01494
http://blogs.sap.com/innovation/analytics/information-management-01494

 References

44. GUPTA, V. and LEHAL, G.S. Punjabi Language Stemmer for Nouns and Proper
Names. In: Proceedings of the 2nd Workshop on South and Southeast Asian
Natural Language Processing (WSSANLP), Hyderabad: Citeseer, pp. 35-39.

45. GUPTA, V. and LEHAL, G.S. (2013) A Survey of Common Stemming Techniques
and Existing Stemmers for Indian Languages. Journal of Emerging Technologies
in Web Intelligence, 5 (2), pp. 157-161.

46. HADNI, M., LACHKAR, A., and OUATIK, S.A. (2012) A New and Efficient
Stemming Technique for Arabic Text Categorization. In: Int. Conference on
Multimedia Computing and Systems (ICMCS), Tangier-Morocco, May 2012:
IEEE, pp. 791-796.

47. HADZILACOS, V. TIME COMPLEXITY OF ALGORITHMS [WWW] University of
Toronto. Available from:
http://www.cs.toronto.edu/~vassos/teaching/c73/handouts/brief-
complexity.pdf [Accessed 15/9/2012].

48. HARDY, H., SHIMIZU, N., STRZALKOWSKI, T., TING, L., ZHANG, X., and WISE, G.B.
Cross-Document Summarization by Concept Classification. In: Proceedings of
the 25th Annual Int. ACM SIGIR Conference on Research and Development in
Information Retrieval, Finland, August 2002: ACM, pp. 121-128.

49. HAREL, D. and ROSNER, R. (1992) Algorithmics: The Spirit of Computing. 2nd.
Addison-Wesley.

50. HEDDEN, H. (2010) The Accidental Taxonomist. Information Today.

51. HONG, J. (2002) Performance Measurement [WWW] Pohang University of
Science and Technology. Available from:
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=
0CDkQFjAA&url=http%3A%2F%2Fdpnm.postech.ac.kr%2Fcs233%2Flecture%2Fl
ecture2-perf-measurement.ppt&ei=j1ZOUeyDL-
b80QXI44DwDA&usg=AFQjCNFZjZNWhXtfHRe3usVexBgRp2fRFg&sig2=AEenzgp
0kap58qu3Yy9mUw&bvm=bv.44158598,d.d2k [Accessed 10/1/2013].

52. HUSSAIN, M. (n.d.) Performance Analysis [WWW] King Saud University.
Available from: http://faculty.ksu.edu.sa/mhussain/CSC212/Lecture%20-
%20Performance%20Analysis.pdf [Accessed 10/2/2013].

53. INTERNET WORLD STATS (2012) Internet Usage Stats and Population Statistics
[WWW]. Available from: www.internetworldstats.com/stats.htm [Accessed
1/7/2013].

116

http://www.cs.toronto.edu/%7Evassos/teaching/c73/handouts/brief-complexity.pdf
http://www.cs.toronto.edu/%7Evassos/teaching/c73/handouts/brief-complexity.pdf
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDkQFjAA&url=http%3A%2F%2Fdpnm.postech.ac.kr%2Fcs233%2Flecture%2Flecture2-perf-measurement.ppt&ei=j1ZOUeyDL-b80QXI44DwDA&usg=AFQjCNFZjZNWhXtfHRe3usVexBgRp2fRFg&sig2=AEenzgp0kap58qu3Yy9mUw&bvm=bv.44158598,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDkQFjAA&url=http%3A%2F%2Fdpnm.postech.ac.kr%2Fcs233%2Flecture%2Flecture2-perf-measurement.ppt&ei=j1ZOUeyDL-b80QXI44DwDA&usg=AFQjCNFZjZNWhXtfHRe3usVexBgRp2fRFg&sig2=AEenzgp0kap58qu3Yy9mUw&bvm=bv.44158598,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDkQFjAA&url=http%3A%2F%2Fdpnm.postech.ac.kr%2Fcs233%2Flecture%2Flecture2-perf-measurement.ppt&ei=j1ZOUeyDL-b80QXI44DwDA&usg=AFQjCNFZjZNWhXtfHRe3usVexBgRp2fRFg&sig2=AEenzgp0kap58qu3Yy9mUw&bvm=bv.44158598,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDkQFjAA&url=http%3A%2F%2Fdpnm.postech.ac.kr%2Fcs233%2Flecture%2Flecture2-perf-measurement.ppt&ei=j1ZOUeyDL-b80QXI44DwDA&usg=AFQjCNFZjZNWhXtfHRe3usVexBgRp2fRFg&sig2=AEenzgp0kap58qu3Yy9mUw&bvm=bv.44158598,d.d2k
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDkQFjAA&url=http%3A%2F%2Fdpnm.postech.ac.kr%2Fcs233%2Flecture%2Flecture2-perf-measurement.ppt&ei=j1ZOUeyDL-b80QXI44DwDA&usg=AFQjCNFZjZNWhXtfHRe3usVexBgRp2fRFg&sig2=AEenzgp0kap58qu3Yy9mUw&bvm=bv.44158598,d.d2k
http://faculty.ksu.edu.sa/mhussain/CSC212/Lecture%20-%20Performance%20Analysis.pdf
http://faculty.ksu.edu.sa/mhussain/CSC212/Lecture%20-%20Performance%20Analysis.pdf
http://www.internetworldstats.com/stats.htm

 References

54. JEFF'S SQL SERVER BLOG (2007) Composite Primary Keys [WWW]. Available
from:
http://weblogs.sqlteam.com/jeffs/archive/2007/08/23/composite_primary_ke
ys.aspx [Accessed 21/12/2012].

55. JIVANI, A.G. (2011) A Comparative Study of Stemming Algorithms. Int. Journal
of Computer Technology and Applications, 2 (6), pp. 1930-1938.

56. KATOEN, J. (2002) Introduction to Algorithm Analysis: Lecture #1 of Algorithms,
Data Structures and Complexity [WWW]. Available from:
http://jriera.webs.ull.es/Docencia/lec1.pdf [Accessed 28/9/2012].

57. KIM, H.L., SCERRI, S., BRESLIN, J.G., DECKER, S., and KIM, H.G. The State of the
Art in Tag Ontologies: a Semantic Model for Tagging and Folksonomies. In:
International Conference on Dublin Core and Metadata Applications, Berlin,
September 2008, pp. 128-137.

