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Abstract

Operational risk refers to deficiencies in processes, systems, people or external events, which may
generate losses for an organization. The Basel Committee on Banking Supervision has defined different
possibilities for the measurement of operational risk, although financial institutions are allowed to
develop their own models to quantify operational risk. The advanced measurement approach, which is
a risk-sensitive method for measuring operational risk, is the financial institutions preferred approach,
among the available ones, in the expectation of having to hold less regulatory capital for covering
operational risk with this approach than with alternative approaches. The advanced measurement
approach includes the loss distribution approach as one way to assess operational risk. The loss
distribution approach models loss distributions for business-line-risk combinations, with the regulatory
capital being calculated as the 99,9% operational value at risk, a percentile of the distribution for the
next year annual loss. One of the most important issues when estimating operational value at risk
is related to the structure (type of distribution) and shape (long tail) of the loss distribution. The
estimation of the loss distribution, in many cases, does not allow to integrate risk management and
the evolution of risk; consequently, the assessment of the effects of risk impact management on loss
distribution can take a long time. For this reason, this paper proposes a flexible integrated inverse
adaptive fuzzy inference model, which is characterized by a Monte-Carlo behavior, that integrates
the estimation of loss distribution and different risk profiles. This new model allows to see how the
management of risk of an organization can evolve over time and it effects on the loss distribution
used to estimate the operational value at risk. The experimental study results, reported in this paper,
show the flexibility of the model in identifying (1) the structure and shape of the fuzzy input sets that
represent the frequency and severity of risk; and (2) the risk profile of an organization. Therefore, the
proposed model allows organizations or financial entities to assess the evolution of their risk impact
management and its effect on loss distribution and operational value at risk in real time.

Keywords: Monte-Carlo sampling, Integrated adaptive neural fuzzy system, Loss Distribution
Approach, Operational Value at Risk, Risk profile, Basel Committee on Banking Supervision

1. Introduction

All organizations face operational risk, since this type of risk refers to the possibility of incurring
losses due internal events such as deficiencies, flaws/inadequacies in processes, systems or people or
due to external events (Bank for International Settlements, 2016). This means that no operation of an
organization is exempt from possible losses. However, for managers and stakeholders, it is important
to know when the magnitude of the losses becomes significant for an organization. Only when the
magnitude of an operational risk is comprehended, it is possible to prioritize different operational
risks.
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Organizations need to manage operational risk to avoid or to mitigate its consequences. The man-
agement process includes the measurement of operational risk, which should lead to an understanding
of the magnitude of this risk. The Basel Committee on Banking Supervision (BCBS) defined dif-
ferent possibilities for the measurement of operational risk. These definitions treat operational risk
measurement from a regulator’s perspective. Nevertheless, in addition to complying with the regula-
tor’s requirements, financial institutions have also to manage operational risk according to their risk
appetite and tolerance.

One issue when measuring operational risk is that operational risk data is not that frequent when
compared with other types of risk. Moreover, , according to (Reveiz and León, 2009), the operational
risk sources and exposures are more diverse, complex and context-dependent than those typical of
other risks, in particular market and credit risk. That is one reason why supervisors require that
operational risk measurement includes also qualitative methods, such as scenario analysis, Risk and
Control Self Assessments (RCSA) or Key Risk Indicators (Girling, 2013).

The Value at Risk due to operational risk or operational value at risk (OpVaR) is interpreted as
the maximum loss that can be expected, given a certain confidence level (α), within a certain period
of time. The Loss Distribution Approach (LDA), as defined by Basel II, requires that a financial
institution registers continuously all operational risk events and associated losses that occurred in a
particular business line and related to a particular risk type, like fraud for example (Mora Valencia,
2010; El Arif and Hinti, 2014; ISO, 2015), to construct an empirical loss distribution (LD), which is
subsequently used to estimate the OpVaR. We observe the followoing four development trends in the
field of OpVaR that focus on estimating the LD using different methods or computational tools.

• Bayesian risk models to identify the causes, the influence and the relations between a set of
factors that define the risk exposure of an organization or financial institution (Lee et al., 2009;
Andersen et al., 2012; Figini et al., 2015; Barua et al., 2016).

• Vector models that adapt and learn from operational risk data. These models allow to iden-
tify factors, parameters and variables that are relevant to model operational risk. Within this
research area, it is worth mentioning support vector machines (SVMs) that integrate various
classifiers (Twala, 2010), use multiple agent systems for learning (Yu et al., 2010), use exper-
imental designs for selecting optimal weights (Yu et al., 2011), or apply Bayesian concepts to
identify the causes and influence between risk factors (Feki et al., 2012; Yu, 2014).

• Models based on the principles of modeling and simulation of operational risk. We find models
that allow to identify qualitatively the variables and parameters that can be used to model
operational risk and estimate the OpVaR through the use of ontologies (Ye et al., 2011) or
by using data mining techniques (Koyuncugil and Ozgulbas, 2012); autoregressive models for
making predictions, based on the evolution of the data, to estimate the OpVaR for both short
and medium time predictions (Hernández and Opsina, 2010; Lin and Ko, 2009; Pinto et al.,
2011), as well as models that use multivariate distributions based on copulas to obtain the LD
(Lopera et al., 2009; Mora Valencia, 2010; Dorogovs et al., 2013; Koliali, 2016).

• Risk models that apply the principles of intelligent computational systems. Operational risk
factors, such as those related to fraud, are complex and the data is often of a qualitative nature.
Among these models, fuzzy systems stand out as they have demonstrated their effectiveness
assessing risk in areas such like aviation or nutritional security (Hadjimichael, 2009). Also, we
can find models that estimate risk based on fuzzy neural networks that use different learning
schemes (Khashman, 2010; Golmohammadi and Pajoutan, 2011) or linguistic variables (Deng
et al., 2011; Mokhtari et al., 2012; Cooper et al., 2014; Mitra et al., 2016).

This paper contributes to the above fourth research area. With regard to measuring operational
risk, we identify two ways in literature to approach this task: (1) modelling operational risk as a
classification problem, e.g. by using Key Risk Indicators (Reveiz and León, 2009); (2) measuring
operational risk in terms of the percentile of the loss distribution (OpVaR) following Basel II. Our
work follows this second approach and proposed model’s benefits include (i) the possibility of working
with qualitative risk data and (ii) the connection of risk measurement (OpVaR) with risk management,
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based on the risk management matrices. Thus, this paper makes a contribution that goes beyond the
mere compliance with standards like Basel II by exploring new ways for operational risk management
with the proposal of an Integrated Inverse Adaptive Neural Fuzzy System with Monte-Carlo sampling
(IIANFSM) method that identifies the behavior and evolution of operational risk in an organization.
The flexible structure of the proposed IIANFISM method can be categorized by the implementation
of the following three sub-systems:

• An Integrated Inverse Adaptive Neural Unbalanced Fuzzy System model (IIANUFSm) that
identifies the structure and shape of the fuzzy input sets used to represent the frequency and
severity of operational risk. Frequency refers to the number of times a risk event has occurred
in a period of time, while severity refers to the impact that a particular risk event generated.

• An Integrated Inverse Adaptive Neural Balanced Fuzzy System model (IIANBFSm) to identify
the Inherited Risk Matrices (IRMs) that show the risk profile of an organization.

• An Integrated Inverse Adaptive Neural Sampling Fuzzy System model (IIANSFSm) that iden-
tifies the evolution of a risk profile, using a Monte-Carlo sampling method for the fuzzy input
sets and different Risk Impact Management Matrices (RIMMs) representing a sequence of risk
impact, to show the evolution of risk impact management in an organization.

