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Abstract 

The Social Web or ‘Web 2.0’ is focused on the interaction and collaboration between 

web sites users. It is credited for the existence of tagging systems, amongst other 

things such as blogs and Wikis. Tagging systems like YouTube and Flickr offer their 

users the simplicity and freedom in creating and sharing their own contents and thus 

folksonomy is a very active research area where many improvements are presented to 

overcome existing disadvantages such as the lack of semantic meaning, ambiguity, and 

inconsistency. 

TE is a tagging system proposing solutions to the problems of multilingualism, lack of 

semantic meaning and shorthand writing (which is very common in the social web) 

through the aid of semantic and social resources. 

The current research is presenting an addition to the TE system in the form of an 

embedded stemming component to provide a solution to the different lexical form 

problems. Prior to this, the TE system had to be explored thoroughly and then its 

efficiency had to be determined in order to decide on the practicality of embedding 

any additional components as enhancements to the performance. Deciding on this 

involved analysing the algorithm efficiency using an analytical approach to determine 

its time and space complexity. 

The TE had a time growth rate of O (N²) which is polynomial, thus the algorithm is 

considered efficient. Nonetheless, recommended modifications like patch SQL 

execution can improve this. Regarding space complexity, the number of tags per photo 

represents the problem size which, if it grows, will increase linearly the required 

memory space. 
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Based on the findings above, the TE system is re-implemented on Flickr instead of 

YouTube, because of a recent YouTube restriction, which is of greater benefit in multi 

languages tagging system since the language barrier is meaningless in this case. The re-

implementation is achieved using ‘flickrj’ (Java Interface for Flickr APIs). Next, the 

stemming component is added to perform tags normalisation prior to the ontologies 

querying. The component is embedded using the Java encoding of the porter 2 

stemmer which support many languages including Italian. 

The impact of the stemming component on the performance of the TE system in terms 

of the size of the index table and the number of retrieved results is investigated using 

an experiment that showed a reduction of 48% in the size of the index table. This also 

means that search queries have less system tags to compare them against the search 

keywords and this can speed up the search. Furthermore,   the experiment runs similar 

search trails on two versions of the TE systems one without the stemming component 

and the other with the stemming component and found out that the latter produced 

more results on the conditions of working with valid words and valid stems.     

The embedding of the stemming component in the new TE system has lessened the 

effect of the storage overhead needed for the generated system tags by their 

reduction for the size of the index table which make the system suited for many 

applications such as text classification, summarization, email filtering, machine 

translation…etc. 
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Chapter 1: Introduction 

1 Introduction 

1.1 Background 

The commercialization of internet access in the late 1980’s attracted to it people from 

outside the academic circles and, since then, the internet has carried on gaining 

momentum. With more advances in technology, cheaper prices, and fast speed, the 

number of internet users is growing at a very rapid rate. According to [53], the years 

2000-2012 had a global growth rate of 566.4 % and on June 2012, the number of users 

worldwide is over 2.4 billions. The statistical facts above show that people are getting 

more dependent on the internet in many aspects of their daily life. 

The internet gives access to vast amount of information. For many organizations, their 

information is as valuable as their assets, and reputation. They use information as 

weapon for gaining and sustaining competitive advantage when used in decision 

making and supporting critical processes [40] whilst it is found accurate and within the 

shortest time. Thus, information needs to be managed: preserved, sorted, maintained 

up-to-date, and delivered to the right people at the right time to avoid many problems 

such as financial loss, lost opportunities, damaged reputation…etc.  Therefore having a 

good information management and retrieval systems is essential for the success of 

many services and businesses nowadays. For example, search engines need to offer 

up-to-date information, locate individuals and organizations, and summarize news. 

Local search services need to guide consumers to retailers. Large companies need to 

have access controlled repositories of e-mail, memos, reports, and other documents 

for proper decision making [22]. 

With the popularity of the social web (web 2.0) and since their introduction, social 

network sites (SNSs) like facebook, twitter, and Flicker have attracted millions of users, 

many of whom have integrated these sites into their daily practices [17]. In these sites, 

a user creates a profile, and builds a list of friends to share and exchange contents with 

them. Users have the freedom to categorise their contents as they see fit using tags. 
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Moreover, SNS is considered an important marketing tool [123] since it allow users to 

participate in the business production and promotion through sharing their personal 

experiences like recommendations, reviews, and ranking. 

In 2013, the results of a survey about the social commerce on Facebook, Twitter and 

Pinterest were published as follows [11]: 

• Social media drives roughly equal amounts of online and in-store sales 

• Nearly 4 in 10 Facebook users report that they have at some point gone from 

liking, sharing or commenting on an item to actually buying it 

• 43% of social media users have purchased a product after sharing or favoriting 

it on Pinterest, Facebook or twitter. 

Tagging is one of the main applications of the semantic web (web 2.0). It is a simple 

way for indexing information but it lacks standards and because it’s a subjective 

process, it can generate inconsistent and ambiguous classification [72]. Another 

drawback in tagging systems is the lack of semantics among tags but with the birth of 

semantic web, its tools, and technologies, many studies are investigating how to invest 

this to enhance the tagging experience. Different tagging approaches can address few 

key tagging problems as listed below [69]: 

• Formal taxonomy or ontology approaches: formal taxonomy derives tags 

through data mining whereas, the ontology approach uses seeding and this 

requires undesired additional user contributions. However, both approaches 

give the tags a frame of reference which reduces inconsistency and ambiguity. 

• Statistical and pattern analysis approaches: they are very popular because they 

work well with web applications such as Google’s PageRank. Common factors 

used in these approaches are tag use frequency, popularity, and ranking. 

• Social networking and visualization approaches: in the social approach, 

researchers use the social network to validate tags whilst, another visual 

approach uses information and tags to improve user behaviour. 
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Chapter 1: Introduction 

 
Figure  1.1: Collaborative Tagging Approaches [69] 

The World Wide Web extension called “Semantic Web” or “Web 3.0 enables people to 

share content beyond the boundaries of applications and websites. It has been 

described as a web of data [103]. The concept is to form a Web that links documents 

to each other and recognizes the meaning of the information in them, in other words, 

to transform the current Web from a series of interconnected, but ultimately 

semantically isolated data islands into one gigantic, personal information storage, 

manipulation and retrieval database [13, 61]. 

1.2 Problem Statement 

‘Web 2.0’ or the ‘Social Web’ is about discarding static web pages and changing the 

way web pages are designed and used, allowing more interaction and collaboration 

between users  [83]. With its user-friendly services, Web 2.0 is behind the popularity of 

social sites such as blogs, Wikis, and tagging systems. The problem is that these sites 

generate huge amount of metadata. For example, in tagging systems, users freely tag 

their contents and the result is that some of these tags are inconsistent and ambiguous 

making the retrieval process inaccurate. 

‘Web 3.0’ or ‘Semantic Web’ is a web of linked data [77, 115]. It will allow internet 

users to control data in many ways such as: creating data stores, building vocabularies 

and establishing rules for managing data [115]. It is about providing users with higher 

levels of social sharing and participation [77]. 
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Utilizing the benefits of the Semantic and Social Web can provide solutions to improve 

the accuracy rate in tagging systems and many studies are investigating in this 

direction. 

TE ‘Tags Enhancer’ is a prototype that uses web tools: Princeton WordNet (PWN), 

MultiWordNet (MWN), and clustering to generate new tags to improve the quality of 

the original tags which can decline for reasons such as a lack of semantic, language 

constraint, and the use of shorthand writing vocabulary. Within TE, a user tag is 

subjected to some of the mentioned tools or all of them as needed. PWN provides 

synonyms and/or hypernyms of the user tag thus increasing the semantic value of 

results which is retrieved after performing the search using both the user and system 

tags. MWN provides the English translation of the user tag in case it is an Italian word. 

The last tool is Flickr clustering which can sometimes produce a meaningful word   

from the shorthanded written user tag.  

TE has previously been tested and shown to deliver relative search results for a wider 

coverage of semantically related results than existing solutions [72]. 

In most IR system, the user asks for information using a query which contains one or 

more search terms. These terms are compared against the index terms (important 

words or phrases) of the IR contents for a match. Both the query terms and the index 

terms often have many morphological variants.  

In the case of TE, although the tag sample data is not large compared to other IR 

systems, the statistics showed that the semantic component can sometimes generate 

more than 80 system tags from a single user tag due to the fact that its semantically 

rich and the use of more than one language. The number of system tags can grow 

significantly in a larger IR system especially with the addition of more languages, in 

other words; the sizes of the database and the index tables will increase. Furthermore, 

the number of search terms inside the query will increase and this can slow the search 

process.   
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stemming is used by search engines in IR systems to increase their effectiveness [82]. 

Experiments in [60, 94, 96, 101] show stemming is beneficial for highly inflected 

languages. It makes the search broader, in other words; it ensures that the greatest 

number of relevant matches is included in search results [82]. Some studies claim that 

stemming can increase the average recall [39] [41]. Moreover, since stemming is about 

mapping morphological variants to a single stem, this will reduce the number of 

system tags and lead to the size reduction of search terms, index tables and the 

database. The work of Lennon et al. (1981) [35, 66] on various stemmers and 

databases reported the following compression percentages in the size of files, 

sometimes as much as 50 percent.     

 
Figure  1.2: Index Compression Percentages from Stemming [35] 

1.3 Research Objectives and Questions 

The proposal of this research is to evaluate and improve the TE system. In particular, 

the research studies the effects of adding new tags to the system on the time needed 

to generate them and on their allocated space. Furthermore, the research proposes 

modifying TE by using stemming on the user tags prior to querying the semantic 

resources as a normalisation step for better quality system tags.  
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The research will investigate the questions below: 

 

 

 

 

 

 

1.4 Success Criteria 

Indicating or rejecting the claim that embedding the stemming component has effects 

on the performance of the TE system, in terms of index size and the number of search 

results, needs an experiment to record both the size of the index and the number of 

search results retrieved from the TE system without stemming and the TE system with 

stemming and compare the statistics to reach a decision. 

Regarding the index size, both versions of the TE system will work with the same 

dataset of user tags. In the old TE, user tags are directly subjected to the semantic and 

clustering components in the original TE to generate system tags whereas in the new 

TE, user tags are submitted to the stemming component to generate stems and then 

stems use the other components to generate system tags. System tags are used by the 

search process to be compared against a search term. Thus, they represent the index 

table in this case. If the number of system tags in the new TE is less than the one in the 

old TE then stemming is responsible for this reduction. 

A sample dataset of 30 words is used to perform search trials on the old and new TE 

systems and record the number of retrieved results from both systems. Comparing 

these numbers will show if the new TE system is able to retrieve more results than the 

Q1: What are the effects on performance of embedding the 

stemming component to the TE system? 

Q3: What is the space complexity of the TE algorithm? 

Q4: Is the database design optimised for the TE ER Model? 

Q2: What is the time complexity of the TE algorithm? 
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old TE or not because of the stemming component. If the new TE retrieved more 

results then we can support the claim that stemming is behind this results increase.  

1.5 Thesis Structure 

The thesis is divided into seven chapters. Below is a short description of the contents 

of each chapter as follows: 

• Chapter 1 (Introduction): this chapter gives the reader a general idea about the 

research and what it is about. It presents the research problem statement, 

objectives, and the questions. 

• Chapter 2 (The Literature Review): this chapter includes a thorough literature 

review on the research areas involved in the current research. It covers topics 

such as tagging systems, stemming algorithms and algorithm complexity 

theory. 

• Chapter 3 (The TE System): this chapter contains a comprehensive summary of 

the TE (Tag Enhancer) system. It covers related topics necessary for the current 

research work such as its scope, components, implementation etc. 

• Chapter 4 (The Methodology): this chapter includes a detailed account of the 

tools and methods utilised by the research to achieve the planned research 

objectives.  

• Chapter 5 (Database Optimisation and Algorithm Complexity Analysis): this 

chapter examines the TE system with respect to database optimisation, time 

complexity and space complexity. A discussion of the findings is also included. 

• Chapter 6 (Stemming Component embedding): this chapter is a translation of 

the methodology layout in chapter 4. It gives details on the embedding process 

with its challenges and approaches. 

• Chapter 7 (Conclusion and Future Work): this chapter summarizes the research 

and draws conclusions based upon the findings of the research to give answers 

to the research questions mentioned in chapter 1. 
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Chapter 2: The Literature Review 

2 The Literature Review 

2.1 Introduction 

This chapter is looking into tagging systems taxonomy, their principles, the benefits 

and problems facing them. Next, the literature will look into two semantic tools used 

in the TE system which are the Princeton WordNet (PWN) ontology and the 

MultiWordNet (MWN) ontology, giving a background on both ontologies and their 

mechanism. 

Moving forward, stemming algorithms will be examined from different aspects such as 

their definition, background history, wide range of techniques and main types of 

stemming algorithms, with a comparison summary of the benefits and drawbacks of 

each algorithm mentioned. 

Since the research is analysing the cost in time/space of the TE system, the last 

segment in the literature review is about algorithm analysis and complexity, 

highlighting the important approaches with their advantages and disadvantages and 

detailing the sequence followed in each approach. The asymptotic notations used in 

expressing growth rates are explained with a detailed section on best and worst cases 

of complexity. 

2.2 Methodology of the Literature Review 

Define the research topic 

The intended focus area of the research must be decided. The researcher should be 

guided by what interest him the most and should be familiar enough with the chosen 

area to judge whether it is 'researchable' topic or not [29]. 

The researcher is interested in databases and data retrieval systems and while reading 

for specific focus area, he came across the thesis “A Generic Architecture for Semantic 

Enhanced Tagging Systems” that presented a retrieval prototype (it’ll be called TE in 
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the literature) and decided to enhance the TE prototype by adding stemming 

capability. 

Define the main concepts and keywords in the topic 

Main concepts are defined while building a list of alternatives and synonyms to the 

keywords. The list is used when searching for materials. In addition, looking at previous 

work will identify the underlying theories and the ground materials of the research 

topic which mostly are the frequently cited [29].  

By performing this step, the researcher gathered essential information about 

folksonomies like the broad and narrow types, the uncontrolled vocabulary, Princeton 

WordNet, MultiWordNet, semantic relations, folksonomies advantages and 

disadvantages. Furthermore, regarding stemming, there are suffix and affix stripping 

algorithms, statistical stripping algorithms (n-grams, HMM), the snowball 

framework…etc. 

From the literature material, the researcher highlighted some notable researchers and 

professors with ground knowledge on their fields such as Gruber, Levitiin, Pianta, 

Sinclair, Miller, Frakes, D. Harman. In addition, many stemming algorithms have the 

name of distinguished researchers in the field like Porter, Lovins, Krovetz, Paise, and 

Husk.  

The keywords list included these terms: tagging systems, metadata, social 

classification, ontologies, web 2.0, collaborative tagging, semantic web, clustering, 

cluster analysis, stemming, stemmer, stemming algorithm, root extraction, root word, 

keyword stripping, suffix removal, inflectional language, and conflation. 

Select research tools 

Aided with tools afforded usually by the university, the search is performed on the 

university library catalogue and its subscribed databases which cover a wide range of 

research areas. 

9 
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Databases offer the most recent academically authoritative text like journals, research 

papers, theses, conference papers ...etc. ACM Digital Library, CiteseerX, OPAC, DBLP 

Computer Science Bibliography, IEEE Xplore, Elsevier, ScienceDirect, INSPEC, JISC, 

ETHOS, Springer , Google Scholar are frequent databases and websites visited by the 

researcher during the search stage. 

Do the search 

Initially the search is based on the information gathered in step 2. Each yielded result is 

processed for additional materials as follows ([29, 68, 84, 109]): 

• The references are reviewed giving the researcher more insight into the study. 

Also, reviewing additional materials that have cited the resulted article gave 

the researcher information about any developments in the area of the study.  

• The early work of authors which relates to the study is reviewed for useful 

information. In addition, following up on later publication by the same author 

gave information about what is new or changed since his prior work. 

• From the resulted materials, their keywords were used to search for further 

materials. 

Manage references 

A reference management tool such as EndNote should be used in this stage to record, 

utilise, and prevent duplication of references. In this thesis, the researcher used 

EndNote.  

Analyse the materials 

The researcher scanned the collected materials by reading the summary or the 

abstract to be able to decide whether an article is worthy of further reading or 

inclusion. During the first read, the researcher started note-taking, and grouping of 

similar materials. 

Writing the literature review 
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Once the initial overview has been completed it is necessary to return to the articles to 

undertake a more systematic and critical review of the content.  

The researcher needs to demonstrate his knowledge in the writing by comparing, 

contrasting, critically evaluating, and interpreting the literature review contents. 

2.3 Tagging Systems and the Semantic Web 

2.3.1 Tagging Systems (folksonomies) 

Background and Definitions 

In 2004, the term folksonomy appeared in Wal’s information architecture blog and he 

later on defined it as “the result of personal free tagging of information and objects 

(anything with a URL) for one's own retrieval by the person consuming the 

information”. The tagging process occurs within a social environment that is usually 

shared and open [117]. 

Another definition of folksonomies is that “they consist of freely selectable keywords, 

or tags, which can be liberally attached to any information resource” [91]. 

In [81], folksonomy is defined as classification system generated by users to tag (using 

their  selected words or sentences) retrieve and categorize web contents such as 

online photographs, web resources and web links. It is also defined as the act of adding 

keywords (metadata) to shared content by many users [91]. 

