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Abstract 
 
In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging 

techniques have revealed abnormalities in various brain regions, including the frontal cortex, 

striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as 

sample entropy have been used to probe the regularity of brain magnetoencephalography 

signals in patients with ADHD. In the present study, we extend this technique to analyse the 

complex output patterns of the 4 dimensional resting state functional magnetic resonance 

imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found 

whole brain entropy differences (P=0.002) between groups and negative correlation (r=-

0.45) between symptom scores and mean whole brain entropy values, indicating lower 

complexity in patients. In the regional analysis, patients showed reduced entropy in frontal 

and occipital regions bilaterally and a significant negative correlation between the symptom 

scores and the entropy maps at a family-wise error corrected cluster level of P<0.05 

(P=0.001, initial threshold). Our findings support the hypothesis of abnormal frontal-

striatal-cerebellar circuits in ADHD and the suggestion that sample entropy is a useful tool 

in revealing abnormalities in the brain dynamics of patients with psychiatric disorders.  

 
 
Keywords: ADHD; BOLD; complexity; fMRI; Sample entropy  
 
 
1. Introduction 
 
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common mental 

disorders of childhood, affecting 5 – 10% of all children.  It frequently persists into 
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adolescence, or even adulthood (Biederman, 1998), with a prevalence of approximately 4% 

(Biederman, 2005). Its core clinical symptoms include inattention, hyperactivity and 

impulsivity  with the attentional deficit being usually the most functionally impairing 

symptom in adults (Barkley, 2003). Although the pathophysiology of ADHD remains 

unclear, some studies reported that the neural basis of this disorder resides mainly in 

anatomical and functional disturbances of frontal-striatal-cerebellar circuits (Giedd et al., 

2001).  

 

Many functional neuroimaging techniques have been explored to study the pathophysiology 

underlying ADHD. These techniques include single photon emission computed tomography 

(SPECT), positron emission tomography (PET) and blood oxygenation level dependent 

(BOLD) functional MRI (fMRI). Most SPECT and PET studies have probed the brain’s 

resting-state to study the pathophysiology of ADHD. These studies reported abnormalities in 

the frontal cortex (Lee et al., 2005), striatum (Lou et al., 1990), anterior cingulate cortex 

(ACC) (Langleben, 2002), sensorimotor cortex (SMC) (Lee et al., 2005), occipital cortex ( 

Schweitzer et al., 2003) and cerebellum (Lee et al., 2005). Task specific BOLD fMRI studies 

of ADHD have also been implemented but the results were found to be inconsistent. Both 

hypofrontality (Rubia et al., 1999) and hyperfrontality (Schulz et al., 2004) have been 

reported. The discrepancy could be a result of different tasks, ages and comorbidity in the 

studies. However, even studies using very similar tasks (Schulz et al., 2004; Tamm et al., 

2004) have produced divergent results. Subtle differences in tasks and patients’ performance 

strategies between the two studies might partly account for the discrepancies. Hence, it may 

be difficult to extract reliable markers of ADHD pathophysiology from task-based studies.  
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The resting-state (Raichle et al., 2001) fMRI approach has therefore been introduced as an 

alternative perspective on brain functional abnormalities in ADHD. Resting-state BOLD 

fMRI data allow for the analysis of functional connectivity patterns in brain networks and the 

temporal dynamics of their activity fluctuations (Rotarska-Jagiela et al., 2010). In children 

with ADHD, several studies have reported decreased amplitude of low-frequency fluctuations 

(ALFF) in the right inferior frontal cortex, the bilateral cerebellum  and the vermis as well as 

increased ALFF in the right anterior cingulate cortex (Zang et al., 2007). Abnormal dorsal 

anterior cingulate cortex (dACC) functional connectivity patterns have been reported in 

adolescent ADHD patients (Tian et al., 2006). ADHD patients exhibited decreased regional 

homegeneity (ReHo) in frontal-striatal-cerebellar circuits but increased ReHo in the occipital 

cortex (Cao, 2006). Very few studies have applied this method to adult ADHD, but results of 

a study employing kernel principal component analysis to discriminate adults with ADHD 

from normal controls (Wang et al., 2011) are encouraging.  