To configure the models, at the beginning (stage zero or start) a loss distribution (LD MC) of reference
is estimated. This is done according to the input variables of frequency and severity of operational
risk and in compliance with Basel II definitions for AMA models (Bank for International Settlements,
2010). In a next stage (first stage), the model uses the LD MC as a reference for the learning process.
This is done in order to setup the models structure applying different RIMMs. In a second stage,
the assessment of the evolution of risk impact management is carried out by the model. This is done
according to the risk profile of the organization and by using Monte-Carlo sampling on the fuzzy input
sets and different RIMMs.

Experimental results met expectations as the model was able to identify the risk profile of an
organization, integrating three different models in one structure. The model IIANUFSm shows the
structure and shape of the fuzzy input sets according to the RIMMs that define the sequence of
risk. In the same way, the IRMs obtained by the model IIANBFSm represents the risk profile of
an organization. After the learning process and using a neutral RIMM, the results obtained for the
third model IIANSFSm revealed that the LDs evolve towards lower values of OpVaR in absence of a
learning process due to a better risk impact management in an organization, preserving at all times
the structure and shape of the LD distribution. These findings make the model ideal to assess the
OpVaR in real time and also its evolution and risk impact management in an organization over time.

In Section 2 the conceptual and theoretical background for modelling the variables of frequency and
severity of operational risk, and the estimation of LD by using the Monte-Carlo sampling method will
be described. Additionally, the foundation for the estimation of OpV aRα will be explained. Section
3 presents the IIANFSM method and the behavior with respect to the estimation of the LD. Section
4 reports the experimental results regarding the behavior of the model in terms of the evolution of an
operational risk profile. Finally, our main conclusions are drawn in Section 5.

2. Theory

2.1. Operational Risk
The measurement of operational risk was included into the capital adequacy framework, known

as Basel II, in 2004, as losses due to cases like Barings Bank and others made it necessary to include
operational risk management in the regulation. Accordingly, operational risk has been defined by the
Basel Committee on Banking Supervision (BCBS–Basel II) as follows:

“the risk of loss resulting from inadequate or failed internal processes, people and systems
or from external events. This definition includes legal risk, but excludes strategic and
reputational risk” (Basel Committee on Banking Supervision, 2006, page 144).
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Examples complying with this definition include fraud, failure of information systems or processes,
external events like earthquakes, etc. Generally, these forms of operational risk are measured per
business line and in an aggregated way for the entire business. Risk measured without applying risk
impact management measures, i.e. without control process, is known as inherent risk, whereas the
remaining risk, after applying risk impact management, i.e. with control process, is known as residual
risk.

The variables that allow the characterization of a risk event are (Otero and Veneiro, 2009; Mora Va-
lencia, 2010; El Arif and Hinti, 2014):

• Frequency: Number of times a risk event occurs in a period of time (hour, day, week, month,
year).

• Severity: Amount of loss, expressed in a currency and in a period of time (hour, day, week,
month, year), caused by a risk event.

In general, in risk measurement, it is assumed that frequency and severity are independent from
each other. Thus, combining a frequency distribution with a severity distribution would lead to an loss
distribution (LD) for a particular risk. Due to this independence assumption, neither events with a
higher frequency of occurrence nor events with a higher severity pose higher risk. Only the combination
of frequency and severity defines the magnitude of risk. Commonly, frequency is modeled using
discrete distributions: Poisson or Binomial; while severity is modeled using continuous distributions:
Lognormal, Weibull or Generalized Pareto (Otero and Veneiro, 2009; Mora Valencia, 2010; Bank for
International Settlements, 2010).

With regard to the losses due to operational risk, these can be of one of the following categories
(Fig. 1):

• Expected losses (ELs), which are normally of high frequency and low severity.

• Unexpected losses (ULs), which correspond to events with lower frequent but higher severity
than ELs.

• Stress losses (SLs), which are rare and are even less frequent than ULs but with even higher
severity. Accordingly, for an organization SLs represent ‘extreme losses’ that need “to be ad-
dressed by suitable measures (disaster and crisis management) and, if appropriate, covered by
insurance contracts” (Austrian OeNB and FMA, 2006).

Financial institutions have to internalize the costs of their risk-related behaviors. That is why
they have to hold regulatory capital for operational risk. Generally, this capital is determined by the
operational value at risk (OpVaR).

2.2. Regulatory Capital for Operational Risk
In general, three different methods are available to determine the value at risk and, eventually, the

regulatory capital for operational risk according to Basel II (Otero and Veneiro, 2009):
1. Basic Indicator Approach (BIA) to estimate the value at risk (OpV aRα) applying a rate of 15%

to the average of gross financial and non-financial income of a financial institution during the
three previous years.

2. Standardised Approach (SA) divides the operations of a financial entity in eight business lines
(Corporate Finance, Trading & Sales, Retail, Commercial, Payment & Settlement, Agency Ser-
vices, Asset Management, Retail Brokerage). Each line has a beta factor associated that varies
between 12% and 15%, calculated with regard to the income generated by the line. The beta
factor represents a risk weight for determining OpVaR.

3. Advanced Measurement Approach (AMA) allows banks to develop their own operational risk
models to quantify OpVaR. Although regulators do not define a particular modeling technique,
one common aim of AMA models is to determine the Aggregate LD (ALD) using the distributions
of frequency and severity of risk events at a certain confidence level and time horizon. The
application of these models in organizations and financial entities usually requires the approval
of the government or financial supervisor of a country.
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Figure 1: General structure of the loss distribution – LD (G(x))

2.3. Aggregated Loss Distribution (ALD)
The ALD collects historic losses by using a LD matrix (LDM), for which the BCBS–Basel II estab-

lished the following eight (8) banking business line: corporate finance, trading & sales; retail banking;
commercial banking; payment & settlement; agency services; asset management; retail brokerage; and
unallocated. Each business line has associated seven (7) risk event types: internal fraud; external
fraud; labor relations; clients, products & business practices; damage to physical assets; business dis-
ruption and system failures; and execution, delivery & process management. Consequently, for finance
institutions, the LDM contains 56 cells corresponding to the 8 business lines and 7 event types and
the operational loss will be

L=
56∑
k=1

Sk

where Sk is the sum of losses of the k-th cell of the LDM. The LD approach is a method to model
the random loss Sk of a particular cell, and it assumes that Sk is the random sum of homogeneous
individual losses. The loss can be written as (the subindex k is omitted to simplify) (Mora Valencia,
2010; Bank for International Settlements, 2011):

S =
N(t)∑
n=1

Xn

where N(t) is the random number of individual losses for the period [0, t] and Xn is the n-th individual
loss. The LD approach is based on the following assumptions (HSBC, 2007; Mora Valencia, 2010):

• N(t): Random variable that indicates the number of events (frequency) that occur in a period
of time (hour, day, week, month, year). It follows the loss frequency distribution P and the
probability that the number of loss events is equal to n is denoted by p(n).

• X : Random variable that indicates the quantity of losses (severity) caused by risk event in a
period of time (hour, day, week, month, year). The individual losses Xn are independent and
identically distributed with loss severity distribution F .

• The number of events is independent from the amount of loss events.
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Once the probability distributions P and F are chosen, the cumulative distribution function of S,
G, can be obtained as:

G(x) =
{∑∞

n=1 p(n) ·Fn∗ (x) x > 0∑∞
n=1 p(n) x= 0

(1)

where Fn∗ is the n-fold convolution of F with itself:

Fn∗ (x) = Pr

[
n∑
i=1

Xi ≤ x
]

To obtain the G(x) function the Panjer Algorithm or Monte-Carlo Simulation is used. In this
context, the BCBS–Basel II recommends using a database with 3 to 5 years of operational loss data.
However, in comparison with market risk, banks in general have only few operational risk data, so
it is also important to use “scenarios” of risk for frequency and severity. This recommendation is
made with the possibility to incorporate new real data of risk into the model over time (Bank for
International Settlements, 2011).

