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ABSTRACT 

This thesis is concerned with the developments of analysis, modelling 
and optimization techniques and computer program algorithms, with the 
ultimate aim of control of water supply and distribution systems to 
lead to overall optimal operation. 

Typical system features and operational conditions are analyzed, and 
the requirements for the overall objective are examined, to determine 
an overall control strategy which is subsequently developed and tested 
on real systems throughout this thesis. As a prerequisite, short-term 
water demand forecasting is extensively studied by employing time 
series analysis. Special consideration is given to improving the 
forecasting accuracy of the method and its on-line implementation. In 
order to speed up the solution time of optimal system operation, 
simplified system models -- namely, piecewise macroscopic model and 
equivalent network model -- are developed respectively. Then by 
employing the piecewise macroscopic model, a nonlinear programming 
method is developed to cater for the optimal operation of a class of 
multi-source systems without significant storage. The optimal 
operation policy obtained by this method is realized at two levels: 
the first level calculates the optimized apportioning of water to be 
delivered by different sources; the second level decides the least 
cost pump schedules to supply the optimized apportioning of water. 
Based on the equivalent network model, a linear programming method is 
developed for optimization of a class of multi-source, multi-reservoir 
systems with a mixture of fixed speed pumps and variable speed and/or 
variable throttle pumps. This method yields directly optimized pump 
schedules and reservoir trajectories in terms of least cost system 
operation. 

The integration of the developments results in a scheme which can be 
applied to give overall dynamic control of a wide range of water 
supply and distribution systems. The application results presented in 
this thesis justify the theoretical developments and show that 
benefits can be obtained from these developments. 
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CHAPTER 1 INTRODUCTION 

1.1 SIGNIFICANCE OF THE RESEARCH TOPIC 

Water supply and distribution systems play an important part in modern 

cities by providing the vast quantities of purified water required for 

domestic, industrial and commercial consumers. With the growth of 

concentration of population, many water supply and distribution 

systems become so large and complicated that their efficient and 

proper operation can no longer be achieved manually and must thus rely 

on some degree of automatic monitoring and control. The rising cost 

of labour also increases the importance of releasing manpower from 

routine operating tasks to participate in more productive and creative 

activities. Further, and more importantly, there has been worldwide 

concern for the reduction of energy consumption while the cost of 

electricity for pumping water is huge: the bill for the UK is more 

than £100 million per annum (CREASEY, 1988). Therefore, it is 

considered inevitable that operation of water supply systems will 

eventually yield to fully automated control in order to achieve 

efficient operation of these systems of ever increasing complexities 

and costs. 
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From the viewpoint of modern control theory, a water supply 

distribution system is a highly non-linear, stochastic and large scale 

dynamic system, which is one of the most difficult problems in theory. 

Over the last fifteen years, many researchers from different 

disciplines in a number of countries have been devoting themselves to 

studying this problem. Various methods have been employed and great 

progress has been made. However, owing to the complexities of the 

practical systems, the limitations of related theories, and other 

factors, the stage has not yet been reached where the operation of 

water supply and distribution systems is possible under fully 

automated and optimal control; nor is there available a universal 

approach which can be satisfactorily applied to any water supply 

distribution system. The state-of-the-art of the research and 

applications seems to be that different approaches are effective and 

applicable to certain classes of water supply distribution systems, 

each of them having their own advantages and disadvantages. (BRDYS, 

1988; CHEN, 1988a; COHEN, 1982; COULBECK, 1977; COULBECK, 1988; 

DEMOYER and HORWITZ, 1975a, 1976b; MOSS, 1979; PERRY, 1975; SABET 

and HELWEG, 1985). 

This thesis presents the work by the author on the development of 

alternative methods of achieving the same objectives, and improvements 

or refinements to the existing methods for the overall control of 

water supply and distribution systems. 

1.2 OVERVIEW OF THE THESIS 

This section gives an overview of the thesis and the work performed. 

The thesis is arranged in such a way as to provide a coherent and 
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overall approach to the study of optimal operation of water supply and 

distribution systems. 

CHAPTER 1 introduces the significance and the start-of-the-art of 

the research topic. This chapter also gives an overview of the thesis 

and a summary of the major contributions of the present research. 

CHAPTER 2 describes and analyzes typical features of water supply 

distribution systems and their mathematical modelling and simulations, 

which forms a background for the succeeding studies. 

CHAPTER 3 shows in detail how time series analysis is applied to 

short-term water demand forecasting. Firstly, AR (Autoregressive) 

models are applied to water demand forecasting, which have the 

advantage of simplicity in parameter estimation and convenience in 

forecasting formulation. The results of the application to the demand 

forecasting for Shanghai, China are quite satisfactory and show that 

AR models are at least suitable for a class of water demand 

forecasting. Secondly, in order to search for a method which can 

cater for more general water demand forecasting, the Box-Jenkins 

approach to general ARIMA (Autoregressive Integrated Moving Average) 

models is employed for further studies on demand forecasting. The 

satisfactory application results are shown in detail. 

Theoretical and practical comparisons are also made and presented, 

between the performance of the time series models and an existing 

demand prediction program, GIDAP, developed at the Water Control 

Centre (TENNANT et al, 1986). The latter makes demand forecasts using 
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the exponential smoothing technique. 

CHAPTER 4 discusses network modelling and simplification for optimal 

operation purposes. An ordinary water supply distribution system is 

composed of hundreds or even thousands of pipes and thus is a very 

complicated system. In conventional network simplification practice, 

networks are simplified by cancellation of pipes of small diameters, 

replacement of parallel or series pipes by " equivalents " and so on. 

This type of simplification is mainly applied to network hydraulic 

analysis and is very limited. The simplified network is still too 

complicated for optimal operation studies. Owing to this limitation 

and the reason of no better alternatives, some complicated networks 

are simplified by eliminating a large part of the network to leave 

only a few pipes. In the latter case, the characteristics of the 

original network might not be properly reflected and customer service 

requirements as well as some important components in the network, 

cannot be taken into account directly. 

In this chapter, two independent network modelling and simplification 

methods are developed and investigated. The first of these methods 

extends the macroscopic model originated by R. DeMoyer, Jr. and his 

colleagues (DEMOYER and HORWITZ, 1975a, 1975b). This extension leads 

to the piecewise macroscopic model which can be successfully applied 

to those systems in which the loading patterns are not too far from 

proportional loading assumptions. For the validation of the piecewise 

macroscopic model, results, from both multiple regression and stepwise 

regression, respectively, are given, which confirm that this extension 

is worthwhile and practical. 

4 



The second method is equivalent network modelling, which has 

originated from the author's studies. This method is developed by 

introducing the concept of fictitious pipes. By employing matrix 

algebra, the detailed mathematical deduction leads to a least-squares 

estimation problem to minimize the discrepancies between the original 

detailed network model and the simplified equivalent network model. 

The application results show that the accuracy of the method is 

satisfactory and the method is very effective in the reduction of 

system complexity. 

CHAPTER 5 examines the problem of optimal system operations. General 

formulation of the optimal operation of a system will lead to a 

nonlinear, large-scale dynamic optimization problem, which is one of 

the most difficult problems to solve. There is almost no method in 

the field of optimization that can cope with all the difficulties at 

the same time. Investigation into the various approaches by different 

researchers over the last fifteen years concludes that the stage has 

not yet been reached where a universal approach is available which can 

cope with all the difficulties and which is applicable to any water 

supply and distribution system. 

In this chapter, by exploring the particular features of different 

classes of water supply and distribution systems, two algorithms are 

developed. The first algorithm caters for a class of multi-source 

systems without significant storage in the distribution part. Under 

such a premise, the large-scale nonlinear problem for the whole 

control period can be divided into many much smaller ones for each 

time interval which can be solved separately. These small problems 
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are easier to solve than the original single large-scale problem, and 

the computation time for all the small problems together is much 

shorter than that of the original single large-scale one. The 

formulation of the optimal operation problem for each time interval by 

this algorithm results in a constrained non-linear programming problem 

where the pumping costs together with the treatment costs comprise the 

objective function. The pressure requirements of some pressure 

monitoring nodes in the system as well as pumping capacities and other 

features are taken into account in the constraint set. Technically, 

the optimal operation problems are further simplified by employing the 

piecewise macroscopic model developed in Chapter 4. This model 

relates major variables in the system directly to avoid solving the 

simultaneous network equations iteratively, which is time consuming 

and is hardly feasible for on-line control purposes. The optimal 

operation produced by this algorithm is realized at two levels. The 

first level calculates the optimized apportioning of water to be 

delivered by different sources. The second level caters for the 

derivation of the optimized pump schedules to supply the optimized 

apportioning of water. The application results of this algorithm show 

that significant savings can be achieved from this optimal operation 

scheme. It is concluded that this algorithm is directly applicable to 

a general class of multiple source systems and can also be extended to 

solve the optimal operation problems of multi-source, multi-reservoir 

systems by incorporating piecewise macroscopic relationships for 

reservoirs into the constraint set. However, after the extension, 

much greater difficulties might be encountered in the non-linear 

programming computations, and global optima cannot be guaranteed. 

The second algorithm is developed for a class of multi-source, multi- 
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reservoir systems in which pump flows, and especially pump consumed 

powers, are nearly constant during the whole control period. This 

condition can be satisfied in many systems with significant reservoir 

storage, since the significant storage can to a certain degree 

compensate for the fluctuations in water demand to keep the pump flows 

(and thus powers) from changing significantly. Based on the 

equivalent model developed in Chapter 4, and by rightly choosing time 

of pumping rather than, as in the usual approach, pump flow, as a 

decision variable, this algorithm eventually comes to a large-scale 

linear programming problem for which global optima can be usually 

guaranteed. This algorithm is also capable of dealing with the 

mixture of discrete variables and continuous variables by discretizing 

the continuous variables. The method of discretization is also 

studied systematically, based on a post-optimality analysis. The 

application results show that optimized pump schedules and reservoir 

trajectories can be obtained by this algorithm to lead to least cost 

system operations. It is concluded that this algorithm is also 

suitable to apply to those systems in which the pump flows are varying 

significantly, by taking the average values of the flows. The derived 

solution could provide a good indication or reference for the optimal 

operations of those systems. 

Comparisons are made between the applications of this algorithm and 

the existing optimization program CIPOS (Graphical and Interactive 

Pump Optimization and Scheduling) developed at the Water Control 

Centre. It is shown that the former algorithm is more suitable for 

applying to that system, particularly for its future operation. 
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Computer programs are written in Fortran 77 by the author for both of 

the optimization algorithms for general purpose applications. 

CHAPTER 6 reviews and draws conclusions on the developments, and 

limitations and indicates requirements for further work of the 

research in various aspects of the overall objectives. A proposal is 

given for an integrated scheme for the optimal dynamic control of 

water supply and distribution systems. This scheme will incorporate 

the mathematical models and program algorithms developed in this 

thesis. General conclusions are drawn and worthwhile further work is 

envisaged on the main aspects of the research. 

1.3 MAJOR CONTRIBUTIONS OF THE PRESENT RESEARCH 

The following major contributions all reflect original work by the 

author and are considered to represent significant advances over 

existing work. All of them are also established in the form of 

computer programs written in Fortran 77 and some of them have been 

published in periodicals, books and conference proceedings as listed 

in the References and given in the Appendix. 

(i) Development of versatile time series water demand forecasting 

model (Chapter 3). This is an original application and covers the 

whole procedure from model building to forecasting, which is suitable 
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for immediate application to other water supply distribution systems. 

(ii) Development of a piece-wise macroscopic modelling technique for 

network simplification (Chapter 4). This extends existing methods to 

allow for application to more general systems. 

(iii) Development of an equivalent modelling technique for network 

simplification (Chapter 4). This is a new approach which, for the 

first time in network simplification studies and practice, introduces 

the concept of fictitious pipes resulting in a much simplified network 

which can reflect the main feature of the original network and is 

convenient for optimization manipulations. 

(iv) Development of theory and computer program of nonlinear 

programming method using piecewise macroscopic model. This method 

caters for the optimal operation of a class of multi-source water 

supply and distribution systems (Chapter 5). This is an original 

application and has resulted in optimized apportioning of water, to be 

delivered, among different sources and least cost pump schedules to 

supply these optimized proportions. These are conducted at two 

levels. 

(v) Development of theory and computer program of linear programming 

method using equivalent network model. This method is applicable to a 

class of multi-source, multi-reservoir systems with fixed speed pumps 

and/or variable speed pumps (Chapter 5). This is also an original 

application. The program evaluates directly optimized pump schedules 

and reservoir trajectories to lead to least cost system operations. 
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CHAPTER 2 GENERAL DESCRIPTION AND ANALYSIS OF 

WATER SUPPLY AND DISTRIBUTION SYSTEMS 

2.1 INTRODUCTION 

Generally, an urban water supply and distribution system is composed 

of water sources, treatment works, pumping stations, control valves, 

reservoirs, and distribution networks. Water is abstracted from water 

sources (surface and/or underground water), and is purified at the 

treatment works. After purification, water is transported under the 

influence of pressure through conduits to service reservoirs and 

consumers. Pressurization is achieved either by utilizing the force 

of gravity along favourable topographical gradients, or by using 

pumps. Fig 2.1 shows the configuration of a multi-source, multi- 

reservoir water supply and distribution system. 

This chapter describes in brief the functions of the important 

components of a water supply and distribution system together with 

appropriate mathematical models. 
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Fig 2.1 A Multi-Source and Multi-Reservoir 
System 

2.2 PUMPING STATIONS 

For water supply purposes, there are several types of pumps in use: 1) 

borehole pumps, which deliver water from wells or boreholes and are of 

submersible or vertical spindle type; 2) pumps after treatment works 

(usually with a contact tank) which are horizontally mounted of 

centrifugal type; and 3) in-line booster pumps, which serve to raise 

the pressure of water to deliver water from low to high pressure 

regions within the distribution system, these are also of centrifugal 

type. All these pumps may be either fixed or variable speed 

(COULBECK, 1977; FAIR et al, 1966; YANG, 1956). 
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Most pumps are driven by electric motors and consume large amounts of 

electrical energy. Pumping costs constitute the large part of 

operating costs for most water supply and distribution systems. From 

an operational point of view, they are the most important control 

components in the system operation, and thus are our main concern in 

optimal operations. 

A general pump station may contain parallel groups of fixed speed and 

variable speed and/or variable throttle pumps, where each group can 

be composed of a number of pumps of similar characteristics. 

Individual pump group head/flow characteristics are typically non- 

linear, with combined pump flow being a function of the station head 

increase and the number of parallel pumps. For variable speed or 

variable throttle pumps, the flow is also a function of speed or 

throttle factors, respectively. Individual pump efficiency is a non- 

linear function of pump flow. Pump group power consumption is also a 

non-linear function of the station head increase, number of parallel 

pumps, pump flow and pump efficiency. 

It is found that in general, pump characteristics can be adequately 

fitted by a family of quadratic functions (CHEN, 1985; ORR et al, 

1988b; YANG, 1979). 
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2.2.1 Head Increase vs Flow Relationship 

i) Fixed Speed Pumps (FSP): 

single pump: 

H=AQ2+BQ+C 

where: 

Q= pump flow. (e. g., 11s) 

H= pump head increase. (e. g., m) 

(2.1) 

A, B, C= coefficients. 

combined identical pumps in parallel (i. e., group equation): 

Hf= A(Qf/u)2 + B(Qf/u) +C (2.2) 

where: 

Qf = uQ is the combined pump group flow. (e. g., 11s) 

Hf = combined pump group head increase. (e. g., m) 

u= number of identical pumps in operation. 

ii) Variable Speed Pumps (VSP) 

single pump: 

Hs/s2 - A(Qs/s)2 + B(Qs/s) +C (2.3) 

where: 

s= (actual speed / nominal speed) speed ratio; the nominal 

speed is the speed at which the hydraulic pump 

coefficients A, B, C are determined. 

Hs = pump head increase for speed ratio s. (e. g., m) 
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Qs = pump flow for speed ratio s. (e. g., l1s) 

A, B, C = coefficients. 

combined identical pumps in parallel (group equation): 

Hs/s2 = A(Qs/su)2 + B(Qs/su) +C (2.4) 

where: 

s= as in eqn(2.3). 

u= number of identical pumps in operation. 

Hs = pump group head increase for speed ratio s and pump 

control u. (e. g., m) 

Qs = combined pump group flow. (e. g., 1/s) 

iii) Variable Throttle Pumps (VTP) 

single or combined identical throttle pumps: 

Hv = A(Qv/uv)2 + B(Qv/uv) +C (2.5) 

where: 

v= throttle factor, 0.0 <v<1.0. Practically, v=1.0 

represents a fully open valve and v=0.0 represents a fully 

closed valve. 

u= number of identical pumps in operation. 

Qv - combined or single (when u=1) throttle pump group flow- (e. g. 1/s) 

Hv = combined or single throttle pump group head increase. (e. g. m) 
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The A, B, C coefficients in eqn(2.1) to eqn(2.5), can be estimated using 

the least-squares method, with data from pump manufacturer's test-bed 

curves or from field tests. In practice, it is found that field test 

data are more reliable and accurate for coefficient estimation. 

Fig 2.2 and Fig 2.3 show the modelling results of a variable speed 

pump, which is obtained by using the Water Control Centre program 

GIPADS (ORR et al, 1988b). 
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iv) combinations of different pumps 

For the case of combinations of different pumps, it is much more 

difficult to obtain the analytical head vs flow relationship than for 

that of combinations of identical pumps. In the author's studies, 

there are two methodologies. The first one is to carry out a field 

test for joint pump operations then fit the data into an approximate 

quadratic function as the head vs flow relationship for the pump 

combination: 

H= AQ2 +BQ +C (2.6) 

where: 

H= combined pump head increase. (e. g., m) 

Q= combined pump flow. (e. g., 11s) 

A, B, C= coefficients for the combined pump. 

head H 

H2 

C4 

Pump I Pump 2 Combined Pump 

o Qo 

Fig 2.4 Head vs Flow Relationship 
for Two Different Pumps 

flow Q 
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The second methodology is shown through the following example: 

Fig 2.4 shows the head vs flow relationships of two different fixed 

speed pumps. 

Assume: 

pump 1H= A1Q2 + B1Q + C1 

pump 2H= A2Q2 + B2Q + C2 

( H02 > H01, see fig 2.4) 

When they are in operation simultaneously in parallel, the following 

holds: 

H1 = H2= He 

Q1 + Q2= Qc 

H1 = A1Qj2 + B1Q1 + C1 

H2 = A2Q2 2+ B2Q2 + C2 

H- ACQc2 + BCQc + Cc ......................... (2.7) 

where: 

Q1, Q2 = pump I and pump 2 flow 
, respectively. (e. g., 11s) 

His H2 - pump 1 and pump 2 head increase, respectively. (e. g., m) 

Hc, Qc - combined head increase and flow, respectively. 

Ac, Bc, Cc = coefficients for the combined pumps to be 

determined. 

With the above relationships, for given head vs flow relationships for 

pumps 1 and 2, a few data points (c1, c2,..., cn) as shown in Fig 2.4 

for the combined pump can be generated from egn(2.7). These data 
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points can be used to fit an approximate quadratic function for the 

head vs flow relationship of the combined pumps as: 

H= ACQ2 + BCQ + Cc (2. s) 

In practice, the second approach is found to be more convenient to 

apply (CHEN, 1985). 

The combinations of two different variable speed pumps (VSP's) and/or 

variable throttle pumps (VTP's) could be much more complex. It will 

be very difficlut to obtain the head vs flow relationships of the 

combined pumps, since this has to be done repeatedly at a number of 

speed ratios for a VSP or at a number of throttle factors for a VTP. 

2.2.2 Flow vs Efficiency and Power Relationships 

1) Fixed Speed Pumps 

a) efficiency 

'1f = q* { 1-[Qf/(uQ*)-1]2 } 

? 7*(Qf/uQ*)(2-Qf/uQ*) (2.9) 

where: 

71f = operating efficiency for single pump (u=1) or combined 

identical pumps. i%) 

ý* = peak efficiency for an individual pump. (%) 

* 
peak efficiency flow for an individual pump. (e. 

Qf - see eqn(2.2) and eqn(2.1). 

u- see egn(2.2). 
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Eqn(2.9) is a symmetrical curve about peak efficiency flow. It can be 

uniquely determined when peak efficiency and corresponding flow are 

known. 

b) Pump Group Power Consumption 

Pf = gHf Qf/ if (2.10) 

where: 

Pf = total pump group input power. (e. g., kW ) 

g= unit conversion factor for electrical power relating 

water quantities to electrical energy. (e. g., 0.98kWs/m/1) 

Qf'Hf, ?f= see eqn(2.2) and eqn(2.9), respectively 

ii) Variable Speed Pumps 

a) Efficiency 

77s q*{1-[QS/(suQ*)-1]2} 

_ 77 *(Qs/suQ*)(2-Qs/suQ*) (2.11) 

where: 

77 
S= operating pump efficiency. (%) 

Q= peak efficiency flow. (e. g., 11s) 

s, Qs, u = see eqn(2.4). 

b) Total Pump Group Power Consumption 

PS - gHSQs/7s (2.12) 

A comparison between modelled and real values for pump efficiency and 

power characteristics for a variable speed pump are also shown in Fig 
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2.3. For fixed speed pumps or variable throttle pumps the results will 

be similar. 

iii) Variable Throttle Pumps 

a) Efficiency 

if = 71 *{1-[Qf/(UQ*)-1)2} (2.13) 

b) Pump Group Power 

pump group power 

Pv = gHfQv/ %f (2.14} 

where: 

g= see eqn(2.11). 

Hf = head increase of the fixed speed pump(s) in the group. (e. g., m) 

Qv = pump group flow. (e. g., 11s) 

? If = efficiency of the fixed speed pump(s) in the group. (%) 

however, some of this power will be lost by dissipation in the 

throttle valve. 

2.3 PIPES 

These are the most commonly occurring elements in a network. There 

are several equations which are of ten used to evaluate the friction 

head loss (i. e., conversion of energy per unit weight of water into a 

non-recoverable form of energy) along a pipe. The most fundamentally 

sound method for computing such head losses is by means of the Darcy- 
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Weisbach equation (JEPPSON, 1979; FAIR et al, 1966; YANG, 1956): 

L V2 
Hf = f - -- 

D 2g 

where: 

Hf = friction head loss along a pipe. (e. g., m) 

f= is a friction factor . 

D= pipe diameter. (e. g., m) 

L= pipe length. (e. g., m) 

V= average velocity of flow. (e. g., m/s) 

g= acceleration of gravity. (e. g., m/s2) 

(2.15) 

Whilst the Darcy-Weisbach equation is the most fundamentally sound 

method for determining head losses or pressure drops in closed conduit 

flow, empirical equations are widely used. Perhaps the most widely 

used of such equations are the empirical Hazen-Williams and Manning 

equations. 

Hazen-Williams equation: 

Hf = [10.70L/(CHW1.852D4.87)IQ1.852 (2.16) 

where: 

Hf = head losses across pipe (m). 

L= pipe length (m). 

D= pipe diameter (mm). 

Q- flow rate (11s). 

CHW = Hazen-Williams roughness coefficient depending upon the 

pipe material, age, etc. 
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Manning equation 

Hf = (10.29n2L/D5.333)Q2 (2.17) 

where: 

Hf, L, D, Q= see eqn(2.16). 

n= Manning roughness coefficient which depends upon pipe 

parameters. 

Both egn(2.16) and eqn(2.17) can be summarized as: 

Hf = sQ« (2.18) 

or: 

Q= GHf 
ß (2.19) 

where: 

S= general pipe resistance coefficient; for Hazen-Williams 

equation, S =(10.70L)/(CHW1.852D4.87); for Manning 

equation, S =(10.29n2L)/D5.333. 

G= 1/Sß 

«= flow power coefficient, for Hazen-Williams equation, 

equals 1.852; for Manning equation, equals 2.0. 

O= 1/(X, for Hazen-Williams equation, equals 0.54; for Manning 

equation, it is 0.50. 

2.4 PRESSURE REDUCING VALVES (PRV) 

A pressure reducing valve is designed to maintain a constant pressure 
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(or head) downstream from the PRV when the upstream pressure (or head) 

is within the valve design limits. This can be modelled by assuming 

that between downstream node i and upstream node j, there is a valve 

with a setting of pressure to equal to HPRV (COULBECK, 1977; JEPPSON, 

1979; RAO and BREE, 1977a, 1977b): 

i) if Hj -> HPRV >-Hi 
, the valve reduces the head to HPRV to give 

af low from node j to node i, given by: 

Qij =G IHPRV 
- Hilo 

where: 

(2.20) 

Qij = flow from node j to node i. (e"g", 11s) 

Hi, H3 = head at node i and node j, respectively. (e. g., m) 

HPRV = 'pressure setting at the pressure reducing valve. (e. g., m) 

G= see eqn(2.19). 

ii) if Hi > HPRV, the PRV acts as a check valve, no reverse flow 

takes place and hence Qi j=0. 

iii) if Hj < HPRV and Hi < HPRV, the valve has no effect on flow 

conditions and acts as a pipe with a head drop of (Hj - Hi). 

2.5 CHECK VALVES (OR NON-RETURN VALVES) 

A check valve is designed to allow only one direction of flow. Assume 

that between a downstream node i and upstream node j, there is a check 

valve and that the flow is only allowed from node j to node i. 

i) when H3 > Hi, the check valve acts as an ordinary pipe, 
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Qij =G Hf (2.21) 

where: 

G= see eqn(2.19). 

Hf = head loss along the pipe. (e. g., m) 

ii) when Hj < Hi, 

Qij =0 (a closed pipe) (2.22) 

2.6 RESERVOIRS, TANKS AND TOWERS. 

Reservoirs in the distribution system are sometimes called service 

reservoirs. The main functions of service reservoirs are to provide 

storage to cater for fluctuations in normal demand and a reserve for 

emergencies (such as fire fighting and mains bursts). 

The dynamics of the ith reservoir in a system can be described as 

(COHEN, 1982; MCPHERSON, 1960,1966): 

Si(xi)*i = Qi 

where: 

(2.23) 

xi = water level at time t in the ith reservoir. (e. g., m) 

Ii = time derivative of water level of ith reservoir. (e. g., m/s) 

Si(xi) - cross-sectional area of the ith reservoir at water 

level xi. (e. g., m2) 

Qi = the inflow or outflow (negative inflow) of the ith 

reservoir. (e. g., m3/s) 
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Reservoir inflow is generally a non-linear function of pump flows, 

demands and reservoir water levels. Therefore, for a system with I 

reservoirs, M pump outflows and i demands, the dynamics of the 

reservoirs can be alternatively expressed in the following 

vector form: 

X=f (X, QP, D) (2.24) 

where: 

X[ x1, x2, ..., *11T, xi (i=1,2, ..., I) is the time 

derivative of the ith reservoir level. (e. g., m/s) 

X=[ x1, x2, ..., xI]T, xi (i=1,2, ..., I) is the ith 

reservoir level. (e. g., m) 

QP = [QP1, QP2, ..., QPM]T, QPm (m =1,2, ..., M) is the mth 

pump outflow. (e. g., m3/s) 

D= [d1, d2, ..., dJ]T, dj (j = 1,2, ..., J) is the jth demand 

in the system. (e. g., m3/s) 

f(") = vector function. 

Its discrete and linearized form could be (COULBECK, 1977; COHEN, 

1982): 

X(k+1) = Ax X(k) + QP(k) + Cx D(k), 
(2.25) 

and X(0) = X0 

where: 

X(k+1), X(k) = reservoir level vector at time stage k+1 and k, 

respectively. (e. g., m) 

Q(k) = pump outflow vector at stage k. (e. g., m3/s) 

D(k) demand vector at stage k. (e. g., m3/s) 
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Ate, ýý, ý{ = coefficients matrices. 

XO = initial reservoir level vector, which is usually known or 

given in advance. (e. g., m) 

Alternatively, from the principle of mass balance for a reservoir, the 

following holds: 

Vi(k+l) = Vi(k) +. Q1i, k1 Ati, kl 
E Q21, k2 Ati, k2, 

and Vi(0) = VOi 

i=1,2, ..., 1 (2.26) 

where: 

Vi(k+l), Vi(k) = volume storage of water in reservoir i at 

stage k+l and k, respectively (e. g., m3) 

Q1i k1 = flow into reservoir i during period kl of stage k. (e. g., m3/s) 

Q2i, k2 = flow out of reservoir i during period k2 of stage k. (e. g., m3/s 

Lti, kl = duration of period kl of stage k when the inflow 

occurs at reservoir i. (e. g., s) 

Ati, k2 = duration of period k2 when the outflow occurs at 

reservoir i. (e. g., s) 

VOi a initial volume storage of water in reservoir i, which is 

usually known or given in advance. (e. g., m3) 

The above relationship will be further explored in Chapter 5. 
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2.7 HYDRAULIC ANALYSIS OF WATER SUPPLY AND DISTRIBUTION SYSTEMS 

The task of the hydraulic analysis of a water supply and distribution 

system is to calculate all pipe flows, node pressures, pumping flows, 

delivery heads, reservoir levels, etc. under given demands, system 

controls, and initial and network boundary conditions. In order to 

make the analysis practical, a network is first 'skeletonized' such 

that those pipes which are considered to be insignificant are deleted 

and all loads (demands) are aggregated at nodes. The static solution 

or network instantaneous balancing is obtained based upon the 

following laws (FAIR et al, 1966; JEPPSON, 1979; YANG, 1979): 

1) Continuity law: 

At each node: 

'Qinflow I Qoutflow =0 (2.27) 

If a pipe network contains j nodes (or junctions) and all external 

flows are known then there will be J-1 independent continuity 

equations in the form of eqn(2.27). The last, or the Jth continuity 

equation, is not independent, that is to say, it can be obtained from 

combination of the first J-1 equations. 