 

Nonlinear signal processing techniques such as  approximate entropy (ApEn) (Pincus, 1991; 

Pincus, 1995) and sample entropy (SampEn) (Richman and Moorman, 2000) provide a 

relatively new measure to probe the complexity of brain fMRI dynamics (Sokunbi et al., 

2011). Entropy values reflect the number of times the patterns in a signal are repeated and 

thus measure the randomness and predictability of a stochastic process and in general 

increase with greater randomness.  A lower value of SampEn thus indicates lower complexity 

of the signal or system. Recently, Gomez et al. (Gomez et al. 2011) applied SampEn to 

analyse the spontaneous MEG activity in ADHD patients. They performed five minutes of 

recording with a 148-channel whole-head magnetometer in 14 ADHD patients and 14 control 

subjects. They found that the SampEn values of the ADHD patients’ MEGs were lower than 

those of the controls. Also, there were statistically significant differences (p<0.01, Student’s 
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t-test with Bonferoni’s correction) at the five analysed brain areas: anterior, central, posterior, 

left lateral and right lateral. Until now the complex output patterns of the 4D blood oxygen 

level dependent (BOLD) signals in ADHD have remained unexplored.  

 

The rationale for studying resting state data of psychiatric patients with complexity measures 

is that complex output patterns of a system can give an indication of the health and robustness 

of the system (Goldberger et al., 2002a). Therefore, the characterization and analysis of the 

brain’s output in terms of its complexity may reveal a better understanding of an individual’s 

adaptive capacity, the ability to respond to unpredictable perturbations and stresses, which is 

presumed to be impaired in mental disorders. Complex organic systems such as the human 

brain have evolved to maximise adaptive capacity (Wolf and Linden, 2012). The degradation 

of these processes with age and disease is associated with loss of complexity in the dynamics 

of complex physiological systems (Lipsitz, 2004). Chaotic and complex behaviours indicate a 

healthy system whereas more predictable behaviours would be linked to pathological states 

(Pool, 1989).   

 

The aim of the present study was to investigate differences in the complex output patterns of 

resting state fMRI signals in adult ADHD patients when compared to age-matched healthy 

controls. Current models of ADHD posit funcitonal deficits in the frontal cortex, striatum, 

cerebellum, and occipital cortex of the brain (Seidman et al., 1998; Swanson et al., 1998). We 

expected the functional physiological complexity of ADHD patients (as reflected in the 

entropy values) to be reduced, and this reduction to scale with symptom severity.  
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2. Materials and Methods 
 
2.1 Participants 
 
We recruited 17 ADHD patients (8 female, mean (standard deviation; SD) age 29.65 

(±10.19)) from National Health Service (NHS) out-patient clinics in Swansea and 13 age- and 

gender-matched controls (8 female, mean (SD) age 29.69 (±8.39)). The study was approved 

by the South West Wales Research Ethics Committee. Exclusion criteria were inability to 

give informed consent and MRI contraindication. 

 

A detailed written and verbal explanation of the purpose and design of the study was 

provided to all the participants and written informed consent obtained prior to the 

commencement of the study. 

 

Patients were receiving psychotropic medication for ADHD at the time of scanning (dose): 

Methylphenidate 32 mg (6 patients), D-amphetamine 70mg (2 patients), Atomoxetine 80mg 

(1 patient), (Risperidone 0.5 mg, (1 patient), and benzodiazepines (1 patient). One patient was 

treated with Acamprosate 666 mg for alcohol dependence and was currently abstinent. Three 

patients were additionally treated with antidepressant medication. Five patients were not on 

any medication. 

 

All patients and control participants completed the Conners’ Adult ADHD Rating Scales 

(CAARS), a standardized self-rating for adults undergoing evaluation for ADHD (Conners et 

al., 1999a; Conners et al., 1999b; Erhardt et al., 1999). CAARS are a set of easily 

administered instruments consisting of self-reports and observer ratings allowing for the 

multimodal assessment of adult ADHD symptoms and behaviours. The CAARS subscales 

include inattention/memory problems, hyperactivity/restlessness, impulsivity/emotional 
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liability, problems with self-concept and ADHD index. The mean (±2SD) ADHD score for 

the control and ADHD groups are listed in Table 1. 