Additionally and with regard to the loss distribution Otero and Veneiro (2009), referencing the
work of Gnedenko (1943), reveal that LDs converge to a Generalized Pareto Distribution, when the
number of data increases or the tail of the distribution becomes thinner. Bolancé et al. (2012) also
discuss loss distribution modeling and new and more advanced parametric distributions for operational
risk, like the the alpha-stable distribution and the g-and-h distribution. However, these authors also
report about some flaws of these distributions and ground their work on the generalized Champernowne
distribution (GCD), reasoning that GCD, with respect to the tail, converges faster to the “heavytailed
Pareto distribution” than the g-and-h distribution.

2.4. Operational Value at Risk (OpV aRα)
The OpV aRα is the measure of operational risk at the confidence level of α, i.e. the level of losses

that is only exceeded with a probability of 1−α in G(x) (Fig. 1). The BCBS–Basel II recommends a
value of α= 0.001. Thus, OpV aRα is a statistical risk measure that aims to respond to the question:
How much can we expect to lose with a certain probability over a certain period of time? Therefore,
OpV aRα is interpreted as the maximum loss that can be expected given a confidence level α and a
time horizon (1 year). The term “maximum” has to be interpreted with caution, as losses beyond the
OpVaR are possible although not very likely to happen.

Given a LD as the one represented in Fig. 1, the operational risk in the j-th event type for the
i-th business line at confidence level of α, OpV aR (i, j,α), is defined as follows (Jobst, 2007):

OpV aR (i, j,α) = EL(i, j) +UL(i, j,α) (2)

where i is the line of business (i = 1,2, . . . .,NBL); j is the type of risk event (j = 1,2, . . . ..,NER);
NBL is the number of business lines; NER is the umber of risk events; EL(i, j) is the expected losses,
i.e. the mean of the LDA distribution; UL(i, j,α) is the unexpected losses at a confidence level of α.

The OpV aRα aggregates the operational risk for the business lines and the operational risk events:

OpV aRα =
NBL∑
i=1

NER∑
j=1

OpV aR (i, j,α).

There exist three main methodologies to estimate the OpV aRα: the historical methodology (sim-
ulating methodology), the parametric methodology, and the Monte-Carlo methodology (Otero and
Veneiro, 2009; Goverment of Canada, 2011).

2.5. Recent developments with regard to operational risk measurement
At the end of 2014, BCBS stated that “the existing set of simple approaches for operational risk

– the Basic Indicator Approach (BIA) and the Standardized Approach (TSA), including its variant
the Alternative Standardized Approach (ASA) – do not correctly estimate the operational risk cap-
ital requirements of a wide spectrum of banks” (Bank for International Settlements, 2016). Thus,
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practitioners and researchers have shown an increased interest in creating AMA and LDA models for
operational risk measurement. In March 2016, BCBS communicated that the “Committee’s review
of banks’ operational risk modeling practices and capital outcomes revealed that the Advanced Mea-
surement Approach’s (AMA) inherent complexity, and the lack of comparability arising from a wide
range of internal modeling practices, have exacerbated variability in risk-weighted asset calculations,
and eroded confidence in risk-weighted capital ratios” (Bank for International Settlements, 2016). Ac-
cordingly, BCBS is proposed to remove the AMA from the regulatory framework and put forward
instead the idea of a revised operational risk capital framework based on a single non-model-based
method for the estimation of operational risk capital. This proposed framework has been termed
the Standardized Measurement Approach (SMA) and it “builds on the simplicity and comparability
of a standardized approach, and embodies the risk sensitivity of an advanced approach” (Bank for
International Settlements, 2016). However, the SMA proposal has been criticized for its intention to
remove AMA (Peters et al., 2016). Indeed, it is worth emphasizing that the SMA proposal fails to
use a range of data sources, while AMA requires to model operational risk based on different data
sources and, consequently, it allows to generate insight for operational risk management. Moreover,
at the time of writing, though, the final versions of SMA and Basel IV have not been published yet.
This paper makes a contribution to the discussion stressing the fact that AMA and LDA still can be
improved and can also be standardized.

3. Methodology

From the perspective of a financial institution there is a need and an opportunity as well to better
integrate different elements and aspects of operational risk. On the one hand, an institution always
needs to gain and preserve a good understanding of the magnitude of this type of risk by determining
the OpVaR for the different business lines and eventually for the entire organization. On the other
hand, operational risk has also to be managed, for example via risk management matrices, which
generally show risk in terms of a heatmap, as will be detailed in the following subsections.

Financial information is obtained from both public and private institutions as well as from experts
with great knowledge and experience. In line with the development trends mentioned in Section 1,
it is worth noting that different analytical models to estimate OpVaR work with crisp information.
However, there also exist economic factors outside their control that are related to the impact and
management of failures in business processes, which include intuition and feelings expressed by ex-
perts, in a linguistic form rather than in a numerical one, and that generates uncertainty (Chiclana et
al., 2017). This gives ground for the development of models that require the use of fuzzy approaches
to properly address linguistic concepts are pervaded with uncertainty to properly explain and estimate
OpVaR and its evolution over time. Indeed, in our research the risk impact management of organi-
zations is assumed to follow a sequence of impact that varies from weak, medium to strong, with the
RIMMs defining this sequence of risk, in terms of the variables of frequency and severity, will also be
described using linguistic labels from the set {very low, low, medium, high, very high}, as described
in Section 3.1 and Section 3.2, respectively.

One of the most important issues when estimating OpV aRα is related to the structure (type of
distribution) and shape (long tail) of the LD distribution. However, the different available methods
to estimate the LD do not allow to integrate risk impact management and the evolution of risk, so
the assessment of the effects of risk impact management on LD can take a long time. For this reason,
a flexible integrated inverse adaptive fuzzy inference model (IIANFSM) is proposed. This model is
characterized by a Monte-Carlo behavior, integrates the estimation of LD and different risk profiles,
which allows to show how the management of risk of an organization can evolve over time and what
its effect is on the LD distribution used to estimate the OpV aRα.

3.1. Data and Degree of Management
A database of 701 records of daily risk events related to the failures of cash machines in a financial

entity during the two years period 2009-2010 is used for the analysis and validation of the proposed
model. Thus, the data refer to retail banking in terms of the business line and the corresponding risk
event that caused the business disruptions is ‘system failures’. The recorded risk events, in essence,
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Figure 2: Risk Impact Management Matrix (RIMM).

include the date of occurrence, the number of failed transactions per day and an attributed severity
value that captures the associated impact for the organization. Accordingly, the database represents
internal risk data only.

In order to achieve a confidence level of 99.9% for the OpV aRα, the LD of reference (LD MC) is
estimated in accordance with the guidelines given by BCBS–Basel II and, consequently, the database
is extended to a total of 1000 records of risk events by applying the Monte-Carlo sampling method
(see Section 3.4.1) with regard to frequency and severity (Bank for International Settlements, 2010).

This LD MC is used by the proposed IIANFSM model as a reference in the learning phase. The
evaluation of the behavior of the risk impact management evolution concerning the LD is carried
out using a sequence of three risk profiles, which are defined in terms of three RIMMs modeling the
following risk impact management sequence or scenarios (E): E3–weak impact, E2–medium impact,
E1–strong impact. Each of the RIMMs is designed and defined with five rows and five columns, aligned
with five qualities (nfs) that define the different linguistic assessment levels for the random (linguistic)
input variables of frequency and severity (Chiclana et al., 2017): very low, low, medium, high, very
high.

The IIANFSM is executed for a total of k = 500 cycles in the learning phase, using the records
of risk events from the database (1000 records). The stop criteria is defined through the difference
of rms (root mean square) at instant k+1 and k verifying |rmsk+1− rmsk|< 5e− 03 for at least ten
cycles of learning.