The term ‘folksonomy’ is a combination of two words 'folk' meaning people and 

'taxonomy' which comes from two Greek words: taxis, meaning arrangement or order, 

and nomos, meaning law or science, thus it simply means 'a taxonomy created by the 

people' [91] although there is no taxonomy involved [91]. 

In information management, taxonomy is a hierarchical classification in the narrow 

sense and in the broad sense, it is any means of organizing concepts of knowledge 

[50].  
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In folksonomy, the authors of the labelling systems are regarded as the key users (or 

occasionally the creators) of the contents linked to the labels applied. This is an 

important difference from taxonomy [81]. 

The folksonomy term has other synonyms such as collaborative tagging,  democratic 

indexing, social classification system, user-generated metadata, tagging, social tagging 

etc [91]. Some of these terms are debatable such as collaborative tagging which Wal 

disagrees with, instead referring to collective tagging [117]. Others disapprove of 

describing folksonomy as classification arguing that it is a post-hoc categorisation and 

not pre-optimised classification since it has no notations nor relations [91]. A vital 

aspect of folksonomy is that it is a flat-based namespace in that it has no hierarchy and 

no direct relationship between the terms used in it [74]. 

Metadata role on the web is important; it contains description of the contents of a 

web page along with keywords usually in metatags. Search engines use metatags to 

index a page for matching it to similar search keywords [33]. 

An important part of folksonomy is the tag [117]. The role of the tags is that they help 

improve the effectiveness of search engines since in most cases the content is 

identified using a shared vocabulary that is easily accessible and popular [81]. Some of 

the popular folksonomy-based systems nowadays are: 

• CiteULike: www.citeulike.org 

• Flickr: www.flickr.com 

• YouTube: www.youtube.com 

Wal indicated two types of folksonomy as follows [116]: 

• Broad folksonomy: many people tag the same object and every person can tag 

the object with their own tags in their own vocabulary such as in ‘del.icio.us’. 

With this type of folksonomy tagging trends can be spotted using graphic tools 

such as the power law curve. 
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• Narrow folksonomy: one or a few people provide tags that are used by a 

person to search for information. Here, tags are directly associated with the 

object. In contrast to broad folksonomy, finding emerging vocabulary or 

descriptions is harder. The practise of grouping tags is visible whereas it’s not 

so in broad folksonomies. Flickr is an example of narrow folksonomy. 

 
Figure  2.1: Broad and Narrow folksonomies [116] 

Delicious are usually tagged by a larger group of users (e.g. by everybody who has 

bookmarked the web page cnn.com), photos on Flickr are usually tagged just by a 

single user (e.g. just by the user who has uploaded the photo). 
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A folksonomy-based system uses at least two basic vocabularies; the searchers’ 

vocabulary and the users’ vocabulary. This might lead to the system mismatching 

entries in both vocabularies. The concept of ‘preferred terms’ was introduced to allow 

the folksonomy-based system to control the use of synonyms and homonyms. The 

system should be able to relate synonyms and suggest the popular synonym as a 

preferred option [81]. 

Advantages of folksonomy 

• Although finding relevant documents of a direct search may be limited by 

controlled vocabulary challenges, browsing the whole system including the 

related interlinked tags will reveal unexpected material from all areas in 

general [74]. 

• Usually, in an information retrieval system, we find two or more vocabularies 

corresponding to the user, the designer, the author of the content, the creators 

of the classification scheme etc. In this case it might be highly difficult to 

translate between these vocabularies and this represents an issue in 

information systems. folksonomy reflects in a direct manner the vocabulary of 

users, it shifts the focus from the professionals to the users deriving from their 

preferences in diction, terminology, and precision [57]. According to [76], 

folksonomy can discover the digital equivalent of ‘desire lines’ which are foot-

worn paths that sometimes appear in a landscape over time and can be later 

paved to become walkways. Similarly, a system can build a controlled 

vocabulary using the users’ most common tags. The problem with that is the 

users’ vocabulary may be inadequate to do the job because it is very different 

from the others. The reason is that language is not precise; a word can have 

different meanings and many synonyms and since users freely adds to their 

vocabularies, then it is expected to have different ones. Another problem is the 

short life span of tags in fast developing fields of knowledge meaning what is 

considered the buzz word today may not be in the near future. 
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• folksonomy reduces the barriers of entry to the system which was limited to 

professionals to include users. The reason behind that is that there has been a 

shift from categorization and classification schemes, that are professionally  

designed and clearly defined, to ad-hoc set of keywords allowing users without 

any training or previous knowledge to participate in the system with less cost in 

terms of time, effort and cognitive costs [74].  

• In [113], Udell argues that feedback is the fundamental difference between 

folksonomy and taxonomy. Within folksonomy, feedback is received in an 

instant in that once a tag has been assigned to an item; a person is immediately 

able to see a cluster of items with the same tag. If that view is not as expected, 

changing or adding tags is allowed. Expanding the scope to include all items 

with matching tags from all users is very powerful and similarly the view might 

be different from the expectation. Solutions may include adapting to the group 

norm, keeping the tag in a bid to influence the group norm, or both. Users can 

communicate asymmetrically through metadata as result of the tight feedback 

loop. The individual choices of tags describing contents in a folksonomy are a 

representation of the negotiation about the meaning of these tags between 

users [113]. 

• Individuals can use a folksonomy such as Flickr to organize contents using their 

own vocabulary. The individual’s organizational behaviour reflects his needs 

within that context. An example is the use of the tag ‘toread’ on Delicious [74]. 

On the other hand, Flickr is a public space to share contents between users and 

the organizational behaviour of an individual is affected by his relationship to 

other users, and user groups who they share tag use with him [74, 92]. Similar 

to what has been discussed previously on participation, a folksonomy lowers 

the barriers to cooperation. Members of a group do not have to agree on a 

hierarchy of tags or detailed taxonomy; they only need to generally agree on 

the meaning of a tag enough to label similar material with terms for there to be 

cooperation and shared values. In this case some users may optionally alter 

their vocabulary. 
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• While folksonomies are regarded as subject categorization systems, some of 

their tags can be used in unexpected and interesting ways such as acting as a 

communicative tool in a photographic conversation where participants try to 

define a term using their own photographs and metadata [74]. 

Disadvantages of folksonomy 

• Ambiguity: with the existence of an uncontrolled and shared vocabulary within 

folksonomy, tags tend to be ambiguous since their assignment process to 

contents does not follow explicit systematic guidelines and scope notes. 

Another source of ambiguity arises from the use of acronyms which cause no 

problems in environments with controlled vocabularies but in folksonomy, the 

same acronym can tag contents from completely separate domains and ideas 

[74, 92]. 

• Spaces and Multiple Words: some Folksonomies like Flickr seems designed 

primarily to deal with the single form of words. Delicious prohibits the use of 

spaces in tag names, whereas Flickr allows them. Users in some cases create a 

single tag from multiple words without spaces, i.e., ‘flickrtravelaward’ 

on Flickr. Both systems ignore letter case, which minimise the significance of 

tagging using acronyms [74, 92]. 

• Synonyms: these are different words with similar or identical meanings [81]. 

Like its vocabulary, folksonomy does not enforce rules to control the use of 

synonyms in the system. For example, contents related to Apple Macintosh 

computers can be tagged using tags such as ‘mac’, ‘macintosh’, and 

‘apple’ [74]. 

• Different word forms, plural and singular, exist too [74] and this is a problem 

because a question aimed at one cannot retrieve the other unless the system is 

built to perform such replacements [81]. 

• Polysemy: it is a word with multiple meanings. ‘poly’ means many and 

‘semy’ refers to meanings [81]. For example, the ‘apple’ term can be used 

in tagging the fruit, an Apple retail store, or an Apple computer [64]. Because 
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tags cannot be semantically distinct and there are no rules for selecting them, 

inappropriate connections between items can exist resulting in using a tag to 

describe different concepts [64] and this leads to a decrease in the quality of 

the retrieval results. 

In general, the use of controlled vocabularies can resolve some of these disadvantages 

but due to the nature of some of the tagging systems, including a controlled 

vocabulary in them would be impossible [74]. 

Clustering 

Data clustering is used for statistical data analysis that partitions a dataset into subsets 

of similar objects or data clusters [12]. 

The clustering technique is applied to a wide range of topics and areas such as pattern 

recognition, compression, and classification [37]. It is used in folksonomies to improve 

search and navigation by addressing problems like annotating tags using shorthand 

writing, having tags with high diversity, redundant tags, and tag ambiguity since the 

uncertainty of a single tag in a cluster can be overwhelmed by the additive effects of 

the rest of the tags [43]. 

In Flickr, clustering discriminates between different meanings of a user query. For 

example, searching with the tag “apple” will retrieve several groups of pictures. The 

groups represent the apple fruit, apple products such as iPods, iMacs, and New York 

city. The user may interactively disambiguate his query by selecting the appropriate 

group [43]. 

2.3.2 Princeton WordNet (PWN) Ontology 

Overview 

This is an online lexical reference system. In this case, English verbs, nouns, adverbs, 

and adjectives are organised into synonym sets which individually represent one 

underlying lexical concept [79]. 
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Organizing lexical information, based on the standard alphabetical procedures, entails 

the gathering of words with similar spellings and the scattering of similar or related 

words throughout the list in a haphazard manner [79]. Regrettably, the main pitfall of 

this is that there is no obvious or simple alternative allowing lexicographers to keep 

track of the activities that have been carried out and helping readers with finding their 

target words [79].  

Whilst users can easily find these words in the dictionary list, this process can be 

tedious and time consuming. That is why many people prefer to ignore the use of the 

dictionary. This is because finding the information they require would result in 

interrupting their work and breaking their line of thought [79]. 

With all the technological advancement in modern society, there is a solution that has 

been put forward to resolve the complaint. The first obvious remedy is the use of on-

line dictionaries [79]. These are forms of lexical databases that are readable by the 

computer. Here, computers are used to search for words throughout the alphabetical 

list since the machinery is much faster than any human [79]. As soon as the user keys 

in or selects the specified word, a dictionary entry is made available for him to use 

[79]. Furthermore, since dictionaries are printed from tapes readable to computers, it 

is relatively simple to convert such prints into the appropriate form of lexical database 

[79].  Since it is relatively inefficient to limit the utilization of powerful machinery to 

rapid page turners, Princeton WordNet (PWN) is a proposal for a more effective 

combination of modern high speed computation and traditional lexicographic 

information [79].  

In 1985, at Princeton University, a gathering of psychologists and linguists worked on 

developing a lexical database with the initial idea of offering the feature of dictionary 

searching in a conceptual manner rather than the alphabetical one [79]. This feature 

was supposed to work in close conjunction with an on-line dictionary. The progress of 

the work, forced the original plan to evolve into a more ambitious one with 
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reformulated principles and goals and the final product was Princeton WordNet (PWN) 

[79]. 

 
Table  2.1: Princeton WordNet (PWN) v3.0 Database Statistics 2006 [120] 

As shown in the table above, current Princeton WordNet (PWN) (version 3.0) contains 

155,287 lexical entries that are organized into 117,659 synsets which are sets 

containing grouped synonyms and linked to each other by conceptual relations. 

Different from a standard dictionary, Princeton WordNet (PWN) divides the lexicon 

into the categories: nouns, verbs, adjectives, and adverbs [79]. 

The most ambitious feature of Princeton is that it has attempted to organize lexical 

information in terms of word meanings rather than word forms [79]. 
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The Semantic Relations in Princeton WordNet (PWN) 

 
Table  2.2: Semantic Relations in Princeton WordNet (PWN) [78] 

The table above lists few semantic relations in Princeton WordNet (PWN). These 

relations were selected from a wide range of semantic relations which can be 

established between words and word senses. The reasons for selecting these semantic 

relations to be included in Princeton WordNet (PWN) are [78]: 

• They are familiar in concept thus users do not need any advanced training in 

linguistics. 

• They can be applied broadly throughout English. 
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The semantic relation is formed using pointers connecting word forms or synsets [78]. 

The semantic relations in Princeton WordNet (PWN) are: 

1. Synonymy: (syn = same , onyma = name) similarity is the most important 

relation in Princeton WordNet (PWN) [79] because PWN represents word 

senses using sets of synonyms (synsets) [78]. A definition of synonymy 

considers two expressions as synonymous in a linguistic context if substituting 

one with the other in the same context will not alter the meaning [79]. 

Synonymy is a symmetric relation between word forms [78]. 

2. Antonymy (opposing-name): it is a symmetric relation too between word forms 

that is especially important when organizing the meanings of adjectives and 

adverbs [78].  

3. Hyponymy (sub-name) and Hypernymy (super-name): hypernymy is the inverse 

of hyponymy. Hyponymy/hypernymy is a semantic relation between word 

meanings. Both relations are transitive between synsets. Hypernymy is 

responsible for hierarchically organizing the meanings of nouns because 

normally only one hypernym exist [78]. Inside the hierarchy, hyponym is placed 

below hypernym. This hierarchical representation is used in the construction of 

information retrieval systems [79]. 

4. Meronymy (part-name) and Holonymy (whole-name): Holonymy is the inverse 

of Meronymy and both are complex semantic relations [78]. 

5. Troponymy (manner-name): for verbs, this relation represents what hyponymy 

represents for nouns but it has shallower hierarchies [78]. 

6. Entailment: it is a relation between verbs in Princeton WordNet (PWN), for 

example the verb to divorce is entailed by to marry [78].  

2.3.3 MultiWordNet (MWN) Ontology 

Overview 

MultiWordNet refers to a project which has the aim of developing an Italian WordNet 

that is in strict alignment with Princeton WordNet (PWN). According to [93], the first 
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version of the MultiWordNet has an estimate of around 37000 Italian words which are 

organized into 28000 synsets with information that is related to the correspondence 

between English and Italian Princeton WordNet synsets.  

Moreover, MultiWordNet (MWN) is perceived to adopt a methodological framework 

that is highly different from Euro WordNet which is a multilingual database with 

independent WordNets for several European languages and correspondences between 

them.  

The model adopted by MultiWordNet (MWN) builds WordNets in many languages 

while trying to retain the semantic relations in the Princeton WordNet (PWN) 

whenever possible.  This is achieved by creating the new synsets in correspondence 

with the Princeton WordNet (PWN) synsets whenever that can be possible. Looking 

into these English synsets, any semantic relation that exists between them can be 

imported. This simply means that any relation between two synsets in Princeton 

WordNet (PWN) must also exist between the corresponding synsets in the new 

language. 

The MultiWordNet model is perceived to be less complex and it ensures the highest 

level of compatibility among different WordNets. It follows in a strict manner the 

building criteria and subjective choices of Princeton WordNet (PWN), however the 

MultiWordNet (MWN) model is believed to have some shortcomings. The most 

notable one is that MultiWordNet (MWN) is extremely dependent on the lexical and 

conceptual structure of one of the languages involved, yet this can be lessened by 

letting the new WordNet branch from the Princeton WordNet (PWN) in situations 

where that might be considered necessary. 

In MultiWordNet (MWN), automatic procedures can be derived in an aim to speed up 

both the divergence detection, between the WordNet being developed and the 

Princeton WordNet (PWN), and the building of corresponding synsets. Princeton 

WordNet (PWN) can be a good resource to use by these procedures [93]. 
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The first instantiation of the MultiWordNet (MWN) model was the Italian WordNet 

which is based on two basic automatic procedures [93]: 

• Assign procedure: when assigning an Italian word sense, the procedure puts 

together a weighted list of the most likely Princeton WordNet (PWN) synsets 

correspondences.  

• (Lexical Gaps) LG procedure: it allows lexical gaps to be detected. These gaps 

often exist when a lexical concept of a given language is represented using a 

free combination of words in a different language [93].  

Both of these procedures apply the Collins bilingual dictionary, the electronic version, 

as a vital linguistic resource. The Collins bilingual dictionary is of medium size. Its 

English section contains 40,959 headwords and 60,901 translation groups whereas the 

Italian section includes 32,602 headwords and 46,565 translation groups [93]. 

Translation group (TGR) refers to a set of translation equivalents. The job of this group 

is to translate one of the senses of a source language word [93]. 

The Assign-procedure 

Adopting the MultiWordNet (MWN) model is all about generating Italian synsets which 

are considered to be synonymous (semantically correspondent) of the Princeton 

WordNet (PWN) synsets whenever possible. If this can’t be achieved then it is a case of 

English-to-Italian or an Italian-to-English lexical idiosyncrasy [93]. 

Italian synonymous synsets can be constructed using two strategies as follows [93]: 

• English-to-Italian translation equivalents are used in the first strategy. If there 

exist ‘S’ (a PWN synset), then the strategy is looking for all Italian translation 

equivalents which are cross-linguistic synonyms of the English words of ‘S’. The 

retrieved translation equivalents represent the Italian synonymous synset of 

‘S’. English-to-Italian lexical idiosyncrasy occurs if no translation equivalents are 

retrieved. 
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• Italian to English translation equivalents are used in the second strategy. If 

there exist ‘I’ (an Italian word sense), the strategy is looking for ‘S’ (a PWN 

synset) including at least one English translation equivalent of ‘I’. The strategy 

then creates a link between ‘I’ and ‘S’. Italian-to-English lexical idiosyncrasy 

occurs when a set of Italian synonyms have no PWN synonymous synset. 

The Lexical Gaps-procedure 

Based on contrastive analysis literature, a lexical level can have different types of 

idiosyncrasies whenever a source and a target language exist. However, just a few of 

these idiosyncrasies are relevant to the coded information inside MultiWordNet 

(MWN) which is strictly aligned with the Princeton WordNet (PWN) building criteria 

[93]. In other words, within MultiWordNet (MWN), let’s assume there is ‘L1’ (a 

synset of language#1) containing lexical units ‘w1, ..., wn’. ‘L1’ will only have a 

correspondent in language#2 ‘L2’ if there is at least one or more lexical units in ‘L2’ 

which are cross-language synonyms of ‘w1, ..., wn’. This result in having only two 

types of idiosyncrasies implying the lack of cross-language correspondence in MWN 

[93]. 