2) Energy law: 

In each loop: 

EH=0 (2.28) 

In addition to the continuity equations which must be satisfied, the 

energy law provides equations which must also be satisfied. These 

additional equations are obtained by noting that if one adds the head 

29 



losses around a closed loop, taking into account whether the head loss 

is positive (clockwise) or negative (counterclockwise), that upon 

arriving at the beginning point the net head losses equal zero. For a 

network with L non-overlapping (or natural) loops, the following 

holds: 

I 
hf1=0 

1 

II 
Zhf1 =0 
1 

(2.29) 

L 
Xhf1=0 
1 

where the summation on small 1 is over the pipes in the loops I, II, 

..., L. By use of eqn(2.18), eqn(2.29) can be written in terms of the 

f low: 

S1Qa 
1 

II 
S1 Qa -0 (2.30) 

1 

S1Qa a0 
1 

If there is a pump or a valve in series with a pipe, the head increase 
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or head loss can be added to the relevant equation. 

A pipe network consisting of J nodes (or junctions), L non-overlapping 

loops and N pipes will satisfy the equation: 

N= (J- 1)+L (2.31) 

Since the flow in each pipe can be considered unknown, there will be N 

unknowns. The number of independent equations which can be obtained 

for a network are (J-1)+L. Consequently the number of independent 

equations is equal in number to the unknown flows in the N pipes. The 

(J-1) continuity equations are linear and the L energy (or head loss) 

equations are nonlinear. 

With the advent of high speed computers, various techniques, such as 

linear theory method, Newton-Raphson method, finite element method 

have been employed to solve those simultaneous continuity equations 

and energy equations for instantaneous hydraulic analysis of water 

distribution systems. There are now many commercial, fully 

comprehensive graphical and interactive computer package available, 

which bring great convenience to researchers, engineers and operators 

(COULBECK, 1985; CREASEY, 1988; JEPPSON, 1979; RAO et al, 1974; 

SHAMIR, 1968,1977; YANG, 1979). 

2.7.1. Static Simulation 

By static simulation, is meant that for fixed pump and valve controls, 

and fixed reservoir head and given demands, all pipe flows and nodal 

heads are solved and balanced according to egn(2.27) and eqn(2.30). 
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This constitutes a basic hydraulic analysis of a water distribution 

system. There are various algorithms to solve these simultaneous 

equations. For technical details, consult (COULBECK, 1985; JEPPSON, 

1979; SHAMIR, 1968; YANG, 1979). 

2.7.2 Dynamic Simulation 

Dynamic simulation or extended period simulation (COULBECK, 1977, 

1985; RAO et al, 1974) consists of a sequence of static solutions 

which are performed successively at pre-specified intervals. Usually 

the time horizon is a 24-hour period, and by discretizing this period 

into a number of intervals, it is possible to transform the dynamic 

problem to a sequence of interconnected static problems. Successive 

time intervals are linked through the reservoir levels, which are 

calculated assuming reservoir flows to remain constant during each 

discrete time increment. At the end of each time increment, water 

levels in the reservoirs are updated. The flow into or out of the 

reservoir, as given by the flow solution, is integrated over the time 

interval to yield the total volume which entered or left the reservoir 

during the time interval. This can then be converted into a change in 

water level in the reservoir, using the known geometry of the 

reservoir. The only difference between solving a series of 

independent flow problems and the dynamic simulation over time is the 

automatic updating of water levels in the reservoir at the end of each 

time interval, which prepares the data for the next solution. From 

the computational viewpoint, there is also the difference that during 

a dynamic simulation, each static simulation uses the values of the 

previous solution as initial values for the dependent variables. Pre- 
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defined schedules of pump operations and valve settings and, time- 

varying load values are also necessarily used to update the inputs to 

the static solutions in each successive time interval. 

Dynamic simulation is very useful and can be applied in many ways: it 

can be employed to investigate the operations of distribution systems 

under different pump combinations, valve settings and demand patterns; 

It can also be used in evaluating the effects of the implementation of 

optimized pump schedules; It can even be applied to generate data for 

simplified network modelling (which will be further discussed in 

Chapter 4) as well as other aspects. 

2.8 OPTIMAL OPERATION OF WATER SUPPLY AND DISTRIBUTION SYSTEM 

The aim of optimal operation of a water supply distribution system is 

to be fulfilled by adequately arranging pump scheduling such that the 

overall pumping cost of the system (sometimes also treatment cost 

etc. ) is a minimum whilst meeting customers' service requirements and 

system operational constraints. Fig 2.5 shows a proposed scheme for 

the optimal operation of a water supply and distribution system. The 

objective of the studies presented in this thesis is to develop 

systematic methods and a suite of computer programs for a computer- 

based control system. 

Since optimal pump scheduling is made for future operations, and also 

usually on a day to day basis, short-term water demand forecasting, 

particularly hourly demand forecasting (for the 24 hours of a day) is 

a prerequisite, which will be discussed in Chapter 3. Furthermore, 
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since water supply and distribution networks are highly non-linear, 

stochastic and large scale dynamic systems, network simplifications 

are necessary for system operation studies. Different simplification 

methods have been extensively studied and are summarized in Chapter 4. 

Finally, with the availability of demand forecasting and simplified 

system models, different optimization methods to suit different 

classes of practical systems and their validation and 

applications are reported in Chapter 5. 

2.9 CONCLUSIONS 

This chapter has given a brief description of the functions and 

mathematical models of important components in a water supply and 

distribution system. The methods and usefulness of hydraulic analysis 

of a water supply and distribution system are also stated. These 

should form a basis for the studies in the thesis. The main original 

contribution in this chapter is the formulation of the approximate 

models for the combinations of different pumps. 
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CHAPTER 3 ANALYSIS AND FORECASTING OF 

WATER DEMAND 

3.1 INTRODUCTION 

As outlined in Chapter 2, water demand forecasting is a necessary 

prerequisite and an important component of the control procedure for 

water supply and distribution systems. Furthermore, since control 

decisions are usually made on an hourly basis over a 24 hour horizon, 

the author has paid particular attention to hourly demand forecasting. 

The principles described are, however, applicable for a range of time 

intervals and control horizons. 

This chapter describes how time series analysis can be applied to 

water demand forecasting. Firstly, the methodology and application 

results of AR models are presented. Such models may not be generally 

applicable to all patterns of water demand, but have their advantages 

which include: simplicity of parameter estimation, convenience of 

model identification and practical implementation. Secondly, the Box- 

Jenkins approach to general multiplicative ARIMA models is discussed 

and application results are also presented. Such an approach was 

greatly assisted by the availability of time series analysis routines 
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from the NAG Fortran Library (NAG, 1983). Thirdly, a comparison is 

presented, between the performance of the time series models and an 

existing demand prediction program, 'GIDAP', developed at the Water 

Control Centre (TENNANT, 1987). The latter makes demand forecasts 

using the exponential smoothing technique. 

3.2 CHARACTERISTICS OF WATER DEMAND 

The instantaneous consumption of water in an urban distribution system 

is determined by the large number of industrial, commercial, public 

and domestic consumers distributed throughout the area supplied. This 

consumption is influenced by such factors as the weather, season, 

temperature, holidays and leaks. Thus the total demand in an urban 

water distribution system is a time-varying, periodic, nonstationary 

stochastic series, which can be modelled and predicted, by using time 

series analysis. 

3.3 STUDIES ON A CLASS OF WATER DEMAND FORECASTING 

A general class of time series models , 
for many time series when 

properly analyzed, can yield excellent fits and generates accurate 

forecasts. This broad class of models is called multiplicative ARIMA 

(Autoregressive Integrated Moving Average ) models, and is formulated 

as follows (AN, 1983; BOX and JENKINS, 1976; VANDAELE, 1983): 

37 



SO(B) 4(BS) V DQd Xt = 0(B)8(BS)at (3.1) 

where: 

cO(B) =1-ýO, B- ý02B2- 
... - (pp Bp (3.2) 

O(BS) 
=1- 

01 BS - 
02 

B2S - ... - 
Op BPS (3.3) 

0(B) 
=1- 01B- 02 B2- ... 

egBq (3.4) 

e(BS) =1- el BS - 
82 B2S - ... - eQ BQS (3.5) 

Vd = non-seasonal differencing 

QSD = seasonal differencing 

d= order of non-seasonal differencing 

D= order of seasonal differencing 

S= seasonality 

Alternatively, eqn(3.1) can be written as: 

ARIMA(P, d, q)(P, D, Q) (3.6) 

Among this general class of multiplicative ARIMA models, there is a 

special class of models called AR (Autoregressive) models. For this 

sub-class of models, parameter estimation can be performed using 

linear least-squares the formulation of which is also very simple. In 

the author's studies, it has become evident that the consumption 

patterns for some water supply distribution systems can be described 

as an AR model or ARI MA(p, d, 0)(0,0,0)0, thus: 

17d Xt - 1Vd Xt-1 + (P2Vd Xt-2 + ... + (PV' Xt-p + at 

(3.7) 
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where: 

17d = (1-B)d, is the d-order backward differencing operator, 

e. g. for d =1,01 Xt = Xt - Xt_i; for d=2, V2 Xt = Xt 

- 2Xt_i + Xt-2, etc. 

Xt = water demand at time t 

ýOi = parameters to be estimated 

at = residual at time t. at is a white noise series 

following an independent normal distribution with 

expectation value 0 and variance ä2. 

Let Wt = Od Xt = (1 - B)d Xt, then egn(3.7) becomes: 

Wt - S1 Wt-1 +'p2 Wt-2 +... + (p Wt-p + at (3.8) 

In fact, eqn(3.8) is an AR(p) model. 

3.3.1 Estimation of Parameters (Pi 

Note that eqn(3.8) is a linear model about the parameters: 

-! 
ý= ((Pl. 'P2$""" Pp), 

which can be estimated using the method of linear least-squares (AN, 

1983; BOX and JENKINS, 1976): 

The sum of squares of the residual at is: 
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N 
S( CP )=E at2 

t=p+1 

N 
=E (Wt - 91Wt-1 - ... - 9pWt-p 

t=p+1 

(3.9) 

where: 

N= length of the sample 

In order to determine the conditions on the estimate 4 that minimizes 

S(IF), differentiate S((P ) with respect to (f and equate the result 

to zero, i. e.: 

) as( (p 
=o 

where: 

±L (PiL, TA 2L, ... , 
$PL ), the estimate of 

then, for j= 1,2, ..., p, 

Ne 
E Wt-j x (Wt - `ý1 

L Wt-1 (PW0 
t=p+1 

(3.10) 
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or 

AL CP2L 
1NN 

E Wt-1 x Wt_ +-E Wt-2 x Wt-j + ... + 
N t=p+1 N t=p+1 

(P LNN 

+pE Wt_p x Wt_j _E wt x Wt_i 
N t=p+1 N t=p+1 

(3.11) 

Now, if we let 

AL1NAL 
rij = -- E Wt-i x Wt-j = rji 

N t=p+1 

and 

A=I rijL ýPxP 

L B=L r0j 'pxl 

then, eqn(3.11) becomes: 

P 
E pijL x iL = 

=ojL (3.12) 

i=1 

or 

AT (3.13) 

Solving eqn(3.13) gives: 

LT = 'P 1 
L' 'P2L' ... ,I pL 

]TÄ1B 

then, for t= p+l, ..., N 

A 
atL = Wt - 1L Wt-1 

pL 
Wt-p (3.14) 
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The estimate of 43a2 can be computed from 

1N 
Üa2 

= --- E[ atL 12 =1 ) --- Si A) (3.15IPL 
N-p t=p+1 N-p 

3.3.2 Selection of Order p 

It is suggested that the order p of eqn(3.8) be determined using an F- 

test (AN, 1983): 

HO (hypothesis): fpp+l =0 

Let AO denote the residual sum of squares of AR(p+1), i. e. 

S( T)IAR(p+1), and Al denote the residual sum of squares of AR(p), 

i. e., S( (P) AR(p), then 

-Ao 
F= 

Al-- 
/ --------- 

1N- (p+l) 

follows the F-distribution with the degrees of freedom 1 and N-(p+l), 

respectively. 

For a given significance level (t(generally a-0.05 or a-0.01), the 

value of F,, (1, N-(p+l)) can be found from a table of F-distributions. 

If F> Fa 
, this means the hypothesis is not tenable and the order of 

the model still needs to be increased, otherwise, AR(p) is a suitable 

model. 
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3.3.3 Forecasting 

According to the theory of Minimum Mean Square Error Forecast (AN, 

1983; BOX and JENKINS, 1976), it is easy to form the one-step ahead 

forecasts of model AR(p): 

Wt(l) _91 Wt-1 + (P 2 Wt-2 + ... + cP 
p 

Wt-p i 3.16 ) 

where: 

A 
Wt(1) = one-step ahead forecast at time t 

Therefore, the one-step ahead forecast for Xt at time t, Xt(l), can be 

obtained from Wt (1) = Vd Xt(1). 

3.3.4 Application 

The time series for hourly demands can be obtained by two methods: by 

considering each successive hour of the same day (also called series 

forecasting); or by considering the same hour for each successive day 

(also called parallel forecasting). 

Table 3.1 lists the results of using the first method to model hourly 

demands for Shanghai, China, during 1985. Fig. 3.1 is a graphical 

representation of these results. Table 3.2 and Fig. 3.2 shows results 

for the same data using the second of the above methods. 
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Comparing Table 3.1 and Fig 3.1 with Table 3.2 and Fig 3.2, it is 

evident that the forecasting precision of the second method is greater 

than that of the first method, under normal conditions. But under 

conditions which influence water demands, such as changes in weather, 

temperature and burst mains, large errors can occur in the second 

method. However, the forecasting curve of the first method is able 

to closely follow the changes of the actual curve. It is therefore 

evident that certain improvements are required to each approach in 

order to increase the accuracy of demand forecasts. 
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TABLE 3.1 MODELLING RESULTS FOR THE SERIES FORECASTING METHOD 

ORDER OF ORDER OF MODEL AND RESIDUAL SUM PER CENT OF 
DIFFER- VALUES OF PARAMETERS OF SQUARES F Fa PREDICTIONS 
ENCE FOR WHICH 

cpi Al A2 a=. 05 THE RELATIVE 
ERRORS ARE 

d=1 p=6 p=7 (p=6) (p=7) NOT GREATER 
THAN 3% 

. 59443 . 58822 
-. 12656 -. 13160 . 4154 . 4133 . 40 3.9 85.36 % 

-. 07543 -. 06839 
-. 00659 -. 00870 

. 04927 . 05295 
-. 22292 -. 23382 

. 02045 

demand(104x m3/hr) 

predicted 

Fig 3.1 Modelling Results Using the Series 
Forecasting Method 
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TABLE 3.2 MODELLING RESULTS FOR THE SERIES FORECASTING METHOD 

ORDER OF ORDER OF MODEL AND RESIDUAL SUM PER CENT OF 
DIFFER- VALUES OF PARAMETERS OF SQUARES F Fa PREDICTIONS 
ENCE FOR WHICH 

ýPi Al A2 a=. 05 THE RELATIVE 
ERRORS ARE 

d=1 p=6 p=7 (p=6) (p=7) NOT GREATER 
THAN 3% 

-. 45968 -. 50553 
-. 31733 -. 34833 . 1745 . 1669 1.47 4.03 91.00 % 
-. 25703 -. 32581 

. 06012 -. 03494 

. 01247 -. 04554 

. 09241 . 11487 

. 03510 

20 

is 

10 

S 

Fig 3.2 Modelling Results Using the Parallel 
Forecasting Method 

One suggested way to improve the forecasting precision is to combine 

the two models together as follows: 
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Yt(1) =c WtI(1) + (1-c)WtII(1) (3.17) 

where: 

Yt(1) = comprehensive one-step ahead forecast at time t 

WtI(1) = one-step ahead forecast at time t by using the first 

method 

WtII(1) = one-step ahead forecast at time t by using the 

second method 

c= weighted coefficient, 0<c<1, which is determined 

according to the changes in weather, temperature, etc. 

The result is as shown in Fig 3.3 (where c=0.25). 

20 
dewand(in"r m3/hr) 

IS ýý 
_ .`` 

ý ý 

I0 

per cent of predictions, 
cf which the relative errors 

5 are not great than 3%: 94.72 

10 20 

predicted 

actual 

time(day) 

30 40 50 

Fig 3.3 Modelling Results of the Combined 
Prediction Method 

From the above studies, it should be noted that the estimation of 

parameters for AR models is solved by the linear least-squares method. 
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For general ARIMA models, the estimation of parameters is solved by 

the non-linear least-squares method, which will be discussed in detail 

later. It should also be noted that the selection of the order of the 

model describing the water demand of a particular water supply system 

is quite simple. Further, the one-step ahead forecasting formula is 

also straightforward, and the forecasting error is just white noise. 

From the author's experiments, it was found that AR models are quite 

suitable for the forecasting of water demand for Shanghai, China. The 

model and the algorithm originally produced by the author is 

successfully supporting water supply system operations in Shanghai. 

However, owing to the limitations on AR models in representing the 

characteristics of time series, this algorithm seems to be only 

applicable to the class of water demands which have similar 

characteristics to those of Shanghai. 

With the availability of a series of subroutines for general time 

series analysis models in the NAG Fortran Library on Prime Computers 

in the UK, the author was therefore motivated to carry out further and 

more systematic studies, through time series analysis, on water 

demand forecasting as stated hereafter. 

3.4 BOX-JENKINS APPROACH TO GENERAL ARIMA MODELS 

The Box-Jenkins iterative approach for constructing multiplicative 

ARIMA models, eqn(3.1), basically consists of four steps (BOX and 

JENKINS, 1976; VANDAELE, 1983): 

1. IDENTIFICATION of the specifications of the model; 
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2. ESTIMATION of the parameters of the model; 

3. DIAGNOSTIC CHECKING of model adequacy; and 

4. FORECASTING future realization. 

This approach is represented as a flow chart in Fig. 3.4. 
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INPUT DAM 

A series of 
observations made over 
the same period of time 

EKMI PE ME DAM 

a ordne for transformation, 
differencirg and seasonality 

BASE 3RD STPCIE I, DIFFEFEM SERIES M3M ]TCI IILI 

Calculate Decide u tat Calc Late ac's Emden the 'ms's and 

diffemrirg and pace s of pacts to specify the 
is needed differa l series type of model r Ar d 

NWHM DIKN CQ@CKDG ARAMEIER ESTIMATI t'i 
No 

Decide what me- Is the model no- Qflaflate parameter 
modificatiar. adequate? values and goohew' 
are necessary of-fit statistics 

Yes 

FCRWASrIlc 

Decade whVt ac m Aubooorrelation 
foists to 
M40 pw - Part 3a1 Auto- 

aorre]aticn 

Fig 3.4 Functional Diagram of the Box-Jenkins 
Approach to General ARIMA Models 
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3.4.1. Identification 

In the identification stage, one chooses a particular model from the 

general class of ARIMA models specified in egn(3.1). This involves 

selecting the order of non-seasonal and seasonal differencing required 

to make the series stationary, as well as specifying the order of the 

non-seasonal and seasonal autoregressive and moving average 

polynomials necessary to adequately represent the time series model. 

In the identification stage, the sample autocorrelations and partial 

autocorrelations will be used as to judge the results. 

3.4.1.1 Differencing operations 

Let Vd V 
SD 

Xi be the i(th) value of a time series Xi, i=1,2,..., n 

after non-seasonal differencing of order d and seasonal differencing 

of order D (with seasonality s). In general, 

vd vs DX=V d-1 0DX- pd-1 0 DX 
sis i+l si 

d>0 (3.18) 

vd VVD Xi - 
vd VSD-1 Xi+s -Vd vvD-1 Xi 

D>0 (3.19) 

Non-seasonal differencing up to the required order d is obtained using 
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V1 Xi = Xi+1 - Xi for i=1,2,..., (n-1) 

V2 Xi =01 Xi+l - V1 Xi for i=1,2,..., (n-2) 

" (3.20) 

Qd Xi =0 
d-1 Xi+l -O 

d-1 
Xi for i=1,2,..., (n-d) 

Seasonal differencing up to the required order D is then obtained 

using 

1 
dVs1 Xi -0d Xi+s - vd xi 

for i=1,2,..., (n-d-s) 

VdVs2 xi =VdVs1 Xi+s - vdvsI Xi 

for i=1,2,..., (n-d-2s) 

" 

sis i+s si 

(3.21) 
VdV Dx 

=VdV 
D- 1 

X- Vdp D-1 X 

for i=1,2,..., (n-d-DxS) 

Mathematically, the sequence in which the differencing operations are 

performed does not affect the final resulting series of 

m=n-d- DxS values. The subroutine 'G13AAF', part of the 

commercial NAG library (NAG, 1983), was employed in the programming. 

This routine performs non-seasonal and seasonal differencing for a 

time series. 

The effect of differencing operations is to make the original 

non-stationary series become stationary. 
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3.4.1.2 Calculations of Sample Autocorrelation 

Functions (ac) 

The sample autocorrelation function of lag k is defined as: 

n-k 
E (xi- X) (Xi+k 7, ) 

i=1 

rk = --------------------- 
n 

_y E(Xi- 7) 2 
J =l 

k=1,2, ..., K (3.22) 

Where 

rk = autocorrelation function of lag k. 

Xi (i= 1,2,..., n) = either original observations 

or differenced values from a time series. 

n 

E Xi 
i=1 

R= ------ , sample mean. 
n 

K number of lags required. 

The actual structure of the ARIMA(p, d, q)x(P, D, Q)s model for a specific 

time series is obtained by comparing the sample ac of a stationary 

series with the theoretical ac's (BOX and JENKINS, 1976; VANDAELE, 

1983). 

The subroutine 'G13ABF' in the commercial NAG library computes the 

sample autocorrelations of a time series. 
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3.4.1.3 Calculations of Sample Partial Autocorrelation 

Function (pac) 

Unlike the autocorrelations, the sample partial autocorrelations 

cannot be estimated using a simple, straightforward formula. In fact, 

the partial autocorrelations Pit 1 are calculated from a solution of 

the Yule-Walker equation system, which expresses the partial 

autocorrelations as a function of the autocorrelations (BOX and 

JENKINS, 1976), thus: 

ri = P11 1 ri-1 + P12 2 ri-2 + ... + P1,1 ri-1, 

i=1,2,...., 1 (3.23) 

taking rj =r1 jj , when j <0, and r0 =1 

where: 

1= lag of the partial autocorrelation function. 

ri = autocorrelation function of lag i 

Pl, i = parameter of the Yule-Walker equation 

in particular, PI 
'l 

is the partial autocorrelation 

function required. 

The partial autocorrelation function is an additional characteristic of 

ARIMA models. Such functions enable models to be distinguished one 

from another. 

The subroutine 'G13ACF', part of the commercial NAG library, 
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calculates partial autocorrelations for a given set of 

autocorrelations. 

A program called IDENT, which calls the NAG subroutines 'G13AAF', 

'G13ABF' and 'G13ACF', was produced by the author for the 

identification purposes. 

At this stage, by the comprehensive use of the information provided by 

differencing operations, ac's and pac's, several tentative models 

could be suggested, from the broad class of multiplicative ARIMA 

models. Such models need to be further specified in the estimation 

and, even, the forecasting stage. 

3.4.2 Estimation 

3.4.2.1 Parameter Estimation 

After identifying a particular ARIMA model from the general class of 

multiplicative models, 

(p (B) $(BS) Wt = 0(B) 0(BS) at (3.24) 

where 

wt =vsD vd zt 

the next step is to estimate the vectors of parameters 

T=( T1, T21 .... TP )T. + -( 01,02'..., "p )Tý 

8= 91,92, ..., 9Q )T and Q )T. 8=( ()10 A2,..., 0 
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There are basically two methods available for this purpose. One such 

method is the least squares method; the other is known as the maximum 

likelihood method (BOX and JENKINS, 1976; NAG, 1983). The least 

squares method is the simpler one of the two methods and is thus more 

widely used. The methodology involves the selection of parameter 

values such that the sum of the squared residuals is made as small as 

possible. That is, q-), and e are chosen as estimates of 

g, and e, respectively, such that the sum of squared residuals, SSR: 

n 
S( Ä 8) =E t2 

(3.25) 

t=1 

is a minimum. The NAG routine 'G13AEF' fits a seasonal ARIMA model to 

an observed time series, using a nonlinear least-squares procedure 

incorporating backforecasting. The general principle is summarized as 

follows: 

The time series X1, X2,..., Xn supplied is assumed to follow an ARIMA 

model defined as: 

vd VD xt -c= wt (3.26) 

where, pd vsD Xt is the result of applying non-seasonal differencing 

of order d and seasonal differencing of seasonality s and order D to 

the series Xt. The differenced series is then of length N=n- d', 

where d' =d+ (Dxs) is the generalized order of differencing. The 

scalar c is the expected value of the differenced series, and the 

series W1, W2,..., WN then follows a zero-mean ARMA model defined by a 

56 



pair of recurrence equations. The Wt is expressed in terms of an 

independent, and thus uncorrelated, series at, through an intermediate 

series et. The first equation describes the seasonal structure: 

Wt - 41 Wt-s + ý2 Wt-2xs +"' + $P Wt-Pxs + 

et - el et-s - e2 et-2xs -"'- eQ et-Qxs 

(3.27) 

If the model is purely non-seasonal the above equation becomes 

redundant and et above is equated with Wt. The second equation 

describes the non-seasonal structure: 

et c1 et-1 + cp2 et-2 + ... + 'p et-p + 

at - e1 at-1 - e2 at-2 -"'- 9q at_q (3.28) 

The estimates of the model parameters defined by 

(P1,121... 1 'Pp' el, e2,..., eq, 

+11 $21... 1 "p, el, 92,..., 
! 

and (optionally) c are derived by minimizing a quadratic function of 

the vector, W= (Wl, W2,..., WN)T. This is: 

QF = WTV-lW (3.29) 

where: 

V the covariance matrix of W, and is a function of the model 

parameters. 
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When moving average parameters 9i or 8i are present, so that the 

generalized moving average order q' =q+sxQ is positive, 

backforecasts W1-q,, W2_q'3,..., WO are introduced as additional 

parameters. The 'sum of squares' function may then be written as: 

N -q 
S(pm) =E at2 - E, bt2 (3.29a) 

t=1-q' t=1-q'-p' 

where: 

pm =a combined vector of parameters, consisting of the 

backforecasts followed by the ARMA model parameters. 

p' =p+ sP 

The equations defining at and bt are respectively: 

et = Wt - $1 Wt-s - 02 Wt-2xs - ... - +P Wt-Pxs + 

e1 et_s + 02 et-2xs + ... + OQ et_Qxs 

for t=1- q', 2-q...... N (3.30) 

at = et - p1 et-1 - T2 et-2 -... - 'p et-p + 

e1 at-1 + 02 at-2 +"""+ 6q at-q 

for t= 1-q', 2-q',..., N (3.31) 

ft = Wt - $1 Wt+s - 4'2 Wt+2xs - "'- dP Wt+pxs + 

el f t-s + e2 f t-2xs +"'+ 6Q ft-Qxs 

for t= (1-q'-sxP), (2-q'-sxP),..., (-q'+P) (3.32) 

bt a ft p1 ft+l 2 ft+2 - "'- Pp ft+p + 

el bt-1 + 02 bt-2 +... + eq bt_q 

for t= (1-q'-p'), (2-q'-p'),..., (-q') (3.33) 
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For all four of these equations, the following conditions hold: 

Wi =0 if i <I-q' 

ei =0 if i <I-q' 

ai = 0 if i <1-q' (3.34) 

fi =0 if i< 1-q'-sxP 

bi = 0 if i< 1-q'-p' 

An extension of the algorithm of Marquardt (MARQUARDT, 1963) is used 

for the minimization of S with respect to pm. The first derivatives of 

S with respect to the parameters are calculated as: 

2E at x at, i-2E bt x bt, i= 2Gi (3.35) 

where: 

at i= derivatives of at with respect to the ith parameter. 

bt i= derivatives of bt with respect to the ith parameter. 

The second derivative of S is approximated by 

2E at'i x at, j -2Z btsi x bt, j = 2Hjj (3.36) 

Successive parameter iterations are performed to calculate a vector 

of corrections by solving the equations: 

(H + pD)dpm = -G (3.37) 

where: 

G-a vector with elements Gi. 

H-a matrix with elements Hij 
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p=a scalar controlling the search 

D= the diagonal matrix of H. 

The new parameter values are then pm + prom. 

If a step results in new parameter values which give a reduced value 

of S, then p is reduced by a factor T. If a step leads to new 

parameter values which produce an increased value of S, or in ARMA 

model parameters which break the stationarity and invertibility 

conditions (BOX and JENKINS, 1976), then the new parameters are 

rejected, p is increased by the factor T, and the revised 

equations are solved for a new parameter correction. This action is 

repeated until either a reduced value of S is obtained, or p reaches a 

prescribed limit (e. g., 109). This limit is used to indicate a 

failure of the search procedure. 

The estimated residual variance is 

erv = Smin / df (3.37a) 

where: 

Smin - the final value of S 

The residual number of degrees of freedom is given by 

f df 
N-p-q-P-Q-1, if cis estimated; 

N-p-q-P -Q, if c is not estimated. 

The covariance matrix of the vector of estimates pm is given by 
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erv x H-1 

where: 

H= is evaluated at the final parameter values. 

From this expression the vector of standard deviations and the 

correlation matrix for the whole parameter set are derived. 

The differenced series Wt, intermediate series et and residual series 

at are all available upon completion of the iterations over the range 

t=1 -q', 2-q',..., N 

For convenient application in forecasting, the following quantities 

constitute the 'state set', which contains the minimum amount of time 

series information needed to construct forecasts: 

(i) the differenced series Wt, for (N-sxP)<t<N; 

(ii) the d' values required to reconstitute the original series Xt 

from the differenced series Wt; 

(iii) the intermediate series et, for (N-max(p, Qxs)) <t <N; 

(iv) the residual series at, for (N-q)<t<N. 

This state set is available upon completion of the iterations. 

3.4.2.2 Diagnostic Checking 

Once a model has been identified and its parameters estimated, it is 
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necessary to verify whether the model can be improved upon or not. 

This procedure is called diagnostic checking. 