3.2. Risk Impact Management Matrix (RIMM)
The RIMM is a structure that defines a risk profile or the theoretical foundation for risk impact

management with respect to a business line in an organization (Fig. 2). The dimension of RIMM
depends on the set of labels that describes the linguistic input variables of frequency and severity
(Goverment of Canada, 2011; ISO, 2015), which as mentioned above is set as 5×5 (nfs×nfs) in the
present study. Colours are used to show the mixed effect of frequency and severity on risk, where the
red color cells indicates very high risk for both frequency and impact, while dark green cells represent
very low risk for both frequency and impact. Numbers in cells are also included to indicate the level
of risk impact management, ranging from the lowest level of management represented by “1” to the
highest level of management represented by “5”.

In general, having a number nfs of fuzzy sets to define the different linguistic assessment levels
for random input variables of frequency and severity, the RIMM will then be represented as:

RIMM =


M1,1 M1,2 · · · M1,nfs

M2,1 M2,2 · · · M2,nfs
...

...
...

...

Mnfs,1 Mnfs,2 · · · Mnfs,nfs

 .

8



 
(a) 

 
(b) 

 
(c) 

Scenario 1 Very Low Low Medium High Very High
Very Low 1 1 1 1 1

Low 1 2 2 2 2
Medium 1 2 3 3 3

High 1 2 3 4 4
Very High 1 2 3 4 5
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Scenario 2 Very Low Low Medium High Very High
Very Low 1 1 2 3 4

Low 2 2 2 3 4
Medium 2 3 3 3 4

High 3 3 4 4 5
Very High 3 4 4 5 5
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eq
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y

Severity

Scenario 3 Very Low Low Medium High Very High
Very Low 1 2 3 4 5

Low 2 2 3 4 5
Medium 3 3 3 4 5

High 4 4 4 4 5
Very High 5 5 5 5 5

Fr
eq

ue
nc
y

Severity

Figure 3: Matrices for Risk Impact Management: (a) E1 – Weak Impact (Strong Risk Management); (b) E2 – Medium
Impact (Medium Risk Management); (c) E3 – Strong Impact (Weak Risk Management)

In our context, Mi,j represents the impact levels of risk in a scale from 1 to 5: [1 (Very Low), 2 (Low),
3 (Medium), 4 (High), 5 (Very High)]; i represents the frequency levels and j the severity levels

3.3. Sequence of Risk Impact Evolution
To evaluate the general behavior of the IIANFSM model, a sequence of risk or risk profile showing

the natural evolution of risk impact management in an organization is defined as in Fig. 3.

3.4. Monte-Carlo Sampling Fuzzy Sets
In order to integrate the behavior of the Monte-Carlo sampling method into the proposed model,

the following definitions are required.

Definition 1. Let X1,X2, . . . ..,Xn be independent and identically distributed sample from an unknown
cumulative distribution function (CDF) F (x) = P (X ≤ x). The Empirical Distribution Function
(ECDF), also known simply as the empirical distribution function, is defined as (Carbone et al.,
2016):

Fn (x) = 1
n

n∑
i=1

1{Xi ≤ x}

where 1 is the indicator function

1{Xi ≤ x}=
{

1 if Xi ≤ x
0 otherwise.

Definition 2. If CDF F is strictly increasing and continuous then F−1 (p) = x, p ∈ [0,1], is the unique
real number x such that F (x) = p. In such a case, this defines the inverse distribution function or
quantile function.
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Definition 3. Let {q1, q2, . . . .., qnfs} be the quantiles of a random variable X with CDF F(x). Let
{XCN,1,XCN,2, . . . .,XCN,nfs} the normalized location of fuzzy sets that define the different linguistic
assessment levels used for this same random variable. Let m be the slope of the correlation line between
the quantiles and the normalized location of fuzzy sets. Then, we have:

• When m= 1, the fuzzy sets that define the different linguistic assessment levels for the random
variable are uniformly distributed on the horizontal axis.

• When m> 1, the fuzzy sets that define the different linguistic assessment levels for the random
variable are distributed towards the left side of the horizontal axis.

• When m< 1, the fuzzy sets that define the different linguistic assessment levels for the random
variable are distributed towards the right side of the horizontal axis.

Definition 4. Given {qo, q1, q2, q3, q4} the quantiles of a random variable with CDF F(x). Then we
have that

∂F(q2)
∂x

≈m

and when (see Fig. 4):
1. m = 1: CDF F(x) has asymmetry = 0 and the data may come from a centered distribution

(balanced fuzzy sets – Fig. 4 (a)).
2. m> 1: CDF F(x) has asymmetry > 0 and the data may come from a distribution with long tail

(unbalanced fuzzy sets with tendency to the left side – Fig. 4 (b)).
3. m < 1: CDF F(x) has asymmetry < 0 and data may come from a distribution with inverted

long tail (unbalanced fuzzy with tendency to the right side – Fig. 4 (c)).

Compliant with Definition 4, an a priori structure and shape of the probability distribution that
represent a linguistic variable can be set, leading to the concept of the loss distribution approach
(LDA) , which, in our case, is estimated by the following proposed fuzzy model.

3.4.1. Monte-Carlo Fuzzy Sampling Method
Let {q1, q2, . . . .., qnfs} be the quantiles of a random variable X with CDF F (x), which is also

described linguistically via nfs fuzzy linguistic labels with following Gaussian membership functions:

uj (x) = Exp

−1
2

(
qj −x
Dj

)2
 (3)

where

Dj =


qj+1− qj−1 j < nfs

2 · (qj − qj−1) j = nfs

2 · (qj+1− qj) j = 0
(4)

The Monte-Carlo fuzzy sampling function for a uniform random value pk ∈ [0,1], FS (pk), has the
following structure (Peña P and Hernández R, 2016):

FS (pk) =
nfs∑
j=1

uj (pk) ·F−1 (qj) (5)

where F−1 (qj) is the quantile function for qj . Thus, the procedure of sampling by using the Monte-
Carlo method for a random variable X with CDF F (x) described linguistically via a number of fuzzy
linguistic sets is:

1. Normalize fuzzy linguistic sets used to describe the random variable.
2. Generate random number pk ∈ [0,1] using a uniform distribution.
3. Compute degrees of membership of random generated value in step 2 with respect to the nor-

malized fuzzy sets j using (3), uj (pk).
4. The sampling value is obtained using (5).
5. Steps 1, 2 and 3 are repeated until 1000 data is reached.
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Figure 4: Distribution of fuzzy linguistic labels associated to a random variable
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3.5. IIANFSM to Assess the Evolution of OpVaR
3.5.1. IIANFSM General Structure

According to the structure of the basic ANFIS model (Fragiadakis et al., 2014), the structure of
the IIANFSM model is denoted and defined as:

yrANFIS,k =
NR∑
j=1

Cj ·
(
RIMM j

SMD

)
·hj ·xs,j ·xf,j (6)

where NR is the number of activated rules from the total set of nfs×nfs possible rules, for the random
variables of frequency (f) and severity (s), by sampling values of the random variables frequency and
severity at instant k, xf,j and xs,j , respectively; k indicates the number of data to estimate the LDA
distribution; Cj is the importance of each of the rules for the IIANFSM system as per the matrix, in line
with the RIMM structure; CF,j1,j2 consisting of the importance of the rules in the IIANFSM system
to mitigate the impact generated by the relation between fuzzy set j1(= 1,2, . . .nfs) (Frequency) and
fuzzy set j2(= 1,2, . . . ,nfs) (Severity):

CF,j1,j2 =


c1,1 c1,2 · · · c1,nfs

c2,1 c2,2 · · · c2,nfs
...

...
...