• Lexical gaps: occur whenever a language expresses a concept through a lexical 

unit while the other language expresses it with a free combination of words. 

Following the MultiWordNet (MWN) building criteria only idioms and restricted 

collocations are considered lexical units and thus can be synonymous with 

simple or compound words. On the contrary, a free combination of words is 

not a lexical unit and the elements are not bound specifically to each other and 

so they occur with other lexical items freely thus implies a missing synset for 

that language [93].  

• Denotation differences: the translation Equivalent of a source language exists 

but it is more general or more specific. In the former case the translation 

equivalent is a sort of cross-linguistic hypernym of the source language word 

and in the latter case it is a cross-linguistic hyponym [93]. 
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Information related to lexical gaps can be used in two ways. Deciding this is dependent 

on the type of gaps at hand. Are they Italian-to-English gaps? or vice versa [93]. 

• The Italian-to-English gaps: they point to a set of Italian synsets that will be 

entered to the Italian WordNet manually. Building these synsets in 

correspondence with any English synset is not possible and hence they cannot 

be constructed based on the results of the Assign-procedure [93]. 

• The English-to-Italian gaps: they point to Princeton WordNet (PWN) synsets 

which lack any Italian correspondents and they can be excluded from those 

selected by the Assign-procedure [93].  

2.4 Stemming 

2.4.1 Background 

In linguistics, Morphology studies the internal structure of words. It has two subtypes: 

derivational and inflectional. The latter subclass is important in stemming [1]. 

An inflection produces one or more grammatical categories by adding a prefix, suffix or 

infix, or another internal modification such as a vowel change [20]. Conflation is about 

reversing the inflection process and within the English Language, it has problems when 

working with [1]: 

• Verbs that do not have a strict inflection pattern and change their stem when 

changing tenses (e.g. throw, threw, thrown). 

• Verbs that are completely irregular (e.g. be, was, been) 

These problems cause stemming errors where unrelated words are conflated together 

and unrelated terms are matched. To overcome these errors and have an efficient and 

effective conflation, affix removal conflation techniques were established and they are 
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referred to as ‘stemming algorithms or stemmers’.  While ignoring the occurrence of 

occasional errors, they attribute to performance improvements [1]. 

 
Figure  2.2: The Stemming Process [106] 

Stemming is a popular tool for word standardisation that matches morphologically 

related terms. Its construction is a language specific process [25] which is harder in 

languages that are considered  morphologically complex or known to have many 

irregularities [63]. 

Most studies have been focused on the development of stemming algorithms in 

English, and similar languages such as Slovene and French [105]. in English, a word 

consists of a stem, which refers to some meaning, and affixes to modify that meaning 

and/or to fit the word for its syntactic role [88]. It is used in the fields of data mining 

and information retrieval systems (IR) to enhance the quality of the results and cut 

down on the storage requirements for the processed information [25, 118]. 

According to [106], stemming provides two basic advantages:  

• Increased recall rate of the information retrieval. The recall rate represents the 

number of relevant documents retrieved divided by the total number of 

documents retrieved.  

• Memory saving via reducing the entries in the index table, thus reducing its 

size. Replacing full terms with their corresponding stem can achieve a 50% 

compression [106]. 

26 

 



Chapter 2: The Literature Review 

2.4.2 Definitions 

• Stemming is an automated process to extract the base form of a given word of 

a language [99]. 

• Stemming is the process where affixes (prefixes, infixes, or/and suffixes)  are 

removed from words to reduce them to their stems or roots [16, 46]. 

• Stemming is the process of reducing inflected words to their stem by removing 

any attached affixes from a word [25]. 

2.4.3 Techniques 

As mentioned in the definition, stemming is about removing affixes from words and 

stemming algorithms can be categorized based upon this to: 

• Affix Stemming Algorithms: in addition to removing suffixes, common prefixes 

are removed using several approaches [25]. 

• Suffix-Stripping Algorithms: these depend on a list of stored rules to guide the 

stemming process [25].   This is commonly accepted as a good idea. 

• Prefix Stripping Algorithm: This is not widely practised and not generally felt to 

be helpful except in some subject domains such as chemistry [87]. 

When developing a stemming algorithm, certain issues must be considered such as 

iteration and context awareness. Suffices are attached to a word in a certain order that 

can be put in a set of order-classes and starting from the end of the word, the 

stemming algorithm will iteratively remove suffices one at a time [2]. Regarding 

context, a stemming algorithm can be one of the following [2]: 
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• Context-sensitive Algorithm: it involves a number of qualitative contextual 

restrictions preventing the removal of endings that may produce wrong stems. 

• Context free Algorithm: it removes endings without any restrictions. 

In addition, stemming algorithms can be labelled as: 

• Morphological Stemming algorithms (such as Porter Stemming algorithm): this 

is based on morphological issues that are completely independent from the 

syntactic and semantic structure of the sentence. Both inflections and 

derivational affixes are removed [86]. 

• Syntactic Stemming algorithm (such as Stanford Stemming algorithm): this is 

performed during the syntactic analysis of the sentence where only inflections 

are removed. Thus the word ‘arrivals’ in Stanford stemming algorithm is 

stemmed as ‘arrival’ whereas it is stemmed as ‘arrive’ in a Porter stemming 

algorithm [86]. 

Moreover, stemming algorithms can be categorized according to their strength as 

follows [16]: 

• Light stemming algorithm: it adopts understemming, meaning it does not 

conflate words of the same concept resulting in a reduced recall where fewer 

relevant results are returned by a Text Retrieval system. It strips suffixes based 

on regular expressions such as  ‘ing’, ‘s’, ‘e’ [16, 88]. 

• Heavy stemming algorithm: It adopts overstemming, meaning the conflation of 

words from different concepts resulting in reduced precision caused by the 

return of irrelevant results [16, 88]. 
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Below are other existing types of stemming algorithms which vary in their performance 

and accuracy and methods [25]: 

• Brute-Force Algorithm: it queries a lookup table, containing relations between 

root forms and inflected forms. It looks for a matching inflection and then the 

associated root of the match is returned if found [25]. 

• Lemmatisation Algorithm: initially it identifies each part of speech (POS) of a 

word and then normalises them using specific rules for each part of speech. 

Determining the correct POS is essential in this type [25]. 

• Stochastic Algorithm: it uses probability to find the root of a word. By training 

the algorithm on a table of root to inflected form relations, a probabilistic 

model is developed [25]. 

2.4.4 Types 

Stemming algorithms can be classified into three groups depending on the method 

used to produce stems as shown in the figure below: 
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Figure  2.3: Types of Stemming Algorithms [55] 

Truncating Method (Affix Removal) 

It involves removing the affixes of a word and below are some adopting stemming 

algorithms [55]: 

•  Lovins Stemming Algorithm [58]: proposed by Lovins in 1968, it uses two 

tables. The 1st table stores 294 endings, 29 conditions, and 35 transformation 

rules arranged on a 'longest match' principle [55] and the 2nd table stores 

some rules dealing with double consonants and handling other adjustments. 

Based on the first table, the algorithm removes only the longest suffix from a 

word and then recodes it using the second table which performs some 

adjustments on the stem converting it into a valid word [55, 87]. The 

advantages of this stemming algorithm are its fast speed since it is a single pass 

algorithm and it has the ability to cope with special cases such as double 

constants and irregular plurals [55]. The drawbacks include its consumption of 

30 

 



Chapter 2: The Literature Review 

time and data, the unavailability of many suffixes in the first table can 

sometimes be unreliable as it fails to construct words from the stems or to 

match stems to like-meaning words [55]. 

• The Porter Stemming Algorithm [16, 25, 58, 86, 88, 99]: proposed by Porter in 

1980. This has since undergone many modifications [55]. It is considered as a 

light suffix-stripping stemming algorithm. It works by removing common 

suffixes iteratively using a 5-step sequence with a different lookup table being 

used in each step [87]. Porter designed a framework called ‘snowball’ to help 

others adopt the algorithm to the language of their choice [55]. The porter 

algorithm is fast, efficient, and simple thus it is commonly used in TR systems 

[99]. Its simplicity is regarded as a disadvantage too since it causes the 

stemming algorithm to produce incorrect stems in many cases (e.g. it does not 

conflate the words ‘add’ and ‘adding’) [16]. The focus on developing stemming 

algorithms was made mainly on the English language with scattered but great 

efforts made in other more complex natural languages like Arabic or Turkish. 

The implementation of a stemming algorithm involves encoding it to a 

programming language such as C or Java for example [97]. The lack of 

unambiguous stemming algorithms makes the implementation process difficult 

and leads to a shortage of readily available stemming algorithms in non-English 

language. This was the driving force for Porter to develop Snowball [97]. 

Snowball is a language to develop stemming algorithms. It is quite small and for 

experienced programmers, it can be understood in hours [97]. It has its own 
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complier and script. The complier translates the Snowball script (.sbl file) into 

an equivalent program of one of two formats below but In the end, each 

stemming algorithm will have its standard vocabulary of words and their 

stemmed equivalents [97]. 

• An ANSI C program: the result is a program file and corresponding 

header file. 

• A Java program 

• Paice/Husk Stemming Algorithm [58]: this was developed in the late 1980s in 

Lancaster University by Chris Paice and Gareth Husk [2]. Initial implementation 

was in Pascal but was followed with other versions in Java, C , and Perl [2]. 

 It is a simple heavy iterative stemming algorithm [87, 88] which uses 120 rules 

stored in one table and indexed by the last letter of a suffix for quick access [55, 

87]. Each iteration involves looking up a rule based on the last character in the 

word. If a match is found, the rule decides whether to delete or replace the 

ending and then the process repeats itself, otherwise the algorithm terminates. 

The algorithm is designed to terminate in other situations too, such as if a word 

starts with a vowel and there are only two letters left or if a word starts with a 

consonant and there are only three characters left [55, 87]. In this stemming 

algorithm, the rules lead to heavy stemming that is considered extremely 

advantageous for index compression but tends to produce many overstemming 

errors [55, 87]  

• Dawson Algorithm: Considered as an extension of the Lovins algorithm, it is 

similarly fast but it uses a list that is much larger and comprehensive with about 

1200 suffixes stored in reverse order, indexed by their length and last letter, 

and organized as a set of branched character trees for rapid access. This 
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stemming algorithm is very complex and lacks a standard reusable 

implementation [55].  

Paice concluded that the Porter stemming algorithm has a smaller stemming-error rate 

than the Lovins stemming algorithm which was noted to have better data reduction 

[55]. The large suffix set in the Lovins algorithm made it much bigger than the Porter 

algorithm but gave it the advantage of fast speed because it is implemented using two 

major steps [55].  

Statistical Method  

Implementing this method means that the stemming algorithm must perform a 

statistical procedure before removing the affixes [55]. 

• N-Gram Stemming Algorithm [58]: it is language independent stemming 

algorithm which represents a set of ‘n’ consecutive characters extracted from a 

word. The concept here is that similar words will have a high proportion of n-

grams in common. If ‘n’ equals to 2 or 3, the extracted words are called digrams 

or trigrams, respectively [55].  

Mixed Methods: Inflectional and Derivational Methods  

• Krovetz stemming Algorithm: it was developed in 1993 by Robert Krovetz [55] 

and it utilizes the internal structure of a word (morphology), a dictionary, and a 

list of exceptions [16]. The process starts by removing the suffix and then 

looking up the dictionary for recoding the stem to a spell-checked meaningful 

word [55].    Depending on a dictionary has its own problems.  First the 

dictionary must be created manually in advance which is labour intensive and 

this leads to the next problem when the stemming algorithm is unable to deal 

with a word because it is not listed in the dictionary [55]. Using the inflectional 

and the derivational morphology analysis [55] made this algorithm complex but 
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also accurate as it generates morphologically correct stems, handles 

exceptions, and process prefixes too [55]. Compared to the Porter stemming 

algorithm,  it is slower with large size input documents [16, 55] and becomes 

weaker and less effective [55]. In general, it is considered as an effective, light 

(lighter than Porter and Paice/Husk) and accurate algorithm [55] which is why 

Krovetz recommended its use as a pre-processing step when working with a 

heavy stemming algorithm to increase speed, effectiveness [55] and to reduce 

common errors [16].  

2.4.5 Non-English Stemmers 

The internet has made a large volume of information, in multiple languages, available 

online.  The need to access specific information increased the felt demand for a multi-

lingual text retrieval system [89]. For example, search engines are getting more 

sophisticated using advanced search parameters, and classification tools [82].  

The early research was mainly on English language, and then major European 

languages followed. These languages have few Standard stemmers available. Other 

languages such as languages from the Indian sub-continent are making progress but 

the scarce availability of tools and other lexical resources are slowing the process [89]. 

According to [42], spoken languages have a rough classification as follows: 

• Inflective languages: words consist of a stem and a fixed number of suffixes 

and/or prefixes, thus the number of combinations is fixed. Most European 

languages fall into this class. 

• Agglutinative languages: words consist of a stem and a potentially infinite 

number of suffixes. Hungarian, Turkish, and Korean are examples of such 

languages. 

• Isolating languages: words are fixed thus each word is also the stem. Examples 

of such languages are Chinese or Vietnamese. 
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• Intraflective languages: here, the word expresses its root meaning with 

consonants, and its grammatical variations with vowels intermixed with the 

consonants. Examples of such languages are Arabic and Hebrew. 

• Incorporating languages: words consist of many stems glued together by 

complicated rules. Examples of such languages are some North American native 

languages. 

In the following, the research in stemming done on Arabic and Indian languages is 

summarised to highlight the progress done in languages other than English and 

European.   

Arabic 

The work of Khoja attempts to find roots for Arabic words by stripping the prefixes and 

suffixes and comparing that against a dictionary of root words. 

In 2002, Larkey found that stemming has a large effect on Arabic information retrieval, 

at least in part due to the highly inflected nature of the language [62]. At the same 

time, Darwish presented a rapid method of developing a shallow Arabic morphological 

analyzer based on automatically derived rules and statistic [32]. Recent work done by 

Sembok developed an Arabic stemmer with the rule-based approach plus a dictionary 

of root words to verify the validity of the root candidates [104]. 

Indian 

For Indian language, early and noted research includes the work of Larkey and others 

in 2003 which presented a light stemmer in conjunction with list of common suffixes. 

Another stemmer with a similar approach was developed in 2003 by Ramanathan and 

Rao which used a hand crafted suffix list and performed longest match stripping [45]. 

For their stemmer, Chen and Gey opted for a statistical method. In 2007, a Bangali 

stemmer was presented by Dasgupta and Ng [89] while Islam et al. proposed a light 

weight stemmer for Bengali which strips the suffixes using a predetermined suffix list. 

35 

 



Chapter 2: The Literature Review 

YASS stemmer was developed by Majumder et al. (2007) based on statistical approach 

using string distance measure[73]. For Gujarati , Suba et al. (2011) developed two 

stemmers. The first one is a lightweight stemmer based on a hybrid approach and the 

other one is a heavyweight stemmer based on a rule-based approach [110]. Gupta and 

Lehal (2011) had their stemmer for Punjabi which obtains the stem and then checks it 

against Punjabi noun morph and proper names list [44]. 

2.4.6 Applications  

Stemming has some applications in machine translation. For example, the work done 

by Lee presented a morphological analysis technique to improve statistical machine 

translation qualities. The technique improves Arabic-to-English translation qualities 

significantly [65]. The experiments by Popovic and Ney regarding statistical machine 

translation from inflected languages into English showed that the use of word 

morphemes improves the translation quality [95]. The model proposed by Yang 

translated unseen word forms in German-English and Finnish-English text by 

hierarchical morphological abstractions at the word and the phrase level and showed 

improvements over state-of-the-art phrase-based models [121]. 

Stemming is used also in the area of document summarization [31, 85]. The XDoX 

summarizer designed by Hardy and others used stemming for data processing. The 

XDoX produced readable, coherent and well organized summarizes. In most cases the 

system successfully presented main points, skipped over minor details, and avoided 

redundancy [48]. Mixed models are used by Arora and Ravindran to capture topics and 

pick up sentences and then evaluate the generated summary using the Porter 

Stemmer through the ROUGE evaluator [9]. 

Text classification is about the automatic pre-defined label placement on previously 

unseen documents. It is used in document indexing, e-mail filtering, web browsing, and 

personal information agents. Stemming is used in many text classification experiments 

[102]. The role of stemming in text classification [41, 82] is getting different point of 
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views . The research done by Riloff in 1995 concludes that stemming algorithms are 

appropriate for some terms and that having all morphological variants is more 

beneficiary [41]. In 2000, Busemann had shown that morphological analysis increases 

performance for a series of classification algorithms in German [21]. It is also used in 

text mining and information extraction [38]. 

2.4.7 Discussion 

The next table summarizes the key features of all mentioned algorithms [55]. 

Advantages Limitations 

Truncating (Affix Removal) Methods 

Lovins Stemming algorithm 

• Fast, single pass algorithm. 

• Handles removal of double letters. 

• Handles many irregular plurals. 

• Time consuming. 

• Missing some suffixes. 

• Not very reliable and frequently fails to 

form words from the stems. 

• Dependent on the author’s technical 

vocabulary. 