The diagnostic checking will be performed mainly in the following 

aspects: 

a) Examination of the standard errors of the parameter estimates to 

see whether the parameter estimates are different from zero; 

b) Inspection of the sampling correlations matrix of the parameter 

estimates. The correlation matrix expresses the degree of correlation 

that exists between the different parameter estimates. High 

correlation between the different parameter estimates points in the 

direction of model simplification; 

c) Residual analysis: if a model adequately represents the ARIMA 

process governing the series being studied, then the residuals of the 

model should be white noise. This can be checked by examining the 

autocorrelations of the residuals. If the residuals are truly white 

noise, then their ac's should have no significant spikes. Further, the 

analysis of the residual autocorrelations can be based on the 

Ljung-Box Q- statistic or the Portmanteau test (VANDAELE, 1983): 

K 
Q (K) n (n + 2) E [1/(n-k)] x rk (a) (3.38) 

k=1 

If the fitted model is appropriate, i. e., if the residuals are white 

2 
noise, Q is approximately distributed as aX( chi-squared) 

distributed variable with K-p-q-P-Q degrees of freedom. The 

hypothesis that the residuals are white noise is rejected when values 
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of the Q statistics are large relative to the value from a x2 (chi- 

squared) distribution table. 

d) Overfitting: a very useful check on the model adequacy is to 

determine whether the current model contains redundant parameters. 

Redundant parameters can be detected by a careful use of the estimate 

of the standard error of the parameter estimates (SE) and the estimate 

of the correlations between these parameter estimates. 

e) Underfitting: in order to verify that the tentatively identified 

model contains the appropriate number of parameters to represent the 

data, one can include an additional parameter in the ARIMA model to 

see if this addition results in a significant improvement over the 

original model. 

A program ESTIMA, which employs the commercially available NAG 

routines, 'G13AEF' and 'G13ABF' (NAG, 1983), etc., has been written for 

the estimation and diagnostic checking. 

3.4.3 Forecasting 

Once a fitted model has been judged as adequately representing the 

process governing the series, it can be used to generate forecasts for 

further periods, which are based on the theory of Minimum Mean Square 

Error Forecast (BOX and JENKINS, 1976): 
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Let mh be the expected value of Zn+h forecasted at time period n, mh = 

EZn+h" Also, let m be any other forecast of Zn+h defined as: 

m= mh +d (3.39) 

where: 

d= is the difference between m and mh. 

Using the point forecast m, the expected value of the forecast error 

squared is then: 

E[(Zn+h - m)2] = E{[Zn+h - (mh + d)12} (3.40) 

Rearranging, the right-hand side of egn(3.40) becomes: 

E[(Zn+h - m)21 = E[(Zn+h - mh) 
21 

- 2dE(Zn+h - mh) + d2 (3.41) 

Since mh = EZn+h, the second term on the right-hand side of eqn(3.41) 

is equal to 0 and since d2> 0, the minimum of E [(Zn+h - m)2 ] will be 

achieved only when d=0. However, the E[(Zn+h - mh)21 is the mean 

squared error of the forecast mh. Therefore, the optimal mean squared 

error forecast of Zn+h is obtained for m- mh = EZn+h' 

To calculate the mean of the forecast distribution, E(Zn+h), let Zt 

denote a stationary and invertible ARMA(p, q) process. For the time 

period t=n+h, this process can be expressed as 

Zn+h = 4? 1 n+h-1 +... + 'Pp Zn+h-p + an+h -01 an+h-1 

9q an+h-q (3-42) 
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By utilizing information up to period n, the expected value of Zn+h in 

eqn(3.42), is obtained as follows: 

a) replace the current and past errors an+j, j, < 0, with actual 

residuals; 

b) replace each future error an+j, O< j<h, with its expectation, 

which, since an+j is white noise, is 0; 

c) replace current and past observations Zn+j, j<0, with the actual 

observed values; 

d) replace each future value of Zn+j, O<j< h, with their forecast 

Zn«)" Zn+1, Zn+2, "', Zn+h-1 should therefore be forecasted in advance 

in order to forecast Zn+h' 

The approach discussed above is not restricted to just ARMA models. 

It can easily be extended to obtain minimum mean squared error 

forecasts for any nonseasonal, as well as multiplicative seasonal 

model, stationary as well as nonstationary ARIMA model. 

As soon as new observations become available, the forecasts for 

further periods beyond the new observations can be generated in two 

different ways (VANDAELE, 1983): 

a) sequential updated forecasting. By using the new observations, 

the parameters of the current model can be re-estimated and then 

forecasts can be made in the usual manner. 

b) adaptive forecasting. The parameters of the current model are 
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left unchanged but the origin for forecasting can be changed to 

incorporate the new observations. 

A program FRCAST, which uses the commercially available NAG 

subroutines 'G13AGF' and 'G13AHF' (NAG, 1983), has been designed for 

forecasting. 
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3.4.4 Applications to Water Demand Forecasting 

3.4.4.1 Demand Data 

The demand data studied came from the telemetry meter M6 (chase view, 

250 mm) within the Eastern Zone of the Wolverhampton region (TENNANT, 

1987). Hourly demand data from 24 May 1988 to 21 Jun 1988 are 

available, although some of the telemetry data were lost during data 

transmission. The data is first processed by the data screening 

scheme in the demand prediction program GIDAP (TENNANT, 1987) in 

order to remove potential measurement errors in the data. 

The data has been used to verify the Box-Jenkins approach. Typical 

results are presented below. 

3.4.4.2 Identification 

The initial set of hourly demand data, for model identification, is 

for 24 May (Tue) 1988 to 30 May (Mon) 1988 (one week). 

Various differencing operations have been extensively applied to the 

data. Table 3.4 contains the autocorrelations and partial 

autocorrelations of several main series. 
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TABLE 3,4 AUTOCORRELATIONS AND PARTIAL AUTOCORRELATIONS 

SERIES WITH D-1 DS-0 
MEAN - 0.168 VARIANCE - 485.96 

AUTOCORRELATIONS 

LAGS ROV SE* 
1-12 . 08 . 67 . 29 

. 
06 -. 08 -. 22 -. 33 -. 31 -. 19 -. 10 -. 07 -. 06 -. 09 

13-24 . 13 -. 10 -. 10 -. 10 -. 19 -. 29 -. 30 -. 20 -. 07 . 03 . 20 . 54 . 78 
25-36 . 18 . 63 . 33 . 09 -. 03 -. 18 -. 28 -. 28 -. 20 -. 13 -. 06 -. 04 -. 08 
37-46 . 20 -. 10 -. 07 -. 06 -. 13 -. 23 -. 23 -. 16 -. 07 . 00 . 12 . 38 . 60 

PARTIAL AUTOCORRELATIONS (STANDARD ERROR - 0.08) 

LAGS 
1-12 . 67 -. 29 . 01 -. 11 -. 17 -. 13 . 

01 . 02 -. 05 -. 09 -. 06 -. 16 
13-24 -. 03 -. 06 -. 08 -. 29 -. 25 -. 21 -. 11 -. 17 -. 18 -. 04 . 39 . 33 
25-36 -. 05 -. 10 -. 02 . 10 -. 02 

. 
04 -. 02 -. 05 -. 10 . 02 -. 02 -. 05 

37-48 . 02 . 05 . 03 . 03 . 06 . 09 -. 05 -. 02 . 03 -. 06 -. 08 . 05 

SERIES WITH D-0 DS-1 S-24 
MEAN - -6.368 VARIANCE -280.11 

AUTOCORRELATIONS 

LAGS ROW SE 
1-12 . 08 . 82 . 64 . 51 . 42 . 39 . 38 . 38 . 41 . 43 . 40 . 39 . 37 
13-24 . 21 . 33 . 28 . 26 . 26 . 23 . 18 . 15 . 12 . 06 . 05 . 07 

. 08 
25-36 . 23 . 14 . 11 . 05 . 01 -. 05 -. 11 -. 13 -. 12 -. 14 -. 11 -. 13 -. 15 
37-48 . 23 -. 15 -. 12 -. 12 -. 12 -. 10 -. 08 -. 09 -. 11 -. 14 -. 18 -. 20 -. 22 

PARTIAL AUTOCORRELATIONS (STANDARD ERROR - 0.08) 

LAGS 
1-12 . 82 -. 07 . 04 . 02 . 12 . 08 . 07 . 12 . 08 -. 07 . 10 . 00 
13-24 -. 02 -. 08 . 09 . 01 -. 09 -. 11 . 06 -. 11 -. 11 . 07 . 09 -. 10 
25-36 . 22 -. 20 -. 07 . 01 -. 05 -. 09 . 03 -. 01 -. 05 . 03 -. 10 -. 04 
37-48 . 10 . 08 -. 04 . 01 . 07 . 06 -. 10 . 05 -. 07 . 01 -. 05 -. 09 

SERIES WITH D-1 DS-1 S-24 
MEAN -0.13 VARIANCE -102.33 

AUTOCORRELATIONS 

LACS ROW SE 
1-12 . 08 -. 02 -. 13 -. 08 -. 17 -. 07 -. 03 -. 06 . 00 . 13 -. 03 . 02 . 03 
13-24 . 09 . 03 -. 09 -. 02 . 06 . 07 -. 08 . 02 . 05 -. 12 -. 10 . 07 -. 19 
25-36 . 10 . 27 . 12 -. 10 . 08 -. 01 -. 12 -. 04 . 04 -. 11 . 13 . 01 -. 08 
37-48 . 11 -. 05 . 07 -. 02 -. 04 -. 03 . 13 . 00 . 02 . 03 -. 05 -. 03 -. 02 

PARTIAL AUTOCORRELATIONS (STANDARD ERROR -0.08) 

SAGS 
1-12 -. 02 -. 14 -. 09 -. 20 -. 12 -. 11 -. 15 -. 11 -. 03 -. 11 -. 02 -. 01 

13-24 . 05 -. 10 -. 02 . 06 . 10 -. 09 . 06 . 08 -. 09 -. 14 . 08 -. 23 

25-36 . 21 . 01 -. 03 . 03 . 05 -. 06 . 02 . 01 -. 05 . 08 . 00 -. 14 

37-48 -. 08 . 01 -. 06 -. 11 -. 08 . 07 -. 09 . 06 -. 04 . O1 . 07 -. 07 

* ROY S6 is the standard errors for rR under the null hypothesis that the 

Curt process in it MAO). MA(12), MA(24), etc. (one less than the first lag 

printed on each row) (VANDAHLE, 1983). 
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The autocorrelation rK whose sample value does not exceed twice the 

standard error may suggest that its theoretical autocorrelation is 

essentially zero. This is also applicable to partial autocorrelations 

(BOX and JENKINS, 1976). 

After careful analysis of the autocorrelations and partial 

autocorrelations of each series, several tentative models are 

developed according to the properties of different ARIMA models 

revealed by their autocorrelation and partial autocorrelation 

functions: 

a) For series OXt, the tentative model is 

Model 1: ARIMA (2,1,0)(2,0,0)24 

b) For series p24Xt, the tentative model is: 

Model 2: ARIMA (1,0,0)(0,1,0)24 

c) For series V V24Xt, the tentative model is: 

Model 3: ARIMA (1,1,0)(1,1,0)24 

3.4.4.3 Bstiaation and Diagnostic Checking 

For those tentative models stated above, parameters have been 

estimated and different diagnostic checking measures have been 

applied. Eventually, the most adequate model is shown to be the ARIMA 

(0,1,0)(1,1,0)24 summarized in Table 3.5, which is based on the above 

tentative model 3. 
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TABLE 3.5. COMPUTED RESULTS 

FOR THE MODEL ARIMA (0,1,0)(1,1,0). 94 

Data used for estimation: 24 May to 30 May 88. 

****** RESULTS FOR PRELIMINARY ESTIMATES ****** 

AUTOREGRESSIVE p=O 

DIFFERENCING d=1 

MOVING AVERAGE q=O 

SEASONAL AUTOREGRESSIVE P=1 

SEASONAL DIFFERENCING D=1 

SEASONAL MOVING AVERAGE Q=O 

SEASONALITY S=24 

ARIMA MODEL PARAMETER PRELIMINARY ESTIMATE 

-0.19000 

RESIDUAL VARIANCE = 98.63878 

****** RESULTS FOR LEAST SQUARES ESTIMATES ****** 

ITERATION 0 RESIDUAL SUM OF SQUARES = 0.1390E+05 
ITERATION 1 RESIDUAL SUM OF SQUARES = 0.1388E+05 

CONVERGENCE ACHIEVED AFTER 1 CYCLE 

RESIDUAL SUM OF SQUARES IS 13878.328 WITH 141 DEGREES OF FREEDOM 

RESIDUAL VARIANCE RMS - 98.428 

LEAST SQUARES METHOD 
PARAMETER ESTIMATES 

-------------------- 
-------------------- 

EST SE EST/SE 

PAR(1) -0.2368 0.0919 -2.5753 

CONSTANT -0.1380 0.6935 -0.1989 
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TABLE 3.5. (Continued) 

****** RESULTS FOR DIAGNOSTIC CHECKS ****** 

SAMPLE MEAN OF RESIDUALS = 0.0152 
SAMPLE VARIANCE OF RESIDUALS = 98.4617 

AUTOCORRELATIONS OF RESIDUALS 

LAGS ROW SE AUTOCORRELATIONS 
1-12 0.08 0.06 -0.14 -0.15 -0.15 -0.08 -0.08 

-0.05 0.03 0.11 -0.02 0.03 0.02 

13-24 0.09 0.03 -0.09 0.00 0.06 0.06 -0.06 
0.00 0.02 -0.14 -0.15 0.06 0.02 

25-36 0.10 0.26 0.10 -0.11 0.03 -0.02 -0.10 
-0.05 0.02 -0.08 0.12 0.02 -0.08 

37-48 0.11 -0.05 0.04 -0.01 -0.01 -0.02 0.11 
0.00 0.03 -0.01 -0.06 -0.02 -0.05 

CHI-SQUARED TEST (PORTMANTEAU TEST) 

COMPUTED DEG. FREE. TABLE VALUE 
Q(12) 14.9 11 21.0 
Q(24) 26.3 23 36.4 
Q(36) 49.8 35 49.8 
Q(48) 54.6 47 66.0 
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3.4.4.4 Forecasting 

With the well-defined ARIMA (0,1,0)(1,1,0)24 model, 

(1 + 0.2368 B24) 024 VXt = at (3.43) 

the demand forecasts up to 24 steps ahead can be made in the previous 

day, to form the hourly demand forecasts for the following day. 

Results for the 3rd June 1988 (Fri. ) are given in Table 3.6 and Fig 

3.5. 

When the actual demand data of one day becomes available, the 

forecasts up to 24 steps ahead to form the hourly demand of the next 

day can be made by adaptive forecasting on a day to day basis. Fig 

3.6 and Table 3.7 display the forecasting results for 17 June 

1988(Fri), which show that forecasting precisions are still 

satisfactory, though the data used to build the model is for the 

period 24 May to 30 May 1988. 

By using the hourly demand data from 17 June to 23 June 1988 for 

identification and estimation, the model is still 

ARIMA (0,1,0)(1,1,0) 24: 

(1 + 0.2923B24) V 24 VXt = at (3.44) 

and the parameter -0.2923 is quite close to the parameter -0.2368 in 

model (3.43). This further indicates the adequacy and stability of the 

model. 
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In the building of the models discussed above, the data include the 

hourly demands of Saturday and Sunday (28 May and 29 May). When the 

model is used to produce forecasts for Saturdays and Sundays, it is 

noticed that large forecasting deviations can occur. Large deviations 

can also occur in forecasts for Mondays. This is because the demand 

patterns of Saturdays and Sundays are quite different from each other 

and from week days, and it is not appropriate to incorporate them in 

one time series. Additionally, the hourly demand data from 24 May to 

1 June 1988, excluding Saturday (28 May) and Sunday (29 May), was 

used to build the ARIMA model. After identification, estimation and 

diagnostic checking, the most appropriate model is shown to be the 

ARIMA(0,1,0)(2,1,0)24 model: 

(1 + 0.6170 B24 + 0.3321B48) w24 Xt = at, (3.45) 

which is summarized in Table 3.8. 

Using Model (3.45), better forecasting precisions are achieved. Fig 

3.7 and Table 3.9 show the comparisons of forecasts for 20 June 1988 

(MON) between Model (3.43) and Model (3.45). 

As for the forecasts for Saturdays and Sundays, separate time series 

of hourly demands need to be formed which only include hourly demands 

for Saturdays or Sundays. It is anticipated that such an approach 

would improve the forecasts. 
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TABLE 3.6 FORECASTING RESULTS FOR 3 JUNE 1988 (FRIDAY) 

------------------------------------------------------ 
95%CONF. LIMIT DEVIATION 

--------------- FROM 
ACTUAL FORECAST LOWER UPPER ACTUAL(%) 

1 160.3800 159.7420 140.2967 179.1873 0.40 
2 142.7500 138.1060 110.6062 165.6058 3.25 
3 134.0000 132.1388 98.4585 165.8191 1.39 
4 134.2500 128.2944 89.4037 167.1850 4.44 
5 136.7500 132.4744 88.9933 175.9555 3.13 
6 142.5000 138.2308 90.5997 185.8619 3.00 
7 179.5000 176.2636 124.8161 227.7111 1.80 
8 235.7500 223.3296 168.3299 278.3293 5.27 
9 279.5000 269.4012 211.0652 327.7372 3.61 

10 288.5000 295.5988 234.1073 357.0903 2.46 
11 296.0000 289.8484 220.3556 349.3412 3.77 
12 294.5000 279.3556 211.9950 346.7162 5.14 
13 276.5000 268.3952 198.2841 338.5063 2.93 
14 259.0000 266.4816 193.7239 339.2394 - 2.89 
15 254.2500 263.2772 187.9658 338.5886 - 3.55 
16 249.5000 253.8956 176.1143 331.6769 - 1.76 
17 256.8800 261.4952 181.3201 341.6703 - 1.80 
18 250.6300 251.0336 168.5341 333.5331 - 0.16 
19 259.7500 246.9540 162.1938 331.7142 4.39 
20 266.5000 242.6584 155.6963 329.6205 8.95 
21 230.0000 240.0212 150.9115 329.1309 - 4.36 
22 218.6300 210.1976 118.9909 301.4043 3.86 
23 210.0000 210.4328 117.1763 303.6893 - 0.21 
24 187.6300 183.0528 87.7906 278.3150 2.11 

Ave. 3.10+ 

--------------------------------------------------------------------- 
* is calculated from I(ACTUAL 

- FORECAST)/ACTUAL x 100. 

+ is calculated from EIDEVIATION FROM ACTUAL 1/24. 
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TABLE 3.7 FORECASTING RESULTS FOR 17 JUNE 1988 (FRIDAY) 

95% CONF. LIMIT DEVIATION 
--------------- FROM 

ACTUAL FORECAST LOWER UPPER ACTUAL (%) 

1 158.7500 157.7103 138.2650 177.1556 0.65 
2 144.9600 139.4444 111.9446 166.9443 3.80 
3 145.7500 138.1024 104.4221 171.7827 5.25 
4 140.0000 138.7140 99.8234 177.6047 0.92 
5 142.5000 137.6654 94.1843 181.1465 3.39 
6 155.7500 147.0304 99.3993 194.6616 5.60 
7 204.7500 190.7759 139.3284 242.2234 6.82 
8 287.5000 275.0969 206.0972 316.0965 4.32 
9 306.3000 316.9056 258.5697 375.2416 -3.46 

10 311.0000 304.5984 243.1069 366.0900 2.06 
11 306.0000 300.8769 236.3841 365.3698 1.67 
12 295.5000 294.0100 226.6494 361.3706 0.50 
13 286.2500 303.2564 233.1453 373.3676 -5.94 
14 272.0000 289.9536 217.1959 362.7114 -6.60 
15 277.0000 281.1968 205.8854 356.5083 -1.52 
16 269.3800 279.3352 201.5540 357.1165 -3.70 
17 270.4600 283.7969 203.6217 363.9720 -4.93 
18 265.1800 278.7368 196.2373 361.2364 -5.11 
19 273.7100 286.7368 201.9766 371.4971 -4.76 
20 264.7500 271.5659 184.6038 358.5280 -2.57 
21 234.0000 258.7824 169.6728 347.8921 -10.59 
22 227.5000 238.9737 147.7670 330.1803 -5.04 
23 203.5000 213.2742 130.0177 316.5307 -4.80 
24 191.7300 201.1865 105.9243 296.4488 -4.93 

Ave. 3.70+ 
----------------- -------------------------------------------------- 
* see the footnote of Table 3.6. 

+ see the footnote of Table 3.6. 
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TABLE 3.8 COMPUTED RESULTS FOR THE MODEL ARIMA(0,1,0)(2,1,0)24 

Data used for estimation: 24 MAY to 1 JUN 1988, excluding 
Saturday and Sunday 

****** RESULTS FOR PRELIMINARY ESTIMATES ****** 

AUTOREGRESSIVE p=0 

DIFFERENCING d=1 

MOVING AVERAGE q=0 

SEASONAL AUTOREGRESSIVE P=2 

SEASONAL DIFFERENCING D=1 

SEASONAL MOVING AVERAGE Q=0 

SEASONALITY S= 24 

ARIMA MODEL PARAMETER PRELIMINARY ESTIMATES 

-0.43297 -0.17020 

RESIDUAL VARIANCE = 97.90221 

****** RESULTS FOR LEAST SQUARES ESTIMATES****** 

CONVERGENCE ACHIEVED AFTER 2 CYCLES 

RESIDUAL SUM OF SQUARES IS 13030.42430 WITH 140 DEGREES OF 

FREEDOM 

RESIDUAL VARIANCE RMS = 97.2816 

LEAST SQUARES METHOD 

PARAMETER ESTIMATES 

------------------- 

EST SE EST/SE 

PAR (1) -0.6170 0.0949 -6.5018 

PAR (2) -0.3321 0.1152 -2.8822 

CONSTANT -0.0851 0.4867 
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TABLE 3.8 (Continued) 

CORRELATION MATRIX 

PAR (1) 

PAR (2) 0.418 

****** RESULTS FOR DIAGNOSTIC CHECKS ****** 

SAMPLE MEAN OF RESIDUALS = 0.0091 

SAMPLE VARIANCE OF RESIDUALS = 97.3590 

AUTOCORRELATIONS OF RESIDUALS 

LAG ROW SE 

1-12 0.08 0.11 -0.06 -0.09 -0.12 -0.09 0.00 
0.03 0.07 0.04 0.01 0.07 -0.01 

13-24 0.09 -0.04 -0.04 -0.01 -0.01 0.02 -0.04 
-0.03 -0.01 -0.12 -0.05 0.06 0.08 

25-36 0.09 0.13 -0.04 -0.10 0.06 0.01 -0.06 
-0.02 -0.02 0.01 0.09 0.01 -0.07 

37-48 0.10 0.02 -0.02 -0.03 -0.03 0.02 0.03 
-0.04 -0.02 0.03 0.00 0.00 0.04 

CHI - SQUARED TEST (PORTMANTEAU TEST) 

COMPUTED DEG. FREE. TABLE VALUE 
Q(12) 16.3 10 21.0 

Q(24) 21.9 22 36.4 

Q(36) 31.2 34 49.8 

Q(48) 33.0 46 66.0 
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TABLE 3.9 COMPARISON OF FORECASTING 

PRECISIONS BETWEEN MODEL(3.43) AND MODEL(3.45) 

--------------------------------------------------------------------- 
FORECASTS DEVIATION FORECASTS DEVIATION 

ACTUAL BY FROM BY FROM 
MODEL(3.43) ACTUAL(% MODEL(3.45) ACTUAL(%) 

1 150.15 147.99 1.43 148.08 0.98 
2 137.07 133.36 2.70 134.40 2.67 
3 122.50 133.79 -9.22 128.41 -4.80 
4 118.25 129.23 -9.28 125.66 -6.26 
5 120.25 131.67 -9.50 123.67 -2.85 
6 135.25 144.03 -6.49 138.12 -2.12 
7 184.75 191.36 -3.58 185.28 -0.29 
8 266.78 271.05 -1.60 260.77 2.25 
9 301.74 298.74 0.99 302.01 -0.09 

10 316.75 299.99 5.29 304.31 3.92 
11 316.00 294.67 6.75 292.16 7.54 
12 305.00 284.55 6.71 285.52 6.39 
13 301.13 280.92 6.71 283.54 5.84 
14 279.75 266.67 4.67 270.62 3.26 
15 281.25 268.12 4.67 268.10 4.67 
16 273.70 262.19 4.21 262.97 3.92 
17 288.00 264.82 8.05 273.65 4.98 
18 268.94 259.22 3.61 259.73 3.42 
19 272.79 267.62 1.89 267.94 1.78 
20 263.80 254.88 3.38 262.80 0.38 
21 246.50 230.09 6.66 237.48 3.66 
22 232.25 219.63 5.34 225.46 2.92 
23 230.00 197.95 13.94 210.42 8.51 
24 189.25 184.37 2.58 185.17 2.16 

----------- 
Ave. 5.4+ 

---------- 
Ave. 3.6+ 

* see the footnote of Table 3.6. 

+ see the footnote of Table 3.6. 
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3.5 COMPARISON WITH THE PREDICTIONS FROM THE EXISTING 
DEMAND PREDICTION PROGRAM GIDAP 

3.5.1 introduction to GIDAP 

GIDAP is a Graphical Interactive Demand Analysis and Prediction 

Package developed in the Water Control Centre at Leicester 

Polytechnic, England. The prediction part of the program provides 

forecasts of daily or weekly demand profiles, while the analysis part 

enables data attributes, essential to prediction, to be determined. 

Predicted profiles can be replaced by pre-defined special profiles for 

unusual days (such as bank-holidays) and full account is taken of 

British-Summer-Time clock changes. GIDAP is fully configurable for a 

variety of telemetry types and settings and includes a facility to 

calibrate telemetry demand data. An extensive demand data and 

parameter display and modification facility is provided. (TENNANT et 

al, 1986; TENNANT, 1987). 

The basic process of the prediction technique is outlined in Fig 3.8. 

Each step in the data processing is described below: 

1) The Screening Process 

The screening process detects and removes coarse measurement and 

transmission errors in the raw demand data. Upper and lower 

thresholds are applied to each data value to detect excessively high 

and low demands respectively. First and second difference thresholds 

are then applied to remaining data values to detect excessive 

fluctuations in demand. Rejected values are replaced by predicted 

values if they are available. If these are not available, linear 
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interpolation between non-rejected values is used to find suitable 

replacements. 

For measured data, X(t), with a sampling interval of At, and 

consecutive values of X(i), X(j) and X(k), the second difference will 

be: 

d2X(t)/dt2 " [X(k) - 2X(j) + X(i)]/ Q t2 (3.46) 

The second difference of a demand value is a measure of the 

'peakiness' of that value, or the acceleration of demand represented 

by that value. Whereas the first difference of a demand value defines 

the rate of change of demand represented by that value. 

Analysis of sets of measured data will establish realistic thresholds. 

In the present application maximum, minimum, and first and second 

difference thresholds are evaluated and used. 

2) The Smoothing Process 

The smoothing process is designed to detect and reject fine random 

errors and effects in the consumption and measurement process. 

Evaluation and recombination of significant components will give a 

smoothed estimate of the measured data as follows: 
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NH 
X(t, NH) = a0 +E ancos(2 ,i nt/T) 

n=1 

NH 
+E bnsin(2 n nt/T) (3.47) 

n=1 

where: 

t= the sample times. 

T= 24 hour or 7 day period 

a, b = component amplitudes determined by Fast-Fourier-Transform 

(FFT) analysis. 

n= integer harmonic multiples of the fundamental frequency. 

NH = highest significant harmonic, determined by statistical 

analysis. 

3) The Trend Estimation Process 

The triple exponential smoothing technique is used to provide trend 

estimates which define current demand patterns. These estimates are 

extrapolated to form predicted demand profiles. The estimates are 

continually updated according to discrepancies between the predicted 

profiles and the corresponding smoothed actual profiles. 

The vector of prediction errors at the current daily or weekly period 

is defined by: 
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et = Xt-1ý1) - it 

where: 

(3.48) 

gt = vector of data sample values at the current period. 

Xt_1(1) = is the 1 period (step) ahead forecast at the previous 

period. 

When the current demand profile becomes available the error vector can 

be used to correct trend estimates according to: 

ät = Xt + (1 - sm)3e. t (3.49) 

bt = bt-1 + 
_ýt-1 

- 1.5 sm2(2 - sm)et (3.50) 

= ýt-1 - sm3et (3.51) 

where: 

sm =a smoothing parameter with a typical value of 0.1. 

ä, b, c = estimates of position, velocity, and acceleration 

trend components at periods t and t-1. Initialization 

procedures set ät_1 to Xt_1 and bt_1, ct_1 to zero. 

The 1 period ahead prediction will then be given by: 

Xt(1) = ät + bt + 0.5ct (3.52) 

Prediction can be produced on a daily basis where, on Monday, 

Tuesday's demand profile is predicted, then on Tuesday, Wednesday's 

demand profile is predicted and so on. Days of the week are placed 

into categories such that days in the same category have statistically 

similar demand profiles. The trend estimates for one day in a 

category can then be used to predict the profile for the next day in 

the same category. Consequently one set of trend estimates is 
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maintained for each category. These categories are determined by the 

appropriate data analysis. 