...

cnfs,1 cnfs,2 · · · cnfs,nfs

 ;

hj is the antecedent estimate by the rule j, which is computed as:

hj = uxf,j1 ·uxs,j2 (7)

where uxf,j1 and uxs,j2 are the membership values of xf,k and xs,k to the frequency fuzzy set and
severity fuzzy set in rule j, respectively, as per the Gaussian membership functions

uxf,j1 = e
− 1

2

(
XCf,j1−xf,k

Df,j1

)2

; uxs,j2 = e
− 1

2

(
XCs,j2−xs,k

Ds,j2

)2

XCf,j1 and XCs,j2 being the centers of the fuzzy sets j1 and j2 corresponding to linguistic input
variable of frequency and severity, respectively; Df,j1 and Ds,j2 defined as per (4). RIMM j represents
the j-elements in the following matrix, RIMMF,j1,j2, consisting of the level of management for the
combined risk impact of frequency and severity (see Section 3.2).

RIMMF,j1,j2 =


M1,1 M1,2 · · · M1,nfs

M2,1 M2,2 · · · M2,nfs
...

...
...

...

Mnfs,1 Mnfs,2 · · · Mnfs,nfs



SMD represents the sum of the RIMM j values of the activated rules: SMD =
NR∑
j=1

RIMM j .

In accordnace with the general structure, the model can take three different forms to estimate the
LD MC or LD of reference:

1. The Integrated Inverse Adaptive Neural Unbalanced Fuzzy System model (IIANUFSm) allows to
identify the structure and shape of the fuzzy input sets using different RIMMs.

2. The Integrated Inverse Adaptive Neural Balanced Fuzzy System model (IIANBFSm) allows to
identify the Inherent Risk Matrix (IRM) using balanced fuzzy sets and different RIMMs.

3. The Integrated Inverse Adaptive Neural Sampling Fuzzy System model (IIANSFSm) uses a
Monte-Carlo sampling process for the fuzzy input sets to assess the evolution of operational
risk values over time.
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Table 1: Fuzzy Inherent Risk Matrix (FIRM)

Frequency labels Frequency levels Control Measure Effectivity Cj ’s Average Control Fuzzy Residual Risk
LBj1 LLBj1 RIMMF,j1,j2 CF,j1,j2 FCLj1 FRRj

• LBj1 are the impact labels for frequency in accordance with the j1 − frequency levels (j1 =
1,2,3, . . . ,nfs).
• LLBj1 are the level of risk for frequency. These values range from 0.1 to 0.5 in accordance with the
labels that are defining this linguistic variable.
• RIMMF,j1,j2 is the matrix consisting of the levels of risk impact management according to the
combined impact of j1− frequency and j2− severity.
• CF,j1,j2 is the matrix of importance of each rule of risk impact management in the IIANFSM
structure.
• FCLj1 are the fuzzy control levels for j1 − frequency, which is defined using the product t-norm
of the values that define the importance of rules (CF,j1,j2) and the risk impact management matrix
(RIMMF,j1,j2): FCLj1 =∑nfs

j2=1RIMMF,j1,j2 ·CF,j1,j2
• FRRj1 is the fuzzy residual risk, and it represents the ratio between the level of risk for the frequency
an the fuzzy average control for the severity: FRRj1 = LLBj1

FCLj1

• The risk profile (RP) indicates the average resulting fuzzy residual risk obtained through the effect

of risk impact management: RP = 1
nfs

nfs∑
j1=1

FRRj1

The adaptive process is defined by the generalized delta rule (Rumelhart and Hinton, 1986):

XCj,i =XCj,i− γ ·
∂rmsk
∂XCj,i

; Cj = Cj − γ ·
∂rmsk
∂Cj

; Dj =Dj − γ ·
∂rmsk
∂Dj

;

where γ represents the learning factor; rmsk is the root mean square at instant k:

rmsk =
√

(ydk− yrk)2

and ydk is the reference value at instant k that conforms the LD MC distribution. From expressions
(6) and (7), the learning rules take the following form:

Cj = Cj + γ ·hj ·
(
RIMM j

SMD

)
·xf,k ·xs,k (8)

XCj,i =XCj,i + γ ·Cj ·
(
RIMM j

SMD

)
·xf,k ·xs,k ·hj ·

(
xk,i−XCj,i

D2
j,i

)
(9)

Dj,i =Dj,i + γ ·Cj ·
(
RIMM j

SMD

)
·xf,k ·xs,k ·hj ·

((
xi,k−XCj,i

)2
D3
j,i

)
(10)

3.5.2. Fuzzy Inherent Risk Matrix (FIRM)
The inherent risk arises from exposure to an uncertainty of probable events or changes in business

conditions or the economy in general that can impact the operations of an organization. In this way,
the fuzzy inherent risk matrix (FIRM) allows to estimate the residual risk or risk profile after applying
risk impact management (measures) in an organization, taking into account the relationship between
the normalized exposition of inherent risks and the importance of the rules of management delivered
by the IIANFSM that allow to mitigate the risks. This is described in more detail in Table 1.
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3.5.3. Fuzzy OpVaR
Let F (x) be the cumulative distribution function (CDF) of a random variable X, and u the value

of X in the tail of the distribution, then the probability of X being located between u and u+y (y > 0)
when x>u is:

P [u <X < u+ y|x > u] = P [u < x < u+ y]
P [x > u] = F (u+ y)−F (u)

1−F (u) = Fu (y)

Fu (y) represents the right tail of the distribution of probability. According to Gnedenko et al. (Gne-
denko et al., 1969), for a wide class of distributions F (x), increasing the u variable leads to Fu (y) to
converge to the following generalized Pareto distribution (GPD):

Gξ,β (y) = 1−
(

1 + ξ.(y−u)
β

)− 1
ξ

, ξ , 0

where u is a threshold parameter; β is a scale parameter (β > 0) ; and ξ is a shape parameter (ξεR).
The estimation of 1−F (u) can be determined from the empirical data:

1−F (u) = P [x > u] = nu
n

P [x > u+ y] = P [x > u+ y|x > u] ·P [x > u] = nu
n
·
[
1−Gξ,β (y)

]
where u representing a value close to the 95% percentile of the empirical distribution (u ∈ R); n is
the total number of observations that make up the empirical distribution; and nu is the number of
observations of x that are greater than u. Therefore, the estimator of the tail of the CDF F (x), when
x is big, can be expressed as follows:

F (x) = P [x < u+ y] = 1−P [x > u+ y] = 1− nu
n
·
(

1 + ξ · (x−u)
β

)−1/ξ

According to (2), in order to calculate the OpVaR with a confidence level of q it is necessary to solve
the following equation:

q = 1− nu
n
·
(

1 + ξ · (OpV aR−u)
β

)−1/ξ

Thus, we have that OpVaR is:

OpV aR= u+ β

ξ
·
[(

nu
n
· 1
(1− q)

)ξ
− 1
]

In line with the fuzzy representation of the LD distribution from Definition 3, the parameters ξ and
β can be estimated from:

qj = 1− nu
n
·
(

1 + ξ · LD
−1 (qj)−u
β

)−1/ξ

where LD−1 (qj) is the quantile function that represents the CDF of the LD distribution for the
value qj that are the different values according to the number of fuzzy sets that define the random
variable of interest. In the particular case of using j =1 (Very Low), 2 (Low), 3 (Medium), 4 (High),
5 (Very High), the quantiles for the LD experimental distribution are defined as q0, q0.25, q0.5, q0.75, q1,
respectively.

3.6. Experimental Validation of IIANFSM
For a general validation of the IIANFSM, three stages were taken into account according to each

of the forms that integrate the model:
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First stage. Identification of Input Fuzzy Sets – IIANUFSm. In this stage the model estimates the
LD MC for the sequence of risk (learning phase) using unbalanced input fuzzy sets. The model
was evaluated using the Index of Agreement (IOA) for the estimation of LD MC, where it is
expected that the structure and shape of the input fuzzy sets for frequency and severity evolve
towards distributions of heavy tails (Definition 4).