Porters Stemming algorithm 

• Compared to Lovins it’s a light stemming 

algorithm. 

• Has the best output compared to other 

stemming algorithms with lower error 

rate. 

• Snowball is language independent. 

• Some produced stems are not real 

words. 

• Time consuming because of its 5 steps 

and 60 rules. 

Paice / Husk Stemming algorithm 

• Simple form with each iteration doing • Heavy algorithm and over stemming can 
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deletion and replacement. happen. 

Dawson Stemming algorithm 

• Covers more suffixes than Lovins. 

• Fast execution. 

• Very complex. 

• Lacks a standard Implementation. 

Statistical Methods 

N-Gram Stemming algorithm 

• Language independent. • Not time efficient. 

• Needs significant space for creating and 

indexing the n-grams. 

• Not a practical method. 

Mixed Methods (Inflectional & Derivational Methods) 

Krovetz Stemming algorithm 

• A light stemming algorithm. 

• Can be used as a pre-stemmer for other 

stemming algorithms. 

• For large documents, it is not efficient. 

• Can’t cope with words outside the 

lexicon. 

• Not consistent in producing good recall 

and precision. 

• Lexicon needs to be created in advance. 

Table  2.3: Comparative Summary of some Stemming algorithms [55] 

In [36], the strengths of four stemming algorithms were evaluated using six metrics 

and they were ranked from strongest to weakest as follow: Paice, Lovins, Porter, and 

SRemoval. 

Correctness, retrieval effectiveness, and compression performance are several criteria 

for judging stemming algorithms [106].  

The effects of stemming on retrieval performance have been targets of several 

investigations which found that stemming improves retrieval’s performance and that 

there were no consistent differences in performance between different stemming 
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algorithms [88]. This method does not provide any insights on stemming algorithm 

optimisation [63, 88]. 

All previously discussed stemming algorithms do not function 100% meaning they 

outperform in some areas but can be a let-down in others. Still, they are good enough 

to be applied to the text mining, NLP or IR applications [55]. Stemming algorithms have 

many similarities but the main difference is their approach. The rule-based approach 

stemming algorithm does not guarantee a correct output every time and the produced 

stems are not always correct words, whereas the linguistic approach does not properly 

stem words outside the lexicon which must be exhaustive. Moreover, the statistical 

approach is language independent but does not always give reliable and correct stems. 

In many existing stemming algorithms there is a trade-off between overstemming and 

understemming [88]. A perfect stemming algorithm should not overstem or understem 

and this can be achieved if it takes into considerations words syntax, semantics, and 

their POS. Also, including a lookup dictionary will be beneficial in reducing errors and 

converting stems to words [55]. 

2.5 Summary 

The chapter discussed many topics related to the thesis. It began by giving definitions 

and a background literature to Folksonomies. Some advantages and shortcomings of 

Folksonomies were outlined. Next, an overview of the Princeton WordNet and 

MultiWordNet ontologies was included because they are used in the TE system with 

tags to enhance their quality. Adding a stemming component to the TE system 

required reading into their background, definitions, techniques, and types to decide on 

the best algorithm to use. The chapter concluded by discussing algorithm analysis and 

complexity to evaluate the algorithm of the TE system which is discussed in the next 

chapter to highlight its scope, components and implementation methods. 
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3 The TE (Tag Enhancer) System 

3.1 Introduction 

This chapter will address the area of study that has been chosen by this research for 

the critical algorithm efficiency analysis and modification. The TE system has three 

main sections: the proposed system architecture, the prototype, and the experiment. 

This chapter will discuss only the prototype section, highlighting the decisions that 

were made throughout the process with respect to scope, space and time. Taking note 

of these decisions is very important when doing the algorithm analysis because they 

will be the focus of the critical discussion later on. 

3.2 Overview 

In the TE system, whenever the user provides a tag ‘user tags’, a new set of tags 

‘system tags’ are added by the system database for the sake of overcoming the lack of 

semantics in the user tags. System tags are extracted from different resources 

depending on the user tag as follow [72]:  

• User tag is IN the vocabulary: its related system tags will be added from 

Princeton WordNet (PWN) and MultiWordNet ontologies (semantic resource). 

• User tag is NOT in the vocabulary: its related system tags will be extracted using 

social tag-based system clustering (social resource). 

The study claims that the new added system tags along with the raw user tag will 

improve the search process by providing more accurate results [72]. 

3.3 The Scope of TE 

In [72], a generic architecture for a Tag-Based System is presented with the 

components: tagging component, search component, semantic component, clustering 

component and database component. 

40 

 



Chapter 3: The TE (Tag Enhancer) System 

 
Figure  3.1: The Proposed Generic Architecture for Tag-Based Systems [72] 

Before implementing the TE algorithm, the scope of the proposed generic architecture 

was limited to only some of the components listed previously and they are the 

semantic component and the clustering component. The TE is only dealing with the 

following tagging problems: semantic relations, multilingualism and shorthand tags. TE 

mainly proposes to improve the following aspects [72]: 

• The semantic aspect via the semantic component (semantic resource) 

• The multilingualism aspect via the semantic component (semantic resource) 

• The clustering aspect via the clustering component (social resource) 
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Figure  3.2: The Scope of TE [72] 

3.3.1 The Semantic Component 

This component deals with the following problems [72]: 

• Word Synonyms & Semantic Relations: the interaction here is between the 

tagging system database and Princeton WordNet (PWN).  It raises a query to 

retrieve a set of words that are relevant to the user tag as they are either 

synonyms or hypernyms of it. In order to address this task, the Princeton 

WordNet (PWN) ontology is used. In Princeton WordNet (PWN) and other 

ontologies which are based on the Princeton WordNet (PWN) structure, words 

have relations between them and each word has many senses which are 

different meanings for the same word. Senses in Princeton WordNet (PWN) 

and similar ontologies are generally ordered from most to least frequently 

used, with the most common sense listed first and so forth. In the study, 

relations deals only with the first sense. 

• Multilingualism: Most tag-based systems do not force users to use specific 

languages during the processes of tagging or searching. This implies that unless 

the search keyword and the user tag use the same language, no results will be 
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found. Multilingual lexical ontologies can be used as translators since they store 

a few languages, (usually in a database) with a cross language link among the 

word translations in different languages. EuroWordNet ontology contains seven 

European languages (Dutch, Italian, Spanish, German, French, Czech and 

Estonian) whereas MultiWordNet (MWN) covers only English and Italian. 

MultiWordNet (MWN) is free for researchers thus it is used in this study by the 

semantic component which queries it using the user tag to retrieve relevant 

words in English or Italian. 

When a new tag is submitted, the TE system queries three resources in worst case   

scenario. For example, submitting the tag “btw”, which is shorthand writing for “by the 

way”, to the TE system will require querying the Princeton WordNet (PWN), the 

MultiordNet (MWN), and finally the clustering component. Moreover, a tag can be 

semantically rich and yield over 80 system tags (see table 5.5 and table 5.11) after 

querying the semantic component. 

[72] considered the critical factors of time and space and decided on saving time 

during the search process and generating the system tags when submitting new tags. 

[72] claims that time is more important than space especially during the search 

process because a response time is involved, whereas it is not noticeable at the tagging 

process. Furthermore, the study points out that since all the data used are textual, the 

space factor is less significant since they consume small space due to their nature. The 

thesis discusses this point thoroughly in chapter 5. 

3.3.2 The Clustering Component 

This component handles the problem of shorthand writing. It interacts only with its 

tagging system database and also with at least one external tagging system database. 

It is an additional source along with Princeton WordNet (PWN) to add semantic to tags 

when Princeton WordNet (PWN) fails to do so, particularly in the case where tags are 

shorthands, colloquial words, or specialised technical terms. To save time on 

clustering, the architecture can use the Flickr tagging system to retrieve tag clusters 
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using APIs provided by Flickr. The number of clusters varies from one tag to another 

and the same can be said about the tags inside each cluster. When a tag is submitted 

to the Flickr tagging system database, a variable number of clusters will be retrieved 

with a different number of tags in each cluster. According to [72], most tags retrieve 

one cluster only. Furthermore, it was found that the Top-N tags in the 1st cluster are 

the most related tags [72]. Therefore, the TE system decided to add the Top-3 tags 

from the 1st cluster as system tags. The actual clustering algorithm used in Flickr has 

not been officially released. Revealing the clustering algorithm will help in automating 

the process of judging the clusters relatedness. This is important since the Top-N tags 

in the most related cluster can be used as system tags to provide a better context. The 

TE system is limited to retrieving only the Top-10 tags in each cluster and suggests 

running these procedures periodically to keep up-to-date with the social vocabulary. 

3.3.3 The Database Component 

The database of the TE system stores information about tagged objects, clusters, etc. It 

interacts with the components below as follows: 

• Semantic Component: to store system tags in the database 

• Clustering Component: to store system tags in the database 

The design of the database component is illustrated below. It is built using MySQL 

Database Management System.  

 
Figure  3.3: The ER Model of the TE Database  
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Table Key Attribute Description 

Videos primary Video_ID Unique ID for identifying each video 

- Title Video title as it appears in YouTube (imported 

from YT). In the experiment it will be a hyperlink 

to the video on YouTube 

- Link video URL on YouTube (imported from YT) 

- Thumb Video thumbnail as it appears in YouTube 

(imported from YT) 

Tags_Master primary Video_ID Unique ID for identifying each video 

primary User_Tag Raw tag used to annotate the video 

Tags_Detail primary User_Tag Raw tag used to annotate the video 

primary System_Tag Added tag from the semantic component or the 

clustering component 

primary Tag_Type The resource of the System Tag (semantic or 

social) 

Table  3.1: Breakdown of the Database Tables 

3.4 The TE System 

3.4.1 The Data 

The database is populated with data from different resources as follows [72]: 

• Initially, a set of English and Italian keywords stored in a String Array is used to 

query YouTube looking for matching videos. All videos retrieved from the 

YouTube site are saved in one list called ‘video list’ and then certain 

information about every video in this list is saved inside the TE database. For 

the TE system, the most important piece of information is the tags attached to 

each retrieved video.  

• The TE system needs sample data (i.e. tags sample) because it is not operating 

a real tagging system. The tags sample is imported using YouTube’s own Java 

Data API and stored in the TE database where the algorithm is applied on them 

later on. 
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• System tags from semantic ontologies (Princeton WordNet (PWN) and 

MultiWordNet (MWN)) via the semantic component. 

• System tags from Flickr using its clusters via the clustering component. 

3.4.2 The TE Implementation 

The Programming Languages 

The algorithm is implemented using Java.  This is because it has a vast amount of APIs 

available to interact with all the resources needed for the TE system’s implementation 

as shown below: 

• YouTube APIs: which are called ‘YouTube Data API’. See available 

documentation at:   https://developers.google.com/youtube/getting_started 

• Princeton WordNet (PWN) APIs: which are called ‘Java API for WordNet 

Searching (JAW)’. See available documentation 

at: http://lyle.smu.edu/~tspell/jaws/index.html 

• Flickr APIs: which are called ‘Flickr Java API’ (flickrj)’.  See available 

documentation at: http://flickrj.sourceforge.net/ 

Querying the Semantic Resources 

Princeton WordNet (PWN) contains only English language whilst the MultiWordNet 

(MWN) contains English language and Italian language. This means that the TE system 

can obtain English system tags from two resources whereas it only has one resource to 

obtain Italian system tags [72]. 

The TE system queries only Princeton WordNet (PWN) to get the English system tags 

since its WordNet version is more recent than MultiWordNet (MWN). This leaves 

MultiWordNet (MWN) responsible for retrieving the Italian system tags, and finding 

the corresponding translation for the user tags [72]. 
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3.5 Summary 

The chapter discussed the TE system starting with an overview and then it investigated 

its scope by detailing the components included.  The role of each one of these 

components was explained in addition to looking at the methods used by them to 

perform their designated objectives. The last part of this chapter outlined the general 

implementation plan and its programming environment which involved the services of 

many APIs for manipulating the different semantic and social sources. In the next 

chapter, the thesis explains the methodology used to evaluate the TE system and 

embed the stemming component.  
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4 The Methodology 

4.1 The Efficiency of Algorithms (The Performance) 

Computational complexity theory is concerned with looking at what computational 

resources are required to solve a given task [10]. The questions it studies include the 

following: 

• Many computational tasks involve searching for a solution across a vast space 

of possibilities.  Is there an efficient search algorithm for all such tasks, or do 

some tasks inherently require an exhaustive search? 

• Can algorithms use randomness to speed up computation? 

• Can hard problems be solved more quickly if we allow the algorithms to err on 

a small number of inputs, or to only compute an approximate solution? 

• Is there any use for computationally hard problems? 

• Can we use the counterintuitive quantum mechanical properties of our 

universe to solve hard problems faster? 

• Can we generate mathematical proofs automatically? Can we check a 

mathematical proof by only reading three probabilistically chosen letters from 

it? 

The efficiency of an algorithm is considered more important than the execution 

technology. It measures the amount of memory and time needed by an algorithm to 

run [51]. Choosing the best algorithm to solve a problem is essential and there are a 

few approaches that guide programmers in this process as listed below [19, 52]:  

1. Empirical (Performance Measurement): this method is machine dependent 

because the algorithm is implemented, executed and time is recorded. 

2. Analytical (Performance Analysis): this method considers high-level descriptions 

of the algorithm. For each proposed algorithm, several factors must be 

determined mathematically. The factors include execution time, memory, 

space etc. This approach has several benefits: 
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• It is independent of the computer used, the programming language or 

the programmer’s skills. 

• It saves programming and testing time for inefficient algorithms. 

• It tests instances of any size. 

3. The hybrid approach:  this uses the previous approaches referred to above.  It 

does this by determining theoretically the form of the function describing the 

algorithm's efficiency and then empirically determines any required numerical 

parameters. 

Analytical Empirical 
Inputs of all possible sizes are accounted 
for. 

Limited set of inputs. 

Comparing run times of 2 algorithms is 
machine independent. 

Comparing run times of 2 algorithms is 
machine dependent. Identical 
environment (software and hardware) 
must be used. 

Algorithm implementation is not 
required. 

Algorithm must be implemented. 

Table  4.1: Algorithm Performance Methods [52] 

4.1.1 Empirical (Performance Measurement) 

This method involves more work than the performance analysis, thus there are several 

steps to follow to insure better results when implementing the testing experiment. The 

steps are as follows [67]: 

1. Setting the purpose of the experiment. 

2. Deciding on the efficiency metric and measurement unit.    

3. Specifying the input sample in terms of range, size etc. 

4. Implementing the algorithm. 

5. Generating an input sample.  

6. Running the algorithm implementation using the sample. 

7. Recording the observed data. 

8. Analysing the results. 
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The implementation should be designed to provide means to record data. The first 

method is to use counter(s) to calculate the number of times the algorithm’s basic 

operation is executed. An alternative method is to time certain parts of the 

implementation [67]. In Java, the method ‘currentTimeMillis( )’ in the System 

class can be used. Consider the following when using the latter method [67]: 

• The system’s time is typically not very accurate and you can get different times 

while running the same code and input. Taking the average of several trials is a 

much better option. 

• High-speed computers can report the run time as zero. The solution is to add 

an extra loop and go through it ‘n’ times, measure the total time, and then 

divide it by ’n’ to get the time for one loop. 

• Computers with a time-sharing system can return time results that include time 

spent on other programs. Thus, they request only user time from the system. 

Test conducted by running 
Selection Sort program on 
IBM compatible PC with: 
Intel 80386 processor with 
80387 numeric coprocessor 
+ 
turbo accelerator 
+ 
Borland’s Turbo C compiler 

n Time 
(seconds) 

30...100 .00 
200 .11 
300 .22 
400 .38 
500 .60 
600 .82 
700 1.15 
800 1.48 
900 1.86 
1000 2.31 
1100 2.80 
1200 3.35 
1300 3.90 
1400 4.54 
1500 5.22 
1600 5.93 

Table  4.2: Empirical Test Example(Adapted) [5] 
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Figure  4.1: Empirical Test Example’s Graph [5] 

4.1.2 Analytical (Performance Analysis) 

Performance analysis of algorithms is useful in [51]: 

• Determining if the algorithm is practical. 

• Predicting run time for large inputs. 

• Comparing two algorithms with different asymptotic complexity functions. 

Two criteria are used to judge the performance of an algorithm [6, 51]: 

• Space complexity (storage requirement): this is the amount of memory it needs to 

run to completion. 

• Time complexity (computing time): this is the amount of CPU time it needs to run 

to completion. 

The memory’s hierarchy is divided into levels, each with its own unique response time. 

The performance analysis discards the differences in those response times [51]. The 

actual space and time requirements of a program are dependent on [18, 67]: 

• The compiler generating the machine code. 

• The quality of the implementation program. 

• The speed of the computer. 
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In algorithm design, time and space can co-exist without competing with each other to 

find an algorithm with minimum time and space costs [67]. 

Nevertheless, there are some trade-offs between the above two factors. Trading space 

for time is the most common. In some cases, the problem’s input is pre-processed 

wholly or partially and then the resulting data is stored. This is called ‘input 

enhancement’ and it makes solving the problem later on much faster. Here the time is 

more important [67]. Another case where time takes precedence over space is ‘pre-

structuring’ where extra space is used to provide faster and/or more flexible data 

access such as in hashing and B-Trees indexing [67]. 

Another case that deserves a mention is ‘dynamic programming’ where solutions to 

overlapping sub problems of a problem are stored in a table from which a solution to 

the original problem is then obtained [67]. 