More details can be found in (COULBECK et al, 1985 ; TENNANT et al, 

1986; TENNANT, 1987). 
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TELEMETRY DATA 

Data received from telemetry 
equipment containing possib] 
data corruptions and with 
missing data 

/"O"v 

ADJUSTMENT 

Scaling and offsetting of 
telemetry data to reflect 
meter calibration 

SCREENING 

Application of demand 
thresholds to detect corrupt 
data which are then replaced 
by previously predicted 
values 

SMOOTHING 

Removal of fine random noise 
by Fourier analysis, to 
reveal underlying demand 

pattern 

PREDICTION 

Updating of trend estimates 
in an exponential smoothing 
model and subsequent 
extrapolation into next 
equivalent demand period 

/ý ýn 

Fig 3.8 the Prediction Process of GIDAP 
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3.5.2 Discussions and Comparisons 

Exponential smoothing methods have a number of advantageous features 

which include: recursive formulation, trend following, error 

correction, and minimum data requirements (COULBECK et al, 1985). the 

screening process used in GIDAP is a good method for the removal of 

measurement noise. However, once data has been smoothed, it is 

evident that the original random process of demand is considered to be 

deterministic. From the theoretical point of view, exponential 

smoothing is only correct for a class of ARIMA models (VANDAELE, 

1983). This is demonstrated as follows: 

The IMA(1,1) or ARIMA(0,1,1)(0,0,0) with zero mean p can be 

represented as, 

Zt - Zt-1 - at - slat-1 (3.53) 

Similarly, this model can be rewritten for time period n+1 and earlier 

as, 

Zn+1 - Zn = an+1 - elan 

Zn - Zn-1 an - Alan-1 

Zn-1 - Zn-2 - an-1 elan-2 

" (3.54) 

On multiplying both sides of the second equation in (3.54) by 01) 

both sides of the third equation by 912, and so on, and then adding 
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all these transformed equations together, we can solve for Zn+l to 

obtain: 

Zn+l = an+1 + (1- 01)Zn +0 1(1- 
e1)Zn-1 + 012(1- 01)Zn-2 

+ 613(1- e1)Zn-3 + ... (3.55) 

The minimum mean squared error forecast for Zn+l is obtained from 

eqn(3.55) after replacing the future error an+1 by its mean value 0, 

i. e., 

Zn(1) = (1- O1)Zn + 01(1- 01)Zn-1 + e12(1- 01)Zn-2 + ... 

(3.56) 

Eqn(3.56) represents the exponential weighted moving average process, 

from which the various exponential smoothing techniques originate. 

This equation shows that for an IMA(1,1) process, recent observations 

receive larger weights than more distant observations in the past. In 

other word, Zn1 Zn-11 ... are weighted in an esponentially decreasing 

manner, hence the name of exponential smoothing. 

The above proves that exponential smoothing is only correct for an 

IMA(1,1) model, which is only one of many ARIMA models. Since the 

natural processes that can be represented. by IMA(1,1) are limited, the 

applicability of exponential smoothing techniques are consequently 

also limited. The multiplicative time series model, however, can 

represent any class of demand, although the identification of the most 

appropriate model for a particular demand series is rather complex and 

the data requirement for parameter estimation is comparatively large, 
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which brings some difficulties for on-line implementation. 

The author's limited investigations have revealed that accurate 

predictions can be achieved using the exponential smoothing method 

used in GIDAP. This is especially true when the demand series is 

relatively stationary and regular. The accuracy of such forecasts are 

compared with those from the model of eqn(3.43) in Table 3.10 and 

Fig 3.9. 

However, it is evident that the response of GIDAP to fluctuations in 

demand is somewhat slower than for the time series model. This 

manifests itself as larger prediction errors from GIDAP, at those 

times when large changes in demand occur. 

Table 3.11 and Fig 3.10 compare typical results for demands on 10 

June, 1989. Telemetry data for a few days prior to the 10 June, 1989 

were unavailable. The forecasts for the 10 June, 1989 were then based 

on their corresponding forecasts for the previous days. 

While comparing the performance of the two models, it should be 

remembered that the time series models are forecasting up to 24 steps 

ahead. The exponential model used in GIDAP, on the other hand, is 

performing 24 one-step ahead forecasts. Further the time series 

method employs only one complex model, while GIDAP requires 24 

separate but simple models; and these latter do not take into 

account interaction between successive hourly demands. In conclusion, 

it might be profitable to incorporate the time series methodology 

within GIDAP. 
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TABLE 3.10 A COMPARISON OF FORECASTS FROM A TIME SERIES MODEL 
AN EXPONENTIAL SMOOTHING MODEL FOR 3 JUNE 1988 

------ 
TIME 

----------- 
ACTUAL 

-------------- 
FORECASTS 

-------------- 
DEVIATION 

----------- 
FORECASTS 

------------- 
DEVIATION 

BY FROM BY FROM 

----- - 

ARIMA 

- 

ACTUAL (X)* GIDAP ACTUAL (X) 

------ 
1 

----- - 
160.38 

------------ 
159.74 

-------------- 
0.40 

----------- 
159.39 

------------- 
0.62 

2 142.75 138.11 3.25 136.77 4.19 
3 134.00 132.14 1.39 131.39 1.95 
4 134.25 128.29 4.44 133.91 0.25 
5 136.75 132.47 3.13 133.54 2.35 
6 142.50 138.23 3.00 140.62 1.32 
7 179.50 176.26 1.80 171.82 4.28 
8 235.75 223.33 5.27 221.49 6.05 
9 279.50 269.40 3.61 265.01 5.18 

10 288.50 295.60 -2.46 286.12 0.82 
11 296.00 289.85 3.77 287.34 2.93 
12 294.50 279.36 5.14 278.01 5.60 
13 276.50 268.40 2.93 265.54 3.96 
14 259.00 266.48 2.89 255.78 1.24 
15 254.25 263.28 -3.55 250.99 1.28 
16 249.50 253.90 -1.76 248.42 0.43 
17 256.88 261.50 -1.80 246.14 4.18 
18 250.63 251.03 -0.16 245.60 2.01 
19 259.75 246.95 4.39 244.72 5.79 
20 266.50 242.66 8.95 237.29 10.96 
21 230.00 240.02 -4.36 223.99 2.61 
22 218.63 210.20 3.86 213.11 2.52 
23 210.00 210.43 -0.21 204.69 2.53 
24 187.63 183.05 

- 

2.11 

--- 
187.44 0.10 

------- - ---- 
ave. 3.10+ 

-- 
ave. 3.00+ 

--------------------------------------------------------------------- 
* see the footnote of Table 3.6. 

+ see the footnote of Table 3.6. 
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TABLE 3.11 A COMPARISON OF FORECASTS FROM A TIME SERIES MODEL 
AN EXPONENTIAL SMOOTHING MODEL FOR 10 JUNE 1988 

------ 
TIME 

----------- 
ACTUAL 

------------- 
FORECASTS 

--------------- 
DEVIATION 

-------------- 
FORECASTS 

---------- 
DEVIATION 

BY FROM BY FROM 
ARIMA ACTUAL (%)* GIDAP ACTUAL % 

------ 
1 

----------- 
170.04 

------------- 
171.81 

--------------- 
1.04 

-------------- 
159.85 

---------- 
5.99 

2 154.88 151.38 2.26 135.52 12.50 
3 148.00 144.95 2.06 127.37 13.94 
4 147.25 144.25 2.03 130.20 11.58 
5 150.63 147.21 2.27 131.18 13.21 
6 157.25 154.68 1.64 138.69 11.93 
7 202.25 189.00 6.55 172.55 14.68 
8 270.25 243.81 9.78 229.39 15.12 
9 315.50 299.19 5.17 278.34 11.78 

10 299.50 304.46 -1.66 298.79 0.24 
11 301.50 298.73 0.92 297.98 1.17 
12 297.25 295.66 0.53 290.14 2.39 
13 295.00 287.78 2.45 279.98 5.10 
14 286.75 280.40 2.21 270.53 5.66 
15 278.00 273.60 1.58 267.08 3.92 
16 270.67 272.76 -0.77 267.46 1.18 
17 285.25 274.89 3.63 263.58 7.59 
18 270.75 268.21 0.94 255.24 5.73 
19 282.25 264.73 6.21 248.76 11.87 
20 274.38 264.82 3.49 243.13 11.39 
21 252.00 242.71 3.69 232.15 7.88 
22 238.25 225.70 5.27 217.41 8.74 
23 222.00 221.27 0.33 203.67 8.26 
24 199.00 199.29 -0.14 186.16 

- 
6.45 

--------- 
ave. 2.80+ 

-- 
ave. 

------ 
8.30+ 

--------------------------------------------------------------------- 
* see the footnote of Table 3.6. 

+ see the footnote of Table 3.6. 
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3.6 CONCLUSION 

This chapter has described in detail how time series analysis is 

applied to water demand forecasting. Among the general class of 

multiplicative ARIMA models, AR (Autoregressive) models have to their 

advantage, the fact that model parameters are estimated using simple 

linear least-squares. In contrast, the parameters of a general ARIMA 

model are estimated using more complex, non-linear least-squares. 

Further, the model identification for AR models is also quite simple. 

The forecasting results show that the parallel forecasting method is 

better than the series forecasting method under normal demand 

conditions but the latter is more suitable under abnormal conditions. 

Limited studies demonstrate that forecasting precision is raised by 

combining the forecasting results from the two methods, although the 

problem of how to best combine them is left open and needs further 

study. The application results have shown that AR models are quite 

suitable for the demand studied. However, the applicability of AR 

models could be limited to the demand patterns which are similar to 

the demand pattern studied, since AR models are only a class of 

general ARIMA models. 

Due to the availability of various routines for time series analysis 

in the commercial NAG Fortran Library, the general Box-Jenkins 

approach to multiplicative ARIMA models has been employed. 

Comprehensive computer programs , which cover model identification, 

parameter estimation , diagnostic checking and demand forecasting, 

have been developed and applied to demand forecasting for the 

Woverhampton water system. Numerical results are presented in detail. 
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Typical forecasting results show that the general Box-Jenkins approach 

to general ARIMA models is satisfactory for water demand forecasting 

(average deviation 3.1%, refer to Table 3.6 and Fig. 3.5). It has 

also been verified through comparative tests that weekdays and 

weekends should be placed in different categories and forecasts should 

be made within each category. 

In terms of theory and performance, comparisons have been made between 

a time series model and the exponential model employed in the demand 

analysis and prediction program, GIDAP. For the former the 

corresponding data requirement is great and model building is somewhat 

tentative and could vary considerably from demand to demand. With 

regards to the latter the data requirement for parameter estimation is 

lower. The prediction model is easier to build and the process 

straightforward. However, exponential smoothing is only strictly 

correct for the process that is described equivalently by an IMA(1,1) 

time series model and therefore, the applicability and effectiveness 

of such a method to water demand prediction could be limited. The 

comparative tests indicate that the forecasting precision of time 

series analysis and exponential smoothing are comparable when the 

demand series is relatively stationary and regular, the average 

deviation of the former being 3.1% and of the latter being 3.0% (refer 

to Table 3.10 and Fig. 3.9). However, for non-stationary and irregular 

demands, the time series analysis model is able to follow fluctuations 

in demand more closely. This is confirmed by an average deviation of 

2.8% for time series compared to 8.3% for exponential smoothing (refer 

to Table 3.11 and Fig. 3.10). Consider this in the light of the fact 

that the time series model is forecasting up to 24 steps ahead. The 
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conclusion is that the time series analysis method could usefully be 

incorporated into GIDAP. 

It should be evident that the various methods described could be 

easily adapted to the requirements for long-term demand forecasting as 

well as other short-term demand forecasting. 

The integration of the various demand forecasting methods will result 

in a comprehensive computer program which provides facilities to 

enable the user to switch to different methods. For the demand 

forecasting of a particular system, it is worth first employing AR 

models, since the simplicity of parameter estimation and convenience 

of model-order selection make this method practical and friendly for 

non-expert users. If the forecasting results from the derived AR 

model are not satisfactory in terms of practical requirements, then 

the Box-Jenkins approach to general ARIMA models will have to be 

employed, where further work will be required in order for the 

computer program to choose the most appropriate model automatically. 

After a well-defined model has been applied for a long time, 

satisfactory forecasting results may no longer be obtainable. This 

could indicate that recent demand data will be required as input to 

the computer program either to update the parameters of the model or 

to build a new model, which will be determined by the computer 

program. The latter may happen when the demand pattern has changed 

significantly. 
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CHAPTER 4 NETWORK MODELLING AND SIMPLIFICATIONS 

FOR SYSTEM OPTIMAL OPERATIONS 

4.1 INTRODUCTION 

Generally, a water supply and distribution network is composed of 

hundreds or even thousands of pipes and other elements and thus is a 

very complicated system. Moreover, time-varying consumers demands 

occur at different points throughout the network, few of which are 

measured hourly or daily. As discussed in (CHEN, 1986; DEMOYER and 

HORWITZ, 1975a, 1975b), it is impractical to evaluate optimal controls 

using a detailed model of the actual network. Therefore, certain 

reasonable and effective simplifications are essential. 

As discussed in Chapter 2, most conventional distribution system 

models use what is called a microscopic approach by incorporating in 

the model all components down to the smallest pipe diameter included 

in a skeletonized network. Although some sort of aggregation work, 

involving the cancellation of pipes of small diameters, replacement of 

parallel or serial pipes by 'equivalents' and so on, can be done, 

there are still a large number of pipes and nodes in the skeletonized 

network and a single network 'balance' requires the iterative 

calculation of all pipe flows and nodal pressures. This is very time 

consuming and even infeasible for optimal control purpose (CHEN, 

1985). Owing to this difficulty, some complicated networks have been 
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simplified by some researchers by eliminating a large part of the 

network to leave only a few pipes. In this case the characteristics 

of the original network might not be properly reflected and customers 

service requirements as well as some important components in the 

network cannot be taken into account directly. 

Owing to the practical requirements, this chapter presents two 

independent methods of network modelling and simplification. The 

first of these methods extends the macroscopic model, derived by 

DeMoyer et al (DEMOYER and HORWITZ, 1975a, 1975b), to cater for more 

general water supply and distribution systems. The second method has 

been developed by the author based on conventional theory of water 

network analysis. 

4.2 SUMMARY OF THE MACROSCOPIC MODEL 

DeMoyer et al developed what is called a macroscopic model in that it 

deals only with major heads and flows associated with pumps and tanks 

(or reservoirs). In such a model, variables are related by empirical 

equations derived from statistical analysis of operating data (DEMOYER 

and HORWITZ, 1975a, 1975b). 

4.2.1 Puaping Station Relationships 

Hp(i) = Cp(i, k, 1) + Cp(i, k, 2) x Q(i)1.85 (4.1) 

where: 

Hp(i)-head increase across station i, pump combination k. 

Q(i) - pump flow at station i. (e. g., m3/h) 

Cp = pump constant array. 
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For accuracy, the constants Cp are determined from multiple regression 

or stepwise regression analysis of operational data (DEMOYER and 

HORWITZ, 1975a, 1975b; KENNEDY, 1986; OSTLE, 1974). 

HS(i) = CS(i, 1) + Cs(i, 2) X Qd1.85 

+ Cs(i, 3) x Q(i)1.85 (4.2) 

where: 

Hs(i) = suction head at station i. (e. g., m) 

Qd = total demand flow. (e. g., m3 /h) 

Cs = suction head constants. 

The constants Cs can also be determined from multiple regression or 

stepwise regression analysis of operating data. Then the pumping 

station discharge head, Hd(i), is a combination of eqn(4.1) and 

eqn(4.2): 

Hd(i) = Hs(i) + HP(i) (4.3) 

4.2.2 Internal Network Nodal Pressure Relationship 

I 
H(h) = Cn(h, 1) + Cn(h, 2) x Qd1.85 +E Cn(h, i+2) x Hd(i) 

i=1 
J 

+E Cn(h, j+I+2) x Ht(j) (4.4) 
j=1 

where: 

I= number of pumping stations in the system. 

J number of tanks in the system. 
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H(h) = internal network pressure at node h. (e. g,, m) 

Ht(j) =head of tank j. (e. g., m) 

Cn = network pressure constant array determined by 

regression. 

For other related empirical relationships and more details see 

(DEMOYER and HORWITZ, 1975a, 1975b). 

The macroscopic model can be, for the purpose of control, the 

equivalent of a full network model. It is convenient and feasible for 

on-line implementation, and is also effective for those systems having 

only partial information available, because of the stochastic nature 

of water consumption and the constant change in hydraulic network 

characteristics. 

It should be noted that such macroscopic models are based on the 

assumption that the actual distributed demands throughout the network 

are proportional to total demand (i. e., proportional loading); the 

accuracy of the models will decrease in a district having large non- 

proportional loads. Unfortunately, a lot of urban water distribution 

networks do not satisfy this assumption. In many water supply and 

distribution systems, it is difficult to distinguish residential 

districts from industrial districts thus the conditions for 

proportional loading may not be satisfied. Direct applications of the 

macroscopic models to such systems might not be satisfactory. 

However, it was found by examining operating data that the load 

patterns of many systems do not vary much over short time horizons, 

and within these horizons the patterns can be considered to 
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approximate the assumption of proportional loading. Therefore, the 

author has developed a set of piecewise macroscopic models, i. e., the 

constants in the models are determined from operating data over 

several periods during one day (CHEN, 1988b), which are discussed in 

the following section. 

4.3 PIECEWISE MACROSCOPIC MODEL 

From investigations of practical water supply and distribution systems 

in China and using the macroscopic model as a basis, the piecewise 

macroscopic model was developed as follows: 

4.3.1 Pumping Station Relationship 

Hdk(i) = Cdk(i, l) + Cdk(i, 2) x Qd 

+E Cdk(i, j+2) xQ (j)a 
j=1 

n 
+E Cdk(i, j+2+n) x Q(j) x Q(i) , (4.5) 

j=1 
j*i 

where: 

n- number of pumping stations. 

Hdk(i) - discharge head of station i in period k. (e. g., m) 

Qd = total demand flow. (e. g., m3/h) 

Q(i), Q(j) - discharge flow at station i, j, respectively. (e. g., m) 

a-1.85 to 2.0. 

Cdk - discharge head constant array in period k, 

which is to be determined from regression analysis of 

operating data in period k. 
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The third item of the R. H. S. of eqn(4.5), which is not present in the 

corresponding relationship of the original macroscopic model, was 

found out to be useful in achieving better results for the practical 

system studied. 

4.3.2 Internal Network Nodal Pressure Relationship 

n 
Hk(j) = Bk(J, 1) +E Bk(3, j+l) x Qa(i) 

i=1 

+ Bk(j, n+2) x Qd (4.6) 

(when there is no reservoir or no significant 

storage capacity in the system) 

where: 

Hk(j) = internal network pressure at node j in 

period k. (e. g., m) 

Bk = network pressure constant array in period k. 

4.3.3 Model Validations 

The model validations were carried out using data from the Pudong 

district in Shanghai. The water supply' system in this district 

contains three water purification plants (each plant with a pumping 

station, which discharges the purified water into the network) and 

five internal pressure monitoring nodes, at the locations shown in Fig 

4.1. There are no water storage reservoirs in the network. 

For example, for station 3, in period 1 (from 0.00 hour to 6.00 hours 
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every day). By multiple regression, egn(4.5) is: 

Hdl(3) = 32.7055 + 3.3245 x Qd2 - 7.4109 x Q2(1) 

-74.9065 x Q2(2) - 148.5306 x Q2(3) 

+ 20.3285 x Q(1) x Q(3) 

+ 142.0468 x Q(2) x Q(3) (4.7) 

where: correlation coefficient P= 0.802, and 

standard deviation sy = 1.737 

and by stepwise regression, eqn(4.5) becomes: 

Hdl(3) = 31.1768 - 21.6010 x Q2(3) (4.8) 

where: correlation coefficient P= 0.754, and 

standard deviation sy = 1.010 

O 
P3 

pes 

AN rrc 

orI 

G 
PP3 

0 PP2 

P2 

A Pr 10 pumping station 
pressure 
monitoring point 

Fig 4.1 Layout of the Pudong System, in Shanghai 
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parts of the simulation results are listed in Table 4.1, which shows 

that both egn(4.7) and egn(4.8) are acceptable. This is true for the 

simulation of other pumping stations. 

As for the simulation of internal network nodal pressures. By 

multiple regression, the equation for point 1 is: 

H1 20.8327 - 1.2304 x Qd2 + 2.1097 x Q2(1) 

+ 10.9899 x Q2(2) + 2.0821 x Q2(3) 

(4.9) 

where: correlation coefficient p= 0.697, and 

standard deviation sy = 1.835. 

and by stepwise regression, it is: 

H1(1) = 23.3292 - 0.9906 x Qd2 + 1.8435 x Q2(1) 

+ 9.6945 xQ 2(2) (4.10) 

where: correlation coefficient p= 0.603, and 

standard deviation sy = 1.432. 

also, the simulation results of both are quite accurate. 
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4.3.4 Division of a Day into Proportional 
Loading Periods 

The periods when the assumption of proportional loading is 

approximately satisfied may vary with different water supply and 

distribution systems. From the author's studies, the division into 

periods of proportional loading depends mainly on the total demand. 

in other words, a period in which the total demand does not change 

significantly can be considered to be a proportional loading period. 

This is further demonstrated through the following numerical results. 

For the period from 0.00 hr to 6.00 hrs, the multiple regressional 

model of station 2 in the Pudong system is, 

Hd(2) - 20.8929 + 0.7209 x Qd2 -1.9072 x Q2(1) 

-77.0007 x Q2(2) - 121.7429 x Q2(3) 

+ 4.9584 x Q(1) x Q(2) + 196.3082 x Q(2) x Q(3) 

(4.10a) 

where: correlation coefficient p= 0.87, and 

standard deviation sy = 1.443. 

Whereas for the period from 0.00 hr to 12.00 hrs, the multiple 

regressional model of the same station is, 

Hd(2) - 28.4666 + 15.0469 X Qd2 - 12.6832 x Q2(1) 

+ 41.8231 x Q2(2) - 45.4219 x Q2(3) 

- 63.3089 x Q(1) x Q(2) -63.7255 x Q(2) x Q(3) 

(4.10b) 

where: correlation coefficient p= 0.59, and 
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standard deviation sy = 3.259. 

It shows that egn(4.10a) is more suitable than egn(4.10b) in terms of 

the correlation coefficient p and the standard deviation sy. More 

accurate simulation results are also achieved from egn(4.10a) than 

those from egn(4.10b). This is mainly because the total demand within 

the sub-period from 1.00 hr to 6.00 hrs is relatively stable, and the 

total demand within the sub-period from 6.00 hrs to 12.00 hrs is also 

relatively stable; but the total demand changes significantly from 

the first sub-period to the second sub-period. Therefore the period 

from 0.00 hr to 12.00 hrs should be divided into two different 

proportional loading sub-periods and regressional models should be 

built separately within each sub-period. 
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4.4 EQUIVALENT NETWORK MODEL 

4.4.1 Theoretical Analysis and Deduction 

From the above discussions, it will be clear that both the macroscopic 

model and the piecewise macroscopic model were developed based on 

empirical relationships obtained from statistical analysis of 

operating data. Consequently the derived parameters have no clear and 

definite physical meaning (LIU and DUAN, 1986). This does not sound 

strong theoretically, and large errors may occur, especially in those 

water distribution systems that do not strictly satisfy the condition 

of proportional loading. 

To avoid these disadvantages, the concept of an equivalent network 

model is developed by the author hereafter. 

The essence of equivalent network modelling is to deal only with major 

components in a network (such as reservoir nodes, pressure monitoring 

nodes and nodes which link control elements) and to inter-connect them 

using fictitious pipes in order to construct a simplified equivalent 

network from the original detailed network. The constructed 

equivalent network should be able to replace the main aspects of the 

original network for simulation or optimization purpose. 

To further explain the concepts of the equivalent network modelling 

procedure, take a simple example as shown in Fig 4.2 (CHEN, 1988b). 

For the original network, drawn with solid lines, from Chapter 2, the 

well-known nodal equation will be: 
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E qij = uj - yi iEN (4.11) 
jE N(i) 

where: 

N= total number of nodes in the network. 

N(i) = subset of j connections to node i. 

qij = pipe flow from node i to j (positive flow). (e. g., 11s) 

ui = pump flow into node i. (e. g., 11s) 

yi = consumption flow out of node i. (e. g., 11s) 

PI 

--------------- 
- TI 

------ 
, 

i. 
Iº ` 

ý PP2 

PPI PI ßn2 --water sources 
ge tank TI -- stora 

PPIPP2 pressure 

\ 

JP2 

monitoring points 

Fig 4.2 An Example Water Supply Network 

In Fig 4.2 all the dashed lines which link the main components of the 

water supply distribution system will constitute its initial 

equivalent network. The equivalent network will be determined by the 

statistical analysis of correlation, ie, if two variables of the 

system are correlated, a dashed line (a fictitious pipe) will connect 
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these two variables, otherwise there will be no dashed line between 

them. 

The procedure of correlation analysis is stated as follows: 

Since a water supply distribution system operates somewhat cyclically, 

nodal pressures will fluctuate around their average values. In the 

long term, nodal pressures can be assumed to follow a Guassian 

distribution. Therefore, nodal pressures can be selected as 

statistical variables of a Guassian distribution. If any pair of the 

two statistical variables are not correlated, this means they are 

independent from each other as well. From the above discussion the 

correlation analysis can be performed as follows. 

Suppose r is a sample estimate of the population parameter P, then: 

a 
p=_': (4.12) 

au Qv 

A 
Q uv 

r =------ (4.13 
nn au 0v 

where: 
L 

Quv E (ui - n) (vi sample covariance. 
J=1 

L 
Q 

u2 = 1/(L-1) E (ui - u)2 , sample variance. 
J=1 

Q v2 
ZL (vi -2, sample variance 

i=1 
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L 
ü= 1/L E ui, sample mean. 

i=1 

L 
v =1/L E vi, sample mean. 

i=1 

L= length of sample. 

ui = pressure value of node u (i = 1,2, ... L). 

vi = pressure value of node v (i = 1,2, ... L). 

To test hypothesis H: p=0 versus the alternative A: pj0, it is 

necessary to calculate: 

t =(r-0)/Sr= r(L-2)0.5/((1-r2)0.5) (4.14) 

and reject H if t>t(1 
- a/2)(L-2) 

or if t<- t(l 
- a/2)(L-2) 

t(l 
-a/2)(L-2) can be found in the t- distribution table; where 

100 a is the significance level. 

This correlation analysis will be performed between each pair of the 

nodes. At the same time, practical engineering understanding of the 

particular network should be helpful in the final construction of the 

equivalent network. 
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After the correlation analysis, assume the final equivalent network is 

as shown in Fig 4.3 

TI 

lol/ 

PP2 

1\/ 

f/. 
ppi 

ýP2 

Fig 4.3 Equivalent Network of Fig. 4.2 

Using the operating data or the data obtained from dynamic simulation 

of a given water supply distribution system as discussed in Chapter 2, 

it is possible to obtain the nodal consumptions and pipe resistances 

of its equivalent network so that the equivalent network can be dealt 

with as a real network. This will be demonstrated through the 

following deduction. 

For the equivalent network, the nodal equations will still be: 
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2: Qi j- ui - yi iE N (4.15) 
jEN(i) 

But where: 

N= total number of nodes in the equivalent network. 

N(i) = subset of node j connections to node i. 

Qij = the "flow" through an equivalent pipe from node i to 

node j (positive flow). (e. g., 11s) 

ui = pump flow into node i. (e, g., 11s) 

yi = equivalent consumption flow out of node i. (e. g., 11s) 

Yip if i=1, ... N-Ns 
yi ={ 

0, if i=N- Ns + 1, .. N. (here it is required 

that source nodes are numbered last). 

Ns = number of source nodes. 

Using Manning's formula as given in Chapter 2: 

AHij = Hi - Hi = Ri3 Qij2 

then 

Qi j= (Hi - Hi )/ (RijO. 5 , Hi - Hi I °'"J (4.16) 

where 

AH ij head drop from node i to node J. (e. g., m) 

Hi, Hj head at node i and node j, respectively. (e. g., m) 

Rij a resistance coefficient of an equivalent pipe from 

node i to node j. 

The N nodal equations in eqn. (4.15) can be combined into a vector 

equation as follows: 
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AS=U-Y 

where: 

(4.17) 

A= connection matrix of dimension Nx Np (whose elements 

are 0 or 1). 

Q = vector of dimension Np with elements Qij 

U = vector of dimension N with elements ui. 

Y= vector of dimension N with elements yi. 

Np = number of "pipes" in the equivalent network. 

For M sets of measurements, there are M vector equations: 

A(1) - U(1) - Y(1) 

A(k) = U(k) - Y(k) (4.18) 

A(M) s U(M) - Y(M) 

If Rij changes slowly, the following approximations may be valid: 

Rij(l) a Rij(2) a ... - Rij(M) 

then 

eH ij 
M/ 

eH ij 
(1) 

ýQij (k) I Qij(k) I Rij (k)) / [Qij(1) I Qij(1) I Rij(')] 

[Q. k)IQij(k)I) / [Qjj(1) 1 Qij(1)I] 

k-2,3, ... M 
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or 

Qij(k) = Yij(k) Qij(l) 

in which 

(4.19) 

Yi 
j(k) = sign[A Hij 

(k) /A Hij(1) )xf QHi 
j(k) i AHi3(1) 10.5 

By substituting eqn. (4.19) into eqn. (4.18), eqn(4.18) can be rewritten 

as: 

A(l) g(1) Uil) _ Yý1) 

A(k) S(1) = u(k) - Y(k) (4.20) 

A(M) Q(1) = U(M) - Y(M) 

where: 

Ail) = A; Alk) =Ax[y ij(k)3, k=2,3,... M. 

(Yii(k)J a diagonal matrix of dimension Np x Np with 

elements Yii(k). 

Define ai as the fractional consumption rate at node i, such that: 

N-Ns 
ai = yi/YD and E ai =1 (4.21) 

i=1 

or 

N-Ns 
E (ai x YD) - YD 

i'1 

where 

YD = total demand flow. 
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Combining eqn. (4.21) with eqn. (4.20) leads to the partitioned matrix- 

vector equations as follows: 

i 
I 

A(k) ý 

----------( 
0ý 

Y(K) Q(1) 

Ea 

k=1,2,.... M 

where 

E = [1 1 .... 11 is a row vector of dimension N-Ns 

a = {al a2 ... aN-Ns 
T ] 

Y (k) 

( 
DYD(k) 

Ik) E' 

YD (k 

0 .... 0 ... 0 

0 .... 0 ... 0 Nx (N-Ns) 
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Finally, the parameters to be estimated are: 

Q(1) 

a 

9 can easily be estimated by using the method of least-squares (HSIA, 

1977): 

Let 

then 

A(k) ID(k) 
Xk _ ---- 

0E 

0-1,2, 
...., M 

xT a (XT, XT, 
..., 

XT] 

and let 

U(k) 

1 

k 1,2, """", M 

then 

ZT = IZ1T Z2T... ZMT] 

Egn. (4.22) becomes 

24 -ii X2 

" "es" 

or: 

X9Z (4.23) 

Define an error vector E-( E11 E2, ..., EID )T and let 
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E=Z-X9 

A 
The estimate 6 of -9 will be chosen in such a way that the criterion, 

J, given by: 

M 
J=E Eil=ETE _(Z_ X8)T(Z- X6) 

i=1 - -- - -- 

= ZT Z- 9T xTZ- ZT X fl + 6T xTXe (4.24) 

is minimized. 