58. KODIMALA, S. (2010) Study of Stemming Algorithms. Msc, University of Nevada.

59. KORPELA, J. (2006) Unicode Explained. Sebastopol: O'Reilly.

60. KRAAIJ, W. and POHLMANN, R. (1995) Evaluation of a Dutch Stemming
Algorithm. The New Review of Document and Text Management, 1, pp. 25-43.

61. KUCK, G. (2004) Tim Berners-Lee's Semantic Web. SA Journal of Information
Management, 6 (1).

62. LARKEY, L.S., BALLESTEROS, L., and CONNELL, M.E. Improving Stemming for
Arabic Information Retrieval: Light Stemming and Co-Occurrence Analysis. In:
Proceedings of the 25th Annual Int. ACM SIGIR Conference on Research and
Development in Information Retrieval, Tampere, August 2002: ACM, pp. 275-
282.

63. LAZARINIS, F., VILARES, J., TAIT, J., and EFTHIMIADIS, E.N. (2009) Current
Research Issues and Trends in Non-English Web Searching. Information
Retrieval, 12 (3), pp. 230-250.

64. LEE, S.-S. and YONG, H.-S. Component based Approach to handle Synonym and
Polysemy in Folksonomy. In: Proceedings of the 7th IEEE Int. Conference on
Computer and Information Technology (CIT), Fukushima, October 2007, pp.
200-205.

65. LEE, Y.-S. (2004). Morphological Analysis for Statistical Machine Translation.
Proceedings of HLT-NAACL 2004. Boston, Association for Computational
Linguistics.

117

http://weblogs.sqlteam.com/jeffs/archive/2007/08/23/composite_primary_keys.aspx
http://weblogs.sqlteam.com/jeffs/archive/2007/08/23/composite_primary_keys.aspx
http://jriera.webs.ull.es/Docencia/lec1.pdf

 References

66. LENNON, M., PEIRCE, D.S., TARRY, B.D., and WILLETT, P. (1981) An Evaluation of
some Conflation Algorithms for Information Retrieval. Journal of Information
Science, 3 (4), pp. 177-183.

67. LEVITIN, A. (2012) Introduction to the Design & Analysis of Algorithms. 3rd.
Boston: Pearson.

68. LEVY, Y. and ELLIS, T.J. (2006) A Systems Approach to conduct an Effective
Literature Review in Support of Information Systems Research. Informing
Science: International Journal of an Emerging Transdiscipline, 9 (1), pp. 181-
212.

69. LI, Q. (2008) Collaborative Tagging Applications and Approaches. IEEE
MultiMedia, 15 (3), pp. 14-21.

70. LIACS MEDIALAB (2008) The MIRFLICKR Retrieval Evaluation [WWW] Leiden
University. Available from: http://press.liacs.nl/mirflickr/ [Accessed 30/3/2013].

71. LIN, J.Y., YANG, C.H., TSENG, S.C., and HUANG, C.R. The Structure of Polysemy:
A study of multi-sense words based on WordNet. pp. 320-329.

72. MAGABLEH, M. (2011) A Generic Architecture for Semantic Enhanced Tagging
Systems. PhD, De Montfort University.

73. MAJUMDER, P., MITRA, M., PARUI, S.K., KOLE, G., MITRA, P., and DATTA, K.
(2007) YASS: Yet Another Suffix Stripper. ACM Transactions on Information
Systems (TOIS), 25 (4), pp. 18.

74. MATHES, A. (2004) Folksonomies-cooperative classification and communication
through shared metadata. Computer Mediated Communication, 47 (10).

75. MCPHERSON, D. (2005) Analysis [WWW] Virginia Tech. Available from:
http://courses.cs.vt.edu/cs2604/spring05/mcpherson/note/Analysis.pdf
[Accessed 5/3/2013].

76. MERHOLZ, P. (2004) Metadata for the Masses [WWW] Adaptive Path. Available
from: http://www.adaptivepath.com/ideas/e000361/ [Accessed 15/12/2012].

77. MIKA, P. and GREAVES, M. (2008) *Editorial: Semantic Web & Web 2.0. Web
Semantics: Science, Services and Agents on the World Wide Web, 6 (1), pp. 1-3.

78. MILLER, G.A. (1995) WordNet: a lexical database for English. Communications
of the ACM, 38 (11), pp. 39-41.

79. MILLER, G.A., BECKWITH, R., FELLBAUM, C., GROSS, D., and MILLER, K.J. (1990)
Introduction to wordnet: An on-line lexical database*. International journal of
lexicography, 3 (4), pp. 235-244.

118

http://press.liacs.nl/mirflickr/
http://courses.cs.vt.edu/cs2604/spring05/mcpherson/note/Analysis.pdf
http://www.adaptivepath.com/ideas/e000361/

 References

80. MYSQL (n.d.) MySQL 5.6 Reference Manual [WWW]. Available from:
http://dev.mysql.com/doc/refman/5.6 [Accessed 20/12/12].

81. NORUZI, A. (2007) Folksonomies-Why do we need controlled vocabulary?
Webology.

82. NTAIS, G. (2006) Development of a Stemmer for the Greek Language. Msc,
Stockholm University.

83. O’REILLY (2005) *What Is Web 2.0 [WWW]. Available from:
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=2
[Accessed 25/4/2012].

84. OBENZINGER, H. (2005) What can a Literature Review do for me? How to
research, write, and survive a Literature Review [WWW] Stanford University.
Available from:
http://ce.uoregon.edu/aim/Capstone07/LiteratureReviewHandout.pdf
[Accessed 24/9/2014].

85. ORASAN, C., PEKAR, V., and HASLER, L. A Comparison of Summarisation
Methods based on Term Specificity Estimation. In: Proceedings of the 4th Int.
Conference on Language Resources and Evaluation (LREC2004), Lisbon, May
2004, pp. 1037-1041.

86. OZGUR, L. and GUNGOR, T. Analysis of Stemming Alternatives and Dependency
Pattern Support in Text Classification. In: Proceedings of the 10th Int.
Conference on Intelligent Text Processing and Computational Linguistics
(CICLing), Research in Computing Science Vol (41), Mexico City, pp. 195-206.