To proceed analysing the performance of non-recursive algorithms, the next steps 

must be followed: 

1. Decide the input’s size. 

2. Identify the algorithm’s basic operation and whether its repetition is solely 

dependent on the input’s size or other extra factors. 

3. Identify the worst-case and average-case efficiencies. Measure best-case 

efficiency whenever needed. 

4. Sum up the execution times of the algorithm’s basic operation. 

5. Calculate the sum’s order of growth. 

The following factors can measure the efficiency of an algorithm: 

• Memory space (Space Complexity): this is measured by several factors such as 

the number of variables and the number and sizes of the data structures used 

in the algorithm [49]. 
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• Execution time (Time Complexity): this is measured by the number of 

elementary actions performed by the processor in such an execution. In other 

words it calculates the amount of time required to execute an algorithm [49]. 

The performance of the above factors and the algorithm in general varies from input 

to input.  

4.2 Time Complexity 

Time Complexity describes the relationship between the size of the input and the 

execution time of the algorithm and it is mostly expressed as a proportionality [18] 

As an example, sorting large lists takes more time than short lists and performing 

multiplication on huge matrices is slower than on small ones [47]. 

Time Complexity indicates the run speed of an algorithm [67]. The equation: T(P)= 

C+TP(I) defines the time required ‘T(P)’ to run a program ‘P’ where [5, 6]: 

• ‘C’ (fixed time requirements): compile time independent of instance 

characteristics. 

• ‘TP(I)’ (variable time requirements): execution time. 

Measuring ‘T(P)’ is done using one of these methods [6]: 

• Conducting an experiment using a ‘stop watch’ (usually time is in seconds or 

microseconds). 

• Counting program steps. 

Measuring the theoretical efficiency of an algorithm can be explained by the principle 

of invariance, according to which two different implementations of the same algorithm 

will not differ in efficiency by more than some multiplicative constant [19]. To explain 

more, if two implementations take ‘T1(n)’ and ‘T2(n)’ seconds respectively to 

solve an instance of size ‘n’, then there always exists a positive constant ‘c’ such 

that T1(n) <= cT2(n) whenever ‘n’ is sufficiently large [19]. 

53 

 



Chapter 4: The Methodology 

This principle is valid regardless of the programming language, the programmer’s skills 

(unless it modifies the algorithm), and the computer used (of conventional design). 

Although changing the machine may speed up solving a problem by 10 or 100 times, 

still the change of algorithm will give improvements that gets more and more marked 

as the size of the instances being solved increases [19]. 

Expressing the theoretical efficiency of an algorithm is only done within a multiplicative 

constant. Thus, if an algorithm takes a time in the order of ‘T(n)’ for a given function 

‘T’, there exists a positive constant ‘c’ and an implementation of the algorithm capable 

of solving every instance of the problem in a time bounded above by cT(n) seconds, 

where ’n’ is the size of the instance considered.  

Other units can replace seconds in the above definition by changing the constant to 

bound the time by aT(n) years or bT(n) microseconds [19]. 

Time complexity T(n) is measured in the order of a function  O(f(n)). For any ‘n’ 

that is sufficiently large, this determines the upper and lower bounds on the amount of 

work done [18]. 

A computation that runs in linear or quadratic time is efficient [10]. In the analysis of 

algorithms, the logarithms to the base 2 are so frequently used and have their own 

notation ‘lg n’ (short for Iog2n). 

The objectives of the analysis of time complexity are [18]: 

• To determine the feasibility of an algorithm by estimating the upper bounds of 

the performed work. 

• To compare different algorithms and then decide on the best ones for the 

implementation. 

Sometimes in the analysis, if work takes a constant amount of time independent of the 

input size, it is ignored.  This helps to simplify things and the time complexity is 

considered constant and is denoted as O(1) [18].  
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Furthermore, usually the focus is on the differences in performance between 

algorithms performing the same task [18]. 

Simplified analysis can be based on the number of [18]: 

• Performed arithmetic operations. 

• Performed comparisons. 

• Times through a critical loop. 

• Array elements accessed etc. 

Algorithm analysis has different scenario cases as follows [18]:  

• Average Case: determines the average performance. 

• Worst Case: produces an upper bound on the algorithm performance for large 

problems (large ‘n’) and it is simpler to work out. It is expressed as T(n) = n 

where T(n) is the maximum number of steps in any execution of the algorithm 

with ‘n’ inputs [47]. 

Within this context, the terms above are defined as follow [47]: 

• Input size: defining the size as the input’s required storage in bits is too low-

level and not useful. Instead, it is problem-dependent. For example, if the 

algorithm is about sorting elements then the number of elements is the input 

size. 

• Step: anything a computer does in a fixed amount of time. 

4.3 Space Complexity 

The space complexity for a given input is the number of elementary objects that the 

algorithm needs to store whilst executing [108]. It is the amount of memory space 

needed by an algorithm plus the space needed for its input and output [67]. 

Space complexity S(P) is calculated by the rule: S(P)=C+SP(I), where [5, 6]: 
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• ‘C’ (fixed space requirements): independent of the characteristics of the 

inputs and outputs. Examples are spaces for instruction, simple variables, fixed-

size structured variable and constants 

• SP(I)(variable space requirements): depend on the instance characteristic 

‘I’ 

• number, size, values of inputs and outputs associated with ‘I’ 

• recursive stack space, formal parameters, local variables, return address 

In computational complexity theory, some computational models use resources to 

solve computational problems. DSPACE is one of these computational resources 

specialising in memory space. It represents the total amount of memory space that a 

computer needs in order to solve a given computational problem with a given 

algorithm [100]. 

For an algorithm T and an input x, DSPACE(T, x) denotes the number of cells used 

during the (deterministic) computation T(x). 

We will note DSPACE(T) = O(f (n)) if DSPACE(T, x) = O(f (n)) with n = 

|x | (length of x). 

Note: if T(x) does not stop then, DSPACE(T) is undefined. 

 
Figure  4.2: Example (1) of Space Complexity [7] 
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Figure  4.3: Example (2) of Space Complexity [7] 

Memory space can be estimated theoretically in a similar way to computing time. 

Sometimes, both factors can effect each other where using more space results in 

reduced computing time and conversely. 

4.4 Cases of Complexity 

• The worst-case efficiency: is the efficiency for the worst-case input of size ’n’ 

for which the algorithm runs the longest among all possible inputs of that size. 

It can be determined by analysing the algorithm to see what kind of inputs yield 

the largest value of the basic operation’s count C(n) among all possible inputs 

of size ‘n’ and then computing this worst-case value Cworst(n) [67]. 

• The best-case efficiency: is the efficiency for the best-case input of size ’n’ for 

which the algorithm runs the fastest among all possible inputs of that size. This 

case can be determined by determining the kind of inputs for which the count 

C(n) will be the smallest among all possible inputs of size ‘n’. (Note that the 

best case does not mean the smallest input; it means the input of size ‘n’ for 

which the algorithm runs the fastest) [67]. The analysis of the best-case 

efficiency is not nearly as important as that of the worst-case efficiency [67]. 
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• The average-case efficiency can provide insight on how the algorithm behaves 

with a typical or random input, which cannot be yielded from either the worst-

case or the best-case analysis. Deciding on this case requires making 

assumptions about possible inputs of size ‘n’ [67]. It is not equal to the 

average of the worst-case and the best-case efficiencies although they 

occasionally match [67]. This case can draw attention to an important 

algorithm with an average case efficiency better than its overly pessimistic 

worst-case efficiency [67]. 

4.5 Asymptotic Notation Functions 

For comparing, ‘rate of growth’ for time and space, functions are used to map the 

input size to run time or space cost. Asymptotic notation can describe functions with 

similar asymptotic behaviour ignoring small input sizes, constants, etc. [34].  

4.5.1 Big-O Notation (Upper Bound of the Growth Rate) 

Big O of a function gives a ‘rate of growth’ of the step count function f(n), in terms of a 

simple function g(n), which is easy to compare [6].  

Given two functions f(n) and g(n), f(n) = O(g(n)) if there exists positive constants c and 

n0 such that |f(n)| <= c|g(n)| for all n, n>=n0. f(n)=O(g(n)) if f(n) grows no faster than 

g(n) [4, 5]. 

Example (1): for an algorithm, time complexity is calculated: T(n) = 5n2 +17 log n 

The constant 5 can be ignored. The ‘low-order’ term (in this example it is 17 log n) 

should also be dropped [47]. 

To mathematically explain the rules about constants and low-order terms, the Big O 

notation was developed. The notation characterizes functions according to their 

growth rates. Different functions with the same growth rate may be represented using 

the same O notation [71]. 
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If a function f(n) can be written as a finite sum of other functions, then the fastest 

growing one determines the order of f(n). Furthermore, if a function is a polynomial in 

‘n’, then as ‘n’ tends to infinity, the lower-order terms of the polynomial can be 

discarded. In other words:  

• If f(x) is a sum of several terms, the one with the largest growth rate is kept, 

and all others omitted. 

• If f(x) is a product of several factors, any constants are omitted. 

Growth Rate Functions 

In respect to time efficiency, below are a few growth rate functions [8]: 

• O(l) - constant time: This means that the algorithm requires the same fixed 

number of steps irrespective of the size of the task. Example: ‘n’ Stack Push and 

Pop operations. 

• O(n) - linear time: This means that the algorithm requires a number of steps 

proportional to the size of the task. Example: search in an unsorted ‘n’ list.  

• O(n2) - quadratic time: The number of operations is proportional to the size of 

the task squared. Example:  selection sort of ‘n’ elements. 

• O(log n) - logarithmic time: Example: binary search in a sorted list of ‘n’ 

elements. 

• O(n log n) – ‘n log n ‘ time: Example: quick sort 

• O(an) (where a > 1) - exponential time: Example: recursive Fibonacci. 

Polynomial growth (linear, quadratic, cubic, etc.) is considered manageable as 

compared to exponential growth [8] and the smaller, the better [90]. If an algorithm 

has its ‘order of growth’ function made of a sum of several terms, then the order of 

growth is determined by the fastest growing term [8]. Taking O(nc) and O(cn), If c > 1 

then O(cn) grows much faster. A superpolynomial function grows faster than nc for any 

c whereas subexponential function grows more slowly than any exponential function 

of the form cn. 
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Instance Characteristic n 
Time Name 1 2 4 8 16 32 Growth 

1 Constant 1 1 1 1 1 1 Slowest 
log n Logarithmic 0 1 2 3 4 5 (Best) 
n Linear 1 2 4 8 16 32  
n log n Long Linear 0 2 8 24 64 160  
n2 Quadratic 1 4 16 64 256 1024  
n3 Cubic 1 8 64 512 4096 32768  
2n Exponential 2 4 16 256 65536 4294967296 Fastest 
n! Factorial 1 2 24 40326 20922789888000 26313x1033 (Worst) 

Table  4.3: Time Growth Classes 

 
Figure  4.4: Time Growth Classes Plot (based on table4.3) 

 
Table  4.4: Execution Times of Different Time Complexity [5] 

The Big-O has its limitations. It is most useful on large problems with very large input 

size. Furthermore, in some algorithms, the omitted constant can have a serious effect 

on the growth rate. For example, algorithm A’s growth rate is Ta(n) = 1000n = O(n) and 
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algorithm B’s growth rate is Tb(n)= n2 = O(n2). According to Big-O, algorithm A is faster 

than B but when n<1000, the omitted constant (1000) slows down A considerably [51]. 

4.5.2 Omega Notation (Lower Bound of the Growth Rate) 

Big Omega notation is used to describe the best case (lower bound) running time for a 

given algorithm. 

Given two functions f(n) and g(n), f(n) = Ω(g(n)) if there exists positive constants c and 

n0 such that |f(n)| >= c|g(n)| for all n, n>=n0. f(n)= Ω (g(n)) if f(n) grows no slower 

than g(n) [4, 5]. 

4.5.3 Theta Notation (Between Lower and Upper Bound) 

Theta notation defines the upper and lower bounds of a function in an exact 

asymptotic behaviour. It is typically used for comparing running times or growth rates 

between two growth functions. 

Given two functions f(n) and g(n), f(n)= Θ(g(n)) if there exists positive constants c1, c2 

and n0 such that c1|g(n)| <= |f(n)| <= c2|g(n)| for all n, n>=n0. f(n)=Θ(g(n)) if f(n) and 

g(n) grow at the same rate [4, 5]. 
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Figure  4.5: Asymptotic Notation Functions [56] 

4.6 The Research Adopted Methodology 

4.6.1 Research Background 

After deciding on the research objectives, a thorough research and literature review 

was conducted on the related areas such as Folksonomies (Tagging Systems), theory of 

computation, Princeton WordNet (PWN), MultiWordNet (MWN), Stemming 

Algorithms, and finally the TE System. 

4.6.2 The Algorithm Efficiency Analysis 

The researcher opted for an analytical approach rather than an empirical one for 

reasons previously mentioned such as: 

• Execution time and memory space can be determined mathematically in an 

independent manner regardless of some factors related to the developments 

environment such as computer specifications, programming language or skills. 

• The algorithm can be tested with any input size. 
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• The algorithm implementation is not necessary. 

For time and space complexity, the rate of growth is measured using asymptotic 

notation functions that can map the input size to run time or space cost. This method 

is used when comparing two algorithms with different asymptotic complexity functions 

to determine the more efficient of the two. To determine the feasibility of the 

algorithm, the Big-O notation is used for characterising functions according to their 

upper bound growth rates.  

4.6.3 The Stemming Component 

Data 

As previously mentioned in chapter 3, the TE system imported its tags sample from 

YouTube to avoid building a tagging system from scratch. The tags sample is stored in 

the database of the TE system ready for the semantic enhancements. 

At the start of developing the stemming component, running the original TE algorithm 

ended in unexpected results. The database was populated with details of each video 

such as title, link, owner, etc but it was missing the most important piece of 

information and that is the video’s tags. After some research into YouTube developers’ 

website, the problem became clear and it is explained in this YouTube 

announcement: http://apiblog.youtube.com/2012/08/video-tags-just-for-

uploaders.html. Basically, prior to 28th of August 2012, YouTube APIs methods used to 

allow developers to retrieve video’s tags via the <media:keywords/> element which 

contain the video's keywords (tags). After this announcement, any API method 

retrieving a video entry will have an empty <media:keywords/> element unless the 

developer is authenticated as the owner of the video. Faced with this drawback, 

YouTube had to be replaced with another source that is able to act as the supplier of 

the tags sample. In general, Flickr was an obvious replacement but it had to be 

checked whether it enables tags to be accessed from the outside. Researching Flickr 

APIs for similar functionalities as the ones used earlier with YouTube was productive 
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and when these APIs were put to the test, they generated the expected result and the 

TE system had its tags sample ready again. Since the contents in Flickr are exclusively 

photos and not videos like in YouTube, the text from here forward will use the word 

photo(s) in any context the previously involved videos although the programme code 

and the database kept the mention of video to avoid any complications or 

unnoticeable errors that can occur during the renaming process thus in the code, the 

word video means actually photo.          

The Selection of the Stemming Algorithm  

To overcome the problem of different lexical forms in Folksonomies (tagging systems), 

a stemming algorithm can be applied thus reducing the lexical forms to only one form 

called ‘root’ or ‘stem’. 

A stemming component is added to the TE system for the same purpose indicated 

above. It will operate in a totally hidden manner (behind the scene) from the user.  

Inside it, the user tag is normalised (i.e. stemmed) meaning it is reversed back to the 

original lexical form (stem) then the TE system will store the stem as a user tag in the 

database of the TE system, so if a photo returns the following tags: ‘abstract’, 

‘abstracted’, ‘abstractedly’, ‘abstraction’, ‘abstracts’ then the stemming component 

will normalise them and produce one word ‘abstract’ and that is a reduction in the 

number of user tags that will be saved in the database of the TE system and used to 

query the semantic and social sources. This step will save on database space and 

effects the algorithm time as discussed later on chapter 6.   

Many stemming algorithms exist and can be used in the tagging system (e.g. Krovetz 

algorithm, Dawson algorithm, Porter algorithm, etc). 

Based on the Literature review conducted on stemming algorithms, the research opted 

for using the English (porter2) stemming algorithm for reasons such as: 

• The availability of the source code: Porter had developed a language called 

Snowball that enables algorithm developers to express their stemming rules in 
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a natural way regardless of the language. The Porter2 stemmer is implemented 

using Snowball in many languages such as English, Italian, French etc. 

• The common language of implementation: a basic demo is available in C or Java 

and this goes in harmony with our development environment which involves 

the usage of Java, Java API for WordNet Searching (JAWS), and Flickr Java API 

(flickrj).  

The timing of the stemming process is very important and can have different 

consequences depending on when it is performed. Stemming can be carried out on 

any term (tag) before one of two main processes [106]: 

• Before term indexing: the advantages here are that term indexing will be 

efficient, the index file will be compressed, and the whole operation will be 

seamless. Furthermore, when it is time to search for a term, it will not cost the 

system resources since the stemming is already done. This approach of 

performing stemming before the indexing has some drawbacks as follows: 

• The original tag will be lost forever because it is not being saved in the 

system’s database. 

•  Some tags will not return any system tags but this will happen for the 

wrong reason. As discussed previously in chapter 2, the Porter 

stemming algorithm is a fast but light stemmer which can occasionally 

generate unreal words as stems. The consequence of this inaccuracy is 

that querying the semantic ontologies PWN, MWN, and the social 

source will yield nothing in most cases. To fix this, the TE system will 

keep hold of the original tag even after the normalisation process. If the 

sources returned system tags then it will be discarded otherwise the 

stem is going to be the one discarded and the sources are searched 

again using the original tag. 