 
2.2 Resting state fMRI acquisition 
 
Functional MR images were acquired with a T2* weighted gradient echo echo-planar imaging 

sequence (EPI) in the axial plane using a GE Medical Systems twin-speed Signa HDx  3T 

MRI scanner. A total of 31 axially orientated 4 mm thick contiguous sequential slices were 

obtained for each of 100 volumes using a TR of 3000 ms, TE of 35 ms, flip angle of 90º, field 

of view of  240X240 mm and matrix 64x64. The first three volumes were discarded to allow 

for transient effects. The fMRI images were acquired using a 16 channels head coil without a 

task or stimulus (‘resting state’). 

 
2.3 Image pre-processing 

The image pre-processing was performed on the fMRI data using version 8 of Statistical 

Parametric Mapping software (SPM8; The Wellcome Department of Imaging Neuroscience, 

UCL, London, UK). The fMRI data were realigned using Realign (Est & Res) from the 

Spatial pre-processing section of SPM8 to correct for head movement distortion. Temporal 

high pass filtering (128 seconds) was performed from Specify 1st-level of the model 

specification, review and estimation section to reduced low frequency noise. Each voxel time 

series was standardized to a mean of zero and standard deviation of unity to allow data set 

with different amplitudes to be compared (Richman and Moorman, 2000). 

  

2.4 Estimation of input parameters for calculating SampEn 

Richman and Moorman (2000) developed sample entropy (SampEn) from the modification of 

the approximate entropy (ApEn) algorithm (Pincus, 1991; Pincus, 1995) to reduce the bias of 

ApEn, where self-matches were excluded from the ApEn algorithm, (i ≠ j) and (1 ≤ i ≤ N-m) 
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i.e. vectors are not compared to themselves. SampEn has the advantage of being less 

dependent on time series length, and showing relative consistency over a broader range of 

possible r, m, and N values under circumstances where ApEn does not (Richman and 

Moorman, 2000). SampEn is the negative logarithm of the conditional probability that two 

sequences remain similar at the next point, where self matches are not included in calculating 

the probability. 

 

The same input parameters of m, r, N and  used in calculating ApEn are also applicable to 

SampEn. The SampEn for a given N-dimensional time series  Nxxx ,.....,, 21  is defined as:  
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In equation (1), N is the number of time points, m specifies the pattern length,  
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r defines the tolerance value and   is the time delay. The two patterns i and j of m 

measurements of the time series are similar if the difference, d ji XX ,  between any pair of 

corresponding measurements of iX  and jX  is less than or equal to r, as shown in equation 

(2). iX  and jX  are m-dimensional pattern vectors whose components are time delayed 

versions of the elements in the original time series with time delay,   as shown in equation 

(3) and (4).  

 

Most SampEn analysis of biomedical signals have used m=2 and 0.1 r0.50 (Costa et al. 

2002; Norris et al. 2009; Yang et al. 2011; Catarino et al. 2011; Mizuno et al. 2010; 

Takahashi et al. 2009, 2010; Protzner et al. 2010), a few have used m=1 and 0.1 r0.35 

(Escudero et al. 2006; Yang et al 2013). Since there are no rigorous guidelines for choosing 

parameters to calculate SampEn for biomedical signals and most of the parameters that have 

been chosen appear to be data specific, we investigated the parameters that would be 

appropriate for calculating SampEn for our fMRI analysis. In order to estimate appropriate 

and robust values of m and r for the computation of SampEn, we evaluated the ability of 

SampEn to discriminate patients with ADHD from healthy controls using the value of the 

area of receiver operating characteristic (ROC) curve (Zweig and Campbell, 1993). The area 

under the ROC curve is used as a guide to classify the precision of a diagnostic test. ROC 

area with values between 0.90 and 1 means the precision of the diagnostic test is excellent, 

values between 0.80 and 0.89 means the test is good, fair if the results are between 0.70 and 