87. PAICE, C.D. (1990) Another Stemmer. SIGIR Forum, 24 (3), pp. 56-61.

88. PAICE, C.D. (1994) An Evaluation Method for Stemming Algorithms. In:
Proceedings of the 17th Annual International ACM SIGIR Conference on
Research & Development on Information Retrieval (SIGIR), Dublin, July 1994:
Springer-Verlag, pp. 42-50.

89. PANDEY, A.K. and SIDDIQUI, T.J. An Unsupervised Hindi Stemmer with Heuristic
Improvements. In: Proceedings of the 2nd Workshop on Analytics for Noisy
Unstructured Text Data, Singapore, July 2008: ACM, pp. 99-105.

90. PARBERRY, I. (2001) Lecture Notes on Algorithm Analysis and Computational
Complexity [WWW] University of North Texas. Available from:
http://larc.unt.edu/ian/books/free/lnoa.pdf [Accessed 28/12/2012].

91. PETERS, I. (2009) Folksonomies: Indexing and Retrieval in Web 2.0. Berlin:
Walter de Gruyter.

119

http://dev.mysql.com/doc/refman/5.6
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=2
http://ce.uoregon.edu/aim/Capstone07/LiteratureReviewHandout.pdf
http://larc.unt.edu/ian/books/free/lnoa.pdf

 References

92. PETERS, I. and BECKER, P. (2009) Folksonomies: Indexing and Retrieval in Web
2.0. Germany: De Gruyter/Saur.

93. PIANTA, E., BENTIVOGLI, L., and GIRARDI, C. MultiWordNet Developing an
aligned multilingual database.

94. PIRKOLA, A. (2001) Morphological Typology of Languages for IR. Journal of
Documentation, 57 (3), pp. 330-348.

95. POPOVIC, M. and NEY, H. Towards the Use of Word Stems and Suffixes for
Statistical Machine Translation. In: Proceedings of the 4th Int. Conference on
Languages Resources and Evalution, Lisbon, May 2004.

96. POPOVIC, M. and WILLETT, P. (1992) The Effectiveness of Stemming for
Natural-Language Access to Slovene Textual Data. Journal of the American
Society for Information Science, 43 (5), pp. 384-390.

97. PORTER, M. (2001) Snowball: A Language for Stemming Algorithms [WWW].
Available from: http://snowball.tartarus.org/texts/introduction.html [Accessed
20/8/2013].

98. PORTER, M. (2006) The Porter Stemming Algorithm [WWW]. Available from:
http://tartarus.org/martin/PorterStemmer/ [Accessed 25/9/2013].

99. SAHARIA, N., SHARMA, U., and KALITA, J. (2012) Analysis and Evaluation of
Stemming Algorithms: A Case Study with Assamese. In: Proceedings of the
International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Chennai, August 2012: ACM, pp. 842-846.

100. SANCHEZ-ZAMORA, F. and LLAMAS-NISTAL, M. Visualizing tags as a network of
relatedness. IEEE, pp. 1-6.

101. SAVOY, J. (1993) Stemming of French Words based on Grammatical Categories.
JASIS, 44 (1), pp. 1-9.

102. SCOTT, S. and MATWIN, S. Feature Engineering for Text Classification. In:
Proceedings of the 16th Int. Conference on Machine Learning (ICML99), Bled,
June 1999, pp. 379-388.

103. SEMANTIC WEB (n.d.) Main Page [WWW] Semantic Web,. Available from:
http://semanticweb.org/wiki/Main_Page [Accessed 18/9/2014].

104. SEMBOK, T.M.T. and ATA, B.A. Arabic Word Stemming Algorithms and Retrieval
Effectiveness. In: Proceedings of the World Congress on Engineering (WCE
2013), London, July 2013.

120

http://snowball.tartarus.org/texts/introduction.html
http://tartarus.org/martin/PorterStemmer/
http://semanticweb.org/wiki/Main_Page

 References

105. SEMBOK, T.M.T. and BAKAR, Z.A. (2011) Effectiveness of Stemming and N-
grams String Similarity Matching on Malay Documents. International Journal of
Applied Mathematics and Informatics, 5 (3), pp. 208-215.

106. SHARMA, D. (2012) Improved Stemming Approach used for Text Processing in
Information Retrieval System. MEng, Thapar University.

107. SMITH, P. (2012) Professional Website Performance: Optimizing the Front-End
and Back-End. Indianapolis: Wiley.

108. STROPPA, N. (2006) Algorithms & Complexity [WWW] Dublin City University.
Available from:
http://www.computing.dcu.ie/~nstroppa/teaching/ca313_space.pdf [Accessed.

109. STUDY ADVICE AND MATHS SUPPORT (n.d.) Developing your Literature Review
[WWW] University of Reading. Available from:
http://www.reading.ac.uk/internal/studyadvice/StudyResources/Essays/sta-
developinglitreview.aspx [Accessed 7/12/2014].

110. SUBA, K., BHATTACHARYYA, P., and JIANDANI, D. Hybrid Inflectional Stemmer
and Rule-based Derivational Stemmer for Gujarati. In: Proceedings of the 2nd
Workshop on South and Southeast Asian Natural Language Processing
(WSSANLP 2011), Chiang Mai, November 2011: Citeseer, pp. 1-8.

111. THE GLOBAL WORDNET ASSOCIATON (n.d.) Wordnets in the World [WWW].
Available from: http://globalwordnet.org/wordnets-in-the-world/ [Accessed
12/12/2014].

112. THE UNICODE CONSORTIUM (n.d.) What is Unicode? [WWW]. Available from:
http://www.unicode.org/standard/WhatIsUnicode.html [Accessed 8/1/2013].

113. UDELL, J. (2004) Collaborative Knowledge Gardening [WWW] InfoWorld.
Available from: http://www.infoworld.com/d/developer-world/collaborative-
knowledge-gardening-020 [Accessed 30/12/2012].

114. VENNERS, B. (n.d.) The Java Virtual Machine [WWW] Artima. Available from:
http://www.artima.com/insidejvm/ed2/jvm3.html [Accessed 10/5/2013].