• Before term search: the obvious disadvantage is that it is going to be costly in 

respect to time and resources and the user may experience some wait time. 
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5 Database Design Optimisation and Algorithm 

Complexity Analysis  

5.1 Database Design Optimisation 

5.1.1 Introduction 

The storage requirements for table data are dependent on a few factors. Storage 

engines have different ways for representing data types and storing raw data. 

Compressing table data either for a column or an entire row can complicate the 

calculation of storage requirements for a table or column. Moreover, storage engines 

have various methods for data allocation and storage, according to the method they 

use for handling the corresponding types [122] 

Despite differences in storage layout on disk, the internal MySQL APIs that 

communicate and exchange information about table rows use a consistent data 

structure that applies across all storage engines [107]. 

Other factors such as Character Set and Collation, Data Types, and Indexes selection 

play a significant part in the efficiency of the database. 

5.1.2 The Storage Engine 

In MySQL, storage engines are the components that handle the SQL operations for 

different table types. MySQL offers various storage engines for different use cases. 

There is no restriction on using more than one storage engine throughout the server or 

schema [24].  

For general use cases, InnoDB is the most suited storage engine recommended by 

Oracle.   It has been designed to provide maximum performance when processing 

large data volumes [107]. 
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The InnoDB storage engine maintains its own buffer pool for caching data and indexes 

in main memory. By default, with the innodb_file_per_table setting enabled, 

each new InnoDB table and its associated indexes are stored in a separate file. 

InnoDB tables can handle large quantities of data, even on operating systems where 

file size is limited to 2GB [24].  

As the default engine of MySQL v5.5.5, the InnoDB  engine has many features as listed 

below [24, 30, 107, 122]: 

• Transaction-safe (ACID compliant) because of data protection capabilities such 

as commit, rollback, and crash-recovery. 

• Increased multi-user concurrency and performance attributed to row-level 

locking and Oracle-style consistent non-locking reads. 

• Tables arrange data on disk to optimize queries based on primary keys. 

• Data compression: reduce storage and I/O through the significant table 

compression.  

• Minimized expensive disk I/O by using the memory and the processor resources 

efficiently. 

• More efficient storage for large column values: fully off-page storage of long 

BLOB, TEXT, and VARCHAR columns.  

• Support for FOREIGN KEY referential-integrity constraints which maintain data 

integrity. 

• Fast index creation/deletion without copying the data. 

• Barracuda file format maintains upward and downward compatibility. 

• Performance and scalability enhancements: includes features such as multiple 

background I/O threads, multiple buffer pools, and group commit. 

• Automatic data recover 

One of the important features above is the foreign key referential integrity which is 

about ensuring that the foreign key in a referencing table must always refer to a valid 

row in the referenced table. It keeps the relationship between the two tables 
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synchronized during updates and deletes. The next table lists some specific features of 

the InnoDB  engine. 

 
Table  5.1: InnoDB Storage Engine Features [80] 

Other engines includes: MyISAM, Memory, CSV, Archive, Blackhole, 

Merge, Federated, and Example. The following table compares the main 

features of some of these engines [80]: 
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Table  5.2: Storage Engines Features Summary [80] 

Individual storage engines might impose additional restrictions that limit table column 

count. Examples [122]: 

• InnoDB permits up to 1000 columns.  

• InnoDB restricts row size to something less than half a database page 

(approximately 8000 bytes), not including VARBINARY, VARCHAR, BLOB, or 

TEXT columns. 
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• Different InnoDB storage formats (COMPRESSED, REDUNDANT) use different 

amounts of page header and trailer data, which affects the amount of storage 

available for rows. 

5.1.3 The Character Set 

A character set is a set of symbols and encodings. A collation is a set of rules for 

comparing characters in a character set. Each character set can have one or more 

collations. Encoding is the coded value that is paired with each character inside a 

character set [24]. 

MySQL can store data using a variety of character sets and perform comparisons 

according to a variety of collations for the MyISAM, MEMORY, and InnoDB storage 

engines. The character sets can be specified at any level (server, database, table, and 

column level). Furthermore, a mix of different character sets or collations can exist in 

the same server, database or table [24]. 

MySQL supports 70+ collations for 30+ character sets within groups such as: 

Unicode, West European, Central European, Asian, etc [24].  

Regardless of the platform, program, or language, a Unicode character set assigns 

each character a unique number [112]. It can be implemented by different character 

encodings. UTF-8 encoding is one of the most commonly used. Using this encoding 

means that any ASCII characters will need one byte whereas other characters will 

require up to four bytes [59]. 

The idea of UTF-8 is that various Unicode characters are encoded using byte 

sequences of different lengths [59, 107, 122]: 

• Basic Latin letters, digits, and punctuation signs use one byte. 

• Most European and Middle East script letters fit into a 2-byte sequence: 

extended Latin letters (with tilde, macron, acute, grave and other accents), 

Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others. 
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• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences. 

5.1.4 The Schema 

5.1.4.1 The Data Types 

The TE system uses the database described previously. The schema is simple with 

three tables: videos, tags_detail, and tags_master. There are few foreign keys 

for referential constraint between tables. The tables’ fields are of the data 

type VARCHAR. 

 
Table  5.3: Storage Requirements for String Types [80]  

VARCHAR, VARBINARY, BLOB and TEXT types are data types of variable length. These 

data types determine their storage requirements based on the following factors: 

• The actual length of the column value.  

• The maximum length of the column.  

• The character set of the column since some of these sets contain multi-byte 

characters.  
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A row has a maximum size of 65,535 bytes. This restriction affects the maximum 

amount of bytes that can be saved in a VARCHAR or VARBINARY column (regardless of 

storage engine), which is shared among all columns [122]. For example, in UTF-8 

encoding, characters need a maximum of three bytes per character, so for a CHAR 

(255) CHARACTER SET utf8 column, the server must allocate 255 × 3 = 765 bytes per 

value. Consequently, a table cannot contain more than 65,535 / 765 = 85 such 

columns.  

Storage for variable-length columns includes length bytes, which are assessed against 

the row size. For example, a VARCHAR(255) CHARACTER SET utf8 column takes two 

bytes for storing the length of the value, so each value can take up to 767 bytes.  

5.1.4.2 Indexes 

The job of an index is to find rows with specific column values in a speedy manner. If 

no index exists, MySQL has to search for the target values starting from the first row 

reading through the entire table to find them. The cost of the search will grow as the 

table gets larger. Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and 

FULLTEXT) are stored in B-trees [24].  

Regarding queries on small or large tables, if report queries are processing most or all 

of the rows, then Indexes become less important. 

When a query needs to access most of the rows, reading sequentially is faster than 

working through an index. 

Primary Keys 

The primary key represents column(s) that are essential in vital queries. To speed up 

the execution of queries, MySQL associates an index with the primary key. A primary 

key cannot be NULL. In InnoDB storage engine, the physical organization of data 

inside tables allows ultra-fast lookups and sorts based on the primary key column(s) 

[107]. 
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Foreign Keys 

When a table and query has many columns, it is beneficial to move its less used data to 

tables with fewer columns.  These can then be cross-referenced back to the main table 

using its primary key. Tables with fewer columns are able to fit more rows into each 

data block. 

For fast lookups, each split table can assign a primary key and any column 

combinations can be performed using join queries. 

Indexes 

Mostly, an index is a single column and it copies that column’s values in a B-tree data 

structure for fast lookups. Depending on the storage engine, the maximum number of 

table indexes and their length can vary. In general, all engines support at least 16 table 

indexes with length of at least 256 bytes [24]. 

MySQL offers other keywords to define various indexes such as KEY, which is a 

synonym for INDEX. Also there is UNIQUE which forces all values in the index to be 

distinct. 

5.1.5 Optimisation Procedures 

Many Database management systems have their own recommendation for optimal 

database design and below are some of these general recommendations [24, 107, 

122]: 

• Use the smallest data types possible. 

• If a column can be either strings or numbers, always choose numbers because 

large numeric values occupy less bytes than strings and the tasks of transferring 

or comparing them will also take less memory. 

• Use VARCHAR in place of CHAR when storing variable-length strings or when 

having many NULL values inside columns. Smaller tables have less I/O and can 

fit more effectively in the buffer pool. 
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• When a column is not allowed to have NULL values, state it as NOT NULL at the 

table creation stage. This helps in: selecting the most effective index for a 

query, and reducing the overhead cost of checking if every value is NULL. 

• Avoid using long PRIMARY KEY (either a single or composite) because it 

wastes a lot of disk space since it’s duplicated in each secondary index. 

• Use OPTIMIZE TABLE statement to compact any wasted space when a table 

grows significantly or data reaches a stable size. 

• Use COMPRESSED row format for large or repetitive data tables. Tasks like 

putting data in buffer pool or scanning full table will require less disk I/O.  

• Creating indexes should be very strict for those who will improve query 

performance because indexes slow down the insert and update operations. 

• When searching a table using different columns, it is better to replace them 

with a single composite index where the 1st part of it is the most used column.  

However, if this is the norm, then the 1st part of the index must be the column 

that has the most duplicates to gain better compression of the index. 

• Any query will use one index only, that is why there is no need to have a second 

index in each column. 

• Throughout tables, columns with identical information should be of the same 

data types to speed up joins based on them. 

• Choose simple column names to use across different tables for simplified join 

queries. 

• If a column is included in the WHERE clause, setting up indexes on it can make 

queries faster and for queries referencing different tables and using joins and 

foreign keys this is very important. 

• Reduce the number of full table scans especially if tables are big. 

• Keep the optimizer up to date with table statistics using the ANALYZE TABLE 

statement so that it has the information required for developing an efficient 

execution plan. 
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5.1.6 Discussion 

The Engine 

The TE system requires a simple straight forward database use case, thus the schema 

consists of three tables connected through two one-to-many relations that use foreign 

keys. The InnoDB storage engine was used throughout the schema as it had no special 

requirements, thus it was the obvious choice as a storage engine for the reasons 

mentioned earlier in this chapter such as performance and efficiency with large data 

volumes. Its support for foreign keys and fast index creation and deletion were the 

deciding factors, mainly because other storage engines do not natively support them.  

The Character Set and Collation 

The TE system involves the use of the English and Italian languages. Both languages fall 

into the West European Character Sets. As said previously [119], UTF-8 encoding has a 

variable length. It uses between one to four bytes for the character encoding whereas 

UTF-16 encoding always uses two or more bytes. When characters with low encoding 

space (one byte) dominate, the use of UTF-8 becomes more economical than UTF-

16 which is more suitable if the application is using many foreign interchange 

processes. UTF-8 encoding is the most portable in many applications. Regarding data 

corruption errors, which can occur during transfers between systems, UTF-8 encoding 

is resilient to them and it is better than UTF-16 and UTF-32 in that regard. 

The use of UTF-7 encoding within retrieval systems is not recommended and 

although UTF-7 encoding is very useful as an interchange format, working with it can 

be a slow process and that is why it should not be stored as it is. Instead, it has to be 

converted to UTF-8 on arrival. In conclusion, we found that for all the reasons listed 

above, UTF-8 encoding has become the preferred encoding and the dominant 

standard and hence the character set utf8 (UTF-8 encoding) is chosen for all 

tables. Any characters outside the UTF-8 encoding will be encoded and escaped [14]. 
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The collation was not apparent in the sql script of the TE database but 

utf8_general_ci is faster than utf8_unicode_ci and less accurate. 

Caution is always advised when mixing different character sets and collations at 

column level to avoid problems when performing joins or other cross-column 

operations. 

Data Types 

In TE, the database is initially populated with a sample of records holding information 

on YouTube videos. In this thesis, the source of the sample data had to be changed 

from YouTube to Flickr as explained in section 4.6.3     

The database includes one data type only and that is VARCHAR.  Since most of the 

values saved are strings, it is a logical choice especially when the values are of variable 

lengths.  

The video_id column represents the video number in YouTube which in the YT 

documentation is defined as String but does not disclose its size limit. All the saved 

values of video_id inside the TE database (TE database has +7000 records in the 

videos table) are 10 characters in length. If video_id is defined as UNSIGNED INT, 

it can represent a maximum of 4,294,967,295 (4 bytes) or UNSIGNED BIGINT and 

reach up to 18,446,744,073,709,551,615 (8 bytes). Doing this will entail the parsing of 

video_id from String to int within the Java code or a type mismatch error will 

occur.   

The link and thumb columns save URLs and it is recommended that they be TEXT for 

long URLs otherwise VARCHAR is the most suitable data type. The URLs in the TE 

database are relatively short; hence both the link and thumb columns are VARCHAR.
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Table Column VARCHAR 
Length 

Size 
(Bytes) 

Max 
Length 

Min 
Length 

Avg 
Length 

VARCHAR 
Suggested 

Length 

Size 
(Bytes) 

Size 
Saving% 

videos video_id 50 151 10 6 9.8 15 46 69.54% 

title 400 1202 255 0 23.3 300 902 24.96% 

link 200 602 87 40 51.5 100 302 49.83% 

thumb 200 602 63 56 62.5 100 302 49.83% 

tags_master video_id 50 151 10 6 9.8 15 46 69.54% 

user_tag 250 752 237 1 9.3 250 752 0.00% 

tags_detail user_tag 250 752 237 1 9.3 250 752 0.00% 

system_tag 250 752 237 1 9 250 752 0.00% 

tag_type 50 151 23 13 16.6 23 70 53.64% 

Table  5.4: Database Columns Sizes 

According to the table above, the TE sql script for generating the database tables is 

generous when assigning lengths to the VARCHAR columns. After investigating the 

maximum and minimum values, it became clear that a size reduction is possible to a 

great degree and very beneficial given that the character set used is utf8 which 

requires up to 3bytes/character (the maximum in MySQL) plus one or two length 

bytes. The actual and suggested new sizes are shown in the table above, along with the 

saving percentage. Furthermore, if the column video_id is changed to UNSIGNED 

INT or UNSIGNED BIGINT, the saving here will be 97.4%, 94.7% respectively with the 

added benefit of faster operations such as comparison and transferring. 

Additionally, the link column can be made shorter by 29 characters if the initial fixed 

part (http://www.flickr.com/photos/) gets truncated before being inserted in the 

table. In general, it is a good practice to divide the URL into portions such as hostname 

and protocol and save them in a separate table. 

The tag_type value is chosen from a set of flags to distinguish the source of the 

system tags. Its length is between 13 and 23 characters and therefore there is no need 

to go as far as VARCHAR(50).  
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The Indexes 

The primary keys for the three tables are justified, although it could be argued that 

using the single auto-generated primary key is less complicated than composite 

primary keys in tables: tags_master and tags_detail. The answer is, unless the single 

key is capable of enforcing uniqueness without adding any special constraints on the 

other columns, the composite primary key must be used [54]. 

The simple use case of the TE system highlights clearly the columns that are most 

suited to act as foreign keys between the tables, thereby enforcing referential integrity 

and normalisation. 

In addition to the primary and foreign keys assigned, there is a UNIQUE index on the 

link column. Indexes on URLs are not recommended because the value tends to be 

long and cannot be indexed in full. Instead, an extra column with a hash value should 

be created and indexed. In the schema, the link column is                                                                 

(200) which is within the limits of the index length inside InnoDB engine (255 

characters) and also the URLs are considered short. Thus indexing the link column will 

force values to be distinct although it does not improve any query performance. 

5.2 Time Complexity 

The main target of the performance analysis for the TE system is to estimate the cost 

of enhancing the tags before performing the search on them.  It will also check out 

whether the process is efficient, especially when the experiment showed no significant 

difference between the results retrieved with or without the tag enhancements due to 

several factors [72]. The analysis will measure the time as the number of tags grow. 

Thus, the next paragraph will shed some light on the tags size inside some tagging 

systems. 

In September 2010, Flickr reached 5 billion images with an upload rate of 3,000+ 

images/min. A year later this number increased to 6 billion whereas in YouTube, videos 

are uploaded with a rate of 72 hours of video per minute with more than 200 million 

78 

 



Chapter 5: Database Design Optimisation and Algorithm Complexity Analysis 

content ID videos alone. Flickr allows 75 tags per photo as a maximum limit but on 

average each photo will be annotated using 8.94 tags [70]. On the other hand, every 

YouTube video has a keywords list of 500 bytes in length (including commas) thus tags 

are estimated to reach 167 tags maximum. 

In the population process of the TE system, a set of 169 English and Italian keywords 

are used to retrieve seven videos maximum per each keyword. The search resulted in 

filling the database with 7810 videos. The table below gives essential statistics about 

tags inside the database of the TE system. 

 Min Max Average 

User Tags/Video 1 75 10 

System Tags/ User Tag 1 89 3 

Table  5.5: The TE Database Tags Statistics 

5.2.1 Time Efficiency Analysis of Nonrecursive Algorithms 

The Steps of Time Efficiency Analysis of Nonrecursive Algorithms are as follows [67]: 

1. Decide on the parameter(s) of which their input size is the focus. 

2. Identify the basic operation. 

3. If the basic operation’s execution count depends on the input size plus some 

additional property, investigate the worst-case, average-case, and best-case (if 

needed) efficiencies separately. 

4. Assign a sum to represent the basic operation’s execution count. 

5.  Apply summation formulas and manipulation rules on the count to conclude a 

closed-form formula or its order of growth. 
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Input Size 

Typically, algorithms with large inputs (e.g. more numbers, lengthy strings, bigger 

graphs) have longer runtime. Thus, the algorithm’s efficiency is formulated by using a 

function of ‘n’ (the input size).  