0.79, poor when the value of the ROC area is between 0.60 and 0.69 and bad for values 

ranging from 0.50 to 0.59. We computed the mean whole brain SampEn values for each of 

the 17 adult patients with ADHD and 13 control subjects with N=97 of fMRI time series, m= 

1 and m=2,   = 1 and r ranging from 0.02 to 0.7 at intervals of 0.04. For m=1, only r values 
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of 0.10 to 0.7 returned mean whole brain SampEn values, while for m=2, only r values of 

0.26 to 0.7 retuned SampEn values. The value of the ROC area of the mean whole brain 

SampEn for each r value for m=1 and m=2 was calculated using SPSS software. A plot of the 

value of the ROC area for each r value for m=1 and m=2 is shown in Fig. 1. The plot shows 

that the values of the ROC area for SampEn are good for all r values for both m=1 and m=2. 

For m=1, the minimum ROC area of 0.819 occurs at r=0.38 and the maximum ROC area of 

0.850 occurs at r=0.10 and r=0.26. For m=2, the minimum ROC area of 0.846 occurred 

0.58 r0.70 and the maximum ROC area of 0.851 occurred at r=0.46. Based on our 

findings, we therefore chose m=2 and r=0.46 as the appropriate parameters for our study. 

 

2.5 Calculation of SampEn for 3-dimensional (3D) fMRI data 

Using the approach developed by Sokunbi et al. (2011), whole brain SampEn maps for each 

individual of both groups were generated on a voxel by voxel basis on a MATLAB and C 

platform using the SampEn algorithm. The parameters used for calculating SampEn were N = 

97 of fMRI time series, m= 2,   = 1 (to reduce autocorrelation) and r = 0.46. The calculation 

of SampEn on the whole brain was threshold at 0.1 times the maximum signal to exclude 

voxels being calculated outside the brain. The mean SampEn value for the whole brain was 

calculated. Whole brain SampEn maps were generated and normalised to a standard echo 

planar imaging (EPI) template. Fig. 2 depicts the 3D SampEn maps of the whole brain for 

participants of the ADHD and control groups respectively, having the same age. Spatial 

smoothing was also performed using the full-width at half maximum (FWHM) of the 

Gaussian smoothing kernel [8 8 8] in mm. This was done to suppress noise and effects due to 

residual differences in functional and gyral anatomy during inter-subject averaging. 
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2.6 Statistical analysis 
 
Associations between the symptom (ADHD) score and SampEn were tested on a global and 

regional basis. Parametric statistical analysis was performed on the mean whole brain 

SampEn measures of each subject in both groups using the Statistical Package for Social 

Sciences (SPSS 16.0; Chicago, IL, USA) software. The regional analysis was performed 

using the two-sample t-test in SPM 8, comparing the SampEn maps of the ADHD and control 

groups. Correlations between the SampEn maps and the ADHD score were then found by 

using the standard SPM approach from the second-level group analysis.  

 
 
3. Results 

The participants’ characteristics and SampEn measurements are shown in Table 1. The mean 

whole brain SampEn values for the ADHD group was significantly lower than for the control 

group (1.04±0.10 vs. 1.14±0.07, t=3.427, P<0.002). After adjusting for the effect of age, 

using the General Linear Model in SPSS, the mean whole brain SampEn of  both groups 

remained significantly different (P=0.002). This is illustrated in Fig. 3(A). The mean ADHD 

score of both groups is also significantly different (P=0.000). There was a significant 

(P=0.012) negative correlation (r=-0.45) between the mean ADHD score and the mean whole 

brain SampEn for the whole group (ADHD and control). Fig. 3(B) shows how the mean 

whole brain SampEn reduces with increase in the ADHD score. 