Second stage. Identification of FIRM – IIANBFSm. In this stage the model estimates the LD MC for
the sequence of risk (learning phase) using balanced fuzzy input sets. The risk profile is given by
the FIRM, where it is expected that the importance of the rules in the IIANBFSm take lower
values due to a better risk impact management.

Third stage. Evolution of Risk Impact Management – IIANSFSm. In this stage the model estimates
the LD MC using the Monte-Carlo sampling method for linguistic input and by using a neutral
RIMM (learning phase). In this stage, the model is evaluated according to the evolution expe-
rienced by the LD using the sequence of risk that shows the natural evolution of risk impact
management in an organization. It is expected that LDs evolve towards distributions with heavy
tails, lower values of OpV aR99.9%, higher values of coverage with similar structure and shape
than the LD MC of reference.

3.6.1. IC-fingreprint structure
The LD is represented by an IC-fingerprint structure that groups the main statistical indices that

characterize the OpV aRα (De Martino et al., 2007; Cooper et al., 2014):

a) OpV aR99.9%: Operational risk value set at the 99.9 percentile on the LD distribution.
b) EL (Expected Losses): This value is represented by the mean of the LD distribution.
c) UL (Unexpected losses): UL=OpV aR99.9%−EL

d) Coverage of EL (CEL): CEL= EL

OpV aR99.9%
, which indicates the percentage of coverage of EL

by the OpV aR99.9%.

e) Coverage of UL (CUL): CUL= UL

OpV aR99.9%
, whic indicates the percentage of coverage of UL

by the OpV aR99.9%.
f) Tail Data (TD): Number of data located between EL and the OpV aR99.9% value, or number of

data located in the tail of the LD distribution.

g) Exposure Grade (EG): EG =
TD

ND
· OpV aR99.9%+UL

2
OpV aR99.9%

, which is the percentage of coverage
reached by OpV aR99.9% with regard to average losses located in the tail of the LD distribution.

h) Insured Value (IV ): IV=OpV aR99.9% ·EG, which indicates the insured value to cover the events
of risk at a level of 99.9%.

3.6.2. Learning Phase
In coherence with the general structure defined by the IIANFSM, the behavior of the IIANBFSm

is described below through the estimation of the LD MC in the learning phase:

1. It begins with the normalization of data for the frequency (Xf ) and severity (Xs) variables, and
with the estimation of the LD MC of reference (ydk) using expression (1) (Section 2.3) and the
Monte-Carlo sampling fuzzy sets method (Section 3.4).

2. The input (Freq.:Xf ,Sev.:Xs) is defined using balanced fuzzy sets for labels (as in Fig. 4 (a)).
The location and shape of the membership functions of these FSs are provided in Table 2.

3. Before the learning process starts, the vector of importance for each rule (Cj ∈ [0,1]) for the
IIANBFSm system is setup, which takes the array structure (Cnfs×nfs).
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Table 2: Location and shape of the FS’s membership functions

Very Low Low Medium High Very High
XCN,j,i 0 0.25 0.5 0.75 1
DN,j,i 0.5 0.5 0.5 0.5 0.5

Very Low Low Medium High Very High

Very Low h1 h2 h3 h4 h5

Low h6 h7 h8 h9 h10

Medium h11 h12 h13 h14 h15

High h16 h17 h18 h19 h20

Very High h21 h22 h23 h24 h25

Severity

Fr
eq

u
en

cy

Figure 5: Matrix of activated rules linked to input values xf,k = 0.35 and xs,k = 0.71

4. To estimate the LD MC in the learning phase, the IIANBFSm model uses the following neutral
RIMM:

RIMM =



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


After the learning process this matrix may be changed by different RIMMs (E3-E2-E1) with the
aim to assess the impact of management on LD.

5. At this point the learning phase begins. Let xf,k = 0.35 and xs,k = 0.71 be two random values
for frequency and severity, respectively, at instant k. Using the corresponding Gaussian member-
ship functions (3) with parameters given in Table 2, the corresponding membership values are
computed and shown in Table 3. Despite the fact that the fuzzy sets are defined using Gaussian
membership functions, the case study is developed taking the higher values of membership asso-
ciated with the fuzzy input sets for each linguistic variable. Figure 5 shows the rules activated
by input values xf,k = 0.35 and xs,k = 0.71:

Table 3: Estimation of membership values for input values xf,k = 0.35 and xs,k = 0.71

Very Low Low Medium High Very High
XCj,f 0 0.25 0.5 0.75 1
XCj,s 0 0.25 0.5 0.75 1
Dj,i 0.5 0.5 0.5 0.5 0.5
uf,j,k 0 0.9801 0.9559 0 0
usj,k 0 0 0.9155 0.9968 0

6. According to Fig. 5, using expression (7), we proceed with the computation of antecedent hj of
each activated rule, which is shown in Table 4.

7. According with the structure of IIANBFSm and assuming a set of random numbers for the
vector Cj (Cj ∼N (0,1)), the output value linked to input values xf,k = 0.35 and xs,k = 0.71 is
calculated, as shown in Table 5.
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Table 4: Antecedent values of activated rules by input values xf,k = 0.35 and xs,k = 0.71

h8 h9 h13 h14

0.8972 0.9769 0.8751 0.9528

Table 5: Estimation of yrIANBFSm,k linked to input values xf,k = 0.35 and xs,k = 0.71

h8 h9 h13 h14

RIMM8 RIMM9 RIMM13 RIMM14

1 1 1 1
SMD = 4

C8 C9 C13 C14

0.4356 0.2587 0.8795 0.5678
ydk = 0.3512

yrIANBFISM = 0.2869
rsm= 0.0643

8. Using a value of γ = 0.1, the structure of the IIANBFSm for the rule-9 is updated using expres-
sions (8), (9) and (10):

C9,k+1 = 0.2587 + 0.1×
(1

4

)
× 0.9769× 0.35× 0.71

XC4,1,k+1 = 0.75 + 0.1× 0.2587×
(1

4

)
× 0.9769× 0.35× 0.71

(0.35− 0.75
0.52

)
XC4,2,k+1 = 0.75 + 0.1× 0.2587×

(1
4

)
× 0.9769× 0.3× 0.71×

(0.71− 0.75
0.52

)
As per (3), this procedure produces an update of the diameter Dj,i of the fuzzy sets used to
represent the linguistic input variables.

9. This estimation process continues until k = 1000. When k ≤ 1000, the process moves to step 5.
10. Steps 5 – 9 is repeated until a number of iterations (NI) is reached or |rsmi1+1− rsmi1|< 5e−03

for ten consecutively iterations.

Figure 6 shows that the IIANBFSm reached an IOA close to one with regard to the estimation of
LD MC, which shows the good performance of the model in the learning phase. The model reached
similar values for OpV ar99.9%, tail data and coverage indices (EL/OpV ar99.9%, UL/OpV ar99.9%) (see
Table 6), which show the good performance of the IIANBFSm model in the estimation of LD MC in
the learning phase.

In coherence with this structure, the learning adheres to CF,j1,j2 (Fig. 7), the importance of the
rules for the system according to the RIMM defined by the IIANBFSm. Blue bars show the need to
increase the levels of risk impact management, while the red bars show the importance of the rules
(negative values) in the sense of mitigating (reducing) frequency and severity for the operational risk
through better risk impact management.