115. W3C (n.d.) Semantic Web [WWW]. Available from:
http://www.w3.org/standards/semanticweb/ [Accessed 8/7/2013].

116. WAL, T.V. (2005) Explaining and Showing Broad and Narrow Folksonomies
[WWW] vanderwal.net. Available from:
http://www.vanderwal.net/random/entrysel.php?blog=1635 [Accessed
20/12/2012].

121

http://www.computing.dcu.ie/%7Enstroppa/teaching/ca313_space.pdf
http://www.reading.ac.uk/internal/studyadvice/StudyResources/Essays/sta-developinglitreview.aspx
http://www.reading.ac.uk/internal/studyadvice/StudyResources/Essays/sta-developinglitreview.aspx
http://globalwordnet.org/wordnets-in-the-world/
http://www.unicode.org/standard/WhatIsUnicode.html
http://www.infoworld.com/d/developer-world/collaborative-knowledge-gardening-020
http://www.infoworld.com/d/developer-world/collaborative-knowledge-gardening-020
http://www.artima.com/insidejvm/ed2/jvm3.html
http://www.w3.org/standards/semanticweb/
http://www.vanderwal.net/random/entrysel.php?blog=1635

 References

117. WAL, T.V. (2007) Folksonomy [WWW] vanderwal.net. Available from:
http://vanderwal.net/folksonomy.html [Accessed 20/12/2012].

118. WEISS, D. (2005) Stempelator: A Hybrid Stemmer for the Polish Language.
Institute of Computing Science: Poznan University of Technology Research
Report, RA-002/05.

119. WOOTTON, C. (2007) Developing Quality Metadata: Building Innovative Tools
and Workflow Solutions. Oxford: Focal Press.

120. WORDNET (2006) WordNet v3.0 Database Statistics [WWW]. Available from:
http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html [Accessed
19/9/2013].

121. YANG, M. and KIRCHHOFF, K. Phrase-Based Backoff Models for Machine
Translation of Highly Inflected Languages. In: Proceedings of the 11th
Conference of the European Chapter of the Association for Computational
Linguistics, Trento, April 2006, pp. 3-7.

122. ZAITSEV, P. and TKACHENKO, V. (2012) High Performance MySQL: Optimization,
Backups, and Replication. Sebastopol: O'Reilly.

123. ZHANG, S., LEE, J.-H., and FANG, L. (2013) The Effect of Shopping Motivation of
Social Commerce on Purchase Intention. International Journal of Information
Processing & Management, 4 (6), pp. 137-149.

122

http://vanderwal.net/folksonomy.html
http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html

	Abstract
	Declaration
	Acknowledgement
	List of Figures
	List of Tables
	List of Abbreviations
	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Research Objectives and Questions
	1.4 Success Criteria
	1.5 Thesis Structure

	2 The Literature Review
	2.1 Introduction
	2.2 Methodology of the Literature Review
	Define the research topic
	Define the main concepts and keywords in the topic
	Select research tools
	Do the search
	Manage references
	Analyse the materials
	Writing the literature review

	2.3 Tagging Systems and the Semantic Web
	2.3.1 Tagging Systems (folksonomies)
	Background and Definitions
	Advantages of folksonomy
	Disadvantages of folksonomy
	Clustering

	2.3.2 Princeton WordNet (PWN) Ontology
	Overview
	The Semantic Relations in Princeton WordNet (PWN)

	2.3.3 MultiWordNet (MWN) Ontology
	Overview
	The Assign-procedure
	The Lexical Gaps-procedure

	2.4 Stemming
	2.4.1 Background
	2.4.2 Definitions
	2.4.3 Techniques
	2.4.4 Types
	Truncating Method (Affix Removal)
	Statistical Method
	Mixed Methods: Inflectional and Derivational Methods

	2.4.5 Non-English Stemmers
	Arabic
	Indian

	2.4.6 Applications
	2.4.7 Discussion

	2.5 Summary

	3 The TE (Tag Enhancer) System
	3.1 Introduction
	3.2 Overview
	3.3 The Scope of TE
	3.3.1 The Semantic Component
	3.3.2 The Clustering Component
	3.3.3 The Database Component

	3.4 The TE System
	3.4.1 The Data
	3.4.2 The TE Implementation
	The Programming Languages
	Querying the Semantic Resources

	3.5 Summary

	4 The Methodology
	4.1 The Efficiency of Algorithms (The Performance)
	4.1.1 Empirical (Performance Measurement)
	4.1.2 Analytical (Performance Analysis)

	4.2 Time Complexity
	4.3 Space Complexity
	4.4 Cases of Complexity
	4.5 Asymptotic Notation Functions
	4.5.1 Big-O Notation (Upper Bound of the Growth Rate)
	Growth Rate Functions

	4.5.2 Omega Notation (Lower Bound of the Growth Rate)
	4.5.3 Theta Notation (Between Lower and Upper Bound)

	4.6 The Research Adopted Methodology
	4.6.1 Research Background
	4.6.2 The Algorithm Efficiency Analysis
	4.6.3 The Stemming Component
	Data
	The Selection of the Stemming Algorithm

	5 Database Design Optimisation and Algorithm Complexity Analysis
	5.1 Database Design Optimisation
	5.1.1 Introduction
	5.1.2 The Storage Engine
	5.1.3 The Character Set
	5.1.4 The Schema
	5.1.4.1 The Data Types
	5.1.4.2 Indexes
	Primary Keys
	Foreign Keys
	Indexes

	5.1.5 Optimisation Procedures
	5.1.6 Discussion
	The Engine
	The Character Set and Collation
	Data Types
	The Indexes

	5.2 Time Complexity
	5.2.1 Time Efficiency Analysis of Nonrecursive Algorithms
	Input Size
	The Basic Operation
	The Count and Rules

	5.2.2 Discussion

	5.3 Space Complexity
	5.3.1 Java Virtual Machine (JVM) and Data Types
	5.3.2 General Formula of Memory Usage
	5.3.3 ‘Housekeeping’ Information
	5.3.4 Memory Usage of Arrays
	Single-Dimension Array
	Memory usage of a two-dimensional array
	Multidimensional arrays

	5.3.5 Memory usage of Strings
	5.3.6 Calculating the Space Complexity
	5.3.7 Discussion

	6 The Stemming Component Embedding
	6.1 Summery

	7 The Evaluation
	7.1 Introduction
	7.2 The experiment
	7.2.1 Index table
	7.2.2 The search results

	8 Conclusion and Future Work
	8.1 Research Overview
	8.2 Findings
	8.3 Success criteria revisited
	8.4 Contributions
	8.5 Limitations and Future work