 

When the regional analysis was performed with family-wise error (FWE) corrected cluster 

level significance (Nichols and Hayasaka, 2003) of P<0.05, the result of the two-sample t-test 

(P=0.001) after correcting for age is shown in Fig. 4. The discriminated regions in yellow in 

the rendered image show significantly lower SampEn in, the ADHD group. The error bar plot 

of these identified regions show complete separation between the groups (Fig. 4). Table 2 
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shows the anatomical location of the regions shown in Fig. 4 of both white and grey matter 

tissue types. The association between the ADHD score and SampEn was investigated 

regionally at a corrected cluster level significance of P<0.05 while performing a multiple 

regression analysis (P=0.001) of the SPM second-level group analysis. The result shows that 

SampEn correlates negatively with the ADHD score i.e. SampEn reduces with increases in 

the ADHD score. Fig. 5 shows the axial image slices of regions in the brain showing 

significant negative correlation between the ADHD score and SampEn of both groups. Fig. 6 

(A) – (F) depicts the association between SampEn and ADHD score at; (A) Middle Occipital 

Gyrus; (B) Cuneus; (C) Middle Temporal Gyrus; (D) Postcentral Gyrus; (E) Precuneus; and 

(F) Medial Frontal Gyrus. As for the global value, the regional SampEn values negatively 

correlated with the ADHD scores. Table 3 shows the list of the peak regions found from the 

significant negative correlation between the ADHD score and SampEn. 

 
 
4. Discussion 
 
We show a reduction in the complexity of resting brain activity, as measured by signal 

entropy (SampEn), in adult ADHD patients compared to healthy and age-matched controls. 

In order to reflect the continuous distribution of ADHD symptoms in the population we 

conducted a correlation analysis between symptom scores and entropy values, which revealed 

increasing symptom load with decreasing complexity of brain activity. This lower signal 

entropy is consistent with the Goldberger/Lipsitz model for robustness (Goldberger, 1996; 

Goldberger, 1997; Goldberger et al., 2002a; Goldberger et al., 2002b) where ill health and 

less robust systems exhibit less complexity (lower entropy) in their physiological output. In 

the present study, we have shown for the first time that this can be extended to BOLD fMRI 

data acquired from ADHD patients. 
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Our results are consistent with those of Gomez et al. (Gomez et al., 2011) who found reduced 

SampEn in the spontaneous MEG activity of 14 adult ADHD patients compared to controls. 

Our findings also agree with previous research works that have applied other measures of 

entropy such as approximate entropy (ApEn)  to estimate the complexity of ADHD patients 

from EEG recordings (Sohn et al., 2006). However, we could avail ourselves of the superior 

spatial resolution and fidelity of fMRI compared to non-invasive electrophysiology and 

identified hotspots of reduced complexity in several neocortical (mainly frontal and occipital) 

and limbic (anterior cingulate) areas.   

 

The discriminated brain regions listed in Table 2 and 3 are a part of the frontal-striatal-

cerebellar circuits implicated in network models of ADHD pathology. In a resting state fMRI 

study, Cao and colleagues, using a regional/network homogeneity approach, also found a 

deficit in the anterior cingulate region of ADHD patients when compared to normal controls 

(Cao et al., 2006). Moreover, Uddin et al. (Uddin et al., 2008) found a deficit in the precuneus 

of adult ADHD patients when compared to healthy controls using the same approach.  

Decreased functional connectivity between the anterior cingulate gyrus and precuneus in 

ADHD patients was observed using a seed based correlational approach (Castellanos et al., 

2008). The precuneus and anterior cingulate are parts of the so-called default-mode network 

(Raichle et al., 2001), which has also been implicated in ADHD (Uddin et al., 2008; Cao et 

al., 2006), and both these areas are also highlighted by the present study. The areas where we 

identified reduced signal complexity also conform to several other previous studies. For 

example, using the small world network approach, Wang et al. (Wang et al., 2009) reported 

decreased efficiency of network nodes in the middle temporal gyrus of ADHD patients with 

respect to normal controls. In magnetic resonance (MR) studies of brain structure, using a 

manual and semi-automated region of interest (ROI) approach, Hill et al. (Hill et al., 2003) 
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found a reduction in the superior frontal gyrus of ADHD patients when compared to normal 

controls. Also, a similar structural study found a reduction in the total brain structure and 

occipital lobe of ADHD patients (Castellanos et al., 2001; Castellanos et al., 2002). 

 

The extant functional and structural imaging studies thus suggest abnormalities in specific 

brain regions of ADHD patients. However, the mechanism by which a structural change 

influences functional activity and whether these changes occur at a specific location or across 

a network is unclear. In the present study we have successfully shown that complexity using 

measures of signal entropy (SampEn) is a proxy for the ADHD pathology.  