4. Experimental Results

4.1. Stage 1: Identification of Fuzzy Input Sets (IIANUFSm)
Table 7 shows the behavior of the model in the learning phase in the estimation of the LD MC for

each risk profile in the sequence of risk. It can be observed that the model reached an IOA close to one
regarding LD MC (G.Pareto), and similar values for the IC-fingerprint indices, showing the stability
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(a) (b)

Figure 6: LD estimated by the IIANBFSm in the learning phase (a) PDF function (b) IOA chart

Table 6: LD MC estimated by the IIANBFSm model in the learning phase

LDA MC LD Est
Distribution G.Pareto G.Pareto
NLoglik -3316.700 -3132.300
shape (ξ) 0.176 0.186
scale (β) 7.71078 7.005
threshold (Θ) -2.20E-15 0.000
Kurtosis 20.311 18.833
Assymmetry 3.608 3.511
EL (Exp.) 9.636 9.611
UL (UnExp.) 96.524 87.822
OpV ar99.9% 106.160 97.433
EL/OpV ar99.9% 0.091 0.099
UL/OpV ar99.9% 0.909 0.901
Tail Data 321.000 319.000

Very Low Low Medium High Very High
Very Low 0.6811543 0.5796059 0.1545442 0.37932176 -0.32364892

Low 0.80579218 0.19113157 0.64735186 0.06777605 -0.24965995
Medium 0.7184421 0.34103079 0.07841213 0.23531615 -0.30477613

High 0.57782578 0.1159844 0.02470434 -0.57029486 -0.32400807
Very High 0.29844688 -0.32626445 -0.29062395 -0.40450698 -0.0565972

Severity

Fr
eq

ue
nc
y

Figure 7: CF,j1,j2 – matrix of importance of inference rules that conform the IIANBFSm
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Table 7: LD estimated by the IIANUFSm for scenarios E1-E2-E3

LDA MC E3 E2 E1
Distribution G. Pareto G.Pareto G.Pareto G.Pareto
AIC -3136.700 -3101.200 -3048.800 -3130.000
shape (ξ) 0.176 0.212 0.261 0.184
scale (β) 7.1078 6.615 5.972 7.001
threshold (Θ) -2.20E-15 0.000 0.000 0.000
Kurtosis 20.331 22.837 23.240 17.592
Assymmetry 3.606 3.810 3.944 3.440
OpV ar99.9% 106.160 107.524 109.808 97.562
EL (Exp.) 9.638 9.403 9.083 9.600
UL (UnExp.) 96.522 98.121 100.725 87.962
EL/OpV ar99.9% 0.091 0.087 0.083 0.098
UL/OpV ar99.9% 0.909 0.913 0.917 0.902
Tail data 321.000 310.000 300.000 318.000
Exposure 0.306 0.296 0.288 0.302
Insurance 32.530 31.875 31.580 29.498
IOA 1.0000 0.9991 0.9980 0.9976

of the model in the estimation of LD MC for different risk profiles. Figure 8 shows the structure and
shape of the obtained input fuzzy sets that represent the random linguistic variable for severity for
each risk profile in the sequence of risk E3-E2-E1. From Definition 4, it can be observed that the fuzzy
sets evolve towards lower values of loss in line with the sequence of risk (E3-E2-E1), as shown by the
slope of the line, which evolves towards higher values of slope, with values above one that determine a
priori the structure and shape (heavy tail) of the distribution for the input variable severity. Clearly,
the obtained fuzzy sets in the E1 scenario are located toward the right side of the axis of frequency
and severity (Figure 8(a)), indicating the presence of a centered CDF with slope value close to one.
For the E2 and E3 scenarios, the obtained fuzzy sets are located toward the left side of the horizontal
axis, indicating the presence of long tails with higher losses (Figure 8(b), 8(c)), requiring the attention
of risk impact management.

4.2. Stage 2: Identification of a Fuzzy Inherent Risk Matrix (FIRM)
Table 8 shows that the model reached an IOA close to one with regard to the estimation of

LD MC for the sequence of risk, with similar values of OpV aR99.9%, tail data and coverage indices
(UL/OpV ar99.9%, EL/OpV aR99.9%). At this stage the learning was based on CF,j1,j2 because the
input sets were represented by balanced fuzzy sets. The model reached negative IOA for RIMM j1,j2
above the value of 75%, indicating that risk impact management is required. The importance of the
rules of matrix CF,j1,j2 where data evolves towards negative values according to the sequence of risk
is given in Fig. 9. This figure shows the evolution experimented by the risk profile according to the
sequence of risk, with strong levels of management leading towards lower values of risk are required.
Fig. 10 shows the structure of FIRM for the RIMM E1, where the risk profile is given for the average
of the residual risk for each level of frequency and its level of management for the adjoint severity.
As in the Case Study, the blue bars show the need to increase the levels of risk impact management,
while the red bars show the importance of the rules (negative values) in the sense of mitigating the
frequency and severity for the operational risk through better risk impact management.

Taking the operational value at risk defined by the BCBS–Basel II (OpV aRα), the FIRM configures
a new indicator to assess the quality of risk impact management in an organization:

OpV aRα,ie = (1 +RP ie)OpV aRα,ie (11)
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(a)

  
(b)

(c)

Figure 8: Structure and shape of the input fuzzy sets that conform for severity after the learning process in the Stage
1: (a) E3 – Strong Impact (Weak Risk Management); (b) E2 – Medium Impact (Medium Risk Management); (c) E1 –
Weak Impact (Strong Risk Management)
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(c) 

Very Low Low Medium High Very High
Very Low 0.5853287 0.48458725 0.2756972 0.3751047 0.87608528

Low 0.45481831 0.02941327 0.53535199 0.49034968 0.70496351
Medium 0.71418828 0.22390389 0.3556366 0.29167801 0.14897402

High 0.63314921 0.20413367 0.06619806 -0.31423971 -0.18163905
Very High 0.06276532 0.41548559 0.17827292 -0.41180202 -0.23342417

Severity
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eq
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y

Very Low Low Medium High Very High
Very Low 0.68001211 0.52301264 0.18321574 0.3698585 -0.39183259

Low 0.91959007 0.21969216 0.65561962 0.06261079 -0.23170303
Medium 0.668167 0.42221192 0.06957509 0.24084143 -0.26962173

High 0.61206049 0.12984668 0.02734651 -0.54115534 -0.27702427
Very High 0.24971083 -0.39586142 -0.24237131 -0.35866952 -0.05323335

Severity

Fr
eq

ue
nc
y

Very Low Low Medium High Very High
Very Low 0.87780476 0.61729431 0.64365882 -0.41070113 -0.44732311

Low 0.61378771 0.15329142 0.32459244 -0.34388041 -0.11487402
Medium 0.38941908 0.22817448 -0.03355768 -0.11783367 -0.29351413

High -0.36123511 -0.15580635 -0.47177956 -0.20594387 -0.49818829
Very High -0.40179858 -0.22001854 -0.01437018 -0.41870841 -0.06629004
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Severity

Figure 9: CF,j1,j2 matrices obtained by the IIANBFSm in the learning phase for the sequence of risk (a) E3 – Strong
Impact (Weak Risk Management); (b) E2 – Medium Impact (Medium Risk Management); (c) E1 – Weak Impact (Strong
Risk Management)
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Table 8: LD estimated by the IIANBFSm for scenarios E3-E2-E1

LDA MC E3 E2 E1
Distribution G.Pareto G.Pareto G.Pareto G.Pareto
NLoglik. -3316.700 -3122.700 -3121.300 -3132.300
shape (ξ) 0.176 0.194 0.193 0.186
scale (β) 7.71078 6.882 6.878 7.005
threshold (Θ) -2.20E-15 0.000 0.000 0.000
Kurtosis 20.311 19.865 20.202 18.833
Assymmetry 3.608 3.600 3.636 3.511
EL (Exp.) 9.636 9.546 9.535 9.611
UL (UnExp.) 96.524 89.599 95.710 87.822
OpV ar99.9% 106.160 99.145 105.245 97.433
EL/OpV ar99.9% 0.091 0.096 0.091 0.099
UL/OpV ar99.9% 0.909 0.904 0.909 0.901
Tail Data 321.000 316.000 316.000 319.000
Exposure 35.778 32.999 34.914 32.782
Insurance 0.337 0.333 0.332 0.336
IOA (LD) 1.0000 0.9995 0.9997 0.9995
IOA (RIMM) 1.0000 -0.8301 -0.8091 -0.7710
Risk Profile 1.0000 0.1348 1.1468 1.6762