Differentiate J with respect to 0 and equate the result to zero to 

determine the conditions on the estimate 8 that minimizes J. Thus 

aJ -2XT Z+ 2 XT X 9= 0 

ao A=Ö 

This yields 

XT X6=XT Z 

A 
from which 9 can be solved for as 

(XTX)-1XTZ (4.25) 

A program coding EQUNET was produced in Fortran 77 to implement this 

algorithm. 

However, in some cases of the study, it was found that some "flows" 

can occur from lower pressure nodes to higher pressure nodes without 

the existence of pumping. To avoid these problems a constrained 
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least-squares formulation needs to be solved. The problem is: 

min i= ETE 
0-- 

= (Z -X 0)T (Z -X 6) (4.26) 

= ZT Z- 6T XT Z- ZT X9+ eT XT X8 

s. t. 9i >0 i=1,2,... Np + N-Ns 

Note that in problem (4.26), 9TXTZ is a scalar, then &TXTZ = (9TXTZ)T 

= ZTXe and ZTZ is a constant. Therefore, problem (4.26) is 

equivalent to 

min J, = CT B+ (1/2) 9TH 9 

(4.27) 

s. t. 9i>0,1 = 1,2,... Np + N-Ns 

where: 

CT = -ZT X, 

x=xxx 

In fact, problem (4.27) is a Linear-Quadratic Programming problem, 

which can be solved with the routine E04NAF in the NAG FORTRAN LIBRARY 

(NAG, 1983). Therefore, a program coding ENCQP was produced in 

Fortran 77, which employed E04NAF, to cater for this algorithm. 

A 
With the estimate e, substituting the equivalent pipe flow vector Q(1) 

into eqn. (4.16), the "resistance" Ri j of the equivalent network can be 

computed; substituting the fractional consumption rate vector a into 

eqn. (4.21), the distributed consumption yi can also be computed. 

So far, the equivalent network has been thus constructed. Note that 

the parameters in the model have a clear and definite physical 
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meaning; and are consistent with the conventional theory of water 

network analysis. In particular the method does not rely on the 

assumption of proportional loading, as compared with the macroscopic 

model (DEMOYER and HORWITZ, 1975a, 1975b) or the piece-wise 

macroscopic model, which cannot be guaranteed to apply to most water 

supply systems. 

4.4.2 Model Validations 

The model validations were carried out on the Goldthorn zone of the 

Wolverhampton water supply and distribution system as shown in Fig. 4.4 

(COULBECK and ORR, 1986). A dynamic hydraulic simulation was performed 

using GINAS (COULBECK, 1985) for one day's operation of the Goldthorn 

zone, where half-hourly simulation time steps were utilized to obtain 

48 half-hourly sets of data. The data simulated were then used for 

the parameter estimation of the equivalent network. 

The results of the nodal correlation analysis are listed in Table 4.2 

and the initial equivalent network is shown in Fig. 4.5. 

Using the program coding EQUNET for the unconstrained least-squares 

procedure, the computed results are as summarized in Table 4.3. 

From Table 4.3, it may be noticed that the flow of pipe 8 and the flow 

of pipe 10 are negative, which mean that the two flows are from node 5 

to node 7 and from node 1 to node 3, respectively. However, the 

pressures at node 7 and node 3 are always higher than those at node 5 

and node 1, respectively. This means that the flows are from lower 
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pressure nodes to higher pressure nodes, which are therefore not 

acceptable. 

Consequently, the program coding ENCQP for the constrained least- 

squares procedure has been employed. 

The computed results from program ENCQP are summarized in Table 4.4 

and Table 4.5, respectively and their related equivalent networks are 

shown in Fig 4.6 and Fig. 4.7, respectively. The C-values used in 

Hazen-Williams relationships in Fig. 4.6 and Fig. 4.7 are computed by 

assuming all pipe lengths to be equal to 1 m, all pipe diameters to 

be equal to 100mm for convenience and by use of the Hazen-Williams 

relationship in Chapter 2. 

The results in Table 4.4 are obtained by using the simulation data 

from 0.00hr to 8.00hrs, when all pumps are in use. Whereas the 

results in Table 4.5 are obtained by using the simulation data from 

8.30hrs to 23.00hrs when one pump is off (the lower pump between nodes 

122 and 6 in Fig 4.5). 

In order to validate the equivalent network model, GINAS has been 

employed to perform dynamic simulations over the equivalent network 

under the same operational conditions as were performed over the 

original network. Both of these results are listed in Table 4.6 to 

give a comparison; this shows that the accuracy of the equivalent 

network model is satisfactory. 

Validation of the suitability of the equivalent network for different 

operating conditions is investigated by changing the initial head of 
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reservoir 4 from 182.00m to 183.00m and scaling the total demand by a 

factor of 1.3. The simulation results, performed for the original 

network and the equivalent network, respectively, are listed in Table 

4.7. The largest difference in Table 4.7 is 2.1m, the relative error 

being 1.17%, which indicates that the equivalent network is accurate 

for simulation and control purposes. 

Further, using the parameters for the equivalent network obtained for 

the period of 8.30hr to 23.00hrs to simulate over the period of 0.00hr 

to 8.00hrs, gives the results as tabulated in Table 4.8. The largest 

difference is 2.89m, the relative error being 1.63% which is still 

small enough. It seems, at least for the network studied, that the 

equivalent network is not too dependent on the variation of pump 

combinations when used for simulations. In other words, it is 

possible to use one set of parameters to represent the equivalent 

network for varied operational conditions, regardless of the 

variations of pump combinations. 

There are only 10 nodes and 13 pipes in the equivalent network. 

Whereas there are 36 nodes and 47 pipes in the original network. The 

reduction is about 72%, which is very effective in such a type of 

non-linear system. It follows that the reduction in system complexity 

would be much more significant in more complicated systems. 
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TABLE 4.2 RESULTS OF CORRELATION 

ANALYSIS BETWEEN NODES ((1=0.01) 

NODE PAIRS 

--------------- 

tl 
- a/2 

-------------- 

Computed t 

------------------- 

Correlation Result 

---------------------- 

Nodel/Node2 2.6868 36.5346 YES 

Nodel/Node3 2.6868 3.4001 YES 

Nodel/Node4 2.6868 -1.4525 NO 

Nodel/Node5 2.6868 3.1621 YES 

Nodel/Node6 2.6868 4.8032 YES 

Node1/Node7 2.6868 -1.4525 NO 

Node2/Node3 2.6868 4.2317 YES 

Node2/Node4 2.6868 -0.8713 NO 

Node2/Node5 2.6868 3.9889 YES 

Node2/Node6 2.6868 4.6607 YES 

Node2/Node7 2.6868 -0.8717 NO 

Node3/Node4 2.6868 -3.6431 YES 

Node3/Node5 2.6868 -0.5052 NO 

Node3/Node6 2.6868 7.9354 YES 

Node3/Node7 2.6868 -3.6456 YES 

Node4/Node5 2.6868 8.7352 YES 

Node4/Node6 2.6868 -6.5673 YES 

Node4/Node7 2.6868 3186.6274 YES 

Node5/Node6 2.6868 -1.7295 NO 

Node5/Node7 2.6868 8.7337 YES 

Node6/Node7 
-------------- 

2.6868 
-------------- 

-6.5712 
------------------- 

YES 
---------------------- 
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4.5 CONCLUSIONS 

This chapter has presented in detail several methods of network 

modelling and simplification in order to make the on-line optimal 

control of system operations feasible, particularly to speed up the 

solution time of the optimization problems. With a set of explicit 

nonlinear regressional equations, a macroscopic model, originated from 

DeMoyer et al's work, can represent the major aspects of the original 

much more detailed network. However, its applicabilities are 

restricted by the requirements of proportional loading, which are 

difficult to satisfy in many realistic water supply and distribution 

systems. The extended work on the macroscopic model by the author 

leads to the piecewise macroscopic model which can be successfully 

applied to those systems in which the loading pattern is not too far 

from proportional loading assumptions. For the validation of the 

piecewise macroscopic model, both sets of results, from multiple 

regression and stepwise regression, respectively, are presented and 

are shown to be satisfactory (the average errors of typical results 

are 1.21m and 0.68m, respectively, refer to Table 4.1). Furthermore, 

the stepwise regressional equations, in terms of covariance 

contributions in regression, only take important factors into account 

and delete those unimportant factors. This might increase the 

accuracy of the predicted results (OSTLE, 1983). Consequently, as can 

be seen from the numerical results, the stepwise regressional 

equations are much simpler than their corresponding multiple 

regressional equations. Also, the standard deviations, and thus the 

accuracies, of the stepwise regressional equations are much improved, 

although their correlation coefficients are insignificantly lower, 
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than those of their corresponding multiple regressional equations. In 

conclusion, it is better to adopt the stepwise regression method to 

build a piecewise macroscopic model for a system. Studies show that 

the division of a day into proportional loading periods mainly depends 

on the total demand. For a system where there are periods within 

which the total demand is relatively stable, there should be 

corresponding piecewise macroscopic models for each period. However, 

in a system where the total demand varies significantly and 

irregularly, the work of building-up the sets of piecewise macroscopic 

models (regressional computations) would become cumbersome, and even 

impractical. In this sense, piecewise macroscopic models are no 

longer applicable to that system. 

Based on the well-known nodal equations, the equivalent network model 

is developed by the author by introducing the concept of fictitious 

pipes. By employing matrix algebra, the detailed mathematical 

deduction leads to a least-squared estimation problem which in essence 

minimizes the discrepancies between the original detailed network 

model and the simplified equivalent network model. For practical 

applications, two algorithms which cater for unconstrained and 

constrained least-squared estimations, have been derived. Once the 

least-squared estimation has been performed, the pipe resistances and 

nodal consumption rates will become known and then the equivalent 

network can be treated as an ordinary network. The derivation of the 

equivalent network model has a clear and definite physical 

interpretation and is consistent with the conventional theory of water 

network analysis. In particular, the method, as compared with the 

macroscopic model or the piecewise macroscopic model, does not rely on 
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the assumptions of proportional loading. 

The practical validation of the equivalent network model using the 

Wolverhampton system confirms that the accuracy of the model is 

satisfactory. The simulation results derived by GINAS performed both 

over the original network and over its equivalent network show that 

the discrepancies are within 1.53m (relative error, 0.8%, refer to 

Table 4.6); validation of the suitability of the equivalent network 

for varied operation conditions shows that the maximum discrepancy is 

2.89m (relative error, 1.63%, refer to Table 4.8). The equivalent 

network model is very effective in the reduction of system complexity. 

For the system currently studied, this reduction is about 70% in terms 

of the numbers of network components. This reduction could be much 

more significant for more complicated systems. Solving time is 

directly related to the numbers of network components and it follows 

that this reduction will result in significant improvements in network 

simulation times -- essential for control purposes. 

The macroscopic model and the piecewise macroscopic model, which 

include pumps and controls and incorporate reservoir dynamics 

directly, can allow an explicit solution. This is particular 

beneficial for formulating a very useful optimal control model, which 

will be further discussed in Chapter 5. In contrast, the equivalent 

network model does still require an iterative solution. Further, at 

the present, the simplification by the equivalent model is restricted 

to the distribution part of a system. Pumps and their controls have 

not been taken into account directly. In other words, pump controls 

could influence the parameter values and even the configuration of the 
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equivalent network. 

From the above discussion, the applicabilities and accuracies of the 

various modelling methods presented should become very obvious. This 

should guide the selection among these methods for a particular 

system. However, the selection of which model to use for a particular 

system will not only depend on the characteristics of the system 

itself (e. g., load pattern), but will also primarily depend on what 

kind of algorithm for optimal operations of the system is to be 

employed. In Chapter 5, two algorithms to cater for the optimal 

operations of different classes of water supply and distribution 

systems are developed based on the piecewise macroscopic model and the 

equivalent network model, respectively. These algorithms will be 

fully discussed in Chapter 5. 
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CHAPTER 5 

5.1 INTRODUCTION 

OPTIMAL SYSTEM OPERATIONS 

As stated in Chapter 1, in order to save energy and raise economic 

efficiency for water supply and distribution systems, it is 

considered inevitable to have to adopt computerized optimal system 

operations. 

Mathematically, the objective function of the optimal operations of 

a certain class of systems, can be stated generally as follows: 

tf 

J-EJ Ice Qe(t) + be(t) He(t) Qe(t)/n (Qe(t)ldt 

e 
ti 

+X f[Xr(tf)) (5.1) 

r 

where: 

ti, tf - initial and final time of the operational (control) 

periods, respectively. (e. g., h) 

Ce - the unit cost of water production associated with pump e. (e. g. £/m3) 

be - the unit price of energy for pump e at time t (usually a 

piecewise constant function). (e. g., £/kWh)- 
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Qe(t) = flow of pump e at time t. (e. g., m3/h) 

He(t) = head increase through pump e at time t. (e. g., m) 

n(Qe(t)) ' is the efficiency as a function of flow, including 

a conversion factor for electrical power relating 

water quantities to electrical energies. (%) 

f[Xr(tf)] - reservoir final level penalty function. (e. g., £) 

In its above form the optimal operation problem so described presents 

several serious difficulties: in egn(5.1), Qe(t) and He(t) are 

related by non-linear functions, n e(Qe(t)) 
is also a non-linear 

function about Qe(t), whereas be(t) is a two-valued or a three-valued 

piecewise constant function; pump flow Qe(t) could be a discrete 

variable for fixed speed pumps or a continuous variable for variable 

speed or variable throttle pumps, and f[Xr(tf)] is usually expressed 

in a kind of non-linear function form. Furthermore the constraint set 

should include state equations describing the dynamics of the system 

which in general will be non-linear and time-varying. The constraint 

set should also include system equations describing the hydraulics of 

the system which are constituted of a set of simultaneous non-linear 

equations and which must be solved iteratively as stated in Chapter 2. 

In addition there should be included bounds on the capacities of pumps 

and reservoirs, etc. 

The formulation still neglects certain costs or implied costs which 

may be significant, e. g., pump switching costs, electricity maximum 

charge, and costs reflecting pressure effects on leakage, etc. 

In summary, this is a large-scale non-linear dynamic optimization 

problem with discrete and continuous variables, which represents one 
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of the most difficult problems to solve and there is almost no 

solution method in the field of optimization that can cope with all 

these difficulties simultaneously. 

For more than ten years, many researchers have tried to solve this 

problem and various methods have been employed. Of the major 

advances, dynamic programming, in particular discrete dynamic 

programming, can theoretically solve this problem, but it is effective 

and practical for only single reservoir systems because of the problem 

of dimensionality and time of computation (COULBECK, 1977; COULBECK 

and ORR, 1983; SABET, 1983). Hierarchical optimization methods can 

be applied to multi-source, multi-reservoir systems when a linearized 

dynamic model of the system can be derived and the objective function 

can be approximated by a linear or quadratic form. In this case, the 

accuracy of the linearized model, convergence of the algorithm, as 

well as the design of coordinators, etc. are problematic and left open 

(COULBECK, 1977; COULBECK et al, 1985; FALLSIDE, 1975; JOALLAND and 

COHEN, 1980). Consequently, it has been recognized that research has 

not yet reached the stage of a universal approach which can cope with 

all the difficulties described above and which is applicable to any 

water supply distribution system. It is only by exploring the 

particular features of certain classes of systems, that appropriate 

and simplified optimization methods can be developed. These 

particular methods can then be very successfully applied to those 

classes of systems. (BRDYS et al, 1988; BRDYS, 1988; CHEN, 1988b ; 

COULBECK, 1988). 

In this chapter, two different algorithms for the optimal operations 
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of different classes of water supply and distribution systems, based 

on the author's several years of work both in China and in the U. K., 

are presented. 

The first algorithm is applicable to a class of multi-source water 

supply and distribution system without significant storage within the 

system. This represents quite a few small water supply and 

distribution systems and sub-systems in reality. Under this 

condition, there are no dynamics in the system and hence the 

optimization problem for each time interval can be solved separately. 

Thus the number of decision variables is small yielding a very much 

simpler problem than eqn(5.1). Only pumping costs and treatment costs 

are included in the objective function, this represents the major part 

of the true cost and it is still highly non-linear. The pressure 

requirements of some pressure monitoring nodes are taken into account 

directly in the set of constraints, by employing the piecewise 

macroscopic models developed in Chapter 4, which can be solved 

explicitly, rather than the network simultaneous hydraulic equations 

system, which has to be solved iteratively and is thus very time- 

consuming. The restrictions on pumping capacities and so on are 

included in the set of constraints. The final formulation of the 

problem of optimal operation of the system by this algorithm results 

in a constrained non-linear programming problem, which can be solved 

using standard optimization methods. 

The second algorithm caters for a class of multi-source, multi- 

reservoir systems, in which pumping flows and especially pumping 

consumed powers are more or less constant during the whole control 

period. This condition can be satisfied in quite a few systems with 
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the presence of significant storage, since the storage of reservoirs 

can compensate for the variations in water demand to a certain degree 

and keep the pumping flows (and thus consumed powers) of certain pump 

combinations from changing significantly. Based on the equivalent 

network model developed in Chapter 4, and by choosing times of pumping 

(WRc, 1985), rather than the usual pumping flows as decision 

variables, this algorithm forms a large-scale linear programming 

problem for which global optima can be guaranteed. This algorithm is 

able to deal with the difficulties of the mixture of fixed speed pumps 

(discrete variables), and variable speed and/or variable throttle 

pumps (continuous variables), by discretizing the speed range or 

throttle factor respectively. The discretization scheme is 

systematically constructed through a post-optimality analysis. 
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5.2 ALGORITHM FOR OPTIMAL OPERATIONS OF MULTI-SOURCE SYSTEMS 
CONTAINING INSIGNIFICANT WATER STORAGE 

5.2.1 Formulation of Optimization Problem 

For water supply and distribution systems with multiple water 

sources, there exists an optimal proportion of water delivered by each 

of the sources and pumping stations so that the total operating cost 

will be minimized, under the conditions that customers requirements, 

for water quantities and service pressures, will be met. This section 

consider the above case without significant water storage in the 

network. 

Let e0 denote the electrical power cost (e. g., Yuan /KWh), ei(i) 

denote the cost of water treatment at plant i (Yuan/m3), including 

the cost of chemical dosage and the consumption of electrical energy 

in the process of water abstraction and purification, then: 

e2(i) - e0 x 1000/(3600 x 102 x nm(i)/100) 

- e0/[3.673/ n m(i)] 

where: 

e2(i) - cost of electricity at pumping station i for lifting 

one cubic metre of water to one metre height in a 

water column (Yuan/m4) 

nm(i)= mean efficiency of station i (X). 

The total hourly cost of water supply , Fw(Q), can be expressed as 

follows: 

* Yuan is the Chinese monetary unit. 
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n 
FW(Q) °E Q(i) x[ Hd(i) x e2(i) + e1(i)) (5.2) 

J-1 

where: 

n= number of water sources. 

Q(i) flow of pumping station i (m3/hr). 

Hd(i) = delivery head of pumping station i (m). 

In eqn(5.2), both Q(i) (i=1,..., n) and Hd(i) (i=1,..., n) are decision 

variables. However, Hd(i) (i=1,..., n) are dependent on Q(i) 

(i-l,..., n). Furthermore, each Hd(i) is not only dependent on its 

corresponding pumping station flow but also, generally, on the flows 

of other pumping stations. To determine this dependency involves 

solving the network simultaneous hydraulic equations system 

iteratively as stated in Chapter 2. This will be very time-consuming 

and is considered infeasible for on-line control purposes (CHEN, 1985; 

DEMOYER and HORWITZ, 1975a, 1975b) 

Fortunately, this problem can be avoided if the piece-wise macroscopic 

model developed in Chapter 4 is employed. Furthermore, the pressure 

requirements of some critical nodes in the system can be considered 

directly in this algorithm, because of the adoption of the piece-wise 

macroscopic model. These will be demonstrated as follows. 

Substituting eqn(4.5) into eqn(5.2) yields: 
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n 
FW(Q) =I : Q() x {[ Cdk(i, 1) + Cdk(i, 2) x Qä + 

i=1 

nn 
E Cdk(i, j+2) xQ aij) +E Cdk(i, j+2+n) x Q(j) x Q(i)] 

i=1 i=1 

j#i 

x e2(i) + el(i)} (5.3) 

After this substitution, eqn(5.3) is then a nonlinear function only 

about {Q(i), i=1,..., n }. The Q(i) in egn(5.3) will usually be 

subject to the following constraints: 

n 
E Qii) = Qd 

i=1 
(5.4) 

Qmin'i) Q(1) Qmax(i), i= 1,2, ..., n (5.5) 

where: 

Qd = total demand flow (m3/hr), which can be predicted by using 

the demand forecasting program developed in Chapter 3. 

Qmin(i)' Qmax(i) = minimum and maximum discharge flow for 

pumping station i, respectively (m3/hr). 

In order to meet the customer requirements of service pressures, the 

pressures at the pressure monitoring nodes in the network should be 

higher than the lower limit of pressure at the node, i. e.: 

Hk(j) , Hmin(J), J=1,2, ..., nh (5.6) 

where: 

Hmin(J) - the lower limit of pressure at node j in the network 

(m). 

nh - total number of pressure monitoring nodes in the network. 
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Substituting eqn(4.6) into egn(5.6), gives: 

n 
Hk(j) = Bk(j, 1) +E Bk(j, i+l) x Qa(i) + Bk(j, n+2) x Qd 

i=1 

Hmin(j ) (5.7) 

Eqn(5.3) to eqn(5.7) constitute a nonlinear programming problem about 

{ Q(i), i=1, ..., n }: 

min Fw(Q) =E Q(i) xf[ Cdk(i, 1) + Cdk(1,2) x (?, +E Cdk(i, j+2) x 
Q i=1 i=1 

n 
Qa(j) +E Cdk(i, j+2+n) x Q(j) x Q(i) Ix e2(i) + el(i)} 

j=1 
j#i 

s. t. 

n (5.8) 
E Q(i)-Qd0 

i=1 

Qmin(i) l< Q(i) '< Qmax(i)' i=l, 2, ..., n 

Bk(j, 1) +E Bk(j, i+1) x Q(i)o+ Bk(j, n+2) x Qa H (j) >0 
isl 

d min 

i-i, 2, ..., nh 

By solving this optimization problem, the optimal apportioning of 

water among the pumping stations and water sources will be obtained. 

Since it is assumed that there is no significant storage in the 

distribution system, there are no dynamics and, therefore, the 

optimization problem can be solved independently for each time 

interval. For the whole control period, if it is twenty four hours, 
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there will be twenty four such small optimization problems rather than 

a single large-scale optimization problem, which is much more 

complicated in non-linear programming problems. 
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5.2.2 Summary of the Optimization Technique 

For the above nonlinear programming problem, the Sequential 

Unconstrained Minimization Technique (SUMT) is employed, which is very 

effective in solving many practical problems. Its principle is 

summarized as follows: 

For a generalized nonlinear programming problem of : 

min f(X) 
X 

S. t. 

g1(X) >0i=1,2, ..., m 

h(X) °0j-1,2, ".. ) p 

(5.9) 

An inside penalty function is constituted in inequality constraints 

gi(X) (i = 1, ..., m) and an outside penalty function is constituted 

in equality constraints h j(X) 
(j = 1, ..., p). Adding these two 

functions to the objective function f(X) gives: 

p 
P(X, r) = f(X) +rEm 1/Si(X) + (1/ r0.5) x Zr [h4(X)]2 

i=1 j=1 

(5.10) 

where r is a penalty factor, which is an infinite decreasing series of 

positive numbers, and can be formed from r(k) = r(k-1) c, where 

O<c<1 (often 0.01 to 0.20). 

For r- r(k), minimizing penalty function P(X, r(k) ), the 

corresponding extreme point X(r(k)) is found. For a series of penalty 
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factors { r(k) }, when k cc, then r(k) -º 0. Under certain conditions, 

the corresponding extreme point X(r(k)) makes: 

m 
lim {r(k) E 1/8i(X)} =0 
k-º- i=1 

(5.11) 

(k)0.5 p 2} lim {1/r E [hj(X)] =0 (5.12) 
k-+m j=1 

therefore 

lim P[X(r(k))J = f(X) 
k+ - 

(5.13) 

In practice, when k is large enough, X(r(k)) can be considered as the 

approximate solution to eqn(5.9). 

From the above statement, we can see that the constrained nonlinear 

programming problem of f(X) is changed into the unconstrained 

nonlinear programming problem of P(X, r), which is solved by using 

Powell's minimization method (one of the conjugate direction methods, 

FLETCHER, 1987; WAN, 1983). 

In order to avoid the dependency among the n successively generated 

search directions Si (i=1,2,..., n), when obtaining the conjugate 

direction Sn+1 each time, the following inequalities must hold: 

f3 < fl (5.14) 

and 

(f1 - 2f2 + f3)(fl - f2 - Am)2 < 0.5 Am(fl - f3)2 

where: 

(5.15) 
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fl'= value at initial point X0. 

f2 - value at Xn along search direction Sn. 

f3 = value at X n+l, which is the reflection point along the 

conjugate direction Sn+1, i. e., Xn+1 - 2Xn - X0' 

m@ max 
{Ai}= 

max 
{ 

P(Xi) - P(Xi-1) 
1<i<n 1<i<n 

Sm a the direction corresponding to A 
m. 

Then Sn+1 will take place of Sm" Otherwise, the original search 

directions set will still be used in the iterative search for 

a solution. 

The one-dimensional search along each direction is conducted first by 

extrapolation to determine the search interval for optimal step length 

and then by quadratic interpolation to decide the optimal step length 

a. 

The rule for convergence of the unconstrained minimization is: 

11 x(k) _ X(k-1) II< E1 (5.16) 

If X(k) is still not the constrained optimal point, then a penalty 

function P(X, r(k+l)) will be constructed by a new penalty factor 

r(k+l), and will be manipulated for the search of its unconstrained 

extreme point. By repeatedly doing this, a series of points will be 

generated: 

X(r(1)), X(r(2)), ..., X(r(k-1)), X(r(k)) 
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And when the penalty function satisfies: 

I[P(X(r(k))) - P(X(r(k-1)))]/P(X(r(k-1))I < E2, (5.17) 

X(r(k)) is considered as the constrained optimal solution to 

the optimization problem (5.9). 

Using the SU MT, the optimal operation problem (5.8) can be solved. 

Some of the relevant subroutines in (WAN, 1983) have been employed in 

designing a program OPWAP (OPtimal Water APportioning) to cater for 

this algorithm. 

5.2.3 Application Results 

This algorithm has been applied to the Pudong water supply and 

distribution system, Shanghai, China. As mentioned in Chapter 4, it 

contains three water purification plants (each plant with a pumping 

station discharging the purified water into the distribution system). 

There are no reservoirs in the network. 

The computed optimal apportioning of water among the different pumping 

stations for the 12-hour period of one day is listed in Table 5.1; 

the actual proportions of water are also listed in Table 5.1 so as to 

allow a comparison. 

From Table 5.1, for the 12 hour period, 108.57 Yuan of cost can be 

saved. In other words, the cost of water supply can be reduced by 

11.65% by using this optimization algorithm. This is proved, more or 
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less, to be true in other related studies. 

The optimal pump schedules are produced based on the following 

principle: 

Once the optimal pumping station flows { Q* } (i), i= 1,..., n are found 

at each time interval, the corresponding delivery head {Hd (i), 

i=1,..., n} can be computed from eqn(4.5). In pumping station i, 

there could be several single pumps or pump combinations of which the 

actual delivery head is equal to or higher than Hd*(i) when supplying 

flow Q*(i). They are first considered as feasible pumps (or 

combinations). Then the single pump (or combinations) will be chosen 

in operation among those feasible pumps (or combinations) which has 

the least cost. The procedure will be conducted. in each station at each 

time interval to form the optimal pump schedules of all pumping 

stations for the whole control period. 

It should be clear now that in this algorithm the optimal operations 

of a water supply and distribution system are carried out in two 

levels as illustrated in Fig 5.1. 
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5.3 ALGORITHM FOR OPTIMAL OPERATIONS OF A CLASS 

OF MULTI-SOURCE, MULTI-RESERVOIR SYSTEMS 

From eqn(5.8), we may see that the objective function (cost) of the 

optimal operation problem is a nonlinear function about pumping flow. 

From egn(5.1), we may see that the objective function is even a non- 

linear function about pumping flow and pumping head. These are 

generally true and are the main difficulty of optimization. Since 

some of the constraints are also non-linear, for this kind of 

nonlinear programming problem, finding global optima cannot be 

guaranteed, usually only local optima can be found (LASDON, 1970; 

PIERRE, 1969). 

However, there is a class of multi-source, multi-reservoir systems in 

reality, in which pumping flows and hence pumping head do not vary 

much during the whole control period, even though demands vary. In 

these systems, the influence of demand variations can be compensated 

for by variations of reservoir storages (in these systems, reservoir 

storages must be significant). 

The pumping cost of a pumping station can be expressed as: 

Cost -EPx UC xT 
e 

=E (gHQ/ n) x UC xT (e. g., £) (5.18) 
e 

where: 

e- pump combination. 

P pump consumed power. (e 
. g. , 

kWh ) 

UC = unit charge (cost) of electricity, which is usually a 
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piecewise constant function. (e 
. g. ,£ 

/kWh) 

T= time of pumping. (e 
. g. , 

h) 

H= pumping head increase. (e 
.g., m) 

Q= pumping f low. (e 
. g. ,1 

Is ) 

n= pumping efficiency. (% ) 

g= unit conversion factor for electrical power relating water 

quantities to electrical energies. (e. g., 0.98 kWs/m/1) 

From eqn(5.18), for certain single pumps or pump combinations (note 

that, a single pump is considered to be a type of combination 

hereafter), if the flow is a constant, and since H and n can be 

calculated from the characteristic equations (as described in Chapter 

2). Then (gHQ/ TI) is also a constant, although it is generally a 

nonlinear function about Q and H. In this way, the pumping cost in 

eqn(5.18) is a linear function about time of pumping for each pump 

combination. 