 

The selection of the input parameters for calculating SampEn based on the value of the ROC 

area (Fig. 1) showed that SampEn demonstrated good ability in discriminating adult ADHD 

patients from age-matched healthy controls both for m=1 and m=2 in the tolerance range 

0.1 r0.70. This may suggest why previous studies using SampEn either with m=1 or m=2 

obtained good results (Escudero et al. 2006; Yang et al 2013; Costa et al. 2002; Norris et al. 

2009; Yang et al. 2011; Catarino et al. 2011; Mizuno et al. 2010; Takahashi et al. 2009, 2010; 

Protzner et al. 2010). Fig. 1 showed that the ROC area obtained over the tolerance range 

0.1 r0.70 using m=2 is more consistent than m=1, though m=1 produced more tolerance 

values for comparison. The discrimination obtained from the ROC analysis is by no means 

confined to these parameters and can be obtained via a wide range of parameters; these are 

just the optimal ones (Fig. 1). Future studies with independent data sets are needed to 

determine whether these parameters are optimal generally, or just for this dataset. To avoid a 

significant contribution from noise in the computation of entropy, one must choose r larger 

than most of the noise (Pincus, 1991). The high tolerance value, r=0.46 we have used in this 
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study is a good choice because it shows better robustness to reduced noise in distinguishing 

between the system complexities of adult patients with ADHD and the control group. 

 

The limitations of the present study include a short number of time points (97 volumes) of 

fMRI data, the small patient sample size and the possible medication effects. A higher 

number of time points correspond to higher SampEn values which enable a better 

approximation of the measured entropy. Previous work has demonstrated functional 

connectivity differences also in unmedicated ADHD patients (Sun et al., 2012), and the 

changes observed after dopaminergic medication are different from the group differences 

observed here (Wilson et al., 2013). There is no clear indication of medication effect on the 

measurement of SampEn. The relationship between medication effect and SampEn may be 

further explored in future studies. What is attractive about the current study is that we 

demonstrate clear and clinically relevant group differences on a measure that can be obtained 

in a clinical scanning suite in under ten minutes.  

 

5. Conclusion 

Our analysis portrays a novel implementation of temporal signal entropy (SampEn) to 

investigate the changes in complexity of 4D brain fMRI signals in ADHD patients when 

compared to healthy controls. We found reduced complexity especially in the activity of 

frontal and occipital regions and in parts of the “default-mode network”, and reduced global 

and local complexity correlated with symptom severity. We suggest that SampEn is a useful 

and easily obtainable measure to reveal changes in ADHD brain dynamics. 
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Fig. 1: Receiver operating characteristic (ROC) area for discriminating mean whole brain SampEn difference between 

controls and adult patients with ADHD for m=1 and m=2 and different tolerance values, r.  

 

Fig. 2: 3D whole brain SampEn maps of participants with the same age (21 years). (A) Participant from the ADHD group 

with mean whole brain SampEn of 1.0481. The arrows point to some areas of low entropy as indicated by the gray scale 

colour bar (0 – 1.4). (B) Participant from the control group with mean whole brain SampEn of 1.2060. Images are displayed 

in neurological convention.    

 
 

 
Fig. 3 (A): depicts the error bars (box plot) of the ADHD and control group. Mean (±2SD) SampEn of the ADHD group is 

1.04 (±0.10), while that of the control group is 1.14 (±0.07), showing a significant difference (p=0.002) in the group mean 

SampEn of both groups. The ADHD group has lower SampEn when compared to the control group, implying that the 

control group has more complex fMRI signal. (B) depicts the association between the mean whole brain SampEn and ADHD 

score of the 30 participants (ADHD and controls). The mean whole brain SampEn of the fMRI signal is negatively 

correlated with the ADHD scores.  

 

Fig. 4: Surface-rendered images and error bars showing differences between the ADHD patients and control group. Error bar 

plot depicts the mean SampEn (±2SD) at the discriminated regions. Rendered images show the difference in SampEn 

between the ADHD and control group, after correcting for age differences. Regions shown in yellow have lower signal 

SampEn in the ADHD patients. See Table 2 for a complete list of these regions (threshold p=0.001, N>250, corrected cluster 

p<0.05). L - Left; R - Right in neurological convention. 