	References
	1. (2005) The Lancaster Stemming Algorithm: Background to Stemmming [WWW] Lancaster University. Available from: http://www.comp.lancs.ac.uk/computing/research/stemming/Links/background.htm [Accessed 20/10/2013].
	2. (2005) The Lancaster Stemming Algorithm: Introduction [WWW] Lancaster University. Available from: http://www.comp.lancs.ac.uk/computing/research/stemming/Links/introduction.htm [Accessed 20/10/2013].
	3. (2005) The Lancaster Stemming Algorithm: Porter [WWW] Lancaster University. Available from: http://www.comp.lancs.ac.uk/computing/research/stemming/Links/porter.htm [Accessed 20/10/2013].
	4. (n.d.) Performance Analysis [WWW] Shanghai Jiao Tong University. Available from: http://ee.sjtu.edu.cn/po/Class-web/data-stucture/csc120ch2.doc [Accessed 15/12/2012].
	5. (n.d.) What is Program [WWW]. Available from: http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CEMQFjAC&url=http%3A%2F%2Fprogramming.im.ncnu.edu.tw%2FCH1.ppt&ei=gVlOUbzHMeeR0QXy-YG4Bw&usg=AFQjCNF1Rp8MESQwXj5TXX73ynLMyQAGdQ&sig2...
	6. AL-SAYED, G. (n.d.) Data Structures Performance Analysis [WWW] King Saud University. Available from: faculty.ksu.edu.sa/Gamal/CSC212%20Lectures/Lect2.ppt [Accessed 5/2/2013].
	7. AL-SHORBAGY, G. (n.d.) Lecture 2: Data Structures - Performance Analysis [WWW] King Saud University. Available from: http://faculty.ksu.edu.sa/Gamal/CSC212%20Lectures/Lect2.ppt [Accessed 24/8/2012].
	8. AP COMPUTER SCIENCE (n.d.) Big-O Notation [WWW]. Available from: http://www.apcomputerscience.com/apcs/misc/BIG-O.pdf [Accessed 25/2/2013].
	9. ARORA, R. and RAVINDRAN, B. Latent Dirichlet Allocation based Multi-Document Summarization. In: Proceedings of the 2nd workshop on Analytics for Noisy Unstructured Text Data, Singapore, July 2004: ACM, pp. 91-97.
	10. ARORA, S. and BARAK, B. (2009) Computational Complexity: A Modern Approach. Cambridge, UK: Cambridge University Press.
	11. BARNES, N.G. (2014) Social Commerce emerges as Big Brands position themselves to Turn "Follows", "Likes", and "Pins" into Sales. American Journal of Management, 14 (4), pp. 11-18.
	12. BEGELMAN, G., KELLER, P., and SMADJA, F. Automated Tag Clustering: Improving Search and Exploration in the Tag Space. In: Preceedings of the 15th Int. World Wide Web Conference (WWW2006), Edinburgh, May 2006, pp. 15-33.
	13. BERNERS-LEE, T., HENDLER, J., and LASSILA, O. (2001) The Semantic Web. Scientific American, 284 (5), pp. 28-37.
	14. BERNERS-LEE, T., MASINTER, L., and MCCAHILL, M. (1994) Uniform Resource Locators (URL) [WWW]. Available from: http://www.w3.org/Addressing/rfc1738.txt [Accessed 12/1/2013].
	15. BESTAVROS, A. (1995) CLA CS-101: Introduction to Computers [WWW] Boston University. Available from: http://www.cs.bu.edu/~best/courses/cs101/F97/lectures/AlgorithmComplexity.html [Accessed 10/4/2013].
	16. BIGGERS, L.R. and KRAFT, N.A. (2012) A Comparison of Stemming Algorithms for Text Retrieval Based Feature Location [WWW] The University of Alabama. Available from: http://scholar.googleusercontent.com/scholar?q=cache:Eq32lcz7IOEJ:scholar.google.co...
	17. BOYD, D.M. and ELLISON, N.B. (2007) Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 13 (1), pp. 210-230.
	18. BOYKOV, Y. (2012) Analysis of Algorithms [WWW] The University of Western Ontario. Available from: http://www.csd.uwo.ca/courses/CS1037a/notes/topic13_AnalysisOfAlgs.pdf [Accessed 20/2/2013].
	19. BRASSARD, G. and BRATLEY, P. (1988) Algorithmics: Theory & Practice. Englewood Cliffs, NJ: Prentice-Hall, Inc.
	20. BRINTON, L.J. (2000) The Structure of Modern English: A Linguistic Introduction. Amsterdam: John Benjamins.
	21. BUSEMANN, S., SCHMEIER, S., and ARENS, R.G. Message Classification in the Call Center. In: Proceedings of the 6th Conference on Applied Natural Language Processing, Seattle, May 2000: Association for Computational Linguistics, pp. 158-165.
	22. BUTTCHER, S., CLARKE, C.L., and CORMACK, G.V. (2010) Information Retrieval: Implementing and Evaluating Search Engines. Mit Press.
	23. BYLANDER, T. (2006) Chapter 2: Fundamentals of the Analysis of Algorithm Efficiency [WWW] The University of Texas at San Antonio. Available from: http://www.cs.utsa.edu/~bylander/cs3343/chapter2handout.pdf [Accessed 20/3/2013].
	24. CABRAL, S.K. and MURPHY, K. (2011) MySQL Administrator's Bible. Indianapolis: Wiley.
	25. CHAUPATTNAIK, S., NANDA, S.S., and MOHANTY, S. (2012) A Suffix Stripping Algorithm for Odia Stemmer. International Journal of Computational Linguistics and Natural Language Processing, 1 (1), pp. 1-5.
	26. COFFEY, N. (2011) How to calculate the Memory Usage of a Java Array [WWW] JAVAMEX. Available from: http://www.javamex.com/tutorials/memory/array_memory_usage.shtml [Accessed 7/5/2013].
	27. COFFEY, N. (2011) Memory Usage of Java Objects: General Guide [WWW] JAVAMEX. Available from: www.javamex.com/tutorials/memory/object_memory_usage.shtml [Accessed 7/5/2013].
	28. COFFEY, N. (2011) Memory Usage of Java Strings and String-Related Objects [WWW]. Available from: http://www.javamex.com/tutorials/memory/string_memory_usage.shtml [Accessed 7/5/2013].