Unlike the algorithm presented in section 5.2 , and other optimization 

approaches, where the time of pumping for a certain pump combination 

is the length of the time interval at each stage, here the time 

interval is made up by the time of pumping for several pump 

combinations and is itself a decision variable. 
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5.3.1 Formulation of Optimization Problem 

(1). Objective Function 

The total cost of pumping for the whole control period in a water 

supply distribution system can be expressed as: 

Lp KT j(1) 
TC =EEE 

1=1 k=1 j=1 
CP(j, 1, k) x UC(1, k) x T(j, 1, k) 

(5.19) 

where: 

Lp = number of pumping stations. 

KT = number of time stages in the whole control period. 

j(1) = number of pump combinations in pumping station 1. 

Cp(j, 1, k) - pumping power consumption for pump combination 1 in 

pumping station j at time stage k. (e. g., kW) 

UC(l, k) : unit electricity charge (cost) for pumping station 1 

at time stage k. (e. g., £/kWh) 

T(j, l, k) - time of pumping at stage k for pump combination j in 

pumping station 1. (e. g., h) 

From the above discussion, it is clear that TC is a linear function 

about time of pumping T(j, l, k). 

(2). Constraints 

a) on time of pumping 

At each time stage for each pumping station, the times of pumping 
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added together should be equal to the length of that time stage, i. e.: 

j(1) 
E T(j, 1, k) = TT(k) (5.20) 

J-1 

1=1,2,..., Lp 

k=1,2,..., KT 

where: 

TT(k) - length of time stage k (e 
. g. , 

h) 

b) on reservoir capacities 

XMIN(i) < X(i, k) < XMAX(i) (5.21a) 

i=1,..., IR 

k 1,. "., KT-1 

where: 

X(i, k) storage of reservoir i at time stage k. (e 
.g., m3 ) 

XMIN(i) lower operational bound of reservoir i. (e. g. , m3 ) 

XMAX(i) - upper operational bound of reservoir i. (e 
. g. , m3 ) 

IR = number of reservoirs in the system. 

and 

XKT(i) - ALPHA1(i) X(i, KT) < XKT(i) + ALPHA2(i), (5.21b) 

ia1,2,..., IR 

where: 

XKT(i) - final storage of reservoir i, which is usually 

prescribedor set tothe initial storage since water 

supply and distribution systems are operated somewhat 

in a cyclic manner. (e. g. ,m3) 
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ALPHAI(1) -lower permissible deviation from reservoir final 

storage XKT(i) . 
(e 

. g. , m3 ) 

ALPHA2(i) - upper permissible deviation from reservoir final 

storage XKT(i), for strict condition, ALPHA2(i) 

and ALPHAI(i) are set to zero, then eqn(5.21b) 

becomes a set of equality constraints. (e 
.g., m3 

From the principle of reservoir mass balance stated in Chapter 2, the 

following relationship should hold, (which is also referred to as a 

set of state equations): 

Lp j(1) 

X(i, k) - X(i, k-1) +EE E(i, 1)Q(j, 1, k)T(j, 1, k) 
1-1 j=1 

IQC 

- d(i, k) +E F(i, ic)QC(ic, k)TT(k) (5.22) 
ica1 

and X(i, 0)=X0(i). 

where: 

d(i, k) - demand related to reservoir i at time stage k. (e. g., m3) 

QC(ic, k) - ic-th constant flow (non-decision variable) at time 

stage k. (e. g. , m3/h) 

IQC - number of constant flows in the system. 

XO(i) - initial storage of reservoir i, whichis 

3 
usually given or known in advance. (e 

. g. ,m) 

1, pumping station 1 supplies water to reservoir i; 

-1, pumping station 1 abstracts water from reservoir i; 

0, otherwise. 

1, constant flow is supplies water to reservoir i; 

F(i, ic)- -1, constant flow is abstracts water from reservoir i; 

0, otherwise. 
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Further, since reservoir initial storage XO(i) is given or known 

in advance, then by expanding eqn(5.22), we have: 

Lp j(1) 
X(i, l) = XO(i) +EE E(i, 1)Q(j, 1,1)T(j, 1,1) 

1=1 j=1 

IQC 
- d(i, 1) +E F(i, ic)QC(ic, 1)TT(1) (5.23) 

is=1 

2 Lp j(1) 
X(1,2) = XO(i) +ZEE E(i, 1)Q(j, 1, kl)T(j, 1, kl) 

kl=1 1=1 j=1 

22 IQC 
-E d(i, kl) +EE F(i, ic)QC(ic, kl)TT(kl) 

kl=1 kl=1 is=1 

(5.24) 

KT Lp j(1) 
X(i, KT) - XO(i) +ZEE E(i, 1)Q(j, 1, kl)T(j, 1, k1) 

kl=1 1-1 j=1 

KT KT IQC 

-E d(i, kl) +EE F(i, ic)QC(ic, kl)TT(kl) 
kl-1 kl=1 is=1 

(5.25) 

or in general: 

k Lp j(1) 
X(i, k) = XO(i) +EEX E(i, 1)q(i, 1, k1)T(j, 1, k1) 

kl=1 1=1 j=1 

kk IQC 

-E d(i, kl) +EX F(i, ic)QC(ic, kl)TT(kl) 
kl-1 kl=1 is=1 

i-1,2,..., IR 
(5.26) 

k-i, 2,..., KT 
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From the above expansions, the storage of reservoir i at time stage k, 

X(i, k), is now expressed in terms of decision variables and other 

known quantities but excludes the previous reservoir storage X(i, k-1). 

These expansions make the state equations more convenient for 

mathematical manipulation. 

Substituting egn(5.26) into eqn(5.21a) gives: 
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k Lp j(1) 
XO(i) +EgT E(i, 1)Q(j, 1, kl)T(j, l, kl) 

kl=1 1=1 j=1 

kk IQC 

-E d(i, kl) +EE F(i, ic)QC(ic, kl)TT(kl) 
kl=1 kl=1 is=1 

XMIN(i) 

i=1,2,..., IR 

k 1,2,..., KT-1 

or: 

k Lp j(1) 

EEE 
k1=1 1=1 J-1 

(5.27) 

E(i, 1)Q(j, 1, k1)T(j, 1, k1) > XMIN(i) - XO(i) 

kk IQC 
+E d(i, kl) -EE F(i, ic)QC(ic, kl)TT(kl) 

kl-1 kl=1 is=1 

i°1,2,..., IR 

k-1,2,..., KT-1 

and 

(5.28) 

k Lp j(1) 
Zr EE E(i, 1)Q(j, 1, kl)T(j, 1, kl) < XMAX(i) - XO(i) 

kl-1 1-1 j=1 

kk IQC 
+E d(i, kl) -EE F(i, ic)QC(ic, kl)TT(kl) 

kl-1 k1 1 is=1 

i-1,2,..., IR 

k-1,2,..., KT-1 

Substituting egn(5.26) into egn(5.21b) results in: 

(5.29) 
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KT Lp j(1) 
EEE E(i, 1)Q(j, 1, kl)T(j, 1, kl) > XKT(i) - ALPHAI(i) 
kl=1 1=1 j=1 

KT KT IQC 

- XO(i) +E d(i, kl) -EE F(i, ic)QC(ic, kl)TT(kl) 
kl=1 kl=1 is=1 

i=1,2,..., IR 

and 

(5.30) 

KT Lp j(1) 

EEE E(i, 1)Q(j, 1, kl)T(j, 1, kl) < XKT(i) + ALPHA2(i) 
kl=1 1=1 j=1 

KT KT IQC 

- XO(i) +E d(i, kl) -EZ F(i, ic)QC(ic, kl)TT(kl) 
kl=1 kl=1 is=l 

i=1,2,..., IR (5.31) 

Eqn(5.28) to eqn(5.31) are all linear functions about T(j, l, k). 

c) on source capacities 

At each stage, for source pumping stations the amount of water 

abstracted should be less than the maximum capacities of that source, 

i. e.. 

j(1) 
E Q(j, 1, k)T(j, l, k) < Vmax(l, k) 

J-1 

1 -- 1,2,..., Lp 

k=1,2,..., KT 

where: 

(5.32) 

Vmax(l, k) - maximum allowable amount of water to be abstracted 

by source pumping station 1 at time stage k. (e. g. , m3 ) 
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Obviously these are also linear functions about T(j, l, k). 

In conclusion, eqn(5.19), eqn(5.20), eqn(5.28), eqn(5.29), 

egn(5.30), egn(5.31) and eqn(5.32) constitute a large-scale linear 

programming problem summarized as follows: 
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Lp KT j(1) 
min TC =EEE 

T(j, 1, k) 1=1 k=1 j=1 

subject to 

j(1) 
E T(j, 1, k) - TT(k) 

J-1 

Cp(j, 1, k)UC(1, k)T(j, l, k) 

1-1,2,..., Lp 

k=1,2,..., KT 

k Lp j(1) 
EEE E(i, 1)Q(j, 1, kl)T(j, 1, kl) > XMIN(i) - XO(i) 
kl-1 1=1 j=1 

kk IQC 
+E d(i, kl) -E Zr F(i, ic)QC(ic, kl)TT(ki) 

kl=1 kl=1 Ic=1 

i-1,2,..., IR 
(5.33) 

k=1,2,..., KT-1 

KT Lp j(1) 
EEX E(i, 1)Q(j, 1, kl)T(j, 1, kl) > XKT(i) - ALPHAI(i) 
kl=1 1-1 j=1 

KT KT IQC 
- XO(i) +E d(i, kl) -EE F(i, ic)QC(ic, kl)TT(kl) 

kl=1 kl=1 is=1 

i=1,2,..., IR 

k Lp j(1) 
EEE E(i, 1)Q(j, 1, kl)T(j, 1, kl) < XMAX(i) - XO(i) 
kl=1 1-1 j-1 

kk IQC 
+E d(i, kl) -EE F(i, ic)QC(ic, kl)TT(kl) 

kl-1 kl=1 is=1 

i-1,2,..., IR 

k-1,2,..., KT-1 

166 



KT Lp j(1) 
EEE E(i, 1)Q(j, 1, kl)T(j, 1, kl) < XKT(i) + ALPHA2(i) 

k1.1 1-1 j=1 

KT KT IQC 

- XO(i) +E d(i, kl) -IE F(i, ic)QC(ic, kl)TT(kl) 
k1-1 k1=1 is=1 

is1,2,..., IR 

j(1) 
E Q(j, 1, k)T(j, l, k) Vmax(l, k) 

J. 1 

1=1,2,..., Lp 

k-1,2,..., KT 

Lp 
This is a large-scale linear programming problem with KT E j(l) 

1=1 

decision variables and 2KT(Lp+IR) constraints, for which the Revised 

Simplex Method is employed. 

In practice, it worth noting that it is not easy to determine the 

reservoir related demand, d(i, k), in egn(5.22) from an original 

detailed network; it is also difficult to derive the proportions a 

pumping station supplies to different reservoirs, particularly for a 

strongly interactive or coupled network. These will hinder the 

application of this algorithm. 

However, these difficulties will be overcome if the equivalent network 

modelling technique developed in Chapter 4 is employed. This is 

because once the equivalent network model for an original detailed 

network is obtained, the fractional consumption rate to the total 

demand at reservoir nodes, hence the reservoir related demand, is 

known. Also, with the much simplified equivalent network, the 

proportion a pumping station supplies to different reservoirs can be 

167 



easily and clearly derived. Therefore it is concluded that this 

algorithm should be applied based on the equivalent network model. 

This will be further illustrated in the application results of this 

algorithm. 

5.3.2 Sue®ary of the Revised Simplex Method 

The Revised Simplex Method was developed by Dantzig and Orchard-Hays 

in 1953. In many aspects it employs the ideas underlying the Simplex 

Method but it has the advantage that it only calculates those 

quantities that are actually needed. It computes the simplex 

multipliers and the inverse of the basis directly, whereas these were 

only apparent indirectly from the Simplex Method in solving linear 

programming problems (LASDON, 1970; MURTAGH, 1981). 

A general Linear Programming (L. P. ) problem can be put in the form: 

minimize Z- C1X1 + C2X2 + ... + CnXn 

subject to a11X1 + a12X2 + ... + alnXn = b1 

a21X1 + a22X2 + ... + a2nXn = b2 

" (5.34) 

am1X1 + am2X2 + ... + amnXn = bm 

and X1 > 0, X2 > 0, ..., Xn >0 

where: 

bi's, ci's, aij's = fixed real constants. 

Xi's - real variables to be determined. 

Any other forms of L. P. problems can be transformed to the above 
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standard form, by introducing additional variables (BUNDAY, 1984). 

In more compact vector notation, this standard problem becomes: 

minimize Z-C 
,X 

subject to AX=b 

X>0 

where: 

C- (C19 C21 ..., Cd 

x= (X1, X2, ..., Xn)T 

all a12 a1n 
a21 a22 a2n 

aml am2 .. ' amn 

b- (b1, b2, ..., bn)T 

0= (0, 0, ..., 0)T 

(5.35) 

Let B denote the submatrix of the original A matrix consisting of the 

m columns of A corresponding to the basic variable, B is referred to 

as the basis matrix. 

Without loss of generality, assume that B consists of the first m 

columns of A. Then by partitioning A, X and C as: 

A- [B, DI 

x= x', xT 1T c=1 cB, CDl 
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the standard linear programming problem becomes: 

minimize CB XB + =D XD 

subject to B XB +D XD =b (5.36) 

XB > 0, XD 

The basic solution which is also assumed feasible, corresponding to 

the basis B is X (XB, OTTwhere XB = B-lb. The basic solution 

results from setting XD = 0. However, for any value of XD the 

necessary value of XB can be computed from (5.36) as: 

XB-B-1 b-B1 DXj) (5.37) 

and this general expression when substituted in the objective function 

(or cost function) yields: 

Z- CB (B-1 b B-1 D XD) + CD XD 

= CB B1b+ CD - CB B1 D) XD (5.38) 

which expresses the cost of any solution to (5.36) in terms of XD 

Thus 

r- 
_CD - _C. B B-1 D (5.39) 

is the relative cost vector. It is the components of this vector that 

are used to determine which vector to bring into the basis. 

Given the inverse B-1 of a current basis, and the current solution XB 
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= YY = B-1 b, the conceptual procedure of the Revised Simplex Method 

is this: 

Step 1 Calculate the current relative cost coefficients r= CD - CB 

xBD. This can best be done by first calculating CRB 1 
and then the 

relative cost vector CD - CB B-1 D, if r>0, the current solution is 

optimal. 

Step 2 Determine which vector aj is to enter the basis by selecting 

the most negative cost coefficient; and calculate Yj = B-lad which 

gives the vector ai expressed in terms of the current basis. 

Step 3 Calculate the ratios YjO/Yip to determine which vector is to 

leave the basis. 

Step 4 Update B-1 and the current solution 
-B 

-lb. Return to Step 1. 

A program OPPUS (OPtimal Pump Scheduling of multi-source and multi- 

reservoir Water Supply System), which employs the Revised Simplex 

Method, is designed for this algorithm. Two versions, which are based 

on the Revised Simplex Method from (BUNDAY, 1984) and the routine 

E02MBF for solving linear programming problem in (NAG, 1983), 

respectively, are available. 

5.3.3 Application Results 

This algorithm was applied to the NURTON/BUSHBURY zone of Woverhampton 

water supply and distribution system as shown in Fig 5.2. 
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The basic mode of operation of the Nurton/Bushbury combined system is 

to transfer water from the sources located in the sparsely populated 

western fringes of Wolverhampton to the main consumer areas which are 

principally fed from Bushbury reservoir (at node 500 in Fig 5.2a), 

whilst meeting the service requirement in the Nurton zone. Nurton 

reservoir (at node 600 in Fig 5.2a) and the in-line booster pumps at 

Tettenhall provide the necessary additional storage capacity and 

delivery pressure required to maintain a satisfactory level of 

service. 

The five borehole sources in Nurton zone (namely Neachley, Cosford, 

Copley, Stableford and Hilton) are capable of supplying up to 40 

megalitres (Ml) of water per day. The total average daily consumer 

demand for Nurton zone is about 15 Ml. This includes about 5 M1/d 

which is currently being fed to Bridgenorth zone from Hilton pump 

station. The total capacity of Nurton reservoir is 22.9 M1. The 

booster pumps at Tettenhall draw water from Nurton reservoir and, 

together with the direct supply from Neachley, supplies Bushbury 

reservoir with about 25 M1/d in order to meet consumer demands. The 

total capacity of Bushbury reservoir is 36.8 Ml. The details of the 

two reservoirs are summarized in Table 5.3. 
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TABLE 5.3 DATA FOR RESERVOIRS IN FIGURE 5.2a 

NURTON RESERVOIR BUSHBURY RESERVOIR 

LOCATION NODE 600 NODE 500 

STORAGE (m3) 22866.0 36822.0 

CROSS-SECTIONAL 
AREA (m2) 3811.0 4845.0 

FLOOR ELEVATION (m) 163.0 175.3 

UPPER OPERATIONAL 
BOUND: 

storage (m3) 21722.7 34980.0 
head (m) 168.7 182.5 

LOWER OPERATIONAL 
BOUND: 

storage (m3) 7622.0 13566.0 
head (m) 165.0 178.1 

INITIAL CONDITIONS: 

storage (m3) 17149.5 27616.5 
head (m) 167.5 181.0 

FINAL CONDITIONS: 

storage (m3) 17149.5 27616.5 
head (m) 167.5 181.0 

upper permissible 
deviation: 

storage (m3) 1086.1 1749.1 
percentage 5.0% 5.0% 

lower permissible 
deviation: 

storage (m3) 1086.1 1749.1 
percentage 

--------------------- 
5.0% 

----------------------- 
5.0% 

------------------------- 
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The one fixed speed pump at Cosford is capable of supplying 10 M1/d 

and must be on at all times in order to meet consumer demands between 

Cosford station and Nurton reservoir. Cosford supply represents a 

significant proportion of the total water requirement for Nurton and 

Bushbury. The sources at Copley and Stableford each provide 

relatively smaller, but nevertheless significant, proportions of the 

total water requirements for Nurton and Bushbury. Owing to their 

locality within the Nurton sub-system, either of these sources 

can be switchable (on or off). The present status at Hilton pump 

station (which is currently undergoing extensive modernization ) is 

that the fixed speed operation must remain on at all times, since part 

of the supply from Hilton is used to feed Bridgenorth zone. The 

single fixed speed pump at Neachley supplies, on average, 7.7 M1 of 

water daily. Current operating policy requires that Neachley pump 

station remains on all day in order to maintain the supply to 

consumers between Neachley and Tettenhall. The two variable speed 

booster pumps at Tettenhall are capable of pumping 230 1/s at 40 

metres delivery head. 

The details of all the pumps are tabulated in Table 5.2. Typical 

electricity tariff data are shown in Fig 5.2. Their applicabilities 

are indicated in Table 5.2. 
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1) TYPE Al 

5 

4 

ca 
-3 
a 
`-' 

2 

1 
0 

2) TYPE A2 

8 

7 

-ý 6 
d i 5 time per rate o 

(hr) (p/KWh) 

0.00 331 
3 1.00 1.88 

8.00 721 
2 20.0 331 
1 

0 10 time (hr) 20 24 

Fig 5.2 Tariff Data (unit charge) 
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A fully detailed model for the system, which includes the details of 

pumps, reservoirs, pipes, demands, etc., is available and can be used 

to simulate the operations of the system using GINAS5 under different 

operational conditions (such as FSP's on and off and VSP's operating 

at different speeds, etc. ). Table 5.4 lists the dynamic simulation 

results for the system when all pumps are on, and the two identical 

VSP's are operating at their nominal speed of 1550 rpm. Table 5.5 and 

Table 5.6 list the dynamic simulation results for the system under the 

same condition, except that pumps at Stableford and Copley are off. 

From an engineering point of view, the flows and powers for all pumps 

in Table 5.4 could be considered as being practically constant. 

Furthermore, by comparing Table 5.4, Table 5.5 and Table 5.6 with each 

other, it can be seen that the average values of flow and power for 

each pump under different operational conditions are similar. 

Therefore, for a certain pump in the system when in operation, its 

flow (and thus power) is more or less constant and can be determined 

in advance. This suits the applicability of the presented algorithm. 
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Further, as discussed in section 5.3.2, for the application of this 

algorithm, it is necessary to obtain the equivalent network of this 

system. By using the program, ENCQP, for equivalent network modelling 

developed in Chapter 4, the equivalent network of the system can be 

obtained as shown in Fig 5.3. The numerical results are summarized in 

Table 5.7. Thus the reservoir related demand, and the proportion a 

pump supplies or abstract water to or from a reservoir (eqn(5.22)) can 

be easily determined. 

As stated above, the pumps at Neachley, Cosford, and Hilton must be on 

for all of the day due to operational considerations. Therefore they 

are simulated by constant flows in this algorithm. The decision 

variables are the times of pumping for all other pumps. 

Practically, pumps at Stableford, and Copley can be amalgamated into 

one bigger pumping station (named as pumping station 1), which 

consists of three possible combinations as follows: 

1) pump at Stableford on. 

2) pump at Copley on. 

3) pumps at Stableford and Copley both on. 
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TABLE 5.7 DATA FOR THE EQUIVALENT NETWORK OF 

NURTON/BUSHBURY ZONE 

--------------------------------------------------------------------- 
--------------------------------------------------------------------- 

Equivalent Pipe Resistance* [m/(1/s)2j 

PIPE 1 0.0020270 

PIPE 2 0.0021459 

PIPE 3 0.0003880 

PIPE 4 0.0001850 

PIPE 5 0.0053160 

PIPE 6 0.0111570 

PIPE 7 0.0008430 

--------------------------------------------------------------------- 

Fractional Consumption Rate 

--------------------------------------------------------------------- 

a1 0.3857500 

a2 0.5934970 

--------------------------------------------------------------------- 
--------------------------------------------------------------------- 
* the derived pipe resistances were not used directly in this 

algorithm. 
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The two identical variable speed pumps at Tettenhall are in one 

pumping station (named as pumping station 2) and their speed range is 

from 1100 rpm to 1600 rpm, as shown in Table 5.2. One of the 

difficulties, in solving the problem of optimal control, arises from 

the mixture of fixed speed pumps, the controls of which are discrete, 

and variable speed pumps, the control of which are continuous within 

the speed range, (see the discussion in section 5.1). This problem 

has proved to be one of the main obstacles for the application of some 

algorithms (BRDYS' et al, 1988; COULBECK, 1977; JOALLAND and COHEN, 

1980) 

However, this obstacle can be overcome in this algorithm by 

discretizing the speed range of the variable speed pumps. Thus a 

variable speed pump can be discretized into a number of fixed speed 

pumps corresponding to a number of speed steps. In this way, this 

system can be transformed to a system containing discrete variables 

only. Variable throttle pumps (VTP's) could be dealt with in a 

similar way, by discretizing the range of throttle factors. 

As an illustration of the treatment, the two VSP's are firstly 

discretized into six fixed speed pumps corresponding to speed steps of 

1100 rpm, 1550 rpm, and 1600 rpm for each individual VSp. 

For the above six fixed speed pumps, there could be various pump 

combinations. However, when the two VSP's are operating together in 

parallel, the least cost combinations will obviously be those 

combinations for which the two VSP's are operating at the same speed. 

This is because it is most economical when a pump is operating around 
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its peak efficiency, this can only be achieved for both two identical 

VSP's operating in parallel when they are operating at the same speed. 

Table 5.8 summarizes the average values of flow and power of all 

economical pump combinations for the complete system. These are 

derived from various dynamic simulations of the system. 

With the availability of the necessary data required by this 

algorithm, the program OPPUS has been run to solve this particular 

linear programming problem with 108 variables and 72 constraints (not 

including slack variables for mathematical manipulation of linear 

programming as described in 5.3.2). This requires about 1 minute of 

elapsed time to solve on a Prime 2550 computer. 

The optimized pump operations and relevant power consumptions and 

costs are given in Table 5.9. The complete pump schedules are drawn 

in Fig 5.4. Finally, the reservoir trajectories are plotted in Fig 

5.5. Unfortunately, the actual site pump schedules and costs, etc., 

are not available for comparison. 

It is worth noting that in Fig 5.5, Bushbury reservoir is topped up 

overnight to take advantage of the cheap night electricity tarriff rate 

(refer to Fig 5.2, Type A2). However, Nurton reservoir is not topped up 

overnight. This could be due to the limited pump combinations and their 

cost factors in Station 1, and/or the tarriff rate difference between 

peak and off pead hours (refer to Fig 5.2, Type Al) and demand conditions 

in Nurton zone so that Nurton reservoir cannot be or is not necessary to 

be topped up overnight in this particular case. 
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TABLE 5.8 PUMP AVERAGE VALUES OF FLOW AND POWER 

FLOW POWER 
(1/s) (KW) 

PUMPING STATION 1 (Stableford + Copley) 

COMBINATIONS: 

1) PUMP AT STABLEFORD 39.1 135.3 
2) PUMP AT COPLEY 45.7 140.5 
3) PUMPS AT STABLEFORD 

AND AT COPLEY 84.8 275.8 

PUMPING STATION 2 (Tettenhall) 

COMBINATIONS: 

1) ONE VSP AT SPEED 1100 rpm 181.2 57.6 
2) ONE VSP AT SPEED 1550 rpm 295.3 183.6 
3) ONE VSP AT SPEED 1600 rpm 307.7 204.0 
4) BOTH VSP'S AT SPEED 1100 rpm 216.8 89.6 
5) BOTH VSP'S AT SPEED 1550 rpm 357.5 265.8 
6) BOTH VSP'S AT SPEED 1600 rpm 434.2 313.9 

PUMPING STATIONS WITH CONSTANT FLOWS 

1) PUMP AT NEACHLEY 90.2 196.0 
2) PUMP AT COSFORD 115.0 94.8 
3) PUMP AT HILTON 139.1 385.9 
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TABLE 5.9 RESULTS FOR THE OPTIMAL OPERATIONS 
OF NURTON/BUSHBURY ZONE 

OPERATIONS OF PUMPING STATION 1 (Stableford + Copley) 

TIME 
(hr. min) 0.00 18.00 18.00 18.30 18.30 24.00 

-------- ----------------------------------------------- 
PUMP 
COMBINATION 
IN OPERATION 332233 

(NO. ) 

FLAW (1/s) 84.8 84.8 45.7 45.7 84.8 84.8 

------------------------------------------------------------ 

OPERATIONS OF PUMPING STATION 2 (Tettenhall) 

TIME 
(hr. min)I 0.00 1.00 8.0018.00 20.00 20.00 22.50 24.00 

---------------------------------------------------------------- 
PUMP 
COMBIN- 

ATION 
IN OPER- 
ATION 1166114411 

(NO. ) 

---------------------------------------------------------------- 
FLOW 
(1/s) 181 181 434 434 181 181 216 216 181 181 

---------------------------------------------------------------- 
VSP 1 
SPEED 1100 1100 1600 1600 1100 1100 1100 1100 1100 1100 

(rpm) 

---------------------------------------------------------------- 
VSP2 
SPEED 00 1600 1600 00 1100 11100 00 
(rpm) 

ENERGY CONSUMPTIONS AND MINIMIZED COSTS 

---- 
PUMP 

----------------- 
NAME 

-------------------------- 
ENERGY CONSUMPTION (KWH) 

------------------------- 

---------- 
COST (£) 

--------- ---- 
PUMP 

--- 
AT 

-------------- 
STABLEFORD 

- 
3179.6 

- 
108.67 

PUMP AT COPLEY 3372.0 115.70 
PUMPS AT TETTENHALL 3267.1 103.68 
PUMP AT NEACHLEY 4704.0 161.41 

PUMP AT COSFORD 2275.2 110.19 
PUMP AT HILTON 9261.6 

---------- 

448.53 

------ -------- 
TOTAL 

-------- 

------------- 

------------- 

---------------- 
26059.5 

-------------------------- 

---- 
1048.18 

---------- 
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5.3.4 Studies on the Decomposition of Variable Speed Pumps 

From the above studies, it may been seen that variable speed pumps can 

be dealt with in this algorithm by discretizing their speed ranges. 

In this way, one VSP is transformed into a number of FSP's 

corresponding to different speed steps. This overcomes the difficulty 

of mixing discrete and continuous variables, which is a major 

difficulty in applying many algorithms. However, it is not clear how 

to properly discretize the speed range of a variable speed pump. 

Over-discretization may unnecessarily increase the numbers of decision 

variables (or dimensions) and increase the computation time of solving 

the L. P. problems dramatically. Under-discretization may result in a 

loss of optimality. A study of the discretization of VSP speed ranges 

was initially conducted through a sensitivity analysis as discussed in 

the following. 

Generally, if some additional variables are to be taken into account 

in a previously solved linear programming problem, one very crude way 

is to change the mathematical problem to take account of the 

additional variables and solve the new problem 'from scratch'. 

However, this procedure may be very inefficient and does not take 

account of the useful work that has already been done in solving the 

problem (BUNDAY, 1984; MURTAGH, 1981). Alternatively, sensitivity 

analysis or post-optimality analysis is a technique for avoiding this 

inefficiency. 

Multiplying the constraints in eqn(5.34) by numbers A1, n21 ... I nm and 

adding to the objective function Z gives: 
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ID m 
X1(C1 +E ail wi) + X2(C2 +E ail wi) + ... 

i=1 i=1 

mm 
+ Xn(CR +E ain Ai) -Z+E bi ni (5.40) 

i=1 i=1 

We can choose the xi so that the coefficients of the basic variables 

in egn(5.40) are zero. The ni are known as the Simplex Multipliers. 

If X1, X2, ..., Xm are basic (there is no loss of generality here) the 

wi are determined from: 

all X11 + a21 72 + ... + am, 1rm = -C 1 

a12 lr1 + a22 1F2 + ... + am2 Wm = -C2 
(5.41a) 

alm lr1 + a2m w2 + ... + amm nm = -Cm 

i. e. 

BT W_- CB 

where: 

(5.41b) 

B is the matrix of coefficients of the basic variables. 