 

Fig. 5: Axial image slices of regions in the brain showing significant negative correlation between the ADHD score and 

SampEn of both groups. This implies the fMRI signals of the ADHD patients are more predictable (less complex fMRI 

signal) when compared to the healthy controls. See Table 3 for a list of the peak regions in this image. L - Left; R - Right in 

neurological convention. 

 
 
Fig. 6: Shows a significant negative correlation between the ADHD score and SampEn of both groups at; (A) the Middle 

Occipital Gyrus; (B) the Cuneus; (C) the Middle Temporal Gyrus; (D) the Postcentral Gyrus; (E) the Precuneus; and (F) the 

Medial Frontal Gyrus. Here the SampEn of the fMRI signal is negatively correlated to the ADHD score. This implies that 

the higher the ADHD score the lower the SampEn meaning that the ADHD patients have less complex fMRI signal. 
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                Table 1 

                  Participants characteristics, ADHD score and SampEn  

 Control 

group 

ADHD 

patients 

Test 

value 

Degrees 

of 

freedom 

Significance 

Age (years) 29.69(±8.39)a 29.65(±10.19)a 0.013b 28    p = 0.990 

Gender (M/F)      5/8          9/8 0.621c  1    P = 0.431 

SampEn 1.14(±0.07)a    1.04(±0.10)a 3.427b 28    p = 0.002 

SampEn after 

adjusting for 

age 

1.14(±0.07)a    1.04(±0.10)a 11.914d 1, 29    p = 0.002 

ADHD score 12.92(±5.97)a    40.24(±7.79)a -10.491b 28    p = 0.000 

                   Statistical comparisons: Age and SampEn - Independent t-test; Gender – Chi-Square test;  

                   SampEn after adjusting for age – General Linear Model. 

                   aMean(SD)  

                   Test values:  bt value; cChi-Square value; dF value. 
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Table 2 

Regional differences in signal SampEn between ADHD and Control group (with initial threshold of p=0.001 

and family wise error (FWE) corrected cluster level significance of p<0.05) 

Talairach 

coordinate 

(XYZ) 

Brain region ( with peak values) Cluster p 

value 

(corrected) 

Voxel t 

 Value 

Cluster 

extent 

-10 -88 36 

-18 -58 52 

Left Occipital lobe, Cuneus, White matter 

Left Parietal lobe, Precuneus, White matter 

0.000 5.77 

4.57 

16,476 

-8   14 68 

-10 24 54 

  8  32 24 

Left Frontal lobe, Superior Frontal Gyrus, Gray matter 

Left Frontal lobe, Superior Frontal Gyrus, White Matter 

Right Limbic lobe, Anterior Cingulate, White matter 

0.000 4.82 

4.70 

4.49 

2,979 
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Table 3 

Correlation between ADHD score and SampEn (with initial threshold of p=0.001and family wise error (FWE) 

corrected cluster level significance of p<0.05) 

Talairach 

coordinate 

(XYZ) 

Brain region ( with peak values) Cluster p 

value 

(corrected) 

Voxel t 

 value 

Cluster 

extent 

-26 -96 14 

-12 -98 6 

-40 -78 16 

Left Occipital lobe, Middle Occipital Gyrus, Gray matter 

Left Occipital lobe, Cuneus, White matter 

Left Temporal lobe, Middle Temporal Gyrus, White matter 

0.007 

 

5.23 

4.57 

3.57 

1,199 

-26 -50 66 

-18 -58 48 

Left Parietal lobe, Postcentral Gyrus 

Left Parietal lobe, Precuneus, White matter 

0.008 4.73 

4.70 

1,149 

 4    0   68 

-6  28  44 

-8  24  52 

Right Frontal lobe, Medial Frontal Gyrus, Gray matter 

Left Frontal Lobe, Medial Frontal Gyrus, Gray matter 

Left Frontal Lobe, Medial Frontal Gyrus, White matter 

0.012 4.52 

4.12 

4.09 

1,053 
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