The parameter selected is the one of which the size’s growth rate is the most 

important to the analysis objectives. 

 
Figure  5.1: Typical n in Common Algorithms [23] 

In general, spotting the parameter is a straight forward matter except in certain cases 

such as when the dependency of the candidate parameter is compromised because of 

another parameter. 

The Basic Operation 

It is  the most important operation of the algorithm since it is contributing the most to 

the total running time [67]. Usually it is the most time-consuming operation inside the 

innermost loop. Thus, the algorithm’s time efficiency can be measured by counting the 

number of times the algorithm’s basic operation is executed on inputs of size ’n’ [67]. 

The Count and Rules 

The algorithm analysis is independent of the hardware used to implement or run the 

code. It uses a model machine which specifies a set of rules to determine how and 

what operations are to be counted during the analysis, since there are no standard 

rules. 
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The counting process can follow one of the methods below: 

• Count every program step and calculate their frequency.  This is usually done 

using a tabular form. 

• Counting only the actual number of basic operations. 

• Counting iterations only. 

Although the last two methods are the most common, in some cases they can be 

insufficient and having an exact count of operations is more beneficial. The following 

table outlines an estimated time cost of some operations. It is not accurate but it gives 

an idea on the speed of some of the common operations in relation to each other. 
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 Operation  Time Unit 

Assignment 1 

Arithmetic / Logical 1 

Constructor/ Destructor 1 

Procedure Entry / Exit 1 

Select Condition Worst Branch Timing 

Loop [75] (over the number of times the loop is executed) 

the body time + 

time for the loop check and update operations + 

time for the loop setup 

Function Calls [75] 1 for setup +  

the time for any parameter calculations + 

the execution time of the function body 

Database 

Connecting to Server 3 

Sending Query to server 2 

Parsing Query 2 

Inserting row 1 × size of row 

Inserting indexes 1 × number of indexes 

Closing Server Connection 1 

Table  5.6: Operations Estimated Relative Time Cost 

5.2.2 Discussion 

The analysis determined the complexity of the functions used in the main body and a 

few of these functions have a constant growth rate as shown below: 
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Function Complexity 

getSynonyms (String tag) O(1) 

getRelatedWords (String tag) O(1) 

getSimilarWords (String tag) O(1) 

getParentNoun(String tag) O(1) 

tag_clustering (String tag) O(1) 

Table  5.7: Functions with Constant Growth Rate 

All functions above except tag_clustering have simple statements without 

iterations and conditions, etc.  Regarding tag_clustering, there is an 

implementation limitation in the case of retrieving tag’s clusters. The TE system will 

add the Top-3 tags only from the 1st cluster, if any, as system tags. The outer loop will 

execute to a maximum once while the inner loop will iterate three times maximum and 

then quit. Thus, in the worst case, this function will have a constant time O(1). 

The time complexity of the remaining functions relies on the number of the system 

tags produced from within them. These system tags include synonyms, related, similar, 

hypernyms and translated tags. The notation used in the analysis is as follow: 

Tag 

Type 

User 

Tags 

System 

Tags 

Synonyms Similar Related Translated Hypernyms 

Notation N M Sy S R T H 

Table  5.8: TE Analysis Notations 

Initially, the complexity equations of the functions have distinguished between the 

sources of the system tags inside them. For simplicity purposes and for more 

generalized equations, constants are eliminated and all tag sources are considered 

system tags as shown in the table below: 
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Function Complexity Equation 

Initial Final 

english_synonyms_related_similar (String tag) 3+11Sy+12R+12S M 

english_hypernyms (String tag) 1+11H M 

english_2_italian_translation_related_similar (String tag) 15+11T+11R+11S M 

italian_synonyms_related_similar (String tag) 15+11Sy+11R+11S M 

italian_hypernyms (String tag) 5+11H M 

italian_2_english_translation_related_similar (String tag) 4+4T+11T.Sy+12T.R+12T.S M 

Table  5.9: The Growth Rate of the TE Functions  

The last equation in the above table was generalised to be M2, but because the count 

of the tags: translated (T), synonyms (Sy), and related (R) is a small number compared 

to the similar tags (S), the complexity equation discarded the values of T, Sy, R to 

finally settle only on M. 

Moving to the main body of the algorithm which includes the semantic and social 

components, we can see three main loops. The first loop iterates through the 

keywords to query YouTube and retrieve matching videos. Populating the database of 

the TE system is done through the second loop that iterates through all the retrieved 

videos recording the essential information about each one. The third and innermost 

loop iterates through the user tags of each video within the block headed by: 

For (int j = 0 ; j < keywordStringList.size() ; j++) 

The body of this loop is responsible for the main tasks of the TE system which are 

querying the sources: Princeton WordNet (PWN), MultiWordNet (MWN), and Flickr 

clustering. The code uses the number of user tags associated with each video as a 

counter. This counter is chosen as the input size parameter and will be referred to as N. 

Initially, the complexity equation calculated is O(N + N.M), but looking at the 

statistics in Table 5.5 specifically the Max column, we can assume that in the worst 
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case scenario, the value of N and M are very close.   Thus the complexity equation is 

modified to O(N2)  which is a polynomial (quadratic) time where the  number of 

operations is proportional to the size of the task squared. Visiting Table 4.4 again, we 

relist it focusing only on quadratic time. 

Time for f(N) instructions on a 109 instr/sec computer 

[microsecond(μs) = 10−6 sec, Millisecond(ms) = 10−3 sec] 

N  N2 f(N) = N2 

10 100 0.1 μs 

50 2500 2.5 μs 

75 (Flickr) 5,625 5.625 μs 

100 10,000 10 μs 

167 (YouTube) 27,889 27.889 μs 

1000 1,000,000 1 ms 

10,000 100,000,000 100 ms 

100,000 10,000,000,000 10 sec 

1,000,000 1,000,000,000,000 16.67 min 

Table  5.10: Execution Times of Different Time Complexity Functions 

As mentioned in chapter two, an algorithm with a computation that runs in linear or 

quadratic time is ‘efficient’ [10] and polynomial growth is considered manageable. 

Nonetheless, the code can benefit from more adjustments that can decrease its 

execution time. The code, including the main and the functions, has many SQL select 

and insert statements and some of them are located inside conditions and iterations. 

The code executes each statement one by one which is costly since select and insert 

statements have slow and slower times (respectively) than a normal statement. This 

situation can be optimized by applying a batch execution instead, which can be guided 
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using certain flag variables indicating whether a specific select/insert statement is to 

be executed or not under a certain condition/iteration. 

Another concern is the retrieval maximum limit from the different semantic resources 

(PWN and MWN) which does not exist, whereas it is forced on the retrieval from the 

social resource (Flickr clustering). The following table shows the minimum and 

maximum count for all system tag types. Based on the table information, a user tag 

can yield 157 system tags in worst case scenario. This number is more accurate than 89 

(see Table 5.5) because it accounts for the maximum count in each type, regardless of 

the user tag.   However, the information in Table 5.5 represents the maximum count of 

system tags for each user tag. Retrieving a considerable number of tags related to one 

tag type, such as in the case of SIMILAR tags, is unnecessary and can be limited to a 

reasonable number.  
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Tag Type Max Min 

SIMILAR EN_EN_SIMILAR 79 17 

IT_IT_SIMILAR 

EN_IT_SIMILAR 

IT_EN_SIMILAR 

SYNONYMS EN_EN_SYNONYMS 28 14 

IT_IT_SYNONYMS 

TRANSLATION EN_IT_TRANSLATION 27 4 

IT_EN_TRANSLATION 

HYPERNYM EN_EN_HYPERNYM 12 7 

IT_IT_HYPERNYM 

RELATED EN_EN_RELATED 8 4 

IT_EN_RELATED 

CLUSTERING CLUSTERING_TAGS 3 3 

TOTAL 157 49 

Table  5.11:Totals of System Tags 

Finally, the coder opted for the tagging process to take place when entering a new tag 

instead of doing that ‘on the fly’ when searching for a certain tag. As stated before, 

this made the execution time less critical, but it still needs to be manageable, because 

it is invisible to the user who is not waiting for any response from the program at this 

stage. 
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5.3 Space Complexity 

5.3.1 Java Virtual Machine (JVM) and Data Types 

The Java virtual machine has their data types divided into: 

• Primitive type: variables of the primitive types hold primitive values which are 

the actual data. 

• Reference type: variables of the reference type hold reference values referring 

to dynamically created objects. 

 
Figure  5.2: Java Virtual Machine's Families of Data Types [114] 

The compiler uses int or byte to represent a Boolean where false is represented by 

integer zero and true by any non-zero integer whereas arrays of Boolean are accessed 

as arrays of byte. 

The Reference type can be one of the following: 

• Class type: values are references to class instances. 

• Interface type: values are references to class instances that implement an 

interface. 

• Array type: values are references to arrays. 

• Null: variable does not refer to any object. 
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In Java virtual machine, each data type has a specific range of values (see the table 

below). 

 
Table  5.12: Ranges of the Java Virtual Machine's Data Types [114] 

The JVM specification does not define sizes for their data types. This decision is left to 

the coder for each individual implementation. 

Word is the basic unit of size for data values in JVM. It is large enough to store values 

of byte, short, int, char, float, returnAddress, or reference. Two words 

must be large enough to store values of long or double. 

Based on the above restriction, the coder must choose a word size with at least 32 bits 

but it can be of any other size as long as it delivers an efficient implementation. 

5.3.2 General Formula of Memory Usage 

In JVM (specifically HotSpot), the heap is the memory area used by a Java object for 

dynamic memory allocation. Generally, it consists of [27]: 

1. Object Header: includes a few bytes of ‘housekeeping’ information.  

2. Memory for Primitive Types according to their size.  

3. Memory for Reference Types: 4 bytes each.  

4. Padding: this consists of a few wasted bytes after the object data to make every 

object start at an address that is a convenient multiple of bytes.  This decreases 

the amount of bits needed to represent a pointer to an object.  
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5.3.3 ‘Housekeeping’ Information 

On the heap, instances of an object take up more memory than their actual fields to 

save some ‘housekeeping’ information such as their classes, IDs and status flags 

(reachable, synchronization-locked etc.) In Hotspot, a normal object needs 8 bytes for 

housekeeping info whereas an array requires 12 bytes [27]. 

5.3.4 Memory Usage of Arrays 

Single-Dimension Array 

This type of array is considered as a single object with the usual header of 8 bytes plus 

4 more bytes to accommodate its length. Thus, in total, the array header is 12 bytes 

[26]. Regarding the actual data inside the array, it is calculated by: 

The number of elements X the number of bytes required for one element (based on its 

type). 

For an object reference, one element needs 4 bytes. If the array memory usage 

summation is not a multiple of 8 bytes, then it is rounded up to the next multiple. 

A Boolean array requires one byte per element [26]. 

Memory usage of a two-dimensional array 

In Java, a multidimensional array is a set of nested arrays. Every row of a two-

dimensional array has the overhead of an object [26].  

Multidimensional arrays 

As previously mentioned, each row of the outside array creates an array of references 

to another array holding the actual primitive data or references (if it is an object array) 

[26].  
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5.3.5 Memory usage of Strings 

A Java String is made up of more than a singular object and it contains some extra 

variables as follows [28]: 

• A char array holding the actual characters. 

• An integer offset indicating the string start point. 

• An integer representing the length of the string.  

• An integer for the cached calculation of the hash code.  

According to ‘Hotspot Java 6 VM’, the minimum memory usage of a String is calculated 

using the formula: 8 * (int) ((((no chars) * 2) + 45) / 8) in the condition that it is ‘newly 

created’ string and not created from a substring [28]. 

Example (1): An empty string 

It will need the following: 4 bytes (char array) + 4 bytes*3 (integer fields) + 8 bytes 

(header) = 24 bytes (multiple of 8).  

In addition, the empty ‘char’ array will need a 12 bytes (header) rounded up to 16 

bytes making the total memory allocated for an empty string  40 bytes [28]. 

Example (2): 17 characters string 

Initially we have 4 bytes (char array) + 4 bytes*3 (integer fields) + 8 bytes (header) = 24 

bytes (multiple of 8).  

Then the char array will need: 12 bytes (header) + 17*2 bytes = 46 bytes rounded up to 

48 bytes. 

The total memory usage is 24+48 = 72 bytes [28]. 

5.3.6 Calculating the Space Complexity 

1. Identify the parameter(s) that determine the problem size.  

2. Calculate the space (memory) needed for a particular size.  
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3. Calculate the space (memory) needed for double the earlier size.  

4. Repeat step 3 many times until you reach a relationship between the size of the 

problem and its space and that will give the space complexity [15] 

5.3.7 Discussion 

The parameter that will determine the problem size is the number of user tags per 

video. For each video, the user tags are stored in the parameter 

keywordStringList of type List<String> and thus the main loop in the 

algorithm which performs the necessary steps to produce the different system tags is 

using the parameter keywordStringList.size as its counter N. Most of the 

parameters are declared as public and they are allocated constant space SPACE(1) 

which is not affected by the growth rate of N. The only parameter that is varying in size 

depending on the growth rate of N is keywordStringList with SPACE(N) which is a 

linear space. 
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6 The Stemming Component Embedding 

Prior to embedding the stemming algorithm inside the TE code, we had to address the 

aforesaid YouTube issue in Chapter 4. The database population code segment with its 

YouTube APIs had to be replaced with a new segment providing the same 

functionality. The shift to Flickr involved using flickrj which is a java interface to Flickr 

APIs. The new code segment involved using many Packages, Interfaces, Classes, and 

methods such as: 

Type Name Variable 

Package com.aetrion.flickr - 

Class Flickr flickr 

Method getPhotosInterface - 

Package com.aetrion.flickr.tags - 

Class Tag tag 

Method getValue - 

Package com.aetrion.flickr.photos - 

Class com.aetrion.flickr.photos.Photo photo 

Method getId - 

Method getTitle - 

Method getUrl - 

Method getThumbnailUrl - 

Method getTags - 

Class com.aetrion.flickr.photos.PhotoList photoList 

Method size - 

Method get - 

Class com.aetrion.flickr.photos.PhotosInterface photosInterface 

Method search - 

Method getInfo - 
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Class com.aetrion.flickr.photos.SearchParameters searchParams 

Method setSort - 

Method setText - 

Package java.util - 

Interface Collection<E> tagsList 

Method size - 

Method iterator - 

Interface List<E> keywordStringList 

Method add - 

Class ArrayList<E> - 

Interface Iterator<E> Itea 

Method hasNext - 

Method next - 

Table  6.1: Some used Components from Java and flickrj 

The Porter2 stemming algorithm is encoded in many programming languages by Porter 

himself or by other trusted programmers [98]. In his web site, Porter lists some of 

these encodings that he trusts their credibility. 

The selected Java encoding for the Porter stemming algorithm was developed by 

Martin Porter and the last version was released in 2000. The diagram below displays 

the key steps of the Porter stemming algorithm [3]. 
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Figure  6.1: The Porter Stemming Algorithm Flowchart [3] 
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Listed below, are some terms and notations regarding the stemming algorithm [3]: 

• consonant: in the English alphabet they are B, C, D, F, G, H, J, K, L, M, N, P, Q, R, 

S, T, V, X, Z, and usually W and Y. 

• Vowel: in the English alphabet they are A, E, I, O, U. 

• C: is a consonants list with length greater than or equal to 1. 

• V: is a vowels list with length greater than or equal to 1.  

• m: is the number of repetitions.  

• []: represents the optional presence of the contents inside. 

Based on the previously mentioned notations, the formula [C](VC)m[V] is a 

representation of any word. ‘m’ is called the measure of a word and its value 

ranges from zero upwards.  It decides on the suffix removal [3].  

The formula ‘(condition) S1 -> S2’ is applied for all the rules and it is read as follows:   if 

the remaining letters of suffix S1 will satisfy the condition, replace suffix S1 with suffix 

S2.  

The most important step in the algorithm is step one which handles past participles 

and plurals and because of the complexity of this task, the step has three parts (1a, 1b 

and 1c) in the original definition as follows [3]: 

1. 1a: this part removes  ‘s’ from plurals, for example sses -> ss and recodes. 

2. 1b: this part removes ‘ed’ and ‘ing’ if found and then transforms the remaining 

stem. 

3. 1c: this part simply transforms a terminal ‘y ‘to an’ i' (in the flowchart above it 

is shown as step 2) 

The steps after these become relatively straightforward and have their rules that cope 

with different order classes of suffices. 

A method was added to the TE code to handle the stemming procedure through 

interacting with a package containing classes and methods for implementing the 
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Porter’s stemming algorithm. For every photo entry, each tag is stemmed using the 

new method and the resulting stem will replace the original tag as the user tag that 

will be used to query PWN, MWN, and Flickr clusters. If querying all the external 

sources produces no results then, we must consider the possibility that the new user 

tag is not a real word, due to overstemming errors. 

6.1 Summery 

The chapter discussed how the stemming component is embedded in the TE system by 

including a table of Java and flickrj components which are essential in providing the 

necessary functionality to generate the sample data from Fickr and perform the 

stemming algorithm on the tags. Furthermore, the steps of the porter stemmer are 

explained and illustrated using flowchart. The chapter concluded by describing the 

behaviour of the stemming component inside the TE system.  
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7 The Evaluation 

7.1 Introduction 

In the problem statement, the researcher presented his argument about the need for a 

stemming component in the TE system to lessen the effect of problems such as the 

large size of the index table, and database. 