	29. CRONIN, P., RYAN, F., and COUGHLAN, M. (2008) Undertaking a Literature Review: a Step-by-Step Approach. British Journal of Nursing, 17 (1), pp. 38.
	30. CURIOSO, A., BRADFORD, R., and GALBRAITH, P. (2010) Expert PHP and MySQL. Indianapolis: Wiley.
	31. DALIANIS, H. (2000) SweSum - A Text Summarizer for Swedish [WWW]. Available from: http://www.dsv.su.se/~hercules/papers/Textsumsummary.html [Accessed 12/6/2014].
	32. DARWISH, K. Building a Shallow Arabic Morphological Analyzer in One Day. In: Proceedings of the ACL-02 Workshop on Computational Approaches to Semitic Languages, Pennsylvania: Association for Computational Linguistics, pp. 1-8.
	33. DRAKE, M. (2003) Encyclopedia of Library and Information Science. 2nd Edition. Taylor & Francis.
	34. DUNHAM, D. (2010) Growth of Functions: Asymptotic Notation [WWW]. Available from: http://www.d.umn.edu/~ddunham/cs3512s10/notes/l12.pdf [Accessed 7/1/2013].
	35. FRAKES, W.B. and BAEZA-YATES, R. (1992) Information Retrieval: Data Structures & Algorithms. Englewood Cliffs: Prentice Hall.
	36. FRAKES, W.B. and FOX, C.J. (2003) Strength and Similarity of Affix Removal Stemming Algorithms. In: ACM SIGIR Forum, Toronto, July 2003: ACM, pp. 26-30.
	37. FUNG, G. (2001) A Comprehensive Overview of Basic Clustering Algorithms.
	38. GALVEZ, C. and DE MOYA-ANEGON, F. (2006) An Evaluation of Conflation Accuracy using Finite-state Transducers. Journal of Documentation, 62 (3), pp. 328-349.
	39. GALVEZ, C., DE MOYA-ANEGON, F., and SOLANA, V. (2005) Term Conflation Methods in Information Retrieval: Non-Linguistic and Linguistic Approaches. Journal of Documentation, 61 (4), pp. 520-547.
	40. GATLING, G. (2012) The Need for Information Management [WWW] SAP. Available from: http://blogs.sap.com/innovation/analytics/information-management-01494 [Accessed 24/6/2014].
	41. GAUSTAD, T. and BOUMA, G. (2002) Accurate Stemming of Dutch for Text Classification. Language and Computers, 45 (1), pp. 104-117.
	42. GELBUKH, A., ALEXANDROV, M., and HAN, S.-Y. (2004). Detecting Inflection Patterns in Natural Language by Minimization of Morphological Model. Progress in Pattern Recognition, Image Analysis and Applications, Springer: 432-438.
	43. GEMMELL, J., SHEPITSEN, A., MOBASHER, M., and BURKE, R. Personalization in Folksonomies based on Tag Clustering. In: Proceedings of the 6th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems (AAAI 2008), Chicago, Ju...
	44. GUPTA, V. and LEHAL, G.S. Punjabi Language Stemmer for Nouns and Proper Names. In: Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), Hyderabad: Citeseer, pp. 35-39.
	45. GUPTA, V. and LEHAL, G.S. (2013) A Survey of Common Stemming Techniques and Existing Stemmers for Indian Languages. Journal of Emerging Technologies in Web Intelligence, 5 (2), pp. 157-161.
	46. HADNI, M., LACHKAR, A., and OUATIK, S.A. (2012) A New and Efficient Stemming Technique for Arabic Text Categorization. In: Int. Conference on Multimedia Computing and Systems (ICMCS), Tangier-Morocco, May 2012: IEEE, pp. 791-796.
	47. HADZILACOS, V. TIME COMPLEXITY OF ALGORITHMS [WWW] University of Toronto. Available from: http://www.cs.toronto.edu/~vassos/teaching/c73/handouts/brief-complexity.pdf [Accessed 15/9/2012].
	48. HARDY, H., SHIMIZU, N., STRZALKOWSKI, T., TING, L., ZHANG, X., and WISE, G.B. Cross-Document Summarization by Concept Classification. In: Proceedings of the 25th Annual Int. ACM SIGIR Conference on Research and Development in Information Retrieval...
	49. HAREL, D. and ROSNER, R. (1992) Algorithmics: The Spirit of Computing. 2nd. Addison-Wesley.
	50. HEDDEN, H. (2010) The Accidental Taxonomist. Information Today.
	51. HONG, J. (2002) Performance Measurement [WWW] Pohang University of Science and Technology. Available from: http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDkQFjAA&url=http%3A%2F%2Fdpnm.postech.ac.kr%2Fcs233%2Flecture%2Flectu...
	52. HUSSAIN, M. (n.d.) Performance Analysis [WWW] King Saud University. Available from: http://faculty.ksu.edu.sa/mhussain/CSC212/Lecture%20-%20Performance%20Analysis.pdf [Accessed 10/2/2013].
	53. INTERNET WORLD STATS (2012) Internet Usage Stats and Population Statistics [WWW]. Available from: www.internetworldstats.com/stats.htm [Accessed 1/7/2013].
	54. JEFF'S SQL SERVER BLOG (2007) Composite Primary Keys [WWW]. Available from: http://weblogs.sqlteam.com/jeffs/archive/2007/08/23/composite_primary_keys.aspx [Accessed 21/12/2012].
	55. JIVANI, A.G. (2011) A Comparative Study of Stemming Algorithms. Int. Journal of Computer Technology and Applications, 2 (6), pp. 1930-1938.
	56. KATOEN, J. (2002) Introduction to Algorithm Analysis: Lecture #1 of Algorithms, Data Structures and Complexity [WWW]. Available from: http://jriera.webs.ull.es/Docencia/lec1.pdf [Accessed 28/9/2012].
	57. KIM, H.L., SCERRI, S., BRESLIN, J.G., DECKER, S., and KIM, H.G. The State of the Art in Tag Ontologies: a Semantic Model for Tagging and Folksonomies. In: International Conference on Dublin Core and Metadata Applications, Berlin, September 2008, p...
	58. KODIMALA, S. (2010) Study of Stemming Algorithms. Msc, University of Nevada.
	59. KORPELA, J. (2006) Unicode Explained. Sebastopol: O'Reilly.