Fuzzy	Quality	of	Risk	Management

Fequency Risk	Level
Control	

Measures
Efectivity	

Cj's
Average	
Control

Residual	
Risk

1 0.87780476
2 0.61378771
3 0.38941908
4 -0.36123511
5 -0.40179858
2 0.61729431
2 0.15329142
3 0.22817448
4 -0.15580635
5 -0.22001854
3 0.64365882
3 0.32459244
3 -0.03355768
4 -0.04717796
5 -0.01437018
4 -0.41070113
4 -0.34388041
4 -0.11783367
4 -0.20594387
5 -0.41870841
5 -0.44732311
5 -0.11487402
5 -0.29351413
5 -0.49818829
5 -0.06629004

0.13483851

Fuzzy	
Residual	
Risk

-0.2994135

Very	Low 0.1 0.22359557 0.44723605

Low 0.2 0.12458706 1.60530309

Risk	Profile

-1.33594512 -1.33594512

1.71792685

1.60530309

Very	High 0.5 -0.28403792 -1.76032834 -1.76032834

Medium 0.3 0.17462909 1.71792685

High 0.4

0.44723605

Figure 10: Fuzzy Inherit Risk Management given by the IIANBFSm after the learning process for scenario E1
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Table 9: LD estimated by the IIANSFSm - Stage 3

LDA MC LD IANSFISm
Distribution G. Pareto G.Pareto
AIC -3708.4100 -3646.8300
shape (ξ) 0.1755 0.1755
scale (β) 7.1078 6.1207
threshold (Θ) 0.0000 0.0000
Kuirtosis 20.3110 17.9468
Assymmetry 3.6080 3.4430
OpV ar99.9% 105.1600 78.2328
EL (Exp.) 8.6360 7.4341
UL (UnExp.) 95.5241 70.7987
EL/OpV ar99.9% 0.0821 0.0950
UL/OpV ar99.9% 0.9179 0.9050
Tail data 321.0000 320.0000
Exposure 0.3078 0.3048
Insurance 3.2370 2.3845
IOA 1.0000 0.9945

where RP ie is the risk profile (or FIRM) given by the IIANBFSm for the ie-scenario (ie=E1,E2,E3).
According to (11), it can be observed that OpV aRα evolves towards lower values generating a better
risk profile until located close to the OpV aRαof reference, defined by the BCBS–Basel II. This equation
demonstrates that the system can reach the equilibrium in RP ie = 0, point from which the positive
inherent risk can be covered by a better management of negative inherent risk in a business line or
risk event type.

4.3. Stage 3: Sensitivity Analysis (IIANSFSm)
Table 9 shows the IIANSFSm reached an IOA close to one in the estimation of LD MC at Stage

3, with similar values of tail data and coverage, which demonstrates the stability of the model in
the estimation of LD MC using a neutral RIMM and Monte-Carlo sampling for the linguistic input
variables.

Figure 11 shows that the structure and shape of the fuzzy input sets reached values of slope greater
than unity, indicating the presence of distributions with heavier tails for frequency and severity, which
means that the learning mechanism used by the IIANSFSm is coherent with BCBS–Basel II with
respect to the estimation of LD MC.

After the estimation of the LD MC by the IIANSFSm using a neutral RIMM and in absence of
a learning mechanism, the model carried out the estimation of LD using each of the matrices that
conform the sequence of risk (E1-E2-E3). Figure 12 shows the evolution experimented by the LD.
The LD estimated by the RIMM E3 is located close to the LD MC, which shows that a better risk
impact management in organizations or financial entities can meet the standards established by the
BCBS–Basel II with regard to this type of risk.

Despite this evolution, as per Table 10 the LD’s remained invariant in terms of the structure (heavy
tail) and shapes (Generalized Pareto) that define the LD MC. This shows the stability of the model
in estimating the LD in absence of a learning mechanism. This stability is a consequence of only small
variations experienced by the IOA, which guarantees long tail distributions of the LDs representing
each impact matrix. Equally, in this table, we observe that the value of OpV aR99.9% increases from
19.669 (U$) for E1 up to 105.008 (U$) for E3. This shows a major value of coverage for the UL with
lower data in the tail due to better risk impact management, leading organizations or financial entities
to a lower level of risk exposure.
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Figure 11: Structure and shape of the fuzzy input sets obtained by the IIANSFSm using a neutral RIMM in the learning
phase
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Figure 12: Evolution of LDA distributions in a sequence of risk E1-E2-E3
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Table 10: Evolution of the LDA distribution due to the evolution of the scenarios for the proposed sequence of risk

LD MC LD E3 LD E2 LD E1
Distribution G.Pareto G.Pareto G.Pareto G.Pareto
Nloglik -3161.000 -4060.700 -4231.600 -3333.700
µ 9.613 21.630 18.401 6.639
σ 10.819 19.384 15.815 8.217
shape (ξ) 0.5931 0.428 -0.321 -0.582
scale (β) 3.5005 0.942 17.820 8.510
threshold (Θ) 4.4423 11.159 13.324 5.153
Kurtosis 20.311 2.691 14.189 160.172
Assymmetry 3.608 1.634 -0.537 -9.498
OpV ar99.9% 105.880 105.008 62.294 19.669
EL (Exp.L) 9.613 21.630 18.401 6.639
UL (UnExp.L.) 96.267 83.378 43.893 13.030
EL/OpV ar99.9% 0.091 0.206 0.295 0.338
UL/OpV ar99.9% 0.909 0.794 0.705 0.662
Tail Data 321.000 364.000 390.000 448.000
Exposure 0.306 0.327 0.332 0.372
Insurance 3.244 3.429 2.071 0.732

5. Conclusions

This paper presents an Integrated Inverse Adaptive Neural Fuzzy system with a Monte-Carlo
structure (IIANFSM), which integrates in a single model both the Monte-Carlo sampling method and
different RIMMs, which show the behavior in terms of the effect of risk impact management with
regard to the LD in real time. The proposed model, in its different forms (IIANUFSm – Integrated
Inverse Adaptive Neural Unbalanced Fuzzy System; IIANBFSm – Integrated Inverse Adaptive Neural
Balanced Fuzzy System; IIANSFSm – Integrated Inverse Adaptive Neural Sampling Fuzzy System),
allows in a learning phase identifying both the random input variables for frequency and severity and
the CDFs that permit to identify the risk profile in an organization or FIRM.

The IIANSFSm was tested and evaluated in terms of the impact that different risk profiles generate
on the LD in the learning phase. It can be highlighted that the model achieved a good stability in
estimating the LD, showing a similar structure (Generalized Pareto) and form (long tail) under the
three possible different risk impact management profiles and in absence of a learning mechanism. This
characteristic makes the model ideal for evaluating how risk evolves within an organization or financial
institution taking into account its risk profile. Thanks to its adaptation capacity, i.e. the capacity to
learn from new risk data, the IIANFSM model overcomes the limitations related to a lack of available
operational risk event data. The model can constantly monitor the evolution of the risk profile of an
organization or financial entity, which reinforces the validity of the fuzzy approach that has been put
into practice in this paper.

Referring to the structure of IIANFSM and the BCBC–Basel II definitions, the assessment of
the evolution of risk impact management by integrating fuzzy scenarios and databases that represent
external losses caused by operational risk events in a region or country is important. If external data
were included, it would help to increase the credibility of the model, not only when it is assessed by the
governmental or supervising authorities that regulate and monitor operational risk levels of financial
institutions, but also for bank or financial institution operational risk managers. With respect to
AMA models and loss distribution approaches, this paper contributes in showing that AMA and LDA
still can be improved, as with the proposed IIANFSM, with the objective to improve operational risk
impact management.
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