T the coefficients of the basic variables in CB (C1, ..., Cm) 

the first form for Z. 

x( T1, ßr2, ..., 76) 
T 

thus 

-(B_1)T CB (5.42) 

The value of 
_I 

is already available upon the completion of the 

computation of the Revised Simplex Method. 

Suppose we have solved the original problem. Suppose for the optimal 
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basis, its matrix of coefficients in A is B with inverse B-1. The 

values of the basic variables in the original problem will be given by 

I- B-1 b= b' >0 

The value of the objective function will be given by 

ZoPt =-E bi wi 

and in eqn(5.40), for j=1,2,..., n, the following holds; 

(5.43) 

(5.44) 

m 
Ci +E aij iri >0 (5.45) 

=1 

of which the coefficients of the basic variables are 0, and the 

coefficients of the non-basic variables > 0. 

Now we introduce an additional variable Xn+l, then its corresponding 

item in eqn(5.40) will be 

m 
Cn+1 +i1 ai, n+l Ai (5.46) 

If 

m 
+E a1, n+1 1ri > 0, or Cn+1 

ist 

m 
Cn+l ? -i El ai, n+l ni 

Xn+1 remains non-basic and the original solution remains optimal. If, 

however, 
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mm 
Cn+1 + ai, n+l wi < 0, or Cn+1 <E ai, n+1 'Ri i=1 i=1 

then we should make Xn+l basic to enter the basis and continue the 

computation. 

The above summarizes the principle of inclusion of additional 

variables in a sensitivity analysis. This principle has been applied 

to study the discretization of VSP's, which is illustrated below. 

If for the two VSP's, we introduce an additional speed step 1300 rpm, 

there will be the additional feasible pump combinations in Table 5.9a. 

TABLE 5.9a ADDITIONAL PUMP COMBINATIONS AT TETTENHALL 

---------------------------------------------------------------------- 
COMBINATION VSP1 VSP2 

ON/OFF SPEED (rpm) ON/OFF SPEED (rpm) 

---------------------------------------------------------------------- 
7 ON 1300 OFF -- 

8 ON 1300 ON 1300 

Their average values of flow and power obtained from dynamic 

simulations are listed in Table 5.9b. 
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TABLE 5.9b AVERAGE VALUES OF FLOW AND POWER OF 

ADDITIONAL PUMP COMBINATIONS (ADDITIONAL SPEED STEP 1300 RPM) 

--------------------------------------------------------------------- 

ADDITIONAL FLOW POWER 
COMBINATIONS (1/s) (KW) 

7) 272.5 122.7 

8) 

------------------------ 

293.6 

----------------------- 

155.1 

--------------------- 

For each of those additional pump combinations, there will be KT 

additional variables to enter the linear programming problem, where KT 

is the number of time stages (here KT=12). 

Based on the original solution, it can be checked by eqn(5.46) 

whether any of the additional variables remain non-basic or not. 

Table 5.10 summarizes the results. 

Table 5.10 shows that all of the combinations no longer remain non- 

basic at some stages, which means that the additional speed step 1300 

rpm is necessary and beneficial in obtaining the optimized pump 

schedules. . Table 5.11, Fig 5.6 and Fig 5.7 show the solution for 

the linear programming problem including the additional variables, 

where there are 132 decision variables and 72 constraints. It takes 

about 3 minutes computation time to solve this problem, which is 3 

times longer than that of the original problem with 108 variables and 

72 constraints. From Table 5.11 and Fig 5.6., it can be seen 

that pump combination no. 7 in Tettenhall station (refer to 

Table 5.9a) has been introduced in operation, which confirms 

the results of sensitivity analysis in Table 5.10. 
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The computed schedule for Stableford pump in Fig 5.6 (continued) 

requires the pump to be off for 30 minutes at 20.00hours, which could 

incur some difficulties and switching costs for practical application. 

If it is not switched off at that time, the extra cost will only be 

E2.75 (0.26% of system total cost) and the reservoir level of Nurton 

is still within operational constraints. In conclusion, for practical 

application of the computed schedule, the pump at Stableford can 

remain on all the day without increasing system total cost 

significantly. The schedule for Stableford pump in Fig 5.4 can 

be modified in a similar way. 
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TABLE 5.10 SENSITIVITY ANALYSIS FOR ADDITIONAL SPEED 

OF 1300 RPM OF THE VSP'S 

------------------------------------------------------------------ 
m 

ADDITIONAL Cn+1 -E ai, n+1 wi CONCLUSION 
COMBINATION IP'7 1=1 

Time Stage 

1 6.769 7.705 BASIC 
2 3.845 1.817 NON-BASIC 
3 3.845 1.817 NON-BASIC 
4 3.845 1.817 NON-BASIC 
5 14.744 1 1.4 49 NON-BASIC 
6 14.744 11 .449 NON-BASIC 
7 14.744 1 1.4 49 NON-BASIC 
8 14.744 11.449 NON-BASIC 
9 14.744 11 .449 NON-BASIC 

10 14.744 11.449 NON-BASIC 
11 6.769 7.705 BASIC 
12 6.769 7.705 BASIC 

ADDITIONAL 
COMBINATION IP-8 

Time Stage 

1 8.556' 8.751 BASIC 
2 4.486 2.863 NON- BASIC 
3 4.486 2.863 NON- BASIC 
4 4.486 2.863 NON- BASIC 
5 18.638 12.4 95 NON-BASIC 
6 1 8.6 38 1 2.4 95 NON-BASIC 
7 18.638 12.495 NON-BASIC 
8 18.638 1 2.49 5 NON-BASIC 
9 18.638 12.4 95 NON-BASIC 

10 18.638 12.4 95 NON-BASIC 
11 8.556 8.751 BASIC 
12 8.556 8.751 BASIC 
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TABLE 5.11 RESULTS FOR THE OPTIMAL OPERATIONS 
OF NURTON/BUSHBURY ZONE 

OPERATIONS OF PUMPING STATION 1 (Stableford + Copley) 

TIME 
(hr. min) 1 0.00 20.00 1 20.00 20.30 1 20.30 24.00 

PUMP 
COMBINATION 
IN OPERATION 332233 

(NO. ) 

FLOW (11s) 84.8 84.8 45.7 45.7 84.8 84.8 
------------------------------------------------------------- 

OPERATIONS OF PUMPING STATION 2 (Tettenhall) 
-------------------------------------------------------------- - TIME 
(hr. min) 

10.00 
1.00 

11.00 
8.00 

18.00 
22.50 

122.50 
24.00 

------------------------------------------------------------- 
PUMP 
COMBIN- 

ATION 
IN OPER- 
ATION 11661177 

(NO. ) 

------------------------------------------------------------- 
FLOW 
(1/s) 181 181 434 434 181 181 273 273 
------------------------------------------------------------- 
VSP 1 
SPEED 1100 1100 1600 1600 1100 1100 1300 1300 
(rpm) 

------------------------------------------------------------- 
VSP2 
SPEED 00 1600 1600 0000 
(rpm) 

ENERGY CONSUMPTIONS AND MINIMIZED COSTS 

----- 
PUMP 

----- 

--------------- 
NAME 

--------------- 

--------------------------- 
ENERGY CONSUMPTION (KWH) 

--------------------------- 

---------- 
COST (£) 

--- 
PUMP AT STABLEFORD 3179.6 

------- 
108.67 

PUMP AT COPLEY 3372.0 115.70 
PUMPS AT TETTENHALL 3252.7 103.19 
PUMP AT NEACHLEY 4704.0 161.41 
PUMP AT COSFORD 2275.2 110.19 
PUMP 

----- 

AT 
--- 

HILTON 

------------ 
9261.6 

--------------------------- 
448.53 

TOTAL 
----- --- ------------ 

- 
26045.1 

---------------------------- 

--------- 
1047.69 

--------- 
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Similarly, if a speed of 1525 rpm is introduced as an additional 

discretized point, which is only a 25 rpm decrement from the existing 

point of 1550 rpm, the corresponding additional feasible pump 

combinations are listed in Table 5.12. The sensitivity analysis 

results for these additional variable are given in Table 5.12a. 

TABLE 5.12 AVERAGE VALUES OF FLOW AND POWER OF ADDITIONAL 
PUMP COMBINATIONS (ADDITIONAL SPEED STEP 1525 RPM) 

ADDITIONAL FLOW POWER 
COMBINATIONS (1/s) (KW) 

9) ONE VSP AT SPEED 
1525 rpm, ANOTHER OFF 284.6 171.9- 

10) BOTH VSP's AT SPEED 
1525 rpm, 354.4 253.4 

The sensitivity analysis results shows that all the relevant 

additional variables remain non-basic, which means such a small step 

change from 1525 rpm to 1550 rpm produces no benefit. Also, this 

small step may be difficult to implement practically. 

The discretization scheme of VSP's included in this algorithm has been 

illustrated through the above examples. In this way, we can first 

solve a relatively low dimensional problem with a few speed steps, 

then, through sensitivity analyses, we can incorporate any necessary 

additional speed steps. This approach is much more efficient than 

simply and arbitrarily discretizing the speed range of VSP's and 

solving every new problem 'from scratch'. It can be inferred that 
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this discretization scheme based on the sensitivity analysis will also 

be useful in studying the problems of pumping station expansions, 

e. g., choosing lower cost pumps, while satisfying service and other 

technical requirements. Sensitivity Analysis or Post-optimality 

Analysis (FLETCHER, 1986) is a unique advantage of linear programming 

based algorithms. 
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TABLE 5.12a SENSITIVITY ANALYSIS FOR ADDITIONAL SPEED 
1525 RPM OF THE VSP'S 

--------------------------------------------------------------------- 
m 

ADDITIONAL C1-Z ai, n+1 ni CONCLUSION 
COMBINATION IP=9 i=1 

Time Stage 

1 9.483 8.394 NON-BASIC 
2 5.386 2.506 NON-BASIC 
3 5.386 2.506 NON-BASIC 
4 5.386 2.506 NON-BASIC 
5 5.386 2.506 NON-BASIC 
6 2 0.6 57 12.1 38 NON-BASIC 
7 20.657' 

, 
12.138 NON-BASIC 

8 20.657 12.138 NON-BASIC 
9 2 0.6 57 12.1 38 NON-BASIC 

10 2 0.6 57 1-2.138 NON-BASIC 
11 9.4 83 8.3 94 NON-BASIC 
12 9.483 8.394 NON-BASIC 

ADDITIONAL 
COMBINATION IP=10 

Time Stage 

1 1 3.9 79 1 1.7 66 NON-BASIC 
2 7.9 40 5.8 78 NON-BASIC 
3 7.940 5.870 NON-BASIC 
4 7.940 5.870 NON-BASIC 
5 30.450 15.510 NON-BASIC 
6 30.450 1 5.5 10 NON-BASIC 
7 30.450 15.510 NON-BASIC 
8 3 0.4 50 15.510 NON-BASIC 
9 30.450 15.510 NON-BASIC 

10 30.450 15.510 NON-BASIC 
11 13.9 79 1 1.7 66 NON-BASIC 
12 13.9 79 1 1.7 66 NON-BASIC 
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5.3.5 Comparisons with the Modified GIPOS Application 

The Nurton/Bushbury optimization problem has also been approached 

using a GIPOS based algorithm (PARKAR, 1989), which is introduced 

briefly as follows: 

Under normal operational conditions, the global optimization problem 

is considered as two, weakly coupled, sub-system optimization 

problems. In the first instance, the Bushbury sub-system optimization 

problem includes Nurton reservoir as a source reservoir with the 

Tettenhall booster pumps providing the required delivery pressure to 

transfer water into Bushbury reservoir. In addition, the supply from 

Neachley, which is boosted through Tettenhall, is also considered as 

part of the Bushbury sub-system (Fig 5.8). The second sub-system 

comprises the sources at Cosford, Copley, Stableford and Hilton 

together with Nurton reservoir (Fig 5.9). The hydraulic coupling of 

the two sub-systems is achieved through the outflow from Nurton 

reservoir. This outflow is initially obtained by optimization of the 

Bushbury sub-system which consequently determines the required demand 

flow from Nurton reservoir. 

The optimization of the Bushbury sub-system was approximated by the 

program GIPOS. 

GIPOS (Graphical Interactive pump optimization and Scheduling) is a 

program to perform optimized scheduling for groups of parallel fixed 

speed and variable speed pumps. Both interactive and graphical 

display features are incorporated within the program to provide users 

with simple operations and easy interpretation of results. 
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The algorithm employed within the program is based on the Forward 

Dynamic Programming Technique. The program takes into account all 

pump combinations together with pump speed for all variable speed 

pumps. Calculations are performed, under a set of prescribed 

operational conditions, to obtain schedules of the number of parallel 

pumps in use and their speeds. These schedules give the cheapest 

operational cost over the time duration studied. However, this 

program is only applicable to sub-systems with a single source 

reservoir supplying water to a single controlled reservoir via one 

pump station and an equivalent direct pipe-line, with intermediate and 

final take-off demands. 

When GIPOS is applied to the Bushbury sub-system, Bushbury reservoir 

is taken as the controlled reservoir and Nurton reservoir as the 

source reservoir. The optimized schedules are derived for the Two 

VSP's at Tettenhall. In order to take into account the supply from 

Neachley and the demand requirement between the source reservoir 

(Nurton) and pump station (Tettenhall), some modifications have been 

made to GIPOS. Upon the completion of the GIPOS computations, the 

optimized pump schedules at Tettenhall and the required demand flow 

from Nurton reservoir are determined. 

For Nurton sub-system, the objective of optimization is to minimize 

the total pumping costs from the four fixed speed pump stations at 

Cosford, Copley, Stableford and Hilton (practically, Cosford and 

Hilton pumps must be on all the day). In doing so, the operational 

constraints regarding reservoir levels at Nurton reservoir, demand 

flows from Bushbury sub-system optimization and source flows, are all 

taken into consideration. The optimized pump schedules of the fixed 
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speed pumps are obtained by using a direct search method to calculate 

the costs of all possible fixed speed pump combinations, within the 

operational constraints for each pump station, and then choosing the 

least cost combination. 

From the above statement, it is worth noting several points: Firstly, 

the Dynamic Programming based algorithm is very effective and accurate 

for a single controlled reservoir system. For a system containing 

more than one controlled reservoir, the computation time, and for some 

computers, the storage requirement will be critical, especially for 

on-line control purposes. In this approach, Bushbury sub-system is 

initially optimized regardless of Nurton sub-system, Nurton sub-system 

is subsequently optimized bound by the results from Bushbury sub- 

system optimization. Clearly, in doing so, the optimality of the 

global problem might be lost to some degree. In other words, 

only sub-optimal results for the whole system might be obtained without 

including optimal coordination of the two independent results. 

Whereas with the Linear Programming based algorithm, developed by 

taking the system as a whole, global optimal results can always be 

found. Secondly, the direct search method applied to the Nurton sub- 

system is computationally time-consuming and inefficient. 

Consequently, this approach may be impracticable when more pumps, 

particularly variable speed pumps, are introduced in the Nurton sub- 

system. Such pumps are currently being commissioned (PARKAR et al, 

1989). Thirdly, this approach utilizes constant pumping times which 

are equal to the length of prescribed intervals. Currently the 24 

hour control period is divided into 4 intervals, namely, 0.00 hr to 

1.00 hr, 1.00 hr to 8.00 hrs, 8.00 hrs to 20.00 hrs and 20.00 hrs to 
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24.00 hrs (in the author' approach, the time intervals are 0.00 hr to 

1.00 hr, 1.00 hr to 4.00hrs, then every two hours). Consequently, the 

prescribed final reservoir level of Nurton, which is important for 

long-term optimal operation purposes, is not always reachable using 

the limited fixed speed pump combinations. In order to achieve the 

prescribed final reservoir level using the limited fixed speed pump 

combinations, it is necessary to divide the whole control period into 

many smaller intervals. This, however, will dramatically increase the 

direct search and dynamic programming computing times. 

Numerical comparisons between the Linear Programming based program 

OPPUS and the Dynamic Programming based program GIPOS (modified, 

including the direct search method) have been made. In order to make 

the results from both programs comparable, the average values of pump 

flows and powers used by OPPUS have been adjusted to the same values 

used by the modified GIPOS, which are summarized in Table 5.13. Other 

operating conditions are also kept identical in deriving the results 

from the both algorithms. Firstly, comparisons are made in Tables 

5.14 and 5.15 and Figures 5.10 and 5.11 with the same final 

reservoir level requirement. From Fig 5.11, it can be seen 

that the final level of Bushbury reservoir (prescribed as the same as 

the initial reservoir level of 179.9m) was attained by GIPOS (the 

deviation is about 0.4%). The final reservoir level derived from 

4PPUS is also very close to the prescribed 

level. However, the final level of Nurton reservoir derived 

from the direct search method is much lower than the prescribed level 

(the deviation is about 11.1%). While the final level derived 

from OPPUS is the same as the initial level. 
.- 
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Secondly, by adjusting the final reservoir levels of Nurton 

and Bushbury for OPPUS to be the same as those derived from 

the modified GIPOS, gives the comparison results in Table 

5.16, Figures 5.12 and 5.13. From these numerical comparisons 

, 
it can be seen that the optimization results derived from 

both OPPUS and the modified GIPOS are very close to each 

other. The computation time required to solve this problem 

by OPPUS is about 1 minute. In contrast, the computation 

time required to solve the same problem by the modified 

GIPOS is about 2.5 minutes (PARKAR, 1989). 
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TABLE 5.13 AVERAGE VALUES OF PUMP FLOW AND POWER 
USED BY BOTH OF THE APPROACHES 

-------------------------------------------------------------- FLOW POWER 
(ifs) (kW) 

PUMPING STATION 1 

COMBINATIONS: 

1) PUMP AT STABLEFORD 72.4 63.9 

2) PUMP AT COPLEY 63.9 150.6 

3) PUMPS AT STABLEFORD 
AND AT COPLEY 136.3 214.5 

CONSTANT FLOWS 

1) PUMP AT NEACHLEY 93.1 19 7.3 

2) PUMP AT COSFORD 112.8 95.8 

3) 

--- 

PUMP 
---- 

AT 

--- 

HILTON 

------------------- 

128.8 

--------------------- 

361.3 
------------------- 

213 



TABLE 5.14 RESULTS FROM OPPUS FOR THE OPTIMAL 

OPERATION OF NURTON/BUSHBURY ZONE 
OPERATIONS OF PUMPING STATION 1 (Stableford + Copley) 

TIME 10.00 20.00 120.00 21.05 121.05 24.00 
(hr. min) 

PUMP 
COMBINATION' 
IN OPERATION 331133 

(No") 

FLOW (1/s) 136.3 136.3 72.4 72.4 136.3 136.3 

OPERATIONS OF PUMPING STATION 2 (Tettenhall) 

TIME 0.00 1.00 1.00 8.00 8.00 20.00 20.00 21.50 21.50 24.00 
(hr. min)I 

PUMP 
COMB I. N- 
ATION 
IN OPERA- 
TION 
(N0. ) 4 4 6 6 11 6 6 4 4 

FLAW 216.8 216.8 434.2 434.2 181.2 181.2 434.2 434.2 216.8 216.8 
(1/s) 

VSP 1 
SPEED 1100 1100 1600 1600 1100 1100 1600 1600 1100 1100 
(rpm) 

VSP 2 
SPEED 1100 1100 1600 1600 00 1600 1600 1100 1100 
(rpm) 

WATER PUMPED, ENERGY CONSUMED AND COSTS 

----------- 
PUMP NAME 

---------------------- 
WATER PUMPED (M3/D) 

--- - - 

------------------------- 
ENERGY CONSUMED (KWH) 

------------------------- 

----------- 
COST (£) 

-------- - ----------- 
STABLEFORD 

- - --------------- 
6255.4 1533.6 

- - 
52.62 

COPLEY 5271.. 8 3451.3 117.38 
TETTENHALL 24106.7 3747.6 119.58 
NEACHLEY 8043.8 4735.2 162.48 
COSFORD 9745.9 2299.2 111.35 
HILTON 11128.3 8671.2 

---------------- 
419.94- 

---------- --"--------- 
TOTAL 

----------- 

--------------------- 
64551.9 

--------- - ---------- 

---------- 
24438.1 

-------------------------- 

- 
983.35 

--------- - 
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TABLE 5.15 RESULTS FROM MODIFIED GIPOS FOR THE OPTIMAL 

OPERATION OF NURTON/BUSHBURY ZONE 

NURTON SUB-SYSTEM 

------------------------------------------------------------------ 
TIME 
(hr. min) 

I 
0.00 1.00 

, 
1.00 8.00 

18.00 
20.00 

120.00 
24.00 

------------------------------------------------------------------ 
COSFORD 
PUMP FLOW 112.8 112.8 112.8 112.8 112.8 112.8 112.8 112.8 
(1/s) 
------------------------------------------------------------------ 
COPLEY 
PUMP FLOW 0.0 0.0 63.9 63.9 63.9 63.9 0.0 0.0 
(1/s) 

------------------------------------------------------------------ 
STABLEFORD 
PUMP FLOW 0.0 0.0 72.4 72.4 72.4 72.4 72.4 72.4 
(1/s) 

------------------------------------------------------------------ 
HILTON 
PUMP FLOW 128.8 128.8 128.8 128.8 128.8 128.8 128.8 128.8 
(1/s) 

------------------------------------------------------------------ 

BUSHBURY SUB-SYSTEM 

TIME 
(hr. min) 

1 

-------- 
0.0 

------ 
1.00 

1 

------- 

1.00 
------- 

8.00 
------- 

, 8.00 
------- 

20.00 
------- 

120.00 

-------- 
24.00 

---- --- 
NEACHLEY 

-- 

PUMP FLOW 98.9 98.9 107 107 82.5 82.5 99.3 99.3 
(1/s) 

--------- ------- ------ ------- ------- ------- -------- ------- - -- 
TETTENHALL 

----- 

PUMP FLOW 304 304 399 399 189 189 339 339 
VSP1 SPEED 
(rpm) 1335 1335 1583 1583 1051 1051 1417 1417 
VSP2 SPEED 
(rpm) 
----------- 

1335 
------- 

1335 
------- 

1583 
------- 

1583 
------- 

1051 
------- 

1051 
------- 

1417 
------- 

1417 
------ 

WATER PUMPED, ENERGY CONSUMED AND COSTS 

--------- -- 
PUMP NAME 

---------------------- 
WATER PUMPED (M3/D) 

---------------------- 
ENERGY CONSUMED (KWH) 

------ 

---------- 
COST (£) 

------------ 
STABLEFORD 

---------------------- 
5994.7 

------ ---------- 
1469.7 

---------- 
50.02 

COPLEY 4370.8 2861.4 93.37 
TETTENHALL 24195.6 3955.6 137.10 
NEACHLEY 8046.4 4736.2 161.86 
COSFORD 9745.9 2299.2 111.35 
HILTON 11128.3 8671.2 

----------- 
419.94 

------------ 
TOTAL 
------------ 

---------------------- 
63481.7 

---------------------- 

----- ------- 
23993.3 

----------------------- 

--------- 
973.64 

--------- 
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TABLE 5.16 RESULTS FROM OPPUS FOR THE OPTIMAL 

OPERATION OF NURTON/BUSHBURY ZONE 

OPERATIONS OF PUMPING STATION 1 (Stableford + Copley) 

TIME 1 0.40 10.00 I 10.00 16.10 1 16.10 24.00: 

(hr. min) 

PUMP 
COMBINAT: ON 

331133 IN OPERA' -! 'ION 
{No. ) 

FLOW (1/s) 136.3 136.3 72.4 72.4 136.3 136.3 
---------------------------------------------------------------- 

OPERATIONS OF PUMPING STATION 2 (Tettenhall) 

-------- --- ------------------------------------------------------ 

TIME ! 0.00 1.00 (1.00 8.00 (8.00 20.00120.00 21.57 121.57 24.00 
(hr. min) 

PUMP 
COMBIN- 
ATION 
IN OPERA- 
TION 
(NO. ) 

---------- 

44 

----------- 

6611 
-------------------- 

6 

------ 

6 

------ 
4 

------- 
4 

--------- 
FLOW 
(1 Is) 

--------- 

216.8 216.8 
----------- 

434.2 434.2 181.2 181.2 

--------------------- 

434.2 

------ 

434.2 
------ 

216.8 
------- 

216.8 
--------- 

VSP 1 
SPEED 1100 1100 1600 1600 1100 1100 1600 1600 1100 1100 
(rpm) 

--------- ------------ -------------------- ------ ------ ------- --------- 
VSP 2 
SPEED 1100 1100 "1600 1600.0 0 1600 1600 1100 1100 
(rpm) 

--------- ----------- -------------------- ------- ------ ------ --------- 

WATER PUMPED, ENERGY CONSUMED AND COSTS 

PUMP NAa`E WATER PUMPED (M3/D) ENERGY CONSUMED (KWH) COST (£) 
r' 

---------------------------------------------------------------------- 

STABLEFORD 6255.4 1533.6 52.62 
COPLEY 4102.4 2685.7 - 86.22 
TETTENHALL 24198.2 3773.9 120.45 

NEACHLEY 8043.8 4735.2 162.48 
COSFORD 9745.9 2299.2 111.35 
HILTON 

-------- 
11128.3 

---------------- 
8671.2 

--------------------- ------------- 
419.94 

------ 
TOTAL 

------------- 

63474.0 
---------------- 

23698.8 
--------------------- 

953.06 
-------------- 
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5.4 CONCLUSIONS 

In this chapter, two different optimization algorithms catering for two 

different classes of water supply and distribution systems were 

presented. The two classes considered included systems with and 

without significant water storage. 

The first algorithm is directly applicable to multi-source systems 

without significant water storage in the distribution part of the 

system. This class represents many small water supply and 

distribution systems or sub-systems in reality. In this case, there 

are no dynamics in the system. Therefore, the optimal operation 

problem for each time interval of the complete control period can be 

solved separately, and thus the number of decision variables is small. 

In this algorithm, only the pumping costs and treatment costs are 

used as the objective function. By adopting the piecewise macroscopic 

model developed in Chapter 4, instead of solving simultaneous 

nonlinear network equations iteratively, the objective function 

becomes a function only about station flows. This model also 

incorporates the pressure requirement of selected nodes in the system 

directly. The adoption of the piecewise macroscopic model in this 

algorithm has speeded up the solution time significantly, in order to 

make this algorithm feasible for on-line control purposes. The 

operational constraints on pumping capacities and other relevant 

system variables are also incorporated into the constraint set. The 

formulation of the optimal operations by this algorithm results in a 

constrained nonlinear programming problem. The chosen solution 

method, SUMT (Sequential Unconstrained Minimization Technique), has 

been discussed and summarized. The application results show that 
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approximately 11% of cost savings are achievable when applying this 

algorithm to a real system. 

This algorithm can easily be extended to deal with systems having 

significant storages, by incorporating macroscopic relationships for 

reservoirs (DEMOYER and HORWITZ, 1975a, 1975b) into the constraint 

set. However, this will increase the dimension of the problem, and 

much greater difficulties will be encountered in the computation of 

the nonlinear programming algorithm. The main disadvantage of this 

algorithm is that a global optimum cannot be guaranteed. In practice, 

we can start the computation from different initial points and compare 

the solutions to see whether the solution is unique otherwise we 

choose the least cost solution as the final one. 

The second algorithm can be applied to multi-source, multi-reservoir 

systems, in which pump flows and powers are more or less constant 

during the whole control period. This condition can be approximately 

satisfied in many systems where significant storage somewhat decouples 

direct pump flows from major consumer demands. Based on the 

equivalent network model developed in Chapter 4, and by using time of 

pumping instead of pump flow as a decision variable, the formulation 

of the optimal operation problem for a complete control period results 

in a large-scale dynamic linear programming problem for which a global 

optimum can always be guaranteed. The chosen solution method, the 

Revised Simplex Method, has been introduced in principle. The 

incorporated discretization scheme can overcome the difficulties of 

the mixture of fixed speed pumps (discrete variables) with variable 

speed and/or throttle pumps (continuous variables). A post-optimality 
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analysis method plays an important role in the discretization scheme. 

This algorithm has been fully tested through the application to the 

Nurton/Bushbury zone in the city of Wolverhampton system. The 

application results confirm that least cost pump schedules and 

reservoir trajectories are obtainable from the algorithm for various 

operational conditions. The solution is usually available within 3 

minutes, which indicates that this algorithm is practical for on-line 

control purposes. Note that computational solving times were derived 

by using a PRIME 2550 multi-user computer. Faster solving times could 

be achieved by using other readily available computing devices such as 

dedicated workstations or PC's (e. g., Sun 3/60 which is at least twice 

as fast as the PRIME computer or the Sparc workstation which is at 

least 10 times faster). 

The application of the modified GIPOS (dynamic programming based plus 

direct search method) to the same system has been introduced in brief 

and compared with this algorithm. The disadvantages in comparison 

with the author's algorithm are that, firstly, only sub-optimal 

results for the whole system are obtainable; secondly, the direct 

search method is computationally time-consuming and inefficient and 

even inapplicable for future operations of the system; thirdly, the 

prescribed final level of Nurton reservoir is not always reachable. 

The numerical comparisons show that the optimization results 

between the modified GIPOS and the au. thor's algorithm. (OPPUS) 

are not very. different, from each other. 

This algorithm can be extended to deal with those multi-source, multi- 

reservoir systems in which the pump flows are varying significantly. 
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The can be done by taking average values of the flows and powers. The 

derived solution from this algorithm can provide a good reference for 

their optimal operations. 

The major shortcoming of this algorithm is that for some systems, the 

linear programming problem would be so large that the computation time 

required by the Revised Simplex method would be critical. If this 

happens, some decomposition method for the linear programming problem, 

such as prime-dual decomposition and/or compact storage technique, 

such as LU Factorization, could be employed to modify this algorithm. 

Since the first algorithm is a non-linear programming problem, a global 

optimum cannot be guaranteed theoretically. In the author's experience, 

by changing the initial guess to different values, the derived solu- 

tions, in most cases, are very close to each other and are satisfactory. 

However, one or two solutions are not very satisfactory. Therefore, 

special care is needed to choose the best available solution for on- 

line implementation of this algorithm. 