	60. KRAAIJ, W. and POHLMANN, R. (1995) Evaluation of a Dutch Stemming Algorithm. The New Review of Document and Text Management, 1, pp. 25-43.
	61. KUCK, G. (2004) Tim Berners-Lee's Semantic Web. SA Journal of Information Management, 6 (1).
	62. LARKEY, L.S., BALLESTEROS, L., and CONNELL, M.E. Improving Stemming for Arabic Information Retrieval: Light Stemming and Co-Occurrence Analysis. In: Proceedings of the 25th Annual Int. ACM SIGIR Conference on Research and Development in Informatio...
	63. LAZARINIS, F., VILARES, J., TAIT, J., and EFTHIMIADIS, E.N. (2009) Current Research Issues and Trends in Non-English Web Searching. Information Retrieval, 12 (3), pp. 230-250.
	64. LEE, S.-S. and YONG, H.-S. Component based Approach to handle Synonym and Polysemy in Folksonomy. In: Proceedings of the 7th IEEE Int. Conference on Computer and Information Technology (CIT), Fukushima, October 2007, pp. 200-205.
	65. LEE, Y.-S. (2004). Morphological Analysis for Statistical Machine Translation. Proceedings of HLT-NAACL 2004. Boston, Association for Computational Linguistics.
	66. LENNON, M., PEIRCE, D.S., TARRY, B.D., and WILLETT, P. (1981) An Evaluation of some Conflation Algorithms for Information Retrieval. Journal of Information Science, 3 (4), pp. 177-183.
	67. LEVITIN, A. (2012) Introduction to the Design & Analysis of Algorithms. 3rd. Boston: Pearson.
	68. LEVY, Y. and ELLIS, T.J. (2006) A Systems Approach to conduct an Effective Literature Review in Support of Information Systems Research. Informing Science: International Journal of an Emerging Transdiscipline, 9 (1), pp. 181-212.
	69. LI, Q. (2008) Collaborative Tagging Applications and Approaches. IEEE MultiMedia, 15 (3), pp. 14-21.
	70. LIACS MEDIALAB (2008) The MIRFLICKR Retrieval Evaluation [WWW] Leiden University. Available from: http://press.liacs.nl/mirflickr/ [Accessed 30/3/2013].
	71. LIN, J.Y., YANG, C.H., TSENG, S.C., and HUANG, C.R. The Structure of Polysemy: A study of multi-sense words based on WordNet. pp. 320-329.
	72. MAGABLEH, M. (2011) A Generic Architecture for Semantic Enhanced Tagging Systems. PhD, De Montfort University.
	73. MAJUMDER, P., MITRA, M., PARUI, S.K., KOLE, G., MITRA, P., and DATTA, K. (2007) YASS: Yet Another Suffix Stripper. ACM Transactions on Information Systems (TOIS), 25 (4), pp. 18.
	74. MATHES, A. (2004) Folksonomies-cooperative classification and communication through shared metadata. Computer Mediated Communication, 47 (10).
	75. MCPHERSON, D. (2005) Analysis [WWW] Virginia Tech. Available from: http://courses.cs.vt.edu/cs2604/spring05/mcpherson/note/Analysis.pdf [Accessed 5/3/2013].
	76. MERHOLZ, P. (2004) Metadata for the Masses [WWW] Adaptive Path. Available from: http://www.adaptivepath.com/ideas/e000361/ [Accessed 15/12/2012].
	77. MIKA, P. and GREAVES, M. (2008) *Editorial: Semantic Web & Web 2.0. Web Semantics: Science, Services and Agents on the World Wide Web, 6 (1), pp. 1-3.
	78. MILLER, G.A. (1995) WordNet: a lexical database for English. Communications of the ACM, 38 (11), pp. 39-41.
	79. MILLER, G.A., BECKWITH, R., FELLBAUM, C., GROSS, D., and MILLER, K.J. (1990) Introduction to wordnet: An on-line lexical database*. International journal of lexicography, 3 (4), pp. 235-244.
	80. MYSQL (n.d.) MySQL 5.6 Reference Manual [WWW]. Available from: http://dev.mysql.com/doc/refman/5.6 [Accessed 20/12/12].
	81. NORUZI, A. (2007) Folksonomies-Why do we need controlled vocabulary? Webology.
	82. NTAIS, G. (2006) Development of a Stemmer for the Greek Language. Msc, Stockholm University.
	83. O’REILLY (2005) *What Is Web 2.0 [WWW]. Available from: http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=2 [Accessed 25/4/2012].
	84. OBENZINGER, H. (2005) What can a Literature Review do for me? How to research, write, and survive a Literature Review [WWW] Stanford University. Available from: http://ce.uoregon.edu/aim/Capstone07/LiteratureReviewHandout.pdf [Accessed 24/9/2014].
	85. ORASAN, C., PEKAR, V., and HASLER, L. A Comparison of Summarisation Methods based on Term Specificity Estimation. In: Proceedings of the 4th Int. Conference on Language Resources and Evaluation (LREC2004), Lisbon, May 2004, pp. 1037-1041.
	86. OZGUR, L. and GUNGOR, T. Analysis of Stemming Alternatives and Dependency Pattern Support in Text Classification. In: Proceedings of the 10th Int. Conference on Intelligent Text Processing and Computational Linguistics (CICLing), Research in Compu...
	87. PAICE, C.D. (1990) Another Stemmer. SIGIR Forum, 24 (3), pp. 56-61.
	88. PAICE, C.D. (1994) An Evaluation Method for Stemming Algorithms. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR), Dublin, July 1994: Springer-Verlag, pp. 42-50.
	89. PANDEY, A.K. and SIDDIQUI, T.J. An Unsupervised Hindi Stemmer with Heuristic Improvements. In: Proceedings of the 2nd Workshop on Analytics for Noisy Unstructured Text Data, Singapore, July 2008: ACM, pp. 99-105.
	90. PARBERRY, I. (2001) Lecture Notes on Algorithm Analysis and Computational Complexity [WWW] University of North Texas. Available from: http://larc.unt.edu/ian/books/free/lnoa.pdf [Accessed 28/12/2012].
	91. PETERS, I. (2009) Folksonomies: Indexing and Retrieval in Web 2.0. Berlin: Walter de Gruyter.