The effect of adding this component needs to be investigated. Therefore, an 

experiment is designed to study the original TE system (without the stemming 

component) and the new TE system (with the stemming component) in terms of the 

size of the index table and the number of results retrieved from both systems testing 

the claims that stemming reduces the size of the index table and broaden the search to 

include more results. 

The experiment is performed on a data sample imported from flickr containing 7810 

photos using 33760 unique tags but only 8728 tags are generated from the PWN and 

MWN ontologies and these are the tags that will be used in the new TE system and 

stemmed with the stemming component. With that said, the experiment will exclude 

any system tags generated from the clustering component for fairness reason. 

New tables are added to the database design to accommodate the addition of the 

stemming component as follows: 

Table name Role 
tags_stems_master Stores the values of the original user tags and their 

stems 
tags_stems_detail Stores the values of the stems and their generated 

system tags and the type of tag 
search_runs This table is added as a log to the search trails. 

It stores the search keyword and the number of 
results from the original and new TE systems (not 
shown in the DB diagram)  

Table  7.1: List of the new tables in the Database 
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The database design is explained by the next relationship diagram 

 
Figure  7.1: TE Database Diagram 

7.2 The experiment 

7.2.1 Index table 

In the original TE system, any search trail is conducted by comparing the search term 

against the stored system tags as ‘system_tag’ in table ‘tags_detail’. Next, all 

associated user tags ‘user_tag’ which generated the user tags from the semantic and 

clustering components are retrieved from table ‘tags_master’. Finally all distinct videos 

tagged using the collected user tags are retrieved. 

In the new TE system, a similar method is applied except that all user tags are 

subjected to the stemming component to reduce the number of word variants. Thus, 

system tags here are generated from stemmed user tags instead of the original user 

tags. 

The number of system tags in both TE systems determines the size of the index table. 

Furthermore, since system tags are generated from the user tags in the original TE 

system and from stems in the new TE system, then the size of both sources is reflected 

in the size of the index table of both systems. 
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In the original TE system, calculating the number of user tags is straightforward. 

Querying the ‘tags_detail’ table for distinct ‘user_tag’ values resulted in 9633 hits but 

after excluding orphan user tags that didn’t yield any system tags the number was 

reduced to 8728 and this is considered in the experiment as the base. 

In the new TE system, the same approach is used to calculate the number of distinct 

stemmed English/Italian user tags from ‘tags_stems_detail’ table and the result is 4813 

hits reduced to 4478 after eliminating orphan stems. 

 user tags 
in 

Original TE 

stemmed user 
tags 

in 
New TE 

difference ratio 

total 9633 4813 4820  
Total - 

orphans 
8728 

(baseline) 
4478 4250 48.69% 

Table  7.2: User Tags & Stems User Tags Statistics 

From the previous table we can see that the stemming component reduced the 

number of user tags by more than 48%. 

Furthermore, the percentage of orphan entries from the user tags is 9.4% and 7% from 

stems thus both percentages are less than 10%. The following table shows the 

statistics regarding the number of system tags in both systems which is reduced 

significantly after stemming by more than 48% which is near the reduction percentage 

of the user tags confirming the effect of this reduction on the number of generated 

system tags. 

system tags 
in 

Original TE 

system tags 
in 

New TE 

difference ratio 

34537 17761 16776 48.57% 
Table  7.3: System Tags Statistics 

The experiment has proved that the stemming component has reduced the size of the 

index table by more than 48%. 
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7.2.2 The search results 

For the search process, the experiment runs the same sample data of 30 search terms 

on both TE systems and the results from both are counted as listed below: 

no. search term results from original TE 
(A) 

results from new TE 
(B) 

difference 
(B) - (A) 

1 abandon 19 19 0 
2 abstraction 47 47 0 
3 absurd 3 3 0 
4 cake 35 10 -25 
5 capo 39 44 5 
6 care 26 14 -12 
7 case 77 76 -1 
8 cast 7 10 3 
9 cleaned 6 7 1 

10 clothing 32 23 -9 
11 gentle 5 4 -1 
12 instance 38 36 -2 
13 instructor 21 20 -1 
14 integrated 32 3 -29 
15 interview 7 7 0 
16 involvement 17 14 -3 
17 marriage 4 3 -1 
18 measure 28 27 -1 
19 meat 15 13 -2 
20 personnel 37 21 -16 
21 program 25 27 2 
22 publicity 54 57 3 
23 seeker 4 4 0 
24 selection 20 7 -13 
25 table 40 22 -18 
26 tail 8 10 2 
27 workplace 80 83 3 
28 world 94 105 11 

29 yellowness 64 64 0 
30 yield 19 22 3 

Table  7.4: Search Results Statistics from both TE Systems 
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 new TE results 

> 

original TE results 

new TE results 

= 

original TE results 

new TE results 

< 

original TE results 

count 9 6 15 

percentage 30% 20% 50% 

Table  7.5: Percentage of Search Results 

From the above table, it is clear that in half of the search trails the original TE retrieved 

more photos and therefore, the stemming did not broaden the search results. This fact 

is different from the claim and we had to take a closer examination at the search 

process to invistigate. The search query had been broken down to sub queries to 

identify the tags used in them as parameters.  A few points were noted and can explain 

the confusion in table 7.5: 

1. Stemming errors: stemming some user tags produced overstemmed or 

understemmed words and sometimes these words cannot produce system tags 

from PWN and MWN ontologies because they are distorted to even be real 

English words. Searching for a term means looking up the search term in the 

‘system_tag’ field in the ‘tags_detail’ table in the old TE system and this will 

select its associated user tags whereas; it means looking up the same search 

term in the ‘system_tag’ field in the ‘tags_stems_detail’ table in the new TE 

system and this will select its associated stems and sometimes not all retrieved 

user tags from ‘tags_detail’ has their corresponding stems in the retrieved 

stems from ‘tags_stems_detail’ table. For example, the search term ‘cake’ has 

associated user tags ‘cookie’ , ‘cookies’, ‘cupcake’, ‘cupcakes’, and ‘pancake’ 

that do not have their stems in the retrieved stems from ‘tags_stems_detail’. 

Stemming ‘cookie’ will result in ‘cooki’ which is not a real English word thus it 

will generate no system tags to be saved in the ‘tags_stems_detail’. 
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Search 
term 

Associated 
User tags 

Associated 
Stems 

results from 
original TE 

(A) 

results from 
new TE 

(B) 

(B) – (A) 

table Booth Booth 40 22 -18 

Counters Counter 

Desk Desk 

Mesa Mesa 

Table - 

cake Baba Baba 35 10 -25 

Cake Cake 

Cookie - 

Cookies - 

Cupcake - 

Cupcakes - 

Gingerbread Gingerbread 

Pancake  -  

Table  7.6: Examples of Stemming Errors 

2. The quality of user tags: the photos in the data sample were tagged by users 

and these user tags are saved in the ‘user_tag’ field in both the ‘tags_master’, 

‘tags_stems_master’ tables. Some of these tags are not real English words even 

before stemming them. For example a photo is tagged using the word ‘mens’ 

which is not an English word. 

3. The language of the sample data: except for one tag, all user tags are English 

and as mentioned in the literature review, IR researchers had this reasonable 

assumption that for languages that are more highly than English, stemming will 

have greater improvements [38]. 

From the above table, every search that compared the search term against correctly 

stemmed user tags (avoiding points 1 and 2) yielded more results than what is 

retrieved by comparing the search term against the original user tags. Thus, using 
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additional tools to check the correctness of the stems will overcome point1. For 

example, we can embed a Lemmatization analyzer to validate the generated stem. 

Regarding point2, a dictionary of the language used will decide if a user tag is a valid 

word or not. 

Finally, the last point takes the discussion back to the multilingual aspect of the TE 

system which is implemented to certain degree by supporting the use of Italian words 

which use MWN ontology and the Italian porter stemmer. The addition of more 

complex languages to the TE system can make the stemming more beneficial.  
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8 Conclusion and Future Work  

8.1 Research Overview 

The topic of tagging systems is a very active research area and many studies had 

presented various improvements to the existing architecture of the tagging system. 

Despite the disadvantages of folksonomies, users are willing to overlook lack of 

semantic meaning, ambiguity, inconsistency…etc (see chapter 2) in order to take 

advantage of the simplicity and freedom of folksonomies. The advances in the fields of 

semantic web and social web had a huge impact on the research of folksonomies. The 

thesis conducted a comprehensive literature review on tagging systems including the 

history, the reasons behind their popularity, and the drawbacks. Furthermore, the 

literature review covered the subjects of Princeton WordNet (PWN) and Multi 

WordNet (MWN) ontologies.  

The TE system is the result of research targeting certain problems in tagging systems. It 

includes two components, a semantic component and a clustering component to 

address the drawbacks of multilingualism and a lack of semantic and shorthand writing 

(which is very common in the social web). The TE system is a partial implementation of 

the proposed architecture presented in [72].  

The current research is proposing the embedding of a new component to the TE 

system, suggested in the original architecture illustrated in Figure 3.1, to the TE 

system. In order to achieve the proposed objective, the current research had to 

perform the following tasks: 

• The TE system had to be explored thoroughly and then summarised in 

chapter3. 

• The efficiency of the TE algorithm had to be determined in order to decide on 

the practicality and feasibility of the system before investing time and effort in 

adding new features to a system that cannot be applied in the real world. 
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Moreover, the research also involves the database of the TE system. Many design 

factors in the database architecture have been critically examined to determine if they 

are set for optimal performance. The examination performed has been mostly guided 

by the manual provided by MySQL and all findings were presented in chapter 5, along 

with the algorithm complexity analysis. 

Based on these findings, the research went ahead and proposed embedding a 

stemming component to the TE system for normalisation purpose and for reducing the 

index table and broadening the search results. The stemming component used the 

Java encoding of the Porter stemming algorithm. This selection was made after looking 

into the background of stemming algorithms, their techniques, their types, and the 

pros and cons of some of the popular stemming algorithms. 

In the sample tagging system, user tags are subjected to normalisation using the 

stemming component, which is embedded inside the original TE code using a method 

and a package. The generated stem is saved as the new user tag replacing the original 

user tag and then it is used to query the semantic and social sources instead of the 

original user tag. 

An experiment is designed to measure the effect of stemming on the size of the index 

table and the scope of the search results by running two versions of the TE systems 

one without the stemming component and the other one with it using the same search 

dataset and the findings section below explain the outcomes of the experiment. 

8.2 Findings 

Q1: What are the effects on performance of embedding the stemming component to 

the TE system? 

Stemming can offer a solution for the problem of word’s different lexical forms which 

is common in tagging systems in addition to reducing the size of the index table and 

broadening the search results. 
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In the TE system, the time complexity is dependent on the number of user tags ‘N’ 

which is used as a counter for the inner most iteration with the main body of the code 

thus the smaller this number, the better. Therefore, exposing the user tags to the 

stemmer before querying any of the semantic or social sources will get rid of some of 

them and that will reduce the value of ‘N’ and thus improving the time. 

After the normalisation of user tags, there was a drop in the number of retrieved 

system tags and by looking at the run listing we found that in some instances, the 

targeted sources were queried using unreal words thus no results could be retrieved. 

This situation is caused by overstemming which is common when using light stemming 

algorithms such as the Porter2 stemmer. To fix this, the TE system can use a heavier 

stemming algorithm or pre-stemmer but as explained before, the Porter2 stemmer 

was selected because it is fast and language independent and this is excellent for what 

the TE system needs. Another suggesting is the addition of lemmatization analyzer 

and/or vocabulary of the language used which will indicate the valid words prior to 

stemming and then the analyzer will validate the correctness of the stem prior to 

querying the semantic and clustering components. 

The experiment indicates that the stemming component reduced the number of user 

tags by more than 48%. Furthermore, a similar reduction percentage is noted 

regarding the number of system tags in both systems which represent the index table. 

As part of the experiment, search trails were performed on the old TE and new TE 

using 30 terms and the retrieved results are recorded for comparison. At first, it looked 

like the new TE with the stemming component retrieved fewer results in almost half 

the trails with 30% of the trials having the same number of results from both systems. 

Examining the search queries showed that there is an explanation to this.  

Overstemming or overstemming user tags cannot produce system tags from PWN and 

MWN ontologies because they are distorted to even be real English words. Another 

factor is the quality of user tags. If they are they invalid words in the language used 

then they will not generate valid stems. Moreover, the language used might have 
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played a role in the statistics above since some researchers point that simple 

morphological languages like English does not benefit from stemming as other 

complex languages. 

Incorporating other tools can be helpful in overcoming the points mentioned here such 

as the use of vocabulary, analyzer, and other languages as discussed in the evaluation 

chapter. 

Q2: What is the time complexity of the TE algorithm? 

The time complexity analysis conducted shows that the TE system has a time growth 

rate of O(N2)  which is a polynomial (quadratic) time.  As mentioned previously, in the 

literature review in chapter 2, an algorithm with a computation that runs in linear or 

quadratic time is considered to be ‘efficient’ and polynomial growth is considered 

manageable. The execution time can make use of some modifications to reduce it such 

as: 

• SQL patch execution: the code contains many SELECT and INSERT SQL 

statements and most of them are located inside conditions and iterations and, 

as mentioned in chapter 5, executing these statements one by one is time 

costly especially in the case of SELECT and INSERT statements. Patch execution 

can perform instead, guided by certain flag variables to indicate whether a 

specific SELECT/INSERT statement is to be executed or not under a certain 

condition/iteration. 

• Limit the input from the semantic resources: after running the TE code and 

looking at the database, we found a user tag that generated 157 system tags 

mainly with similarity relation. This considerable number of system tags has its 

cost on the database storage, the time needed to query the semantic 

resources, and the time needed to perform the search. Enforcing a limit on the 

semantic retrieval input will be beneficial. 

Q3: What is the space complexity of the TE algorithm? 
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The problem size is determined by the number of user tags per photo. Every photo has 

its user tags stored inside the parameter keywordStringList of type List<String> and 

thus keywordStringList.size is used as a counter (N) in the main loop of the algorithm. 

The only parameter that is varying in size according to the growth rate of N is 

keywordStringList with SPACE(N) which is a linear space. The rest of the parameters 

are mainly declared as public and are allocated a constant space SPACE(1). 

Q4: Is the database design optimised for the TE ER Model? 

The selection of InnoDB storage engine is fit for the requirements of the TE system 

especially for its support for foreign keys and fast index creation/deletion. 

Data types can be optimised to reduce the database size as mentioned in chapter 5. 

Some database columns may need to change their data type while others may only 

adjust their size. Some database columns can express their contents in a different 

manner to reduce the database size too as in the columns link and thumb from the 

videos table. The database schema is very basic, thus the columns needed to be 

selected as indexes were obvious, so the appointed indexes are simply justified. 

8.3 Success criteria revisited 

In the evaluation chapter, we conducted an experiment to gather certain information 

to answer our main research question. The outcomes of the experiment indicated that 

stemming reduces the size of the index table and increased the number of results 

retrieved on the condition of working with valid user tags and valid stems. 

8.4 Contributions 

• The TE system is re-implemented on Flickr instead of YouTube.  This has the 

advantage of overcoming the language barrier when using more than one 

language to generate system tags since photos are expressed visually and the 

user does not need to have prior knowledge of any of the supported languages. 
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• User tags are normalised before the querying of the semantic resources 

Princeton WordNet (PWN) and MultiWordNet (MWN). This is accomplished by 

embedding a stemming component which is based on the Java encoding of the 

Porter’s 2 stemmer. This component provides a solution for the problem of 

different lexical forms which can be found in many tagging systems. 

Furthermore, it reduces the size of the index table and increases the retrieved 

results (on the condition of using valid user tags and valid stems). The decrease 

in the index table means that the search process will compare the search 

keyword against less system tags and this speed up the search. In addition, the 

TE system in particular will benefit from the stemming component because of 

its method of generating extra tags to enhance the semantic of the original 

user tag. Using the user tags from our sample database, we can see that a user 

tag can generate up to 157 system tags and there is no limit on this number 

getting larger with a semantically rich user tag. Thus, having variants of this 

user tag is a serious problem that can be easily avoided by mapping all variants 

to their stem and only generate system tags based on it. 

• The old TE system is using the WordNet and MultiWordNet ontologies to 

provide semantic to the user tags in English and Italian only. The embedded 

stemmer follows on that and it handles English and Italian words.  

The new TE system can be generalized across many languages by incorporating more 

languages from MultiWordNet or adding other multilingual ontologies. A list of 

ontologies is available from the Global WordNet Association web site [111]. The 

stemming component can also use stemmers in other languages. The Snowball 

framework for the porter stemmer offers the algorithm encoding for the stemmer in 

many languages like French, Spanish, Portuguese, German, Dutch, Swedish …etc [97]. 

Other than the porter stemmer, there are many stemming algorithms in Non-English 

languages that can be used but some might be difficult to encode. Enriching the TE 

system with more languages makes the search boarder and this is useful in tagging 

system based on photo content where language barrier does not matter. 
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The researcher claims that the proposed new TE with the stemming component has a 

balance to a certain degree between the storage needed for the generated system 

tags and the storage saved by mapping variants to one stem. This means that TE can 

cover more semantically related results with less concern about the storage overhead. 

This model can be used in many applications such as machine translation, document 

summarization, text classification, e-mail filtering, web browsing, and information 

extraction. 

8.5 Limitations and Future work 

The research can be further advanced by exploring the following areas: 

• Investigating the effect of adding more tags from different sources and looking 

at the time needed to perform the search process. This will establish the trade-

offs between either having a more versatile search result or performing a faster 

search. 

• Examining the quality of the retrieval results by measuring the precision, and 

recall rate. 
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