For the second algorithm, which is based-on a linear programming method, 

a global optimum can be guaranteed. The computer program has the options 

of either calling the Revised Simplex subroutine in (BUNDAY, 1984) or 

the subroutine E04MBF in (NAG, 1983), and the solutions from these two 

subroutines agree with each other accurately for all applications. 
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CHAPTER 6 OVERALL COMMENTS AND CONCLUSIONS 

6.1 OVERALL COMMENTS 

In this thesis, two methods, which cover the various aspects of the 

research topic from water demand forecasting, network modelling and 

simplification, to optimization of system operation, have been 

systematically developed in parallel. These two methods, catering for 

two different classes of water supply and distribution systems, can, 

together, solve the optimization problems of fairly general systems. 

It has been shown that the overall control of water supply and 

distribution systems is very complex. Consequently, most research and 

development have concentrated on a restricted class of systems, due 

mainly to the limitations of computing power and available 

mathematical techniques. On the other hand, it has been shown that 

successful implementations of suitable models are possible, providing 

that certain properties of a system are exploited correctly. This 

fact provided the motivation for the current research project. 

This thesis represents a significant contribution to the above 

research field. It presents the development of new, practical methods 

for modelling and optimization, with extended solution capabilities. 

The refinement of existing techniques is also described. The 

integration of these techniques has led to the development of two 
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algorithms which cater for the overall optimal control of a wider 

range of water supply and distribution system than was previously 

possible. 

The theoretical aspects of optimal system operation have even 

thoroughly investigated. Theoretical results have indicated the 

benefits of applying the theory in practice. It remains to actually 

implement these methods in a real system. Fig 6.1 is an illustration 

of an integrated scheme for the dynamic optimal control of a water 

system. The scheme uses an on-line computer employing the 

mathematical models and software algorithms developed in this thesis. 

The scheme would realize the control strategy envisaged in Fig 2.5 

(Chapter 2). 

When utilizing this scheme for a particular system, one should examine 

the characteristics of the system and adopt the most appropriate of 

the two methods described here. For a large scale system, however, 

both methods could be applied to different sub-systems under the 

control of an upper level coordinator. The latter would coordinate the 

local optimal results in order to achieve the global optimum. 

An optimal control strategy can be thus derived which will facilitate 

control actions over the control period (in terms of pump scheduling 

and so on). The control strategy would be based upon predicted 

demands and previously derived network models. 

The on-line monitoring of significant parameters such as demand and 

reservoir level enable discrepancies between actual and predicted 
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values to be evaluated. Significant discrepancies would necessitate 

the evaluation of a revised optimal control schedule, thus ensuring 

optimality over the control period. 

The individual components of the scheme were developed as stand-alone 

units, able to be applied independently to a variety of analyses. The 

techniques of demand forecasting, piecewise macroscopic modelling, 

equivalent network modelling, linear programming optimization, and 

nonlinear programming optimization, are considered to represent 

significant developments in their own right. The programs presented 

in this thesis can be applied independently or in conjunction with 

other existing methods to provide a comprehensive analysis and control 

tool. 
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6.2 GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

This thesis describes a comprehensive, and complete, methodology for 

the overall optimization of water systems operations. However, 

further work could be done to improve and refine the methods based 

upon implementation results. In this section of the thesis, general 

conclusions are drawn and further work is suggested. 

Chapter 3 Water Demand Analysis and Forecasting 

Chapter 3 showed in detail how time series analysis is applied to 

short-term water demand forecasting. Among the general class of 

multiplicative ARIMA models, pure AR models offer distinct advantages 

over other models. Namely, parameter estimations are relatively 

simple and the determination of the model is likewise simple. Such 

factors lend themselves to less complex formulation and easier 

implementation. Further investigation into the combination of 

different forecasting models would be helpful in further raising 

forecasting precision. 

AR models are, however, only applicable to a class of water demand 

patterns. Studies have shown that, by employing the Box-Jenkins 

approach to general ARIMA models, a more extensive range of demands 

could be modelled in a more systematic manner. The model building 

procedure is however rather complex and tentative, which would present 

an obstacle to the non-expert users and would complicate 

implementation procedures. 

The models developed so far would benefit from further investigation 
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in the following areas: 

a) the study of the deterministic components of demand data in order 

to incorporate a deterministic function into the demand model (QUEVEDO 

et al, 1988). 

b) how to take account of the effect of external factors such as 

weather conditions. This could lead to a multivariate time series 

model or a mixed time-series/regressional model. 

c) the introduction of a data preprocessing capability similar to the 

data screening precess described by Coulbeck (COULBECK et al, 1985). 

Such a process would remove noise and enhance the on-line performance 

of the prediction models. 

d) the design of a methodology for tuning of the time series 

parameters to enhance capability for on-line implementation. 

e) further work on the computer program in order to make it possible 

that the computer program can deal with the identification, parameter 

estimation, diagnostic checking , and forecasting of general ARIMA 

models automatically. This is particular important for non-expert 

users. 

Chapter 4 Network Modelling and Simplification for 
System Operation 

In this chapter, several methods were presented for the modelling and 

simplification of water networks for purposes of on-line optimal 
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control. During development, particular emphasis was placed upon the 

need to reduce solution times in order to make such control feasible. 

The macroscopic model developed by Demoyer (DEMOYER and HORWITZ, 

1975a, 1975b) used a set of explicit nonlinear regression equations, 

to represent the major features of a detailed network. However, the 

applicability of such a model is restricted by the assumptions of 

proportional loading. Such assumptions are not always realistic for 

many water supply and distribution networks. the author's extensions 

to this approach has culminated in the piecewise macroscopic model. 

Such a model is further applicable to those systems in which the load 

patterns are not too inconsistent with the assumptions of proportional 

loading. The model has provided a good foundation for the development 

of an optimization method, described in Chapter 5. The idea of 

dividing a day into several proportional loading periods has been 

studied but additional research in required to derive more precise and 

comprehensive rules. 

The equivalent network model developed by the author is based on the 

well-known nodal equations. The modelling methodology was developed 

around the concept of fictitious pipes. The model derivation has a 

clear and definite physical interpretation and is consistent with the 

conventional theory of water network analysis. In particular, and in 

contrast to the macroscopic and piecewise macroscopic models, the 

method does not rely on the assumption of proportional loading. The 

method was applied to the Wolverhampton water supply and distribution 

system with satisfactory results. The derivation of the model has 

facilitated the application of the linear programming optimization 

method described in Chapter 5. It should be worthwhile to investigate 
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its application to more varied systems and to enhance the model 

accordingly. For example, its performance when used in conjunction 

with different optimization algorithms could be studied. It should 

also be worthwhile to conduct research on the incorporation of pump 

controls into the model directly. 

Finally, it will be worth making numerical comparisons between the 

equivalent network model and the macroscopic model or the piecewise 

macroscopic model in order to further learn their applicabilities. 

Chapter 5 Optimal System Operations 

Two algorithms were presented in Chapter 5. One catered for water 

systems without an storage. The other catered for those with such 

storage. The former is directly applicable to those systems without 

significant distribution storage. These include some sub-systems and 

small supply and distribution systems. The algorithm treats the 

pumping and treatment costs as the objective function. By adopting 

the piecewise macroscopic model of Chapter 4, as opposed to the 

iterative solution of nonlinear simultaneous equations, the objective 

function is solely in terms of station flows. The pressure 

requirements of certain system nodes can also be modelled. The 

formulation of the optimal operation problem using such an approach 

takes the form of a constrained nonlinear programming problem. Test 

results indicate that cost savings of up to 11% can be obtained. The 

extension of this algorithm to incorporate the piecewise macroscopic 

relationship for reservoirs to lead to a dynamic problem is expected 

to be straightforward. This should extend the applicability of the 
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algorithm to multi-source and multi-reservoir systems, although the 

computation of optimal solutions by the nonlinear programming 

technique will present greater problems. 

The second algorithm can be applied to multi-source, multi-reservoir 

systems in which pump flows are more or less constant throughout the 

control period. The formulation of the optimal operation problem, 

when based on the equivalent network model (Chapter 4), results in a 

dynamic linear programming problem, where the decision variables are 

pump times rather than pump flows. The discretization scheme 

incorporated into the algorithm overcomes the difficulties of using 

fixed (discrete variables) and variable speed and/or variable throttle 

(continuous variables) pumps together. The algorithm has been fully 

tested on a real system and confirms the hypothesis that least-cost 

pump schedules and reservoir trajectories are indeed obtainable. The 

algorithm should also cope with those systems with fluctuating pump 

flows. This can be done by taking the average pump flows and pump 

powers, whereupon the solutions thus derived will provide a good 

reference for optimal operation. Further research is required on the 

inclusion of electrical maximum demand charges. This would be 

essential for winter operations. 

The algorithm could be extended to include treatment costs without 

affecting the linearity of the formulation. Finally, in an attempt to 

speed up solution times for very large systems having many VSP's, it 

is worth considering the possibility of employing decomposition 

techniques for linear programming, and/or compact storage techniques. 

235 



REFERENCES 

[1] ABRAMOV, N.: Methods of Reducing Power Consumption in Pumping 

Water in Water Supply Systems, Including the Use of Booster 

Stations. Moscow Construction Engineering Institute, 1975 

[2] AN, H. Z.: Time Series Analysis and Its Applications. Science 

Press, China, 1983. 

[3) ASHCROFT, J. A., ELDRIDGE, R. H., PAULSON, R. W. and WILSON, G. A.: 

Programming With Fortran 77. Collins Professional and Technical 

Books, William Collins Sons & Co. Ltd, U. K., 1986. 

[4) BLANCHARD, B. S., FABRYCKY, W. J.: Systems Engineering and 

Analysis. Englewood Cliffs, N. J., London, U. K., 1981. 

(Sý BOX, G. E. P. and JENKINS, G. M.: Time Series Analysis, Forecasting 

and Control. (Revised Edition), Holden-Day, San Francisco, 

U. S. A., 1976. 

[6] BRDYS, M.: Hierarchical Methods and Application to Water Supply 

Systems. Proceedings of the 9th IFAC Congress, Budapest, 

Hungary, 1984 

[ 71 BRDYS, M., COULBECK, B. and ORR, C. H.: A Method for Scheduling 

of Multi-Source, Multi-Reservoir Water Supply Systems Containing 

236 



Only Fixed Speed Pumps. Proc. IEE International Conference, 

Control 88, Oxford, U. K., April 1988. 

[8j BRDYS, M.: An Algorithm for Optimal Scheduling of Water Supply 

Systems Containing Only Fixed Speed Pumps. (submitted for 

publication), 1988. 

[9) BROGAN, W. L.: Modern Control Theory. Quantum Publishers, New 

York, U. S., 1974. 

(101 BUCKLEY, R. V.: Control Engineering, Theory, Worked Examples and 

Problems. Macmillan, London, U. K., 1976. 

[11] BUNDAY, B. D.: Basic Linear Programming. Edward Arnold 

(Publishers)Ltd, U. K. 1984 

(121 CARLSON, C. E. C.: The Denver System of Water Works Controls. 

Journal of AWWA, U. S., Aug. 1971 

[13] CEMBRANO, G., BRDYS, M., QUEVEDO, J., COULBECK, B. and ORR, 

C. H.: Optimization of a Multi-reservoir Water Network Using a 

Conjugate Gradient Technique -- A Case Study. Proceedings, 8th 

International Conference, Analysis and Optimization of Systems, 

Antibes, France, 1988 

[ 14) CHEN, Y. C .: Optimal Dispatch of Water Supply Systems (in 

Chinese). MSc thesis, Tongji University, Shanghai, China, 1985 

[15] CHEN, Y. C.: Optimal Control of Water Distribution Systems with 

237 



a Microcomputer (in Chinese). China Water & Wastewater, Vol. 2, 

1986 

[ 161 CHEN, Y. C.: Optimization of Water Supply Systems (in Chinese). 

Proceedings of the First Conference of China Environmental 

Scientists, Beijing, China, 1987a. 

(171 CHEN, Y. C.: Mathematical Modeling of Water Supply Networks (in 

Chinese). Proceedings of Symposium on Mathematics and Its 

Applications, Guangzhou, China, 1987b. 

[18] CHEN, Y. C.: Application of Time Series Analysis to Water Demand 

Predictions. In COULBECK, B. AND ORR, C. H. (eds): Computer 

applications in Water Supply, Vol. 1, Systems Analysis and 

Simulations, Research Studies Press, U. K. and John Wiley & Sons 

Inc., U. S., 1988a 

[19] CHEN, Y. C.: Simplification of Water Supply and Distribution 

Systems for Optimal Operations. In COULBECK, B. AND ORR, 

C. H. (eds): Computer Applications in Water Supply, Vol. 2, 

Systems Optimization and Control, Research Studies Press, U. K. 

and John Wiley & Sons Inc, U. S. 1988b. 

(20] CHEN, Y. C., COULBECK, B. and ORR, C. H.: Computer Control of 

Water Supply-- Network Simplification by Equivalent Modelling. 

Research Report No. 64, Leicester Polytechnic, U. K. 1988a. 

(21) CHEN, Y. C., COULBECK, B. and ORR, C. H.: Computer Control of 

238 



Water Supply-- Studies on Water Demand Forecasting. Research 

Report No. 72 
, Leicester Polytechnic, U. K. 1988b. 

(22) COHEN, G.: Optimal Control of Water Supply Networks. In 

TZAFESTAS, S. G. (ed): Optimisation and Control of Dynamic 

Operational Research Models. North-Holland Publishing Company, 

1982. 

[231 COHEN, S. S. and STANLEY, S.: Operational Research. Edward 

Arnold, London, U. K., 1985. 

[24] COLLINS, M. A., COOPER, L. and KENNINGTON, J. L.: Multiple 

Operating Points in Complex Pump Networks. Proc. ASCE, HY3, 

March, 1979. 

[25) COULBECK, B.: Optimization & Modelling Techniques in Dynamic 

Control of Water Distribution Systems, PhD thesis, University of 

Sheffield, U. K. 1977. 

[26] COULBECK, B. and STERILNG, M. J. H.: Modelling Techniques in 

Dynamic Control of Water Distribution Systems. Measurement and 

Control, No. 11,1978a. 

[271 COULBECK, B and ORR, C. H.: Optimized Pumping in Water Supply 

Systems -2. Research Report No. 33, Leicester Polytechnic, U. K., 

Dec., 1983. 

[28] COULBECK, B. and STERLING, M. J. H.: Optimised Control of Water 

Distribution Systems. Proc. IEE, Vol-125, No. 9, Oct. 1978b. 

239 



[ 291 COULBECK, B., ORR, C. H., TENNANT, S. T. and RANCE, J. P.: Computer 

Control of Water Supply-- The Development of a Demand Prediction 

Program for Use in Optimal Control of Water Supply, Research 

Report No. 38, Leicester Polytechnic, U. K. 1985. 

[30] COULBECK, B.: Computer Control of Water Supply-- Applications 

Documentation for GINAS (A Graphical Interactive Network 

Analysis and Simulation Program). Research Report No. 16, 

Leicester Polytechnic, U. K. 1985. 

[31] COULBECK, B. and ORR, C. H.: Computer Control of Water Supply-- 

GINAS Applications Workshop Training Guide, Research Report 

No. 40, Leicester Polytechnic, U. K., 1986. 

(32] COULBECK, B.: A Review of Methodologies for Modelling and 

Control of Water Supply. In COULBECK, B. and ORR, C. H. (eds): 

Computer Applications in Water Supply, Vol. 2, Systems 

Optimization and Control, Research Studies Press, Ltd, U. K. and 

John Wiley & Sons Inc. U. S. 1988. 

[33] COULBECK, B., ORR, C. H., PARKAR, M. A. and RANCE, J. P.: GINAS5 

Applications Workshop Training Guide. Research Report 62, 

Leicester Polytechnic, U. K., 1988. 

[341 CREASEY, J. D.: Pump Scheduling in Water Supply: More Than a 

Mathematical Problem. In COULBECK, B. and ORR, C. H. (eds): 

Computer Applications in Water Supply, Vol. 2, Systems 

240 



Optimization and Control, Research Studies Press, Ltd, U. K., and 

John Wiley & Sons Inc, U. S., 1988. 

[35] CUMMINGS, W. J.: The Operation of the Control Systems of the 

Yorkshire Derwent Scheme. Progress of Water Technology, Vol. 9, 

Nos. 5/6, Pergamon Press, U. K. 1977. 

[ 36 1 DEKAY, C. F.: The Evolution of Water Demand Forecasting, Journal 

of AWWA, U. S. Oct. 1985. 

(37] DEMOYER, R. JR., and HORWITZ, L. B.: Macroscopic Distribution- 

System Modelling, Journal of AWWA, July, U. S. 1975a. 

[38) DEMOYER, R. JR. and HORWITZ, L. B.: A System Approach to Water 

Distribution Modelling and Control, Lexington Books, D. C. Heath 

& Co. Lexington, Mass., U. S. 1975b. 

[39] DILLINGHAM, J. H.: Automating Distribution System Operation. 

Journal of AWWA, U. S, March 1979. 

[40] FAIR, G. M., GEYER, J. C. and OKUN, D. A.: Water and Wastewater 

Engineering, Vol. 1, Water Supply and Wastewater Removal, John 

Wiley and Sons, Inc. U. S. and Toppan Company, Ltd, Japan, 1966. 

[411 FALLSIDE, F. and PERRY, P. F.: Hierarchical Optimisation of A 

Water-Supply Network. Proc. IEE, Vol-122, No. 2, U. K. Feb. 

1975a. 

[421 FALLSIDE, F. and PERRY, P. F.: Hierarchical Model for Water- 

241 



Supply-System Control. Proc. IEE, Vol-122, No. 4, U. K. April 

1975b. 

[43) FALLSIDE, F. and PERRY, P. F.: On-line Prediction of Consumption 

for Water Supply Network Control. presented at the IFAC World 

Congress, Boston, Mass., U. S. 1975c. 

[44] FALLSIDE, F. and BURCH, R. H.: On-line Control of a Water Supply 

System. Progress of Water Technology, Vol. 9, Nos. 5/6, Pergamon 

Press, U. K. 1977. 

[45] FLETCHER, R.: Practical Methods of Optimization. Second 

Edition, Wiley, Chichester, U. K., 1987. 

[46] GILL, P. E., and MURRAY, W. and WRIGHT, M. H.: Practical 

Optimization. Academic Press, London, U. K., 1981. 

(47] GRACIE, G.: Analysis of Distribution Demand Variations. Journal 

of AWWA, U. S. Aug. 1971. 

[48] GRENANDER, V. and ROSENBLATT, M.: Statistical Analysis of 

Stationary Time Series. Wiley, New York, U. S., 1957. 

[49] HARPER, W. H. and LIM, H. C.: Operational Research. Macdonald & 

Evans, Plymouth, U. K., 1982. 

(501 HILSDON, C. W.: Using Pump Curves and Valving Techniques for 

Efficient Pumping. Journal of AWWA, U. S. March, 1982. 

242 



[51) HSIA, T. C.: System Identification, Least-Squares Method. 

Lexington Books, U. S. 1977. 

[52] JEPPSON, R. W.: Analysis of Flow in Pipe Networks. Ann Arbor 

Science Publishers, Inc. U. S. 1979. 

(53] JEPPSON, R. W.: Equivalent Hydraulic Pipe for Parallel Pipes. 

Proc. ASCE HY1, U. S. Jan. 1982. 

[54] JOALLAND, G. and COHEN, G.: Optimal Control of a Water 

Distribution Network by Two Multi-Level Methods. Automatica, 16, 

1980. 

(55) JOWITT, P. W., GARRETT, R. T., COOK, S. C. and MONTOLIU, J. M.: 

Real-Time Forecasting and Control for Water Distribution. In 

COULBECK, B. and ORR, C. H. (eds): Computer Application in Water 

Supply. Vol. 2, Systems Optimization and Control, Research 

Studies Press, Ltd, U. K. and John Wiley and Sons, Inc. U. S. 

1988. 

[56] KANBAYASHI, T.: Computer Control and Operation Information 

System for the Large Water Supply Systems. Progress of Water 

Technology, Vol. 9, Nos. 5/6, Pergamon Press, U. K. 1977 

[57) KENNEDY, W., Jr. and GENTLE, J. E.: Statistical Computing. M. 

Dekker, New York, U. S., 1986. 

(58] LASDON, L.: Optimization theory for Large Systems. The 

243 



Macmillan Company, London, 1970. 

[59] LEWIS, F. L.: Optimal Control. John Wiley and Sons, Inc. New 

York, U. S., 1986. 

[60) LIU, S. R. and DUAN, W. Z.: A Study of Modelling Techniques on 

Water Supply Systems (in Chinese). Proceedings of the Conference 

for Applications of Automation Technology, China, 1986. 

[61] MARQUARDT, D. W.: An Algorithm for Least-squares Estimation of 

Non-linear Parameters. Jour. Soc. Ind. Appl. Math., 11, U. S. A., 

1963. 

[621 MATSUMOTO, K.: Control Methods for Computer Operation of the 

Large Water Supply System. preprints IAWPR, Japan, MAY, 1977. 

[631 MATSUMOTO, K. and MIYAOKA, S.: Development of a Hierarchical 

Operation Scheduling Model and its Application to Large Scale 

Supply Systems. IFAC 8th Triennial World Congress, Kyoto, 

Japan, 1981. 

[64] MCPHERSON, M. B.: Generalized Distribution Network Head Loss 

Characteristics. Trans. ASCE, Part I, U. S. 1960. 

[65] MCPHERSON, M. B.: Ground Storage Booster Pumping Hydraulics, 

Journal of AWWA, U. S. 1966. 

(661 MOSS, S. M.: On-line Optimal Control of Water Supply Networks. 

244 



PhD thesis, Cambridge University, U. K. 1979. 

[67] MURTAGH, B. A.: Advanced Linear Programming. McGraw-Hill Inc., 

U. K., 1981. 

[68] NAG Fortran Library Routine Document, U. K. 1983. 

[69] OHMURO, T. and TACHIBANA, Y.: An Efficient Control Method for 

Operation of Multiple Pumps. IFAC 8th World Congress, Kyoto, 

Japan, 1981. 

(701 ORR, C. H., COULBECK, B., RANCE, J. P. and KORZENIEWSKI, R. E.: 

Computer-Aided Pump Scheduling for Efficient Operation of Water 

Supply Systems Using the Program GIPOS3. Research Report No. 42, 

Leicester Polytechnic, U. K., March 1986. 

[71] ORR, C. H., COULBECK, B., BRDYS, M. and PARKAR, M. A.: Computer 

Control of Water Supply and Distribution Systems: Structure, 

Algorithms and Management. In COULBECK, B. and ORR, C. H. (eds): 

Computer Applications in Water Supply, Vol. 2, Systems 

Optimization and Control, Research Studies Press, Ltd, U. K. and 

John Wiley & Sons, Inc., U. S. A. 1988a. 

[72] ORR, C. H., COULBECK, B. and RANCE, J. P.: Computer Aided Pump 

Analysis, Design and Simulation Using the Program GIPADS. 

Research Report No. 43, Leicester Polytechnic, U. K. 1988b. 

[731 OSTLE, B.: Statistics in Research, Second Edition. The Iowa 

State University Press, U. S. A. 1974. 

245 



[74] PARKAR, M. A., ORR, C. H., COULBECK, B. and TENNANT, S. T.: 

Description and Solution Methodology for Optimal Pump Scheduling 

of the Nurton/Bushbury System. Technical Report WCU/STWA-9, 

U. K., Feb., 1989. 

[75] PARZEN, E.: Some Recent Advances in Time Series Modelling. IEEE 

Transactions on Automatic Control, Vol. AC-19, No. 6, U. S., Dec. 

1974. 

(76) PERRY, P. F.: An On-line Optimal Control Scheme for Water Supply 

Networks. PhD thesis, Cambridge University, U. K., July, 1975. 

[77] PERRY, P. F.: Decentralized Optimum Control Methods for Water 

Distribution Systems Optimization. Proc. of the 1977 Joint 

Automatic Control Conference, Vol. 2, U. S. 1977. 

[781 PERRY, P. F.: Demand Forecasting in Water Supply Networks. ASCE 

HY9, U. S. Sept. 1981. 

[791 PIERRE, D. A.: Optimization Theory with Applications, John Wiley 

& Sons, Inc., U. S. A., 1969. 

180) QUEVEDO, J. and CEMBRANO, G.: Water Demand Forecasting through 

Time Series Analysis. Proc. Water and Data Processing, Presse 

Ponts et Chaussees, Paris, France, 1986. 

(81) RADER, J. E. V.: Telemetric Control of Water Distribution Systems. 

246 



Journal of AWWA, U. S. Nov. 1983. 

[82] RAO, H. S., BREE, D. W. and BENZVI, R.: Extended Period 

Simulation of Water Distribution Networks. Final Report by 

Systems Control Inc. Document No. PB-230 148, Palo Alto, 

California, U. S. Feb. 1974. 

[83] RAO, H. S. and SEITLE, R. A.: Computer Applications in Urban Water 

Distribution System Control. Journal of Dynamic Systems, 

Measurement and Control, U. S. A., 1975. 

[84] RAO, H. S. and BREE, D. W., Jr.: Extended Period Simulation of 

Water Systems -- Part A. Journal of the Hydraulics Division, 

Proceedings of the American Society of Civil Engineers, Vol. 103, 

No. HY2, U. S., Feb. 1977a. 

[85] RAO, H. S., MARKEL, L. C. and BREE, D. W., Jr: Extended Period 

Simulation of Water Systems -- Part B, Journal of Hydraulics 

Division, Proceedings of American Society of Civil Engineers, 

Vol. 103, No. HY3, U. S. March, 1977b. 

[861 RATKOWSKY, D. A.: Nonlinear Regression Modelling, A Unified 

Practical Approach, M. Dekker, New York, U. S., 1983. 

[871 SABET, M. H.: Increasing Energy Efficiency of Ground Water Supply 

Systems. PhD thesis, Dept. of Civil Engineering, University of 

California, Davis, U. S., 1982. 

[88] SABET, M. H. and HELWEG, O. J.: Cost Effective Operation of Urban 

247 



Water Supply System Using Dynamic Programming. Water Resources 

Bulletin, American Water Resources Association, Vol. 21, No. 21, 

U. S., Feb. 1985. 

[891 SAGE, A. P.: Systems Engineering, Methodology & Applications. 

IEEE Press, New York, U. S., 1977. 

[90] SHAMIR, U. and HOWARD, C. D. D.: Water Distribution System 

Analysis. Proc. ASCE HY1, U. S., Jan. 1968. 

[91) SHAMIR, U.: Optimal Design and Operation of Water Distribution 

Systems. Water Resources Research, U. S., Feb. 1974. 

[92] SHAMIR, U. and HOWARD, C. D. D.: Engineering Analysis of Water- 

Distribution Systems. Journal of AWWA, U. S., Sept. 1977. 

[93) SHAMIR, U.: Computer Applications for Real-time operation of 

Water Distribution Systems. in Computer Applications in Water 

Resources, ed by TORNO, H., ASCE, U. S., 1985. 

[ 941 SINGH M. G. and TITLI, A.: Systems: Decomposition, optimization 

and Control, Pergamon Press, U. K., 1978. 

[95) STERLING, M. J. H. and COULBECK, B.: A Dynamic Programming 

Solution to Optimization of pumping Costs. Proc. Institute of 

Civil Engineers, Part 2, U. K., Dec. 1975a. 

[ 96 1 STERLING, M. J. H. and COULBECK, B.: Optimization of Water Pumping 

248 



Costs by Hierarchical Methods. Proc. Institute of Civil 

Engineers, Part 2, U. K., Dec. 1975b. 

[97] STERLING, M. J. H. and COULBECK, B.: Linear Dynamic Models in 

Water Systems. Proc. Institute of Civil Engineers, U. K., Part 

2, Sept. 1976. 

[98] TARA, H. A.: Integer Programming, Theory, Applications and 

Computation. Academic Press, New York, U. S., 1975. 

(991 TAMURA, H.: Dual Algorithm for Solving Large-Scale Scheduling 

Systems Control Problem with Hierarchical Structure. Proc. of 

the IFAC 5th World Conference, 1972. 

[100) TENNANT, S. T., COULBECK, B. and ORR, C. H.: Computer Control of 

Water Supply, A System Description of GIDAP, Research Report 

No. 46, Leicester Polytechnic, U. K., 1986. 

(101) TENNANT, S. T.: Short Term Demand Analysis and Prediction for 

Control of Water Supply. MPhil thesis, Leicester Polytechnic 

(CNAA), U. K., 1987. 

(1021 TSUKIYAMA, M. and FUKUDA, T.: The Control of Water Supply 

Network Based on Fuzzy Information. Proc. of the 1981 

Conference of Japan Water Works Association, Japan, 1981a. 

[1031 TSUKIYAMA, M. and FUKUDA, T.: A Heuristic Methodology of 

Estimation and Control for Large Scale Water Supply Network. 

IFAC 8th World Congress, Kyoto, Japan, 1981b. 

249 



[104] VANDAELE, W.: Applied Time Series and Box-Jenkins Methods. 

Academic Press, Inc., New York, U. S. A., 1983. 

[1051 WALKER, R.: Water Supply, Treatment and Distribution. Englewood 

Cliffs, Prentice-Hall, London, U. K., 1978. 

[106) WAN, Y. C.: Programming Collections for Optimization Techniques 

(in Chinese). Workers Press, China, 1983. 

[1071 WRc: Pump Scheduling in Water Supply. Water Research Centre, 

TR232, U. K., 1985. 

[108] YANG, Q.: Design and Computation of Water Distribution 

Networks (in Chinese). Constructional Engineering Press, China, 

1956. 

[1091 YANG, Q.: On Computer Applications to Hydraulic Analysis of 

Water Distribution Networks (in Chinese). Journal of Tongji 

University, Shanghai, China, 1979. 

[110) ZARGHAMEE, M. S.: Mathematical Model for Water Distribution 

Systems. Proc. ASCE, HY1, U. S., Jan. 1971. 

250 



PAGES NOT SCANNED AT THE 
REQUEST OF THE UNIVERSITY 

SEE ORIGINAL COPY OF THE THESIS 
FOR THIS MATERIAL 