	92. PETERS, I. and BECKER, P. (2009) Folksonomies: Indexing and Retrieval in Web 2.0. Germany: De Gruyter/Saur.
	93. PIANTA, E., BENTIVOGLI, L., and GIRARDI, C. MultiWordNet Developing an aligned multilingual database.
	94. PIRKOLA, A. (2001) Morphological Typology of Languages for IR. Journal of Documentation, 57 (3), pp. 330-348.
	95. POPOVIC, M. and NEY, H. Towards the Use of Word Stems and Suffixes for Statistical Machine Translation. In: Proceedings of the 4th Int. Conference on Languages Resources and Evalution, Lisbon, May 2004.
	96. POPOVIC, M. and WILLETT, P. (1992) The Effectiveness of Stemming for Natural-Language Access to Slovene Textual Data. Journal of the American Society for Information Science, 43 (5), pp. 384-390.
	97. PORTER, M. (2001) Snowball: A Language for Stemming Algorithms [WWW]. Available from: http://snowball.tartarus.org/texts/introduction.html [Accessed 20/8/2013].
	98. PORTER, M. (2006) The Porter Stemming Algorithm [WWW]. Available from: http://tartarus.org/martin/PorterStemmer/ [Accessed 25/9/2013].
	99. SAHARIA, N., SHARMA, U., and KALITA, J. (2012) Analysis and Evaluation of Stemming Algorithms: A Case Study with Assamese. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Chennai, ...
	100. SANCHEZ-ZAMORA, F. and LLAMAS-NISTAL, M. Visualizing tags as a network of relatedness. IEEE, pp. 1-6.
	101. SAVOY, J. (1993) Stemming of French Words based on Grammatical Categories. JASIS, 44 (1), pp. 1-9.
	102. SCOTT, S. and MATWIN, S. Feature Engineering for Text Classification. In: Proceedings of the 16th Int. Conference on Machine Learning (ICML99), Bled, June 1999, pp. 379-388.
	103. SEMANTIC WEB (n.d.) Main Page [WWW] Semantic Web,. Available from: http://semanticweb.org/wiki/Main_Page [Accessed 18/9/2014].
	104. SEMBOK, T.M.T. and ATA, B.A. Arabic Word Stemming Algorithms and Retrieval Effectiveness. In: Proceedings of the World Congress on Engineering (WCE 2013), London, July 2013.
	105. SEMBOK, T.M.T. and BAKAR, Z.A. (2011) Effectiveness of Stemming and N-grams String Similarity Matching on Malay Documents. International Journal of Applied Mathematics and Informatics, 5 (3), pp. 208-215.
	106. SHARMA, D. (2012) Improved Stemming Approach used for Text Processing in Information Retrieval System. MEng, Thapar University.
	107. SMITH, P. (2012) Professional Website Performance: Optimizing the Front-End and Back-End. Indianapolis: Wiley.
	108. STROPPA, N. (2006) Algorithms & Complexity [WWW] Dublin City University. Available from: http://www.computing.dcu.ie/~nstroppa/teaching/ca313_space.pdf [Accessed.
	109. STUDY ADVICE AND MATHS SUPPORT (n.d.) Developing your Literature Review [WWW] University of Reading. Available from: http://www.reading.ac.uk/internal/studyadvice/StudyResources/Essays/sta-developinglitreview.aspx [Accessed 7/12/2014].
	110. SUBA, K., BHATTACHARYYA, P., and JIANDANI, D. Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer for Gujarati. In: Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP 2011), Chiang Mai, N...
	111. THE GLOBAL WORDNET ASSOCIATON (n.d.) Wordnets in the World [WWW]. Available from: http://globalwordnet.org/wordnets-in-the-world/ [Accessed 12/12/2014].
	112. THE UNICODE CONSORTIUM (n.d.) What is Unicode? [WWW]. Available from: http://www.unicode.org/standard/WhatIsUnicode.html [Accessed 8/1/2013].
	113. UDELL, J. (2004) Collaborative Knowledge Gardening [WWW] InfoWorld. Available from: http://www.infoworld.com/d/developer-world/collaborative-knowledge-gardening-020 [Accessed 30/12/2012].
	114. VENNERS, B. (n.d.) The Java Virtual Machine [WWW] Artima. Available from: http://www.artima.com/insidejvm/ed2/jvm3.html [Accessed 10/5/2013].
	115. W3C (n.d.) Semantic Web [WWW]. Available from: http://www.w3.org/standards/semanticweb/ [Accessed 8/7/2013].
	116. WAL, T.V. (2005) Explaining and Showing Broad and Narrow Folksonomies [WWW] vanderwal.net. Available from: http://www.vanderwal.net/random/entrysel.php?blog=1635 [Accessed 20/12/2012].
	117. WAL, T.V. (2007) Folksonomy [WWW] vanderwal.net. Available from: http://vanderwal.net/folksonomy.html [Accessed 20/12/2012].
	118. WEISS, D. (2005) Stempelator: A Hybrid Stemmer for the Polish Language. Institute of Computing Science: Poznan University of Technology Research Report, RA-002/05.
	119. WOOTTON, C. (2007) Developing Quality Metadata: Building Innovative Tools and Workflow Solutions. Oxford: Focal Press.
	120. WORDNET (2006) WordNet v3.0 Database Statistics [WWW]. Available from: http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html [Accessed 19/9/2013].
	121. YANG, M. and KIRCHHOFF, K. Phrase-Based Backoff Models for Machine Translation of Highly Inflected Languages. In: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics, Trento, April 2006, pp....
	122. ZAITSEV, P. and TKACHENKO, V. (2012) High Performance MySQL: Optimization, Backups, and Replication. Sebastopol: O'Reilly.
	123. ZHANG, S., LEE, J.-H., and FANG, L. (2013) The Effect of Shopping Motivation of Social Commerce on Purchase Intention. International Journal of Information Processing & Management, 4 (6), pp. 137-149.

